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Geometry of world sheets in
Lorentz-Minkowski space

By

Shyuichi IZUMIYA *

Abstract

A world sheet in Lorentz-Minkowski space is a timelike submanifold consisting of a one-
parameter family of spacelike submanifolds in Lorentz-Minkowski space. In this paper we
investigate differential geometry of world sheets in Lorentz-Minkowski space as an application
of the theory of big wave fronts.

§1. Introduction

In this paper we consider differential geometry of world sheets in Lorentz-Minkowski
space. A world sheet is a timelike submanifold consisting of a one-parameter family of
spacelike submanifolds in a Lorentz manifold. Since we do not have the notion of
constant time in the relativity theory, we consider one-parameter families of spacelike
submanifolds depending on the time-parameter (i.e., world sheets). In this case, the
spacelike submanifold with the constant parameter is not necessarily the constant time
in the ambient space. If we observe a surface in our space, then it is moving around the
sun. Moreover, the solar system itself is moving depending on the Galaxy movement.
Therefore, even if it looks a fixed surface (for example, a surface of a solid body)
in Euclidean 3-space, it is a three dimensional world sheets in Lorentz-Minkowski 4-
space. Moreover, there appeared higher dimensional Lorentz manifolds in the theoretical
physics (i.e., the super string theory, the brane world scenario etc.). So we consider world
sheets with general codimension in general dimensional Lorentz-Minkowski space. In
[11] lightlike flat geometry on a spacelike submanifold with general codimension has
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been investigated. Their method is quite useful for the study of the geometry of world
sheets.

On the other hand, Lorentz-Minkowski space gives a geometric framework of the
special relativity theory. Although there are no gravity in Lorentz-Minkowski space,
it provides a simple model of general Lorentz manifolds. In this paper we investigate
the lightlike geometry of world sheets in Lorentz-Minkowski space with general codi-
mension from the view point of the contact with lightlike hyperplanes. The natural
connection between geometry and singularities relies on the basic fact that the contact
of a submanifold with the models of the ambient space can be described by means of
the analysis if the singularities of appropriate families of contact functions, or equiv-
alently, of their associated Lagrangian/Legendrian maps. For the lightlike geometry
the models are lightlike hyperplanes or lightcones. The lightlike flat geometry is the
lightlike geometry which adopts lightlike hyperplanes as model hypersurfaces. Since we
consider world sheets (i.e., one parameter families of spacelike submanifolds), the mod-
els are families of lightlike hyperplanes and the theory of one parameter bifurcations of
Legendrian singularities is essentially useful. Such a theory was initiated by Zakalyukin
[16, 17] as the theory of big wave fronts. There have been some developments on this
theory during past two decades|5, 6, 8, 9, 10, 18, 19]. Several applications of the theory
were discovered in those articles. For applying this theory, some equivalence relations
among big wave fronts were used. Here, we consider another equivalence relation among
big wave fronts which is different from the equivalence relations considered in those ar-
ticles. This equivalence relation is corresponding to the equivalence relation introduced
in [2, 3] for applying the singularity theory to bifurcation problems.

In §2 basic notations and properties of Lorentz-Minkowski space are explained.
Differential geometry of world sheets in Lorentz-Minkowski space is constructed in §3.
We introduce the notion of (world and momentary) lightcone Gauss maps and induce
the corresponding curvatures of world sheets respectively. In §4 we define the lightcone
height functions family and the extended lightcone height functions family of a world
sheet. We calculate the singular points of these families of functions and induce the
notion of lightcone pedal maps and unfolded lightcone pedal maps respectively. We
investigate the geometric meanings of the singular points of the lightcone pedal maps
from the view point of the contact with families of lightlike hyperplanes in §5. We
can show that the image of the unfolded lightcone pedal map is a big wave front of a
certain big Legendrian submanifold. Therefore, we apply the theory of big wave fronts
to our situation and interpret the geometric meanings of the singularities of the unfolded
lightcone pedal map in §6.
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§ 2. Basic concepts

We introduce in this section some basic notions on Lorentz-Minkowski (n+1)-space.
For basic concepts and properties, see [14]. Let R = {(zg,21,...,2,) | 7 € R (i =
0,1,...,n)} bean (n+1)-dimensional cartesian space. For any @ = (zg, z1,...,%n), Y =
(Yo, Y15+ -+ Yn) € R the pseudo scalar product of x and y is defined by {(x,y) =
—z0Yo + Doiy Tiyi. We call (R"1 () Lorentz-Minkowski (n + 1)-space. We write
R7 ! instead of (R™1,(,)). We say that a non-zero vector & € R} ™! is spacelike,
lightlike or timelike if (x,x) > 0, (x,x) = 0 or (x,x) < 0 respectively. The norm of the
vector € R} is defined to be ||z| = \/|(x,®)|. We have the canonical projection
7 R — R™ defined by 7(xg, 1,...,2,) = (T1,...,2,). Here we identify {0} x R™
with R™ and it is considered as Euclidean n-space whose scalar product is induced from
the pseudo scalar product (,). For a non-zero vector v € ]RT’Jrl and a real number ¢, we
define a hyperplane with pseudo normal v by

HP(v,c) = {z e R}™ | (z,v) =c }.

We call HP(v,c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane
if v is timelike, spacelike or lightlike respectively.
We now define Hyperbolic n-space by

HY(-1)={z e RI |(z,z) = —1,20 > 0}
and de Sitter n-space by
St ={x e RI" ! {z,x) =1}.
We define
LC* = {x = (20,21, ...,7,) € RY |zg £ 0, (z,z) =0}

and we call it the (open) lightcone at the origin. In the lightcone, we have the canonical
unit spacelike sphere defined by

S14 = (@ = (0,0, o) | {@,2) =0, a0 = 1},

We call Si_l the lightcone unit (n — 1)-sphere. If * = (xg,x1,...,2,) is a lightlike
vector, then zg # 0. Therefore we have

- T x _
T = (1,—1,...,—n> e st 1

Zo Zo

It follows that we have a projection 7% : LC* — Si’_l defined by & (z) = .
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For any 1, ®o,...,xy, GR’{“, we define a vector &y A xo A -+ A @, by
_eoel...en
x(l) x%x}t
2 .2 2
1 Ao AN ANz, = | Lo xl'”xn,

Sk e

n n

where eg, €1, ...,e, is the canonical basis of R!"" and x; = (x},z},...,2). We can
easily check that (x,z1 Axa A--- ANxy) = det(x, @1,...,xy), so that &y Az A--- Ay,
is pseudo orthogonal to any x; (i =1,...,n).

§3. World sheets in Lorentz-Minkowski space

In this section we introduce the basic geometrical framework for the study of world
sheets in Lorentz-Minkowski (n + 1)-space. Let R™™ be a time-oriented space (cf.,
[14]). We choose ey = (1,0,...,0) as the future timelike vector field. The world
sheet is defined to be a timelike submanifold foliated by a codimension one spacelike
submanifolds. Here, we only consider the local situation, so that we adopt a one-
parameter family of spacelike submanifolds. Let X : U x I — R’f“ be a timelike
embedding of codimension k& — 1, where U C R® (s + k =n + 1) is an open subset and
I an open interval. We write W = X (U x I) and identify W and U x I through the
embedding X. The embedding X is said to be timelike if the tangent space T, W of W
is a timelike subspace (i.e., Lorentz subspace of TpRE’f“) at any point p € W. We write
S = X (U x {t}) for each t € I. We have a foliation S = {S, |t € I} on W. We say that
S; is spacelike if the tangent space T,S; consists only spacelike vectors (i.e., spacelike
subspace) for any point p € S;. We say that (W,S) (or, X ) is a world sheet if W is
time-orientable and each S; is spacelike. We call §; a momentary space of (W,S). For
any p = X (u,t) € W C R, we have

T,W = (X (u,t), Xy, (@t),..., Xy, (4t))r,

where we write (u,t) = (u1,...,us,t) € U x I, Xy = 0X /0t and X, = 0X /Ou;. We
also have
TS = (X, (@, t),..., X, (T, 1)k

Since W is time-orientable, there exists a timelike vector field v(w,t) on W [14, Lemma
32]. Moreover, we can choose that v is future directed which means that (v(w,t), eg) < 0.

Let N,(W) be the pseudo-normal space of W at p = X (@,t) in R}t Since T, W
is a timelike subspace of T,R} 1!, N,(W) is a (k — 1)-dimensional spacelike subspace of
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T,R} ™ (cf.,[14]). On the pseudo-normal space N,(W), we have a (k — 2)-unit sphere

Ni(W), ={& e Np(W) | (£:€) =11}

Therefore, we have a unit spherical normal bundle over W:

N(W) = | Ni(W),.
peW

On the other hand, we write N, (S;) as the pseudo-normal space of S; at p = X (, t)
in R’f“. Then N,(S;) is a k-dimensional Lorentz subspace of TPR?H. On the pseudo-
normal space Np(S;), we have two kinds of pseudo spheres:

Ny(Sii—1) = {v € Ny(S)) | (v,0) = —1}
Ny(Si:1) = {v € Ny(S)) | (v.0) =1},

We remark that N,(S¢; —1) is the (k — 1)-dimensional hyperbolic space and N, (S;; 1) is
the (k — 1)-dimensional de Sitter space. Therefore, we have two unit spherical normal
bundles N(Si;—1) and N(Si;1) over S;. Since S = X (U x {t}) is a codimension
one spacelike submanifold in W, there exists a unique timelike future directed unit
normal vector field n?'(w,t) of S; such that n®(w,t) is tangent to W at any point
p = X (u,t). It means that n”(w,t) € N,(S;) NT,W with (n”(u,t),n” (u,t)) = —1 and
(nT(u,t),ep) < 0. We define a (k — 2)-dimensional spacelike unit sphere in N,(S;) by

Ni(Si)pln'] = {€ € Np(S:1) | (€, (@ 1) =0,p = X(T,1) }.

Then we have a spacelike unit (k — 2)-spherical bundle N1(S;)[nT] over S; with respect
to n’. Since we have T, ¢)N1(S;)[n'] = TSy x TeN1(S;)p[n”], we have the canon-
ical Riemannian metric on Ni(S;)[n”] which we write (Gy;((u,t),€))1<ij<n—1. Since

nT is uniquely determined, we write Ni[S;] = N1(S;)[nT]. Moreover, we remark that

Ny(W)|S; = N1[S;] for any t € 1.

We now define a map LG : Ny (W) — LC* by LG(X (u,t),£¢) = n? (u,t) + &. We
call LG a world lightcone Gauss map of Ny(W), where W = X (U x I). A momentary
lightcone Gauss map of N1[S;] is defined to be the restriction of the world lightcone
Gauss map of N;(W):

This map leads us to the notions of curvatures. Let T\, ¢)N1[S;] be the tangent space
of N1[S] at (p,&). With the canonical identification

(LG(S) TR ) p.g) = Tt (m+e)RT T = TR,
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we have

TipeyMNi[Si] = TS @ T&‘Sk_2 C TS @ Np(S) = TPR?+17
where T¢ S¥72 C Te N, (Sy) = Np(Sy) and p = X (u, t). Let

' LG(Sy)*TRY ™ = TN, [S;] @ R*T? — TN, [SY]
be the canonical projection. Then we have a linear transformation
Se(S) &) = Migs)p.e) © Ao LC(St) : Tipey N [Si] — Tp.e) N1[Si],

which is called the momentary lightcone shape operator of N1[Sy] at (p, &).

On the other hand, for ty € I, we choose a spacelike unit vector field n° along
W = X (UxI) at least locally such that n (%, ) € Ni(Sy,). Then we have (n®, n®) =1
and (X, n%) = (X,,,n%) = (nT,n%) = 0 at (u,tg) € U x I. Clearly, the vector
nT (@, ty) + n(w, ty) is lightlike. We define a mapping

LG(S;,;n®) : U — LC*

by LG(S,; n°) (@) = nT (U, te) +n”(u,ty), which is called a momentary lightcone Gauss
map of Sy, = X (U x {to}) with respect to n®. With the identification of Sy, and U x {to}
through X, we have the linear mapping provided by the derivative of the momentary
lightcone Gauss map LG(Sy,;n®) at each point p = X (1, o),

dpLG(Sty;n”) : TpS;, — TRYT = T,81, ® Np(Sy,).
Consider the orthogonal projection 7 : T,St, ® Np(St,) — TpSt,- We define

Sy(Sto;n®) = =1t 0 dyLG(Syy; n”) : TSty — TSty -
We call the linear transformation S, (St,; n®) an n-momentary shape operator of Sy, =
X (U x {to}) at p = X (u, o). Let {ri(Si,;n°)(p)};_; be the eigenvalues of S, (S;,;n”),
which are called momentary lightcone principal curvatures of Sy, with respect to n®
at p = X(u,tg). Then a momentary lightcone Lipschitz-Killing curvature of Sy, with

respect to n® at p = X (1, o) is defined as follows:

Ko(Siy;n”)(p) = detS,(Si,; ).

S

We say that a point p = X (@, to) is an n”-momentary lightcone umbilical point of Sy, if

Sp(Sto;n®) = (S, nS)(p)lTpgtO.

We say that W = X (U x I) is totally n® -lightcone umbilical if each point p = X (u,t) €

S

W is an m”-momentary lightcone umbilical point of S;. Moreover, W = X (U x I) is
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said to be totally lightcone umbilical if it is totally m°-lightcone umbilical for any n®.
We deduce now the lightcone Weingarten formula. Since Sy, = X (U x {to}) is spacelike
submanifold, we have a Riemannian metric (the first fundamental form ) on Sy, defined
by ds* = 37, gijduidu;, where g;;(, to) = (X, (T, o), X, (U, to)) for any uw € U. We
also have a lightcone second fundamental invariant of S;, with respect to the normal
vector field n® defined by h;(Si;n®) (@, to) = (—(n” + n%),, (@, to), X, (W, to)) for
any u € U. By the similar arguments to those in the proof of [7, Proposition 3.2], we
have the following proposition.

Proposition 3.1. We choose a pseudo-orthonormal frame {nT,nf, e ,nf_l}

of N(S,) with n;f_l = n®. Then we have the following lightcone Weingarten formula :
(8) LE(Sty3 %), = (0], n%) (0" + n%) + {7 H{(n" + n¥)u, ni)n]

- Zj‘:l hf (Sto; "?S)Xuj,
(b) w0 LG(Syy; ), = — 20 bl (S n®) X,

7 j=1
Here, (B(S1yin%)) = (hin(Sig3n)) (67) and (67) = (gi) ™"
Since LG(S;,; n°)., = dLG(S;,;n%)(X,,), we have
Sp(Sto; ns)(Xui (ﬂ7 tO)) =—m'o LG(Sto; ns)ui (ﬂ7 tO):

so that the representation matrix of S, (S, ; ) with respect to the basis { X, (W, t0)}5_,
of TSy, is (h}(Sty; n®)(W, to)). Therefore, we have an explicit expression of the momen-
tary lightcone Lipschitz-Killing curvature of Sy, with respect to n® as follows:
det (hZJ (Sto 3 nS) (ﬂ, to))

det (9ap(T, to)) '

Since (—(n” +n%)(u,to), X, (T, t9)) = 0, we have

K(Si,;n%) (@, to) =

hij (Sto; ns)(ﬂ, tO) = <nT (ﬂ7 tO) + ns(ﬂ7 tO)) Xuiuj (ﬂ, tO))

Therefore the lightcone second fundamental invariants of S;, at a point pg = X (o, to)
depend only on the values n” (%) + n® (@) and X v, (W), respectively. Therefore, we
write

hij(Sto; 1) (Wo, to) = hij(St) (Pos &o),

where pg = X (Uo, to) and &, = n” (g, to) € N1(W),,. Thus, the n°-momentary shape
operator and the momentary lightcone curvatures also depend only on nt (ug,t) +
n° (g, to), Xu,(Uo,to) and X w;u; (To, to), which are independent of the derivations
of the vector fields n? and n®. It follows that we write Sp,(Siy;€) = Spo(Sie;n®),
Ki(Sto €0) (P0) = #i(Sios ™) (o) (i = 1,...,5) and Ki(Sy,,€0)(po) = Ke(Sio3m”)(po) at
po = X (Tp, to) with respect to &, = n° (o, to). We also say that a point py = X (T, to)
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is &y-momentary lightcone umbilical if Sp,(Sty; &) = Ki(St,)(Po, €0)1T,, 5, We say
that a point pg = X (7o, to) is a &y-momentary lightcone parabolic point of Sy, if
Ko(Sty3€0)(po) = 0.

Let r¢(St)i(p,&) be the eigenvalues of the lightcone shape operator S¢(St)p.e),
(i =1,...,n—1). We write k¢(St)i(p,&), (i = 1,...,s) for the eigenvalues whose
eigenvectors belong to T,S; and k¢(S;)i(p, &), (1 = s+1,...n) for the eigenvalues whose
eigenvectors belong to the tangent space of the fiber of N;[Sy].

Proposition 3.2.  For pg = X (4o, to) and &y € N1[Stylp,. we have

’if(Sto)i(poaso) - ’ii(StmgO)(pO)’ (Z =1,... 8)7 ’iﬁ(Sto)i(pmSO) =—1, (Z =s+1,.. n)

Proof. Since {n”,n?,...,ny |} is a pseudo-orthonormal frame of N(S;) and &, =

ng—l(ﬂo,to) c §k—2 — Ni[St,]p, we have (nT (U, 1), &) = <nis(ﬂ07t0)7£0> — 0 for
t=1,...,k — 2. Therefore, we have

TﬁOSk_Q = <nf(ﬂ07 tO)) B nlf—Q(ﬂ07 tO))

By this orthonormal basis of T¢, S*~2, the canonical Riemannian metric G;;(po, &) is

(Gij(po,§)) = (gij(po) 0 )

represented by

0 Ir—o

where g;;(po) = (X, (o, t0), X, (To, to))-
On the other hand, by Proposition 3.1, we have

— Z hg(StoanS)Xuj = LG(StO,nS)ui - deLG(Sto; nS) (ai) 7
j=1 |

so that we have

9 ° .
SE(StO)(po,ﬁo) (%) = Z h‘g(StO;nS)Xuj.
i =

Therefore, the representation matrix of Sy (S,go)(p0 £.) with respect to the basis
'So

{X’u,l (ﬂ()a tO)v ey Xus (ﬂ()a tO)a nf(ﬂ07t0)7 s 7n£—2(ﬂ07 tO)}

of Tipg.e0)N1[St,] is of the form

hl(Siyy ) (o, to)  *
0 —Ip o)

Thus, the eigenvalues of this matrix are \; = k;(St,,&€o)(po), (i =1,...,s) and \; = —1,
(i=s41,...,n—1). This completes the proof. O
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We call k¢(S1)i(p, &) = ki(Se,€)(p), (i = 1,...,s) momentary lightcone principal
curvatures of Sy with respect to &€ at p = X (u,t) € W.
On the other hand, we define a mapping LG(S;) : N1(S;) — S~ by

LG(S:)(p, €) = TE(LG(S)(p, £)),

which is called a normalized momentary lightcone Gauss map of N1(S;). A normalized
momentary lightcone Gauss map of Sy with respect to n® is a mapping m(St;nS ) :
U — ST defined to be LG(S;;n%) (@) = 75 (LG(Sy; n®)(w)). The normalized mo-
mentary lightcone Gauss map of S; with respect to n° also induces a linear mapping
dpm(St;nS )+ T,S; — T,RY under the identification of U x {t} and S;, where

p = X (u,t). We have the following proposition.

Proposition 3.3.  With the above notations, we have the following normalized

lightcone Weingarten formula with respect to n®:

— 1
t . u
s OLG(St, uz E EO ﬂ h] Sta )(u7t)XUj (U’)t)a

where LG(Sy; n®) (W) = (o (T, 1), £1(U, 1), ..., I, 1)).
Proof. By definition, we have KOE@T(&; n®) = LG(S;; n®). It follows that
CLG(S; %)y, = LG(Sy; %), — lou, LG(Sy; nS).

Since LG(Sy; n5)(T) € N,(S,), we have 7t o LG(Sy; nS).,, = 7ot oLG(Sy;n)y,. By the
lightcone Weingarten formula with respect to n® (Proposition 3.1), we have the desired

formula. O

We call the linear transformation §p(8t; n®) = -7t o dpm(St; n®) a normalized
momentary lightcone shape operator of S; with respect to n® at p. The eigenvalues
{Ri(Sy;n®)(p)}i, of S, »(Si;m) are called normalized momentary lightcone principal
curvatures. By the above proposition, we have %;(S;; %) (p) = (1/£4o(, t))k:(Se; 1) (p).
A normalized momentary Lipschitz-Killing curvature of S; with respect to n® is defined
to be Ky(T,t) = det §p(8t; n®). Then we have the following relation between the nor-
malized momentary lightcone Lipschitz-Killing curvature and the momentary lightcone

Lipschitz-Killing curvature:

1
ly(u,t)

R = ( )sKast;nS)(p),

where p = X (w, t). By definition, pg = X (U, tp) is the nos—momentary umbilical point
if and only if Sy, (S;n5) = &i(Siy; n° )(po)lt,,s,,- We have the following proposition.
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Proposition 3.4.  For any ty € I, the following conditions (1) and (2) are equiv-
alent:
(1) There exists a spacelike unit vector field n® along W = X(U x I) such that
n®(u,ty) € N1(Sy,) and the normalized momentary lightcone Gauss map m(StO;nS )
of St, = X (U x {to}) with respect to n° is constant.
(2) There exists v € ST and a real number ¢ such that Sy, C HP(v,c).

Suppose that the above conditions hold. Then
(3) Sy, = X (U x {to}) is totally n®-momentary flat.

Proof. Suppose that the condition (1) holds. We consider a function F' : U — R
defined by F(u) = (X (u,to),v). By definition, we have

2712 (ﬂ) = <XU7, (ﬂ, t0)7'0> = <)<-uz (ﬂ, to),m(sto;nS)(a» —0,

for any i = 1,...,s. Therefore, F(u) = (X(u,tp),v) = c is constant. It follows that
Si, C HP(v,c) for v e ST1.

Suppose that S;, is a subset of a lightlike hyperplane H (v, ¢) for v € S’iv ~1 Since
Si, € HP(v,c), we have T,S;, C H(v,0) for any p € S,. If (nT(w,t),v) = 0, then
nT(u,t) € HP(v,0). We remark that HP(v,0) does not contain timelike vectors. This
is a contradiction. So we have (n”(u,t),v) # 0. We now define a vector field along
W =X(U x1I) by

-1
(T (@, 1), 0)

We can easily show that (n®(w,t),n”(w,t)) = 1 and (n(w,t),n?(u,t)) = 0. Since
T,St, C H(v,0), we have (X, (T, to),n° (U, t9)) = 0. Hence n” is a spacelike unit vector
field n’ along W = X (U x I) such that n%(u,t) € N1(Sy,) and LG(S,,; n®)(7) = v.
By Proposition 3.3, if m(&o;ns ) is constant, then (h?(S;,; ) (@, ty)) = O. It follows
that Sy, is lightcone n-flat. O

n’ (T, t) = v—n'(T,t).

8§4. Lightcone height functions

In order to study the geometric meanings of the normalized lightcone Lipschitz-
Killing curvature K(Sp;nS) of S; = X (U x {t}), we introduce a family of functions on
M = X (U). A family of lightcone height functions H : U x (ST ' xI) — Ron W =
X (U x1) is defined to be H((u,t),v) = (X (u, t),v). The Hessian matrix of the lightcone
height function A, v,) (@) = H((¥,t0),vo) at g is denoted by Hess(h (s, v,))(To). The
following proposition characterizes the lightlike parabolic points and lightlike flat points
in terms of the family of lightcone height functions.
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Proposition 4.1. Let H : U X (Sf’r_1 x I) — R be the family of lightcone height
functions on a world sheet W = X (U x I). Then
(1) (O0H/0u;)(uo,to,vo) =0 (i =1,...,s) if and only if there exists a spacelike section
n® of N1(S;,) such that vy = @(Sto; ng ) (o).

Suppose that po = X (o, to), vo = ﬂé(sto; ng) (o). Then
(2) po is an ng-parabolic point of Sy, if and only if det Hess(h(¢,v0))T0) = 0,
(3) po is a flat m§ -umbilical point of Sy, if and only if rank Hess(hty,v0))%0) = 0.

Proof. (1) Since (0H/0u;)((To,to)vo) = (X, (To,t0),v0), (0H/Ou;)((To,t0),vo) =
0(i=1,...,s) if and only if vg € Np,(Ss,) and vy € ST '. By the same construction
as in the proof of Proposition 3.4, we have a spacelike unit normal vector field n®
along W = X (U x I) with n®(u,ty) € Ni(S;,) such that vg = @(Sto;ns)(ﬂo) =
@(Sto; n§)(Tp). The converse also holds. For the proof of the assertions (2) and (3),
as a consequence of Proposition 3.1, we have

Hess(h(to’vo))(ﬂo) = (<Xuiuj (ﬂ07 tO)? m(‘gto; ns)(ﬂo»)

<XUin (ﬂ07 tO)a nT(ﬂm tO) + ns(ﬂ()? tO)))

(X o (T, 10), (0T + 1), (T, to>>)

€0< u; (o, o), th Sto;m”)(Uo) X uk(ﬂ07t0)>>

By definition, K;(Si,;n%)(U) = 0 if and only if det (hi;(Sy; n°) (o)) = 0. Assertion
(2) holds. Here, py is a flat n§-umbilical point if and only if (hi;(Si,; ) (o)) = O. So

we have assertion (3). O

We also define a family of functions H : U x (LC* x I) — R by H((u,t),v) =
(X (u,t), ) — vo, where v = (vg,v1,...,vn). We call H a family of extended lightcone
height functions of W = X(U x I). Since H /8u; = OH/du; for i = 1,...,s and
Hess(ﬁ(t’v)) = Hess(h(;3)), we have the following proposition as a corollary of Proposi-
tion 4.1.

Proposition 4.2.  Let H : U x (LC* x I) — R be the extended lightcone height
function of a world sheet W = X (U x I). Then
(1) H((uo,to),vo) = (8H/8uz)((u0,to) 0) =0 (i=1,...,s) if and only if there exists
a spacelike section n® of N1(Sy,) such that

vy = (X (T, t), LG(Syy: 1) (o) ) LG (St 1) (o).
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Suppose that po = X (to,to), vo = <X(ﬂ0,t0),ﬂ(§(8to;n§)(ﬂ0)>m(8to;n§)(ﬂo).
Then
(2) po is an ng-parabolic point of Sy, if and only if det Hess(ﬁ(to,vo))(ﬂo) =0,
(3) po is a flat m5 -umbilical point of Sy, if and only if rank Hess(?z(to,vo)(ﬂo) =0.

Proof. Tt follows from Proposition 4.1, (1) that (8H /0u;)((To,t0),v0) = 0 (i =
1,...,s) if and only if there exists a spacelike section n” of Ni(S;,) such that vy =
@(Sto; ng)(To). Moreover, the condition H((To, ), v) = 0 is equivalent the condition
that vy = (X(ﬂo,to),m(&o;ng)(ﬂo)), where vg = (vg, v1,...,v,). This means that

vy = (X (T, t0), LG(Sty: ) (Wo))LG(Stys 1) (o).

Assertions (2) and (3) directly follow from assertions (2) and (3) of Proposition 4.1. O

Inspired by the above results, we define a mapping LP(S;) : N1(S;) — LC* by

LP(Sy)((@, 1), &) = (X (T, 1), LG(S;; )LG(S,)((T, 1), €).

We call it a momentary lightcone pedal map of S;. Moreover, we define a map LP :
N1(W) — LC* x I by

LP((ﬂ7 t)a €) = (H"P(St) ((ﬂ7 t)a 5)7 t):

which is called an unfolded lightcone pedal map of W.

§5. Contact viewpoint

In this section we interpret the results of Propositions 4.1 and 4.2 from the view
point of the contact with lightlike hyperplanes.

Firstly, we consider the relationship between the contact of a one parameter family

of submanifolds with a submanifold and P-K-equivalence among functions (cf., [3]).

Let U; C R", (i = 1,2) be open sets and g; : (U; x I,(u;,t;)) — (R™,y;) immersion

germs. We define g, : (U; x I, (u;, t;)) — (R™ x I, (y;,t;)) by g;(u,t) = (g:(w),t). We

write that (Y, (vi,t:)) = (9;(Us x I), (yi, ;). Let f; : (R™, ;) — (R, 0) be submersion

(f;1(0),y;). We say that the contact of Y, with

the trivial family of V(f1) at (y1,t1) is of the same type as the contact of Yo with

germs and write that (V(f;),y:) =

the trivial family of V(f2) at (ya,tz) if there is a diffeomorphism germ ® : (R™ x
I,(y1,t1)) — (R" X1, (yo,t2)) of the form ®(y,t) = (¢1(y, 1), p2(t)) such that ®(Y ;) =
Yo and ®(V(f1) x I) = V(f2) x I. In this case we write K(Y1,V(f1) X I;(y1,t1)) =
K(Y2,V(f2) x I; (ya,t2)). We can show one of the parametric versions of Montaldi’s
theorem of contact between submanifolds as follows:
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Proposition 5.1. We use the same notations as in the above paragraph. Then
K(Y1,V(f1) x I; (y1,t1)) = K(Y2,V(f2) x I; (y2,t2)) if and only if f10g1 and f20gs
are P-K-equivalent (i.e., there exists a diffeomorphism germ U : (U x I, (uy,t1)) —
(Uy x I, (uz,t2)) of the form V(u,t) = (Y1(u,t),¥2(t)) and a function germ A : (U X
I,(Wy,t1)) — R with A(uy,t1) # 0 such that (fz2 0 g2) o ®(u,t) = (@, t) f1 0 g1(Tw, t)).

Since the proof of Proposition 5.1 is given by the arguments just along the line of
the proof of the original theorem in [13], we omit the proof here.

We now consider a function b, : R} — R defined by ho(w) = (w, D) — vo,
where v = (vg, v1,...,v,). For any vy € LC*, we have a lightlike hyperplane h;ol 0) =
HP(vg,vg). Moreover, we consider the lightlike vector vy = LIP(Sy,)((Wo, to), &), then

we have

~

Boo © X (T, to) = H (ug, LP(S, ) (To, o). €))) = 0.

By Proposition 4.2, we also have relations that

Oy, 0 X OH

o, (o, to) = au, ((@o, o), LP(St, ) ((To, o), &p))) = 0.

fori =1,...,s. This means that the lightlike hyperplane E; 1(0) = HP(¥g, vo) is tangent
to Sy, = X (U x {to}) at pop = X (Wo,to). The lightlike hypersurface H P(vg, vg) is said
to be a tangent lightlike hyperplane of S;, = X (U x {to}) at po = X (Uo,to), which we
write TLP(S:,,v0,&,)), where vo = LP(S;, ) (o, to). Then we have the following simple
lemma.

Lemma 5.2. Let X : U x [ — R’f“ be a world sheet. Consider two points
(P1,€1); (P2, &2) € N1(Siy), where p; = X (Ui, to), (i = 1,2). Then

LP(S,) (U1, t0), €1)) = LP(S, ) (U2, to), &2))
if and only if
TLP(S,,,LP(S,,) (T, t0), &) = TLP(Sy,, LP(Sy, ) (T2, to), €5))-
By definition, LP((Ty, 1), £;) = LP((Ta, t2), €,) if and only if
t; =ty and LP(Sy, ) (T, t1), €)) = LP(S;,) (T, 11), £5)).-

Eventually, we have tools for the study of the contact between spacelike hypersurfaces
and lightlike hyperplanes. Since we have h, (@,t) = b, o X (@,t), we have the following
proposition as a corollary of Proposition 5.1.

Proposition 5.3.  Let X; : (U x I, (@, t;)) — R, py) (i = 1,2) be world
sheet germs and v; = LP(Sy,, LP(S,)((W;,t:),&;)) and W; = X,;(U x I). Then the
following conditions are equivalent:
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(1) K(W1, TLP(S,,v1,€1) X I; (p1, 1)) = K(W2, TLP(St,,v2,&5) % I; (p2, 12)),
(2) hiv, and hg ., are P-K-equivalent.

8§6. Big wave fronts

In this section we apply the theory of big wave fronts to the geometry of world
sheets in Lorentz-Minkowski space. Let F : (RF x (R™ x R),0) — (R, 0) be a function
germ. We say that F is a non-degenerate big Morse family of hypersurfaces if

A (F)|rr xrr x {0} (R* x R™ x {0},0) — (R x R¥) is non-singular,

where

OF OF
A*(f)(q,x,t) = (]—"(q,x,t), 6—(]1((],117,13),. ,8—qk(q,a’},t)> .

We simply say that F is a big Morse family of hypersurfaces if A, (F) is non-singular.
By definition, a non-degenerate big Morse family of hypersurfaces is a big Morse family
of hypersurfaces. Then ¥, (F) = A(F)1(0) is a smooth n-dimensional submanifold

germ.

Proposition 6.1.  The extended height functions family H:Ux (LC*xI) — R
at any point (o, (vo,tg)) € Lx(H) is a non-degenerate big Morse family of hypersur-
faces.

Proof. We write X = (Xo,...,X,) and v = (vg,...,v,) € LC*. Without loss of

generality, we assume that vg > 0. Then vy = \/v} + -+ + v2.
For A*H = (H,Hy,,...,H,,), we prove that the map A*H |y x(rcxx{t,}) is sub-
mersive at (T, vo,to) € A*H1(0). Its Jacobian matrix JA*H |y (Lo+x{to}) 1

.....

JA*ffIUx(LC*x{tO}) = <~ =L

.....

We write that

()
B — _ j=1,....n—1
i)
i=1,...,s,7=1,...,n—1
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It is enough to show that the rank of the matrix B(ug, v, to) is s+1. By straightforward
calculations, we have

) X LTS

T (— J J kYj

ij(u,v,t)z——-l——— E —3Xk,
Vo Vo 1 0

" 'U
E Xk uzv
'U

k=1

Hyyo, (@, 0,1) =

~

fori=1,...,sand j = 1,...,n. By the condition that H(uo, vy, to) = Hy, (T, v0,t0) =
0 for i, we have relations Zk | ver Xi = Xo+wvo,0 and Sorey 22 (X ), = (Xo)u, where

Vo,0
vo = (v0,0,-.-,v0,n). Therefore, the above formulae are
~ 1 Vo,
ij (UO,’vo,to) = — X]‘ — 2’0] XO ’
0,0 0,0
~ 1 v
Hoy,v,; (o, v0,t0) = — ((Xg) — (Xo0)u, 0’j> ;
00,0 0,0
fori=1,...,sand j=1,...,n
Since (vg,vo) = (vg, Xy,) = 0 for i = 1,...,s, vo and X, (T, ty) belong to
HP(v(,0). On the other hand, we have (X (ug to) — 2vg + 209 0€0,v0) = —21}8 0 #0
where ey = (1,0,...,0). So, vectors X (U, ) — 2vg + 2vg g€o, vo and X, (7o, to) (for
i=1,...,s) are hnearly independent. Therefore the rank of following matrix
Vo 0,0 Vo,1 s Vo,n
X — 2’00 + 2’00,060 XO Xl — 2’(}1 s Xn — 2’Un
C = Xul = (Xo)ul (Xl)ul e (Xn)u1
Xus (XO)’U,S (Xl)us e (Xn)us

is s+2 at (o, vo, to). We subtract the first row by multiplied by X /v ¢ from the second
row, and we also subtract the first row multiplied by (Xg)u,/v0,0 from the (2 + ¢)-th

row for ¢ =1,...,s. Then we have
Vo0l V0,1 V0,n
0
C' = _
B(u()) Vo, tO)
0

and rank C’ = s 4 2. Therefore rank B(Tg, vg, tg) = s + 1. This completes the proof. O

We now consider the (n + 1)-space R"™! = R"™ x R and coordinates of this space
are written as (z,t) = (x1,...,2n,t) € R” x R, which we distinguish space and time
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coordinates. We consider the projective cotangent bundle 7 : PT*(R™ x R) — R" x
R. Because of the trivialization PT*(R™ x R) = (R™ x R) x P((R™ x R)*), we have
homogeneous coordinates

((@1yen ey @y t),[E1 e &t T)).

Then we have the canonical contact structure K on PT*(R™ x R). For the definition
and the basic properties of the contact manifold (PT*(R™ xR), K), see [4, Appendix]|. A
submanifold ¢ : L C PT*(R™ xR) is said to be a big Legendrian submanifold if dim L = n
and di,(T,L) C K;() for any p € L. We also call the map moi =7y : L — R" xR a
big Legendrian map and the set W (L) = w(L) a big wave front of i : L C PT*(R™). We
say that a point p € L is a Legendrian singular point if rank d(7|r), < n. In this case
m(p) is the singular point of W (L). We call

Wi(L) = mi(ry L) N W(L)) (t €R)

a momentary front (or, a small front) for each ¢t € (R,0), where m; : R” x R — R™ and
o : R™ x R — R are the canonical projections defined by 7 (z,t) = x and ma(x,t) =t
respectively. In this sense, we call L a big Legendrian submanifold. We say that a point
p € L is a space-singular point if rankd(m; o 7|r), < n and a time-singular point if
rank d(my o w|1), = 0, respectively. By definition, if p € L is a Legendrian singular
point, then it is a space-singular point of L.

The discriminant of the family Wy (L) is defined as the image of singular points of
71w (). In the general case, the discriminant consists of three components: the caustic
Cr = m(Z(W(L)), where (W (L)) is the set of singular points of W (L) (i.e, the critical
value set of the Legendrian mapping 7|1 ), the Maxwell stratified set My, the projection
of self intersection points of W (L); and also of the critical value set A of 7|y )\ 5w (L))
(for more detail, see [8, 12, 18]). We remark that A is not necessary the envelope of
the family of smooth momentary fronts W;(L). There is a case that 7, ' (t) N W (L) is
non-singular but 7T1|7T2_1(t)nW( L) has singularities, so that A is the set of critical values
of the family of mapping 7T1|7r2—1(t)mW(L) for smooth 75 *(t) N W (L). Actually, A is the
critical value set of 7|y (L)\sw(L))-

For any Legendrian submanifold germ i : (L, po) C (PT*(R™ x R),pg), it is known
there exists a generating family (cf., [1]). Let F : (R* x (R™ x R),0) — (RR,0) be a big
Morse family of hypersurfaces. Then X, (F) = A(F)~1(0) is a smooth n-dimensional
submanifold germ. We have a big Legendrian submanifold .Z= (2. (F)) (cf., [1, 15, 17]),
where

OF OF
Lr(q,x,t) = (x,t, [%(q,x,t) : E(q,x,t)]) ,

and

OF OF oOF oOF OF
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It is known that any big Legendrian submanifold germ can be constructed by the above
method. With this notation, the big Morse family of hypersurfaces is non-degenerate
if and only if (g o 7)71(t) N L7 (X4 (F)) is a n — 1-dimensional submanifold germ
of PT*(R"™ x R) for any t € (R,0). Since Z#(3.(F)) is Legendrian, (m2 o m)~1(t) N
Zr(X.(F)) is an integral submanifold of the canonical contact structure K.

We now consider an equivalence relation among big Legendrian submanifolds which
preserves the discriminant of families of small fronts. We now consider the follow-
ing equivalence relation among big Legendrian submanifold germs: Let i : (L,py) C
(PT*(R™ xR),po) and i’ : (L', p{) C (PT*(R™ x R), p;) be big Legendrian submanifold
germs. We say that ¢ and i’ are space-parametrized Legendrian equivalent (or, briefly
s-P-Legendrian equivalent) if there exist diffeomorphism germs ® : (R™ x R, 7(pg)) —
(R™ x R,7(py)) of the form ®(z,t) = (¢1(x), p2(x,t)) such that (L) = L' as set
germs, where ® : (PT*(R™ x R),py) — (PT*(R™ x R),p() is the unique contact lift
of ®. We can also define the notion of stability of Legendrian submanifold germs
with respect to s-P-Legendrian equivalence which is analogous to the stability of La-
grangian submanifold germs with respect to Lagrangian equivalence (cf. [1, Part III]).
We investigate s-P-Legendrian equivalence by using the notion of generating fami-
lies of Legendrian submanifold germs. Let f,g : (R*¥ x R,0) — (R,0) be function
germs. We say that f and § are P-K-equivalent if there exists a diffeomorphism
germ ® : (R¥ x R,0) — (R* xR O) of the form ®(q,t) = (¢1(q,t), p2(t)) such that
(fo®)e ., = (G)e,,.- Let F,G: (R¥ x (R" x R),0) — (R,0) be function germs. We
say that F and G are space-P-K-equivalent (or, briefly, s-P-K-equivalent) if there ex-
ists a diffeomorphism germ ¥ : (R¥ x (R™ x R),0) — (R* x (R" x R),0) of the form
U(q,x,t) = (¢(q,,t),p1(x), p2(x,t))) such that (FoW)e, . = (G)g, .., - The notion
of P-KC-versal deformation plays an important role for our purpose which has been in-
troduced in (cf.,[2, 3]). We define the extended tangent space of f : (R*¥ xR, 0) — (R, 0)

relative to P-K by
. J8F  aF of
T.(P-K)(f) = <3q1 ""8qk’f>gk_+1+<at>€1

Then we say that F is infinitesimally P-K-versal deformation of f = F [RE x {0} xR if it
satisfies

— oOF OF
Ery1 = Te(P-K)(f) + <_|Rk><{0}><]Rv--- 8_|R x{O}xR>
R
We can show the following theorem analogous to those in [6, 18]. We only remark here

that the proof is analogous to the proof of [1, Theorem in §21.4].

Theorem 6.2.  Let F : (R¥x (R xR),0) — (R,0) and G : (R¥ x (R" xR),0) —
(R,0) be big Morse families of hypersurfaces. Then
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(1) Lr(E.(F)) and ZL5(X.(G)) are s-P-Legendrian equivalent if and only if F and G
are stably s-P-K-equivalent.

(2) Lr(3.(F)) is s-P-Legendre stable if and only if F is an infinitesimally P-KC-versal
deformation of f = F Rk x {0} xR+

Since the Legendrian submanifold germ i : (L,p) C (PT*(R™ x R), p) is uniquely
determined on the regular part of the big wave front W (L), we have the following simple
but significant property of Legendrian immersion germs [17].

Proposition 6.3 (Zakalyukin).  Leti: (L,p) C (PT*(R" xR),p), ¢ : (L',p") C
(PT*(R™xR),p") be Legendrian submanifold germs such that reqular sets of woi, woi’ are
dense respectively. Then (L,p) = (L',p’) if and only if (W (L), 7(p)) = (W (L"), n(p')).

The assumption in Proposition 6.3 is a generic condition for 4,4’. In particular, if
i and i’ are s-P-Legendre stable, then these satisfy the assumption. Concerning the
discriminant of the families of momentary fronts, we define the following equivalence
relation among big wave front germs. Let i : (L,pg) C (PT*(R™ x R),pg) and i’ :
(L', py) C (PT*(R™ x R), py) be big Legendrian submanifold germs. We say that W (L)
and W(L') are space-parametrized diffeomorphic (briefly, s-P-diffeomorphic) if there
exists a diffeomorphism germ ® : (R” xR, 7(pg)) — (R” xR, 7(p[)) defined by ®(z,t) =
(¢1(x), p2(x,t))) such that ®(W (L)) = W(L'). Remark that an s-P-diffeomorphism
among big wave front germs preserves the diffeomorphism types the discriminants. By
Proposition 6.3, we have the following proposition.

Proposition 6.4. Let i : (L,pp) C (PT*(R™ x R),po) and i’ : (L',py) C
(PT*(R™xR), pf) be big Legendrian submanifold germs such that reqular sets of woi, woi’

are dense respectively. Then i and i’ are s-P-Legendrian equivalent if and only if
(W(L),m(po)) and (W (L"), n(py)) are s-P-diffeomorphic.

Remark 6.5. If we consider a diffeomorphism germ ® : (R” xR, 0) — (R"xR,0)
defined by ®(x,t) = (¢1(x, 1), ¢2(t)), we can define time-Legendrian equivalence among
big Legendrian submanifold germs. We can also define time- P-KC-equivalence among big
Morse families of hypersurfaces. By the arguments similar to the above paragraphs, we
can show that these equivalence relations describe the bifurcations of momentary fronts
of big Legendrian submanifolds. In [17] Zakalyukin classified generic big Legendrian
submanifold germs by time-Legendrian equivalence. The notion of time-Legendrian
equivalence is a complementary notion of space-Legendrian equivalence.

We have the following theorem on the relation among big Legendrian submanifolds
and big wave fronts.
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Theorem 6.6. Let F : (RF x R" xR, 0) — (R,0) and G : (R¥ xR" xR, 0) —
(R,0) be big Morse families of hypersurface such that Lr(3.(F)) and ZLg(X.(G)) are
s-P-Legendrian stable. Then the following conditions are equivalent:

(1) Lr(X.(F)) and ZLg(X.(9)) are s-P-Legendrian equivalent,

(2) F and G are stably s-P-K-equivalent,

(3) f(q,t) = F(q,0,t) and g(¢',t) = G(¢',0,t) are stably P-K-equivalent,
(4) W(ZLr(Xx(F))) and W(ZLg(24(G))) are s-P-diffeomorphic.

Proof. By assertion (1) o f Theorem 6.2, conditions (1) and (2) are equivalent. By
definition, condition (2) implies condition (3). It also follows from the definition that
condition (1) implies condition (4). We remark that all these assertions hold without
the assumptions of the S-P-Legendrian stability. Generically, condition (4) implies
condition (1) by Proposition 6.4. Of course, it holds under the assumption of S-P-
Legendrian stability. By the assumption of s-P-Legendrian stability, the big Morse
families of hypersurface F and G are infinitesimally P-K-versal deformations of f and
g, respectively (cf., Theorem 6.2, (2)). By the uniqueness result of the infinitesimally
P-K-versal deformations (cf., [3]), condition (3) implies condition (2). This completes
the proof. O

Remark 6.7. (1) If k = k¥’ and ¢ = ¢ in the above theorem, we can remove the
word “stably” in conditions (2),(3).
(2) s-P-Legendrian stability for £z (3. (F)) is generic for n < 5.
(3) By the remark in the proof of the above theorem, conditions (1) and (4) are equiv-
alent generically for a general dimension n without the assumption on s-P-Legendrian
stability. Therefore, conditions (1),(2) and (4) are all equivalent to each other generi-
cally.

We now return to our situation. Since the extended lightcone height functions
family H : U x (LC* x I) — R is a non-degenerate big Morse family of hypersurfaces,

we have the corresponding big Legendrian submanifold Z5 (2. (H)) € PT*(LC* x I).
By Proposition 4.2, we have

S.(H)) = (@, LP(S)((W.1),€).4) | (@,t) € U x I,& € N [Silp,p = X (W, 1)}
={(u, LP((w,1),€)) | (u,t) € U x I,§ € N1[Silp,p = X (u, 1)}
It follows that W(Eﬁ(E*(fI))) = LP(N,(W)) C LC* x I. Therefore, the image of the

unfolded lightcone pedal is a big wave front.
We apply the above theorem to our situation.

Theorem 6.8.  Let X; : (U x I, (@, t;)) — (R p;) (i = 1,2) be world sheet
germs and v; = LP(Sy,) (T4, :),&;)) and W; = X;(U x I). Suppose that the Legendrian
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submanifold germs Eﬁz(E*(fL)) C PT*(LC* x I) are s-P-Legendrian stable. Then the
following conditions are equivalent:

(1) £

(

(3) Hy
(

5

Proof.

7, (= (Hl)) and L (¥ Y. (Hy)) are s-P-Legendrian equivalent,

2 h1 v, ond hg v, are P-K-equivalent,

and H2 are s-P-K-equivalent,

)
)
4) LPy(N1(W1)) and LPo(N1(Ws)) are s-P-diffeomorphic,
) (Wl,TLP(Stl,’Ul,gl) X I (platl)) K(WQ,TLP(Stl,v2,$2) X I, (pg,tg)).

Since LP;(N1(W;)) are big wave fronts of £z (3. (H;)) (i = 1,2) respectively, we

can apply Theorem 6.6 and obtain that conditions (1), (2), (3) and (4) are equivalent.

By Proposition 5.3, conditions (2) and (5) are equivalent. This completes the proof. O
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