
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DOCTORAL THESIS 
 
 
 

Title CELLULAR NONLINEAR NETWORKS: OPTIMIZED 
IMPLEMENTATION ON FPGA AND APPLICATIONS TO ROBOTICS 

           
 

 
 
 Presented by Jordi Albo-Canals 
 
 

Centre Enginyeria i Arquitectura La Salle  
 
 
 
 Department Electronics 
 
 
 
 Directed by Dr. Jordi Riera-Baburés  
 

Tutor:  Dr. Xavier Vilasis-Cardona 
  
 
 

C
.I.

F.
 G

: 5
90

69
74

0 
 U

ni
ve

rs
ita

t R
am

on
 L

ul
l F

un
da

ci
ó 

Pr
iv

ad
a.

 R
gt

re
. F

un
d.

 G
en

er
al

ita
t d

e 
C

at
al

un
ya

 n
úm

. 4
72

 (2
8-

02
-9

0)
 

 

   C. Claravall, 1-3 
   08022 Barcelona 
   Tel. 936 022 200 
   Fax 936 022 249 
   E-mail: info@url.edu 
   www.url.edu 
 





 

ABSTRACT 

 

The main goal of this thesis consists in studying the feasibility to implement a full-

functionality CNN camera sensor based on low-cost FPGA device suitable for mobile 

robotic applications. The study of Cellular Nonlinear Networks (CNNs) fundamentals 

and its efficient implementation on Field Programmable Gate Arrays (FPGAs) has been 

complemented, on one side with the parallelism established between multi-core CNN 

architecture and swarm of mobile robots, and on the other side with the dynamics 

correlation of CNNs and memristive architectures. We have explored how the CNN 

architectures implemented on FPGAs can be optimized in terms of area occupied on the 

device or power consumption. Our final accomplishment has been implementing 

efficiently a fully functional reconfigurable CNN-UM on a low-cost low-power FPGA 

based on flash technology.  
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Chapter 1

Introduction

The main goal of this thesis consists in studying the feasibility to implement
a full-functionality CNN camera sensor based on low-cost FPGA device suit-
able for mobile robotic applications. The study of Cellular Nonlinear Net-
works (CNNs) fundamentals and its efficient implementation on Field Pro-
grammable Gate Arrays (FPGAs) has been complemented, on one side with
the parallelism established between multi-core CNN architecture and swarm
of mobile robots, and on the other side with the dynamics correlation of
CNNs and memristive architectures.

Over the past two decades, there have been countless scientific works
devoted to study the most diverse aspects of CNNs. Thanks to the strenu-
ous effort of the researchers, this discipline has flourished until reaching the
importance it has nowadays. CNNs have found application in numerous prac-
tical fields, ranging from the simulation of complex dynamics to ultra-fast
image processing systems.

Nevertheless, the advances of technology always set new goals that are
yet to be achieved. In our case, we have been interested in the development
of FPGAs that have ceased to be simple devices for ASIC fast prototyping to
become complete reconfigurable devices embedding memory and processing
elements [3]. This fast-growing market is dominated by two main players –
Xilinx and Altera – even though a third competitor – Actel, recently acquired
by Microsemi – has been experimenting a considerable success. In this thesis,
we will present an application on one device manufactured by each of these
three companies. In particular, we have focused in small low-cost devices.

Naturally, the world of CNNs has not neglected this phenomenon and
in fact the number of CNN architectures implemented on FPGAs has been
steadily increasing. Nonetheless, the research in this area has not kept pace
with the rapid evolution of the devices and hence there is room for further
improvements and genuine innovation.
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In particular, we have explored how the CNN architectures implemented
on FPGAs can be optimized in terms of area occupied on the device or power
consumption. Our final goal has been implementing efficiently a fully func-
tional reconfigurable CNN-UM on a low-cost low-power FPGA [36]. Such
system has an immediate application in robotics, which is another promising
field that is expected to boom in the near future [55]. For instance, small
autonomous robots are now employed for a variety of tasks, including do-
mestic works and exploration of dangerous environments, to name but a few.
In these situations, it is crucial having a small powerful computing platform
optimizing the battery life. Therefore, creating a working efficient CNN ar-
chitecture on FPGA and interfacing it with commercially-available robots
is one of the objectives of this thesis as long as educational companies like
LEGO, has expressed several times that they are still looking for an intel-
ligent sensor of this kind that match with the production cost constrains
without decreasing the performance like functionality, battery life or size.
This inspiration factor keep us working in the future directions exposed in
the thesis that consist in obtaining a complete CNN camera prototype based
on flash technology FPGAs with a set of easy to set-up algorithms for robotic
applications.

Also, it is fundamental to foresee potential breakthroughs in recent ideas
and start exploring their potentialities. Part of this thesis is specially de-
voted to this issue. We have considered two such concepts: time-derivative
CNNs and memristive crossbar structures. The former is a novel kind of cel-
lular network that includes a diffusive term in the state equation [88]; recent
studies have proved that it can have a major impact and for this reason we
have realized the first working FPGA implementation of it; the latter has
already proved to be a success story and we will show its dynamics can be
linked to the ones of CNNs [63]. Furthermore, memristors are considered
the future substitutes of flash memory devices because of its capability of
high density integration and its close to zero power consumption. For these
reasons we have taken the responsibility to deal with this novelty device and
study its basics deeply. A first approach of the duality between CNN and
memristive crossbar structures is simulated using Matlab, and working spice
models of memristors found in the literature are analysed with the objective
to implement a memristive CNN in a close future.

This thesis is structured as follows: in Chapter 2, we introduce the ter-
minology and notation concerning CNNs, which we will use in the rest of
this work, including a theoretical description of time-derivative CNNs and
a short overview of the main physical implementation of Cellular Nonlin-
ear Networks; in Chapter 3, we present the work related to FPGAs such as
the optimization of the area occupation, the implementation on a low-power



3 Introduction

device, and the experimental results concerning time-derivative CNNs; in
Chapter 4, we discuss the practical applications of our studies in robotics,
in particular for image processing and robot navigation; in Chapter 5, we
explore the links between memristive crossbar networks and CNNs, and pro-
vide a concise summary of the SPICE models of memristor; in Chapter 6,
we draw the conclusions of our work and outline possible future research
directions.





Chapter 2

Theory and Physical
Implementations of Cellular
Nonlinear Networks

The concept of a computational paradigm based on an array of locally-
connected simple dynamical systems was first introduced by Von Neumann [102]
and it has been thoroughly studied ever since. We generically refer to this
model as a cellular network and to its constitutive dynamical systems as
cells.
In a cellular network, cells can be arranged in several spatial configurations
but here we consider only two-dimensional networks in which each cell is
connected physically only to its eight nearest neighbors. The dynamics of
each cell is influenced directly by the cells within its radius of neighborhood
r ; for instance, when r = 1 the neighborhood includes the cell itself and its
eight nearest cells; when r = 2 the neighborhood includes 16 additional cells
(see Fig. 2.1) that must be physically connected to the central cell, however,
we presented in [6] a way to emulate this connection through Split & Shift.
Each cell has its own input, state, and output. Depending on the nature of
these variables (eg, continous vs. discrete) and the way in which the dynam-
ics of each cell is defined, the cellular network receives a different name in
the scientific literature.
In the rest of this work, we will consider the specific case of Cellular Nonlinear
Networks (CNNs) which is extensively discussed in the following.
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Figure 2.1: Two-dimensional cellular network: the gray cell is physically con-
nected only to the eight blue cells but its dynamics will be directly influenced
also by the 16 red cells if the radius of neighborhood r is r = 2.

2.1 Description of the main CNN models

2.1.1 Continuous- and Discrete-Time Chua-Yang CNN

In the original Chua-Yang CNN model [34], the state equation of a generic
cell in position (i, j) is

τ · dxij(t)
dt

= −xij(t) +
∑

(k,l)∈N (i,j)

A(i, j; k, l) · ykl(t)

+
∑

(k,l)∈N (i,j)

B(i, j; k, l) · ukl + z(i, j) (2.1)

where uij, xij, and yij are the input, the state, and the output, respectively,
of the cell in position (i, j). τisthechargeconstantoftheequivalentcapacitor.
Cells within its neighborhood N (i, j) have the subindexes (k, l). The dy-
namical behavior of the network is defined by the CNN template composed
of the two matrices A and B, called feedback and feedforward template, re-
spectively, and by the scalar z, called bias term.
In the most general case, each cell of the network has its own CNN template.
Therefore, in a network of size M × N the number of values defining the
dynamics of the CNN is

M ·N ·
(
2 · (2r + 1)2 + 1

)
where r is the radius of neighborhood of the network. However, the great
majority of works, including this thesis, concern ‘space-invariant’ CNNs in
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which all cells of the network have the same CNN template. The dynamics
of the network is then defined by only

2 · (2r + 1)2 + 1

values, independently from the size of the network, corresponging to the
elements of the matrices A and B, and the bias term z. For r = 1 (nearest
neighborhood case), the CNN template can be written as:

A =

 a0,0 a0,1 a0,2
a1,0 a1,1 a1,2
a2,0 a2,1 a2,2

 B =

 b0,0 b0,1 b0,2
b1,0 b1,1 b1,2
b2,0 b2,1 b2,2

 z = z1,1

The output of the Chua-Yang CNN is defined as:

yij(t) =
1

2
(|xij(t) + 1| − |xij(t)− 1|) =


1, if xij ≥ 1
xij, if −1 < xij < 1
−1, if xij ≤ −1

(2.2)

even though other output functions may be used [35].
It is possible to prove that when the feedback template A is chosen according
to some criteria detailed in [34], the output of the CNN converges to a steady
state which in general depends on the initial state of the network, its input,
and the CNN template.

The dynamics of the Chua-Yang continuous-time CNN cell can be repre-
sented as the nonlinear circuit of Fig. 2.2.

Figure 2.2: Nonlinear circuit corresponding to the Chua-Yang continuous-
time CNN cell described by Eqs. 2.1 and 2.2.

in which the equations of the voltage-controlled current sources accounting
for the contributions of the neighboring cells are

Ixy =
∑

(k,l)∈N (i,j)

A · ykl(t) (2.3)

Ixu =
∑

(k,l)∈N (i,j)

B · ukl; (2.4)
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and the voltage-controlled current source to obtain the output yij(t)

Iyx =
1

Ry

· g(xij) (2.5)

where g(·) is the output function used in Eq. (2.2).
The value of xij can be found via the Kirchhoff’s current law and it is

Cx
dxij(t)

dt
= − 1

Rx

xij(t) + Ixy + Ixu + z (2.6)

It is evident that for Cx · Rx = 1 we obtain Eq. (2.1). The value of yij can
be found via the Kirchhoff’s current law and it is

yij = Ry · Iyx = g(xij) (2.7)

and, if the function g(·) is properly chosen, it corresponds to Eq. (2.2).
The model of Eq. (2.1) is called continuous-time Chua-Yang CNN for

obvious reasons. However, in some cases it is useful to use its discrete-time
version (DTCNN) whose state equation, for a space-invariant network, is
defined in [56] as:

xij[n+ 1] =
∑

k,l∈N (i,j)

A · ykl[n] +
∑

k,l∈Nr(i,j)

B · ukl + z (2.8)

where n is the time iteration. As mentioned above, the output of non-
oscillatory CNNs converge either to +1 or to -1, and hence we can simplify
the output equation to:

yij[n] =

{
−1, if xij[n] ≥ 0
1, if xij[n] > 0

(2.9)

Similar considerations about the discretization hold for the CNN models of
Secs. 2.1.2 and 2.1.3.

2.1.2 Full Signal Range CNN

Soon after its introduction, there were several attempts to implement the
Chua-Yang CNN in hardware (see Sec. 2.3) but the circuitry required by
the output was cumbersome and it introduced matching problems. In order
to overcome these limitations, it was defined the Full Signal Range CNN
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(FSR CNN) [44] which merges the output and the state of each cell thus
obtaining a simpler and more robust circuitry. The state/output equation of
a space-invariant FSR CNN is:

dxij(t)

dt
= −g (xij(t)) +

∑
(k,l)∈N (i,j)

A · ykl(t) +
∑

(k,l)∈N (i,j)

B · ukl + z (2.10)

where

g (xij(t)) = lim
m→∞


m(x− 1) + 1, if x ≥ +1

x, if |x| < 1
m(x+ 1)− 1, if x ≤ −1

(2.11)

where m is a real number; the Chua-Yang CNN is obtained when m = 1.

2.1.3 Time-Derivative CNN

The potentialities of Chua-Yang model can be greatly improved by introduc-
ing in the state equation a term accounting for the contribution of tempo-
ral derivative diffusion connection of the neighbors, thus obtaining the so-
called Time-Derivative CNN (TDCNN) [59] whose state equation (for space-
invariant networks) is

dxij(t)

dt
= −xij(t) +

∑
N (i,j)

A · xkl(t) +
∑
N (i,j)

B · ukl(t)

+
∑
N (i,j)

C · dxkl(t)
dt

+ z (2.12)

Similarly as FSR CNNs, the value of the output of a TDCNN is given by the
state variable. This model allows us to implement spatiotemporal rational
transfer functions, which may have a dramatic impact on the area in which
CNN can find practical application [61].

2.2 CNN-Universal Machine and Cellular Wave

Computers

A Cellular Nonlinear Network can perform only the operation defined by the
CNN template. However, the real breakthrough in this area has been the
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introduction of a computational paradigm, called CNN-Universal Machine
(CNN-UM) [95], working according to the principles of CNNs. Its architec-
ture is shown in Fig. 2.3 and it is composed of a CNN in which cells have
some special features (such as memories to store intermediate results) and
are controlled globally by a so-called Global Analogic Control Unit (GAPU).

Figure 2.3: Architecture of the CNN-Universal Machine.

As depicted in Fig. 2.3, each CNN cell has been enhanced by adding: two
memories, one for analog values – Local Analog Memory (LAM) – and one
for logic values – Local Logical Memory (LLM) – used to store variables; a
Local Analog Output Unit (LAOU) and a Local Logic Unit (LLU) to execute
cellwise analog and logic operations, respectively, on the storable values; and
a Local Communication and Control Unit (LCCU) that is in charge of com-
municating with the GAPU.
The GAPU has four main functional blocks: the Global Analogic Control
Unit that stores the CNN-UM program; the Analog Program Register that
contains the CNN templates used as instructions of the CNN-UM program;
the Logic Program Register that includes the control sequences for the indi-
vidual cell; the Switch Configuration Register that stores the switch states
governing the cell configurations used in the CNN-UM program.
A typical CNN-UM program is composed by a sequence of logic and analog
operations defined by CNN templates; the output can be defined both in
fixed and non-fixed state of the network (equilibrium and non-equilibrium
computing, respectively).

The concept CNN-Universal Machine can be further extended to the one
Cellular Wave Computer [93] [94] which works according to a totally different
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paradigm from the one usually employed in standard digital computers. In
this case, input and output are image flows whereas elementary instructions
are differential equations. Problems intractable with ‘traditional’ computers,
such as a typical reaction-diffusion equation, become trivial in this architec-
ture because they are performed by a single instruction.

2.3 Brief notes on the physical implementa-

tions of CNNs

The main practical application of CNNs is performing real parallel com-
putation, mainly for image processing and complex dynamics simulations.
Therefore, we include here a few remarks about the physical implementation
of CNNs. An exhaustive study of this aspect goes beyond our purposes and
a deeper analysis can be made thanks to the references provided.

ASIC

The first HW implementations of CNNs lacked of programmability [57, 37].
However, the technology has evolved in the last two decades thanks to the
concept of CNN-Universal Machine, and thus CNN chips are now a real-
ity. Generally, they are based on a locally-interconnected two-dimensional
fully-parallel network of processors and they are mainly employed for im-
age processing purposes. There are two main architectures of CNN chips,
depending on the correspondence between processors and pixels.

In the fine-grain architecture, data are topographically assigned to the
processors - that is, there is a one-to-one correspondence between pixels and
processors. Each cell is composed of an optical sensor and a general-purpose
analog processor, and spatial-temporal waves are physically generated in the
continuous-valued electronic domain achieving a very efficient wave computa-
tion both for binary (like in ACLA [73]) and grayscale (like in ACE16k [91])
images. The first processors working according these principles suffered from
signal degradation, but this problem has been successfully tackled in the
most recent architectures (such as the Q-Eye [1] and the SCAMP [43]) which
have moved from a full-asynchronus to a mixed-mode approach.

In the coarse-grain architecture, each processor is topographically as-
signed to several pixels. With respect to the fine-grain architecture, each
processor needs to be more powerful (because it works on a number of pix-
els) and have more flexibility (because it switches frequently among different
processors). For this reason, the analog processors are substituted by 8 bit
digital processors, as it occurs in the Xenon chip [52].
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Graphics Processing Units

In the last few years, Graphics Processing Units (GPUs) have found applica-
tion in scientific simulations [80] [72] including CNNs [97, 45]. Possibly, the
most popular GPU manufacturer is nVidia also thanks to the characteristic of
being programmable via CUDA (Compute Unified Device Architecture) [79],
a language whose syntax is similar to the standard C but especially thought
to be employed on multiprocessors units. The HW architecture of an nVidia
GPU is based on groups of eight scalar-based processors. Each of such groups
is called instruction unit a forms a single-instruction-multiple-data (SIMD)
multiprocessor. In general, GPUs have 1 to 16 multiprocessors - that is,
from 8 to 128 parallel processors. They have access to internal cache mem-
ory and to external 1,800 MHz DDR3 RAM modules.

FPGAs

Flexible and inexpensive FPGAs implementations of cellular architectures
are getting more and more popular. The pioneer in this field have been
the ‘CASTLE’ [67] and the ‘Falcon’ [75] architectures, which have proved to
overperform the most advanced general-purpose processors on several tasks,
like the real-time emulation of a digital retina [76]. These implementations
have been recently used to build a massively parallel systems for ultra-fast
image processing implemented on an array of low-cost medium-performance
Spartan FPGA and used for ultra-fast image processing applications [90].
Implementations of CNNs on FPGAs will be further discussed in Chapter 3.



Chapter 3

CNNs on FPGAs: optimizing
area occupation and power
consumption

In this chapter we present the study done about how implement in an efficient
way the DTCNN on an FPGA. For this propose we have used devices of the
three main manufacturers, based on their low-cost devices, with the goal
to obtain a full-functional implementation with a good trade off between
area occupation, processing time and power consumption. To achieve this
aim we have studied deeply the Split & Shift Techniques in 1 bit and 8 bit
architectures. In the last section we have done the first implementation of a
Time Derivative CNN, which seems that will open new frontiers in the CNN
applications.

3.1 Short introduction to FPGAs

Field Programmable Gate Arrays (FPGAs) made their appearance in 1985
when Xilinx started to manufacture the XC2064 [3]. However, the concept
of programmable electronic devices was introduced in the early 70s with the
creation of the first Programmable Logic Array (PLA), which was basically a
set of programmable AND gates linked to a set of programmable OR gates.

As shown in Fig. 3.1, the general architecture of an FPGA structure is
composed of four basic reconfigurable elements: Programmable Logic Blocks
(PLBs), embedded memory, programmable I/O cells, and programmable in-
terconnections. The way in which these elements are distributed inside the
device defines the technical characteristics of each FPGA family. In general,
the connections among the different constitutive elements of the FPGA can
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be set either offline during the design process or online while another appli-
cation is running.

Figure 3.1: Generic architecture of an FPGA.

At the beginning, FPGAs were mainly used for fast prototyping; however,
as lon as Time to Marked has to be reduced to have a competitive prod-
uct, improvements in transistor density, power consumption, and cost in the
FPGAs make them an alternative to the ASICs and for this reason they
are now present in most electronic devices. Also, in the current FPGAs the
firmware can be easily updated to improve the performances of the device.
Last but not least, specific components such Digital Signal Processors and
embedded microprocessors (softcores) have been integrated into FPGAs in
order to enhance their capabilities.

FPGAs can be programmed via interfaces based on Hardware Descrip-
tion Languages (HDL); the most popular one is the Very High Speed Inte-
grated Circuit (VHSIC) Hardware Description Language, commonly known
as VHDL. The process to design an application with an FPGA consist of
six main phases: 1) definition of the initial requirements; 2) choice of the
appropriate device; 3) writing of the VHDL code; 4) synthesis to map the
application onto the resources of the FPGA; 5) simulation; 6) programming
of the FPGA (if the simulation succeeds).
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3.2 Optimizing the area occupation of CNN

architectures implemented on FPGAs

Cellular Nonlinear Networks are often implemented on FPGAs, and achiev-
ing the largest density of CNN cells is one of the big challenges posed to the
researchers. Possibly, the most used strategy for this purpose is the limita-
tion of the range of the values belonging to the input, the output and the
CNN template coefficients [58]. Also, there are two other strategies that have
proved to be effective to optimize the area occupation; namely, the convo-
lution operation proposed in [84] and the time-multiplexed implementations
proposed in [71, 96]. In recent years, the latter technique has been further
developed into the so-called Split & Shift [47], which is extensively discussed
in the rest of this section.

3.2.1 Working principles of the Split & Shift

The rationale behind the Split & Shift is minimizing the circuitry on the
FPGA by reducing the number of connections among neighbors though main-
taining the functionality of a standard full-connected CNN [41]. In other
words, the goal is cutting the number of multipliers needed for the elements
of the CNN template and place them only in predetermined positions (split
configuration).

Figure 3.2 illustrates how a generic dense CNN template can be divided
into subtemplates having only connections, and hence elements, in the posi-
tions determined by the split configuration. The full execution of the CNN
operation is obtained by shifting the input by means of the shift template
and adding up the partial results, as shown in Fig. 3.3.
Each element of the split configuration is called coefficient circuit (cc). There-
fore, a standard 3×3 CNN template requires nine identical cc whereas thanks
to the Split & Shift the number of cc is reduced yielding to a smaller area
occupation at a cost of a larger processing time. The Split & Shift, which can
be applied only to DTCNNs, can be also used to emulate large-neighborhood
templates (such as 5×5) by using only 3×3 templates.

It should be now clear that the name of this technique is a consequence
of the two phases it involves: first, each CNN template has to be split into
subtemplates having elements only in some given positions; second, the func-
tionality of the original template is replicated thanks to the shift of the input
in order to apply the subtemplates to the whole input and then accumulate
the partial results.
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Figure 3.2: For the given split configuration and shift template, a dense CNN
template can split into three subtemplates.

Figure 3.3: Execution of a dense CNN template according to the Split &
Shift technique by using the split configuration and the shift template of
Fig. 3.2.
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3.2.2 Optimal split of dense 3×3 CNN templates

In order to design an efficient HW implementation of the Split & Shift, it
is necessary to find the optimal number and position of coefficient circuits,
ie, the best split configuration and shift template. We will consider the case
of a generic full-dense 3×3 template with the shift template of Fig. 3.2. In
this section, we analyze the performances – in terms of area occupied and
clock cycles required to be executed – of the 6 split configurations displayed
in Table 3.1. The experimental results reported in Table 3.2 refer to the

Table 3.1: Split of a dense template according to six different configurations
of coefficient circuits for the shift template of Fig. 3.2.

Split configuration Subtem. 1 Subtem. 2 Subtem. 3 Subtem. 4 Subtem. 5

6 cc

6 cc

5 cc

4 cc

4 cc

3 cc

implementation of a 30×30 CNN cell on an Altera Stratix-EP1S25 FPGA
with 25,660 logic elements (LEs); the VHDL code was written by using Aldec



18 CNNs on FPGAs: optimizing area occupation and power consumption

Active-HDL 7.1 and synthesized with the Quartus II 6.0.

Table 3.2: Performances of six different configurations of coefficient circuits,
and comparison with the standard 9 cc configuration (gray background).

9 cc 6 cc 6 cc 5 cc 4 cc 4 cc 3 cc

No. of split
– 2 2 3 3 3 5

subtemplates

Shift steps – 1 1 2 2 2 4

Total area
25,293 25,297 22,512 17,941 18,033 14,189

(no. of LEs)
26,954

Total area (% of LEs) 103% 99% 99% 87% 70% 70% 55%

Cell area - per cell
25 25 22 17 17 13

(no. of LEs)
27

Dummy cell area
673 677 647 521 613 369

(no. of LEs)
124

Max frequency (MHz) – 47.01 47.82 47.46 48.75 47.00 46.59

The first evident result of Table 3.2 is that the standard 9 cc configuration
does not fit into this FPGA and hence using the Split & Shift is not only a
choice, but also a necessity if a larger FPGA is not available.
As it could be expected, the fewer the coefficient circuits of the split configu-
ration, the smaller the area occupied by the CNN cell. However, even though
it is not explicitly shown in table, the area occupied by control circuitry does
not depend neither on the number nor on the configuration of the cc.
We can also observe that the area occupied by the dummy cells depends on
the cc configuration but it is always a negligible fraction of the total area.
Observe that two split configurations (one for 4 cc and the other for 6 cc) are
symmetrical: the results prove that this feature does not affect significantly
the performances.
Last but not least, we found that the number of cc has no impact on the
routing complexity and hence the processing speed is determined only by the
split and shift steps taken by the template.

Pondering these results, we have chosen to use in our experiments the
4cc diamond configuration (row 6 of Table 3.1), especially because of its
good trade-off between area occupation and number of operations per CNN
template. By using this configuration, numerous commonly-used templates
can be executed in a few Split & Shift steps [46].



19 CNNs on FPGAs: optimizing area occupation and power consumption

3.2.3 CNN cell architectures using the Split & Shift

Architecture of a 1 bit CNN cell

We started by designing a 1 bit CNN cell architecture using the Split & Shift.
This implementation is based on the positive-range binary DTCNN model
presented in [51]: the values of the templates and the bias term are expressed
with one and two bits, respectively.

This architecture consists of four main blocks (see Fig. 3.4): 1) an AND
gate that implements the CNN template coefficients; 2) an encoder that adds
up the weighted contributions from four neighbors; 3) an accumulator that
sums the partial results and the bias term; 4) an OR gate that plays the role
of the CNN activation function [48]. In order to store the partial results,

Figure 3.4: Architecture of the 1 bit DTCNN cell with the Split & Shift.

we added six D flip-flops which represent the Local Logic Memory (LLM)
of our CNN-UM. Finally, we have included also a Local Logic Unit (LLU) –
composed of a NOT port, an AND port, and a OR port – that are useful to
perform efficiently Boolean operations over data [29]. The details concerning
the implementation of the dummy cells can be found in [6].

Architecture of a 8 bit CNN cell

The functionality of the 8 bit CNN cell is the same as the binary one, but its
hardware architecture, shown in Fig. 3.5, is rather different. It is composed
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of four main blocks: 1) a 32bit Multiplier that multiplies the values of the
neighbors by the elements of the subtemplates (each represented with 8 bits)
thus obtaining a concatenated output of 64 bits; 2) a 64bit Multiplexer that
selects either the output of the multiplier or the bias signal, which is padded
with 0s up to 64 bits; 3) an Accumulator that sums the output of the mul-
tiplexer; 4) a 8bit Multiplexer that selects either the processed data or the
original input.

Figure 3.5: Architecture of the 8 bit DTCNN cell with the Split & Shift.

3.2.4 Experimental results on Altera Stratix FPGAs

We have synthesized both CNN architectures by using the Quartus II 8.0 on
the Aldec Active-HDL 8.1 interface; quantitative results may change when
a different synthesizer is used as place & route algorithms could be different
and they are not deterministic during the fitting phase (when the internal
connections of the FPGA is established), but the qualitative conclusions
remains valid anyway. In the following, we always refer to the size of the
network without considering the dummy cells.

1 bit CNN cell

In this case, we found that the main limitation to increasing the network size
is the number of Logic Arithmetic Blocks (LABs) included in the FPGA. For
example, when we consider a network of 25×25 cells – which is the the max-
imum we have been able to implement on the Altera Stratix I EPS25F672C
– we find that 2,534 out of the 2,566 LABs are used. Nevertheless, the 1 bit
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implementation does not make use of DSP blocks, embedded multipliers, or
PLLs.
In Table 3.3 we display the figures concerning the implementation of the
same DTCNN architecture for different families of FPGAs and a network of
arbitrary size 20 ×20. We can see that there is a dramatic change in area
occupation from the Stratix I to the successive families, mainly due to the
optimization of the routing process introduced with the Stratix II [38]. Even
though we used devices with approximately the same number of logic ele-
ments belonging to the families from Stratix II to Stratix IV, we can observe
that the merit figures improves steadily, and it is to expect because of the
improvements of the newer versions.

Table 3.3: Figures of area occupation, maximum working frequency, and
routing complexity for the 1 bit DTCNN architecture (measured on 20×20
network) for different families of Altera Stratix FPGAs.

LEs (%) LEs (no.) Max frequency (MHz) Routing complexity (%)

Stratix I 44 11,354 52,69 15

Stratix II 27 13,253 65,08 9

Stratix III 21 11,288 87,86 6

Stratix IV 21 12,155 112,54 4

8 bit CNN cell

In the case of the 8 bit CNN cell, we have used a bigger FPGA; namely, the
Altera Stratix II EP2S60F484C5. The largest network we have been able to
implement on this device is 31×31. In general, the 8 bit CNN cell occupies
more area than the 1 bit version because of the bigger data size implies
a higher number of Processing Elements (PEs) used and the consequent
increment of the routing complexity; for this reason, we were obliged to
modify several design features in order to compensate such increase. In
particular, in the 8 bit DTCNN cell we used:

1. FPGA local memory instead of D flip-flops : in the 1 bit implemen-
tation, each cell has 6 bit memory that is implemented through six
D flip-flops; however, in the 8 bit version using 6×8bit registers would
increase dramatically the area occupied and hence we mapped them in
the FPGA local memory. Processing time increase due to this change,
however the bottle neck still being in the data acquisition process;

2. Truncation instead of an OR gate: the output-state relationship of the
1 bit architecture is obtained as an OR function of the 6 MSB of the
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output of the accumulator. In the 8 bit version, the output is simply
truncated;

3. No Local Logic Units : experiments have proved that in the 8 bit im-
plementation the Boolean operations can be performed more efficiently
by using a template-based rather than a dedicated Local Logic Unit;

4. A local Finite State Machine: the Finite State Machine has been inside
the Processing Element.

We ought to remark that when used in artificial vision applications the 8 bit
implementation suffers from the large changes in the luminance of the scene,
whose compensation would require a very accurate truncation method that
has not been implemented in the current version of the architecture. In Ta-
ble 3.4 we display the figures concerning the implementation of the same
DTCNN architecture for different families of FPGAs and a network of arbi-
trary size 20 ×20. The conclusions we can draw are similar to those discussed
in the previous section.

Table 3.4: Figures of area occupation, maximum working frequency, and
routing complexity for the 8 bit DTCNN architecture (measured on 20×20
network) for different families of Altera Stratix FPGAs.

LEs (%) LEs (no.) Max frequency (MHz) Routing complexity (%)

Stratix I 93 23,809 27,98 50

Stratix II 31 15,150 41,84 16

Stratix III 28 15,155 66,19 13

Stratix IV 26 15,159 56,89 8

Comparison between 1 bit and 8 bit implementation on different
Altera Stratix FPGA families

In this section, we compare the performances1 – in terms of area occupation
(Fig. 3.6), routing complexity (Fig. 3.7), and maximum working frequency
(Fig. 3.8) – for two architectures described above and two different families
of Altera Stratix FPGAs.

We start by comparing the area occupation, measured as number of Logic
Elements taken by the implementation. In Fig. 3.6, we can observe that the

1Note that the quantitive results may slightly change with successive realizations of the
same experiment because Place & Route algorithms are not deterministic.
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area occupation grows almost linearly in all cases with the significative ex-
ception of the 1 bit CNN cell implemented on the Stratix II, which has a
discontinuity in correspondence of a 29×29. Considering the complexity of
the task, we can well conjecture that this outlier is due to the way in which
synthesizer routes the logic elements.

Figure 3.6: Number of logic elements of the 1 bit and the 8 bit Split & Shift
CNN cell for various network sizes and two different Altera Stratix FPGAs.

As for the routing complexity, we can observe in Fig. 3.7 that it grows ex-
ponentially with the size of the network. Again, the only exception is the
1 bit CNN cell implemented on the Altera Stratix II FPGA; this probably
happens because the synthesizer tends to balance routing complexity and
working frequency.
The routing complexity is higher in the case of the 8 bit architecture be-
cause of the use of embedded static FPGA blocks (such as dedicated DSP
elements) which may break the local-connection paradigm of the implemen-
tation. Results for the working frequency are reported in Fig. 3.8. In all
cases, it decreases with the network size, though non-monotonously mainly
because of the balance between routing complexity and working frequency
kept by the synthesizer.

To complete the test of the implementations we have implemented six
algorithms or complex operations comparing both designs, 1 bit and 8 bit
CNN. We know that the 8 bit version has the advantage of being able to im-
plement more algorithms that the binary one, however, most of the templates
required for a image pre-processing functions are common in both versions.
The images used for this test have a resolution of 25×25 pixels.
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Figure 3.7: Routing complexity of the 1 bit and the 8 bit Split & Shift CNN
cell for various network sizes and two different Altera Stratix FPGAs.

Figure 3.8: Working frequency of the 1 bit and the 8 bit Split & Shift CNN
cell for various network sizes and two different Altera Stratix FPGAs.

The first one is the Hole-Filling. In this case we need only a four co-
efficient template that is applied with a transient mask 13 times for this
image size. This amounts to 3.1µs for the image presented in table 3.5.
The second propagative operation is the Horizontal CCD. For this we need 8
CNN and 8 logic operations that have to be applied 25 times. This leads to
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28.54µs of processing time. For the Shadow we have applied two operations
25 times, taking 2.16µs. The Hit& Miss looks for the shape in table 3.5 and
requires 10 operations (1.68µs). The Binary Edge Detection (BED) with
4-connectivity requires only 3 operations, this is 540 ns. Finally we have
implemented a Shortest Path Problem algorithm based in proposed in [101]
over the labyrinth shown in table 3.5. The results suggest that this imple-
mentation could be useful as an image processing accelerator, especially if
we use a newer technology to implement it.

Table 3.5: Comparison of Processing time of Algorithms tested in 1 bit CNN
and 8 bit CNN

Algorithms Processed
1 bit CNN cell (µs) 8 bit CNN cell (µs)

the 25×25 input data

Hole Filling 2.8 469.65

Horizontal CCD 25.62 4,323.81

SW Shadow 1.94 327.24

Hit&Miss 1.51 254.52

BED 0.485 81.81

Shortest Path 48.69 8,212.36

The main conclusion of the results obtained from comparing both CNN
implementations is that the trade off between the template variety applicable
in the each version and the area occupation and processing time factors makes
the 1 bit more appropriate for the application we are looking for.

Comparison with other implementations on FPGAs

We can compare these results with the times provided by other implemen-
tations that we can find in the literature. The ACE16K ([92]), that is a
common referent in a CNN full-custom implementation, takes 8µs for binary
or gray scale convolutions ([77]). The SCAMP system ([42]) is an SIMD im-
plementation for image processing. This system provides a processing time
of 0.8µs per operation 2. The digital implementation in [53] takes 0.44µs for
a binary 3 × 3 kernel application. Also, the FALCON system ([77]) is an
implementation over a FPGA from Xilinx that requires 0.6µs per gray-scale
convolution. This values are given for a processing of a 128 × 128 image in

2This value is estimated from the cited paper data.
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gray-scale. The values in Table 3.5 are given for our 25× 25 implementation
and it does not include the 2.7µs to send the image from the RAM memory
to the grid. If we consider applications that require larger images we would
have to apply windowing. If we consider no modification in the RAM-grid
upload we have to include the 2.7µs communication time twice per window,
135µs for a 128× 128 image. If we compare our FPGA implementation with
the 1Q1bitBW full custom implementation in [51] we can see that the A’-
template convolution is more than one order of magnitude worse but the logic
operations take only double time. Finally, in a fairer comparison, we consider
the FPGA implementation in [85] as it has been implemented over the same
hardware we use. In the optimized implementation we have that a 25 × 25
image can take around 19.23µs per convolution of two 5×5 templates within
a CNN operation. If we consider this type of convolution in our system it
takes 300 cycles, what is around 5.4µs. Nevertheless, we have to take into
account that the great majority of the CNN operations involved in an image
processing algorithm have just 3 × 3 templates and mainly consider 1 tem-
plate per CNN operation and they mostly fit in the diamond configuration
[50].

3.2.5 Conclusions

We can conclude that the Split & Shift is a efficient method for area occu-
pation reduction derived from the time-multiplexed implementations. The
study done proved that the diamond shape configuration with four circuit
coefficients is the most efficient one, not only because the trade off between
area and processing time is, but also because most of the templates used in
the literature have a symmetry that permit them to be implemented in only
one of the steps of the Split & Shift, and that is the principal reason to make
it better than other configurations with five or three coefficient circuits.

While the 8 bit architecture permit to implement a wider range of tem-
plates and also avoids the redesigning process required in the 1 bit architec-
ture, the increase of resources that 8 bit data implies a significance loss of
time processing and area occupation. In addition, the operations with a wide
dynamical range of luminance is inefficient due to the truncation problems.
In conclusion, Split & Shift is less useful in implementations that require
more bit resolution, where other techniques as convolution is more suitable.

Finally we can affirm that we have presented a good alternative for low-
cost implementations to the other implementations published in the litera-
ture.
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3.3 Implementation of CNNs over low-power

FPGAs

The power consumption of a CNN implementation over an FPGA is a very
relevant aspect, especially when the device is mounted on a mobile robot
powered by batteries, as happens in our experimental platform (see Sec. 4).
For this reason, we devoted our efforts to create a fully-operative CNN-UM
implementation on a low-power FPGAs.
We compared the overall power consumption in two different FPGAs, each
belonging to one of the two main technologies for reprogrammable FPGAs:
SRAM-based and Flash-based. The former achieves better performances in
terms of logic blocks density and maximum working frequency whereas the
latter consumes less power and has the advantage of being non-volatile. In
particular, we have chosen the Flash-based Actel IGLOO FPGA and the
SRAM-based Altera Cyclone FPGA, whose figures regarding the power con-
sumption are similar to those of its main competitor, Xilinx.

3.3.1 1 bit CNN cell over an Actel IGLOO FPGA

We started by implementing the 1 bit CNN cell described in Sec. 3.2.3 on an
Actel Igloo Nano AGLN250V2 FPGA. The results concern the CNN dilation
template run on a 176×144 binary image. In order to minimize the area con-
sumption, we used the Split&Shift technique (see Sec. 3.2.1) with the 4 cc
diamond configuration. The original CNN template can be split into five sub-
templates, each taking four clock cycles to be executed. As shown in Fig. 3.9,
the last four have exactly the same instantaneous power consumption whereas
the first subtemplate has a higher average instantaneous power consumption,
probably because of the variation of fan-out signals. Remarkably, using the
Split&Shift not only reduces the area occupation but it also improves the
power consumption for a given working frequency [46]. This conclusion can
be naturally drawn from Table 3.6 in which we see that when working at
30 MHz, the S&S 4 coefficient configuration is about 14% more power ef-
ficient than the standard 9 coefficient CNN implementation. Nevertheless,
this conclusion may change when advanced power techniques are applied.
For instance, in [20] it is suggested that, when executing the same algorithm,
an FPGA working at a high frequency may consume less than one working at
a lower frequency if the power-saving option (an advanced feature to reduce
static (idle) power consumption supported by ProASIC3/E devices and Flash
technology FPGAs, like the one we use for our experiments) is employed. An
evidence of this phenomenon can be found in Table 3.7 where we compared
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Figure 3.9: Instantaneous power consumption of the five subtemplates in
which the dilation template can be split when using S&S techniques. The
dotted line corresponds to the average instantaneous power consumption per
subtemplate. Results obtained for an Actel AGLN250V2 FPGA.

Table 3.6: Power consumption in the 9 cc standard configuration vs. the 4 cc
diamond S&S configuration for a 176×144 binary image.

Power consumption (mW)

Standard 9 coefficients @ 30 MHz 8.511

S&S 4 coefficients @ 30 MHz 7.286

S&S 4 coefficients @ 40 MHz 9.341

two implementations: one working at 454 KHz and the other working at
40 MHz (for which the FPGA is idled while the first implementation finishes
its computation). Since the first case (that is similar to what happens in the
Split&Shift) is more power consuming than the second case (that is similar
to the standard 9 cc configuration), we can expect that thanks to this tech-
nique the edge in power consumption of the Split&Shift implementation can
vanish.

3.3.2 Comparison of low-power consumption FPGAs:
Altera vs. Actel

In this section, we compare the performances of the Flash-based Actel AGLN250V2
FPGA with those of the SRAM-based Altera EP3C5E144C7 FPGA [14]; they
both have a similar number of logic elements and the same working voltage .
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Table 3.7: Verification of the method presented in [20] to reduce the power
consumption while increasing the operation frequency on the Actel Igloo
FPGA.

8×8 input images
Power consumption (µW)

@454 kHz @40 MHz

Bar 137 134

Complemented bar 142 138

Rhombus 141 137

Complemented rhombus 131 127

Power consumption and working frequency

The performances of the two devices have been compared by running the
CNN dilatation template [65] on two 176×144 images (each obtained by
tiling one of the images shown in Table 3.8). The results, summarized in
Table 3.8, prove that the CNN implementation on Actel FPGA is about
25 times more efficient in term of power consumption than the one on Altera
FPGA.

Table 3.8: Comparison of the power consumption (both static and dynamic)
of the Altera EP3C5E144C7 vs. the Actel AGLN250V2 with an operation
frequency of 40 MHz.

8×8 images generating
Actel (mW) Altera (mW)

the 176×144 input data

Bar 9.238 215.74

Rhombus 8.099 204.72

In order to calculate the maximum working frequency, we repeated 20 times
the synthesis process using 20 different fitting seeds for each FPGA. The
maximum overall working frequency achieved has been 41.48 MHz for the
Actel FPGA and 161.68 MHz for the Altera FPGA, whereas the average of
the maximum working frequency for each seed has been 40 MHz for the Actel
FPGA and 155 MHz for the Altera FPGA.

Area

When the same CNN cell is implemented in the two devices, Altera FPGA
has clearly an edge on area consumption, probably due to the complexity of
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the routing on Actel FPGAs [11]. For instance, Table 3.9 and Fig. 3.10 show
that the implementation on Actel requires about twice as logic elements as
the one on Altera, and this ratio is independent of the network size.

Therefore, we can conclude that the Split & Shift technique is especially
useful to optimize the area occupation on low-power Actel FPGAs.

Table 3.9: Comparison of the area occupation of a 1 bit DTCNN cell between
Actel and Altera FPGAs. Quantitative results have been obtained by using
the software provided by the companies; namely, Quartus II v10.1 SP1 for
Altera and Libero 9.1SP1A for Actel.

Network size

6×6 8×8 10×10 12×12
Altera FPGA Total no. of LEs 691 1,506 2,641 4,095

EP3C5E144C7 LEs per cell 19.19 23.53 26.41 28.44

Actel FPGA Total no. of LEs 1,447 3,073 5,229 8,272

AGLN250V2 LEs per cell 40.19 48.02 52.29 57.44

Ratio no. of LEs Actel/Altera 2.09 2.04 1.98 2.02

Figure 3.10: Graphic representation of the data of Table 3.9.

3.3.3 Conclusions

Inspired for the power consumption requirements of some commercial mobile
robot platforms, we started to study to implement our discrete CNN designs
presented in the previous section on a flash-based FPGA, maintaining the
constraints of low cost and small device. In conclusion we can say that we
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have obtained a fully-operative CNN camera implemented on an Actel Igloo
FPGA. Furthermore we have studied how is consumed the power during
the data processing process and because of the idle mode that this kind of
FPGA has, the fact of processing at a higher frequency results to be more
efficient against what we though. We did a comparison with the nine and four
coefficient circuits configuration that proved our initial assumption that the
four coefficient with Split & Shift is more efficient, however there is a direct
correlation between the size of the network, that could lead to implement
windowing, and the use of the idle mode of the FPGA. Further studies need
to be done in this direction.
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3.4 Implementing Time-Derivative CNNs on

a Xilinx Spartan FPGA

Among the numerous variants of Cellular Nonlinear Networks (CNNs) pre-
sented in the last two decades, Time-Derivative CNNs [59] appear to be
one that may dramatically extend the range of fields in which CNNs find a
practical application [60]. Thanks to the introduction of a simple temporal
derivative diffusion connections between neighboring cells, they implement
spatiotemporal rational transfer functions. There are already some prelimi-
nary studies concerning the VLSI implementation of TDCNNs [62] but the
current prototypes still have to overcome significative problems, such as those
related to the circuit offsets. For this reason, the dynamics of TDCNNs is
often simulated by software, as explained in [88, 106].

Nevertheless, to the best of our knowledge no FPGA implementation of
TDCNNs has been presented so far. Since these devices are widely available,
relatively inexpensive, and have a very short prototyping time, it is extremely
important to explore the possibility of FPGA-based TDCNNs. In this work,
we analyze two different aspects of this issue: first, we perform several sim-
ulations in replicate the experiments presented by other authors in order to
achieve a deep understanding the working principles of TDCNNs; second, we
introduce a TDCNN implementation over a Xilinx Spartan 6 FPGA. This
version refers to a 8×8 network, which is probably too small for practical
applications. However, it can be considered as the first successful proof of
concept of its kind ever presented.

3.4.1 Numerical results

In order to simulate numerically a TDCNN, Eq. (2.12) needs to be discretized
in time. A thorough analysis of several methods to carry out this process can
be found in [106]. The conclusion is that the best compromise between ac-
curacy and processing speed is given by a discretization using a combination
of forward and backward Euler approximation as expressed in the following
equation:

(1− C11)
xij[n+ 1]− xij[n]

Ts
=xij[n] + z +

∑
N (i,j)

A · xkl[n] +
∑
N (i,j)

B · ukl[n]

+
∑
N (i,j)

C̃ · xkl[n]− xkl[n− 1]

Ts
(3.1)

where Ts is the step size of the Euler approximation, C11 is the central value
of the matrix C, and C̃ has the same values as the matrix C except for the
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central element which is 0. As usual in the CNN notation, uij, xij, and yij are
the input, the state, and the output, respectively, of the cell in the generic
position (i, j) of the network, and Nij includes all cells in the generic position
(k, l) within its neighborhood. Finally, the set {A,B,C, z} is the TDCNN
template which defines the operation performed by the network.

We can rearrange Eq. (3.1) as follows:

xij[n+ 1] =xij[n] + z +
Ts

1− C11

∑
N (i,j)

A · xkl[n] +
∑
N (i,j)

B · ukl[n]


+

1

1− C11

∑
N (i,j)

C̃ · xkl[n]−
∑
N (i,j)

C̃ · xkl[n− 1]

 (3.2)

It is simple to find that the variation of the state ∆xij = xij[n + 1] − xij[n]
is a function of four different terms:

1. 1
1−C11

∑
N (i,j)

(TsA+ C̃) · xkl[n], which depends on the current state of the

cell and its neighbors;

2. 1
1−C11

∑
N (i,j)

C̃ ·xkl[n−1], which depends on the previous state of the cell

and its neighbors;

3. 1
1−C11

∑
N (i,j)

TsB · ukl[n], which depends on the current input;

4. z, which is the TDCNN template bias term which is usually constant
in time and uniform in space.

The balance among the contributions of the four terms depends on the values
of the matrices of the TDCNN template and the step size Ts, as we will discuss
in Sec. 3.4.2.

3.4.2 MATLAB Simulations

In order to draw an analogy with the work presented in [106], we performed
our experiments with a 20×20 network and using the CNN diffusion tem-
plate whose parameters are:



34 CNNs on FPGAs: optimizing area occupation and power consumption

A =
(

0 1 0
1 4 1
0 1 0

)
; B =

(
0 0 0
0 1 0
0 0 0

)
; C =

(
0 0 0
0 −1 0
0 0 1

)
; z=0 .

The template C can be split into two terms

C11 = −1; C̃ =
(

0 0 0
0 0 0
0 0 1

)
Both the boundary cells and the initial state of all cells are set to be 0,

whereas the input is a spatial-temporal impulse: this means that all cells
are 0 in all frames, except for the cell (10,10) that is 1 only in the first
frame. According to what it is explained in [106], each input frame needs to
be processed for at least three consecutive CNN time iterations in order to
obtain a correct result. In short, the input signal as:

uij[n] =

{
1, if i = j = 10 and n ≤ 3
0, otherwise.

(3.3)

A few snapshots of the simulation are displayed in Fig. 3.11 where the
grayscale is adjusted to the brightest pixel. From the qualitative point of
view, they are consistent with those presented in [106], though a thorough
quantitative comparison cannot be performed due to the lack of numerical
data in [106].

(a) Input at
n=0

(b) State at
n=10

(c) State at
n=30

(d) State at
n=70

(e) State at
n=100

(f) State at
n=150

Figure 3.11: TDCNN simulations at different iterations. The absolute white
is normalized with respect to the brightest pixel.

The dynamics of the CNN can be roughly explained by rewriting Eq. (3.2)
with the templates A, B, and C introduced above. In particular, the state
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equation for the pixel in position (10,10) is:

∆x10,10 =
Ts
2
u10,10[n] +

Ts
2

(x9,10[n] + x10,9[n] + x10,11[n] + x11,10[n])

− 2Tsx10,10[n] +
x11,11[n]− x11,11[n− 1]

2
(3.4)

where ∆x10,10 = x10,10[n + 1] − x10,10[n]. Therefore, the first term (ie, the
one multiplying the input) is about 1

Ts
larger than the others. Since in our

simulations Ts = 0.01, we can approximate Eq. (3.4) as

∆x10,10 ≈
Ts
2
⇒ x10,10[n+ 1] ≈ Ts

2
+ x10,10[n]

as long as u10,10[n] 6= 0, ie, for 1 ≤ n ≤ 3. Numerically, this implies that:

x10,10[n] ≈ 0.005n for n ≤ 3, n ∈ N

Therefore, the value of the pixel (10,10) will be increasing monotonously from
iteration 1, for which x10,10[1] = 0.005, to iteration 3, for which x10,10[3] ≈
0.015.
For all other pixels, the state equation is

∆xi,j =− 2Tsxi,j[n] +
Ts
2

(xi−1,j[n] + xi,j−1[n] + xi,j+1[n] + xi+1,j[n])

+
xi+1,j+1[n]− xi+1,j+1[n− 1]

2
(3.5)

During the first three iterations, the last term in Eq. (3.5) is dominant but
it exists only for the pixels on the main diagonal. We can then assume that

∆xi−2,j−2 ≈ ∆
xi−2,j−2

2
, for i,j ≤ 10

All other pixels will have negligible values.
When the input ceases, Eq. (3.5) describes the state equation of all pixels

of the image, including the one in position (10,10). Now, the second term
is not negligible any longer for those pixels having non-zero neighbors; as
a consequence, the diffusion is not only limited to the main diagonal, but
it spreads in the north/west/south/east directions as well. The value of
the pixel (10,10) will now start decreasing due to the lack of the positive
contribution from the input.

These phenomena can be easily observed in Fig. 3.11. For n=10, the
states of the pixels on the diagonal are still much bigger than those of the
pixels off diagonal, and this is because of the repercussion of the input signal
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which ceased at n=3. However, for a larger number of iterations, we can
definitely see that the diffusion is slowly affecting all pixels. This situation
is even more evident in the FPGA implementation, discussed in Sec. 3.4.3.
Observe that from iteration n=70 on, the effect of the boundary cells becomes
visible.

Changing the integration time Ts affects not only the time scale of the
event but also the numerical results because it modify the balances of the
different terms in Eqs. (3.4) and (3.5). Nevertheless, the value of Ts does not
have a significative impact on the qualitatively results in this experiment.

3.4.3 Experimental results on a Xilinx FPGA

The successful simulations with MATLAB prompted us to implement the
TDCNNs on an FPGA. For this purpose, we have chosen the Xilinx Spar-
tan6 XC6SLX45T FPGA, which is a low- cost device specially thought for
consumer-oriented DSP designs and cost-sensitive embedded applications [2].
It has 43k logic blocks and up to 2 Mb of internal RAM. The FPGA is
mounted on a PCB, shown in Fig. 3.12, which has been often used for ped-
agogical purposes.

Figure 3.12: PCB board equipped with a Xilinx Spartan 6 FPGA used to
implement the TDCNN architecture.

The basic architecture of the TDCNN cell is shown in Fig. 3.13 and it im-
plements accurately Eq. (3.2). All variables have 18 bits and they are rep-
resented in two’s complement. In this first version, we have realized a 8×8
CNN in order to minimize the routing complexity and have an easier inter-
pretation of the experimental results. The synthesis process, performed with
the software ISE Project Navigator 13.1 by Xilinx, used 11% of the slice
registers (6,346 out of 54,576), 22% of the LUTs (6,268 out of 27,288), and
43% of the BUFG/BUFGMUXs. The working frequency is 100 MHz, each
cell is processed in 130 ns whereas the whole 8×8 network takes 10.16 µs.
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Figure 3.13: Architecture of the TDCNN cell implemented on the FPGA.

Snapshots obtained from the FPGA implementation are shown in Fig. 3.14.

(a) Input at
n=1

(b) State at
n=3

(c) State at
n=5

(d) State at
n=10

(e) State at
n=17

Figure 3.14: Results of the TDCNN architecture implemented on a Xilinx
Spartan 6 FPGA.

Clearly, these results are consistent with those obtained from the MATLAB
simulations and discussed in the previous section. In particular, we can ob-
serve that at the third iteration only the north-west propagation from the
input pixel can be observed, whereas the effect of the diffusion in other di-
rections becomes noticeable from iteration 10 on.
Inevitably, the limited size of the array causes truncation errors that are par-
ticularly significant when the computation involves small quantities; from
this point of view, this experiment is particularly sensitive to such kind of
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errors. For this reason, we have only been able to run 18 iterations of the
experiments before observing a significative impact of the truncation error.
Nevertheless, increasing the number of bits allocated to variables would only
postpone the problem to a further iteration, but it would imply an immediate
raise of the routing complexity up to an almost unbearable limit. Increasing
the value of Ts is a further strategy to delay the occurrence of the truncation
error.

3.4.4 Conclusion

Time-Derivative CNNs may assume a leading role in the next generation of
computing paradigms. Current studies have mainly concerned their numer-
ical simulations as well as their VLSI implementation, but it is crucial to
explore their implementation on FPGA, which would make them available
to a larger academic and industrial audience.

In this work, we have performed a thorough analysis of the numerical
simulations of TDCNNs which we then used in what is – to the best of
our knowledge – the first working FPGA implementation of TDCNNs. In
particular, we created a network of 8×8 effective cells (10×10 considering
the boundary cells too) running on a low-cost Xilinx Spartan 6. Due to the
small size of the network, we can consider this work as a proof of concept,
which though proves the feasibility of the TDCNN on FPGA, emphasizing
also its limitations. For instance, we have found that the truncation error
limits the maximum number of iterations that can be performed. In the
current 16 bit version, results are reliable up to 18 iterations; however, the
number of bits devoted to the state variables can be increased without any
major drawback (except for the growth of the routing complexity) since the
current implementation occupies only a fraction of the FPGA logic cells. The
results have proved to be consistent with those of the SW simulations.

In the near future, we plan to achieve at least a 20×20 network and
possibly find practical applications to it. Also, we will explore the possibility
of using more advanced VHDL synthesizers that are more efficient during the
routing process, which has been the bottleneck of the current implementation.



Chapter 4

Novel CNN systems for robot
vision and navigation

The predictions of having robots ‘everywhere’ made in the last few years [55]
are now becoming true. As a matter of fact, nowadays a new technology gains
momentum if it finds application to any kind of robotics systems, and this is
valid for CNNs too. Traditionally, CNNs have been employed to implement
the vision (eg, [17, 107, 66]) and the navigation system (eg, [70, 99]) of small
autonomous robots.

In our work, we have focused exactly on these two aspects, trying to give
an original contribution to the field. As we will discuss in the following, we
have realized some novel FPGA-based vision platforms that interface with
commercially-available LEGO robots and we have also proposed some novel
CNN-based navigation algorithms for robot swarms.

4.1 Description of the robots used in our ex-

periments

In our experiments, we have used two different robots: the LEGO Mind-
storms NXT (used to test the vision system described in Sec. 4.2) and the
LS Maker (used to test the navigation algorithms presented in Sec. 4.3). In
the following, we present their main characteristics; a more thorough descrip-
tion can be found in the references provided.

4.1.1 Robot LEGO Mindstorms NXT

The LEGO Mindstorms NXT [18, 54], shown in Fig. 4.1, is four-wheel au-
tonomous robot equipped with three processors: first, the Atmel AT91SAM7S256,
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which is a 32-bit ARM7 working at 48 MHz with 64 KB of RAM (for data)
and 256 KB of flash memory (for software and firmware); second, an 8 bit
processor devoted to manage input and output data; third, a small processor
controlling the Bluetooth communications.

Figure 4.1: Robot LEGO Mindstorms NXT.

This robot has numerous sensors but we will mainly use its ultrasonic sensor:
it works at 40 KHz and measures distances up to 2.5 m with an accuracy
of 3 cm and a field of view of 40◦ per side. In the application described
in Sec. 4.2.1, we also used infrared sensor to perform a optocoupled serial
communication between the robot and the FPGA board.

4.1.2 Robot LS Maker

The LS Maker, shown in Fig. 4.2, is a mobile robot with caterpillar tracks
built upon inexpensive off-the-shelf electronic components. It hosts a 16 bit
Microchip PIC24FJ64GA006 with 64 KB of program memory and 8 KB of
RAM working at 8 MHz.
The only way in which the robot can estimate its own position and commu-
nicate with other robots is through a 2.4 GHz RF module CC2500 which
provides a signal range of up to 25 m with an output power of 1 dBm. An
LS Maker can estimate the distance of the robots nearby based on the power
received from them.
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Figure 4.2: Robot LSMaker.

4.2 Vision: low-power DTCNN camera for

mobile robots

The goal of our project has been embedding a CNN-based vision system on
a LEGO NXT Mindstorms robot. This application requires the implementa-
tion of a platform with low power consumption, reduced size and weight, and
the possibility of fast reconfiguration by the user. For this reason, we have
chosen to use an FPGA as computing core and we implemented two different
versions of the system: one based on a large Altera FPGA (see Sec. 4.2.1)
and the other on a low-power Actel FPGA (see Sec. 4.2.2). In both cases,
the FPGA was hosted on a PCB board receiving data from a color camera
and communicating to the robot the actions to perform. In this specific ex-
periment, we wanted our robot to avoid obstacles and hence we have chosen
an appropriate set of CNN templates [68] – including the threshold, the edge
extraction, the noise rejection, and the concave location filler. A different set
of templates can be required in case of a different task, such as pathfinding.

4.2.1 Grayscale vision system over an Altera Cyclone II
FPGA

The block diagram of the grayscale vision system implemented over an Altera
Cyclone II FPGA is shown in Fig. 4.3. Its main element is the Altera DE2-
70 development board that consists of an Altera Cyclone II EP2C70F896C6
FPGA (with about 70k logic elements) and additional memory chips includ-
ing a 64 MB SDRAM, used in our experiments to store the data and the
program memory. With respect to the Stratix (see Sec. 3.2.4), the Cyclone
has the advantage of using the NIOS II architecture which is very effective
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Figure 4.3: Main blocks of the vision system based on the Altera Cyclone II
FPGA.

in embedded computing applications.
The color camera Terasic 5M works at 15 fps when used at the maximum

resolution (5 Mpixel). In our experiments, we decreased the resolution to
the standard VGA (640×480 pixels), which is sufficient for our purposes, in
order to increase the number of frames per second up to 150 fps. Like the
great majority of the single-chip digital cameras on the market, the RGB
components received by the sensor are arranged according to a so-called
Bayer pattern (see Fig. 4.4). Therefore, in the first block we preprocessed

Figure 4.4: Bayer pattern.

the image to obtain the 8 bit luminance. The connection between the board
and the LEGO NXT Mindstorms robot is realized via an optocoupler, where
one LED of the board the emitter and the robot light sensor is the receiver.

4.2.2 B/W vision system over an Actel Igloo FPGA

The block diagram of the B/W vision system implemented over an Actel
Igloo FPGA is shown in Fig. 4.5. In this implementation, we manufactured
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Figure 4.5: Main blocks of the vision system based on the Actel IGLOO nano
FPGA.

a printed circuit board that consists of an Actel IGLOO nano AGLN250V2
FPGA, with about 6k logic elements (VersaTiles) and 36 Kb of embedded
RAM, and some memory chips including a 2 Mb low-power SRAM, which
we use in our experiments to store data and the program memory.

The color camera C3038 hosts the Omnivision OV6630 image sensor used
with QCIF resolution (177×144 pixels); when operative, it drains less than
20 mA. Also in this case, the RGB components received by the sensor are
arranged according to a Bayer pattern and hence in the first block we prepro-
cessed the image to obtain the 1 bit luminance. The connection between the
board and the LEGO NXT Mindstorms robot is realized via a I2C interface.

4.3 Navigation: obstacle avoidance and col-

lective dynamics

4.3.1 Single robot

Ultrasonic Sensor Data Processing Vision System

Vision systems can be complex, expensive, and non robust. For this reason,
in [7] we proposed to implement a navigation system for the LEGO Mind-
storms NXT relying exclusively on the ultrasonic sensor of the robot. This
is a simple and inexpensive solution when no sound-absorbing obstacles are
present. In our experiment, this sensor is used in a radar-like setting: the
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robot is rotated by 45◦ in order to sense the whole surrounding environment.
Then, the signals were processed according to the scheme detailed in Fig. 4.6
which is composed of a DTCNN and a Multi-Layer Perceptron (MLP) Neu-
ral Network: the former processes two successive time samples of the sensor
maps whereas the latter – trained as suggested in Fig. 5 of [22] –gives the
steering signals to the two motors.

Figure 4.6: Block diagram of the navigation system using ultrasonic sensors
based on a DTCNN preprocessing and a MLP Neural Network.

This architecture proved to be effective in local path planning with online
obstacle avoidance, which means that a robot navigates in an unknown en-
vironment with no information about the size, shape, and location of the
obstacles. Obviously, more complex tasks could be performed by using addi-
tional sensors, starting from the infrared sensors already embedded in LEGO
Mindstorms NXT robot.

Vision System based on FPGA

The experiment to test the feasibility to implement an obstacle avoidance
algorithm to control a robot with vision based on a DTCNN implemented
over an FPGA is structured as follows:

1. Images acquisition: first images are received through an interface using
a hardware governed by NIOS II;

2. Upload the image to the network : the image is received and then
charged on the DTCNN that is implemented on FPGA and connected
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to soft-core through a parallel port with as many bits of width as per-
mitted in order to make the load as efficient as possible. Here is one of
the advantages of working with the NIOS II: we can create a bus with
a desirable width;

3. Processing process :there are 3 cycles needed for the network to process
and retrieve the output image;

4. Algorithm execution: repeat 2 and 3 to execute the whole Robot Guid-
ing algorithm. The templates of the algorithm are as follows: edge
extracted and thresholded template. Then a noise rejection template.
Finally a Concave Location Filler template;

5. Motor interface: from the result the NIOS II take the appropriate deci-
sions (motors control function) meanwhile, we can expect a new image
(if there is another image to processs) without stopping the algorithm
that is running;

6. Cooperative tasks : As it is all programmed in C language and uses a
cooperative system to emulate multitasking, we are able to run some
background applications while DTCNN is operating.

In a previous stage we tested the algorithm presented in [69], but the
dependence in the initial condition seems to be the reason because it didn’t
work. We obtained good results in an environment based on strong contrast
between background and obstacles. The luminance changes affect too much
the perception of the environment, and for this reason the future direction
consist in implementing the same structure in the Actel Igloo FPGA adding
the three colour components, RGB, but working in a binary process. To date
we have tested the implementation but not the obstacle avoidance yet.

4.3.2 Robot swarm

A robot swarm can be roughly defined as a collection of robots sharing
the same environment and communicating to each other to establish some
collaborative behavior. There are countless variations of this concept, and
valid reviews can be found in [40, 19]. In our work, we will mainly refer to
the concept of cellular robotic systems [21] in which the analysis concerns
the patterns formed by robots acting in a cellular grid environment [104]. In
particular, our goal is to arrange a swarm of identical robots according to
a cellular topology and control their collective behavior as actions of simple
CNN templates (see Fig. 4.8). In our approach, each robot communicates
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Figure 4.7: Each robot acts according to the signals received from its neigh-
bors.

only with the robots in its radius of neighborhood and acts accordingly to the
signals it receives. Thus, the collective behavior results from the processing
of the single robots. We can see the schematic of how acts each single robot
in Fig. 4.7). .

First of all, we have simulated our robotic swarm on a SW platform based
on the object-oriented language Scratch1. Then, we used an actual swarm of
LS Maker robots to check experimentally the results of the simulations2. We
used four different swarms (composed of 2, 4, 9 and 16 robots, respectively)
and two different CNN templates: Expansion andContraction. Each robot
has a binary state, corresponding to the movements forward (state +1) and
backward (state -1), and it does not move when no other robot is within the
coverage of the antenna. The action of each robot depends on the RF signal
received by its neighbors: the closer the neighbor, the stronger the signal.
Thus, we can consider the signals given by the neighbors as the the input data
of a continuous-valued network. In Fig. 4.9 we can observe the effect of the
CNN template contraction on a random initial spatial configuration of robots.
The effect of this template is bringing all robots as close as possible, ideally
in the very same place (which can obviously happen only in the simulations).
In Fig. 4.10 we can observe the effect of the CNN template expansion on a
random initial spatial configuration of robots. The effect of this template is
bringing all robots as far as possible until all of them have no other robot
within the coverage of the antenna. In general, the result of the application
of a given template depends on the initial configuration of the robots. For
instance, in Fig. 4.11 we can observe the effect of the CNN template dilation
when the initial spatial configuration is the one obtained after the application

1Available at http://scratch.mit.edu/
2Videos of the robot swarm can be found at

http://users.salleurl.edu/~jalbo/Jalbo/iscas2012.html
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Figure 4.8: A set of robots connected with a cellular topology.

of the CNN template contraction (see Fig. 4.9).
Even though we are clearly dealing with a proof of concept, this ap-

proach to swarm computing allows us to build a scalable and robust system
that can be used to explore environments, or even for more complex tasks
such as rescue operations. Furthermore, the characteristic of having only
locally-connected robots allows us to have very efficient systems in terms of
power consumption. In the near future, we plan to explore more complex
applications of this promising approach.
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(a) Initial configuration (b) Application of the CNN template

Figure 4.9: Application of the CNN template contraction on a random initial
spatial configuration of robots.

(a) Initial configuration (b) Application of the CNN template

Figure 4.10: Application of the CNN template expansion on a random initial
spatial configuration of robots.
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(a) Initial configuration (b) Application of the CNN template

Figure 4.11: Application of the CNN template expansion on the configuration
obtained in Fig. 4.9.





Chapter 5

Memristive Networks as
Archetypal Physical
Implementation of CNNs

The existence of the memristor was first conjectured [31] by Leon Chua in
1971, but for 37 years it had remained obscure for most researchers until HP
published its implementation [98] in 2008. Following this event, numerous
researchers started working on the possible applications of the memristor,
proving that it could represent an authentic breakthrough in several fields
including artificial intelligence [100] and non-volatile memories [105].

In our case, we will discuss the role of memristive crossbar structures as
archetypal physical implementation of cellular networks. In particular, we
will prove that complex dynamics, such as percolation, may occur in memris-
tive networks too, and we will describe several SPICE models of memristors
that can help to perform reliable simulations.

Furthermore, we will start this section by discussing some pedagogical
aspects of the memristor. In fact, despite its apparent simplicity, the mem-
ristor has not found place yet in EE undergraduate curricula though nowa-
days there is wide convergence over the fact that the didactic aspects of
memristors have not received the attention they deserve [64]. Definitely, a
big obstacle towards the general acceptance of the memristor is the diffuse
diffidence towards the “nonlinear world”. It is difficult to imagine that the
memristor will be widely taught until at least the basic concepts of nonlin-
ear analysis will left out of undergraduate courses. In the next section, we
will describe two different approaches to memristor, in order to clarify the
theoretical aspects that will then be considered in the rest of this section.
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5.1 An original perspective of circuit elements

with memory

5.1.1 Theoretical principles

The classical way to introduce the memristor is through the so-called ax-
iomatic approach, which postulates that there are four fundamental circuit
variables: voltage v, current i, charge q, and flux ϕ. They can be combined
two at the time in six possible ways, corresponding to Eqs. (5.1a)-(5.1f). Five
of them correspond to well-known relationships (two fundamental definitions
and three classical circuit elements) and hence the sixth relationship must
corresponds to the fourth canonical element - that is, the memristor.

Definition of current: dq = i dt (5.1a)

Faraday’s law: dϕ = v dt (5.1b)

Resistor: dv = R di (5.1c)

Capacitor: dq = C dv (5.1d)

Inductor: dϕ = L di (5.1e)

Memristor: dϕ = M dq (5.1f)

This formal scheme is well summarized in Fig. 5.1.

Figure 5.1: Axiomatic approach to the memristor. The four fundamental
electric variables (q, ϕ, i, and v) can be combined two at the time in six
possible ways: two of them correspond to basic relationships, and the other
four correspond to the canonical two-terminal passive circuit elements.

This approach is straightforward but it fails to emphasize the nonlinear na-
ture of this circuit element and the existence of other elements with memory
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(such as the memcapacitor and the meminductor), which were already con-
sidered in [30] (see Figs. 1-17 and 1-20).

An alternative approach can be given starting from the work presented
in [32]. In this case, we define two variables v(α)(t) and i(β)(t), where α, β ∈ Z,
as follows:

v(α)(t) ,


dαv(t)
dtα

, if α > 0

v(t), if α = 0∫ t
−∞

∫ τ|α|−1

−∞ ...
∫ τ2
−∞ v(τ1)dτ1dτ2...dτ|α|, if α < 0

(5.2)

and

i(β)(t) ,


dβi(t)
dtβ

, if β > 0

i(t), if β = 0∫ t
−∞

∫ τ|β|−1

−∞ ...
∫ τ2
−∞ i(τ1)dτ1dτ2...dτ|β|, if β < 0

(5.3)

Consequently, v(−1)(t) =
∫ t
−∞ v(τ1)dτ1 = ϕ and i(−1)(t) =

∫ t
−∞ v(τ1)dτ1 = q.

A two-terminal (or one-port) circuit element characterized by a constitutive
relation in the v(α) vs. i(β) plane is called (α, β) element and it can be denoted
by the symbol of Fig. 5.2. The letter α, displayed in the upper part of the
component, is usually called voltage exponent and the letter β, displayed in
the lower part of the component, is usually called current exponent. The
black band at the bottom of the component helps to distinguish the two
sides of the component.

Figure 5.2: Symbol for a two-terminal circuit element.

Every two-terminal circuit element imposes a relationship between v(α)

and i(β) such as v(α) = f(i(β)) or i(β) = f(v(α)). Consequently, each pair (α,β)
corresponds to a different circuit elements; for instance (see Fig. 5.3) resis-
tor: (α, β) = (0, 0); capacitor: (α, β) = (0,−1); inductor: (α, β) = (−1, 0);
memristor: (α, β) = (−1,−1); memcapacitor: (α, β) = (−1,−2); meminduc-
tor: (α, β) = (−2,−1).
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Figure 5.3: The first six circuit elements – three with memory and three
without memory – and their respective values of α and β.

Obviously, all values of the integer variables α and β can be used in order to
create a ‘periodic table’ of two-terminal circuit elements [32] [33], as showed
in Fig. 5.4.

The complexity κ of basic circuit elements can be defined as κ = |α|+ |β|.
Hence, κ = 0 for resistor, κ = 1 for capacitor and inductor, κ = 2 for
memristor, κ = 3 for memcapacitor and meminductor etc. By this ordering
measure (also called the Manhattan metric in metric space), it is possible
to observe that resistor, capacitor, inductor, and memristor are the circuit
elements with the lowest complexity measure, and for this reason they are
referred to as “the first four basic circuit elements”. It can be proved that the
memristor cannot be built from other 2-terminal R, L, and C [31]. Each of
the circuit elements listed in Fig. 5.4 can be built with analog op amp circuits
and other off-the-shelf nonlinear elements via mutators [31]. The larger the
value of κ, the more capacitor and inductors will be needed because κ counts
towards the number of state equations required to describe a circuit uniquely.

This approach has two advantages over the axiomatic one: first, the in-
trinsic nonlinear nature of the memristor is now manifest; second, the exis-
tence of four other fundamental elements, two linear (capacitor and inductor)
and two nonlinear (memcapacitor and meminductor [39]) is easy to prove.
Obviously, it is possible to define new circuit elements (with or without mem-
ory) by considering higher-order derivatives of the fundamental variables q
and ϕ (see also the ‘periodic table of circuit elements’ in [32]).



55 Memristive Networks as Archetypal Physical Implementation of CNNs

Figure 5.4: The first 25 two-terminal circuit elements. All elements printed in
the same color belong to the same circuit element species where the “slope” at
each operating point on the v(α)−i(β) constitutive relation can be interpreted
as a frequency-dependent resistance (red), frequency-dependent inductance
(blue), frequency-dependent negative resistance (yellow) , and frequency-
dependent capacitance (green), respectively. Adapted from [32].

5.1.2 Mechanical equivalent of circuit elements with
memory

It is well known that a capacitor, an inductor, and a resistor can be seen as
a spring, a mass, and a dissipative effect (friction), respectively. Now, what
about the memristor? The answer to this question was given short after the
publication of the seminal paper on the memristor (see Fig. 3 in [82], further
developed in [81]); we introduce this ‘mechanical equivalent of a memristor’
in Fig. 5.5. It is composed of a dashpot cylinder with a tapered friction rod
attached at a certain distance from the dashpot enclosure and a piston to
which is attached a thick rubber disc. The diameter of flexible rubber sleeve
varies with the penetration of the piston d and hence the force needed to
push the piston further is a function of d. In other words, the incremental
resistance depends on the instantaneous piston displacement. This situation
is analogue to the one of a memristor whose memristance depends on the
charge flown.

The elastic model of the memcapacitor and the meminductor can be found
in Figs. 5.6 and 5.7, respectively; they are more thoroughly explained in [87].
In particular, the elastic memcapacitive system is composed of two parallel
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Figure 5.5: Mechanical equivalent of a memristor (adapted from [82]).

plates: the lower one is kept fixed and the upper one is elastically suspended.
The distance between plates changes when a charge is added to them, and the
dynamics of the system depends on the initial conditions and time-dependent
fields, thus providing the memory effects.

Figure 5.6: Elastic memcapacitive system (adapted from Fig. 7 in [87]).

Similarly, the elastic meminductive system is composed of two parallel
wires: the lower one is kept fixed, whereas the upper one is elastically sus-
pended. The two wires are connected in such a way that the same current
i flows through them in opposite directions, pushing the top wire up by the
effect of the magnetic force. Also in this case, the dynamics of the system
depends on the initial conditions and time-dependent fields, thus providing
the memory effects.

5.2 Percolation in memristive networks

The memristor achieves its full potentialities as an element of a networks
rather than as standalone device also because memristors can be easily man-
ufactured in crossbar structures composed of a locally-connected regular ar-
ray of components [74]. For this reason, it is relevant to study the dynamics
arising in memristive networks; in particular, we focus on the existence of
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Figure 5.7: Elastic meminductive system (adapted from Fig. 9a in [87]).

percolation in memristive networks. Percolation is well-studied in other kind
of networks concerning simple dynamical elements locally connected, such
as Cellular Nonlinear Networks [28]. Though, it has been never proved that
percolation exists in memristive networks too.

The starting point of our work is a paper linking memristors and Cellular
Networks [63] which led us to prove theoretically and verify by computer
simulations that percolation can exist in memristive networks. We start this
section with a general introduction of cellular networks whereas the core of
our work will be discussed in the second part of the section.

5.2.1 Brief notes about Cellular Networks

In our terminology, Cellular Networks are dynamical systems consisting in a
network of cells mainly locally connected and arranged in a regular lattice.
In particular, we study two-dimensional networks in which the dynamics of
each cell is directly influence by its nearest neighbors. For instance, Cel-
lular Nonlinear Networks are special case of Cellular Networks in which all
connections are local. In general, the amount of the non-local connections
depends to the specific model and it is usually a couple of order smaller than
the total amount of local connections.

In our work, we are concerned to a model of Cellular Networks in which
cells assume only binary values (±1) and the state update of all cells is syn-
chronous. At the initial state of the time scale, the state of the network
is given with a probability for a cell to have the state 1 of p, 0 ≤ p ≤ 1.
One of the most interesting phenomena in cellular networks is (bootstrap)
percolation. It is said that there is percolation in the lattice if the dynamics
ultimately leads to a configuration when all sites become active. In the origi-
nal bootstrap percolation model, sites are active in the original configuration
independently with probability p. The update rule however is deterministic:
an active site always remains active, and an inactive site becomes active if
at least l of its neighbors are active at the given time [5]. A main question
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in bootstrap percolation concerns the presence of percolation as the function
of lattice dimension N , initial probability p, and neighborhood parameter l.
It can be shown that on the infinite lattice, there exists a critical probabil-
ity pc = f(d, l), that there is percolation for p > pc, and no percolation for
p < pc, with probability one. The critical probability defines a phase transi-
tion between conditions leading to percolation and conditions which do not
percolate [15][16][27]. For a finite lattice, the probability of percolation is a
continuous function of p, and hence there is no precise threshold value for
p. However, the probability of percolation rises rapidly from a value close to
zero, to a value close to one near some threshold function pc = f(N, d, l).

5.2.2 Analogy between memristors crossbar structures
and cellular networks

The v-i characteristic of a memristor is composed of two approximately lin-
ear parts with positive slope, corresponding to two resistances with values
ROFF (high resistance) and RON (low resistance). When working with alter-
nating current, the memristor switches reversibly between these two values
and hence the memristance M can be modeled as a variable depending on
an internal state x(t) [103]:

M(x) = x(t) ·RON + (1− x(t)) ·ROFF (5.4)

where x(t), which is a function of the charge q, is restricted to the inter-
val [0,1]. If the low resistance state RL and the high resistance state RH are
sufficiently far apart (for example, at least a couple of orders of magnitude),
then the memristor has a sort of ‘binary’ behavior which is thought of having
great applications in the technology for non-volatile memories [98].

If the memristance M is such that the values RON and ROFF differ by
several orders of magnitude and the transition between them is fast enough,
then we can consider that each cell indeed is binary. Also, it is possible to
prove (see Sec. 6 in [63]) that the values of the memristor in each cell can be
tuned in order to implement any function of the Cellular Network (ie, any
rule of the Cellular Automata). Consequently, memristive crossbar seems to
be a very suitable domain to implement phenomena related to dynamics in
Cellular Networks, and in particular percolation.

In a homogeneous memristive network, all memristors have the same
memristance M described by Eq. (5.4). Therefore, we can conclude that, at
least formally, a memristive crossbar structure is indeed a cellular network,
where cells are the single memristors. It remains to determine how the single
cell may work and interact with its neighbors in order to implement the
typical dynamics of a cellular network.
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A simple, yet efficient, method was proposed in [63], where the single
memristive cell follows the working principles shown in Fig. 5.8. In short, a
cell is composed of a memristor and a switch; a current pulse generator pro-
vides a pulse ip – which is a combination of positive (to charge the memristor)
and negative (to discharge the memristor) current pulses – to memristors and
switches in all memristor cells.

Figure 5.8: Cell of a binary synchronous Cellular Network based on memris-
tor (adapted from [63]).

In order to verify experimentally our conjectures, we created a number
of software tools based on MATLAB that can be downloaded from [86]. In
our simulations, each cell is connected to the four neighbors as depicted in
Fig. 5.9.

Figure 5.9: Connection of the single cell of the memristive network.

The experimental results confirmed our claim that, under proper con-
ditions, the memristive network behaves like a cellular network (a cellular
automata, in particular) and it exhibits its same dynamics, including perco-
lation.
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5.3 An analysis of the SPICE models of mem-

ristors

Several software models of the HP memristor were created soon after its in-
vention in order to provide a reliable way to simulate it while the physical
device was not available yet. Nowadays, we estimate that there are a few
dozens of works already published in this area; nevertheless, it is not always
straightforward to use such models especially because often important in-
structions (like the adjustment of secondary parameters) are omitted. In the
present work, we only mention a few representative SPICE models which we
found particularly useful in our teaching experience because of their accuracy
and clarity. For each of them, we include a commented working code as well
as a revised version of the original schematics.

Possibly, the two most accurate SPICE memristor models currently avail-
able were presented in [23] and [4]. The SPICE description of the first one
is displayed in Table 5.1 and it is based on the circuital model of Fig. 5.10,
whereas the SPICE description of the second one is displayed in Table 5.2
and it is based on the circuital model of Fig. 5.11. In both cases, the models
are inspired by the HP memristor, even though the second model was con-
ceived directly from the actual data obtained from the real device, and this
explains the large number of equations and parameters it includes.

Figure 5.10: SPICE model schematic for the memristor presented in [23]
(edited by J Albo-Canals and GE Pazienza).

A third valuable model [89] is based on Ngspice (but it also works in
any tool that integrates standard SPICE with Cider) and it is shown in
Table 5.3. This memristor model has the edge on accuracy, but it may cause
some critical issues during the integration with other circuits not based on
Ngspice.
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Table 5.1: SPICE model of the memristor presented in [23] and corresponding
to the schematic in Fig. 5.10.

**********************************************
******** SPICE Model of the Memristor ********
*** by Z. Biolek, D. Biolek, and V. Biolkova [23] ***
**** (edited by J Albo-Canals and GE Pazienza) ****
**********************************************
** Ron, Roff: Resistance in ON / OFF States
** Rinit: Resistance at T=0
** D: Width of the thin film
** uv: Migration coefficient
** p: Parameter of the Window function
** for modeling nonlinear boundary conditions
** x: W/D Ratio, W is the actual width
** of the doped area (from 0 to D)
.SUBCKT memristor Plus Minus PARAMS:
+ Ron=1K Roff=100K Rinit=80K D=10N uv=10F p=1
********** Differential Equation Modeling *********
Gw 0 w value={I(E1)*uv*Ron/D∧2*f(V(w),p)}
Cw w 0 1 IC={(Roff-Rinit)/(Roff-Ron)}
Raux x 0 1T
********** Resistive Port of the Memristor *********
E1 plus x value={-I(E1)*V(w)*(Roff-Ron)}
Roff x minus {Roff}
*********** Computation of the Flux *************
Eflux flux 0 value={SDT(V(plus,minus))}
*********** Computation of the Charge ***********
Echarge charge 0 value={SDT(I(Emem))}
****** Window function, according to Joglekar ******
.func f(x,p)={1-(2*x-1)∧(2*p)}
*********** Proposed Window Function ***********
;.func f(x,i,p)={1-(x-stp(-i))∧(2*p)}
.ENDS memristor
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Table 5.2: SPICE model of the memristor presented in [4] and corresponding
to the schematic in Fig. 5.11.

********************************************************
***************** Memristor SPICE Model *****************
************ by H. Abdalla and M.D. Pickett [4] ************
******** (edited by J Albo-Canals and GE Pazienza) ********
********************************************************
** phio: barrier height in volts
** Lm: parameter to calculate lambda
** w1: tunnel barrier width in case of off in nm
** foff: fitting parameter
** ioff: current parameter in case of off
** aoff, fon: fitting parameters
** ion: current parameter in case of on
** aon, b: fitting parameters
** wc - tunnel barrier width in case of on in nm
.SUBCKT modelmemristor plus minus PARAMS:
+phio=0.95 Lm=0.0998 w1=0.1261 foff=3.5e-6 ioff=115e-6
+aoff=1.2 fon=40e-6 ion=8.9e-6 aon=1.8 b=500e-6 wc=107e-3
******************** Device equations *********************
G1 plus y value={sgn(V(x))*(1/V(dw))∧2*0.0617*
(V(phiI)*exp(-V(B)*V(sr))-(V(phiI)+abs(V(x)))*
exp(-V(B)*V(sr2)))}
Esr sr 0 value={sqrt(V(phiI))}
Esr2 sr2 0 value={sqrt(V(phiI)+abs(V(x)))}
R1 y minus 215
Eg x 0 value={V(plus)-V(y)}
Elamda Lmda 0 value={Lm/V(w)}
Ew2 w2 0 value={w1+V(w)-
(0.9183/(2.85+4*V(Lmda)-2*abs(V(x))))}
EDw dw 0 value={V(w2)-w1}
EB B 0 value={10.246*V(dw)}
ER R 0 value={(V(w2)/w1)*(V(w)-w1)/(V(w)-V(w2))}
EphiI phiI 0 value={phio-abs(V(x))*((w1+V(w2))/(2*V(w)))-
1.15*V(Lmda)*V(w)*log(V(R))/V(dw)}
C1 w 0 1e-9 IC=1.2
R w 0 1e8MEG
Ec c 0 value={abs(V(y)-V(minus))/215}
Emon1 mon1 0 value={((V(w)-aoff)/wc)-(V(c)/b)}
Emon2 mon2 0 value={(aon-V(w))/wc-(V(c)/b)}
Goff 0 w value={foff*sinh(stp(V(x))*V(c)/ioff)*
exp(-exp(V(mon1))-V(w)/wc)}
Gon w 0 value={fon*sinh(stp(-V(x))*V(c)/ion)*
exp(-exp(V(mon2))-V(w)/wc)}
.ENDS modelmemristor



63 Memristive Networks as Archetypal Physical Implementation of CNNs

Table 5.3: SPICE model of the memristor presented in [89].

**********************************************
********** HP Memristor Ngspice Model *********
*********** by A. Rak and G. Cserey [89] ********
**********************************************
.SUBCKT memristor 1 2 6
** Eres is a voltage-controlled voltage source
Eres 1 9 POLY(2)
+(8, 0) (11, 0) 0 0 0 0 1
Vsense 9 4 DC 0V
** Fcopy is a current-controlled current source
Fcopy 0 8 Vsense 1
Rstep 8 0 1K
Rser 2 4 10
** Fmem is a current-controlled current source
Fmem 6 0 POLY(2) Vsense
+Ecopy -0.5E-10 0 1E-10 0 -1 0 0 0 1
Cmem 6 0 90nF
Rsp 6 0 1000Meg
Ecopy 7 0 0 6 1
Rc 7 0 1
Ecpy2 10 0 6 0 1
Vref ref 0 DC 1V
R1 10 11 100K
Ssat1 11 0 0 11 SWX
Ssat2 11 ref 11 ref SWX
** SWX is the switch function for Ngspice
.MODEL SWX SW(Ron=0.001, Roff=1000Meg,
+Vt=0.00001V, Vh=0.00001V)
.ENDS
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Figure 5.11: SPICE model schematic for the memristor presented in [4]
(edited by J Albo-Canals and GE Pazienza).

The memristor model in [23] can be modified by using mutators as de-
scribed in [26] in order to obtain the SPICE models of the meminductor [25]
(see Table 5.4) and the memcapacitor [24] (see Table 5.5).

Figure 5.12: SPICE model of the meminductor presented in [25] (edited by
J Albo-Canals and GE Pazienza).
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Table 5.4: SPICE model of the meminductor presented in [25] and corre-
sponding to the schematic in Fig. 5.12.

***********************************************
********* SPICE Model of a Meminductor ********
********* by Z. Biolek and D. Biolek [25] *******
**** (edited by J Albo-Canals and GE Pazienza) ****
***********************************************
** Finit: initial value of Flux
** Rinit: initial value of TIF (Time-Integral of Flux)
.subckt FCmeminductor in+ in- params: Finit=0 Rinit=0
.param la1 50 la3 50meg
** EF and ER are controlled sources implementing
** Eqs. 6 and 7, respectively, of [39]
EF F 0 value={Finit+SDT(v(in+,in-))}
ER R 0 value={Rinit+SDT(v(F))}
L1 in+ in- {1/la1} IC={la1*Finit}
G1 in+ in- value={3*la3*v(R)∧2*v(F)}
.ends FCmeminductor

Figure 5.13: SPICE model of the memcapacitor presented in [24] (edited by
J Albo-Canals and GE Pazienza).
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Table 5.5: SPICE model of the memcapacitor presented in [24] and corre-
sponding to the schematic in Fig. 5.13.

**********************************************
********** SPICE Model of a Memcapacitor ******
********* by Z. Biolek and D. Biolek [24] ********
**** (edited by J Albo-Canals and GE Pazienza) ****
**********************************************
** Cmin, Cmax: Minimum and maximum capacitances
** Cinit: value at the starting point
** k: mobility factor
** p: parameter of the Joglekar function
.SUBCKT memC Plus Minus PARAMS:
+ Cmin=10nF Cmax=10uF Cinit=100nF
+ k=10meg p=1 IC=0
******************* Input port ******************
E1 Plus Minus value={DM(v(w))*(v(q) + IC*Cinit)}
*********** Computation of the Charge ************
Gq 0 q value={I(Emc)}
Cq q 0 1
Rq q 0 1G
************** State-space equation **************
.param xinit {(1/Cinit-1/Cmax)/(1/Cmin-1/Cmax)}
Gw 0 w value={v(q)*k*window(v(w),p)};
Cw w 0 1 IC={xinit}
Rw w 0 1G
************* Inverse of capacitance **************
.func DM(w)={1/Cmax + (1/Cmin-1/Cmax)*w};
*************** Joglekar window ****************
.func window(w,p)={1-(2*w-1)**(2*p)}; window funct.
.ENDS memC



Chapter 6

Conclusions and future work

In this thesis we have proved the viability to design a low-cost low-power
fully-functional smart camera sensor based on CNNs implementation over
FPGA. And furthermore we have tested the concept design in different
robotic applications. The work done has conducted our point of interest
in applying the studied techniques into an environment, which has similar
constraints in terms of parallel computation, like could be a swarm of robots.
In addition, because several indicators lead us to think that memristor will
become the substitute of low-power non-volatile flash technology we decided
to check if its dynamics are equivalent to the ones observed in the CNNs
networks.

6.1 Conclusions

As far as the area occupation is concerned, from our analysis we can def-
initely conclude that the Split & Shift is a successful technique to reduce
the number of logic cells necessary to implement a given architecture. This
positive outcome comes at a cost of a longer processing time. We performed
a thorough analysis of the different configurations of the circuit coefficients
and chose the one that seems to achieve the best balance between area oc-
cupation and number of clocks required to carry out a single CNN template.
The results obtained showed that the four circuit coefficients called diamond
shape configuration is the best one, specially if we consider that most of the
CNN templates are symmetric, so we can save to implement all Split & Shift
phases. We tested it on two different architectures (8 bit and 1 bit) each
implemented on one device (the first on an Altera FPGA and the second on
an Actel FPGA): in both cases the Split & Shift proved to be effective and
efficient.
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As for the power consumption, we have implemented a CNN cell on an
Actel Igloo Nano FPGA, which is one of the devices currently on the market
having the best energy efficiency. With the same CNN architecture, this
implementation has proved to be about 25 times less power consuming that
the one on an Altera device. Of course, this conclusion may change if different
devices are tested, but in general we showed that CNN implementation on
a flash-based FPGA (such as the one from Actel) is possible and results are
encouraging.

We also showed that these FPGA architectures can be successfully applied
to realize the vision system of an autonomous robot. Similar experiments
have been realized in the past by other authors, but in this case we used a
widely available commercial platform. Furthermore, we also analyzed how to
implement a CNN-based navigation system, both for single robots in which
we implemented obstacle avoidance and path following, and robot swarms
where we have tested collaborative tasks of expansion and contraction.

In addition, we have implemented the time derivative CNN using a 18 bit
architecture as long as it has the potential to, thanks to include the simple
temporal derivative component, extend the range of CNN practical applica-
tions in the artificial vision field. In this application, like in the 8 bit version,
we have dealt with the challenge introduced by the truncation process, an
undesired effect that is difficult to manage in a small low-cost device. In both
cases, a trade-off between loss of information and area occupation combined
with routing complexity has been the best way to endeavour with this effect.

Because of the promising results, we have designed and mounted a first
general-purpose binary discrete time CNN Camera prototype based on Flash-
based Actel IGLOO FPGA. The development has been done following the
LEGO electronic sensors requirements in terms of device size and power con-
sumption (less than 140mA). The implementation is based on the 1 bit CNN
because it is enough for most image pre-processing algorithm applications.
To enhance the binary performance, we have considered to combine the RGB
colour component information. The most efficient way to do this is to treat
each colour component as a binary input to a binary CNN as shown in the
Fig. 6.1. In order to implement it inside the FPGA maintaining the con-
straints of area occupation, a preliminary study proved that multiplexing in
time each colour component is better than replicate three times the CNN
structure.

Last but not least, we devoted some efforts to link the dynamics of mem-
ristive crossbar structures and that of CNN networks. Preliminary results
are motivating and let the door open to further improvements using models
closer to the real memristors. As long as we realised that until today the
memristor has been treated as a non-linear black box that make it difficult
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Figure 6.1: Example of the RGB image processing using the binary CNN
implemented on the Actel IGLOO FPGA.

to study it in real applications, we have considered fundamental to bring
light to the insight of the memristor behaviour and also to normalize the
most popular existing Spice models in the scientific community.

In conclusion, as we have postulated in the introduction of this thesis,
we have proved the feasibility of implementing low-cost reconfigurable smart
sensors, easy to set-up, based on FPGA platform suitable for a wide range of
image processing applications, specially those focused in robotic applications
that include, from educational platforms like LEGO Mindstorm robot, to
complex autonomous systems like Unmanned Aerial Vehicles (UAV).

The work presented in this thesis has been published in several prestigious
international conferences and in the impact factor CAS Magazine. We can
classify the material published as follows:

1. CNNs on FPGAs: optimizing area occupation and power consumption:
In the European Conference on Circuit Theory and Design (ECCTD)
we presented most of the implementation results on FPGAs, starting
in 2007 we presented the study on Split & Shift implementation on an
FPGA according to the coefficient circuits [49], following in 2009 by
the implementation of the 8 bit CNN [12] and ending in the 2011 by
the presentation of the 1 bit CNN based on a low-power Actel Igloo
FPGA as a low cost camera sensor [36]. In addition we presented in
the Design of Circuits and Integrated Systems (DCIS) Conference, in
2008, the first 1 bit CNN implementation on an Altera Stratix FPGA
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[8], also compared with Single Instruction Multiple Data architectures
in a second paper presented in the same conference [78];

2. Novel CNN systems for robot vision and navigation: We showed in the
demo session the first prototype of a vision system based on 8 bit dis-
crete time FPGA in the International Workshop on Cellular Nanoscale
Networks and their Applications (CNNA) in 2010 [13]. Also the ex-
periment presented in section 4.1.1 was presented in the same demo
session [7]. A further study was presented as a lecture in the Interna-
tional Joint Conference on Neural Networks (IJCNN) of the same year
[10]. The collective dynamics for robot swarms is accepted to be pre-
sented in the IEEE International Symposium on Circuits and Systems
(ISCAS), in 2012. ;

3. Memristive Networks as Archetypal Physical Implementation of CNNs :
We did a first study to the memristor in ISCAS 2011 [9]. We have
presented an extended work in the CAS Magazine during the same
year mentioned above. Finally, we published an approximation to the
CNN structure based on memristor in the IJCNN 2011 [83].

6.2 Future directions

Further studies should be done in the direction of combining RGB colour
component information with the binary CNN implementation. The future
envisaged for the prototype presented in this thesis is to obtain the second
version that will use a low-cost PCB design of two sides to reduce the man-
ufacturing costs in order to achieve a feasible production cost. The market
out from research which is expecting a device of this kind is divided, from
our point of view, in two directions. On one side the possibility of having
low-cost low-power smart sensors for autonomous vehicles with higher per-
formance that the common ultrasonic, laser or infra-red sensors; on the other
side, the easy configuration of the proposed CNN camera sensor make it ideal
for a new generation of intelligence robotic toys that can be setting-up by the
children. This last vision has been contrasted with LEGO Learning Institute
and LEGO Education division experts that have been pursuing for years the
solution to reduce the time needed from the moment a Mindstorm LEGO
is out of the box to the moment it is running according to the programmed
commands.

We won’t hesitate in testing the real memristors once they become avail-
able. As long as manufactured memristive devices become stable, they will
be the next step in low-power and low-cost physical implementation, because
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of its radical power consumption savings and also its high density integra-
tion. Memristor are supposed to substitute the nowadays flash based devices
making non-volatile memories smaller and faster.

Nowadays there are two journal publications close to be ready to be
submitted to impact factor magazines, in one side a compendium of the
work done with the CNNs on FPGAs, and in another side a deep study on
Spice tested memristors models which have been normalized. In addition
we have submitted the latest application suitable for the CNN camera to
the CNNA2012 conference, which consist on using a sequence of templates
in order to find an unique descriptor of each scene that a robot can find
while is navigating into a maze. The template sequence is composed of: 1)
Threshold; 2) Edge Detector; 3) Horizontal Line Remover; 4) Vertical Line
Remover; 5) Corner Detection; and 6) Horizontal Shadow/Vertical Shadow
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