

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

HW/SW Mechanisms for Instruction
Fusion, Issue and Commit in

Modern µ-Processors

PhD Thesis

Abhishek Deb

Barcelona, May 2012

HW/SW Mechanisms for Instruction
Fusion, Issue and Commit in

Modern µ-Processors

Barcelona, May 2012

Universitat Politècnica de Catalunya
Departament d’Arquitectura de Computadors

HW/SW Mechanisms for Instruction
Fusion, Issue and Commit in

Modern µ-Processors

PhD Thesis

Abhishek Deb

PhD Advisor:

Prof. Dr. Antonio González Universitat Politècnica de Catalunya and
Intel Barcelona Research Center, Spain

Dr. Josep Maŕıa Codina Intel Barcelona Research Center, Spain

Contents

Acknowledgments xiii

1 Introduction 1
1.1 A Brief Evolution of Uniprocessors . 4

1.1.1 Pipelining . 4
1.1.2 Pipeline Hazards and Eliminating the Hazards 5
1.1.3 Modern Processors . 5

1.2 The case for Co-designed Processor . 7
1.2.1 The HW/SW Co-designed Virtual Machine 7
1.2.2 The Co-designed Paradigm as an Enabler 8

1.3 Instruction Fusion and Accelerators . 8
1.4 Low-Complexity Issue Logic . 9
1.5 Bulk Commit Mechanism . 10
1.6 The Contributions of the Thesis . 10

1.6.1 Co-designed Programmable Functional Unit 10
1.6.2 SoftHV . 11
1.6.3 Co-designed Out-of-Order Processor 11

1.7 Outline . 11

2 The Co-designed Virtual Machine 13
2.1 Motivation . 13
2.2 The Co-designed Virtual Machine Architecture 14

2.2.1 Basic Execution Model Overview 15
2.2.2 The Dynamic Optimizer . 15
2.2.3 Frontend Support for Native x86 execution 17
2.2.4 Memory System Architecture . 18
2.2.5 Code Cache . 19

2.3 Microarchitectural Support . 19
2.3.1 Reducing Overhead in Co-designed Virtual Machine 19
2.3.2 Microarchitectural support to handle Code Optimizations 21
2.3.3 Miss-speculation Recovery and Bulk Commit mechanism 22
2.3.4 Profiling Support . 23

2.4 Related Work . 23

ii Contents

2.4.1 Virtual Machines . 23
2.4.2 IBM DAISY . 24
2.4.3 Transmeta Crusoe . 25
2.4.4 HP Dynamo . 25
2.4.5 Reducing Translation Overhead . 26
2.4.6 Optimizer and Interpreter . 26
2.4.7 Superblock Heuristics . 27
2.4.8 Hardware Dynamic Optimizers . 27

2.5 Summary of Design Choices . 27

3 Experimental Methodology 29
3.1 The Choice of Microarchitecture Simulator 30
3.2 Timing Simulator Enhancements . 31

3.2.1 Modifying the Execution Pipeline 31
3.2.2 Simplifying Memory Disambiguation 32
3.2.3 Write Ports . 34
3.2.4 Integrating Wattch into PTLsim . 34

3.3 Virtual Machine Monitor Implementation 34
3.3.1 VMM Optimizer Overview . 35
3.3.2 Fetching µ-ops from Superblocks 36
3.3.3 Code Generation . 36
3.3.4 Performance benefits of Code Optimizations 43
3.3.5 Superblock Details . 45

3.4 Simplifications to the Implementation . 49
3.5 Baselines Used . 51

3.5.1 The Baseline Out-of-Order Processor 52
3.5.2 The Baseline Co-designed In-Order Processor 53
3.5.3 Co-designing the baselines . 54

4 Co-designed Programmable Functional Unit 57
4.1 Introduction . 57
4.2 The Co-designed PFU proposal . 59

4.2.1 Split-Mop Execution Model . 59
4.2.2 Alternate Split-Mop Execution Model 61
4.2.3 PFU Microarchitecture . 62

4.3 The Co-designed Out-of-Order Processor 67
4.3.1 Bulk Commit of Atomic Superblocks 68
4.3.2 Bulk Commit using a Speculative Map Table 70

4.4 Code Generation . 71
4.4.1 Pre-Scheduling . 72
4.4.2 Macro-op Fusion . 73
4.4.3 Final Code Generation . 76

4.5 Performance Evaluation . 77

Contents iii

4.5.1 Impact of Microarchitectural Constraints 78
4.5.2 Impact of Fusion Heuristics . 81
4.5.3 Impact of Mov-set . 82
4.5.4 Comparison with alternate designs 82
4.5.5 Qualitative Discussion on PFU . 85

4.6 Related Work . 86
4.7 Conclusions . 88

5 SoftHV 89
5.1 Introduction . 90
5.2 Motivation for Horizontal and Vertical Fusion 91
5.3 SoftHV Architecture Overview . 92

5.3.1 Microarchitecture Overview . 92
5.3.2 HW Accelerators : ICALU and VLDU 93
5.3.3 Interlock Collapsing ALU . 94
5.3.4 Vector Load Units . 95
5.3.5 Instruction Encoding . 97

5.4 SoftHV Binary Optimizations . 98
5.4.1 µ-op Fusion . 98

5.5 Performance Evaluation . 100
5.5.1 Code Coverage of Fused Instructions 100
5.5.2 Performance benefit due to horizontal and vertical fusion 101
5.5.3 Comparison with an Out-Of-Order processor 102

5.6 Related Work . 103
5.7 Conclusions . 104

6 A Power-efficient Co-designed Out-of-Order Processor 107
6.1 Introduction . 108
6.2 Overview of the Proposed Microarchitecture 110
6.3 Out-of-Order Logic . 112

6.3.1 Dependence-based Steering Heuristic 113
6.3.2 Enhanced Steering Heuristic . 114
6.3.3 Early Release . 118
6.3.4 FIFO start policy . 119
6.3.5 Memory Disambiguation Logic . 119

6.4 Co-designing the Commit Logic . 120
6.4.1 Bulk Commit Problem 3 . 121
6.4.2 A ROB-free Bulk Commit mechanism 121
6.4.3 Register State . 121
6.4.4 Superblock Ordering Buffer . 123
6.4.5 Physical Register Recycling . 125
6.4.6 Memory State . 125
6.4.7 Handling Precise Exceptions . 125

iv Contents

6.5 Summary of Changes . 126
6.6 Evaluation . 127

6.6.1 Performance of new Steering Policy 128
6.6.2 Bulk Commit Mechanism Study . 136
6.6.3 Dynamic Power and Energy Results 137
6.6.4 SOB+FIFO Vs ROB+CAM processor 142

6.7 Related Work . 152
6.8 Conclusion . 154

7 Conclusions 155
7.1 Future Work . 156

7.1.1 Larger Regions . 156
7.1.2 Coarse-grained Accelerators . 157
7.1.3 Alternate Issue Logic . 157
7.1.4 Co-designing the Steering Heuristic 158
7.1.5 Speculative Caches . 158
7.1.6 More accurate Cd-VM modeling . 158
7.1.7 Comparison with other Fine-grain Accelerators 159

7.2 List of Publications . 159

Acronyms 161

Index 163

Bibliography 165

List of Figures

2.1 The Co-designed Virtual Machine Architecture Overview 14
2.2 Atomic Superblock . 16
2.3 Dual Mode x86 decoder Frontend pipeline 17
2.4 Memory System Architecture . 18
2.5 Dual Mode x86 Decoder . 20
2.6 The Jump Translated Lookaside Buffer (JTLB) 21
2.7 General Recovery Mechanism . 22
2.8 Basic Block and Edge profile of a Control Flow Graph 23

3.1 Block diagram of Microarchitecture that PTLsim models 30
3.2 Illustration of Load hit Speculation. 32
3.3 Store to load forwarding restrictions. 33
3.4 Profiling and Invoking Optimizer Flowchart. 35
3.5 Fetch Flowchart. 37
3.6 Code Generation Flow Chart . 38
3.7 Superblock Heuristic . 39
3.8 Load Store Telescoping . 41
3.9 The Effect of Code Optimizations . 43
3.10 Generated Data Flow Graph . 48
3.11 Illustration of RRT . 53
3.12 The Co-designed In-order Processor Overview 55
3.13 µ-op/macro-op pipeline . 55

4.1 Split-MOP Model . 60
4.2 Execution Pipeline . 61
4.3 Modified Microarchitectural Block Diagram 62
4.4 Programmable Functional Unit . 63
4.5 Processing Element . 64
4.6 Configuration Line . 65
4.7 Hierarchical Issue Queue Model . 67
4.8 Bulk Commit and size of Superblocks . 68
4.9 Bulk Commit and Frontend Stalls . 69
4.10 Bulk Commit with SpecRRT. 71
4.11 Code Generation Flow Chart . 72

vi List of Figures

4.12 Macro-op Fusion Illustration . 74
4.13 Dataflow graph showing the fused Macro-op 76
4.14 Schedule before and after the fusion . 77
4.15 Impact of grid size . 79
4.16 Impact of Write Ports . 80
4.17 Impact of PEs connected to input bypass 80
4.18 Impact of PFU Latency . 81
4.19 Impact of Fusion Heuristics . 81
4.20 Impact of removing mov-set. 83
4.21 Comparison with SIMD and 8-way out-of-order 84
4.22 Comparison 8-way ROB 256 out-of-order 85

5.1 The Co-designed Processor Overview . 92
5.2 Code before and after fusion . 94
5.3 Interlock Collapsing ALU . 95
5.4 Illustration of VLD execution . 96
5.5 VLD Miss Handling . 97
5.6 MOP/VLD instruction encoding . 98
5.7 Code Generation Flow Chart . 99
5.8 µ-op Code Coverage . 100
5.9 ICALU VLDU Isolation . 101
5.10 ICALU VLDU Combination . 102
5.11 Comparison with out-of-order . 103

6.1 Performance of Steering Heuristics . 108
6.2 Block diagram of Microarchitecture of SOB based processor 111
6.3 FIFO based OoO Logic . 113
6.4 Dispatch Stalling Conditions . 115
6.5 Dispatch Stall Condition Distribution . 115
6.6 Steering Logic . 116
6.7 Illustration of head and tail check . 117
6.8 Illustration of early release . 118
6.9 Register State Rename and Commit. 122
6.10 Superblock Ordering Buffer . 124
6.11 Performance of Enhanced Steering Heuristic 128
6.12 Dispatch Stalls . 129
6.13 Dispatch Stall Condition . 129
6.14 Early Release . 131
6.15 Enhanced Steering Heuristic . 131
6.16 Early Release and Steering Heuristics . 132
6.17 The Effect of Per FIFO Issue Width . 133
6.18 The Effect of Issue Queue Start Policy . 134
6.19 Comparison with Lat FIFO scheme . 134

List of Figures vii

6.20 SOB vs ROB . 136
6.21 The Effect of SRRT . 137
6.22 Normalized Dynamic Power FIFOs . 138
6.23 Normalized Dynamic Power and Performance Results. 139
6.24 Normalized Energy FIFOs . 140
6.25 Dynamic Power Consumption SOB + SRRT vs ROB + SpecRRT 141
6.26 Performance SOB vs ROB without memory disambiguation 142
6.27 Performance SOB vs ROB with memory disambiguation 143
6.28 Dynamic Power Consumption SOB vs ROB 144
6.29 Dynamic Power Consumption Distribution SOB vs ROB 145
6.30 Energy consumption SOB vs ROB . 146
6.31 Energy-Delay SOB vs ROB . 147
6.32 Energy-Delay2 SOB vs ROB . 147
6.33 Performance SOB vs ROB + CAM with memory disambiguation 148
6.34 Energy SOB vs ROB + CAM with memory disambiguation 149
6.35 Dynamic Power Consumption Distribution ROB with superblocks 150
6.36 Energy-delay product SOB vs ROB + CAM with memory disambiguation 150
6.37 Energy delay2 product SOB vs ROB + CAM with memory disambiguation 151

viii List of Figures

List of Tables

2.1 Summary of Design Choices. 27

3.1 Superblock Size in µ-ops . 44
3.2 Overhead in terms of x86 instructions . 46
3.3 Baseline 4-wide Out-of-Order Processor Configuration 51
3.4 Baseline 8-wide Out-of-Order Processor Configuration 52
3.5 Baseline In-order processor configuration 54

4.1 Proposed Processor Configuration . 78

5.1 Breakdown of Speedup . 102

6.1 Qualitative Comparison . 126

x List of Tables

List of Algorithms

1 List Scheduling Algorithm . 42
2 Pre-Scheduling Algorithm . 73
3 Macro-op Fusion Algorithm . 75
4 Fusion Algorithm . 100

Acknowledgments

First of all I would like to thank my Advisors Prof. Antonio González and Dr. Josep
Maria Codina for their guidance and vision. I would like to thank Josep Maria for being
generous enough to accommodate time for meetings even at a short notice. We had
numerous technical discussions, which lead to the key contributions of this thesis.

I would like to thank Generalitat de Catalunya and the Spanish Ministry of Education and
Science. This thesis was partially supported by the Generalitat de Catalunya under grant
2009SGR1250, the Spanish Ministry of Education and Science under contracts TIN2007-
61763 and TIN2010-18368, and Intel Corporation. I was supported by a FI grant of
Generalitat de Catalunya.

I would like to thank all the administrative staff at UPC for being very kind and helpful.
They provided the much needed logistic support for me to complete my PhD. They had
also shown extra-ordinary professionalism, yet warmth, whenever a task was required to
be done.

I would like to thank many PhD students at UPC, with whom I have had several technical
discussions. I learned a lot just by interacting with other senior and junior students. I
would like to thank Paul Carpenter for his support throughout my PhD. I would like to
thank him for spending time reviewing this thesis and my papers emphasizing on minute
details.

I would like to thank all my family and friends for their support. Specially to my parents,
my sister and Arijit, they had provided me the much needed motivation. My parents have
always valued education, and they are the one who had sowed the desire in me to be a
researcher.

Finally, I would like to thank Manjusree for being very patient and supportive. She had
motivated me at times when I was down and always inspired me to do better. She had
always lent her ears, listening to me, my issues and let me make correct decisions.

Chapter 1

Introduction

Modern microprocessor designs have shown significant performance improvements over
the last decades by making advances in semiconductor process and by exploiting instruc-
tion level parallelism (ILP). Out-of-order processors were introduced in order to execute
independent instructions in parallel and in an order determined by the dataflow order
instead of the program order.

Their unique ability to execute instructions in this dataflow order, enables them to exploit
the dynamic behavior of the application, which for a compiler is hard to determine. More
so for applications that are irregular, such as SPECINT[3]. The irregularities arises due
to unbiased branches. Moreover, memory disambiguation plays a big role in letting the
loads execute early; thereby reducing the critical path.

However, the benefits in performance due to out-of-order execution came along with the
price of complex hardware structures, which lead to higher power consumption [46] and
design complexity [76]. Moreover, these hardware structures tend to become the critical
path of the design, leading to diminishing returns.

Furthermore, as the chips are getting smaller with each generation, the power density is
increasing sharply. As a result the power consumption is becoming a key deciding factor
on the performance that can be achieved [75].

As a result of which, the semiconductor industry has embraced multi-cores, i.e. using
multiple simpler cores in a single chip. This helps in achieving a good power-performance
trade-off. However, providing high performance now depends a lot on the software; how
well it can utilize multiple cores. This is a challenging problem and advances are being
made in this area [67, 65, 90, 36, 50, 44, 13].

However, there will always be a need for high-performance but simple uniprocessor cores
that satisfies the power budget and performance need of system designers. In fact when
higher performance is desired, it may be more energy-efficient to execute applications on

2 Chapter 1. Introduction

an out-of-order processor than on an in-order processor [8].

An out-of-order processor can be seen as a hardware dynamic optimizer. Dynamic schedul-
ing enables in re-ordering instructions on-the-fly based on their data dependencies. How-
ever, instructions have false dependencies between them, which makes hard for the out-
of-order engine to fully utilize the functional units. False dependencies exists between two
instructions writing to the same destination register, or between an older instruction that
consumes from a register and a younger instruction that writes to the same register.

As a result, if these instructions complete out-of-order then it would lead to an unintended
program behavior. Register renaming enables in getting rid of these false data dependen-
cies. The benefit of performing all the optimizations on-the-fly enables in achieving a
better performance for irregular applications. However, as mentioned earlier addition of
these hardware structures lead to higher complexity and higher power consumption.

A software approach to perform out-of-order execution can be implemented with the use
of static compilers. Since compiler optimizations such as scheduling re-orders the instruc-
tions, a new program order is generated that is different from the programmer’s intended
program order. However, the static compiler optimizations have their own limitations.
For instance, code optimizations are applied at the granularity of Basic Blocks, which
limits the scope of the optimization. Moreover, they have to be conservative, for instance,
speculative load hoisting cannot be performed.

The dynamic optimizer, on the other hand, can enjoy the benefits of speculative opti-
mizations by exploiting the runtime behavior of the application. Execution is rolled-back
to unoptimized code versions in case of a misspeculation. Hardware structures can be
added to enable some of these speculative optimizations.

Moreover, since most of the optimizations can be done by the dynamic optimizer, the
underlying microarchitecture can be simpler. The use of simpler microarchitecture helps in
cutting down power consumption and complexity. Moreover, simpler hardware structures
enable higher clock frequency, resulting in reduced execution time.

As a result, the Instruction Set Architecture (ISA) to which the Operating System (OS)
and the application is compiled to –the source ISA– can be implemented partly in the
software and partly in the hardware. Such an approach to co-designing the source ISA is
referred to as the HW/SW Co-designed Virtual Machine (Cd-VM) in the literature [88].

Most prior work on Cd-VM considered a VLIW microarchitecture. VLIW offers simple
hardware with low power consumption. Moreover, it can also provide better performance
with the right use of code generation techniques by the dynamic binary optimizer.

However, the use of a VLIW microarchitecture requires, in most of the cases, the need to
emulate the cold code in software1. As a result of which, the overhead incurred can be

1Cold code has to be interpreted. For instance, its hard to decode source X86 instructions to VLIW
instructions using a hardware decoder

3

significant; more so for codes that last for short period of time.

Hence in order to overcome the overhead due to cold code emulation, in this thesis, we
consider a Cd-VM that emulates only the hot code. Hardware support is used to execute
cold code natively by decoding them into µ-ops. As a consequence of this support, we
propose co-designed processors using in-order and out-of-order microarchitecture.

The key objective of this thesis is to revisit the HW/SW co-design paradigm and to pro-
pose novel HW/SW techniques to improve performance and/or energy-efficiency. These
can be achieved by using new accelerators, by combining existing accelerators, and by
considering improved design for the key stages of the processor pipeline as issue and com-
mit logic. With such goals in mind we have proposed techniques in the following three
areas:

• Instruction Fusion : We propose two mechanisms for instruction fusion using
specialized functional units. The fused instructions when executed on these special-
ized functional units accelerates parts of applications. These functional units exploit
two properties : 1) executing collapsed instructions with low latency, 2) exploit ILP
by bundling the execution of parallel instructions together. The associated code
generation heuristics are proposed as well.

• FIFO based Out-of-Order Issue : The existing co-designed processors are
primarily VLIW based. Using VLIW cuts down the processor complexity and power
consumption. High-performance can be obtained by using advanced code generation
techniques. However, even with dynamic optimizer the lack of out-of-order execution
can be a performance handicap –for the cases where its hard to know the instructions
readiness times. A FIFO based out-of-order issue provides a middle-ground solution
with limited out-of-order execution at low-complexity and low-power consumption.

• Bulk commit : We propose two bulk commit mechanisms for atomic superblocks
in the context of co-designed out-of-order microarchitecture. These bulk commit
enables larger superblocks to execute without being constrained by out-of-order re-
sources such as ROB. Moreover, these bulk commit mechanisms also reduce resource
related stalls at frontend.

In this chapter first we will briefly discuss the evolution of uniprocessors in Section 1.1.
Next, in Section 1.2 we will motivate the need for co-designed processors. We will briefly
describe a HW/SW co-designed Virtual Machine and how it acts as an enabler. Next, in
Section 1.3 we will discuss instruction fusion and accelerators in the context of co-designed
Virtual Machines.

In Section 1.4 we will briefly mention low-complexity issue logic with limited out-of-order
capability. In Section 1.5 we will describe bulk commit mechanism required in order to
commit the program state corresponding to a region atomically. We will also show how

4 Chapter 1. Introduction

the existing solution is limited to in-order microarchitectures and motivate the need for
newer solutions for out-of-order microarchitectures. Next, in Section 1.6 we will highlight
the contributions of this thesis. In the end, in Section 1.7 we will present the outline of
the rest of the thesis.

1.1 A Brief Evolution of Uniprocessors

Although, general purpose the uniprocessors are, their design is guided by the applications
that would execute on it. Microprocessors for embedded systems, desktops and servers
differ from each other in numerous obvious and subtle ways. They are classical examples
of being application-specific yet being general purpose. This section discusses how the
uniprocessors have evolved into their modern day avatars.

There is on going research both in industry and academia to strive for better performance
and energy-efficiency for uniprocessors. Decades of research have resulted in breaking
various kinds of dependencies to achieve higher performance. The research was driven in
order to increase the performance by concurrently executing instructions.

1.1.1 Pipelining

Pipelining is at the very inception of concurrent instruction execution. An instruction
spends several cycles inside the processor moving from one pipeline stage to another. As
a result, multiple instructions could be present inside the processor at any given point of
time. This might result in longer latency, but a higher throughput2 is achieved. As one
can imagine pipelining is a sort of concurrency that is quite prevalent in our day-to-day
lives and is analogous to assembly lines in the Manufacturing Sector.

However, the concept of pipelining in the context of processors differs from that in the
manufacturing world. This is simply because instructions are different, such as arithmetic
instructions, memory instructions, control transfer instructions etc. Moreover, the exe-
cution latency of instructions are different as well, and in some cases non-deterministic3.
As a result, the continuous flow of instructions in the processor pipeline is interrupted.
Furthermore, instructions are dependent, unlike objects in assembly lines. This causes
the instructions to stall until its producer has executed.

2as measured in instructions per processor cycle
3a load that misses in a cache

1.1 A Brief Evolution of Uniprocessors 5

1.1.2 Pipeline Hazards and Eliminating the Hazards

These interruptions are widely known as bubbles in the pipeline, and are caused by various
kinds of hazards. First kind of these hazards are the data hazards that are caused due
to dependencies among instructions. True dependencies need to respected in order to
allow correct flow of data from the producing instruction to the consuming one. False
dependencies, on the other hand, are caused due to limited architectural registers.

Second kind of the hazards are the control hazards that are caused by a control-transfer
instruction such as a branch, jump etc. These instruction affect the seamless flow of
instructions in the pipeline, because the instruction that needs to be executed immediately
after the branch need not be the one that is placed immediately after it in the compiled
code.

Third are the structural hazards, which are caused due to several instructions needing
to use the same resource4. This causes a resource conflict and leads to bubbles in the
pipeline.

Researchers have come up with numerous solutions to break these hazards. Structural
hazards are the easiest one to break, simply by replicating the resources. Control hazards
were tackled by predicting the outcome of a branch at fetch itself. This enabled fetching
of instructions from the predicted path instead of stalling. Several branch prediction
schemes [97, 87, 70] were invented to predict the outcome of the branch.

Among data hazards false dependencies were broken with the help of register renam-
ing [91]. Researchers have even proposed breaking true data dependencies using Value
prediction [62, 84].

1.1.3 Modern Processors

In-Order Processors

Over the period of time some of these ideas have made their place into commercial microar-
chitectures. General purpose microarchitectures can be broadly classified into in-order
and out-of-order. In-order processors executes instructions in their original program or-
der. These processors are pipelined and could also issue multiple independent instructions
in a single cycle, which is widely known as superscalar issue.

The modern in-order processors, however , are not simple pipelined processors that they
used to be anymore5. Instead they have decoupled microarchitectures, such as ARM
Cortex-A8[94] and Intel Atom. Buffers are introduced between fetch, decode and execu-

4Examples of shared resource are Register ports, Memory ports, Functional Units etc.
5Though in really low-end domain simple pipelined in-order processors are used.

6 Chapter 1. Introduction

tion backend in order to decouple each of these parts of the processor. This decoupling
avoids in letting the bubbles in the later stages to ripple up to the earlier stages of the
pipeline.

Out-of-Order Processors

By issuing the instructions in an order that is determined by the readiness of instructions
instead of its age; the sequential program order is broken. In other words out-of-order
program execution is achieved. Instructions are issued as soon as their operands are ready
and all the resources related to execution are available. A Reorder Buffer (ROB) is present
in the backend to ensure the program state i.e. the register state and the memory state
is updated in the original program order.

The first out-of-order processor was proposed by Tomasulo for IBM 360/91 floating-point
unit [91]. However, the modern day out-of-order processors differs significantly from the
original Tomasulo’s processor. For instance, in modern out-of-order processor exceptions
are supported precisely using ROB.

Moreover, in Tomasulo’s algorithm, the Reservation stations provide operands, where as
in modern out-of-order processors operands are provided either by the ROB or the physical
register File. Furthermore, branches are predicted to better utilize the functional units.
This implies instructions from predicted path execute speculatively; the use of ROB ensure
update of program state in the program order.

Following are some of the widely know commercial out-of-order microarchitectures DEC
Alpha21264[58], Intel Netburst[51], AMD K8[56], IBM PowerPC based[85], ARM Cortex-
A15[2].

The benefit due to out-of-order execution is highly dependent on the hazard removal
mechanisms described above. For instance, in absence of register renaming and branch
prediction mechanism there would be fewer instructions available to be woken up. In such
a scenario, its performance would be equivalent to that of an in-order processor.

Moreover, in out-of-order microarchitectures various hardware structures such as issue
queues, reorder buffers, load store queues are required for successful out-of-order execu-
tion. Both issue queues and load store queues are CAM based structures. The multiple
tag comparison required every cycle are the sources of complexity [76] and power con-
sumption [46]. As a result, scaling such structures adds further to complexity and power
consumption.

Recently, the shift in microprocessor industry has been towards simpler low power and
lower-complexity processors such as the introduction of Intel Atom. However, even for a
low-end domain the need for high-performance is always growing and new mechanisms
must be found in order to improve performance at low-power and low-complexity.

1.2 The case for Co-designed Processor 7

VLIW Processors

As described above, in-order processors and out-of-order processors are the two extremes
of uniprocessor design space. In-order processors have low design complexity and can be
clocked faster. Out-of-order processors, on the other hand, provides significant perfor-
mance benefit in applications with high ILP. Moreover, they could also be energy-efficient
when high performance is desired.

Ideally, one would like the power consumption and complexity of in-order processors and
the performance of out-of-order processors. From one vantage point out-of-order proces-
sors seems to be performing on the fly code optimizations in hardware. For instance,
registers are renamed similar to Static Single Assignment (SSA) to eliminate false depen-
dencies. Instructions are issued when their operands are ready similar to code scheduling
techniques applied by a compiler.

A trade-off could be reached by performing the code optimizations using the compiler
accompanied with a simpler microarchitecture, in other words a HW/SW co-designed ap-
proach. VLIW [43] was thus invented; VLIW processors have the ability of issue multiple
independent instructions. Compiler packs a group of independent instruction into a Very
Long Instruction Word. As as result the hardware is simplified by getting rid of expensive
issue and dispatch logic such as scoreboarding, issue queues etc.

Advanced scheduling techniques such as software pipelining [80, 63] could be applied to
better form the VLIW instructions. They work very well for kernel oriented applications
but not so for irregular application such as SPECINT [3].

1.2 The case for Co-designed Processor

As described above VLIW is a HW/SW co-designed approach toward better performance
at lower power consumption and processor complexity. However, the use of static compiler
limits the ability of code optimizations that could be applied. As mentioned earlier, the
static code optimizations have to be conservative.

1.2.1 The HW/SW Co-designed Virtual Machine

A simpler microarchitecture when accompanied with a dynamic optimizer overcomes some
of the above-mentioned shortcomings. Aggressive code optimizations could be applied by
speculating on dependencies. Detection and correction mechanism can be implemented
in the hardware to deal with misspeculation. As a result performance benefit is obtained
by making the common case fast.

8 Chapter 1. Introduction

This approach when applied on a full-system level lead to the invention of the Cd-VMs
[88]. In such a scheme, a processor is a co-designed effort between hardware and software
designers. In other words the ISA is partly implemented in the software and partly in the
hardware. The software layer performs dynamic binary translation and optimization on
the source code, in order to adapt it to better exploit the capabilities of the underlying
microarchitecture.

As mentioned earlier the co-designed paradigm enables in migrating to a simpler mi-
croarchitecture, because code optimizations are done in the software. Aggressive code
optimizations enable in achieving high performance. The optimizations are performed on
a code region once6 and stored for later reuse. The optimization and translation costs
are amortized by repetitive use of the optimized code region. A detailed description on
Cd-VM architecture and related work is presented in Chapter 2.

1.2.2 The Co-designed Paradigm as an Enabler

Primarily, a Cd-VM enables microarchitects to migrate to a simpler core, thereby cut-
ting down power consumption and complexity. It also enables microarchitects to add
features that are not visible to the application or the OS, such as accelerators in order to
speedup parts of applications. The accompanying software layer selects and fuses groups
of instructions to be executed in the accelerator. In this thesis we will show the use of
accelerators in a co-designed environment.

Moreover, simpler core need not be a very simple microarchitecture, as is the case with the
existing designs. Microarchitects can choose from a wide spectrum of processor design
space, ranging from low-end in-order processors to aggressive out-of-order processors.
Past designs such as Transmeta Crusoe [60] and IBM Daisy [39] have just focused on
VLIW based HW/SW Co-designed processors. In this thesis we will show that FIFO
based out-of-order logic when combined with HW/SW co-designed processor leads to
an energy-efficient design.

Furthermore, it requires the commit mechanism to be co-designed in the context of
both the in-order and out-of-order processors. This requirement actually turns into a
boon and further cuts power consumption by getting rid of some structures. Moreover,
this co-designed commit also plays a key role in enabling aggressive code optimizations.

1.3 Instruction Fusion and Accelerators

Due to recent advancement in process technology, transistors in a die are fairly abun-
dant. In this scenario, we argue that specialized hardware accelerators are a promising

6several levels of optimizations could be applied incrementally as code gets hotter

1.4 Low-Complexity Issue Logic 9

alternative to harness both the abundance of transistors and the potential of a wider ma-
chine. These performance improvements are achieved under a reasonable power budget
and design complexity.

Single-instruction multiple-data (SIMD) accelerators are commonly used in current mi-
croprocessors to accelerate the execution of multimedia applications. These accelerators
perform the same computation on multiple data items using a single instruction. Intel
SSE[40] and AMD 3DNow![74] extensions are examples of such instructions for the x86
ISA. Although, SIMD accelerators provide significant performance gains in multimedia
applications at low cost and energy overheads, they provide limited gains for general
purpose applications.

More recently, several multiple-instruction multiple data (MIMD) accelerators have been
proposed that range from programmable to specialized functions [96, 98, 26, 52]. Due
to design complexity and lack of compiler and code generation techniques, in order to
leverage the accelerators efficiently, these accelerators have not yet been implemented.

Introducing such hardware accelerators needs to be supported by extending the ISA.
Applications need to be recompiled to the new ISA in order to use these hardware ac-
celerators. A HW/SW Cd-VM makes a very good fit in this scenario, where a hardware
accelerator can be introduced transparently by generating the code using the dynamic
compiler.

1.4 Low-Complexity Issue Logic

Transmeta Crusoe [60] and IBM DAISY [39] cuts down the processor complexity by using
VLIW microarchitecture. However, as mentioned above even with advanced code analysis
there are cases where dynamic ILP cannot be exploited fully, especially in case of irregular
applications.

In order to exploit dynamic ILP of an application, modern processors issue instructions in
an order which is different from their sequential program order. Along with out-of-order
execution exists superscalar issue, where multiple independent instructions are issued
together to their respective Functional Units. This enables in exposing the ILP of an
application which is hard to determine by the compiler.

However, the complexity [76] and power consumption [46] of out-of-order issue logic is
high. Modern microprocessors use CAM based issue logic to issue instructions. The
wake-up signal is driven to all the entries of the issue queue. Multiple tag comparisons
are performed every cycle to wake-up the dependent instructions.

FIFO based out-of-order logic [76], on the other hand, cuts down the complexity and
power consumption drastically yet provides limited out-of-order capability. A steering

10 Chapter 1. Introduction

logic steers instructions to different FIFOs based upon its dependencies. Multiple inde-
pendent instructions could be issued simultaneously from different FIFOs. The net result
is a design point that lies between an in-order processor and a CAM-based out-of-order
processor. The performance of a FIFO based out-of-order processor depends upon the
steering heuristic.

1.5 Bulk Commit Mechanism

The dynamic optimizer selects the scope for optimization by selecting a region to which
the optimizations will be applied. In this thesis we consider a dynamic optimizer that
generates a trace of instructions such as a superblock. In order to support various spec-
ulative code optimizations superblocks are atomic in nature. The atomic property of the
superblock implies that the change in the program state due to a superblock be updated
only when all the instructions corresponding to the superblock have successfully executed.
As a result, the program state must be updated at once, when its known to be safe to
do so. Such a commit mechanism in order to commit the program state of multiple
instructions together is known as a Bulk Commit Mechanism.

In the context of in-order processors the Bulk Commit Mechanism has been proposed
by Transmeta [60]. In their proposal two copies of the Register File is maintained the
Shadow Copy and the Working Copy. The Shadow Copy holds the committed state
and the Working Copy holds the speculative state. When the last instruction of the
superblock commits the contents of the Working Copy is copied to the Shadow Copy. On
misspeculation the execution is rolled back by simply copying the contents of the Shadow
Copy to the Working Copy.

The speculative memory state, on the other hand, is held in gated store buffers [95]. Its
contents are discarded on a rollback and committed to memory hierarchy at bulk.

However, in the context of out-of-order processors the above-mentioned register Bulk
Commit Mechanism is inadequate. This is because just having a single working copy
and a shadow copy will significantly affect concurrent execution of superblocks. To allow
concurrent execution of Superblocks the state of multiple superblocks needs to be held.

1.6 The Contributions of the Thesis

1.6.1 Co-designed Programmable Functional Unit

In Chapter 4 we propose a novel co-designed programmable functional unit along with a
novel execution model. We also propose code generation heuristic specific to instruction

1.7 Outline 11

fusion.

The Cd-VM monitor selects instructions for fusion and generates them. The fused in-
struction is known as a macro-op. By collapsing and executing a chain of simple ALU
instructions with low latency, performance is improved. Since independent instructions
are fused as well, the pressure on processor resources are reduced. For instance, a single
ROB entry is required for a macro-op.

Moreover, since we use a co-designed out-of-order processor, we propose a novel bulk
commit mechanism. We provide a solution towards Bulk Commit Mechanism using an
additional Register Rename Table (RRT), the SpecRRT. SpecRRT holds the physical
Register Mappings of the speculatively committed instructions. The contents of SpecRRT
are copied to the Backend RRT when the tail7 of the superblock commits.

1.6.2 SoftHV

In Chapter 5 we propose a co-designed in-order processor using two application specific ac-
celerators. In this work, fusion of dependent and independent instructions are considered
separately. Dependent instruction fusion is called as vertical fusion, whereas indepen-
dent instruction fusion is called as horizontal fusion. The two techniques accelerates the
application by combining the most commonly found pairs of instructions in applications.

1.6.3 Co-designed Out-of-Order Processor

In Chapter 6 we propose a co-designed out-of-order processor. We propose new steering
heuristics and show that FIFO based out-of-order processor is a middle-ground solution
between an in-order processor and a CAM based out-of-order processor. We propose
new steering heuristic that narrows the performance gap with CAM based out-of-order
processor.

Moreover, we provide another Bulk Commit Mechanism in the context of out-of-order
processors. In this particular solution we get rid of the ROB entirely and instead maintain
the order at the granularity of the superblock using Superblock Ordering Buffer (SOB).
The register state of each superblock is held in per Superblock Register Rename Table,
the SRRT. SRRT and SOB allows concurrent execution of multiple superblocks.

1.7 Outline

This section presents the outline of the rest of this thesis.

7the last instruction in program order of the superblock

12 Chapter 1. Introduction

Chapter 2 “The Co-designed Virtual Machine” provides the Cd-VM background
needed to understand this thesis. This includes an overview of Cd-VM architecture and
the corresponding support required in the underlying microarchitecture. In the end we
discuss related work on HW/SW Cd-VMs.

Chapter 3 “Experimental Methodology” discusses the simulation environment
used in this thesis. This includes the discussion on microarchitectural timing simula-
tor. We also present details of the Cd-VM environment that we have implemented in this
thesis. We also discuss the dynamic compilation step, focusing on Superblock formation
and code optimizations. We provide some superblock related statistics such as its size,
the optimization overhead. We also discuss the limitations of our implementation and in
the end we discuss our baseline microarchitectures. Our baseline microarchitectures also
include basic support to enable a Cd-VM.

Chapter 4 “The Co-designed Programmable Functional Unit” describes mech-
anism related to instruction Fusion and Bulk Commit. A Programmable Functional Unit
(PFU) is proposed that can execute a collapsed data flow graph. The code generation
step that generates the macro-ops is also proposed. Moreover, since the superblocks are
atomic in nature, a bulk commit mechanism is provided in the context of out-of-order
processors. This work has been published as [31], [32].

Chapter 5 “SoftHV” deals with the issue of instruction fusion. For this purpose we
chose two different classes of accelerators, one that executes collapsed instructions with
low latency and the one that executes parallel instructions together. This study was
performed in the context of in-order processor. The results shows that a co-designed in-
order processor can outperform a small instruction window out-of-order processor. This
work has been published as [34].

Chapter 6 “A Power-Efficient Co-designed Out-of-Order processor” deals with
both instruction Issue and Bulk Commit. Since the Cd-VM provides an opportunity
to migrate to a low-complexity low-power microarchitecture, a FIFO based out-of-order
logic is chosen. The presence of limited out-of-order logic extracts the ILP that cannot
be exposed by the dynamic optimizer. Moreover, a novel bulk commit mechanism is
proposed that gets rid of the Reorder Buffer entirely; instead the order is maintained at
the granularity of superblocks. This work has been published as [33].

Chapter 7 “Conclusions” revisits the objectives of the thesis and how we had achieved
that. We review the key contributions of the thesis and discuss areas that are open for
further research in the Future Work section.

Chapter 2

The Co-designed Virtual Machine

The previous chapter introduced the importance of high-performance processors with
low-complexity and low-power consumption. It discussed the key objectives and the key
contributions of the thesis. It also provided a brief description of Cd-VM, which is the
design paradigm that this thesis follows to achieve the stated objectives.

In this chapter first we will revisit the motivation behind Cd-VM in Section 2.1. Next,
we will describe the architecture of a Co-designed processor in Section 2.2. This will
provide a background on Cd-VM that will enable to understand the rest of the thesis.
This chapter also specifies exactly which techniques have been chosen from the large body
of existing work. Microarchitectural support required in order to efficiently support the
Cd-VM infrastructure will be discussed next in Section 2.3. In the end we will discuss
the related work in Section 2.4.

2.1 Motivation

Both Hardware and Software have undergone radical changes over past few decades. At
a time when hardware resources were expensive and hardware was simple, ISAs were a
direct reflection of the underlying hardware implementation.

Advances in technology have made hardware resources more readily available and inex-
pensive. In order to use hundreds of millions of transistors, new microarchitectural in-
novations were made to exploit the application ILP. Furthermore, these innovations were
achieved while retaining the software compatibility. Existing ISAs, such as x86, have
complex CISC-like instructions, whereas modern processor back-ends typically execute
simpler RISC-like µ-ops.

A modern out-of-order processor cracks CISC-like instructions into RISC-like µ-ops, on-
the-fly, using complex decoders. The µ-ops are dynamically scheduled in the back-end,

14 Chapter 2. The Co-designed Virtual Machine

using out-of-order execution logic, to exploit the ILP. A Reorder Buffer (ROB) is used to
commit the µ-ops in the original program order. Register renaming helps in breaking the
false dependencies, by using Physical Registers and Map-tables.

A Co-designed Processor, on the other hand, translates instructions from the source ISA
to the target ISA. Binary translation and optimization provides high performance equiv-
alent to that of an of out-of-order processor. As a result, a low-complexity and a low-
power microarchitecture could be used instead. This emulation of source ISA, however,
introduces performance overhead. Microarchitectural support is added to mitigate this
overhead. Furthermore, additional microarchitectural support is added to enable various
code optimizations.

Not only is the user code binary translated, but so is the OS code. Such a co-designed
binary translation system is referred to in literature as a Co-designed Virtual Machine
System [88].

The goals of a co-designed processor include performance, power-efficiency, and design
simplicity by co-designing the processor in hardware and software. These goals can be
achieved by introducing new microarchitectural features, or by changing the underlying
microarchitecture entirely or by co-designing key performance enablers.

2.2 The Co-designed Virtual Machine Architecture

C
on

ce
al

ed

M
em

or
y

M
em

or
y

V
is

ib
le

Operating

Sytem

VMM

Translator

Program

Application

Hardware

Code

Cache
Target

ISA

ISA

Source

Figure 2.1: The Co-designed Virtual Machine Architecture Overview

Figure 2.1 provides an overview of the architecture of the Cd-VM. The Cd-VM consists of
a software layer, known as a Virtual Machine Monitor (VMM), which is concealed from
both the OS and the application program. At the very core of the VMM is a dynamic
binary translator/optimizer that translates application and OS code from the source ISA

2.2 The Co-designed Virtual Machine Architecture 15

to the target ISA. A block of instructions are translated and stored as regions in a Code
Cache.

Furthermore, not only the source ISA and the target ISA are different, but also the
underlying host microarchitecture could be entirely different from the microarchitecture
that the binary was optimized for - the later is known as the guest microarchitecture. Most
of the prior work has co-designed the source ISA using a host VLIW microarchitecture
and the corresponding VLIW target ISA.

In this thesis, we chose x86 ISA as the source ISA and RISC-like µ-op ISA as the target
ISA. Furthermore, the host microarchitecture chosen is in-order and out-of-order. As a
consequence of this cold x86 code can be emulated entirely in hardware, by cracking x86
instructions into µ-ops as is done in modern x86 microprocessors. The hot code, however,
is binary translated to the µ-op ISA. These generated µ-ops are further optimized and
stored in superblocks.

2.2.1 Basic Execution Model Overview

When the processor boots, it starts by fetching and decoding x86 code in the hardware.
The x86 instructions are cracked into µ-ops using x86 decoders and the µ-ops are executed
normally. This dual-mode execution is rendered using the dual-mode decoders proposed
by Hu et. al. [53].

As a consequence of dual-mode decoders, and in order to reduce the run-time overhead
of profiling, profiling hardware, as proposed by Merten et al. [71] is used. On-the-fly
profiling helps in identifying both the hot spots in the code and in assisting with the code
optimizations.

When a particular block has been executed a certain number of times the VMM is trig-
gered and the optimizer generates a region of code. The region is formed starting at the
first x86 instruction of the basic block that had triggered the profile event. The optimizer
translates instructions from the source ISA to the target ISA of the host microarchitecture.

In order to reuse the translated blocks, they are stored in a Code Cache. After executing
a Basic Block, control is transferred back to the VMM, which then determines the next
Basic Block to be executed. In order to locate the next Basic Block map-tables are
maintained by the VMM. Map-tables are indexed using the source PC (SPC) to locate
the corresponding target PC (TPC) of the translation.

2.2.2 The Dynamic Optimizer

Dynamic binary optimizer is at the very core of the Virtual Machine Monitor (VMM). The
optimizer is responsible for dynamically compiling and optimizing both the application

16 Chapter 2. The Co-designed Virtual Machine

and the OS binaries from the source ISA to the target ISA.

The dynamic optimizer is invoked when a Basic Block is hot enough to be translated and
optimized. For certain basic blocks that terminate in biased branches, the overhead of
branching back to VMM could be mitigated by chaining to the Basic Block corresponding
to the frequently taken edge.

The dynamic optimizer can further choose to improve the I-Cache performance by placing
the chained Basic Blocks together in the memory. This results in a trace of Basic Blocks
and is widely referred to as a Superblock [55].

The Superblocks

Superblocks have a single entry point and could either have multiple or single exit points.
In this thesis, we use superblocks that have a single entry and a single exit point, such
superblocks are referred to as atomic superblocks, as shown in the Figure 2.2. They are
atomic because an atomic superblock either completes entirely or not at all.

The atomicity of superblocks is achieved by converting the internal branches of the su-
perblocks into asserts. These assert instructions are not predicted by the branch predictor.
The assert condition is tested at the execution stage by the ALU stage.

Moreover, in atomic superblock the intermediate state is not made visible to the outside
world. If any of the outcome of any internal branch instruction in the superblock does not
point to the appended basic block, then the superblock must be discarded. The execution
is rolled back to the unoptimized version of the starting Basic Block.

BB 1

BB 2

BB 3

asserts

single entry point

single exit point

Figure 2.2: Atomic Superblock

This results in a disadvantage that correctly executed instructions within the superblocks
are discarded along with the incorrect ones. However, being atomic also provides an
advantage that various speculative code optimizations could be applied across the basic
block boundaries, because superblocks will be rolled-back in case of an exception.

2.2 The Co-designed Virtual Machine Architecture 17

Staged Emulation

A typical binary translation system usually employs interpretation for the cold code,
followed by basic block translation for hot code. Superblocks are created for basic blocks
that are super hot. Furthermore, speculative code optimizations could be applied to the
superblocks that are performance critical. Such a staged emulation technique has been
implemented in Transmeta Crusoe [35].

In this thesis, as mentioned above, since the cold code is emulated in the hardware using
the x86 decoders, the interpretation stage is not required. Moreover, we use a single stage
optimization step that is triggered when a basic block is hot. The single step optimization
forms superblocks and optimizes them. In any case there is no reason that prevents the
proposed techniques in this thesis to be exposed to other scenarios such as full emulation1

or multi-staged optimizers.

2.2.3 Frontend Support for Native x86 execution

Post-decode

stages

To

horizontal

Implementation ISA

decoder

I-$
Vertical

decoder

x86
optimization

translation/

VM

software

Hierarchy

Memory

(Impl. ISA)

Code $

x86 Code

Figure 2.3: Dual Mode x86 decoder Frontend pipeline. Reproduced from [53]. The box in
gray is the software part.

In this thesis, we use front-end dual-mode decoders [53] to enable native execution of
cold basic blocks. Figure 2.3 illustrates the frontend pipeline of the co-designed processors
used in this thesis.

This dual-mode decoder based frontend was proposed by Hu et al[53]. The vertical x86
decoder is the standard x86 decoder that is present in most modern x86 based proces-
sors. The horizontal µ-op decoders are added so that the µ-ops can be decoded directly
bypassing the x86 decoders.

1When the cold code is interpreted.

18 Chapter 2. The Co-designed Virtual Machine

The vertical x86 decoders are complex in nature and are power-hungry. However, our
experiments have indicated that superblocks provide more nearly 90% of code coverage.
Since these superblocks contains µ-ops, they are decoded by the horizontal µ-op decoder.
As a result the vertical x86-decoders are powered-off most of the time, resulting in low
power consumption.

2.2.4 Memory System Architecture

Figure 2.4 shows the memory system architecture of the Cd-VM used in this thesis. The
ICache contains the translated code from the Code Cache, the VMM code and also code
from the Source ISA. The code from the source ISA that enters the I-Cache is the cold code
that was mentioned above. However, since this code is cold, it will eventually get replaced.
Moreover, when a cold code becomes hot it will be translated, and its translations will be
fetched into the I-Cache instead.

VMM Data

VMM Code

Cache
Code

ICache

Hierarchy

Processor

Core

Hierarchy
Dcache

C
on

ve
n
ti

on
al

M
em

or
y

C
on

ce
al

ed

M
em

or
y

Source ISA

Source ISA
Data

Code

Translated hot code

Cold x86 Code

Hot code for Translation

Figure 2.4: Memory System Architecture

Furthermore, as shown in the Figure 2.4, the VMM code, the VMM data and the Code
Cache resides in a concealed memory region. Memory region can be concealed by providing
a separate logical address space to the VMM. If a separate logical address space is used
then the VMM handles its own page tables, whereas the OS handles only the architected
page tables. Instead of using a separate logical address space, the VMM code can use the
physical address directly. Special memory µ-ops are introduced that when executed do
not access the TLB.

In this thesis, we use unused memory region from the applications address space to
simulate the effect of concealed memory. The only component of the concealed memory

2.3 Microarchitectural Support 19

we simulate is the Code Cache. The translated code is transferred to the I-Cache from
these memory regions. Moreover, as will be described in Chapter 3, since we do not
actually context-switch to the VMM code, no separate page tables were required.

2.2.5 Code Cache

The translated code regions are stored in the Code Cache, which along with VMM code
and data are mapped into a special memory region. This memory region is concealed
from both the Operating System and the Application, as shown earlier in the Figure 2.4.

In this thesis, the translated regions are superblocks, which are stored in the Code Cache
[88]. Moreover, as described earlier the Code Cache is held in an unused memory region
in the application’s address space.

On the other hand, since the code cache has a limited size, a replacement policy is required
to replace older translations with the newer ones.

In this thesis, we assume an unbounded Code Cache. Given our experiments focus
on single-threaded applications, with small dynamic instruction footprint, this does not
invalidate our conclusions.

2.3 Microarchitectural Support

In this section, first we will discuss the microarchitectural support added to reduce the
overhead of the VMM. Next, we will discuss microarchitectural support required to enable
speculative code optimizations. Next, we will discuss an existing mechanism to deal with
bulk commit of atomic superblocks and the mechanism to recover from misspeculation.
In the end, we will discuss the hardware profiling support used in order to determine hot
spot of the code.

2.3.1 Reducing Overhead in Co-designed Virtual Machine

As mentioned above, the Cd-VM helps in migrating to a low-complexity and a low-power
processor. Moreover, equivalent performance is obtained with the help of dynamic code
optimizations. However, the Cd-VM comes with a price, as the VMM time-shares the
CPU with the application and the OS. The VMM spends a major fraction of its execution
time optimizing and translating superblocks, which we refer to as translation overhead.

Furthermore, every time a branch instruction is executed, the branch target PC is used
to look-up in a table to find the corresponding translated region. When this look-up is

20 Chapter 2. The Co-designed Virtual Machine

done entirely in software it leads to a look-up overhead of dozens of instructions.

Reducing Translation Overhead

One of the major sources of overhead is due to binary translation from the source ISA
to the target ISA. S. Hu et al. [53] have categorized and quantified this overhead. They
pointed out that start-up overhead comes due to Basic Block Translation and Super Block
Translation.

x86 µ-ops

decoder
Opcode

Operand

Designators

Other Pipeline

Control Signals

Fusible

µ-ops

x86 instruction
µ-op decoder

Figure 2.5: Dual Mode x86 Decoder. Reproduced from [54].

However, they also observed that the start-up overhead is primarily due to the Basic Block
Translation. In a processor equipped with dual-mode decoders, this translation overhead
is eliminated. For the sake of convenience, we reproduce the dual mode decoders in Figure
2.5 as proposed by Hu et al. in [54].

In this thesis we have focused on co-designing the x86 ISA, we use these dual-mode
decoders to execute cold x86 cold natively.

Reducing Translation Look-up Overhead

Sources of overhead due to frequent branching between VMM code and the source binary
is mitigated by using translated basic blocks and superblocks. However, when a translated
superblock completes its execution it transfers control back to the VMM. The VMM then
looks-up in a table to find the corresponding mapping of the next superblock/basic block.
This table look-up code result in an overhead of upto dozens of instructions [88].

This translation look-up overhead is reduced by adding a hardware known as a Jump
Translation Look-aside Buffer (JTLB) [47, 59]. Figure 2.6 shows how the SPC is hashed
and presented to the JTLB. JTLB is entirely managed by the VMM by introducing

2.3 Microarchitectural Support 21

hit

select
tag

tag

tag TPC

tag TPC

tag TPC

tag TPC

tag TPC

tag TPC

JTLB

HASHSPC

Tag

Compare

MUX
TPC

Figure 2.6: The Jump Translated Lookaside Buffer (JTLB)

a new Lookup jump µ-op that when executed performs the necessary look-up. Tags are
compared and on a hit the corresponding TPC is returned to the Lookup jump instruction.

Since, the Lookup jump µ-op accesses the JTLB only at the execute stage to determine
the TPC, the processor have to stall the fetch until TPC is determined. In order to get
around this problem, the Lookup jump µ-op is predicted like any other branch. However,
the existing prediction hardware which consists of Branch Target Buffer holds only the
predicted SPC.

In this thesis, we have assumed unbounded JTLB and unbounded Code Cache. As a
result of which, if a translation is not found, it simply means that the SPC corresponds
to a cold Basic Block. Instead of extending the BTB, the predicted SPC returned by the
BTB is used to look-up for the predicted TPC. This method results in an effect similar to
that of extending the BTB.

2.3.2 Microarchitectural support to handle Code Optimizations

Various memory related code optimizations are implemented. For instance, Load-hoisting
[39] hoists loads above stores, Load-Store Telescoping [39] bypasses a load by forwarding
data from the producer µ-op, of an aliasing store µ-op, directly to the dependents of the
load. Load hoisting is speculative in nature as it assumes a pair of store and load not
to alias. An alias hardware [57] is added in the microarchitecture in order to detect a
miss-speculation. In case of a miss-speculation the above-mentioned recovery mechanism
is used to rollback and execute the unoptimized version of the superblock.

As mentioned above we use superblocks that have a single entry and a single exit point,

22 Chapter 2. The Co-designed Virtual Machine

as shown in Figure 2.2. As a consequence, all the branches except the exit branch are
converted to asserts [77]. Asserts are special instructions which are executed in an ALU
and tests a condition. If the condition is false, the assert is said to have failed. If an
assertion fails or any other exception has occurred, the superblock is rolled back.

2.3.3 Miss-speculation Recovery and Bulk Commit mechanism

On-the-fly profile information helps in forming dynamic regions and in speculatively op-
timizing code regions. However, in order to support these optimizations, the underlying
microarchitecture should provide mechanisms to detect miss-speculations and take the
necessary corrective action. The general recovery mechanism is depicted in Figure 2.7.
As shown in the figure, when an instruction of Superblock 2 traps then the check-point
is restored and the unoptimized version of the code is fetched and interpreted.

Superblock 1

Superblock 2

Source

Code
restore

checkpoint

trap

interpret

Figure 2.7: General Recovery Mechanism

The corrective action depends on the underlying microarchitecture. For instance, for an
in-order microarchitecture a shadow copy of the register file and working copy can provide
the support for checkpointing the register state. In case of a misspeculation, the execution
is rolled-back and the shadow copy is copied back to the working copy and the code is
interpreted.

The memory state is held in Gated Store Buffer [95] and committed at bulk. Its contents
are discarded in case of a misspeculation.

In this thesis we had proposed a couple of bulk commit mechanism in Chapter 4 and in
Chapter 6. Our solutions are applicable to out-of-order processors, whereas the Transmeta
solution can only be applied to in-order processors. In Chapter 5, since we have proposed
an in-order processor we use the above-mentioned solution based on shadow copy and
working copy to implement effective bulk commit and rollback. For all our chapters we
use Gated Store Buffer to hold the store data corresponding to a superblock.

2.4 Related Work 23

2.3.4 Profiling Support

In this thesis, in order to reduce the run-time overhead of profiling, profiling hardware,
as proposed by Merten et al. [71] is used. We collect basic block profiles and edge profiles
for each branch instruction. Figure 2.8 illustrates the difference between block and edge
profile. The basic block count is incremented whenever it is a target of a branch being
committed.

A 70 B 30

D 20

120

100

70 30

100
20

20

100

C

E

Figure 2.8: Basic Block and Edge profile of a Control Flow Graph. The count inside the boxes
represents the number of time the basic block has executed. The count next to edge indicate
the number of times the edge was taken.

Similarly, edge count –corresponding to taken or not-taken edge– is incremented when the
branch commits. Since in out-of-order processors branches could execute speculatively,
counters are not updated when branches execute. Updating the counter at execute will
lead to erroneous profile information. Hence all the updates are done when branches
commit.

2.4 Related Work

2.4.1 Virtual Machines

Binary Translation Systems and Virtual Machines have existed since the dawn of comput-
ing. Smith and Nair [88] have categorized virtual machines into several categories. These
are Process Virtual Machines, High Level Language Virtual Machines, Co-designed Vir-
tual Machines and Classic-System Virtual Machines. Although, these Virtual Machines
have some overlapping objectives, but each of them serve a unique purpose.

24 Chapter 2. The Co-designed Virtual Machine

Process Virtual Machines are those that run on top of existing OS and run application
binaries that may or may not be compiled to the host ISA. Same ISA Process VM,
such as HP Dynamo [9], are essentially binary optimizers, with their primary goal being
performance. Different ISA Process VM, such as FX!32 [22], target compatibility for
existing application binaries.

High Level Language Virtual Machines have become quite pervasive of late and there are
a plethora of them. Examples are JAVA, Python, C# and its .NET framework. In a
sense these VMs are a much more cleaner solution to the problem that FX!32 addresses.
They have been built around the philosophy of write-once and run-anywhere software
development. These systems first compile the source code into a bytecode, and then
interpret or binary translate the bytecodes.

Classic-System Virtual Machines serve a very different purpose. The original goal was
to provide a time-shared system to each user. Over the years, they grew into providing
multiple virtual machines running on a single physical machine. Such a system has grown
extremely popular in the IT domain, where the cost of managing machines is higher. Xen
[11] and VMware [92] are two popular examples of such systems.

Co-designed Virtual Machines, on the other hand, serve a very different purpose. The key
philosophy behind Cd-VM is to co-design the source ISA partly in software and partly in
the hardware. This helps in cutting down power consumption and processor complexity
while maintaining equivalent performance.

HW/SW co-design is a part-and-parcel of innovations in microarchitecture. A Co-designed
approach has primarily been used in order to support legacy ISA features, to cut down
the processor complexity and the area cost. Microcodes [93], for instance, are used in
order to achieve this. Furthermore, they have also helped in reducing the implementation
life-cycle by fixing HW bugs in the microcode, for instance the infamous FDIV bug [27].
Microcodes, however, have their limitations, as they cannot perform aggressive optimiza-
tions, which handicaps it from introducing drastic modifications to the microarchitecture.

2.4.2 IBM DAISY

IBM DAISY [39] and BOA [7] projects implemented the Power PC ISA using a dynamic
optimizer and a VLIW ISA. The generated VLIW instructions are scheduled by the VMM
at the scope of tree-regions, superblocks or atomic superblocks. This provides a much
better scope in scheduling than that provided by basic blocks. Using a VLIW microarchi-
tecture drastically cuts down the processor complexity and the power consumption. As a
result a higher frequency architecture is obtained, with a shorter pipeline. Various code
optimizations [88] such as instruction scheduling, combining, copy propagation, dead code
elimination, load-store telescoping are performed in software.

In order to avoid fetch related stall, the branch predictor is accessed to predict the target

2.4 Related Work 25

PC. Branch predictor structures are modified to hold the target PC along with the source
PC. For instance the Branch Target Buffer (BTB) and the Return Address Stack is
augmented to hold the target PC as well. In case the source to target PC translation is
not available in the JTLB, control is returned to the VMM and a look up is performed
into the Source to Target Map Table.

In contrast to the DAISY and BOA projects, we propose both an in-order and an out-
of-order microarchitecture in this thesis. Moreover, we propose atomic superblocks as
our translation regions. Furthermore, since DAISY does not roll back from the middle
of region execution, it does not require a bulk commit mechanism. We propose Bulk
Commit Mechanisms for out-of-order co-designed processors. Moreover, using the dual-
mode decoders helps us in getting rid of cold code interpretation. Furthermore, the guest
ISA used in DAISY was the PowerPC ISA, whereas in our case we co-design the x86
ISA.

2.4.3 Transmeta Crusoe

Transmeta Crusoe [60] is a commercial co-designed processor that uses a translator known
as the Code Morphing Software (CMS) [35] to perform multi-staged emulation. Shadow
copy of Register File is used to check-point the register state before a superblock starts
executing. The working copy, as the name suggests, holds the working register set of the
superblock. The memory state, however, is held in gated store buffers [95]. A special
commit operation updates the register and the memory state, at once. Similar to DAISY
[39] and BOA [7], Crusoe uses VLIW processors to cut down complexity and power.
Aliasing HW is added to [57] detect any memory ordering violation.

Transmeta Efficeon, which is a second generation co-designed processor, proposes a spec-
ulative cache based solution. Stores write to the cache and a speculative written bit is
set. This provides superblocks to have large number of stores.

In contrast to Transmeta’s VLIW microarchitecture we propose in-order and out-of-order
microarchitectures. These microarchitectures execute the RISC like µ-ops. As a conse-
quence, the cold x86 code is cracked to µ-ops using standard x86 decoders. Moreover,
since we also propose a co-designed out-of-order microarchitecture, two novel bulk commit
mechanisms are proposed as well. Furthermore, we looked into the benefits of accelerating
parts of applications using specialized functional units.

2.4.4 HP Dynamo

Dynamo is a source to source binary optimizer that optimizes the application binaries.
In contrast to Cd-VM, it simply optimizes the application binaries. These kind of binary
optimizers are widely referred to as Process VMs in the literature [88]. In contrast to

26 Chapter 2. The Co-designed Virtual Machine

Cd-VM regions, Dynamo’s regions last only for a single invocation of a program.

The source to source binary optimization provides an opportunity to run code natively,
if required2. In existing Cd-VM this feature is not available, because the cold code has
to be interpreted. In contrast, in this thesis, since we use dual-mode decoders, our co-
designed processor can also run the cold cold natively. Furthermore, Dynamo does not
perform speculative code optimization. This is because it runs on unmodified conventional
processors. However, the hardware could be modified to enable such optimizations.

2.4.5 Reducing Translation Overhead

Hu et al. have proposed a dual-mode decoder[52], which eliminates the basic block trans-
lation overhead. Cold x86 instructions are cracked into µ-ops on-the-fly, whereas µ-ops
from superblocks bypass the x86 decoders. In this thesis, we have used these dual-mode
decoders to co-design the x86 ISA efficiently.

Moreover, special HW assists can be added to further reduce the overhead of Superblock
translation [53]. A special instruction translates x86 instructions into µ-ops. In this
thesis, we have not considered using any such kind of assists. This is because in thesis
our focus was not reduce the overhead of the VMM, but to propose new co-designed
microarchitectures. However, if such assists are used then the superblock translation
overhead that we have measured can further be reduced.

2.4.6 Optimizer and Interpreter

An optimizer could either interpret each source instruction or binary translate a ba-
sic block. Interpretation usually is easier to implement but it involves the overhead of
branching back-and-forth between the interpreter routines and the VMM. This overhead,
however, can be mitigated by branching directly to the interpreter routine of the following
instruction. Such a kind of interpretation is known as threaded interpretation [12, 61].

However, there is still a branching penalty for branching to each instruction’s interpreter
routine. Binary translation [69, 86], on the other hand, dynamically re-compiles a basic
block from the source ISA to the target ISA. Clearly, binary translation has a higher
start-up overhead, however, it could be amortized if the basic block is executed sufficient
number of times.

In this thesis, we do not have an interpreter. The superblocks are formed and optimized
just once.

2For instance, when performance degrades due to the optimizer

2.5 Summary of Design Choices 27

2.4.7 Superblock Heuristics

There are multiple trace formation heuristics in the literature [42, 64]. We use Superblocks
[55] proposed by Hwu et al in 1993. Superblocks are like trace but do not have side
entrances and side exits. There are multiple heuristics to form superblocks [23, 38, 21, 14].

In this thesis, we have used the heuristic, described later in Section 3.3.3, which starts
with a hot Basic Block and then keeps appending Basic Blocks that are target of the
frequently taken edges. This process goes on until a stopping condition is met. Once a
superblock is formed it is optimized, and then placed in the Code Cache.

2.4.8 Hardware Dynamic Optimizers

Performing dynamic optimization in a user transparent manner need not be done by a
software layer only. Several hardware approaches have been considered [77, 82]. The main
difference between Cd-VM scheme and RePlay[77] is the flexibility of the software layer
to perform different optimizations and analysis with reduced hardware complexity.

2.5 Summary of Design Choices

Table 2.1 lists the design choices that were made for the Cd-VM system in this thesis.

Parameter Choice Made
Source ISA x86 ISA
Target ISA µ-op ISA
Translation Regions Atomic Superblocks
Superblock Heuristic Described in Chapter 3
Cold Code Execution Dual-mode decoders enable native execution
Emulation Strategy Cold code native execution, Hot code binary translated to Superblocks
Microarchitectures In-order and out-of-order
Bulk Commit Proposed in Chapters 4, 6
Code Optimizations Described in Chapter 3
Profiling Support Hardware support for block and edge profiling
Code Cache Size Unbounded
JTLB Size Unbounded
Processor Frequency 2-3 GHz

Table 2.1: Summary of Design Choices made for the Cd-VM system in this thesis.

Chapter 3

Experimental Methodology

The previous chapter provided a general background on Cd-VM, required to understand
the rest of the thesis. Moreover, in the previous chapter, we also highlighted some of the
key features of the Cd-VM that is used in this thesis.

The current chapter builds upon the previous one by presenting implementation level
details of our Cd-VM infrastructure1. We mainly discuss the experimental methodology
and how we simulated a Cd-VM. All of the research was conducted using PTLsim [99],
an execution-driven cycle-accurate microarchitectural simulator for x86 ISA.

We have evaluated our proposed schemes using the SPEC2000 benchmark suite. These
benchmarks have been compiled with GCC version 4.1.3 using -O3. Using the developed
infrastructure, we have simulated the benchmarks for 100 million x86 instructions after
the initialization and a cache warm-up period of 2 million x86 instructions.

In this chapter, first in Section 3.1 we will discuss the reasons behind choosing PTLsim
in Section. Next in Section 3.2 we will discuss the enhancements made to PTLsim in
order to make it more cycle-accurate. Then in Section 3.3 we will describe the Cd-VM
monitor implementation. This description includes the Cod Generation process, Fetch
mechanism, profiling and VMM invocation, and some statistics related to superblock size
and the corresponding translation overhead.

Next in Section 3.4 we will discuss the limitations of our implementation. Finally, in
Section 3.5 we will describe the baseline microarchitectures used in this thesis. This
includes the descriptions of the baseline in-order and out-of-order microarchitectures.

1Parts of this infrastructure were developed jointly with Indu Bhagat, another PhD student of our
research group ARCO [1]. However, the joint work focused only to establish an initial version of PTLSIM
in order to run a co-design virtual machine. The collaboration did not include either the superblock
formation presented in this thesis, or any of the basic code optimizations presented in this chapter, nor
any of the proposals done along the thesis.

30 Chapter 3. Experimental Methodology

3.1 The Choice of Microarchitecture Simulator

There are several reasons for which PTLsim was used. Firstly, since the PTLsim imple-
ments the x86 ISA, it comes with support for binary translation from CISC-like x86 ISA
to RISC-like µ-op ISA. This binary translation support comes with a Basic Block Cache2,
in order to reduce translation overhead of simulation. Since the translated Basic Blocks
can be used to form larger regions such as Superblocks, PTLsim becomes a natural choice
to implement a Cd-VM infrastructure.

Bypass Network

FP Register File /

FP MoveSSE
FP MMX

ALU STU LDU

Int IQ Int IQLd IQ FP IQ

L1
I-cache

Interger Register File /
Bypass Network

L1 - Dcache

Allocator/Register Renamer

Dispatch Buffer

Fetch Buffer

Decode Buffers

L2- Cache

Figure 3.1: Block diagram of the Microarchitecture that PTLsim models.

Secondly, even though PTLsim is an execution-driven simulator, it is very fast. The in-
terpreter routines of the µ-ops are implemented in hand-coded assembly. As a result of
which PTLsim cuts down the overhead associated with µ-op interpretation drastically.
Moreover, the timing simulator is implemented efficiently by using associative data struc-

2This is a cache maintained by PTLsim for the purpose of efficient simulation, not to be confused with
a Code Cache.

3.2 Timing Simulator Enhancements 31

tures for hardware structures such as Issue Queues, Load Store Queues that in reality also
perform an associative search.

Thirdly, PTLsim is a cycle-accurate simulator and its performance has been correlated
with an AMD K8 processor. The results were found to be within 5% for all the key
performance metrics, such as IPC, L1-miss rate etc.. More details on the correlation
study could be found in [99].

Figure 3.1 shows the microarchitecture that PTLsim models. As shown in the figure, it
has features similar to AMD K8 [56] and the Netburst Microarchitecture [51]. Multiple
issue queues are present that along with the functional units define an execution cluster.
Floating point µ-ops are dispatched to floating point Issue Queue. Loads are dispatched
to Load Issue Queue, whereas other integer instructions are dispatched to either of the
integer Issue Queues.

Separate floating point and integer register files are maintained. A Reorder Buffer is
present in the backend to let the µ-ops commit in program order. Moreover, as will
be shown later in Figure 3.11 two separate rename tables are held in the frontend and
in the backend of the processor. The Frontend Register Rename Table (FRRT) holds
the speculative state, whereas the Backend Register Rename Table (BRRT) holds the
committed state.

3.2 Timing Simulator Enhancements

Although, as stated above the timing simulator was quite accurate, there were few parts
where simplifying assumptions were made. We looked into some of these parts and mod-
ified the simulator to make it more realistic by incorporating features from various com-
mercial processors such as AMD K8 [56] and Alpha21264 [58]. We also integrated the
Wattch power model into the PTLsim. The enhancements to the timing simulator are
generic and so they can be merged into the main PTLsim branch.

3.2.1 Modifying the Execution Pipeline

Firstly, the execution pipeline in the PTLsim had made several simplifying assumptions.
In order to understand the simplifications that were made, first we will describe the
behavior in modern microarchitectures. In modern out-of-order processors a load is known
to hit in the final stage of execution [58]. In order to support back-to-back execution
the dependents of the load are issued speculatively, assuming that the load would hit.
However, if the load misses, then all the instructions that were issued in the current cycle
and the previous one are squashed, as shown in the Figure 3.2. As a result, instructions
are either replayed or held in the issue queue for two cycles.

32 Chapter 3. Experimental Methodology

EhdEatEagReadIssue Writeback

Issue Read Execute

Issue Read

address generation

address translation

hit/miss detection

D-cache miss

Squash all µ-ops

in last 2 cycles

Figure 3.2: Illustration of Load hit Speculation. In this example all µ-ops issued in the current
cycle and the previous one are squashed. For this purpose µ-ops are held in the issue queue for
couple of cycles after being issued.

This particular mechanism was not implemented in PTLsim. Instead at the time when
a load issues, the load determines whether it will hit or not. As a result, loads are not
issued from the issue queue until the miss is resolved. However, in reality a missing load
should instead be waiting in the Load Queue after placing a request with the memory
hierarchy. We had implemented this whole feature in the timing simulator.

3.2.2 Simplifying Memory Disambiguation

Secondly, the baseline memory disambiguation scheme was more aggressive than is im-
plemented in any commercial processors. Since the baseline simulator did not model the
execution pipeline described above in Section 3.2.1, the memory disambiguation stage was
performed at issue itself.

This implies that whenever a load issues, the Store Queue is checked in order to find if
it aliases with any older store. If the load did alias with any older store then the load
was not issued. However, in modern processors the memory disambiguation is a separate
pipeline stage and coincides with the miss detection stage of Figure 3.2. As a result, when
a load aliases it is removed from the execution pipeline and placed into the load queue.
We have implemented this feature in our memory disambiguation scheme.

Moreover, the baseline memory disambiguation scheme also implemented a speculative
load execution. In this scheme, if at the miss detection/memory disambiguation stage a
load finds an older store with unresolved address, the load still completes and is placed
in the ROB.

Now when the older store reaches its memory disambiguation stage, the Load Queue is

3.2 Timing Simulator Enhancements 33

checked in order to find out whether the store aliases with any younger load. If it is
the case then the younger load is marked as invalid. Finally, when this marked load
reaches the head of the ROB and is about to commit, the load and its dependents are
re-dispatched into the issue queue for re-execution3.

We instead chose not to implement such a speculative load execution. Our scheme relies
on the assumption that a load aliases with all of the unresolved stores, and is described
as follows. Whenever the load finds any older store with address unresolved, the load is
placed in the load queue.

Eventually, when the store issues it wakes up the load from the load queue. The load
issues and checks again for any other aliasing or unresolved store. If the load does not
find any such store, then the load completes. Moreover, in order to speedup the critical
path the store address and store data are split into two operations. This allows stores to
have their addresses resolved faster, which in turn helps loads to complete faster.

Furthermore, the baseline memory disambiguation scheme allows merging of data from
several aliasing stores. The youngest store of a series of aliasing stores always has its
data merged with the older ones. As a result, the load consumes the data from the
youngest store. However, in modern processors such a scheme is quite expensive to im-
plement. Moreover, such a case when a load aliases partially with multiple stores is not
that frequent.

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

0 1 2 3 5 64 7Byte

St

Ld

Figure 3.3: Store to load forwarding restrictions. In this example, the older store instruction
write two bytes, whereas the load requires four bytes. This implies that the load has to wait
until store retires.

Precisely, for these two reasons AMD K8 states in its optimization guide [56], about which
kind of store-load aliasing should be avoided for performance reasons. In case if an older
store does not fully alias with a load, as shown in the Figure 3.3, then the load is not
executed until the store has retired from the pipeline. We implemented the store load
aliasing restrictions as mentioned in the AMD K8 Optimization Guide [56].

3Instead of re-dispatching the µ-ops, an easier alternative is to re-fetch the instructions following the
load.

34 Chapter 3. Experimental Methodology

3.2.3 Write Ports

Thirdly, we had introduced write ports in the Physical Register File. In the original
implementation the model was not accurate as contention on write ports was not taken
into account. With our implementation, when an instruction issues it not only checks
whether the functional units would be available, but also whether the write ports would
be available at the write back stage.

3.2.4 Integrating Wattch into PTLsim

Wattch [16] provides an infrastructure to measure power consumption of modern out-of-
order processors. It has been shown that Wattch can provide power estimates with an
accuracy of 10%. However, Wattch was implemented for simplescalar, which models power
of an obsolete out-of-order microarchitecture and is tightly integrated to simplescalar.

We had modified Wattch to model hardware structures that are used in PTLsim. As
mentioned earlier the modified version of PTLsim models behavior of a modern out-
of-order processor. An ROB is modeled using a SRAM structure. Both the Frontend
Register Rename Table and the Backend Register Rename Table are modeled using SRAM
structure as well. Issue queues and LSQ are modeled using CAM based structures.

On top of the baseline microarchitecture we have also modeled the structures that we had
proposed in Chapter 6. These modeling details are described in that chapter.

However, Wattch only reports dynamic power consumption. As a result, we also only
report dynamic power consumption. Static power consumption is one of the major sources
of power consumption in current process technology. We have, however, reported the
numbers of 0.8µm technology.

Moreover, we have only modeled power consumption for L1 and L2 caches and not beyond
that in memory hierarchy. Power consumption due to structures such as Load Fill Request
Queue and Miss status handling register is not modeled. Other structures have been
modeled, as explained above.

3.3 Virtual Machine Monitor Implementation

In this section we will describe the Virtual Machine Monitor implementation. We will
describe the profiling mechanism, the code generation process, and the mechanism to
fetch superblocks from the Code Cache. Next we will present some statistics related to
the superblocks and show a sample superblock that is executed in our simulator.

3.3 Virtual Machine Monitor Implementation 35

Update Edge

and Block Profile

Code Cache

Store in

Superblock

Form

Is

Block

Hot?

Branch

Did

Commit?

Return To

Simulation

Return To

Simulation

Return To

Simulation

Yes

Yes

No

No

Figure 3.4: Profiling and Invoking Optimizer Flowchart.

3.3.1 VMM Optimizer Overview

Figure 3.4 illustrates when profiling information is updated and how superblock formation
is invoked. In reality the superblock formation would require a context switch to the
VMM. The VMM code should then be simulated on the microarchitecture simulator. For
the sake of simplicity, we do not do this, instead we form the superblock when the branch
commits. However, the overhead of superblock translation is measured and presented
later.

Profiling support is added to the simulator to collect edge profile and Basic Block profiling
data. Whenever a Basic Block executes a number of times given by the hotspot threshold,
the superblock formation is invoked by trapping into VMM. The Superblock formation
heuristic is described later in Section 3.3.3.

Once a Superblock is formed, control is transferred back to the simulator. In a real

36 Chapter 3. Experimental Methodology

implementation whenever the control is transferred to VMM to form the superblock there
is a context switch, and the VMM code runs on the processor. We do not simulate the
VMM code executing on the processor. Instead, we simply invoke our binary translator
that forms optimized superblocks.

However, we do measure the overhead related to superblock translation in terms of in-
structions executed to optimize each source instruction. Later in Section 3.3.5 we measure
the overhead due to superblock translation and optimization.

The translated superblocks are stored in an unused memory region of the process’s address
space. I-cache contains µ-ops from these memory region along with cold x86 instructions,
which is stored in the usual code segment of a process. However, in the steady state, the
I-cache mainly contains µ-ops from translated superblocks. This helps in modeling the
I-cache behavior accurately.

3.3.2 Fetching µ-ops from Superblocks

In a real implementation a Lookup jump instruction looks-up into the JTLB to find a
corresponding SPC to TPC translation. Every time the Lookup jump misses the control
is transferred back to the VMM which then a looks-up in a software Map Table to find
the TPC.

We do not implement a software table look-up, instead we assume an unbounded JTLB
and code cache. So in-case there is a JTLB miss, it implies that a cold Basic Block is
to be executed. The cold x86 code is executed natively by decoding them using frontend
dual-mode decoders, as mentioned earlier in Section 2.3.1.

Moreover, in reality the Lookup jump instruction when executes, looks-up in the JTLB
to find the TPC. We, however, assume that the JTLB look-up is performed at fetch itself
using the predicted SPC as described below.

In reality a Lookup jump instruction’s PC is used to predict. The branch predictor
structure, mainly the BTB is extended to hold TPC along with the SPC. For the sake of
simplicity we do not modify the BTB; instead we use the predicted SPC to look-up in a
map table to find a corresponding TPC, as shown in the Figure 3.5. The resultant effect
is the same as if the BTB were extended. If TPC exists then µ-ops are fetched from the
superblock, otherwise cold x86 instructions are fetched.

3.3.3 Code Generation

This section describes the binary translation process that generates the optimized su-
perblocks. The code optimization process implemented is shown in Figure 3.6. However,
some of the steps such as, Code Optimization and List Scheduling are only present for

3.3 Virtual Machine Monitor Implementation 37

Use SPC to find TPC
Normally

Fetch

Does

TPC

exist ?

Branch

Target?

Is

Yes
Cold Code

Fetch from SPC

YesNo

No

Fetch from TPC

Translation Available

Figure 3.5: Fetch Flowchart.

Chapter 5 and Chapter 6. All the remaining steps are common to all the chapters. Since
Chapter 4 and Chapter 5 deal with instruction fusion, they have an additional fusion step
as well.

First, we will first briefly explain our superblock formation technique. Next, we will
describe the code analysis and data-flow graph generation step. This step is a precursor
to the code optimization step. Register allocation and final code generation follows in the
end.

Superblock Formation

In this thesis, we use atomic superblocks as our translation region. As was described in
Section2.2.2, in the Figure 2.2, atomic superblocks have a single entry point and a single
exit point. This is achieved by inverting the sense of those internal branches whose taken
path is included. Moreover, all the internal branches are converted into asserts [77].

These atomic superblocks require the program state to be committed in bulk, only when
all the µ-ops within the superblock have successfully executed. Special hardware support

38 Chapter 3. Experimental Methodology

Code optimization

Dataflow Graph Generation

Superblock Formation

Register Allocation

List Scheduling

Figure 3.6: Code Generation Flow Chart

is implemented to support bulk commit and rollback for these atomic superblocks. The
atomic property, however, enables several speculative code optimizations that are difficult
to achieve in normal superblocks.

There has been vast amount of research dedicated to heuristics of forming superblocks.
However, most of the heuristics are quite similar to each other, but vary from each other
in subtle ways. Most of the heuristics start building a Superblock when a Basic Block has
been executed a certain number of times - given by the hotspot threshold. The branch
target of the Basic Block is used to find the next Basic Block to be appended. The
heuristic continues in this fashion until a stopping condition is met.

Our superblock generation heuristic is a mixture of some of the heuristics proposed in the
past. Before describing our superblock formation heuristic, we describe the key metrics
that we used to guide the heuristics. For instance, a good choice of the atomic superblock
would be the one that completes executing successfully most of the time. This leads us
to define a metric completion rate, which is the probability of the superblock completing
successfully. We use this metric to stop appending a Basic Block to the Superblock, if by
adding the Basic Block lowers the completion rate of the Superblock.

Moreover, since superblock translation is a major source of overhead, one has to consider
only those Basic Blocks that are hot. For this we use a widely known metric the hotspot
threshold. The hotspot threshold indicates whether a Basic Block is hot enough to be
considered as a starting point of a new superblock.

A lower hotspot threshold results in generating too many superblocks, thereby increasing

3.3 Virtual Machine Monitor Implementation 39

the superblock translation overhead. Whereas, a higher hotspot threshold results in form-
ing too few superblocks, resulting in a lower code coverage. The implication of this is that
performance benefits provided by superblocks will be lost. Hu et al. [54] had analyzed
this problem and came up with an analytical model to determine a threshold value. We,
however, select a threshold value empirically, which is similar to the one used by HP’s
Dynamo [9].

Loop is a stopping Condition

BB 1

BB 2

BB3

frequently

taken edge

hot basic

block

Figure 3.7: Superblock Heuristic

The heuristic considered in this thesis to form superblocks starts by first considering a hot
Basic Block, that has reached hotspot threshold. Next Basic Blocks, that are targets of the
branches that were frequently taken, are appended. The superblock formation continues
in this fashion until any stopping condition is met. Figure 3.7 illustrates the superblock
formation heuristic, where loop is a stopping condition.

The stopping conditions are described as follows:

• when the edge leads to a Basic Block that is already included in the current su-
perblock, or

• when the edge leads to a Basic Block which is head of another superblock, or

• when the size of the superblock exceeds maximum, or

• when the completion rate, by adding the Basic Block, decreases below the threshold
completion rate.

40 Chapter 3. Experimental Methodology

Although we had implemented loop unrolling and procedure inlining, we chose not to
consider them. This was done primarily to keep a check on code replication. Moreover,
since the benefits of loop unrolling and procedure inlining have been well studied, we
instead confined ourselves with basic optimizations. Loop unrolling and procedure inlining
would lead to larger regions and benefits both the baseline optimization all our HW/SW
schemes.

Code Analysis and Data Flow Graph Generation

After forming the superblocks, the µ-ops are converted into Static Single Assignment
(SSA) form[73]. In this transformation virtual registers are used in order to remove
WAW and WAR dependencies.

While converting the code into SSA, live-in values and live-out values are kept into the ap-
propriate architectural registers. Moreover, in the same traversal over the code, branches
are converted into asserts. Basic code analysis is performed, as well, in order to identify
aliasing among pairs of memory instructions. Data flow graph (DFG) is built considering
both the memory and the register dependencies.

Code Optimizations

Once the dataflow graph is available, the code optimization step could be applied on
the superblock. We apply various kinds of code optimizations[73], including simpler opti-
mizations such as constant folding, copy propagation, common sub-expression elimination
and dead-code elimination. Since superblocks provide a larger scope the benefits of these
optimizations–which could not be enjoyed by a static compiler4–are exploited. A break-
down of performance benefits from various code optimizations is shown in Section 3.3.4.

Various advanced code optimizations are applied across the basic block boundaries in-
cluding load hoisting, code reordering past the branches. Moreover, and depending on
the context, we also apply further optimizations. For instance, in Chapter 5 we apply list
scheduling and load-store telescoping [39] on the superblock.

Load-store telescoping is shown in Figure 3.8, and is applied only in Chapter 5 and 6. The
add instruction shown in red, gets its input operands directly from the sub instruction.
In Chapter 4 we aggressively re-order instructions.

In addition to the above-mentioned optimizations we also consider further optimizations
that are contributions of this thesis. Specifically in Chapter 4 we introduce a performance
tracking step that schedules the superblock after each fusion operation. This provides a
metric in deciding whether or not the fused instruction will provide a performance benefit

4static compilers can form superblocks, but is not done in practice, primarily due to code replication

3.3 Virtual Machine Monitor Implementation 41

StSt

add

add

After OptimizationBefore Optimization

sub

Ld

sub

Ld

Figure 3.8: Load Store Telescoping. The critical path in the example is reduced since add can
consume the data directly from the producer of store’s data.

or not.

Furthermore, for superblocks that are loops the performance tracking step schedules sev-
eral iterations of the loop. This provides a larger scope, which enables the performance
tracking step to make a better judgment regarding the fused macro-op. As discussed in
Chapter 4, this provides a major performance benefit in several kernel oriented bench-
marks.

Scheduling

The scheduling step is applied only in Chapters 5 and 6. Since the underlying processor
is in-order, instruction scheduling is an important step. Moreover, since the scheduling
is performed over a superblock, which are larger than basic blocks, the effectiveness of
scheduling is increased.

For the purpose of our research we implement a list scheduling technique that gives priority
to the instructions in the critical path of the dependence graph [29] . The improvement
in performance due to list scheduling is evaluated and shown in Section 3.3.4.

Priority is computed using dynamic programming approach using the following formula.
The DFG G = (N,E,E ′) has a node nεN for each micro-op. Edges e = (ni, nj)εE
represents dependencies between micro-ops. Edges in E ′ represent false-dependence and

42 Chapter 3. Experimental Methodology

is referred as an anti-edge.

priority(n) =

latency(n) if n is a leaf
max(latency(n)+
max(m,n)εE(priority(m)),
max(m,n)εE′(priority(m))) otherwise

Algorithm 1 List Scheduling Algorithm

1: cycle = 0
2: ready-list = root nodes of DFG
3: in-flight-list = empty list
4: while ready-list or in-flight-list not empty, and an issue slot is available do
5: for op = all nodes in ready-list in descending priority order do
6: if a FU exists for op to start at cycle then
7: remove op from ready-list and add to in-flight-list
8: add op to schedule at time cycle
9: if op has an outgoing anti-edge then

10: Add all target’s of op’s anti-edges that are ready to ready-list
11: end if
12: end if
13: end for
14: cycle = cycle + 1
15: for op = all nodes in in-flight-list do
16: if op finishes at time cycle then
17: remove op from in-flight-list
18: check nodes waiting for op in DFG and add to ready-list if all operands available

19: end if
20: end for
21: end while

Algorithm 1 lists the list-scheduling heuristic. The ready-list initially consists of µ-ops
that could be issued at the first cycle, as shown in Line 2. The order among the µ-ops in
the ready-list is decided by the priorities that were computed using the approach described
above.

µ-ops are moved from the ready-list to the inflight-list, as shown in Line 7, only if a FU
existed for it, as shown in Line 6. These µ-ops are then removed from the inflight-list
when their output is ready, as shown in Line 17. Furthermore, their dependents µ-ops are
inserted into the ready-list, if all of the operands of the dependent µ-ops are available, as
shown in Line 18.

3.3 Virtual Machine Monitor Implementation 43

Register allocation

A register allocation step is performed to map virtual registers to architectural registers.
The register allocation is based upon a linear scan register allocator [79].

In order to allow for the efficient execution of the code, additional scratch registers are
added at the microarchitectural level that are not visible at the x86-level.

Final Code Generation

As a final step in the code generation flow, the optimized version of the code in the
superblock is stored in the Code Cache. As mentioned earlier Code Cache is maintained
in an unused region of memory in the application’s address space. Moreover, the look-up
table that keeps track of SPC to TPC mappings is updated at this step, as well.

3.3.4 Performance benefits of Code Optimizations

Above we have discussed the code generation process that we have implemented. We
have also discussed various optimization techniques implemented in our optimizer. In
this section we report the benefits of these code optimizations. For this purpose we chose
a 4-way co-designed in-order processor and report speedup normalized to a 4-way in-order
processor. The baseline in-order processor is described later in Section 3.5.2.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

cro lst
+ dce
+ cse + cp
+ sched

Figure 3.9: The Effect of Code Optimizations. Various code optimizations are applied. cro lst
stands for various memory optimizations such as load hoisting, load store telescoping and load
hoisting. dce stands for dead code elimination. cse stands for common sub-expression elimina-
tion. cp stands for copy propagation. sched stands for list-scheduling.

Figure 3.9 shows the breakdown of benefits due to code optimizations and code scheduling.
The plus sign (+), in the legend, indicates that the current optimizations is run with all

44 Chapter 3. Experimental Methodology

SPECFP SPECINT
ammp 26.01 gzip 11.53
wupwise 18.78 vpr 12.90
swim 61.46 mcf 9.78
mesa 21.72 crafty 16.64
art 24.56 eon 17.08
equake 14.51 bzip2 17.91
apsi 30.81 perlbmk 11.86
sixtrack 62.95 parser 9.44
lucas 10.46 gap 11.28
facerec 13.82 vortex 11.09
fma3d 29.97 twolf 11.90
mgrid 73.11 avg 12.86
applu 31.90 - -
avg 32.31 - -

Table 3.1: Superblock Size in µ-ops

the optimizations of above it. For instance, + dce indicates that this optimization was
run on top of the optimization cro lst. This implies that the right most bar in the Figure
3.9 corresponds to the speedup with all the optimizations.

The average speedup in SPECFP is higher than that of SPECINT. This is because su-
perblocks are larger in SPECFP when compared to that in SPECINT, as shown in Ta-
ble 3.1. Superblocks in SPECFP on an average consist of nearly 32 µ-ops, whereas in
SPECINT superblocks are smaller, nearly 13 µ-ops. A larger superblock opens up oppor-
tunities for optimizations resulting in better performance.

Even at the benchmark level this fact can be verified. For instance, swim, mgrid and
sixtrack have superblocks that are nearly twice as large as the average size for SPECFP.
These benchmark obtain maximum speedups of nearly 100% for mgrid, 120% sixtrack,
and nearly 90% for swim.

Now lets take a deeper look into the performance benefit from each of the different op-
timization, when applied on top of the previous one. The first optimization is Load
hoisting and load-store telescoping (cro lst). Together it provides 45% and 20% speedup
in SPECFP and SPECINT, respectively, as shown in the Figure 3.9.

Note that the baseline is an in-order machine with an issue width of 4 which is rarely
used. With the load hoisting technique there is a better usage of the issue width as this
limited code reordering provides an increased ILP. However, not only effective cycles are
reduced but also stall cycles are reduce with such a technique given that our processor
is an stall-on-use machine. Load hoisting is performed to reduce stall cycles by placing

3.3 Virtual Machine Monitor Implementation 45

producer loads far from the consumers, but also hiding miss latency.

Load hoisting is particularly helpful for SPECFP codes where the region scope is large
enough to provide significant reduction on the On the other hand, the use of load-store
telescoping removes a significant amount of memory instructions. Most of them are spill
code instructions, whose removal not only reduces the pressure on the issue width but
also provides a better scope for reordering when later on list scheduling is applied. This
is true for both SPECINT and SPECFP.

Traditional code optimization techniques such as dead code elimination (dce), along with
copy propagation and common sub-expression elimination (cse + cp) provide a further
performance improvement of 18% in SPECFP. For SPECINT, additional speedup of 5%
is obtained. These configurations were run on top cro lst.

Note that these two sets of basic optimizations have been combined with cro lst. The
main reason for the effectiveness of these techniques is the large scope that is not available
at compile time. The superblock scope is not only larger but given the atomicity property
of these superblocks the amount of dead code removal is larger. Besides, the fact that
cro lst removes memory instructions also provides larger opportunities for dead code
removal.

List-scheduling (sched) is another optimization that is applied and is specially effective for
SPECINT. Eon and crafty obtain 25% additional speedup due to list-scheduling. On an
average, 15% additional speedup is obtained. However, since, list-scheduling is a heuristic
it can degrade performance in some cases. This is especially notable in some SPECFP
benchmarks such as swim, sixtrack, mgrid and applu as shown in Figure 3.9. Overall the
code optimizations result in speedups of nearly 70% and nearly 37% for SPECFP and
SPECINT, respectively.

3.3.5 Superblock Details

In this section we provide some statistics regarding our superblocks. We also show our
sample superblocks pre and post optimizations. In our experiments, we have set the
hotspot threshold to 100 and the completion rate to 90%. We have also restricted
out superblocks to 200 µ-ops. The above-mentioned stopping conditions are conservative
and result in small superblocks as shown in the Table 3.1.

Size of Superblocks

The average size of superblocks, in term of µ-ops, in SPECFP is 32 and in SPECINT
is 13. Since SPECFP has more regular code and the branches are highly predictable, it
results in larger superblocks. The larger the superblocks the more benefits it brings for

46 Chapter 3. Experimental Methodology

SPECFP SPECINT
ammp 1818K gzip 460K
wupwise 758K vpr 1292K
swim 209K mcf 281K
mesa 2086K crafty 4756K
art 366K eon 2463K
equake 1144K bzip2 126K
apsi 2347K perlbmk 1605K
sixtrack 412K parser 2797K
lucas 84K gap 2349K
facerec 644K vortex 3223K
mgrid 3955K twolf 1517K
applu 81K - -

Table 3.2: Overhead in terms of x86 instructions

the following reason.

A larger superblocks provide a larger scope for the dynamic optimizer to play with. This
results in a better optimized code, by reordering the instructions. A property that a large
instruction window out-of-order processors exploits.

Superblock Translation Overhead

To measure the overhead of Super Block Translation we used estimates provided in [53, 39].
DAISY [39] report a conservative estimate of nearly 4000 source instructions to optimize
a single source instruction of a superblock. They, however, mention that this a very
conservative estimate and quote a reasonable estimate to be 1000 instructions. Hu et al.
[53] measured the overhead of their dynamic optimizer to be around 1000 instructions.

Table 3.2 shows the overhead of Super Block Translation, in terms of x86 instructions,
that we measured using the above-mentioned estimates. Since most benchmarks execute
billions of x86 instructions, this overhead is less than 1%. Moreover, the longer the
benchmarks run, the more the costs could be amortized, if the same superblocks are
reused.

We show the overhead for the estimate using 1000 instructions. Its obvious from the table
above even with a very conservative estimate of 4000 instructions the overhead is around
1%. This low translation overhead has also been observed in Dynamo [9] and by Mathew
Merten et al. [71].

3.3 Virtual Machine Monitor Implementation 47

A Sample Superblock

Listed below are two Basic Blocks with start address 0x8066f8e and 0x8066da9 from ammp
benchmark, which were selected for superblock formation. The instructions listed below
are µ-ops translated from x86 ISA. The first Basic Block has got 9 µ-ops, whereas the
second one has got 6 µ-ops.

[som] indicates start of macro (x86) instruction, whereas [eom] indicates end of macro.
This implies that the first three µ-ops correspond to a single x86 instruction of the type
read-modify-write and its size is 7 bytes. The µ-ops are committed only when all the µ-
ops corresponding to the x86 instruction have successfully executed. [zco] indicates that
the µ-op sets the ZAPS5, carry and the overflow flags. The first Basic Block terminates
in a conditional branch that is dependent on the values of the zf (zero flag) and the cf
(carry flag).

1 BasicBlock 0 x8066f8e
0 x8066f8e : ldd t r0 = [rbp ,−232] [som] [7 bytes]

3 0 x8066f8e : addd t r0 = tr0 , 1 [zco]
0 x8066f8e : std .+ mem = [rbp ,−232] , t r0 [eom] [7 bytes]

5 0 x8066f95 : ldd t r0 = [rbp ,−328] [som] [7 bytes]
0 x8066f95 : addd t r0 = tr0 ,32 [zco]

7 0 x8066f95 : std .+ mem = [rbp ,−328] , t r0 [eom] [7 bytes]
0 x8066f9c : ldd .− rcx = [rbp ,−416] [som] [eom] [6 bytes]

9 0 x8066fa2 : ldd t r0 = [rbp ,−232] [som] [6 bytes]
0 x8066fa2 : subd.+ tr0 = tr0 , rcx [zco] [eom] [6 bytes]

11 0 x8066fa8 : br . l .− r i p = zf , o f [taken 0x8066da9 , seq 0 x8066fae] [som] [eom
] [6 bytes]

Bas ic Block te rminate s with taken r i p 0x8066da9 , not taken r i p 0 x8066fae
13 BasicBlock 0x8066da9

0x8066da9 : ldd .− rax = [rbp ,−232] [som] [eom] [6 bytes]
15 0 x8066daf : ldd .− rbx = [rbp ,−516] [som] [eom] [6 bytes]

0x8066db5 : adda t r8 = rbx , zero , rax ∗4 [som] [3 bytes]
17 0x8066db5 : ldd .− rcx = [tr8 , 0] [eom] [3 bytes]

0x8066db8 : ldd .− rbx = [rdi , 1 2 6 0] [som] [eom] [6 bytes]
19 0x8066dbe : andd.+ tr0 = rbx , rbx [zco] [som] [eom] [2 bytes]

0x8066dc0 : br . l e .− r i p = zf , o f [taken 0 x8066fb3 , seq 0x8066dc6] [som] [
eom] [6 bytes]

21 Bas ic Block terminate s with taken r i p 0 x8066fb3 , not taken r i p 0x8066dc6

Listed below are the Basic Blocks in the Single State Assignment form. All the rnm*
registers are virtual registers. Figure 3.10 shows the corresponding DataFlow Graph.
The edge between µ-op 0 (ld) and µ-op 2 (st), shows that the two memory instructions
completely alias. Similarly, µ-ops 3 and 6 alias completely. At this point superblock can
be formed and is ready to undergo various code optimizations.

5Zero, Auxiliary, Parity and Sign flags

48 Chapter 3. Experimental Methodology

1 0 x8066f8e : ldd rnm0 = [rbp ,−232] [som] [7 bytes]
0 x8066f95 : addd rnm1 = rnm0 , 1

3 0 x8066f9c : std .+ mem = [rbp ,−232] , rnm1 [eom] [7 bytes]
0 x8066fa3 : ldd rnm2 = [rbp ,−328] [som] [7 bytes]

5 0 x8066faa : addd rnm3 = rnm2 ,32
0 x8066fb1 : std .+ mem = [rbp ,−328] , rnm3 [eom] [7 bytes]

7 0 x8066fb8 : ldd .− rnm5 = [rbp ,−416] [som] [eom] [6 bytes]
0 x8066fbe : mov rnm4 = zero , rnm1

9 0 x8066fbe : subd.+ rnm7 = rnm1 , rnm5 i n t : [zo] [eom] [6 bytes]
0 x8066fc4 : br . l .− rnm8 = rnm7 , rnm7 [taken 0x8066da9 , seq 0 x8066fae] [som]

[eom] [6 bytes]
11 0 x8066fca : mov rax . t = zero , rnm1

0 x8066fca : ldd .− rnm6 = [rbp ,−516] [som] [eom] [6 bytes]
13 0 x8066fd0 : adda t r8 = rnm6 , zero , rnm1∗4 [som] [3 bytes]

0 x8066fd3 : ldd .− rcx = [tr8 , 0] [eom] [3 bytes]
15 0 x8066fd6 : ldd .− rbx = [rdi , 1 2 6 0] [som] [eom] [6 bytes]

0 x8066fdc : andd.+ tr0 = rbx , rbx [zco] [som] [eom] [2 bytes]
17 0 x8066fde : br . l e .− r i p = tr0 , t r0 [taken 0 x8066fb3 , seq 0x8066dc6] [som] [

eom] [6 bytes]

0 ld

1 add

rnm0

2 st

fwd

rnm1

7 mov

rnm1

8 sub

rnm1

10 mov

rnm1

12 adda

rnm1

ign ign

3 ld

4 add

rnm2

5 st

fwd

rnm3

ign

6 ld

rnm5

rnm4

9 br

rnm7 rnm7 rnm7

rnm8

raxraxrax

11 ld

rnm6

13 ld

tr8tr8

rcx

14 ld

15 and

rbx rbx rbx

16 br

tr0 tr0 tr0 zf cf of

rip

rbp imm zero

imm zero

rbp imm

rbp imm zero

imm zero

rbp imm

rbp imm zero

zero

zero

rbp imm zero

zero

immzero

rdi imm zero

zero

zero

Figure 3.10: Generated Data Flow Graph

Listed below is the corresponding superblock after code optimizations. Note that the
order of µ-ops have changed, because of instruction scheduling. As you can see most of
the loads that depend on rbp are independent of each other and are hoisted above the
stores. Moreover, µ-ops producing flags that don’t have any consumers have their flags
reset.

3.4 Simplifications to the Implementation 49

1 BasicBlock 0x1b4
0x1b4 : ldd rnm0 = [rbp ,−232] [som] [64 bytes]

3 0x1b4 : ldd rnm2 = [rbp ,−328]
0x1b4 : ldd rnm6 = [rbp ,−516]

5 0x1b4 : ldd rnm5 = [rbp ,−416]
0x1b4 : ldd rbx = [rdi , 1 2 6 0]

7 0x1b4 : addd rnm1 = rnm0 , 1
0x1b4 : addd rnm3 = rnm2 ,32

9 0x1b4 : adda t r8 = rnm6 , zero , rnm1∗4
0x1b4 : std mem = [rbp ,−232] , rnm1

11 0x1b4 : std mem = [rbp ,−328] , rnm3
0x1b4 : andd t r0 = rbx , rbx [zco]

13 0x1b4 : ldd rcx = [tr8 , 0]
0x1b4 : subd rnm7 = rnm1 , rnm5 i n t : [zo]

15 0x1b4 : mov rax = zero , rnm1
0x1b4 : a s s e r t rnm8 = rnm7 , rnm7

17 0x1b4 : br . l e .− r i p = zf , o f [taken 0 x8066fb3 , seq 0 x1f4] [eom] [64 bytes]
Bas ic Block te rminate s with taken r i p 0 x8066fb3 , not taken r i p 0 x1f4

19 BasicBlock 0 x1f4
0 x1f4 : bru.− r i p = zero , ze ro [taken 0x8066dc6 , seq 0x8066dc6] [som] [eom]

[4 bytes]
21 Bas ic Block terminate s with taken r i p 0x8066dc6 , not taken r i p 0 x1f8

The superblock is stored in a new region of memory with a virtual address 0x1b4, which is
the TPC and 0x8066f8e is the corresponding SPC. Moreover, the head of the superblock
is marked som, whereas the tail of the superblock is marked eom. This ensures that the
µ-ops of the superblock will commit only when all other µ-ops have successfully been
executed, similar to the commit of an x86 instruction.

Furthermore, there is an exit branch to fall-through path, as indicated in the second Basic
Block. As you can see the contents of the two Basic Blocks are placed in a single Basic
Block, which we refer to as a Superblock.

3.4 Simplifications to the Implementation

In reality the VMM time shares the processor resources along with the application and
OS binaries it emulates. In order to implement this behavior one must execute the VMM
code on the timing simulator. When the VMM code runs on the timing simulator, it also
occupies the I-Cache and D-Cache lines. This implies the effective cache size available for
the application is reduced.

In our implementation we do not model this behavior. We instead run the VMM offline
and measure only the overhead due to superblock translation. The effect of reduced
effective cache size was not measured. However, we do model the effect of sharing I-cache

50 Chapter 3. Experimental Methodology

between original x86 instructions and the translated µ-ops from the Code Cache.

Our primary goal was to get insights in the performance of a co-designed processor ex-
ecuting translated binaries in the steady state. Executing the VMM code in the timing
simulator and context-switching between application and the VMM would require a sig-
nificant engineering effort. Moreover, even if we had executed our VMM monitor on the
simulator to estimate the overhead, it would not be close to efficient industrial implemen-
tation.

Moreover, as the PTLsim we are using is not a full system simulator, the Cd-VM that
we have implemented is not a full system virtual machine. We instead model a Process
Virtual Machine similar to Digital FX!32[22] and HP’s Dynamo[9]. This means the OS
instructions are not simulated. Our key goal was to understand the benefits of combined
HW/SW optimizations on applications performance.

The implication of not implementing a fully system virtual machine is that we could model
the page fault behavior precisely. An accurate implementation of Cd-VM must deal with
page faults. For instance, imagine a scenario in which the translated Basic Blocks are
from different source pages. As a result it could happen that the OS could have swapped
one of the pages to the disk. The application when running on a normal processor would
have incurred a page fault.

This implies that the Cd-VM should also take this fault by checking whether the trans-
lations are valid before executing code from a different source page. There are multiple
ways to deal with page faults and are described in [88].

Self-modifying code also require combined HW/SW solution to be tackled efficiently.
Some implementations use a write-protect bit in the TLB to mark the source code page
translations. However, keeping the protection information at the granularity would result
into frequent flush of translations for pseudo self-modifying code6.

To deal with pseudo self-modifying code protection at finer granularity is maintained. A
write-protect table holds write-protect bitmasks corresponding to smaller regions in the
page. This case of pseudo self-modifying code is held using fine-grained write protect
bitmask[35]. Since in this thesis we have used SPEC2000 benchmarks, none of which
have self-modifying code, we chose not to implement this.

Furthermore, we assume that we have unbounded JTLB and unbounded code cache. Since
the goal of the thesis was to gain insights on HW/SW optimizations on the steady state
behavior7, we chose not to implement it. Surely the size of JTLB can impact the cycle
time of the processor and hence a realistic implementation will have to look-up in the
software map-table.

6Pseudo self-modifying code are those where data in interspersed with code in the same page
7We made an assumption that in steady state, a small subset of superblocks can provide a good

coverage. The JTLB could be large enough to hold this small subset of superblocks.

3.5 Baselines Used 51

3.5 Baselines Used

In chapters 4, 5 and 6 we will propose three different kinds of co-designed processor.
For instance, in Chapter 4, we will propose a co-designed out-of-order processor with
a Programmable Functional Unit (PFU). This proposed co-designed processor is based
upon an out-of-order processor microarchitecture that is described in Section 3.5.1.

Common Parameters
I-Cache 16 KB, 4-way, 64 B line, 2 cycle access
Branch Predictor Combined Predictor 64 K

16-bit history 2-level,
64 K bi-modal, 1K RAS

Fetch Width 4 µ-ops / x86 instructions up-to
16 bytes long

Issue Width 4 (2 loads, 2FP, 2 INT, 2 st)
L1 Data Cache 32 KB, 4-way, 64 B line, 2 cycles
L2 Cache 256 KB, 16-way, 64 B line, 6 cycles
L3 Cache 4 MB, 32-way, 64 B line, 14 cycles
Main Memory 154 cycles

Out-of-order Parameters
Rename 8 source, 4 destination operands
Issue Queue 16 entry FP, Int, Mem
Functional Units 2 LDU, 2 ALU, 2 AGU, 2 FPU
Register File 128 entry INT RF, 128-entry FP RF,

4 write ports each
ROB 128 entry
LSQ 80 entry (48 loads + 32 stores)
Load Fill Request Queue 8 entry
Miss Buffer 8 entry

Table 3.3: Baseline 4-wide Out-of-Order Processor Configuration

Furthermore, in Chapter 5 we will propose a co-designed in-order processor with two
general purpose accelerators. For this purpose, we use a co-designed in-order processor
as a baseline, which is described in Section 3.5.2.

Furthermore, in Chapter 6 we will propose a co-designed out-of-order processor. For this
purpose, we will use several out-of-order baselines, depending upon the context. The first
baseline is a conventional ROB based out-of-order processor, which is described in Section
3.5.1. Moreover, this baseline processor has two variants, with and without support for
hardware memory disambiguation.

Moreover, in the same chapter, we propose a new steering heuristic for FIFO based
issue logic. The performance of this FIFO base issue logic is normalized to a baseline
co-designed processor with a CAM based issue logic. All other features of the baseline
co-designed processor are exactly same to our proposed co-designed processor.

52 Chapter 3. Experimental Methodology

Common Parameters
I-Cache 16 KB, 4-way, 64 B line, 2 cycle access
Branch Predictor Combined Predictor 64 K

16-bit history 2-level,
64 K bi-modal, 1K RAS

Fetch Width 8 µ-ops / x86 instructions up-to
16 bytes long

Issue Width 8 (4 loads, 4 FP, 4 INT, 4 st)
L1 Data Cache 32 KB, 4-way, 64 B line, 2 cycles
L2 Cache 256 KB, 16-way, 64 B line, 6 cycles
L3 Cache 4 MB, 32-way, 64 B line, 14 cycles
Main Memory 154 cycles

Out-of-order Parameters
Rename 8 source, 8 destination operands
Issue Queue 16 entry FP, Int, Mem
Functional Units 4 LDU, 4 ALU, 4 AGU, 4 FPU
Register File 256 entry INT RF, 256-entry FP RF,

8 write ports each
ROB 256 entry
LSQ 160 entry (96 loads + 64 stores)
Load Fill Request Queue 64 entry
Miss Buffer 64 entry

Table 3.4: Baseline 8-wide Out-of-Order Processor Configuration

3.5.1 The Baseline Out-of-Order Processor

Our baseline Out-of-Order processor is based upon a state-of-art modern out-of-order
processor and the details are available in Table 3.3. Moreover, in Figure 3.1 the microar-
chitecture of this baseline is illustrated.

ROB and physical registers are allocated at the rename stage as done in Pentium 4[51].
Frontend Register Rename Table (FRRT) and Backend Register Rename Table (BRRT)
hold speculative and committed register states respectively, as shown in Figure 3.11.

Loads and stores have 3 execution pipeline stages, which are address generation, address
translation and memory disambiguation. Load hit speculation is also modeled as described
in [58]. Memory disambiguation is conservative and store-to-load forwarding restrictions
are derived from [56]. Earlier, in Section 3.2 we provided detailed description on simulator
enhancements we made the baseline out-of-order microarchitecture cycle accurate.

In Table 3.4, we also list the configuration of a 8-wide processor that we use for comparison
in Chapter 4.

3.5 Baselines Used 53

Register mappings are

updated at Rename.

CommitRename Execute WriteBack

Pointer to Physical

at commit.
Registers are updated

rdx

rax

rbx

rcx

BRRT

rdx

rax

rbx

rcx

FRRT

PR9

PR5

PR32

PR8PR8

PR3

PR5

PR7

Figure 3.11: Illustration of RRT. At rename stage the FRRT is updated with new mappings,
whereas the BRRT is updated at commit stage.

3.5.2 The Baseline Co-designed In-Order Processor

Figure 3.12 shows the block diagram of the proposed co-designed in-order microarchi-
tecture. Fetch buffer, decoder buffer help in decoupling the frontend from the backend.
This allows the stalls in backend to be tolerated. Table 3.5 provides detailed information
of the microarchitecture of the baseline processor. The baseline microarchitecture is a
two-way/four-way in-order processor.

Issue logic contains FIFO queue and counters are maintained to ensure back-to-back
execution of µ-ops. Figure 3.13 shows the pipeline of the proposed processor. This baseline
processor was used to support execution of fused µ-ops that are proposed in Chapter 5.
The shaded stages are when a pair of fused µ-op is treated separately. Align/Fuse stage
checks the first bit of each µ-op and fuses the current µ-op with a succeeding one. All the
subsequent stages treat a pair of fused µ-op as a single entity.

Moreover, in order to support bulk commit of atomic superblocks, a shadow copy and a
working copy of Register File is maintained. A special commit micro-op copies all the
working registers into their corresponding shadow register, when the superblock execution
is successful. On the other hand, in case of an exception, a rollback operation copies the
shadow copy back to the working copy.

Commit and rollback is applied to stores as well; and store data is held in gated store
buffer [95]. The data in gated store buffer is committed to memory when superblock
successfully finishes executing all the micro-ops.

54 Chapter 3. Experimental Methodology

4/2-way In-order Processor Parameters
I-Cache 16 KB, 4-way, 64 B line, 2 cycle access
Branch Predictor Combined Predictor 64 K

16-bit history 2-level,
64 K bi-modal, 1K RAS

Fetch Width 4/2 µ-ops / x86 instructions
up-to 16 bytes long

Issue Width 4/2 (2/1 LD, 2/1 FP, 2/1 INT, 2/1 ST)
L1 Data Cache 32 KB, 4-way, 64 B line, 2 cycles
L2 Cache 256 KB, 16-way, 64 B line, 6 cycles
L3 Cache 4 MB, 32-way, 64 B line, 14 cycles
Main Memory 154 cycles
Issue Queue 16 entry
Functional Units 2/1 LDU, 2/1 ALU, 2/1 AGU,

2/1 FPU
Register File 32-entry INT RF, 32-entry FP RF,

4 write ports each

Table 3.5: Baseline In-order processor configuration

3.5.3 Co-designing the baselines

A few hooks were added in order to support the execution of the Cd-VM. Hardware
Profiling (block and edge) [28] identifies frequently executed code. Moreover, as described
earlier, dual-mode decoders were added to run x86 instructions natively by cracking them
into µ-ops. The x86 mode pipeline of the processor is shown in the Figure 3.13. Each cycle
16-byte chunk of instruction bytes is fetched from the I-cache. Instruction boundaries are
determined, x86 instruction go-to first level decoder while µ-ops go directly to second-level
decoder.

The primary benefit of using a dual-mode decoder is to cut down on overhead due to cold-
code binary translation [53]. However, as a consequence of dual-mode decoders I-Cache
holds both the x86 instructions and the µ-ops. The µ-ops are stored in a Code Cache,
which in our implementation is an unused region of memory in the application’s address
space. Moreover, an unbounded JTLB is modeled that holds the SPC to TPC mappings.

Since in Chapter 4 and 6 we propose a co-designed out-of-order processor, two separate
bulk commit mechanisms are proposed as well. This enables concurrent execution of
multiple superblocks. The bulk commit mechanism discussed above as proposed in baseline
co-designed in-order processor will not work.

For Chapter 5, the bulk commit mechanism consists of a shadow copy and a working
copy of the Register File. Gated store buffer [95] holds the store data corresponding to
a superblock. This bulk commit mechanism is exactly the one proposed by Transmeta’s
Crusoe [60], and was described earlier.

3.5 Baselines Used 55

Shadow

FP RF

FP RF

Instruction
Fetch

Shadow

INT RF

INT RF

FPU

LDU

ALU

Gated Store

Buffer

AGU

L1-Icache

Instruction
Decode + Issue

L1-Dcache

Figure 3.12: The Co-designed 2-way In-order Processor Overview. A decoupled in-order mi-
croarchitecture is used. Shadow Register Files holds the committed state, whereas the Working
Register Files holds the speculative state. Stores are held in Gated store buffer until commit.

Issue Read Exec1 WBDum Dum Dum DumDum

Issue Read WBDum Dum DumEag Eat Emd

Issue Read Exec1 WBExec2Exec3Exec4Exec5Exec6

Align Dec1 Dec2 Disp.Fetch Disp.Fetch Align Dec1x86
Dec1

x86 x86
Dec2 Dec3

Dec2

micro-op Mode Pipeline Frontend x86 Mode Pipeline Frontend

ALU Pipeline Backend

Load Pipeline Backend

FP Pipeline Backend

Figure 3.13: µ-op/macro-op pipeline. Multiple decode stages are removed from the µ-op
pipeline.

Chapter 4

Co-designed Programmable
Functional Unit

In this chapter, we propose a novel programmable functional unit (PFU) to acceler-
ate general purpose application execution on a modern out-of-order x86 processor in
a complexity-effective way. A Co-Designed Virtual Machine Monitor (Cd-VM) binary
translates applications and generate instructions that run on the processor. Groups of
frequently executed micro-operations (micro-ops) are identified and fused into a macro-op
(MOP), which runs on the PFU.

Results presented in this chapter show that this HW/SW co-designed approach produces
average speedups in performance of 17% in SPECFP and 10% in SPECINT, and up-to
33%, over modern out-of-order processor. However, with a slight modification in the
proposed MOP model we obtain improvements in performance of 29% in SPECFP and
19% in SPECINT. Moreover, we also show that the proposed scheme not only outperforms
dynamic vectorization using SIMD accelerators but also outperforms an 8-wide issue out-
of-order processor.

4.1 Introduction

In this chapter, we propose a novel programmable functional unit (PFU) to accelerate
general purpose application execution, in a complexity-effective way. We leverage the fact
that reducing the execution latency and increasing the width of the processors leads to a
performance improvement.

We use a HW/SW co-designed approach to build a out-of-order x86 processor by trans-
parently optimizing applications, and improve performance, without increasing the width
of the processor. We propose a novel split-macro-op (split-MOP) model to efficiently use

58 Chapter 4. Co-designed Programmable Functional Unit

the PFU and also describe the microarchitectural changes required in order to integrate
the PFU in the existing out-of-order processor.

A significant fraction of the execution cycle in out-of-order processors is dedicated to
operand forward logic [41, 76]. In our PFU design we remove the operand forward logic
from PFU to other FUs and dedicate this fraction of execution cycle to execution.

On the other hand, researchers [26, 78] have shown that chain of simple ALUs can be
collapsed in a single cycle. CCA [26], for instance, have validated this conclusion by eval-
uating their design for various depth levels. Hence, based up on the above two arguments
a single cycle or at-most two cycles is a reasonable estimate for the execution latency of
the PFU.

In the proposed scheme, the PFU is programmed using a Cd-VM. The software layer
dynamically profiles the application code, and identifies frequently executed regions. It
then optimizes these regions by fusing a sequence of micro-ops into a macro-operation
(MOP). This transformed code is stored in a concealed memory and is executed instead
of the original code. We also propose dynamic compilation techniques required in order
to achieve this.

Results presented in this chapter show that the use of a PFU provides a significant av-
erage speedup of 17% in SPECFP and 10% in SPECINT, and speedup of up-to 33%
for some benchmarks, over current out-of-order processor. Moreover, we also show that
the proposed scheme not only outperforms SIMD accelerators when they are dynamically
managed by the Cd-VM, but also outperforms an 8-wide issue out-of-order processor.

The key contributions of this chapter are as follows:

• We propose a novel Programmable Functional Unit, along with a novel split-MOP
execution model. We also discuss the microarchitectural changes required in order
to incorporate the PFU in a complexity-effective manner.

• We describe an effective algorithm to dynamically fuse instructions using a Cd-VM.
Our dynamic compilation scheme handles memory and loop-carried dependencies
to aggressively reorder the code and generate MOPs, appropriately.

• We propose a bulk commit mechanism in order to commit atomic superblocks.
Firstly, this bulk commit mechanism enables superblocks to be larger than the ROB.
Secondly, it reduces the stall at frontend, that are caused due to the atomic property
of the superblocks.

The rest of the chapter is organized as follows. First, In the Section 4.2, the proposed PFU
is described along with its execution model and microarchitecture. Next, In the Section
4.3, we describe the problems arising due to atomicity of superblocks, which requires a

4.2 The Co-designed PFU proposal 59

bulk commit mechanism. In the same section we propose the bulk commit mechanism in
the context of out-of-order processors.

Dynamic compilation techniques are discussed in Section 4.4. A detailed evaluation and
analysis of the PFU, its design points and comparison with alternate schemes is presented
in Section 4.5. Finally, related work is reviewed in Section 4.6 and we conclude in Section
4.7.

4.2 The Co-designed PFU proposal

We propose a novel Programmable Functional Unit (PFU) that executes a set of fused µ-
ops called a MOP. Application binary is dynamically recompiled and MOPs are generated.
We propose a split-MOP execution model to execute the MOPs.

In this section we describe 1) the split-MOP execution model, 2) the PFU, and 3) the
required changes in the microarchitecture to incorporate the PFU.

4.2.1 Split-Mop Execution Model

A MOP like any other instruction requires inputs and outputs to execute. However, the
input and output parts of MOP are split into several µ-ops using a split-MOP model. Our
split-MOP model consists of following µ-ops : (1) a set of loads to provide inputs from
memory (ld-set), (2) a set of register moves to provide inputs from register file (mv-set),
(3) a computation macro-op (CMOP), and (4) a store set (st-set). Figure 4.1 shows an
example of split-MOP. Note, that irf0, irf1, irf2 in Figure 4.1b indicates the IRF (Internal
Register File, discussed later) registers.

Read Macro-Op RMOP

The inputs to CMOP are provided by RMOP which consists of ld-set and mv-set. Ld-set
as described above contains a set of loads that brings inputs from memory, whereas a mv-
set brings inputs from the register file. Ld-set consists of independent loads that can be
issued in parallel. The number of µ-ops in either the ld-set or the mv-set are constrained
by the internal storage of the PFU, in other words the internal register file (IRF), which
is discussed in details in Section 4.2.3. Note that loads in the ld-set write to both the
conventional physical register file and the IRF. Mv-set, however, writes only to the IRF
as shown in Figure 4.1b.

60 Chapter 4. Co-designed Programmable Functional Unit

add rdx = rcx, rax

add rsp = rbx, 1

sub rbp = rsp, rdx

st [rbp, 4], rax

ld rcx = [rax, 8]

(a) µ-ops before fusion

cmop rdx, rsp, rbp

st [rbp, 4], rax

ld irf0, rcx = [rax,8] : ld-set

mov irf1, irf2 = rax, rbx : mv-set

irf* : Internal Register File Tag

(b) Macro-op after fusion

Figure 4.1: Split-MOP Model. The left side shows a normal code sequence. On the right is a
Split-MOP, which consists of a ld-set that has a single load. Following is a mv-set which consists
of single mov that moves rax, rbx to internal register irf1 and irf2, respectively. cmop follows
next that has three destination operands rdx, rsp, rbp.

Computation Macro-Op (CMOP)

The ld-set and mv-set is followed by a CMOP, which contains information of the fused
µ-ops. A CMOP is encoded into an opcode a unique identifier, and destination registers.
Transient registers are not reflected in CMOP’s destination register. CMOP does not
contain any source operands, because, it reads input values from the IRF, but it writes
directly to the physical register file. Hence, the number of destination registers in CMOP
is constrained by the number of write ports in the physical register file.

The encoded data corresponding to each fused µ-op in a CMOP is known as a configura-
tion. Configurations are appended to the superblock and stored in the code cache. These
configurations are located using the unique identifier encoded in a CMOP.

The unique identifier is used as an index into a configuration TLB (CTLB). The CTLB
is a set-associative structure which is indexed by the unique identifier. The entry in the
table uses the indentifier as a tag and stores the virtual address1 of the configuration
corresponding to the CMOP.

The CTLB is maitained by the VMM, an entry is loaded into it when a CMOP is formed.
A miss in CTLB must trap into the VMM, allowing VMM to load the corresponding
mapping. However, in our experiments, we have assumed an unbounded CTLB.

1Since the line size is 32 bytes and so is the size of a configuration, we only need 27(32-5)bits.

4.2 The Co-designed PFU proposal 61

Execution Model

The CMOP issues when all the loads in the ld-set and moves in the mv-set have issued.
CMOP is executed in the PFU and a typical execution pipeline of the split-MOP of Figure
4.1 is shown in the Figure 4.2.

Issue Read
Issue Read

WBEag Eat Emd
Movmov

cmop
st

ld

Eag Eat
WB

Issue Read
Issue Read Execute

Figure 4.2: Execution Pipeline. Cmop issued back-to-back with the ld-set and the mv-set.

The execution pipeline of the split-MOP as described in Figure 4.1 is illustrated in Figure
4.2. The four execution pipelines correspond to load, mov, CMOP and store respectively
of 4.1b. A 3 cycle execution pipeline for load is implemented and is described in Chapter 3.
The pipeline stages Eag, Eat and Emd stands for address generation, address translation
and memory disambiguation respectively.

Moreover, back-to-back execution is ensured between RMOP (ld-set + mv-set) and CMOP.
CMOP dependence with the ld-set and mv-set is built at runtime. This is achieved using
a hierarchical issue queue model as described in Section 4.2.3.

However, in this model, if a live-in value provided by a load or a move is delayed for some
reason (e.g. load miss), then the CMOP execution is also delayed. This implies that
if CMOP fuses independent µ-ops, then delay of one µ-op causes the other independent
µ-ops to be delayed as well. This can impact the critical path of an application.

4.2.2 Alternate Split-Mop Execution Model

We have also proposed an alternate split-mop model [32], where we get rid of the mv-set.
This implies the CMOP now contains both the destination and the source operands. This
alternate model constrains the size of the CMOP and number of its input and destination
operands further. Moreover, as will be shown in the experiments further, we found out
that the Register File Ports requirement for a CMOP is satisfied with current designs.
As a result a CMOP can directly read from the Physical Register File. However, we still
require ld-set to bring data from D-cache.

Furthermore, getting rid of mv-sets adds to performance benefits as back-to-back exe-
cution is not compromised. Moreover, the MOP fusion heuristic ends up forming more
CMOP, because the objective function of the fusion heuristic sees benefit in forming mv-
set free MOPs. This will be clearer in Section 4.4.2.

62 Chapter 4. Co-designed Programmable Functional Unit

Ld IQ Int IQ FP IQ

Bypass Network

FP Register File /

LDUPFU STUALU FP MoveSSE
FP MMX

L1
I-cache

Dispatch Buffer

Interger Register File /
Bypass Network

Control IQCmop IQ

L1 - Dcache

Allocator/Register Renamer

Figure 4.3: Modified Microarchitectural Block Diagram. The gray blocks are added, which
consists of a control IQ, Cmop IQ, PFU. Control IQ enables issue of split-mop by sending signal
to cmop which is stored in Cmop IQ. The cmop is then executed in the PFU.

4.2.3 PFU Microarchitecture

The microarchitecture that supports split-MOP execution is discussed in this section.
Figure 4.3 shows a block-level microarchitecture diagram, and the added components to
incorporate the PFU are shown in gray2. The added components are a PFU, a CMOP
issue queue and a control issue queue.

The key features of our microarchitecture consist of : (1) the programmable functional
unit, (2) the distributed internal register file (IRF), (3) hierarchical issue queue model,
and, (4) pipeline stage modifications. Each of these are described in detail in the following
subsections.

2For the sake of simplicity, in this figure we do not show the structures required to support VMM.

4.2 The Co-designed PFU proposal 63

Programmable Functional Unit

We propose a PFU which has two major components: 1) Distributed Internal Register
File (IRF), and (2) a grid of Processing Elements (PE). Data flows from one row to the
following in the grid of PEs as shown in Figure 4.4, an organization similar to [26]. Note,
that there are no latches between the PEs of two different rows. The effects of varying
the grid size and PFU execution latency is studied and discussed in Section 4.5. Based
upon the results we propose a grid of 2 columns and 3 rows. The inputs required by each
µ-op in the grid of PEs is provided by the IRF.

RF setRF
PE

Distributed Internal Register File Grid of PEs

Programmable Functional Unit

Per Row

RF

Figure 4.4: Programmable Functional Unit. A distributed Internal Register File is shown,
which consists of multiple RFs per row that satisfies the input needs of the FUs of that row.
A RF set is a column of RFs which consists of replicated data corresponding to a cmop. Our
proposed PFU consists of three rows of Internal Register Files, each row consits of five register
file with a capacity of four entries and four read ports and zero write ports on each. Grid of
PEs consists of FUs connected in dataflow fashion. They are optimized to execute with shorter
latency, due to the absence of latches and forwarding path.

Distributed Internal Register File

The proposed PFU with six PEs (2 columns, 3 rows) requires up to twelve read ports
to execute all the µ-ops of CMOP simultaneously. Providing so many read ports to the
physical register file is certainly not complexity-effective. Hence, in order to deal with
this, we propose a separate register file, the internal register file (IRF), that is contained
inside the PFU.

64 Chapter 4. Co-designed Programmable Functional Unit

The inputs of multiple CMOPs are brought into the IRF from the L1 D-cache and from
the physical register file. For successful execution, the IRF should have sufficient capacity,
in order to hold the inputs of multiple CMOPs. A lack of this capacity can significantly
handicap out-of-order execution, by causing unnecessary stalls.

������������
������������
������������

������������
������������
������������

����������������������

�����������
�����������
�����������
���������������������������������
����������������������

�����������
�����������
�����������
�����������

configuration line buffer

selection logic

cmop 1

cmop 5

Configuration Cache

Operand 1

ALU

Operand 2

ImmediatesControl Signal

Figure 4.5: Processing Element. PE consists of an ALU and a configuration cache. Config-
uration cache has the capacity to hold configurations of upto 5 µ-ops, corresponding to their
cmops, which was placed in this PE.

Moreover, this internal register file is distributed in order to provide sufficient bandwidth,
as shown in Figure 4.4. IRF contains multiple register file sets, each of which is allocated
to a MOP in the dispatch stage. A register file set contains replicated copies of register
file, one copy corresponding to each row. Each register file has 4 entries and has 4 read
ports and 4 write ports. Recollect that the CMOP writes to the conventional physical
register file directly. Hence, the write ports on IRF are used by the ld-set and mv-set
only, to write the inputs of the CMOP.

There are 5 different register file sets, so inputs for 5 different MOPs can be stored at the
same time. Hence, the total size of this IRF is 60 (number of entries per RF*number of
rows*number of RF sets = 4*3*5). Dispatch stalls in case a register file set cannot be
allocated to the MOP. It is obvious from such a distributed organization that a PE could
access only the register file of the row that it belongs to and to that of the MOP that is
currently being executed. Note, that total number of entries both in the ld-set and the
mv-set are constrained by the size of one register file. The values in the IRF are discarded
only when CMOP is successfully executed.

4.2 The Co-designed PFU proposal 65

PE and Configuration Cache

Figure 4.5 provides a deeper look into the PE. Each PE contains 1) an ALU, which
is connected to the ALUs of following rows, and 2) a configuration cache. Configuration
cache holds configuration of 5 CMOPs in a distributed manner. The configuration contains
pre-decoded control signals of all the fused µ-ops pertaining to the CMOP as shown in
the Figure 4.6.

��
��
��
��

��
��
��
��

CS 0

Operand 1Opcode Operand 2

8 bits 6 bits 6 bits

CS 1 4 immediate operands

20 bits

Control Signal

per micro-op

CS 5

15 byte control signals of a cmop 16 byte

32 byte configuration line

Figure 4.6: Configuration Line. A 32 byte configuration line is divided into 15 byte control
signals and 16 byte immediate operands. Upto six control signals are shown, each control signal
is further divided into opcode and operand bits.

Configurations are 32 bytes long and is equal to half of L1 I-cache line size. The lower
16 bytes contains opcode and source operand information of all the fused µ-ops, and the
upper 16 bytes holds the immediate operand values. Opcode needs 1 byte, while the
source operands can be represented with 6 bits. A total of 20 bits are required as control
signal for each µ-op. Hence, six µ-ops (corresponding to six PE) can be represented with
15 bytes. Four immediate operands require 16 bytes.

We assume any combination of simple ALU µ-ops for fusion. But some µ-ops, such as
shift, rotate etc. are not allowed. Neither are loads or stores allowed.

A direct access is made to the L1 I-cache to read in the configuration line corresponding
to a CMOP. The configuration line is then distributed to all the PEs. Each PE contains
also a line buffer to store the configuration line. The PE then selects the appropriate
µ-op control signal and immediate operand, if any, from the configuration line buffer.
The control signals are stored in the configuration cache. If the configuration is present
in the configuration cache then it can be loaded in a cycle. The size of distributed cache
is estimated to be 210 bytes.

The configuration line in the line buffer is discarded in the following cycle. We propose a
single cycle selection logic. Hence, 3 cycles are sufficient to ensure that the configuration
corresponding to a CMOP is properly distributed. A request for loading the configuration

66 Chapter 4. Co-designed Programmable Functional Unit

is, hence, sent in the rename stage. CMOP issue stalls if the configuration is not yet
loaded. Due to the spatial locality of instructions we don’t discard the configuration.
The PFU can hold up to 5 different configurations at any time. The configurations are
managed using a simple LRU scheme.

Bypass Network

To support back-to-back execution, all the 6 PEs should receive source operands from
the bypass. The PEs, however, receive inputs only from the 2 load units (LDUs) and 2
ALUs. In the evaluation Section 4.5, we however show that not all the 6 PEs need the
source operands to be bypassed. For a 2x3 grid a bypass network to 4 PEs is more than
sufficient.

On the other hand, a significant fraction of execution cycle of an ALU in a modern out-
of-order processor is consumed by the destination operand forwarding [41, 76]. Hence,
in order to support a PFU that collapses three ALUs and execute with low latency,
we remove the forwarding logic from PFU to other ALUs, and dedicate this fraction of
execution cycle completely to execution. Our studies indicate that such a constraint has
negligible impact on performance.

Pipeline Stages

Now we discuss the microarchitectural changes required in the pipeline in order to execute
our split-MOP model. We focus mainly on the pipeline stages that are impacted the most.

• Rename The width of a typical out-of-order processor determines the number of µ-
ops that could be renamed. For instance, a 4-wide machine could rename up to four
µ-ops per cycle. However, in MOP model we constrain renaming to the number
of registers and not to the µ-ops. So, if a CMOP has four destination registers
then only the CMOP is renamed in that cycle. However, if a CMOP requires two
destination registers, two other µ-ops can be renamed in the same cycle.

• Dispatch Loads of the ld-set go to the traditional Issue queue, and an entry in
the control issue queue is allocated for each ld-set. The control issue queue entry
contains issue queue tags of all the loads in the ld-set. The same holds true for all
the moves in the mv-set. This hierarchical issue queue model is described below,
and illustrated in Figure 4.7.

• Commit Similar to the rename stage, if a CMOP has four destination registers
then only the CMOP is committed in that cycle. However, if a CMOP requires two
destination registers, two other µ-ops can also be committed in the same cycle.

4.3 The Co-designed Out-of-Order Processor 67

In Figure 4.7 Ld1 is the tag associated with the load in the load set. Control issue
queue entry corresponding to tag Lds depends upon ld1 issue queue entry, as shown by a
backward arrow in Figure 4.7. Similarly, CMOP depends upon the Lds and Mvs control
issue queue entry tags. Ld1 issue queue tag is broadcast to the control issue queue and
Lds issue queue tag is broadcasts to CMOP issue queue, where CMOPs are held. CMOP’s
dependence with ld-set and mv-set entry is built at runtime using information encoded
in the CMOPs. Such a model ensures that CMOP issues only when both the ld-set and
the mv-set have issued, without having the need of explicit source operand encoding in a
CMOP.

ld irf0, rcx = [rax, 8]

mov irf1, irf2 = rax, rbx

cmop rdx, rsp, rbp

st [rbp, 4], rax

: ld1
: mv1
: cmop

Lds Mvs

Cmop Issue Queue

ld1
mv1

Control Issue Queue

rax

rax rbx

Load Issue Queue

Integer Issue Queue

Figure 4.7: Hierarchical Issue Queue Model. As shown in the figure Control IQ contains entries
corresponding to ld1 and mv1. When all the loads in ld-set, only ld1 in this case, is ready signal
is sent to Cmop Issue Queue indicating Lds is ready. Similarly, when all the moves in mv-set,
only mv1 in this case, is ready signal is sent to Cmop Issue Queue indicating Mvs is ready.

4.3 The Co-designed Out-of-Order Processor

Since we use a co-designed processor, it requires HW support to efficiently implement
the source ISA using a VMM. These HW features include JTLB, dual-mode x86 address
decoders among others. All of these features are described in Chapter 3 and are used
as a baseline co-designed processor configuration. Some of these features are required
irrespective of whether a processor is in-order or out-of-order.

Moreover, since in this chapter we propose a HW/SW co-designed out-of-order proces-
sor, we propose a novel Bulk Commit Mechanism. The baseline out-of-order processor

68 Chapter 4. Co-designed Programmable Functional Unit

that we use, in this chapter, is described in Section 3.5.1.

In this section first we describe the problems associated with bulk commit of atomic
superblocks in the context of out-of-order processor. Next we propose a solution to support
bulk commit of atomic superblocks.

4.3.1 Bulk Commit of Atomic Superblocks

The atomic property of the superblocks requires that all the instructions of the superblocks
be successfully executed before the superblock could be committed. This implies all
the instructions corresponding to the superblock reside in the ROB; waiting for the last
instruction3 to have executed.

However, such a requirement leads to poor performance. Next we will describe couple of
problems associated with bulk commit of atomic superblocks.

Bulk Commit Problem 1

In a conventional modern out-of-order processor a ROB is present in the back end to
ensure in-order commit of µ-ops. As mentioned above the atomic property of superblocks
requires that all the µ-ops corresponding to the superblock are successfully executed before
the superblock could be committed. One implication of such a bulk commit in the context
of out-of-order processor is that the size of the superblocks are restricted to that of the
ROB.

ROB

1

2

3

4

SuperBlock 1

SuperBlock 26

7

5

1
2
3
4

Deadlock

Can not Commit

Can not Rename

Figure 4.8: Bulk Commit Limits the Size of Atomic Superblocks.

Figure 4.8 illustrates this using a simple example, where the size of superblock is five,
whereas the size of the ROB is four. As shown in the figure, suppose the first four µ-ops
of the superblock have a ROB entry allocated. µ-Op 5 cannot be renamed because ROB

3in the execution order

4.3 The Co-designed Out-of-Order Processor 69

does not have any entry available. Furthermore, µ-op 1 cannot commit because µ-op 5
has not yet been renamed. As a result, a cyclic dependency is created between µ-op 1
and µ-op 5, which leads to a deadlock.

The simplest solution to tackle this problem is to limit the size of the superblock to that of
the ROB. This way there would not be any deadlock created. However, smaller superblock
handicaps the dynamic binary optimizer’s ability to apply effective code optimizations.
For instance, code scheduling when applied on a larger superblock is more effective as a
larger instruction window is provided to the dynamic binary optimizer.

Bulk Commit Problem 2

The second problem with bulk commit of atomic superblocks in the context of out-of-
order processors is related to resource related stalls at the frontend. Figure 4.9 illustrates
the problem with a simple example. As shown in the figure, suppose all the µ-ops of the
superblock have a ROB entry allocated. Next suppose that µ-op 3 misses in L2-cache, as
a result µ-op 1 cannot commit because it has to wait for µ-op 3 and other µ-ops in the
superblock to complete execution.

SuperBlock 1

holds ROB until

miss is serviced

ROB

1

2

3

4

SuperBlock 1

SuperBlock 2

5

6

7

1
2
3
4

L2 miss

Can not Commit

Figure 4.9: Bulk Commit leads to frontend stalls. Since µ-op 3 has not yet missed in L2, all
the µ-ops of the superblock wait in the ROB.

This implies that the superblock 1 holds the ROB until the L2-cache miss is serviced. As
a result the superblock 2 cannot execute, and hence concurrent execution of superblocks
is impacted.

One way to limit the impact of such a scenario could be to increase the size of the ROB.
However, increasing the size of hardware structures affects the cycle time and dynamic
power consumption of the processor. Moreover, even though scaling the structures lead

70 Chapter 4. Co-designed Programmable Functional Unit

to performance improvement, past studies have shown that such increase provides dimin-
ishing returns.

4.3.2 Bulk Commit using a Speculative Map Table

In order to tackle the two above-mentioned problems, we speculatively retire the µ-ops
from the ROB. The µ-ops are retired in program order from the head of the ROB, and
the state associated is updated in a speculative structure.

We introduce the Speculative Register Rename Table (SpecRRT) that holds this spec-
ulatively retired register state. At the cycle when the tail of the superblock retires the
contents of the SpecRRT is committed to the Backend Register Rename Table (BRRT).

Moreover, only the µ-ops that produce live-out updates the SpecRRT. Such µ-ops are
marked by the VMM during the code generation process. As a matter of fact, it is not
necessary that such µ-ops be marked by the VMM. This is because when the µ-ops retire
they simply overwrite the previous mappings in the SpecRRT.

For instance, suppose that a superblock contains two µ-ops that write to rax. Since the
µ-ops are retired in the program order from the ROB, the youngest µ-op that writes to
rax will always update the mapping in SpecRRT after the older one. This way at the
end when the tail retires the SpecRRT will hold mappings of only the live-outs.

However, by explicitly marking the live-outs we save unnecessary accesses to SpecRRT
when µ-ops that do not produce live-outs retire. As a result, we co-design the commit in
order to save dynamic activity in the processor. This implies the µ-op encoding should
be extended to incorporate a single bit indicating whether the µ-op produces a live-out
or not.

The SpecRRT contains register mappings of only a single superblock at any given point
in time. This is simply because the µ-ops are retired from the ROB in program order and
when the tail of the superblock commits the contents of the SpecRRT are committed to
the BRRT.

Figure 4.10 illustrates the bulk commit mechanism using the SpecRRT. As shown in the
figure, all µ-ops update the FRRT at the rename stage. Now let’s suppose rax and rcx
are the live-outs of a superblock. When the two live-out producing µ-ops that write to
rax and rcx commit4 they update the SpecRRT, as shown in the Figure. At the cycle
when the tail of the superblock commits, the contents of the SpecRRT is copied to the
BRRT.

However, our bulk commit requires ROB in the backend to ensure atomic update of the
program state. In Chapter 6 we will provide a ROB-free bulk commit mechanism using

4when they reach the head of the ROB

4.4 Code Generation 71

PR7rdx

PR8rax

PR5

rbx PR3

rcx

FRRT

Copy Live-outs when

tail commits
from SpecRRT to BRRT

Rename Execute WriteBack Commit

PR9rdx

rax

rbx PR32

rcx

BRRT

PR8

PR5

XXrdx

rax

rbx XX

rcx

SpecRRT

PR8

PR5

Register mappings are

updated at Rename.

Registers are updated
at commit.

Pointer to Physical

Figure 4.10: Bulk Commit with SpecRRT. rax and rcx are the live-outs of the current su-
perblocks. Hence, rbx and rdx entries in the SpecRRT are invalid. As a result at commit only
rax and rcx are updated in the BRRT.

multiple per superblock map tables.

4.4 Code Generation

The Virtual Machine Monitor (VMM) plays an important role in dynamically compiling
code for an efficient use of the Programmable Functional Unit (PFU). The optimization
process implemented by the proposed Cd-VM is shown in Figure 4.11. This optimization
process is based on some of the basic steps described in Chapter 3, such as superblock
formation, Dataflow Graph Generation, Code Optimizations and Register Allocation.

We introduce some steps which are specific to this chapter. First, we propose a pre-
scheduling step that aggressively re-orders a superblock. This aggressive code re-ordering
enables better fusion opportunities.

Following, pre-scheduling is a MOP Fusion step that selects µ-ops for fusion. Once a
MOP is formed a performance objective function is invoked that determines whether the
formed MOP shortens the latency of the superblock. In case, the formed MOP decreases
the performance the MOP is discarded. All these additional steps are described in greater

72 Chapter 4. Co-designed Programmable Functional Unit

Superblock Formation

Pre-scheduling

Macro-op Fusion

Measurement
Performance

YesYes

improves

performanceperformance

degrades

Dataflow Graph Generation

Code Optimization

discard MOP

No No
micro-ops

left ?
micro-ops

left ?

keep MOP

Register Allocation

Figure 4.11: Code Generation Flow Chart. The first four are standard superblock formation
steps. The Macro-Op fusion step as shown is an iterative step, where instructions are fused
and then scheduled, which acts as a performance objective function. The performance objective
function indicates whether the fusion is beneficial. If the fusion increases performance the MOP
is kept, discarded otherwise. The fusion algorithm goes on iteratively until all the µ-ops have
been considered.

details below.

4.4.1 Pre-Scheduling

Instruction pre-scheduling is performed prior to the generation of complex macro-ops. The
pre-scheduling heuristic is based upon list-scheduling, but assumes unbounded execution
resources. Moreover, the priority of nodes is based on the original program order, whereas
in list-scheduling heuristic priorities are computed using critical path analysis.

Algorithm 2 lists the pre-scheduling heuristic. This heuristic is very similar to the list
scheduling heuristic, Algorithm 1, listed earlier in Chapter 3. The ready-list initially
consits of µ-ops that could be issued at the first cycle, as shown in Line 2. The order among
the µ-ops in the ready-list is decided by the original program order. µ-ops are moved from
the ready-list to the inflight-list, as shown in Line 6. These µ-ops are then removed from
the inflight-list when their output is ready, as shown in Line 15. Furthermore, their
dependents µ-ops are inserted into the ready-list, if all of the operands of the dependent

4.4 Code Generation 73

Algorithm 2 Pre-Scheduling Algorithm

1: cycle = 0
2: ready-list = root nodes of DFG
3: in-flight-list = empty list
4: while ready-list or in-flight-list not empty do
5: for op = all nodes in ready-list in original program order do
6: remove op from ready-list and add to in-flight-list
7: add op to schedule at time cycle
8: if op has an outgoing anti-edge then
9: Add all target’s of op’s anti-edges that are ready to ready-list

10: end if
11: end for
12: cycle = cycle + 1
13: for op = all nodes in in-flight-list do
14: if op finishes at time cycle then
15: remove op from in-flight-list
16: check nodes waiting for op in DFG and add to ready-list if all operands available

17: end if
18: end for
19: end while

µ-ops are available, as shown in Line 16.

This pre-scheduling step helps in aggressively reordering µ-ops, including load and stores.
As a result of which, the µ-op fusion algorithm get more opportunities to find instruction
groups for fusion.

4.4.2 Macro-op Fusion

After the µ-ops have been pre-scheduled, the Macro-op fusion heuristic is invoked by the
VMM. The heuristic uses a model of PFU defined by the microarchitecture. This model
includes information regarding the number of rows and columns in the grid, number of
input and output operands. Algorithm 3 lists the heuristic.

First, the dataflow graph is traversed in the pre-scheduled program, as shown in Line 1.
A µ-op is placed such that it is placed always in the rows below the ones in which its
predecessors are placed in the PFU model, as shown in Line 7.

For instance, as shown in the Figure 4.12 µ-op 2 is placed in row 2 even though row 1’s
col 2 is unoccupied. If the µ-op could not be fused in the current MOP it is skipped, as
shown in Line 8, and will be considered in subsequent MOPs. If, however, the µ-op could

74 Chapter 4. Co-designed Programmable Functional Unit

rbxrax

rnm1

rcxrcx

rbx
zf

rdx imm

rnm2

1 3

2

4

(a) DataFlow Graph

Grid of PEs

1

2

Row 1

Row 2

Col 1 Col 2

(b) PFU Model

Figure 4.12: Macro-op Fusion Illustration. The figure in the left shows a dataflow graph and
the figure on the right is a model of PFU. The fusion algorithm uses this model to place µ-ops.
Data dependencies are respected by placing dependent µ-ops in a row lower than the producer’s
row. For instance, the µ-op 2 is placed in row 2 even though row 1’s col 2 is unoccupied.

be placed, then its added to MOP, as shown in Line 11.

If a µ-op cannot be fused then its skipped as well, as shown in Line 4. Following is a list
of µ-ops that can not be fused.

• Loads that are dependent on any of the µ-op of the current MOP are not included.

• Also complex µ-op (e.g. FPDIV) not considered for fusion.

• Dependent µ-ops of not included µ-ops are discarded as well.

• The algorithm considers structural constraints that prevent µ-ops for not being
included in a MOP, including: (1) read ports, (2) write ports, (3) the number of
rows and columns in the grid, (4) IRF register file size, and (5) µ-ops that require
inputs from IRF to be placed in ALU that is connected to IRF and the bypass
network.

Performance Objective Function

Note that, a CMOP can only be issued when both the ld-set and mv-set have issued,
which creates artificial dependencies and could delay the critical path. In order to avoid

4.4 Code Generation 75

Algorithm 3 Macro-op Fusion Algorithm

1: while pre-scheduled-list not empty do
2: start-op = first node in pre-scheduled-list
3: for op = all nodes in pre-scheduled-list younger than start-op do
4: if non-fusible op then
5: continue
6: end if
7: place op in any row below from its producer
8: if no such row found or not enough input output registers available then
9: continue

10: end if
11: add op to MOP
12: update input-register list and output-register list
13: end for
14: if MOP formed then
15: call performance objective function
16: if performance degrades then
17: Discard MOP
18: Remove start-op from pre-scheduled-list
19: continue
20: end if
21: Place MOP in the superblock and continue
22: Place all the ops of the MOP in included-list
23: Remove all the ops of the MOP from pre-scheduled-list
24: end if
25: end while

situations where a sub-optimal fusion degrades performance, the algorithm for fusion, as
listed in Algorithm 3, uses a performance objective function.

Once a MOP is formed, the performance of the actual state of the generation is estimated.
The performance function models the execution of the partial code generated by means
of a scheduling step.

In particular, every time a MOP is formed, the MOP and the remaining code is scheduled.
If the current MOP degrades performance, the MOP is discarded. The algorithm then
reiterates over the remaining µ-ops and exits when all the µ-ops have been considered.

The performance objective function is illustrated above in Figure 4.14, corresponding to
the dataflow graph of Figure 4.13. In this example the critical path is increased after the
fusion by a single cycle. As a result the MOP will be discarded.

For those superblocks that are loops the performance objective function schedules sched-
ules multiple iterations of the superblock. From our studies we have observed that schedul-

76 Chapter 4. Co-designed Programmable Functional Unit

a b

d

f

g

e

c

Figure 4.13: Dataflow graph showing the fused Macro-op.

ing 4 iterations is sufficient. Note that, when scheduling multiple iterations, loop-carried
dependencies are considered.

The key reason behind scheduling multiple iterations of a superblock that is a loop, is
that it provides a larger scope to estimate the performance of the MOP. Instead, if the
superblocks that are loops, were unrolled at the first place while forming them, then such
a scheduling of multiple iterations of the superblock would not be required. However, loop
unrolling not only leads to code expansion, but for atomic superblocks they cut down the
completion rate as well.

The scheduling step of the performance function models the execution of the code in the
hardware underneath by considering (1) the issue queues; (2) the issue constraints; and (3)
the impact of the memory disambiguation scheme implemented in hardware. Moreover,
it considers the cases where a superblock is loop by scheduling multiple iterations (i.e. 4)
of the superblock.

By combining all these heuristics, we have a simple yet powerful scheme to estimate the
benefits of fusion. This allows us to discard a MOP that could degrade the performance.
However, since our performance objective function is a heuristic, there are scenarios where
some MOPs could be discarded incorrectly.

4.4.3 Final Code Generation

As a final step in the code generation flow, the optimized version of the code in the
superblock is stored in the code cache for later use. The configurations of the CMOPs
corresponding to a superblock are appended to the superblock and stored in the code
cache.

4.5 Performance Evaluation 77

a b
c d
e f
g

Issue Slots

1 2

1

2
3
4

C
yc

le

(a) Before Fusion

d
b

a c f

g
e

Issue Slots

1 2

1

2
3
4

5

C
yc

le

(b) After Fusion

Figure 4.14: Schedule before and after the fusion.

The configuration of a CMOP, which contains the pre-decoded control signals and the
immediate values of the MOP, is associated to a unique identifier. Identifiers are encoded
in 10 bits allowing up to 1024 CMOPs to be present in the code cache, which is more
than sufficient based on our experiments.

A counter stored as data of the Cd-VM is increased each time a new CMOP is generated.
When this counter overflows, identifiers are reused. Once an identifier is reused the
superblock associated to the CMOP is discarded.

4.5 Performance Evaluation

Table 4.1 provides detailed information of the microarchitecture of the simulated processor
and the proposed PFU configuration. The details of baseline out-of-order processor can
be found in Chapter 3 in Table 3.3.

In this evaluation we have studied the performance of the proposed PFU using different
PFU configurations: varying the grid size, and constraining the number of PEs that could
receive data from the bypass network. Next, we have studied the impact of constraining
the number of write ports in the Physical Register File. This constrains the number of
destination registers in a CMOP. We have also studied the impact of fusion heuristics on
performance.

Finally, we compare our proposal to a processor with SIMD FU, where SIMD instructions
are generated dynamically. We also show that its possible to outperform a wider machine
using our proposal. For this study we compare with two different variants of eight-wide
issue processor.

78 Chapter 4. Co-designed Programmable Functional Unit

Common Parameters
Issue Width 4 (2 loads, 2FP, 2 INT, 2 st, 1 CMOP)

Out-of-order Parameters
Rename 8 source, 4 destination operands
Issue Queue 16 entry FP, Int, Mem,

CMOP and Control
Functional Units 2 LDU, 2 ALU, 2 AGU, 2 FPU, 1 PFU
Rename Table 1 FRRT, 1 BRRT, 1 SpecRRT

PFU Parameters
Grid size 2 columns, 3 rows
Internal Register File 5 RF sets, 3 RFs per set,

4 entries per RF,
4 read and 4 write ports per RF

Configuration Cache 5 (7 byte) entries per PE
Execution Latency 1 or 2 cycles

Table 4.1: Proposed Processor Configuration. The items in bold are added over the baseline
out-of-order processor of Table 3.3.

4.5.1 Impact of Microarchitectural Constraints

As mentioned earlier in Section 4.4, microarchitectural constraints are considered while
fusing micro-ops. These constraints are PFU grid size, number of write ports in conven-
tional register file , number of PEs connected to the bypass and latency of the PFU. Hence,
in this section we do a sensitivity analysis to understand the impact of these constraints.

PFU as described earlier is a grid of PEs. We try to vary the number of columns in the
grid from one to four, but keeping the number of rows fixed to three as shown in Figure
4.15. In SPECINT the 2x3 grid is the best performing configuration. For SPECFP, the
2x3 grid provides performance close to that provided by a 4x3 grid. Therefore, we choose
2x3 grid configuration for PFU.

Note, however, that in some cases increasing the number of columns in the grid (e.g.
wupwise, applu, twolf) results in a lower performance improvement. The main reason for
this is the fact that the heuristic for fusion, fuses as many micro-ops possible. Thus, in
some cases, micro-Ops that are independent are also fused,and so delay in input for one
micro-op delays the execution of the CMOP.

The write ports of the Physical Register File is another important constraint. For the
purpose of this study we choose two grid configuration 2x3 and 3x3. For 2x3 grid we vary
write ports (wp) from four to six, while for the 3x3 grid write ports are varied from six
to eight as shown in Figure 4.16.

4.5 Performance Evaluation 79

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

1 cols 3 rows
2 cols 3 rows
3 cols 3 rows
4 cols 3 rows

Figure 4.15: Impact of grid size. The number of rows is kept fixed to 3, while the number of
columns are varied from one to four. PFU latency = 1, bypass to PE = unbounded, Physical
Register File Write Ports = 4.

Note that, although in SPECFP 3x3 grid with six write ports is the best performing
configuration but it exceeds 2x3 grid by not more than 1%. In SPECINT 2x3 grid with
six write ports is the best performing configuration. Note that, increasing the write ports
in a 3x3 grid from six to eight, however, decreases the performance. This is again due to
aggressive fusion heuristic as explained above and the behavior is evident in wupwise, art
etc.

To support back-to-back execution of CMOP, register operands should be bypassed to
each of the PEs of PFU. This bypass however is needed only from the ALUs in which the
mv-set executes and from the LDUs where the loads execute. A fully connected bypass
network, where data is bypassed to all the PEs of PFU is not complexity-effective. Our
simulation results suggests a design point with both the PE in the first row and one PE
each in the second and the third row provide performance within 0.5% of a configuration
where all the PEs are connected to the bypass.

We chose four different configurations, from all the PEs to only one PE in each row
connected to the bypass. The tags r1-r2-r3 in Figure 4.17 indicate the number of PEs in
the ith row connected to bypass. A 2x3 grid with 2-1-1 input constraint appears to be a
good trade-off between complexity and performance.

On the other hand, PFU execution latency also is another important factor that con-
tributes to performance gain. After all, fusing a chain of micro-ops and executing them
in fewer cycles have been shown to provide benefit [26, 52, 96, 98]. Interlock collapsing
ALUs [52] collapses two ALUs and execute in a single cycle. Moreover, as mentioned in
Section 4.2.3, we do not introduce forwarding logic from PFU to other ALUs is removed.
Based on the above observations, we consider two PFU execution latencies of 1 cycle or

80 Chapter 4. Co-designed Programmable Functional Unit

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

2 cols 3 rows 4 wp
2 cols 3 rows 6 wp

3 cols 3 rows 6 wp
3 cols 3 rows 8 wp

Figure 4.16: Impact of increasing conventional register file Write ports. PFU latency = 1,
bypass to PE = unbounded.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

2-2-2
2-2-1
2-1-1
1-1-1

Figure 4.17: Impact of constraining the bypass to PEs. PFU latency = 1, Physical Register
File Write Ports = 4.

2 cycles5.

Figure 4.18 shows the effect of execution latency on a 2x3 and 3x3 grid configuration.
SPECINT is particularly sensitive to this increase in latency. Mesa, however, shows a
reverse trend, recollect that our code fusion algorithm tracks the performance of fusion
by scheduling the generated instructions. If the fused MOP degrades the performance it is
discarded. This results in few MOPs being generated, which provides better performance
than aggressively fused MOP.

5We chose this experiment because we could not determine the cycle time of the processor. The cycle
time of a processor depends upon a lot of factors that are beyond the scope of this thesis. Hence we
consider different latencies that we believe are reasonable and are based on previous work[26]

4.5 Performance Evaluation 81

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

2 cols 3 rows 1 cycle
3 cols 3 rows 1 cycle

2 cols 3 rows 2 cycle
3 cols 3 rows 2 cycle

Figure 4.18: Impact of varying PFU latency. Bypass to PE = 2-1-1, Physical Register File
Write Ports = 4.

4.5.2 Impact of Fusion Heuristics

In the HW/SW co-designed processor the fusion heuristic also plays an important role in
improving performance. This impact in performance is clearly visible in all the bench-
marks as shown in Figure 4.19. In a couple of benchmarks, such as lucas and wupwise,
the Basic Fusion actually slows down the application. Recollect that our MOP-fusion
algorithm tries to fit in as much micro-ops as possible. As a result of which artificial
dependencies are created, leading to lengthening the critical path.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

Basic Fusion
Advanced Fusion
Advanced Fusion + pre-scheduling

Figure 4.19: Impact of Fusion Heuristics. Basic Fusion stands for the case when instruction
fusion is guided with the performance objective function. Advanced Fusion stands for the case
when the performance objective function is extended in order to scheduled multiple iterations
of loopy superblocks. pre-scheduling is a code optimization technique where instructions are
re-ordered aggressively. This provides a better opportunity for fusion. PFU latency = 1, bypass
to PE = 2-1-1, Physical Register File Write Ports = 4, Cols = 2, Rows = 3.

82 Chapter 4. Co-designed Programmable Functional Unit

As mentioned in Section 4.4, performance of fusion is evaluated using a performance
objective function based on a scheduling step. However, the scope of this monitoring is
limited to the superblock. Getting a global scope for all superblocks is a cumbersome task.
However, for loopy superblocks in order to get a semi-global scope, multiple iterations of
the superblocks are scheduled. The impact of this optimization can be seen from Figure
4.19 by the bar with tag Advanced Fusion. The performance benefit in wupwise, mgrid
and applu are particularly noticeable. This is simply because many of the superblocks in
these applications are loops.

As discussed earlier in Section 4.4, fusion is preceded by pre-scheduling. Superblocks are
aggressively reordered in the pre-scheduling phase and a new program order is obtained.
The impact of pre-scheduling step can also be seen from Figure 4.19 in the third bar with
tag Advanced Fusion + pre-scheduling. This aggressive re-ordering can have a negative
impact in performance, as evident in ammp, apsi and bzip2. This happens because some
store instructions are pushed down, resulting in loads from succeeding superblocks to be
delayed.

4.5.3 Impact of Mov-set

From Figure 4.15 we have concluded that a PFU configuration with two columns and
three rows is a good trade-off. Moreover, in Subsection 4.5.1 we conclude that only four
of these six (2*3) PEs need input from bypass or the Physical Register File. This provides
us with an opportunity of removing mov-set entirely. The number of read ports in Physical
Register File is eight and can satisfy the need of PFU. However, Load-set are still required
and they write their outputs to both the Physical Register File and the Internal Register
File. Consequently, the cmop contains both multiple source and destination operands,
subject to a total of four operands.

The benefit of removing the mov-set is significant and is shown in Figure 4.20. On an
average, we obtain a performance benefit of 29% and 19% for SPECFP and SPECINT,
respectively. This is a speedup of nearly 10% over the version with mov-set. This benefit
is primarily due to gain in back-to-back execution between the producers of cmop and
the cmop. Furthermore, by removing mov-set we reduce the dynamic instruction count
and reduce the pressure on execution resources of the processor.

4.5.4 Comparison with alternate designs

As mentioned earlier chaining of FUs has been shown to provide performance benefits[26,
52]. Also at the same time vector functional units increases performance[40, 74]. Our
proposal tries to leverage on these two facts in a more efficient way with little change over
the baseline architecture.

4.5 Performance Evaluation 83

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

with mv-set without mv-set

Figure 4.20: Impact of removing mov-set. PFU latency = 1, bypass to PE = 2-1-1, Physical
Register File Write Ports = 4, Cols = 2, Rows = 3.

For the purpose of putting our proposal in perspective, we have compared our proposal
with other alternatives to increase the effective execution of the processor. First of all we
have compared our approach with an scheme that performs dynamic auto-vectorization
or SIMDification [82]. In the implemented auto-vectorization scheme the VMM generates
SIMD instructions using the similar code generation heuristics as described earlier in 4.4.

However, instead of fusing instructions to reduce the total execution latency here the
instructions are fused in order to be executed in the SIMD units and therefore increasing
the effective execution of the machine. The SIMD instructions considered are SSE2 and
hence act upon four 32-bit operands in parallel. The impact of the auto-vectorization
performance is shown in Figure 4.21 by the bar with dynamic SIMD tag.

The 2x3 PFU grid adds six more ALUs to the baseline processor, whereas the baseline
processor does not have additional FUs6. Hence, for the sake of a comparison with an
alternate process with similar execution resources, we chose two variants of the baseline
out-of-order processor. In order to utilize the additional execution resources we increase
the issue width to eight and double the number of read and write ports.

In the first eight-wide issue variant as shown in Figure 4.21, by the bar 8-wide ALU, we
add six more ALUs to the baseline processor and increase the issue width from four to
eight. The results show that a HW/SW co-designed processor outperforms an eight-wide
issue machine. Note that, in this eight-wide issue variant the bypass is provided from all
the FUs to all the newly added ALUs. Whereas in our model we provide a limited bypass
as evaluated in the section 4.5.1.

In the second eight-wide issue variant we consider a more aggressive design, in which

6Note that, our proposed processor with PFU has an issue width of four and is further constrained by
total number of read and write ports.

84 Chapter 4. Co-designed Programmable Functional Unit

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

dynamic SIMD
8-wide 8 ALUs
8-wide double FUs
PFU

Figure 4.21: Comparison with SIMD and 8-way out-of-order. Two versions of 8-way issue
out-of-order were chosen. One with six additional ALUs and one with doubling all the FUs.
PFU latency = 1, bypass to PE = 2-1-1, Physical Register File Write Ports = 4, Cols = 2, Rows
= 3, No mv-set.

all the FUs are doubled, including memory and complex FUs such as, FPDIV. Such an
eight-wide issue machine performs well in case of SPECINT and is evident in Figure 4.21
by the 8-wide double FUs bar. Adding more store and load units has a stronger impact
in performance in SPECINT. However, our proposal outperforms this eight-wide issue
processor without doubling any memory or complex FUs.

Doubling the issue width of the processor has an impact not only in the area, but also
on the cycle time. Moreover, a fully-connected bypass network is required which adds
further to complexity. Hence, we argue that our HW/SW co-designed PFU approach
with limited bypass and an issue width of four is complexity-effective as well.

Furthermore, in our co-designed processor, as mentioned earlier in Section 4.2, we do not
increase the number of ports in either of the following the register file, the rename tables.
This implies that if a CMOP is being renamed and has four destination operands, then
only the CMOP could be renamed in that cycle. The same condition holds true when a
CMOP is being committed.

Figure 4.22 compares our proposed co-designed processor with an out-of-order processors
that has all the resources doubled, such as ROB is 256 entry and so is Physical register
File size. The details of the microarchitecture can be found in Chapter 3, Table 3.4. The
performance of the PFU based co-designed processor is very close to that of the 8-wide
processor in SPECFP. This is primarily because superblocks in SPECFP are larger. As a
result, the superblocks in SPECFP enjoy the same benefit that a large instruction window
processor does.

Moreover, the SpecRRT mechanism allows early release of ROB entries and the Physical
Register File entries. This in a way creates the net effect of a large instruction window

4.5 Performance Evaluation 85

1

1.2

1.4

1.6

1.8

2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINTSPECFP SPECINT

8-wide ROB256
PFU

Figure 4.22: Comparison with 8-way ROB 256 out-of-order. All the resources of the processor
has been doubled. PFU latency = 1, bypass to PE = 2-1-1, Physical Register File Write Ports
= 4, Cols = 2, Rows = 3, No mv-set.

out-of-order processor. Furthermore, the PFU helps in reducing execution latency of
the fused instructions. However, for SPECINT, the 8-wide processor outperforms our
proposal by 17%. This is due to smaller superblocks in SPECINT.

4.5.5 Qualitative Discussion on PFU

A significant fraction of the execution cycle in out-of-order processors is dedicated to
operand forward logic [41, 76]. In our PFU design we remove the operand forward logic
from PFU to other FUs and dedicate this fraction of execution cycle to execution.

On the other hand, researchers [26, 78] have shown that chain of simple ALUs can be
collapsed in a single cycle. CCA [26], for instance, have validated this conclusion by eval-
uating their design for various depth levels. Hence, based up on the above two arguments
a single cycle or at-most two cycles is a reasonable estimate for the execution latency of
the PFU.

In Section 4.2.3 we described the organization of PFU. We described the two major
components of the PFU 1) the distributed internal register file, and 2) grid of PE. The
distributed Internal register file consists of a grid of register files with five columns and
three rows. Each register file has four entries and has at-most four read ports. Four write
ports are provided for the inputs from ld-set and mv-set. The total size is 240 bytes.
Since, this register file is both small and has fewer read ports it is not in the critical path.

The grid of PE consists of ALUs connected in a dataflow fashion and a distributed con-
figuration cache. The size of distributed cache is estimated to be 210 bytes. Since, the
request of loading the configuration from I-cache is made in the rename stage we try to

86 Chapter 4. Co-designed Programmable Functional Unit

remove the configuration access from critical path. However, in case of unavailability
of space configuration cache the issue is stalled. Our experiments have indicated that a
configuration cache with entries for five different configurations is sufficient. The selec-
tion logic that extracts the corresponding control signal is fairly simple and each PE can
extract its control signal in parallel.

4.6 Related Work

Application acceleration through accelerators have been subject to extensive research.
The basic principle behind such an approach is to identify recurring instruction patterns
and execute them on specialized function units. The identification process can be done by
a static compiler by feeding back the profile information. Hardware dynamic optimizers
could also perform this task. The identification process is not only limited to identification
but also to generating the fused instruction that executes on the accelerators.

These accelerators can be broadly classified into coarse-grained or fine-grained. A coarse-
grained accelerator is the one which executes a large set of instructions that are fused
together. Typically these accelerators are a co-processor. Such accelerators are more
suitable for kernel oriented applications. Several such kind of accelerators have been
proposed in the past[83, 30, 49, 48, 45].

Most of these are FPGA based such as [45, 49, 30, 83]. Piperench[45] was proposed to
accelerate multimedia streaming applications. Xputer[48] was proposed for Digital Signal
Processing applications. In contrast to coarse-grained accelerators, in this chapter we
have proposed a fine-grained accelerator that is present in the processor’s datapath along
with other functional units.

Moreover, many different types of fine-grained accelerators [26, 98, 96, 52, 81, 20] have
been proposed in the past, as well. Most of them [26, 96, 20, 81] extend the ISA. The fused
instruction that executes on this accelerator are programmed using static code generation
scheme. However, as applications evolve, these accelerators may require some changes
from generation to generation.

As a result, adding instructions at ISA level may pose important constraints for future
processor generations. In contrast in our approach the x86 ISA is not extended, instead
the target ISA which is only visible to the microarchitects is extended. Moreover, in our
scheme the fused instructions are generated dynamically.

However, dynamic and transparent management of these accelerators have been studied
in the past. Some works [26, 98] have focused on managing accelerators with hardware-
based dynamic optimizers. To keep the complexity and power costs of these hardware
optimizers in check, they are design to handle simple cases. A dynamic software binary
optimizer, on the other hand, is more flexible and can generate instructions using more

4.6 Related Work 87

advanced heuristics.

Moreover, some of the fine-grained accelerators [96, 20, 81, 98] are FPGA based Functional
Units that are added to the datapath of the processor. The flexibility of the FPGA comes
with the price of long latency. Moreover, FPGA reconfiguration latency is usually longer.
As a result, FPGAs are more suitable for applications where a large number of instructions
could be offloaded. In contrast in this chapter we have proposed an accelerator that is a
grid of functional units.

The work closest to the one proposed in this chapter is CCA [26]. The authors had made
a key observation that when collapsing dataflow subgraphs for customized instruction
set extension, the flexibility of an FPGA is generally more than necessary. Most of
the dataflow subgraphs can be collapsed using a basic set of primitives such as simple
arithmetic and logical functional units.

However, there are several key differences between our proposal and CCA. First of all
the CCA proposes two code generation schemes, one is static compiler based, while the
other one is using the hardware dynamic optimizer the rePlay framework[77]. In contrast
we use a dynamic binary translator, which is flexible and provides binary compatibility
as well. Moreover, CCA had focused on multimedia applications, whereas we consider
general-purpose applications.

Moreover, we had proposed an internal register file was proposed to hold the input
operands. A ld-set and mv-set was proposed to bring data from the conventional register
file to the internal register file. Furthermore, the pre-decoded control signals correspond-
ing to the fused instructions are stored in the configuration cache.

However, using accelerators in HW/SW co-designed approach has been proposed in past.
Hu et. al. [52] had proposed a complexity-effective out-of-order processor. In their work
they use ICALU [78] to execute a fused pair of dependent ALU instruction in a single
cycle. They propose a VMM to find and fuse instruction pair within a superblock, same
as we do.

However, they focus only on SPECINT benchmarks as it has abundance of dependent
ALU instruction pair. They compared their proposal, which is a two-way out-of-order
processor with ICALU, with a four-way out-of-order processor. In contrast, in this work
we focus on exploiting the benefits of a larger and powerful accelerator over larger regions.

Mini Graph [15] collapses multiple instructions in order to amplify processor bandwidth
and introduces a handle which is similar to a configuration. However, we proposed MOPs
mainly to gain performance. The side-effect of fusing instruction is also reduction in the
pressure on processor resources.

The large differences between the proposals made in the prior works as well as the com-
pletely different frameworks used for their evaluation make the comparison among the
different proposals not an easy task sometimes not even possible. Therefore we have left

88 Chapter 4. Co-designed Programmable Functional Unit

that as a future work.

On the other hand a recent work has considered the benefits of using a co-design virtual
machine to deal with the changes on the SIMD vector ISA from generation to generation
[25]. They propose an abstract ISA for SIMD instruction; a binary translation layer takes
care of recompiling from abstract ISA to that of the underlying architecture. In contrast,
in this work we proposed a new PFU and we show that this scheme outperforms SIMD-
based accelerators. As far as we know this is the first work where these alternatives are
compared.

4.7 Conclusions

A HW/SW co-designed approach is a complexity-effective way of providing high per-
formance for general purpose application. A Cd-VM reorders a superblock and fuses a
sequence of micro-ops to generate a MOP. The fusion is done by taking into account the
existing microarchitectural resources and performance of fusion is monitored. A split-
MOP model allows inputs to be provided both from memory and conventional register
file.

A novel PFU executes the CMOP design is proposed which exploits both ILP and chain-
ing to gain performance. We obtain average speedups of 17% in SPECFP and 10% in
SPECINT. We also obtain speedups of up-to 33 % is some benchmarks. Moreover, with a
slight modification in the proposed MOP model we obtain improvements in performance
of 29% in SPECFP and 19% in SPECINT.

We measure the impact of various microarchitectural constraints on performance. We also
demonstrate that, by introducing some code generation scheme performance is improved.
We also show that our split-MOP model outperforms not only a dynamic SIMD machine
but also 8-wide issue machine. Hence, we conclude that a new generation of out-of-order
processors can be co-designed for higher performance in a complexity-effective way.

Chapter 5

SoftHV

In the previous chapter we had proposed a HW/SW co-designed out-of-order processor
with a Programmable Functional Unit. The goal was to accelerate execution of general
purpose programs executing in a modern out-of-order processor.

In this chapter, however, we pursue a low-complexity yet a high-performance processor
design. In order to cut down complexity we use a simpler in-order microarchitecture
equipped to run a Cd-VM Monitor. In order to achieve higher performance we propose
the use to two kinds of accelerators. These application specific accelerators execute fused
µ-ops either with low latency or provide higher bandwidth to improve performance. The
key contributions of our proposal, SoftHV, is a high-performance HW/SW co-designed
in-order processor that executes horizontally or vertically fused µ-ops.

SoftHV consists of a co-designed virtual machine (Cd-VM) which reorders, removes and
fuses µ-ops from frequently executed regions of code. On the hardware front, SoftHV
implements HW features for efficient execution of Cd-VM and efficient execution of the
fused µ-ops. In particular, (1) Interlock Collapsing ALU (ICALU) is included to execute
a pair of dependent simple arithmetic operations in a single cycle, and (2) Vector Load
unit (VLDU) is added to execute a pair of independent loads.

Results presented in this chapter show that SoftHV produces average performance im-
provements of 9% in SPECFP and 10% in SPECINT, and up-to 28%, over a co-designed
four-way in-order processor that is equipped with code optimizations. For a two-way in-
order processor configuration SoftHV obtains improvements in performance of 9.5% and
11.5% for SPECFP and SPECINT, respectively.

90 Chapter 5. SoftHV

5.1 Introduction

In this chapter we consider a HW/SW co-designed microprocessor based on an in-order
core and using a Cd-VM. Using an in-order core, we drastically cut complexity and power
consumption. The Cd-VM helps in optimizing code and reordering instructions by ex-
ploiting the ILP and provides performance benefits. HW support is added in order to
aggressively reorder memory instructions.

Moreover, the use of a Cd-VM further facilitates the introduction of new microarchitec-
tural features transparent to application software and operating system. Such features
are only visible to the Cd-VM, which is responsible for generating appropriate code to
reap benefits of these HW features. One example of this is the use of specialized or pro-
grammable functional units that allows execution of certain code sequences faster than in
conventional FUs.

The use of specialized or programmable FUs results in a power-efficient way to invest the
transistor budget. However, the challenge when dealing with this specialized hardware
is twofold: first, the hardware needs to be designed in a way such that it fits the most
common properties of the different workloads, and second code needs to generated in
order to make efficient use of these FUs.

Our proposal SoftHV considers a HW/SW co-designed in-order processor where the Cd-
VM performs vertical and horizontal fusion of instructions leveraging two types of spe-
cialized FUs: (1) Interlock Collapsing like ALUs (ICALU) [78] that executes a pair of
dependent simple arithmetic/logic µ-ops that have been previously fused into a macro-op
(MOP), that is vertical fusion; and (2) Vector Load Units (VLDU) [37] executes a pair of
fused parallel loads known as a vector load (VLD), that is horizontal fusion.

ICALU provides performance improvement by collapsing a dependent pair of simple ALU
µ-op in a single cycle, as already shown by Hu et al. [52]. However, in this chapter we go
beyond Hu’s proposal by using both ICALU and VLDU. This provides additional benefit
of higher effective processor bandwidth by decreasing the dynamic instruction count.

The Cd-VM in SoftHV uses hardware profiling to form superblocks. It optimizes the
superblock by performing some code optimizations such as copy propagation, limited
dead code elimination, load-store telescoping, as described in Chapter 3. It then selects
pair of dependent simple arithmetic operations µ-ops and fuses them to generate macro-
ops (MOP). Also pair of parallel load operations are fused into a vector load instruction
(VLD).

The key novelty of SoftHV is the right combination of the two types of accelerators with
code generation techniques that provide higher performance for two different application
suites. The two different kinds of applications suites we use are: (1) SPECINT, where
pairs of dependent simple arithmetic/logic operations are very common; and (2) SPECFP,
where the limited amount of architectural registers results in more spill code and therefore

5.2 Motivation for Horizontal and Vertical Fusion 91

the bandwidth of memory access is a critical constraint.

Performance results presented in this chapter shows that SoftHV provides average im-
provements in performance of 9% for SPECFP and 10% for SPECINT over a conventional
four-way in-order processor. Also, SoftHV provides average improvements in performance
of 9.5% and 11.5% for SPECFP and SPECINT over a two-way in-order processor, respec-
tively.

The rest of the chapter is organized as follows. In Section 5.2 we discuss some further
insights on the motivation behind using horizontal and vertical fusion. In Section 5.3, we
provide the microarchitecture details of our proposal. We also discuss the microarchitec-
ture with special attention paid to ICALU and VLDU. Pipeline stages that are impacted
in order to support such a co-designed processor is discussed.

The code generation technique is discussed in Section 5.4. A detailed evaluation and
breakdown of performance benefits is provided in 5.5. Finally, related work is reviewed
in Section 5.6 and we conclude in Section 5.7.

5.2 Motivation for Horizontal and Vertical Fusion

SoftHV performs horizontal and vertical fusion of instructions, that is parallel instructions
and dependent instructions are fused and then executed in specialized FUs. The combi-
nation of these two types of fusion is critical for a general domain processor to achieve
competitive performance results for different types of workloads. For instance, SPECINT
and SPECFP applications.

In case of SPECINT, pairs of dependent simple arithmetic/logic operations are very com-
mon, and therefore a vertical fusion of dependent instructions is a key feature for a
processor in order to reduce the latency of the more critical instructions.

On the other hand, SPECFP presents a higher degree of parallelism. Such a degree of
parallelism combined with limited amount of architectural registers results in more spill
code. In turn this results in an increase of memory accesses. However, it is also fre-
quent that spilled-code consists of many pairs of parallel loads that depend on a single
source operand register and differ only in the immediate offset. Therefore a proper hard-
ware to execute vector loads reduces the amount of accesses and effectively increases the
throughput of the machine.

92 Chapter 5. SoftHV

5.3 SoftHV Architecture Overview

SoftHV is a HW/SW Co-designed Virtual Machine (Cd-VM) system with an in-order
microarchitecture. As described earlier in Chapter 2, a Cd-VM consists of a Virtual
Machine Monitor (VMM). As mentioned earlier, in order to gain performance we have
used two kinds of functional unit based HW accelerators.

The first accelerator the ICALU [78] executes a pair of dependent ALU instructions in
a single clock cycle. The second accelerator the VLDU executes a pair of independent
loads, that depend upon the same base register. The fused instructions are generated by
the VMM at the time of superblock formation. A simple but efficient fusion heuristic is
proposed in order to decide which instructions to fuse and how(vertically or horizontally).

5.3.1 Microarchitecture Overview

Shadow

FP RF

FP RF

Instruction
Fetch

Shadow

INT RF

INT RF

L1-Dcache

FPU

VLDU

ICALU

LDU

L1-Icache

Instruction
Decode + Issue

AGU

ALU

Gated Store

Buffer

Figure 5.1: The Co-designed Processor Overview for a 2-way in-order configuration. A de-
coupled in-order microarchitecture is used, and both the ICALU and VLDU are added to the
datapath of the processor. Normal loads are sent to ALUs for their address generation, followed
by access to D-cache. Shadow Register Files holds the committed state, whereas the Working
Register Files holds the speculative state. Stores are held in Gated store buffer until commit.

Figure 5.1 provides an overview of the proposed co-designed processor based on decoupled
in-order microarchitecture. Fetch buffers decouple fetch from decode while issue queues
decouple decode from the execution back-end of the processor.

A two-level decoder as proposed in [52] is used. The ability to execute x86 code natively

5.3 SoftHV Architecture Overview 93

avoids the need for an interpreter and hence, the slowdown associated with it. X86
instructions are decoded to RISC-like µ-ops. µ-ops are seven bytes in length. The first
bit of the µ-op indicates whether the µ-op is fused with the immediately following µ-op.
We implement a similar host µ-op ISA as proposed by HU [52].

Cd-VM allows dynamic and aggressive code optimizations compared to a traditional com-
piler. However, in order to support these the underlying microarchitecture should provide
mechanisms to detect miss-speculations and take the necessary corrective action.

The SoftHV Bulk Commit Mechanism is very similar to that of Transmeta, and is de-
scribed in Chapter 3, in Section 3.5.2. The register state and the memory state is com-
mitted at bulk when all the instructions corresponding to the superblock have successfully
executed. The x86 register state is shadowed by maintaining two copies a working copy
and a shadow copy as shown in Figure 5.1.

The pipeline Back-End

A FIFO based issue queue is used, which holds the µ-ops until they are ready. The
readiness of an instruction is determined using a scoreboarding mechanism that predicts
when operands will be available, using counters. These counters holds the number of
cycles until a valid result will be available for forwarding. The value in each scoreboard
entry counts down every cycle. Such a mechanism ensures back-to-back execution. The
accelerators ICALU and VLDU co-exist with other FUs in the datapath as shown in the
Figure 5.1.

Scalar loads are executed in LDU, with their address being generated. After that their
addresses are translated and the load access the D-cache and the Gated Store Buffer.

Stores, on the other hand, are first sent to AGU and then their addresses are translated.
Finally, the store data is placed in the Gated Store buffer. The entries from the gated
store buffer are held until all the µ-ops of the superblock have successfully executed.

5.3.2 HW Accelerators : ICALU and VLDU

Based on the characteristics of SPECINT and SPECFP applications, we introduce two
functional units namely ICALU and VLDU. ICALU collapses a pair of dependent ALU
µ-op and execute in a single cycle. Only a specific pair of dependent ALU µ-ops are
allowed, while shifts among others are not considered. Such a fused pair of µ-ops is called
as a macro-op (MOP).

VLDU, on the other hand, executes a fused pair of independent load µ-op. Only those
loads that have same base register and differ in the immediate offset are considered. Such
a pair of fused loads are called a vector load (VLD).

94 Chapter 5. SoftHV

ld rcx = [rbp, 0]

add rdx = rcx, rax

add rsp = rax, 4

ld rbx = [rbp, 4]

sub rbx = rax, rdx

(a) Unfused Code

add rdx = rcx, rax :: sub rbx = rax, rdx

ld rcx = [rbp, 0] :: ld rbx = [rbp, 4]

add rsp = rax, 4
mop

vld

(b) Fused Code

Figure 5.2: Code before and after fusion. The right side shows a pair of independent loads
fused as a vector load. Next is a pair of dependent ALU instructions fused as a mop.

Cd-VM not only enables in transparently introducing these functional units, but also pro-
viding a larger scope and more opportunity for using these functional units. Superblocks
are analyzed and pairs of dependent ALU and independent load µ-ops are extracted.
These pair of µ-ops are identified by setting the first bit of the µ-op to indicate whether
its fused.

Figure 5.2 shows a code snippet before and after fusion. Note, how the fused µ-ops are
placed together in the generated code. In this example, a pair of fused loads is followed
by a pair of fused addition and subtraction as shown in Figure 5.2b. Fused µ-ops are
identified by the first bit of each µ-op.

The two fused loads share same base register rbp, but differ in immediate offset by four
bytes. Such a pair of loads is very common as they access different elements of a data
structure, or different entries from an array. Hence, clubbing them together as a single
entity increases processors effective bandwidth.

The sub µ-op in Figure 5.2 is dependent on rdx which is produced by the add µ-op.
This fused µ-op pair not only provides benefit by executing the dependent pair in a single
cycle but also provides better processor resource utilization. For instance, the sub µ-op
does neither have to access Physical Register File nor the bypass network for rdx.

5.3.3 Interlock Collapsing ALU

ICALUs [78] consists of a pair of ALUs collapsed to execute a pair of dependent instruc-
tions in a single cycle. Figure 5.3 presents a block diagram of ICALU. Only a subset of
ALU instructions are considered that satisfy constraints such as number of input operands,

5.3 SoftHV Architecture Overview 95

simple arithmetic operations, logical operations; Shift and Add-shift are not considered.
The fused pair of µ-ops are executed in a single cycle instead of two cycles, leading to
speedup.

CSA

CALU

Logic

Logic

Cntrl
gen

Figure 5.3: Interlock Collapsing ALU. Carry-Save Adder produces inputs for a Controlled
ALU.

Introduction of ICALU not only provides speedup by reducing the execution latency
but also provides better utilization of microarchitectural resources such as issue width,
read/write ports, buffers etc.

Moreover, our experiments have showed us that most of the times the alu µ-op that is
the head in the pair produces value only for the µ-op it is paired with. This implies that
the head µ-op in the MOP should not be a live-out for the region, and neither should its
value be consumed by any other µ-op. As a result, the head µ-op of a MOP is not sent
to any ALU.

This has an additional side-benefit of reducing pressure on microarchitecture resources
such as read-ports, issue queue entries, forwarding network among others. Figure 5.8
shows the code coverage of a pair of fused µ-op is nearly 30%. This gives an estimate of
reduction in dynamic instruction count, leading to efficient processor resource utilization.

5.3.4 Vector Load Units

Vector Load units enable execution of data parallel loads as a combined instruction. Only
those loads that have same size, same operand, but access different banks are fused. x86
ISA consists of many loads that have same start address but different offset.

Such a kind of vector loads have been proposed already in Altivec [37]. However, there
are several differences between the vector loads we propose and that proposed in Altivec.
Firstly, in the context of atomic superblocks more such pairs of independent loads can be
found and fused. This is because load-hoisting enables reordering loads not only within

96 Chapter 5. SoftHV

a basic block but also across basic block boundaries. Secondly, the vector loads that we
propose need not be to comprising of loads to contiguous memory location.

Thirdly, our vector loads write to separate registers, whereas the vector loads in Altivec
write the merged data into a single register. Moves are needed to extract data from these
registers for Altivec vector loads. Adding moves impacts the back-to-back execution of
the dependents of the loads. So in a sense a vector load is like a VLIW instruction where
independent µ-ops are bundled together and they execute in their respective FUs and
writeback to their own registers.

A vector load is very similar to two independent loads executing in parallel in a superscalar
pipeline. However, by fusing the loads together the issue width is effectively increased,
as two µ-ops are issued in place of one. However, the number of write ports and number
of read ports in the Register File is kept unchanged, which limits the potential, at the
benefit of low complexity.

AGU0 AGU1

Bank 0 Bank 1

VECTOR LOAD UNIT

D-Cache

Register

File

Figure 5.4: Illustration of VLD execution. Replicated address generation units generate the
addresses of the fused load pair in parallel and sends to translation unit and issues load request
to the D-cache in parallel.

Figure 5.4 illustrates how a VLD generates address and reads data from D-cache for both
the fused loads. A VLDU consists of a pair of Address generation unit in order to generate
address for both the loads in parallel. No scalar loads could be issued in the same cycle
in which the VLD is being issued.

Request is sent to the respective banks. In case of a bank conflict, processor stalls the
back-end for a single cycle while the bank conflict is being resolved. Data for both the
loads are then available in next cycle. Once the data is received it is written to the
respective registers in the writeback stage. Note that our baseline in-order processor also
uses multi-banked D-Cache.

5.3 SoftHV Architecture Overview 97

Scalar loads, on the the other hand, are sent to LDU for their address to be generated
and translated, which is followed by an access to the Gated Store buffer or the D-cache
in parallel. If the data is available in Gated Store Buffer, then the data is forwarded and
written back.

Moreover, in case the load partially aliases with a store in the store buffer, then the
superblock is rolled-back. The unoptimized Basic Blocks are fetched. An alternative
solution would be to read the data partially from the store buffer and partially from the
D-Cache. However, such cases were quite infrequent.

Handling Cache Miss

Cache-miss for scalar loads results in stalling of the back-end of the pipeline. Similarly,
on a cache-miss for any load fused in the vector load only the back-end pipeline is stalled.
The usage of an in-order core with non-blocking cache makes handling of vector loads
much simpler.

Issue Read Eag Eat Emd

Issue Read

Issue Read Eag Eat Emd

WB

WB

Exec

Stall Pipeline

Ld miss Ld wakeup

Resume

Figure 5.5: VLD Miss Handling. In case any of the load misses the pipeline is stalled. When
the data arrives both the loads are woken up and the pipeline is resumed. Note that only the
back-end pipeline is stalled.

Figure 5.5 illustrates how a VLD miss is handled. If any of the load in the VLD misses,
the back-end pipeline is stalled. Only when the data arrives the activity is resumed, and
loads write-back to the registers.

5.3.5 Instruction Encoding

Figure 5.6 shows the instruction encoding of a macro-op (MOP) and a vector load (VLD).
We use an instruction encoding similar to [52], but extended to encode instructions that
use VLD accelerator. The first bit “F” indicates whether the corresponding µ-op is fused

98 Chapter 5. SoftHV

with the µ-op immediately following it. If F bit is set µ-ops are fused prior to decode,
and are held as a single entry in reservation station.

Operand 1 Operand 2 DestinationF Opcode

F Opcode Operand 1 DestinationImmediate

F Opcode DestinationImmediate

Fused ALU

µ-op

format

Fused Ld

format

Figure 5.6: MOP/VLD instruction encoding. All the three encoding format is supported for
fused µ-ops that form a MOP, whereas only the second format is applicable for loads that are
part of VLD. If the “F” bit is set then the µ-op forms a pair with the following µ-op.

For vector loads only the second instruction format is valid. Our internal µ-ops support
register+offset instruction encoding for loads. Since, the opcode is redundant the µ-op
pair when fused will only have a single opcode.

5.4 SoftHV Binary Optimizations

Co-designed virtual machine (Cd-VM) plays an important role in dynamically optimizing
the code for an efficient use of ICALU and VLDUs. The optimization process implemented
by the proposed Cd-VM is shown in Figure 5.7.

Few of the code generations steps, such as superblock formation, code optimization,
dataflow graph generation and register allocation, are standard steps in most dynamic
compiling systems. These steps have already been discussed in great details in Chapter
3. Hence, we will only discuss the steps that are relevant in the context of SoftHV.

5.4.1 µ-op Fusion

A single pass forward scan fusion algorithm similar to [52] is proposed. However, our
proposed heuristic not only fuses a pair of dependent simple ALU µ-ops but also a pair
of parallel loads. The algorithm is greedy and tries to find the first suitable µ-op to fuse
with the current µ-op as described in Algorithm 4 below.

The heuristic checks whether a µ-op is already fused, as shown in Line 2. Then depending
on whether a µ-op is load or a simple ALU operation, a fusible µ-op is searched for within

5.4 SoftHV Binary Optimizations 99

Superblock Formation

Fusion

Register Allocation

List Scheduling

Code optimization

Dataflow Graph Generation

Figure 5.7: Code Generation Flow Chart

the superblock, as shown in Lines 5 and 7. If a fusible pair found then the pair of µ-ops
are fused 10.

A pair of dependent ALU µ-ops are executed in the ICALU. ICALU considers only a spe-
cific pair of simple µ-ops such as arithmetic operations, logical operations (except shifts),
register transfer operations, address generation and branch outcome determinations. For
complete details on the pair of ALU µ-ops that are allowed the readers are referred to
[78].

On the other hand, a pair of independent loads are executed in the VLDU. Only certain
pair of independent loads are considered, which have a same base register but differ in
the immediate offset. Loads with multiple source register operands are not considered for
fusion.

Such a fused pair of µ-ops is called a macro-op. After considering a macro-op, the algo-
rithm proceeds by considering µ-ops which were not included in the previous macro-ops.
The algorithm proceeds in the similar fashion until all the µ-ops of the superblock have
been considered.

100 Chapter 5. SoftHV

Algorithm 4 Fusion Algorithm

1: for all µ-op do
2: if µ-op already fused then
3: continue
4: end if
5: if µ-op is a load then
6: scan forward for fusible parallel load
7: else if µ-op is a simple arithmetic/logic op then
8: scan forward for a dependent simple µ-op
9: end if

10: if pair found then
11: mark as a new fused pair, by setting the fused bit of the head µ-op
12: end if
13: end for

5.5 Performance Evaluation

In this section, the benefits in performance due to vertical and horizontal fusion is mea-
sured, first in isolation. Their combined benefit is studied as well. We report results
both for a 2-way and 4-way in-order processor core that is described earlier in Chapter 3,
Section 3.5.2.

5.5.1 Code Coverage of Fused Instructions

0

0.2

0.4

0.6

0.8

1

1.2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

F
ra

ct
io

n

SPECFP SPECINT

rest mop vld

Figure 5.8: µ-op Code Coverage. mop stands for the code coverage provided by a pair of
dependent instructions and vld stands for the code coverage provided by a pair of independent
instructions. rest stands for the code coverage provided by rest of the instructions.

Figure 5.8 shows the code coverage provided by the instructions that are paired together

5.5 Performance Evaluation 101

(mop and vld, in the bottom of stacked histogram). As described earlier, in Section 5.4.1,
we use a heuristic that finds pair of independent loads or a pair of dependent ALU µ-ops
in a superblock and pair them.

Together the µ-op pairs provide a good coverage for both SPECFP and SPECINT bench-
marks. However, the coverage provided by these µ-op pairs are very different for SPECINT
and SPECFP. SPECINT consists of 28% of µ-ops fused as a pair of dependent µ-ops (mop)
and 7% of parallel loads (vld). SPECFP, however, has 12% of loads fused as a pair and
20% (mop) for dependent µ-ops.

5.5.2 Performance benefit due to horizontal and vertical fusion

In this section, we study the benefits of ICALU and VLDU. First, we study their benefits
in isolation and then their combined benefits. The experiments are run by using the
optimized and scheduled superblocks and by adding ICALU and VLDU first in isolation
and then together.

1

1.05

1.1

1.15

1.2

1.25

1.3

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

2way vldu 1 + icalu 0
2way vldu 0 + icalu 1
4way vldu 1 + icalu 0
4way vldu 0 + icalu 1

Figure 5.9: The Effect of adding ICALU and VLDU in Isolation. The first two bars measures
the effect of adding ICALU and VLDU separately for a 2-way in-order processor. The next two
bars repeats the experiments for a 4-way in-order processor. Speedups are normalized to the
respectively n-way in-order processor configuration.

Figure 5.8 shows the weighted distribution of the fused µ-ops. It shows that nearly 32%
and 35% of µ-ops are fused as mop or vld in SPECFP and SPECINT, respectively. How-
ever, the proportion of µ-ops fused as mop or vld is different for SPECFP and SPECINT.
A low ILP in SPECINT leads to many short dependent chains. As shown in Figure 5.8,
28% of µ-ops are fused as MOP, while SPECFP contains 20%.

As a result of which, SPECINT obtains more performance benefit from ICALU 10% ad-
ditional speedup for a 4-way SoftHV configuration as shown in the Figure 5.9 (4way vldu

102 Chapter 5. SoftHV

1

1.05

1.1

1.15

1.2

1.25

1.3

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

2way SoftHV
4way SoftHV

Figure 5.10: The combined Effect of ICALU and VLDU. First bar measures the speedup for
a 2-way in-order processor and the section bar measures the same way for a 4-way in-order
processor. Speedups are normalized to the respectively n-way in-order processor configuration.

0 + icalu 1). SPECFP, however, obtains 3% ICALU for a 2-way in-order configuration
(2way vldu 0 + icalu 1).

The combined benefit of ICALU and VLDU, which is shown in the last row, is normally
higher than the sum of their individual benefits. That clearly shows the synergistic effect
of adding in the same design both acceleators which is one key contribution of this chapter.
Bzip2 in particular obtains 28% speedup, as shown in Figure 5.10. A high proportion,
35%, of µ-ops are fused as MOPs that results this high speedup in bzip2.

Table 5.1 provides a summary of speedups obtained from optimizations and ICALU and
VLDU for both 2-way and 4-way processor configuration. The combined benefit of ICALU
and VLDU, which is shown in the last row, is normally higher than the sum of their
individual benefits.

SPECINT SPECFP
2-way 4-way 2-way 4-way

VLDU 2.5% 2% 4.5% 2.5%
ICALU 8% 10% 3% 5%

ICALU + VLDU 11.5% 10% 9.5% 9%

Table 5.1: Breakdown of Speedup

5.5.3 Comparison with an Out-Of-Order processor

A modern out-of-order processor provides benefit by exploiting ILP using out-of-order
execution and wider instruction issue. Our co-designed in-order processor exploits the

5.6 Related Work 103

ILP by reordering the µ-ops. It provides higher effective issue bandwidth by instruction
fusion.

1

1.5

2

2.5

3

3.5

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

ROB 128 SoftHV

Figure 5.11: Comparison with out-of-order. SoftHV stands for 4-way in-order processor
combined with code optimizations and FU accelerators. ROB 128 stands for an out-of-order
processor with instruction window of size 128. Speedups are normalized to 4-way co-designed
in-order processor configuration with optimizations.

A comparison between the two design alternatives is worth a discussion. With a 128 entry
ROB four-way out-of-order processor, which is described earlier in Table 3.3. Figure 5.11
shows the benefits of out-of-order processor. Note that, all the speedups reported are
normalized to 4-way co-designed in-order processor with code optimizations.

Figure 5.11 suggests that the out-of-order execution with a large instruction window and
memory disambiguation plays an important role in the performance of all the benchmarks.
In the next chapter we will close this performance gap.

5.6 Related Work

Since in this chapter we have proposed general purpose application acceleration in a co-
designed approach, most of the related work can be found in Chapter 2 and Chapter 4.
The related work on Cd-VM can be found in Chapter 2. In Chapter 4 the related work on
accelerators can be found. In this section, however, we choose to compare our proposal
to the one that we proposed in previous chapter and to the one closest to our proposal.

In Chapter 4, we had proposed a PFU, which is a grid of functional units consisting of
simple arithmetic units. A set of dependent or independent instructions could be mapped
to the PFU. Moreover, an internal register file was proposed to hold the input operands.
A ld-set and mv-set was proposed to bring data from the conventional register file to
the internal register file. The fused instruction was generated by the dynamic binary

104 Chapter 5. SoftHV

optimizer, same as in this chapter.

However, in this chapter we consider fusing dependent and independent instructions sepa-
rately. VLDU executes a pair of independent load instructions, whereas ICALU executes
a pair of dependent ALU instruction. Moreover, these fused instructions can read their
input operands directly from the conventional register file.

Moreover, in this chapter we do not require a configuration cache in order to hold the
control signals. The control signal corresponding to the fused pair of instructions reside
together all along the pipeline.

The work closest to ours is that proposed by Hu et. al. [52]. They had proposed a
complexity-effective out-of-order processor. In their work they use ICALU [78] to fuse a
pair of dependent ALU instruction and execute in a single cycle. They also propose a co-
designed VMM to find and fuse instruction pair within a superblock. However, they focus
only on SPECINT benchmarks as it has abundance of dependent ALU instruction pair.
They compared their proposal, which is a two-way out-of-order processor with ICALU,
with a four-way out-of-order processor.

We, however, do not limit ourselves to SPECINT only. For SPECFP, we have showed
vector loads provide major performance benefits. Moreover, we took a radical approach
by moving to an in-order processor as the baseline. We have shown our proposed processor
outperforms a small instruction window out-of-order processor.

Moreover, Hu et. al. [52] had proposed a co-designed out-of-order processor using ICALU.
They send the head of a MOP in parallel to a normal ALU. However, our experiments
have showed us that most of the times the ALU µ-op that is the head in the pair produces
value only for the µ-op it is paired with. As a result, we do not send the head µ-ops into
another ALU.

5.7 Conclusions

In this chapter, we have presented SoftHV, whose main novelty is the right combination of
hardware and software to implement horizontal and vertical fusion of instructions. This
helped in obtaining performance improvements on different types of workloads over a
conventional in-order processor.

We have shown that SoftHV is implemented by means of a Cd-VM that reorders and
optimizes a superblock. Pairs of dependent simple arithmetic/logic µ-ops are fused in a
vertical fashion to be later executed in ICALU. Independent loads are fused in a horizontal
fashion and are executed in a VLDU. These accelerators when combined together provide
more performance benefit than when applied individually.

Overall SoftHV results in an interesting co-design approach that obtains an average

5.7 Conclusions 105

speedup of 9% for SPECFP and 10% for SPECINT over a conventional 4-way in-order
processor. Hence, SoftHV provides an interesting design point for low-complexity high-
performance processors for different types or workloads. Therefore, this can be a good
alternative to small out-of-order processors for the low-end consumer electronics domain.

Chapter 6

A Power-efficient Co-designed
Out-of-Order Processor

In the previous two chapters we had looked into instruction fusion in the context of Co-
designed Processors. In this chapter, we cut down the complexity of out-of-order logic
using FIFO based issue logic. Furthermore, we have co-designed the commit logic in order
to bulk commit atomic superblocks efficiently.

First, we propose an enhanced steering heuristic and an early release mechanism to in-
crease the performance of a FIFO based out-of-order processor. We obtain performance
improvement of nearly 25% and 70% for a four FIFO and for a two FIFO configurations,
respectively. We also show that our proposed steering heuristic based processor consumes
10% less energy than the previously proposed steering heuristic.

Moreover, we also show by choosing the order in which ready µ-ops from the head of the
FIFO are issued also has a significant impact in performance. For instance with eight
FIFOs and issuing the oldest µ-op the performance gap between CAM based issue logic
and FIFO based issued logic is nearly closed.

Furthermore, we propose a bulk commit logic that is able to commit the program state at
the granularity of the superblock. This enables us to get rid of the Reorder Buffer (ROB)
entirely. Instead to maintain the correct program state, we propose a four/eight entry
Superblock Ordering Buffer (SOB). We also propose the per superblock Register Rename
Table (SRRT) that holds the register state pertaining to the superblock. Moreover, when
compared to ROB based processor executing normal µ-ops we achieve a 40% reduction
in power and 25% reduction in energy with four FIFOs.

108 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

6.1 Introduction

In previous chapter we have seen how fusion and good code scheduling techniques provides
important performance improvements over a conventional in-order processor that puts
the design in a level closed to a small out-of-order design. However, in order to achieve
extremely good single-thread performance we still have to consider out-of-order processors.

Conventional out-of-order processors uses a CAM based issue logic that enables out-
of-order execution of µ-ops, using a wake-up and select logic. This mechanism helps in
exploiting the ILP, but it comes at the cost of higher complexity [76] and power dissipation
[46].

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECFP

dep based
random
round robin

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECINT

dep based
random
round robin

(b) SPECINT

Figure 6.1: Performance of Steering Heuristics. The sharp decline in Performance observed
for different Steering Heuristics when number of FIFOs are decreased. Speedup normalized to
CAM based issue logic.

Some researches have considered alternatives to CAM-based designs including the use of
FIFOs. A FIFO based issue logic, helps in reducing both the complexity and the power.
Palacharla et al. [76] proposed a dependence-based steering heuristic that steers each
µ-op to a chosen FIFO at the dispatch stage. As the number of FIFOs are decreased
the performance of the dependence-based heuristic declines sharply, for both integer and
floating-point benchmarks, as shown in Figure 6.1. A similar observation was also made
by Canal et. al. [18]. In fact a policy as simple as round-robin or random performs better
with fewer number of FIFOs compared to dependence-based heuristic.

In this chapter we consider a HW/SW co-designed out-of-order processor that uses mul-
tiple, but a small number of FIFOs, in order to achieve high performance with a low-
complexity design. Our steering heuristic is based upon the dependence-based heuristic,
and we enhance the heuristic by analyzing the stalls at the dispatch stage. This modified
steering heuristic reduces the stalls at dispatch leading to significant performance benefit.

6.1 Introduction 109

On the other hand, modern out-of-order processors, for example Alpha 21264 [58], spec-
ulate on the loads to hit in the L1-Cache. In order to guarantee back-to-back execution,
dependent µ-ops of a load are issued speculatively. Issue Queue entries of all the issued
µ-ops are held for a certain number of cycles1. In case of a miss-speculation, the µ-ops
from the execution pipeline are squashed and issue queue entry is re-validated.

This holding of issue-queue entries for a few number of cycles adds pressure on the issue
queue. For FIFO based issue queues this has an even more dramatic impact on the
performance, especially for the dependence-based steering heuristic.

One could argue that this pressure could be reduced by increasing the size of Issue Queues.
For a CAM based Issue Queue, though this might be true, but it comes at an additional
cost both in complexity and power. For a FIFO based Issue logic, on the other hand,
increasing the size of a FIFO, merely adds entries to its tail.

The performance of dependence-based scheme such as the one proposed in this chapter
depends on the availability of entries at the head of a FIFO, as µ-ops are issued from the
head. Therefore, in addition to the new heuristics for steering we propose an early release
mechanism, that releases issue queue entries, at the issue stage, for all the µ-ops issued
in that cycle; given its safe to do so. The proposed early release mechanism is not just
applicable to FIFO based issue logic, but can be applied to CAM based Issue logic, as it
is.

Finally, the ability to execute out-of-order requires ROB-like structures to retain the
original program order to allow commit in order. However, in a design such as the one
considered in this chapter, where a HW/SW co-designed out-of-order processor is used
that uses a Virtual machine monitor (VMM) as described in Chapter 3 that builds atomic
superblocks, we must also enforce atomic commit of the superblocks.

The atomic commit constraint of the superblock implies that if all the µ-ops of the su-
perblock have not executed then the µ-ops need to wait in the ROB to commit. This
puts pressure on the ROB and related structures and leads to stalls. In order to mitigate
these problems in this chapter we have also proposed a ROB-less bulk commit logic. Two
structures, namely a Superblock Ordering Buffer (SOB) and Superblock Register Rename
Tables (SRRTs) are proposed that together maintain the correct program state. Each su-
perblock is allocated a SRRT and an entry in a Superblock Ordering Buffer (SOB). The
entry at the head of SOB is considered for commit at every cycle. A SOB entry contains
various fields; that not only indicate whether a superblock is ready to commit, but also
locates the program state associated with the superblock.

Overall in this chapter we have considered a HW/SW co-designed out-of-order processor
based on FIFOs and with new steering, issue and bulk commit improvements. All these
improvements results in a design that is within 20% of performance of a conventional
out-of-order design, with a reduction in energy by 25% for a four FIFO configuration.

1Two cycle in our case.

110 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

The key contributions of this chapter are as follows:

• Superblock Ordering Buffer (SOB) is proposed in Section 6.4.2, that commits the
program state in the original program order. As a result of the SOB and related
structures, the need of conventional Reorder Buffer (ROB) is eliminated.

• Per Superblock Register Rename Table (SRRT) is proposed in Section 6.4.2, that
holds the register of the corresponding superblock and is committed atomically.

• Enhanced dependence-based steering logic is proposed in Section 6.3.2, which re-
duces various stalls at dispatch stage due to the unavailability of empty FIFOs. This
provides significant performance benefit, by increasing the decoder throughput.

• Early release logic is proposed in Section 6.3.3, that releases few issue queue entries
at issue time. This reduces the pressure on FIFO based issue queues and provides
major improvement in performance in a FIFO constrained scenario.

• We have shown the effect of start policy in Section 6.6.1, which determines the order
of issuing the ready µ-ops.

The rest of the chapter is structured as follows. First, the overview of the proposed
microarchitecture is given in Section 6.2. In Section 6.3 the steering logic and the early
release logic are discussed in greater detail. Next, the co-designed commit logic is proposed
in Section 6.4. The performance and the power results are discussed in Section 6.6. The
related work is discussed in Section 6.7 and the conclusions are drawn in Section 6.8.

6.2 Overview of the Proposed Microarchitecture

In this section we provide an overview of our proposed co-designed out-of-order microar-
chitecture. In Figure 6.2 we provide an overview of our proposed microarchitecture. The
gray blocks were added on top of the baseline microarchitecture. Moreover, we get rid of
the ROB, which is not shown in the figure.

As shown in the figure the FRRT and the BRRT are maintained to hold the speculative
and the committed register mappings. Additionally, a SOB and multiple SRRTs are added
in order to support the bulk commit mechanism. The issue logic consists of multiple
FIFOs, from which µ-ops could be steered to any FU.

Our FIFO based out-of-order issue logic cuts down both the complexity and power con-
sumption; yet retains the benefits of out-of-order issue. Such a middle ground solution is
more power-efficient and aligns with the co-designed paradigm.

6.2 Overview of the Proposed Microarchitecture 111

FP MoveSSE
FP MMX

ALU STU LDU

L1
I-cache

L1 - Dcache

Allocator/Register Renamer

Dispatch Buffer

Fetch Buffer

Decode Buffers

L2- Cache

SRRTs

Bypass Network

Register File /

FIFO 0 FIFO 1 FIFO 2 FIFO 3

BRRT

SOB

FRRT

Figure 6.2: Block diagram of the Microarchitecture of SOB based processor.

However, the existing FIFO based dispatch steering heuristics do not perform well for
low number of FIFOs. By making few key observations on dispatch stall behavior we
propose enhanced steering heuristics that outperform the state-of-the-art dependence-
based steering heuristic.

Moreover, we also propose an early-release mechanism that helps in releasing the FIFO
heads sooner resulting in fewer stalls at dispatch. This early release mechanism is based on
the observation that µ-ops are held in the issue queues for two cycles after they are issued.
This is required in order to take corrective action in case of a load-hit misspeculation.
However, holding issue queue entries for all the µ-ops is conservative. We exploit this fact
and release the issue queue entries for those µ-ops for whom it is safe to do so.

The use of out-of-order issue logic requires a need for an in-order commit mechanism in the
processor back-end. However, the conventional ROB based in-order commit mechanism
is more suitable for conventional out-of-order processors. In conventional out-of-order
processors, such as X86 based, the commit is at the granularity of an X86 instruction and
not µ-ops.

112 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

In our proposed co-designed processors we execute atomic superblocks, which requires a
bulk commit mechanism, as explained earlier in Chapter 2. In a bulk commit mechanism
all the µ-ops corresponding to a superblock is committed together in a bulk. This would
require the µ-ops be held in the ROB. However, holding µ-ops of a superblock in ROB
has several disadvantages, which were discussed earlier in Chapter 4, in Section 4.3.1.

Our bulk commit mechanism is based on the key observation that it is the change in
the program state– the register state and the memory state – is to be held, rather than
the µ-ops. The second observation is that since the commit is at the granularity of
the superblock, it is more natural to also maintain the state at that granularity. As a
consequence of these observations, we get rid of the ROB; rather, we propose a SOB.

Each entry of the SOB is allocated to exactly one superblock, when the first µ-op of the
superblock is being renamed. Only when all the µ-ops of the superblock have successfully
executed, the superblock is ready to commit. The SOB entry at the head of the SOB
is checked every cycle to determine whether the corresponding superblock is ready to
commit. If it is the case then the program state is committed by making it architecturally
visible.

As mentioned above, the program state consists of the register state and memory state.
The register state is held in the SRRT, which holds the mappings from architected registers
to the physical registers. Moreover, only the mappings of the live-outs of the superblock
are held in the SRRTs. Each SRRT belongs to exactly one superblock, and the number
of SRRTs is equal to the entries in the SOB2. An entry in the SRRT is allocated when a
live-out of a superblock is being renamed.

When all the µ-ops of the superblock have successfully executed and the superblock’s
SOB entry is at the head then the superblock’s program state is committed. The register
state of the superblock which is held in the SRRT is copied to the BRRT. Since register
state contain only valid mappings of live-outs they are committed. The memory state
is held in the Gated Store Buffers [95], which is committed to the memory hierarchy in
bulk.

6.3 Out-of-Order Logic

We use a FIFO based out-of-order logic that has been shown as a complexity-effective [76]
and a power-efficient design. A steering policy selects a FIFO for the µ-op to be steered
to at the dispatch stage, as shown in the Figure 6.3 .

µ-ops are issued from the head of a FIFO. Multiple µ-ops could be issued from the same
FIFO if the FIFO supports that. For instance, if each FIFO has built-in dual-issue ability,

2We found four or eight entries to be reasonable. This will be shown experimentally later.

6.3 Out-of-Order Logic 113

Functional UnitsDispatch

Buffers

FIFOs

Figure 6.3: A FIFO based OoO Logic. µ-ops are steered to FIFO at the dispatch stage. µ-ops
can only issue from the head of a FIFO.

then the second µ-op immediately after the head will be issued if both the head and it
itself is ready to issue.

µ-ops from different FIFOs could issue in parallel as long as dependencies are respected.
Every cycle µ-Ops at the head check if their operands are ready in a small table. This
table stores just one bit per physical register indicating it is available.

Another way of implementing this table could be by using per physical register counters
that are set to the latency of producing µ-op when it is issued. Every cycle the counter
is decremented; dependent µ-ops are issued when counters corresponding to its source
operands are zero. This mechanism is similar to the one proposed in ARM Cortex A8
[94].

In this section, first we will describe the baseline dependence-based steering heuristic
proposed by Palacharla et al. [76]. Next, we will describe the reasons behind the poor
performance of the heuristic. Specifically, we will provide the breakdown of conditions
for stall at the dispatch. Next we will propose our enhanced steering heuristic that
reduces these stalls and obtains a better performance. We will describe the logic required
to enhance the steering heuristic. Next, we will describe the Early Release mechanism,
followed by a brief description of the start policy. In the end, we will describe the Memory
Disambiguation logic we used for our co-designed environment.

6.3.1 Dependence-based Steering Heuristic

Since our proposed steering logic depends partially on the one proposed by Palacharla et
al [76], we first describe Palacharla’s approach and later point out its drawbacks.

Let I be the µ-op that is ready to be dispatched. Depending upon the availability of I’s

114 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

operands, the steering decisions made are:

• If all the operands of I are ready, then steer I to an empty FIFO.

• If only one source operand of I is available, then steer I to a FIFO whose tail produces
the required operand. If no such FIFO found steer I to an empty FIFO.

• If both the source operands of I is unavailable, then steer I to a FIFO whose tail
is the operand producer of either of the operands, giving priority to left source
operand.

If the desired FIFO is full or an empty FIFO is not available then dispatch is stalled. The
steering logic required in the dispatch stage consists of a SRC FIFO table. This table is
indexed by physical register, and contains the identity of the FIFO buffer that contains
the µ-op that produces the architected register value.

Figure 6.1 shows the performance of the above mentioned dependence-based dispatch
policy when implemented in our co-designed processor. The performance degrades sharply
as the number of FIFOs are decreased; an observation also made by Canal et al. [18].

As the number of FIFOs are decreased, stalls at dispatch stage increases, reducing the
throughput of the dispatch stage. This reduction impacts the overall performance of the
processor. We quantify these stalls at dispatch stage and overcome them by proposing
enhanced steering heuristics.

6.3.2 Enhanced Steering Heuristic

As observed above, a major drawback of the dependence-based scheme is a high frequency
of stalls incurred at the dispatch stage, as the number of FIFOs are halved. The three
conditions that causes the dispatch to stall for the dependence-based scheme are:

• Rdy no: Empty FIFO is unavailable for a µ-op whose source operands are ready at
dispatch.

• Tail no: Empty FIFO is unavailable for a µ-op, neither of whose source operands
are ready nor are any of the producers a tail of a FIFO.

• Tail FIFO: FIFO is available, but is full, for a µ-op whose producer is the tail of
the FIFO.

Figure 6.4 illustrates the three above mentioned stalling conditions. In Figure 6.4a µ-op
4, which is ready, cannot be dispatched because there is no empty FIFO available. In

6.3 Out-of-Order Logic 115

3 4

1

2

3

DFG

1

2

FIFO 1 FIFO 2

(a) Rdy no

3

1

2

3

DFG

4

1

2

FIFO 1 FIFO 2

(b) Tail no
DFG

1

2

3

1

2

FIFO 1 FIFO 2

(c) Tail FIFO

Figure 6.4: Dispatch Stalling Conditions. Each figure has the dataflow graph on the left and
the contents of the FIFOs on the right of the dotted line. The µ-op in red cannot be dispatched.

Figure 6.4b µ-op 4, which is not ready, cannot be dispatched because neither is there
an empty FIFO available nor is its producer, µ-op 1, tail of any FIFO. In Figure 6.4c
µ-op 3, which is not ready, cannot be dispatched because FIFO 1, which holds µ-op 3’s
producer as a tail, is full.

0

0.2

0.4

0.6

0.8

1

1.2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

F
ra

ct
io

n

SPECFP SPECINT

Rdy no Tail no Tail FIFO

Figure 6.5: Dispatch Stall Condition Distribution for a four FIFO configuration.

Figure 6.5 provides distribution of the these three stalling conditions. Nearly 80% of
stalls are due to Rdy no, while Tail FIFO hardly causes any stall. Tail FIFO is hardly
causing any stall because the current size of FIFOs, which is eight, is sufficient. For the
stall Tail FIFO to occur with eight FIFOs a long linear chain3 of dependent µ-ops have
to be present. However, in SPEC benchmark such a long linear chain of dependent µ-ops
is hard to find. Moreover, even if there is such a chain, usually µ-ops from independent
chains are present, which would result in other kind of stalls.

3for example 8

116 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

Find Empty

FIFO Logic

All Operand

ready Logic

SRC FIFO

table look-up

logic

Tail-check

Logic

FIFO available select and continue.

else stall dispatch signal sent.

FIFO Selection Logic

Figure 6.6: Steering Logic shows an additional Tail-check logic compared to the original
dependence-based steering heuristic.

We exploit this observation by modifying the steering logic. Our modified steering logic
builds upon the dependence-based steering logic. It, however, reduces the stalls due to
Rdy no by steering a µ-op, whose operands are ready, to a FIFO whose tail is ready. The
FIFO whose tail is ready implies that all µ-ops ahead of it in the FIFO must be ready, as
the µ-ops are steered based on their dependencies.

Figure 6.6 shows the enhanced steering logic that requires an additional tail-check logic.
Shaded blocks are those that have been added. The Tail-check logic basically uses the
Register ready table, which is also checked by the head of FIFO at the issue stage, as
illustrated in Figure 6.7.

The Empty FIFO Logic is used to determine whether a FIFO is empty or not. Each
FIFO maintains a counter to indicate the number of µ-ops that it holds. Every cycle at
dispatch these counters are read to determine whether a FIFO is empty or not.

The SRC FIFO table is used to determine which FIFO holds the producer of a physical
register. This again is implemented using a SRAM structure and has number of rows
equal to the number of physical registers, which is 128.

All Operand ready logic is essentially a score-boarding mechanism. We implement this
using a Physical Register Ready Table. This table contains a bit indicating whether the
Physical Register associated with the table entry is ready or not as shown in Figure 6.7.
For each operand at dispatch a check is made to the Physical Register Ready Table to

6.3 Out-of-Order Logic 117

FIF
Os

PR2

PR1

PR3

PR5

PR8

check performed at
issue stage

check performed at
dispatch stage

tail

head

Physical Register Ready Table

1

0

0

1

1

1

0

1

PR3

PR5PR8

PR1

Figure 6.7: Illustration of head and tail check logic shows that the Physical Register Ready
Table is accessed by the head and the tail at issue and dispatch respectively.

determine whether the corresponding physical register is ready.

The Physical Register Ready Table is implemented using a SRAM structure. The Physical
Register Ready table has same rows as the SRC FIFO table, which is 128. However, the
size of a column is smaller than SRC FIFO as it contains just a single bit. This implies
the access delay to this table is smaller than that for the SRC FIFO table.

As a consequence of the proposed enhancements to the steering logic, the likelihood of
multiple ready µ-ops in a FIFO increases. This can be further exploited by increasing the
issue width per FIFO. The µ-op immediately after the head will only be issue if the head
is ready to issue. The dependence-based scheme is insensitive to the increase in per FIFO
issue width. We validate this intuition in Section 6.6.

We further try to decrease the stalls at dispatch by reducing stalls due to Tail no. We
reuse the Tail-check logic by steering a µ-op, that encounters Tail no, to a FIFO whose
tail is ready. We use the same intuition, as stated above, that a FIFO whose tail is empty
is as good as an empty FIFO. In other words, we would be better-off steering such a µ-op
to a FIFO whose tail is ready than waiting for a FIFO to get ready. The impact of this
enhancement is also validated in Section 6.6.

118 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

Since we reuse the Tail-check logic we do not add any additional logic. The all operand
logic and the SRC FIFO table look logic is always checked for each µ-op. These are the
logic which determines whether a µ-op will incur a stall. Hence, no additional check is
made.

6.3.3 Early Release

EhdEatEagReadIssue Writeback

Issue Read Execute

Issue Read

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 1

Load sets

lsb in the

bit-vector.

check ms2b.

micro-ops

bit-vector left-shifted every cycle

address generation

address translation

hit/miss detection

The set bits implies that issue

queue entries should be witheld.

Figure 6.8: Illustration of early release. The lsb of the bit-vector is set when a load issues, the
two most significant bits (ms2b) are checked by µ-ops when they issue to determine whether
they could release issue queue entries or not.

We propose an early release mechanism, that releases issue queue entries, at the issue
stage, for all the µ-ops issued in that cycle; given its safe to do so. The proposed early
release mechanism is not just applicable to FIFO based issue logic, but can be applied to
CAM based Issue logic, as it is.

Our proposal introduces two4 bit-vectors that keep track of whether a load was issued
in a given cycle for a small history. The length of these bitvectors is determined by the
latency of the load µ-op, which is five in our case. At any given cycle, if a load issues the
least significant bit is set. Both the bit-vectors are left-shifted, at every cycle, by one.

Figure 6.8 provides an illustration of the early release scheme. To determine whether a

4Since there are two Load Units.

6.3 Out-of-Order Logic 119

load was issued X cycles back, the bit at position X + 1 5 is checked. Since the bit-vectors
are five bits wide, the set bit at most significant or the second most significant position
implies a load was issued four or three cycles back, respectively. This information is
sufficient to determine whether the issue queue entries, of the µ-ops issuing in the current
cycle, could be released.

Under branch miss-prediction the bit-vector is not cleared that might cause unnecessary
occupation of FIFO entries. This, however, has a negligible impact in performance and
has been validated experimentally. This check is done in parallel at issue along with other
check and the logic involved is very trivial.

6.3.4 FIFO start policy

Every cycle µ-ops are selected from the head of the FIFOs to be issued. Only those µ-ops
that are ready are considered for issue. However, only a subset of the ready µ-ops could
be issued, because of limited resource constraints, such as issue width, functional units,
write ports etc.

Moreover, the µ-ops that are ready are selected for issue in an order, which we refer to as
the start policy. For instance, the order could be pre-determined such that µ-ops in the
head of FIFO 0 gets priority over the µ-ops in the head of FIFO 1. We call such a start
policy where order is fixed as normal policy.

Certainly such a policy is lot simpler to implement. However, older µ-ops which were
dispatched to a FIFO with lower priority could issue later resulting in delaying the critical
path. In order to overcome this potential performance issue we use another start policy
that guides the selection based on the program order of µ-ops. We refer to this policy as
oldest first policy, in which the issue order is determined every cycle by prioritizing older
µ-ops over younger ones.

Such a policy could also be applied to multiple CAM based Issue Queues. The selection
logic is implemented using priority encoder and is described in [76]. In Section 6.6.1 we
have studied the impact of start policy, and found out that oldest first narrows the gap
between FIFOs and CAM based logic further.

6.3.5 Memory Disambiguation Logic

Loads are issued speculatively, in a modern out-of-order processor, by issuing them before
unresolved waiting stores. Miss-speculation is detected in the hazard detection stage, by
searching in the Store Queue (a CAM based structure) for aliasing with older stores. The
miss-speculated loads is stored into a Load Queue and a CAM based logic wakes up the

5With the least significant bit position being zero.

120 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

load when aliasing stores issue. Woken up loads are re-executed causing further activity,
leading to power dissipation.

Our proposed design, however, does not have support for hardware memory disambigua-
tion. Instead the VMM re-orders the memory µ-ops. Only those memory µ-ops that can
be determined statically to not alias, within a superblocks, are reordered. Our proposed
processor does not have support for hardware memory disambiguation. The order in
which memory µ-ops are issued is explained below.

The stores are issued out-of-order, while the loads wait for all the older stores to issue.
However, a bunch of loads, between two stores, can be issued out-of-order. This dras-
tically simplifies the logic by eliminating multiple CAM wake-ups, miss-speculation and
associated replay logic.

A single issued-bit is appended to each gated store buffer entry indicating, whether the
store has issued. At the rename stage, a load locates the tail index of the gated store
buffer. This index is appended along with other control signals of the load and moves
along the pipeline. As a load reaches the head of a FIFO, the issued-bit of all the store
buffer entries from head to the stored tail index is scanned to check whether all the older
stores have issued. This check is done in parallel to the usual look-up into the table that
indicates whether the Physical Register has been produced.

6.4 Co-designing the Commit Logic

As a consequence of out-of-order execution, reorder logic is required at the back-end
in order to maintain a correct program state. Moreover, the atomic property of the
superblock requires the program state be committed at bulk. The program state consists
of the register state and the memory state.

In modern out-of-order processors front-end state is maintained by the Front-end Regis-
ter Rename Table (FRRT), while the Back-end (committed) state is maintained by the
Back-end Register Rename Table (BRRT), similar to the Netburst microarchitecture [51].
However, since the superblocks are atomic, the BRRT is updated only when all the µ-ops
of the superblock have successfully written to the Physical Register File. Similarly, the
memory state is committed to the D-cache when all the µ-ops of the superblock have
completely executed.

In Chapter 4, Section 4.3.1 we had discussed a mechanism to implement bulk commit of
atomic superblocks. We has also mentioned a couple of problems associated with bulk
commit. In this section we will discuss yet another problem associated with bulk commit
of atomic superblocks in the context of an out-of-order processor. In order to tackle all the
bulk commit problems we will propose a novel bulk commit mechanism by co-designing
the commit logic.

6.4 Co-designing the Commit Logic 121

6.4.1 Bulk Commit Problem 3

This problem is related to the problem mentioned in Section 4.3.1. By using the SpecRRT
as described in Section 4.3.2 we were able to commit µ-ops of the same superblock that
are older to the µ-op that missed in L2-cache. However, the µ-ops that are independent
and younger to the µ-op that missed in the L2-cache will still have to wait in the ROB.

For instance, in Figure 4.9 the µ-op 3 and µ-ops younger to it cannot retire. As a result,
such a scenario will eventually lead to stall at the frontend, which can limit the ability to
expose the ILP of an application.

6.4.2 A ROB-free Bulk Commit mechanism

In order to tackle all the bulk commit related problem described above we take an entirely
different approach. We use the observation that the change in program state is the change
in the register state and the change in the memory state. Hence, instead of holding µ-ops
we hold the program state.

Moreover, since the program order has to be maintained at the granularity of the su-
perblock, we precisely do that by introducing a ROB-free reorder logic. In our proposal,
we get rid of the ROB entirely and introduce a new structure the Superblock Ordering
Buffer (SOB) to maintain program order at the granularity of the superblock. A special
commit operation updates the program state, both the register and the memory state.

6.4.3 Register State

In order to commit the register state atomically, we propose the per superblock register
rename table (SRRT). The SRRT, like FRRT or BRRT, holds mappings from architected
register to physical registers. However, unlike FRRT or BRRT, it holds mappings of
only those architected registers that are live-outs of the superblock6, as illustrated by the
example in Figure 6.9.

A SRRT is assigned to a superblock when the head µ-op is being renamed. The source
operands mappings are read from the FRRT and the destination operand is updated in
the FRRT, in a conventional manner. However, if the µ-op being renamed is a live-out,
then the SRRT, corresponding to the superblock, is updated. When all the µ-ops, of
the superblock, have executed the register state is committed, by copying only the valid
mappings from the SRRT to the BRRT; and the SRRT is made available.

Note that the primary difference between SRRT and the SpecRRT, as proposed in Section
4.3.2, is that the SRRT is per superblock, whereas there is only a single SpecRRT. More-

6Live-outs of the superblocks are marked by the VMM.

122 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

rdx

rax

rbx

rcx

BRRT

PR8

PR32

PR5

PR9

Commit

Only the renamed live-outs

are updated at rename.

Rename Execute WriteBack

rdx

rax

rbx

rcx

FRRT

PR8

PR3

PR5

PR7

SRRT
Pool

rdx

rax

rbx

rcx

SRRT

X

X

PR8

PR5

Copy Live-outs

when all µ-ops commit.

from SRRT to BRRT

All µ-ops update

FRRT at rename.

Figure 6.9: Register State Rename and Commit. rax and rcx are the live-outs of the current
superblocks. Hence, rbx and rdx entries in the SRRT are invalid. As a result at commit only
rax and rcx are updated in the BRRT. SRRT has four read and four write ports same as BRRT.

over, SRRT is allocated to the superblock when its µ-ops are renamed. The SpecRRT,
however, is updated when the µ-ops of the superblock are being retired speculatively.
Moreover, the contents from SpecRRT is copied to the BRRT when the tail of the su-
perblock commits, whereas the contents from SRRT is copied when the last µ-op of the
superblock to complete execution commits.

We have assumed four or eight SRRTs in order to support four or eight superblocks. We
have assumed each SRRT has four read and four write ports.

Circuit Details of SRRT

The circuit level description of SRRT holds here for SpecRRT, which was described in
Section 4.3.2 as well. SRRT like FRRT can be designed either using a RAM or a CAM
based structure. We, however, use a RAM based structure as it is more scalable [76]. In
a typical Register Rename Table a RAM cell consists of a shift register cell in order to
shadow the mapping. However, the SRRT unlike FRRT does not need any shift register
cell.

Moreover, unlike conventional rename tables, the SRRT is not read at the rename stage.

6.4 Co-designing the Commit Logic 123

Its only written at the rename stage by the µ-ops that are live-outs of the superblock.
The read ports are accessed only at the commit stage when the valid mappings from the
SRRT are copied to the BRRT.

Total number of ports in a conventional FRRT for a four-way superscalar processor is
twelve7. Whereas, six read and two write ports are sufficient for a SRRT. Hence if a
superblock has more live-outs than six, the commit is split into multiple cycles. This has
no consequence on the performance as commit is not in the critical path. Similarly, no
more than two live-outs could be renamed in a given cycle. Our experiments have shown
that the average number of live-outs per superblocks are nearly 8 and 4 for SPECFP and
SPECINT, respectively.

The delay of a Rename Table is given by Tdecode + Twordline + Tbitline + Tsenseamp [76]. The
Tdecode, and Tbitline depend upon the total number of ports and the number of entries. As
shown above we reduce the number of ports to eight, while the number of entries are still
the same8. This is in turn reduces these delays and the corresponding power.

Furthermore, the Twordline depends on the number of shift-register cells, the number of
ports and the width of each entry. SRRTs do not need any shift register cells, has fewer
ports, and the width is same9; and hence has a smaller delay. As a result, the overall delay
of SRRT is lower than that of FRRT, and it does not fall into the critical path. However, as
there are four/eight SRRTs, additional power is dissipated, which is quantified in Section
6.6.3.

6.4.4 Superblock Ordering Buffer

We propose Superblock Ordering Buffer (SOB) in order to commit the superblock register
and memory state in program order. Since SOB is a circular buffer, a superblock is
committed only when the entry corresponding to it in the SOB is at the head of SOB.
For a four-way out-of-order processor a SOB could have four or eight entries, many-fold
smaller than a conventional ROB for a four-way superscalar processor.

Each SOB entry consists of six fields as shown in Figure 6.10. The first field (mio cnt)
indicates the number of µ-ops in a superblock. The second field (exe cnt) indicates the
number of µ-ops that have successfully executed. The third field (p srrt) is a pointer
to the per superblock register rename table (SRRT). The fourth field (tail rnm) is a bit
indicating whether the tail µ-op of the superblock has been renamed. The fifth (st bgn)
and the sixth (st end) fields indicate the beginning and the end index of the gated store
buffer, respectively.

7Eight read ports and four write ports assuming two operand µ-ops.
8Number of Architected Registers.
9Size depends upon number of Physical Registers.

124 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

N
u

m
b

er
of

S
u

p
er

b
lo

ck
s

st endst bgntail rnmp srrtexe cntmio cnt

SOB Entry

tail :: allocated at rename.

head :: first to commit.

SOB

Figure 6.10: Superblock Ordering Buffer (SOB). Various fields of SOB are shown in the figure.

As the head µ-op is renamed, a SOB entry and a SRRT is allocated to the superblock.
The p srrt field of the SOB entry is made to point to the SRRT. As other µ-ops are
renamed mio cnt is incremented, and the tail rnm is set when the tail is renamed. The
st bgn is updated when the first store is at rename, while st end is updated when the last
store is updated.

As a µ-op reaches the commit stage, the exe cnt field of the SOB entry is incremented.
The head of SOB is considered for commit when the exe cnt equals the mio cnt, and the
tail rnm (bit) field is set10. The register state held by SRRT is updated to BRRT; and
the gated store buffer commits the memory state.

We have modeled SOB using a RAM array, and observed that the delay and power
dissipated is lower than the ROB. Since the SOB consists of only eight or four entries,
the Tbitline and the Tdecode are smaller11. The Twordline depends upon number of ports and
the entry width. Since both the number of ports and the entry size12 are equal for a SOB
and a ROB, the Twordline delay is same. Hence, the overall delay and the power dissipated
by SOB is lower than that by a ROB.

We have assumed a SOB of four or eight entries in order to support four or eight sup-
perblocks. SOB has four read and four write ports.

10This implies the µ-ops have renamed and hence executed.
11Since the number of ports are eight in both SOB and ROB.
12Each SOB entry is four-five bytes wide, similar to a ROB entry

6.4 Co-designing the Commit Logic 125

6.4.5 Physical Register Recycling

This Physical Register Recycling is applicable to all the bulk commit mechanisms pro-
posed above. Physical registers are held in the conventional physical register file. The
VMM marks the non live-out architected registers and finds the number of consumers for
each one of them. This information is used to update the counter associated with the
corresponding Physical Register.

As the consumer µ-ops execute the counter, associated with the source physical registers,
is decremented. The Physical Registers whose counters decrement to zero are freed by
the conventional Register Recycling mechanism [89].

On the other hand, the live-out architected registers of a superblock are handled similar
to the conventional out-of-order processor. Even after the superblock is committed the
counters associated with these physical register are not equal to zero. This is because
they hold the program register state and at least the BRRT holds reference to them.
Only when another superblock with same live-out architected register is committed the
physical register is freed.

6.4.6 Memory State

We use gated store buffers [95] in order to hold the data, corresponding to a store µ-op,
which is similar to our baseline described in Chapter 3. A buffer entry is allocated to
the store at the rename stage. When all the µ-ops of the superblock have successfully
executed a special commit operation commits the store buffer data to the cache hierarchy.

6.4.7 Handling Precise Exceptions

In an out-of-order processor one of the key role of the ROB, apart from updating the
program state atomically, is to provide precise exceptions. Since we have proposed a ROB-
free bulk commit logic we need to provide precise exceptions. So whenever a µ-op throws
an exception, the exception information can be stored in the SOB entry corresponding to
the µ-op’s superblock.

Now when all the µ-ops corresponding to the superblock has been executed and the SOB
entry is at the head then SOB checks whether any of the µ-op has set the exception
information. If it is the case then a complete pipeline flush is triggered. The superblock is
rolled-back and cold x86 code corresponding to the faulting superblock is fetched. Dual-
mode decoders [52] decode the x86 instructions into µ-ops.

Since processor is in the exception mode only one of the FIFO is enabled. As a results
µ-ops are executed in program order and the excepting instruction will be eventually

126 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

encountered, thereby resulting in a precise exception state.

6.5 Summary of Changes

Stage Baseline Processor Proposed Processor
Rename FRRT is accessed for each µ-op. FRRT

is a SRAM structure with eight read
and four write ports. Physical Regis-
ter corresponding to source operands
are identified. Destination operand is
renamed to a new Physical Register.
A ROB entry is allocated for each µ-
op, LSQ entry is allocated in case of a
load/store. ROB is a SRAM structure
with four read and write ports.

FRRT is accessed for each µ-op like
in the baseline processor. However,
SRRT is accessed only for those µ-ops
that are live-outs of the superblocks.
The physical register are updated in
the SRRT corresponding to the des-
tination operand of the live-out µ-op.
SOB and SRRT are allocated in case
the µ-op is head. Tail rnm bit is set
in the SOB entry if the µ-op is a tail.
mio cnt of the current SOB entry is
incremented. SOB has eight entries
and has four read and four write ports.
ROB does not exist, hence not allo-
cated. Gated Store buffer entry is al-
located for a store.

Dispatch µ-ops are dispatched to Issue Queue
based on their type. There are four Is-
sue Queues of sixteen entry each with
four read and four write port.

µ-ops are dispatched to FIFOs based
on the enhanced steering heuristic.
There are two/four/eight FIFOs of
eight entries each. Physical register
ready table is accessed to determine
whether the µ-op is ready. The physi-
cal register ready table has eight read
and four write ports.

Issue µ-ops that are ready to issue and have
the functional units available are is-
sued.

µ-ops are issued from FIFO head if
they are ready to issue. Physical reg-
ister ready table is accessed in issue
stage as well.

Execute µ-ops are executed in their respective
functional units.

µ-ops are executed in their respec-
tive functional units. Moreover, the
exe cnt of the corresponding SOB en-
try is incremented.

Memory Disambiguation For a Load a check is made to see if
there exists an older store with unre-
solved address in the store queue or if
there exists an older store with which
the load aliases. If either of the two
conditions are true then the load is
stored in the load queue. The load
queue is 48 entries and the store queue
is 32 entries each with two read and
write ports.

A check is made in the Gated Store
buffer, 80 entries two read and write
ports, to see if an older aliasing store
exists. In case an older aliasing store
is found the data is forwarded from the
store buffer.

Commit Commit a µ-op from ROB head if all
the µ-ops corresponding to the x86 in-
struction are ready to commit.

For SOB head check if exe cnt is equal
to mio cnt and whether the tail rnm
bit is set. If both the conditions
are met, then copy SRRT contents to
BRRT and Gated Store buffer contents
are flushed to the memory hierarchy.

Table 6.1: Qualitative comparison between the baseline and the proposed processor

6.6 Evaluation 127

Table 6.1 provides a summary of changes for each pipeline stage that we had introduced
in our proposal.

6.6 Evaluation

In this section, first we study the proposed out-of-order logic. We present the reasons
behind performance improvement. Moreover, we show the performance benefit of our
enhanced steering heuristic in detail normalized a CAM based issue logic.

Next, we study the benefits and behavior of our proposed Bulk Commit Mechanism.
We show the impact of limiting the number of simultaneous superblocks in the pipeline.
Next, we report results for various dynamic power related metrics for both the FIFO
based out-of-order logic and the Bulk Commit Mechanism.

Finally, in order to put things in perspective we compare our co-designed processor, which
consists of FIFO based out-of-order logic and Bulk Commit mechanism, to a conventional
out-of-order processor. This comparison is done both in terms of performance and various
dynamic power related metrics.

We use Wattch 1.02 [16] to quantify the dynamic power dissipated and energy consumed.
The dynamic power results shown here are using the conditional clock gating[16]. We
report results of various dynamic power related metrics such as dynamic power, energy,
energy-delay product and energy-delay2 product.

For devices that run on battery, energy is an important design constraint. If a processor
finishes executing the same task by consuming lesser energy, it would be preferable13.
The energy-delay product [17], on the other hand, is yet another dynamic power related
metric that puts more weight on the performance.

The extra delay factor emphasizes performance and is appropriate for higher end sys-
tems (work stations). A lower value of the metric is preferred and it is inverse of
(MIPS)2/(Watt). The energy-delay2 product, on the other hand, puts further weight on
performance. It is more suitable for high-performance domain such as work stations and
servers.

13Given the dynamic power and execution time are reasonable.

128 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

6.6.1 Performance of new Steering Policy

1

1.2

1.4

1.6

1.8

2

2.2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

FIFO 4 FIFO 2

Figure 6.11: Performance of Enhanced Steering Heuristic when normalized to dependence-
based steering heuristic. FIFO size = 8.

Figure 6.11 shows the performance of our enhanced steering heuristic. More specifically,
in this figure we consider the HW/SW co-designed OOO with FIFOs discussed in this
chapter but varying the steering heuristic. Two bars are presented, each referring to a
configuration with different number of FIFOs: FIFO 4 refers to a 4 FIFO configuration
design, whereas FIFO 2 refers to a 2 FIFO based design.

The two bars show the normalized speedup of our heuristic with respect to the with
Palacharla dependence-based steering heuristic using equivalent number of FIFOs. As
we can see from the figure, the proposed heuristic is better in performance than the
dependence-based heuristic by nearly 70% and nearly 25% for a two FIFO and a four
FIFO configuration, respectively. As we will see next, the main reason for the performance
improvement is the reduction in stalls at dispatch.

As mentioned in Section 6.3 that our heuristic increases the dispatch throughput by
reducing the unnecessary stalls. Figure 6.12 shows the stalls at the dispatch stage for a
four FIFO configuration, when normalized with respect to the baseline dependence-based
steering heuristic. Two bars are presented, the first one Rdy no, is for the heuristic that
reduces Rdy no stalls14, whereas the second one Tail no, is for the heuristic that reduces
both the Rdy no and Tail no stalls.

14See Section 6.3.2.

6.6 Evaluation 129

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

F
ra

ct
io

n

SPECFP SPECINT

Rdy no
Tail no

Figure 6.12: Stalls at Dispatch when normalized with respect to dependence-based heuristic.
FIFO size = 8.

For SPECFP, we obtain a reduction in stalls at dispatch of 55%, whereas for SPECINT
the reduction in stalls at dispatch is 62%. Since a two FIFO configuration obtains more
speedup, the percentage reduction in stalls is even higher.

Earlier in Figure 6.5 we have shown the stall condition breakdown of Palacharla’s dependence-
based steering heuristic. Nearly 80% of the stall were due to Rdy no and the remaining
were due to Tail no. Our enhanced steering heuristic reduces both of these stalls by steer-
ing µ-ops that have either encountered a Rdy no or Tail no stall to a FIFO whose tail is
ready.

0

0.2

0.4

0.6

0.8

1

1.2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

F
ra

ct
io

n

SPECFP SPECINT

Rdy no Tail no Tail FIFO

Figure 6.13: The breakdown of Dispatch Stall condition Enhanced Steering Logic. FIFO size
= 8

Figure 6.13 shows the breakdown of stalls at dispatch, for our enhanced steering heuristic,
for a four FIFO configuration. The percentage of stalls due to Rdy no is reduced from

130 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

nearly 82% to nearly 40% for SPECFP, and 77% to 35% for SPECINT. Moreover, from
Figures 6.5, 6.13 and 6.12 one can deduce that our enhanced steering heuristic obtains a
reduction in Rdy no stalls of 79%15 and 82%16 for SPECFP and SPECINT, respectively.

Steering Heuristic Benefits Characterization

In order to better understand the performance benefits, we quantify them in this section.
For this purpose we have chosen three FIFO configurations: two, four and eight.

It would also be interesting to compare FIFO based out-of-order processor to conventional
issue logic based out-of-order processor. For this purpose we have replaced the FIFO logic
with a CAM issue logic17, in our out-of-order processor. All the numbers shown in this
section are normalized to this CAM issue logic.

For the sake of readability, we have consistently used the same point-type (key) for a
heuristic across different figures throughout this section. However, in order to differentiate
between the same base heuristic with and without some microarchitectural features we
use two different point-types. For instance, a base heuristic with and without early release
are shown by two different point-types.

Effect of Early Release As described in Section 6.3.3, an early release mechanism
releases some of the issue queue entries at the issue stage itself. As a result of which, issue
queue entries are held only when a bit-vector indicates that a load was issued few cycles
earlier.

15(100 - (40/82)*45)
16(100 - (35/77)*38)
17Details in Table 3.3.

6.6 Evaluation 131

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECFP

dep based
size 16
early rel

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECINT

dep based
size 16
early rel

(b) SPECINT

Figure 6.14: The Effect of early release. Speedup normalized to CAM based issue logic. FIFO
size = 8/16.

Figure 6.14 shows the impact in performance of the early release mechanism if applied
to a dependence-based heuristic, as shown by early rel. Clearly, early rel is 10% and
14% better than dep based for a four FIFO configuration for SPECFP and SPECINT,
respectively. Moreover, for a two FIFO configuration early release mechanism results in
a gain of nearly 40% with respect to dep based heuristic.

We also compare the early release to a FIFO with double the number of entries to sixteen,
as shown by size 16 in Figure 6.14. Increasing the size of a FIFO merely adds entries
to the tail of the FIFO. Whereas, the early release mechanism releases entries from the
head, which are critical for steering heuristic.

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECFP

dep based
Rdy no
Tail no

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECINT

dep based
Rdy no
Tail no

(b) SPECINT

Figure 6.15: Enhanced Steering Heuristic. Speedup normalized to CAM based issue logic.
FIFO size = 8.

132 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

Enhanced Steering Heuristics Figure 6.15 shows the performance of our enhanced
steering heuristics. Rdy no is the one that reduces the stalls due to Rdy no (see Section
6.3.2), whereas Tail no is the one that reduces the stalls due to both Rdy no and Tail no.

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECFP

early rel
Rdy no er
Tail no er

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECINT

early rel
Rdy no er
Tail no er

(b) SPECINT

Figure 6.16: The effect of Early Release when applied to Steering Heuristics. Speedup nor-
malized to CAM based issue logic. FIFO size = 8.

We also show the performance of the enhanced heuristics with the early release in Figure
6.16. We append er to the existing heuristics in order to indicate them. For instance,
Rdy no er is the performance of Rdy no heuristic with early release.

In general, early release mechanism affects all the heuristics, by making the issue critical
resources available. As the dependence based heuristic is more sensitive to empty FIFOs
it obtains more performance benefit than our heuristic.

6.6 Evaluation 133

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECFP

dep based
early rel
Rdy no er
Tail no er
Rdy no er iw 2
Tail no er iw 2

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

S
p

ee
d

u
p

Number of Fifos

SPECINT

dep based
early rel
Rdy no er
Tail no er
Rdy no er iw 2
Tail no er iw 2

(b) SPECINT

Figure 6.17: The Effect of Per FIFO Issue Width when applied to enhanced steering heuristic.
Issue width does not have any impact of dependence-based steering heuristic, hence it is not
shown. Speedup normalized to CAM based issue logic. FIFO size = 8.

Effect of per FIFO Issue Width As mentioned in Section 6.3.2 our enhanced heuristic
sends ready µ-ops to a FIFO whose tail is ready. This implies that the likelihood of finding
multiple ready µ-ops in the same FIFO increases. We validate this intuition in the Figure
6.17 by increasing the per FIFO issue width from one to two. We append iw 2 to the
heuristic evaluated right above in order to indicate them. For instance, Rdy no er iw 2 is
the heuristic that tackles Rdy no stall and incorporate early release with an issue width
of two for each FIFO.

The performance of enhanced heuristics with FIFOs that could issue two µ-ops is shown by
Rdy no er iw 2 and Tail no er iw 2 in Figure 6.17. Clearly, the benefit of increasing per
FIFO issue width is evident for a two FIFO configuration. For a two FIFO configuration
in particular with Tail no er heuristic we obtain a speedup of 13% and 10% for SPECFP
and SPECINT, respectively, with respect to the configuration where per FIFO issue width
is one.

134 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

N
or

m
al

iz
ed

S
p

ee
d

u
p

Number of Fifos

SPECFP

Normal
Oldest First

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

N
or

m
al

iz
ed

S
p

ee
d

u
p

Number of Fifos

SPECFP

Normal
Oldest First

(b) SPECINT

Figure 6.18: The Effect of Issue Queue Start Policy on FIFO based OOO logic with different
FIFO sizes. Speedup normalized to CAM based issue logic with oldest first start policy. FIFO
size = 8.

Effect of Start Policy Figure 6.18 measures the impact of start policy that was de-
scribed in Section 6.3.4. For this purpose we measured the performance of normal policy
with the oldest first policy.

As can be seen from the Figure 6.18 the performance gap between CAM based issue logic
and FIFO based logic is closed further using oldest first. The higher the number of FIFOs
the closer the performance gap gets; this is because a system with N FIFOs behaves like
a CAM based out-of-order processor with 1 Issue Queue of size N.

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

N
or

m
al

iz
ed

S
p

ee
d

u
p

Number of Fifos

SPECFP

Lat FIFO
Enhanced

(a) SPECFP

0.4

0.5

0.6

0.7

0.8

0.9

1

0246810

N
or

m
al

iz
ed

S
p

ee
d

u
p

Number of Fifos

SPECINT

Lat FIFO
Enhanced

(b) SPECINT

Figure 6.19: Comparison with Lat FIFO scheme [5]. In order to be fair both of the heuristics
use oldest first start policy. Speedup normalized to CAM based issue logic with oldest first start
policy. FIFO size = 8.

6.6 Evaluation 135

Comparison with State-of-the-Art heuristic Abella et al. [5] have proposed a
heuristic to improve the performance of FIFO based out-of-order logic for SPECFP. They
refer to their heuristic as Lat FIFO. For SPECINT they use the dependence-based heuris-
tic.

In essence, their heuristic first tries to estimate issue cycle of an µ-op. In case according
to dependence-based heuristic if no FIFO is available then instead of stalling µ-ops are
steered to a FIFO whose tail would issue earlier than the µ-op being steered. The details
of their heuristic can be found in their paper [5].

Figure 6.19 provides a comparison of our enhanced heuristic with one of the heuristic
proposed by Abella et al. Our heuristic is shown by the line tagged by Enhanced, whereas
the Lat FIFO shows the performance of Lat FIFO scheme.

Clearly both in SPECFP and SPECINT our heuristic performs better than the Lat FIFO
scheme. This is because first the Early Release mechanism makes more empty FIFOs
available. The benefit is magnified with lower number of FIFOs. Secondly estimating the
issue cycle of a µ-op is not always accurate. For instance, a µ-op that is being dispatched
will have an issue cycle greater than that of the Tail of a FIFO in the Lat FIFO scheme.

However, the tail of a FIFO might be waiting on a load that has missed. This would
result the µ-op being dispatch to remain stuck. Whereas in our heuristic, we never steer
to such a FIFO. A µ-op that is independent of the tail of a FIFO is steered to that FIFO
only if the tail of the FIFO is ready.

136 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

6.6.2 Bulk Commit Mechanism Study

0.4

0.6

0.8

1

1.2

1.4

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

gap
vortex

twolf

average

0.4

0.6

0.8

1

1.2

1.4

F
ro

n
te

n
d

S
ta

ll
s

S
p

ee
d
u
p

SPECFP SPECINT

frontend stalls
speedup

Figure 6.20: The first bar shows stalls at frontend observed by SOB based processor normalized
to a ROB based processor. Both the processors are executing atomic superblocks and the size of
superblocks are constrained to the size of the ROB. The second bar shows the speedup observed
by SOB based processor with respect to the ROB based processor. Although in crafty frontend
stalls are reduced the most but the speedup obtained is very low. This is due to the low ILP
present in such benchmarks, i.e. the bottleneck is in issue not in frontend. SOB = 8, ROB =
128, 4-wide processor.

As explained earlier the atomic commit constraint of superblocks causes the conventional
ROB based processor to stall. Figure 6.20 shows the reduction in stalls obtained by our
SOB/SRRT commit logic with respect to conventional ROB based processor in the left
y-axis Frontend stalls. Nearly 25% and 22% of resource related stalls are reduced in
SPECFP and SPECINT, respectively.

6.6 Evaluation 137

0.6

0.7

0.8

0.9

1

1.1

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

SRRT 8 SRRT 4 SRRT 2

Figure 6.21: The Effect of reducing SRRTs. Results are normalized to unbounded number of
SRRTs. Since number of SRRTs is equal to the number of entries in SOB. Three different SOB
configurations were assumed. However, we assumed four FIFO configuration.

Figure 6.20 also shows the speedup obtained due to the reduction of these stalls in the
right y-axis Speedup. In SPECFP we obtain a speedup of 12%, and 1.5% in SPECINT,
with respect to conventional ROB based processor. The larger superblocks in SPECFP
leads to more stalls, as it results in more µ-ops waiting in the ROB. Hence the performance
improvement obtained in SPECFP is notably larger than that in SPECINT.

As mentioned earlier in Section 6.4 SRRTs are added to allow concurrent execution of
several superblocks. In Figure 6.21 we show the impact in performance by limiting the
number of simultaneous superblocks in the pipeline. In order to limit the number of
simultaneous superblocks, we limit the number of SRRTs. This is exactly equivalent of
limiting number of SOB entries. We show speedups of three different configurations with
eight, four and two SRRTs. The speedups are normalized to the one with unbounded
number of SRRTs.

As is evident from the figure that an eight SRRT configuration is as good as an unbounded
SRRT configuration. Moreover, a four SRRT configuration provides performance that is
within 3% of the unbounded case. Hence, a pool of four SRRTs and a SOB with four
entries seems to be a good trade-off between performance and complexity.

6.6.3 Dynamic Power and Energy Results

The proposed enhanced steering heuristic does not need any additional structures with
respect to the baseline dependence-based steering heuristic. However, the existing Phys-
ical Register ready table is accessed not only at the issue stage but also at the dispatch
stage. This results in increase in the number of read ports on this table and , hence, the
number of accesses per cycle. As a result, the dynamic power dissipated by the table

138 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

increases.

Moreover, since the enhanced steering heuristic reduces stalls and increases the IPC, the
overall activity of all the processor units increases. This results in higher dynamic power
dissipation from other units as well. In this section we quantify the dynamic power and
energy of our proposed processor with different steering heuristics. All the results in this
section are normalized to the CAM issue logic.

Dynamic Power Results of the Steering Heuristics

0.6

0.7

0.8

0.9

1

1.1

1.2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

P
ow

er
N

or
m

al
iz

ed

SPECFP SPECINT

dep based Enhanced

Figure 6.22: Dynamic Power Results of dependence-based steering heuristic and Enhanced
steering heuristic normalized to CAM based issued logic.

Figure 6.22 shows the normalized dynamic power dissipated by the co-designed processor
implementing different steering heuristics18. With respect to the processor with depen-
dence based steering heuristic our enhanced steering heuristic dissipates 12% and 14%
more dynamic power for SPECFP and SPECINT, respectively.

18Four FIFO configurations.

6.6 Evaluation 139

0.6

0.7

0.8

0.9

1

1.1

0.6 0.7 0.8 0.9 1 1.1

P
ow

er
N

or
m

al
iz

ed

Performance Normalized

SPECFP

CAM Issue Logic

dep based
Enhanced

(a) SPECFP

0.6

0.7

0.8

0.9

1

1.1

0.6 0.7 0.8 0.9 1 1.1

P
ow

er
N

or
m

al
iz

ed

Performance Normalized

SPECINT

CAM Issue Logic

dep based
Enhanced

(b) SPECINT

Figure 6.23: Normalized Power and Performance Results. The point 1,1 corresponds to CAM
issue logic.

We also measured the dynamic power dissipated by the individual units. Together the
issue and the dispatch logic of the proposed enhanced steering heuristic dissipates nearly
56% and 52% more dynamic power for SPECFP and SPECINT, respectively, compared
to dependence-based heuristic. The dynamic power dissipated by these units is still nearly
2% of the dynamic power dissipated by the processor. To put things in perspective, our
results show that a CAM issue logic based processor with four issue queues, each sixteen
entries long, dissipates nearly 10% of the processor dynamic power19.

Even though our heuristic dissipates more dynamic power, it is still more power-efficient
than both the dependence-based heuristic and the CAM issue logic. By plotting dynamic
power against performance normalized to CAM issue logic we quantify this claim in Figure
6.23. Any point that falls below the line y = x is more dynamic power-efficient than CAM
issue logic.

Dynamic Power Results of SOB and SRRT

We modeled both the SOB and SRRT using RAM array, to quantify the dynamic power
dissipated. We assumed an eight-entry SOB and eight SRRT configuration20. The SOB
has eight ports and each entry is five bytes wide.

We observe that our proposed processor dissipates 6% less dynamic power compared to
a ROB-based processor. This main gain is due to the fact the SOB is multiple-folds
smaller than a ROB. Even though there are multiple rename tables, at any given cycle at

19Four Issue Queues of thirty-two entries each dissipates 17% of the processor dynamic power.
20Four-entry SOB and four SRRTs are sufficient, but a bigger configuration provides an upper bound

on dynamic power dissipation.

140 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

most two SRRTs will be accessed. A write access to a SRRT is made when a µ-op being
renamed is a live-out of the superblock, while a read access to a SRRT is made when state
is committed to BRRT.

Energy Results of the Steering Heuristic

0.6

0.7

0.8

0.9

1

1.1

1.2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
N

or
m

al
iz

ed

SPECFP SPECINT

dep based Enhanced

Figure 6.24: Energy Results of dependence-based steering heuristic and Enhanced steering
heuristic normalized to CAM based issued logic.

Figure 6.24 shows that the enhanced steering heuristic consumes 7% less energy than
CAM issue logic. The dependence-based heuristic, on the other hand, consumes 3-4%
more energy.

We observed that the energy-delay product of the dependence-based heuristic is nearly
35% more than that of our heuristic. One can also deduce from the results above that
our steering heuristic is more energy efficient than the dependence based one.

6.6 Evaluation 141

SpecRRT vs SRRT

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

P
ow

er
N

or
m

al
iz

ed

SPECFP SPECINT

FIFO 2 FIFO 4 FIFO 8

Figure 6.25: Dynamic Power Consumption of SOB and SRRT based processor normalized to
ROB and SpecRRT based processor. Both the processors are executing atomic superblocks, and
the issue logic is FIFO based.

We have also evaluated the difference in the two bulk commit mechanisms. SpecRRT
based mechanism, which was proposed in Chapter 4 is compared to SOB and SRRT
based bulk commit mechanism. In Section 6.4.1 we have shown qualitatively that SOB
and SRRT based bulk commit mechanism addresses the problem when a Load encounters
a miss.

However, in our experiments we had found that SpecRRT and SRRT obtain equivalent
performance. This happens due to two primary reasons. Firstly, since our superblocks
are smaller, the number of times a Load miss causes a ROB, in SpecRRT based solution,
to stall is fewer. Secondly, the majority of our benchmarks have a small working set and
generate fewer L1-cache misses and even lower L2-miss. As a result, the benefit of getting
rid of the ROB and using SOB based solution was not fully exploited.

However, as the superblocks become larger or if the ROB is smaller and the applications
with larger working set are evaluated we believe a SOB based solution would lead to a
better performance.

Moreover, since the SOB is many folds smaller than a ROB, the SOB based processor
consumes lower dynamic power. This is in spite of the fact that the SOB based solution
requires multiple SRRTs to hold the register state for each superblock. In Figure 6.25
we have measured the dynamic power consumption of three FIFO configurations. The
dynamic power is normalized to SpecRRT configuration.

As shown in the figure SOB based processor consumes 5% lower dynamic power in all the
three different FIFO configurations, primarily because the SOB is manifolds smaller than

142 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

the ROB. Even though there are more SRRTs in comparison to a single SpecRRT, at any
given point in time at most two SRRTs are being accessed.

Moreover, SRRTs and SpecRRT are both accessed only by live-outs. The difference is that
in the SRRT design, the SRRTs are written in the rename stage, whereas the SpecRRT is
written when µ-ops retire. Both of the structures are read and their contents are copied
to the BRRT at bulk when the last µ-op commits. This indicates that dynamic power
consumption due to SRRTs should be similar to that of the SpecRRT.

Hence, the key determining factor here is the reduction in dynamic power obtained due to
a smaller SOB. This result can also be validated from Section 6.6.3, where we mentioned
that SOB based processor executing superblocks obtains 6% reduction in dynamic power
consumption compared to ROB based processor executing normal µ-ops. Notice that in
this study we had assumed both these processor configurations use same issue logic.

6.6.4 SOB+FIFO Vs ROB+CAM processor

0.5

1

1.5

2

2.5

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

FIFO 2
FIFO 4
FIFO 8

Figure 6.26: Speedup of SOB based processor with FIFO based issue logic executing op-
timized superblocks normalized to conventional ROB based processor with CAM based issue
logic executing normal µ-ops.

Finally, in this section we measure the performance of the co-designed out-of-order proces-
sor that we had proposed to a conventional ROB based processor. However, the difference
here with respect to the study performed in Section 6.6.2 is described as follows.

6.6 Evaluation 143

0.6

0.8

1

1.2

1.4

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

FIFO 2
FIFO 4
FIFO 8

Figure 6.27: Speedup of SOB based processor with FIFO based issue logic executing optimized
superblocks normalized to conventional ROB based processor with CAM based issue logic with
memory disambiguation executing normal µ-ops.

We have compared a SOB based processor with FIFO based issue logic executing su-
perblocks to a ROB based processor with CAM based issue logic executing normal µ-ops.
None of the processor has support for HW memory disambiguation. Figure 6.26 shows
the performance improvement of our proposed processor with three different FIFO con-
figurations over the ROB based processor.

For SPECFP, as the superblocks are larger in size, as described earlier in Chapter 3,
we obtain significant speedup. For instance, with four FIFOs we obtain speedup of over
50% on average. For SPECINT, on the other hand, the performance with four FIFOs
is within 10% of the ROB based processor, whereas with 8 FIFOs we obtain equivalent
performance.

Earlier in Chapter 3, we had shown that code optimization such as load hoisting and list
scheduling narrows the gap between an in-order processor executing superblocks with an
conventional out-of-order processor. Hence, in some ways dynamic compiler is applying
memory disambiguation on the superblocks at the time of code optimizations.

In order to be fair we have enhanced the ROB based processor with hardware memory
disambiguation. Figure 6.27 shows the results of this comparison. Similar to Figure 6.26
we have measure performance of our SOB based processor with three FIFO configuration.
The only difference is that ROB based processor not only has CAM based issue logic but
also CAM based LSQ.

As shown in the Figure 6.27 the performance of the SOB based processor with four FIFOs
is within 20% of the ROB based processor with both CAM based issue logic and memory
disambiguation. Moreover, with eight FIFOs the performance is within 15%.

144 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

Dynamic Power and Energy Results

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

P
ow

er
N

or
m

al
iz

ed

SPECFP SPECINT

FIFO 2
FIFO 4
FIFO 8

Figure 6.28: Dynamic Power consumption of SOB based processor with FIFO based issue logic
executing optimized superblocks normalized to conventional ROB based processor with CAM
based issue logic running with memory disambiguation executing normal µ-ops.

Since the enhanced ROB based processor consists of CAM based issue logic and CAM
based LSQ, it also consumes more dynamic power. Figure 6.28 shows the normalized
dynamic power of the SOB based processor with respect to the enhanced ROB based
processor. Both for SPECFP and SPECINT we achieve a 40% reduction in dynamic
power with four and eight FIFOs on an average.

6.6 Evaluation 145

0

0.2

0.4

0.6

0.8

1

SO
B

+
FIFO

4

RO
B

+
CA

M
+

M
D

SO
B

+
FIFO

4

RO
B

+
CA

M
+

M
D

P
ow

er
N

or
m

al
iz

ed SPECFP SPECINT
Fetch+Decode+Rename
Issue Logic
Mem Disamb.
RF
L1 Cache (I+D)
L2 Cache
Exec + Commit
Clock

Figure 6.29: Dynamic Power consumption Distribution of SOB based processor with FIFO
based issue logic executing optimized superblocks and that of ROB based processor with memory
disambiguation and CAM based issue logic. Both are normalized to conventional ROB based
processor with CAM based issue logic running with memory disambiguation executing normal
µ-ops.

In Figure 6.29 we show the distribution of dynamic power consumption for a SOB based
processor with four FIFO configuration. Moreover, the dynamic power consumption dis-
tribution of a conventional ROB based processor with CAM based issue logic and memory
disambiguation is also shown.

As shown in the figure, our proposed co-designed processor obtains a 40% reduction in
power, which comes from various sources. First of all, a 9% reduction is obtained in Exec
+ Commit. The majority of this reduction is because of lower activity in functional units.
Moreover, we do not require a ROB, instead we use SOB, which is manyfolds smaller than
the ROB. Similarly, due to low activity, we obtain a 8% reduction in total clock power.

One of the important source of power consumption for a conventional OOO processor
is due to CAM based issue logic and memory disambiguation. FIFO based issue logic,
on the other hand, hardly consumes any power. As a result of which, we obtain a 7%
reduction in power in issue logic.

Moreover, another important source of power consumption in conventional out-of-order
processors in due to memory disambiguation. The key structure that enables issuing of
memory instructions out-of-order is a LSQ, which is a CAM based structure. As shown in
the Figure 6.29, in the baseline processor the LSQ contributes nearly 14% of total power
consumption. The power consumption due to Memory disambiguation in the Wattch
paper [16] is reported as 11% for a Alpha 21264 like processor. The power consumption
due to memory disambiguation is slightly higher due to larger LSQ in our baseline.

146 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

We obtain nearly 13% reduction in power in memory disambiguation. This is mainly
because we do not have LSQ, instead we use Gated Store Buffers. With a conventional
LSQ based processor, each time a store reaches the hit/miss stage21 a CAM wake-up is
performed on the queue, in order to wake-up all the waiting loads. Moreover, since stores
are split into address and data µ-ops, a CAM wake-up is performed for both the µ-ops.

Moreover, when loads reach the hit/miss stage, a CAM lookup is performed to find
unresolved older stores. In case an unresolved store is found, then the load is inserted in
the load queue.

On the other hand, in our proposed co-designed processor, we do not have a LSQ. Instead a
Gated Store Buffer is present, which holds the store data of uncommitted stores. However,
for each load, a CAM lookup is performed on the buffer to find older aliasing stores.

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
N

or
m

al
iz

ed

SPECFP SPECINT

FIFO 2
FIFO 4
FIFO 8

Figure 6.30: Energy Consumption of SOB based processor with FIFO based issue logic exe-
cuting optimized superblocks normalized to conventional ROB based processor with CAM based
issue logic running with memory disambiguation executing normal µ-ops.

For handheld devices that operate on battery, energy is a very important metric. The
lower the energy consumed to run an application, the longer the battery time could be
provided. As shown in Figure 6.30, we achieve a 25% reduction in energy consumption
with four FIFOs for both SPECFP and SPECINT.

21See Figure 3.2

6.6 Evaluation 147

0.5

1

1.5

2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
D

el
ay

N
or

m
al

iz
ed

SPECFP SPECINT

FIFO 2
FIFO 4
FIFO 8

Figure 6.31: Energy-Delay of SOB based processor with FIFO based issue logic executing
optimized superblocks normalized to conventional ROB based processor with CAM based issue
logic running with memory disambiguation executing normal µ-ops.

Finally, yet another important metric for high end devices is the Energy-Delay prod-
uct. Energy-Delay product takes both the energy consumption and the execution time
into account. It is simply the product of Energy consumption and execution time of
an application. Figure 6.31 shows the normalized energy-delay product for three FIFO
configurations.

0
0.5

1
1.5

2
2.5

3
3.5

4

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
D

el
ay

2
N

or
m

al
iz

ed

SPECFP SPECINT

FIFO 2
FIFO 4
FIFO 8

Figure 6.32: Energy-Delay2 of SOB based processor with FIFO based issue logic executing
optimized superblocks normalized to conventional ROB based processor with CAM based issue
logic running with memory disambiguation executing normal µ-ops.

Low energy-delay corresponds to a preferable design point. As shown in the figure we have
obtained a reduction in Energy-Delay product by 10% in SPECFP and 2% in SPECINT
with four FIFOs. For some benchmarks such as lucas, sixtrack, art etc. the SOB based

148 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

processor obtains a worse energy-delay product. This is because from Figure 6.27 it can
be seen that art and lucas have the worst performance.

In order to show the energy-efficiency of our proposal for high performance domain, we
have also provided Energy-Delay2 product in Figure 6.32. For high-end server machines
Emery-Delay2 product is a more suitable metric as it puts more weight on performance.
Figure 6.32 shows that a SOB based processor with FIFO based issue logic also has lower
Emery-Delay2 product for four and eight FIFO configurations.

Comparison of SOB + FIFO + SB vs ROB + CAM + SB

0.6

0.8

1

1.2

1.4

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

S
p

ee
d
u
p

SPECFP SPECINT

ROB + SB + CAM + MD
SOB + FIFO 4

Figure 6.33: Speedup of SOB based processor with FIFO based issue logic executing opti-
mized superblocks and that of ROB based processor with CAM based issue logic with memory
disambiguation executing atomic superblocks. Both are normalized to ROB based processor
with CAM based issue logic with memory disambiguation executing normal µ-ops. However,
executing atomic superblocks in a ROB based processor will result in deadlock for those bench-
marks where superblocks are larger than ROB such as fma3d, crafty, eon etc. Hence, the results
of these benchmarks are not shown.

In Figure 6.33 we compare the performance of the SOB based processor with FIFO based
issue logic to ROB based processor with CAM based issue logic, both executing atomic
superblocks. Moreover, the ROB based processor also has hardware memory disambigua-
tion. Both are normalized to ROB based processor with CAM based issue logic with
memory disambiguation executing normal µ-ops. For the SOB based processor we have
chosen a four FIFO configuration.

In most of the SPECINT benchmarks the ROB based processor executing atomic su-
perblock encounters slowdown. This is mainly because of stalls at the frontend. In some
of the benchmarks, however, such as swim and facerec the ROB based processor executing
superblocks performs better than both the baseline and our SOB base processor.

6.6 Evaluation 149

This happens due to multiple factors. Firstly, CAM based issue logic and hardware
memory disambiguation helps in obtaining better performance. Secondly, optimized su-
perblocks further provides speedup. These two factors mitigate the affect of stalls due to
unavailability of the ROB.

However, since atomic superblocks are executed in ROB based processor, deadlock is
encountered in the case where superblocks is larger than the size of the ROB. In this
experiment the size of the ROB is 128. As a result, performance of such benchmarks are
not reported, such as fma3d, crafty, eon, mesa etc.

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
N

or
m

al
iz

ed

SPECFP SPECINT

ROB + SB + CAM + MD
SOB + FIFO 4

Figure 6.34: Energy of SOB based processor with FIFO based issue logic executing optimized
superblocks and that of ROB based processor with CAM based issue logic with memory dis-
ambiguation executing atomic superblocks. Both are normalized to ROB based processor with
CAM based issue logic with memory disambiguation executing normal µ-ops. However, execut-
ing atomic superblocks in a ROB based processor will result in deadlock for those benchmarks
where superblocks are larger than ROB such as fma3d, crafty, eon etc. Hence, the results of
these benchmarks are not shown.

150 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

P
ow

er
N

or
m

al
iz

ed

SPECFP SPECINT

Fetch+Decode+Rename
Issue Logic
Mem Disamb.

RF
L1 Cache (I+D)
L2 Cache

Exec + Commit
Clock

Figure 6.35: Dynamic Power consumption Distribution of ROB based processor with CAM
based issue logic with memory disambiguation executing atomic superblocks. We show the dis-
tribution of those benchmarks as well that have deadlocked, upto the point where they executed.

0.5

1

1.5

2

2.5

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
D

el
ay

N
or

m
al

iz
ed

SPECFP SPECINT

ROB + SB + CAM + MD
SOB + FIFO 4

Figure 6.36: Energy-delay product of SOB based processor with FIFO based issue logic ex-
ecuting optimized superblocks and that of ROB based processor with CAM based issue logic
with memory disambiguation executing atomic superblocks. Both are normalized to ROB based
processor with CAM based issue logic with memory disambiguation executing normal µ-ops.
However, executing atomic superblocks in a ROB based processor will result in deadlock for
those benchmarks where superblocks are larger than ROB such as fma3d, crafty, eon etc. Hence,
the results of these benchmarks are not shown.

6.6 Evaluation 151

0.5

1

1.5

2

2.5

3

am
m

p

wupwise

swim
m

esa
art

equake

apsi
sixtrack

lucas
facerec

fm
a3d

m
grid

applu

average

gzip
vpr

m
cf

crafty

eon
bzip2

perlbm
k

parser

gap
vortex

twolf

average

E
n
er

gy
D

el
ay

2
N

or
m

al
iz

ed

SPECFP SPECINT

ROB + SB + CAM + MD
SOB + FIFO 4

Figure 6.37: Energy-delay2 product of SOB based processor with FIFO based issue logic
executing optimized superblocks and that of ROB based processor with CAM based issue logic
with memory disambiguation executing atomic superblocks. Both are normalized to ROB based
processor with CAM based issue logic with memory disambiguation executing normal µ-ops.
However, executing atomic superblocks in a ROB based processor will result in deadlock for
those benchmarks where superblocks are larger than ROB such as fma3d, crafty, eon etc. Hence,
the results of these benchmarks are not shown.

In Figures 6.34, 6.36, 6.37 we compare the energy related metric of the SOB based pro-
cessor with FIFO based issue logic to ROB based processor with CAM based issue logic,
both executing atomic superblocks. Moreover, the ROB based processor also has hard-
ware memory disambiguation.

In Figure 6.35 the power consumption distribution of all the benchmarks are reported
for the conventional ROB based processor. Although, as evident from the figure that the
power distribution is similar for most of the benchmarks are similar, the absolute power
consumption numbers vary. For instance, the total power consumption of mcf is 25%
below average for SPECINT benchmarks. In mcf L2 consumes 20% more power with
respect to SPECINT average. Contribution of power due to L2 for mcf is 3.3% and that
for the rest of SPECINT is nearly 2%.

Figure 6.36, shows the energy-delay product. Mgrid has a higher energy-delay product
when executing atomic superblocks on a conventional out-of-order processor. This is
because mgrid encounters a slowdown when executing atomic superblocks on a ROB
based processor. We found that one of the superblocks in mgrid has 101 µ-ops. Moreover,
since the energy consumption is similar to the baseline. As a result, mgrid has 30% higher
energy-delay product with respect to both the baseline and our SOB based processor.

152 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

6.7 Related Work

In Transmeta Crusoe [60] Shadow copy of Register File is used to check-point the register
state before a superblock starts executing. Working copy, as the name suggests, holds the
working register set of the superblock. Whereas, the memory state is held in gated store
buffers [95]. A special commit operation updates the register and the memory state, at
once. Since Crusoe uses VLIW processors -to cut down complexity and power-, the above
bulk commit solution is sufficient.

Our microarchitecture is different since we use a FIFO based out-of-order logic. This gives
us the flexibility of executing instruction out-of-order albeit in a power-efficient way. As
a consequence of out-of-order execution a different bulk commit mechanism is required to
commit the superblock program state.

We use SOB and SRRT based atomic commit and reordering mechanism. This allows
concurrent execution of multiple superblocks and hence multiple SRRTs are providing
to hold the register state. Moreover, the proposed SOB commits the program state in
program order.

In Transmeta Crusoe the stores were held in Gated Store Buffers. This is similar to what
we have used in our proposed co-designed processor. An alternative way to implement
speculative commit of store instructions is Cherry [68] and Transmeta’s Efficeon. In
their scheme stores speculative commit to the L1-cache, know as the speculative cache
mechanism. A speculative bit indicates whether the line has been speculatively written or
not. In case of an exception the state is rolled-back by simply invalidating the speculatively
written cache lines.

Both the solutions have their advantages and disadvantages. The size of gated store
buffers could not scale very well due to associative searches. Furthermore, store buffers
puts a limit on the number of stores that could be included in the superblock.

Speculative Caches, on the other hand, not only complicates the cache coherence protocol,
but also could potentially loose performance as speculatively written lines are invalidated
in case of an execution roll-back. Moreover, Speculative Caches also have to deal with
a scenario of multiple stores conflicting in the same set. In our proposed co-designed
processor we have used Gated Store Buffers to hold the memory state.

Akkary et al. [6] have proposed a large instruction window processor using checkpoint
processing and recovery. They replaced the conventional ROB with a checkpoint buffer,
which is similar to the SOB that we have proposed. However, they do not execute
superblock, instead checkpoints are taken at branches that have low-confidence of being
predicted correctly. We instead checkpoint when the first instruction of the superblock
is renamed. Their proposal still requires a buffer to hold instructions in order to bulk
commit. We instead propose per superblock map table, the SRRT, that holds the register
state of the superblock.

6.7 Related Work 153

Moreover, since we use VMM to form superblock, we get rid of confidence-based predictor.
VMM also helps in providing early register recycling as number of consumer of non live-
out register are determined. More importantly, our focus in this chapter is not to provide
a large instruction window processor, but to provide a co-designed out-of-order processor
which is more power-efficient.

Conventional Issue Queue logic is based on CAM and RAM structures [76], leading to
high complexity and power dissipation [46]. Palacharla et al. [76] have proposed a multiple
FIFO based issue logic, where instructions are issued from the head of FIFOs. Their
proposed dependence-based steering heuristic was described in Section 6.3. As shown in
the Section 6.1, the performance with this heuristic declines sharply as the number of
FIFOs are halved.

Canal and González [18] proposed several schemes to issue instructions. In one of their
schemes instructions are placed in a buffer that is indexed by the physical register identi-
fier. It is based on the observations that nearly one-quarter of the dynamic instructions
have one of their operands available at dispatch. Their another scheme is based on com-
puting the issue cycle of each instruction at dispatch. The circuit required to estimate the
issue cycle of an instruction is not presented, it may not be trivial to estimate the issue
cycle in a single cycle. We instead use a simpler FIFO based issue logic with enhanced
steering heuristic, which does not require CAM logic at all.

Michaud and Seznec [72] proposed a two-level issue queue such that the small first level
works as a conventional CAM/RAM issue queue and the second level store instructions
but has no wake-up capability. Few prescheduling stages are added that estimate the issue
cycle of an instruction and place the instruction in the second level queue at an appropriate
location. Instructions that reach the head of the second level queue are issued, if ready;
are sent to first level queue otherwise. We instead use a simpler FIFO based issue logic
with enhanced steering heuristic, which does not require CAM logic at all.

Abella and González [5] proposed a distributed issue queue design, with multiple chains in
a single FIFO. As a result of which, the effect of long latency instructions can, somewhat,
be mitigated, by issuing independent instructions from the same FIFO. Each queue has
an associated selection logic, which picks up just one instruction from the queue, and
a small table for the chain latencies. This latency information along with encoded age
identifier is used to select the instruction to issue. The selection logic is not trivial as
noted by the authors.

We have compared our proposed steering heuristic to the Lat FIFO steering heuristic pro-
posed by the authors. Our steering heuristic performs better than the Lat FIFO steering
heuristic for both SPECFP and SPECINT. Their alternate issue logic, as described above,
is not a new steering heuristic but an alternate issue queue design with FIFOs using mul-
tiple heads. Since our goal was to compare steering heuristics on a FIFO based issue logic,
we did not compare with their design.

154 Chapter 6. A Power-efficient Co-designed Out-of-Order Processor

A comprehensive survey of issue queue designs is provided in [4]. We encourage readers
to read the survey which discusses various issue queue designs and the trade-offs involved.

6.8 Conclusion

This chapter presented a complexity-effective co-designed out-of-order processor. By an-
alyzing the various stalls, we propose enhanced heuristic. µ-ops are steered to a FIFO
that have its tail ready. For a dependence-based heuristic if the tail of a FIFO is ready,
then all the µ-ops in front of the tail are ready as well. Such a FIFO is as good as an
empty FIFO. The enhanced heuristic benefits, further, by the increase in the issue width
of each FIFO; as the heuristic increases the likelihood of finding a ready µ-op.

We have also proposed an early issue queue entry releasing mechanism. Issue queue entries
are released at the issue stage; given that no loads were issued, a fixed number of cycles,
earlier. This helps in reducing the pressure on issue queues.

Our proposed steering heuristic, compared to the dependence-based heuristic, obtains
speedups of 25% and 24% for SPECINT and SPECFP, respectively. We have also shown
that our proposed steering heuristic based processor consumes 10% less energy than the
previously proposed steering heuristic.

Moreover, we have also shown by choosing the order in which ready µ-ops from the head
of the FIFO are issued also has a significant impact in performance. For instance with
eight FIFOs and issuing the oldest µ-op the performance gap between CAM based issue
logic and FIFO based issued logic is nearly closed.

In order to efficiently execute superblocks, we co-design the commit logic. We had first
shown various kinds of problem associated with bulk commit of atomic superblocks. In
one of our solution we have proposed two structures - Superblock Order Buffer (SOB) and
Superblock Register Rename Tables (SRRT) - in order to achieve this. Such a proces-
sor dissipates 6% less power than a conventional ROB based out-of-order processor and
performs 12% better over a conventional ROB based processor.

Overall in this chapter we have considered a HW/SW co-designed out-of-order processor
based on FIFOs and with new steering, issue and bulk commit improvements. All these
improvements results in a design that is within 20% of performance of a conventional
out-of-order design, with a reduction in energy by 25% for a four FIFO configuration.

Chapter 7

Conclusions

The need for uniprocessors that provide the needed performance is always important. This
thesis has focused on uniprocessors; increasing their performance using accelerators, and
increased its energy-efficiency using middle-ground design. The research was performed
in a HW/SW Co-designed environment, where the processor is partly implemented in
software and partly in hardware.

A simpler microarchitecture when accompanied with a dynamic compiler and applied at
a full-system level lead to the invention of the Co-designed Virtual Machines (Cd-VM)
[88]. In such a scheme, a processor is a co-designed effort between hardware and software
designers. In other words the ISA is implemented partly in software and partly in hard-
ware. The software layer performs dynamic translation and optimization on the source
code to adapt it to better exploit the capabilities of the underlying microarchitecture.

Primarily, Cd-VM enables microarchitects to migrate to a simpler core, thereby cutting
power consumption and complexity. It also enables microarchitects to add accelerators in
order to speedup parts of applications. Moreover, it enables microarchitects to choose from
a wide spectrum of the processor design space ranging from low-end in-order processors
to aggressive out-of-order processors.

In Chapter 4 we have proposed a novel co-designed programmable functional unit along
with a novel execution model. We have also proposed code generation heuristic specific
to µ-op fusion. The Cd-VM monitor selected µ-ops for fusion and generates them. The
fused µ-op is known as a macro-op. By collapsing and executing a chain of simple ALU
µ-ops with low latency, performance is improved.

Moreover, since we have used a co-designed out-of-order processor, we have proposed a
novel bulk commit mechanism. We provided a solution towards Bulk Commit Mechanism
using an additional Register Rename Table (RRT), the SpecRRT.

We have obtained average speedups of 17% in SPECFP and 10% in SPECINT. We have

156 Chapter 7. Conclusions

also obtained speedups of up-to 33 % is some benchmarks. Moreover, with a slight
modification in the proposed MOP model we have obtained improvements in performance
of 29% in SPECFP and 19% in SPECINT.

In Chapter 5 we have proposed a co-designed in-order processor using two application
specific accelerators. In this work, fusion of dependent and independent µ-ops are consid-
ered separately. Dependent µ-op fusion is called as vertical fusion, whereas independent
µ-op fusion is called as horizontal fusion. The two techniques accelerates the application
by combining the most commonly found pairs of µ-ops in applications. Overall SoftHV
resulted in an interesting co-design approach that obtained an average speedup of 9% for
SPECFP and 10% for SPECINT over a conventional 4-way in-order processor.

In Chapter 6 we have proposed a co-designed out-of-order with FIFO based out-of-order
issue logic. We have proposed new steering heuristics to dispatch µ-ops to the FIFOs. We
have shown that FIFO based out-of-order processor is a middle-ground solution between
an in-order processor and a CAM based out-of-order processor.

Moreover, we have proposed another Bulk Commit Mechanism in the context of out-of-
order processors. In this particular solution we get rid of the ROB entirely and instead
maintain the order at the granularity of the superblock using Superblock Ordering Buffer
(SOB). The register state of each superblock is held in per Superblock Register Rename
Table, the SRRT.

Our proposed steering heuristic, compared to the dependence-based heuristic, obtains
speedups of 25% and 24% for SPECINT and SPECFP, respectively. We have also shown
that our proposed steering heuristic based processor consumes 10% less energy than the
previously proposed steering heuristic.

Our proposed co-designed out-of-order processor results in a design that is within 20% of
performance of a conventional out-of-order design, with a reduction in energy by 25% for
a four FIFO configuration.

7.1 Future Work

7.1.1 Larger Regions

Table 3.1 in Chapter 3 shows the average size of the superblocks. The average size of
superblocks in SPECFP is 32 and in SPECINT is 13. Since SPECFP has more regular
code and the branches are highly predictable, it results in larger superblocks.

Larger superblocks provide a larger scope for the dynamic optimizer. This results in a
better optimized code, by reordering the µ-ops. The same property is exploited by the
large µ-op window of out-of-order processors.

7.1 Future Work 157

Better superblock formation heuristics when accompanied with procedure inlining and/or
loop unrolling can increase the size of superblocks. Moreover, other kind of regions that
fuses both the paths of a branch can lead to better regions. For instance, hyperblocks
[66] or tree regions [10] could be used to better provide the context of an application.

7.1.2 Coarse-grained Accelerators

In this thesis we had just considered FU based accelerators. These accelerators are added
into the datapath of the processor. They read and writeback to the Register File. Coarse-
grained accelerators, on the other hand, can execute operations equivalent to a large
number of fused µ-ops. Such accelerators are usually kept outside the processor.

For kernel oriented applications, tasks could be offloaded to these accelerators. Many
applications fall into this category. Coarse-grained accelerators can also be co-designed,
where the runtime selects a large groups of µ-ops suitable enough to be offloaded to the
accelerator. One novel co-designed approach of Coarse-grained accelerators is VEAL [24].

7.1.3 Alternate Issue Logic

In this thesis, we only considered FIFO based out-of-order issue logic. As observed in
Chapter 6 we have narrowed the performance gap between FIFO based and the CAM
based issue logic. However, in the presence of memory disambiguation this gap widens
back again.

In the presence of hardware memory disambiguation CAM based issue logic provides more
opportunity for µ-ops to execute. Whereas in FIFOs the µ-ops are issued just from the
FIFO heads. As a result, the dependents of a load that are stuck would not let other
µ-ops to execute.

Hence, an alternate issue logic such as a Priority Queue based one [72, 19] could be used
to close this gap. In such a scheme µ-ops are placed in the Priority Queue based on their
estimated issue cycle. However, there are issues with the existing designs. For instance,
in case of a branch misprediction, it is difficult to remove µ-ops that are in the wrong
path. This is because they have now been interleaved with older µ-ops in the Priority
Queue. Moreover, the circuit required to estimate the issue cycle of an µ-op need not be
trivial.

Furthermore, Abella et al. [5] had proposed an alternate issue queue design using FIFOs
with multiple heads. This design can be combined in a co-designed fashion to further
exploit out-of-order issue capabilities.

158 Chapter 7. Conclusions

7.1.4 Co-designing the Steering Heuristic

In Chapter 6 we had proposed an enhanced steering heuristic. This steering heuristic
was completely hardware based. Perhaps a co-designed approach could be taken where a
dependent chain of µ-op could be marked by the VMM. This would result in most of the
steering related decision being pre-determined. Moreover, a better scheduling heuristic
could be devised which could arrange the µ-ops in such an order that would reduce stalls
at dispatch.

7.1.5 Speculative Caches

In this thesis we have only considered Gated Store Buffers [95] in order to hold the memory
state. Gated Store Buffers limit the number of stores that can be included in a superblock.
Moreover, committing from gated store buffer to the memory hierarchy may take several
cycles.

In order to overcome these limitations Transmeta’s Efficeon uses a Speculative Cache.
However, Speculative Caches have some issues in general and specific to out-of-order co-
designed processors. For instance, there could be multiple conflicting stores to the same
line. One way of handling them is to rollback the superblock whenever, such a situation
is encountered.

Another solution could be using a write-through cache with no-write-allocate policy. But
this would require the speculative state to be extended to the L2-cache. In a Chip multi-
processor environment where the L2-cache is generally shared it may be a problem. In-
stead, of writing to L2-cache write-buffers can be introduced between L1 and L2 cache.

Moreover, in case of co-designed out-of-order processors stores from different superblocks
could write to the same line. Now suppose if the second superblock were to roll-back,
then all the cache lines written by its stores have to be discarded. However, the cache
lines may hold values of stores corresponding to the older superblocks.

This requires a novel solution to discard only some of the state or to restore the cache
line. It would be interesting to see if speculative caches when combined with out-of-order
processor provides a better solution. This case, however, would not occur in co-designed
in-order processors as the speculative cache is cleared before a new superblock executes.

7.1.6 More accurate Cd-VM modeling

In Chapter 3, Section 3.4 we had described the limitations of our implementation. We had
implemented an unbounded JTLB, which implied that once a superblock its corresponding
mapping is always present in the JTLB. This part can perhaps be handled such that a

7.2 List of Publications 159

bounded JTLB is modeled. A simple LRU based replacement policy can be modeled for
the JTLB.

Moreover, the impact of a limited space in Code Cache can also be modeled by using an
LRU based replacement policy. The overhead due to re-translation and re-optimization
can then be taken into account while estimating translation overhead.

Furthermore, whenever a superblock has to be formed, there must be a context switch to
the Virtual Machine Monitor. Or for that matter any trap must invoke the VMM first.
Handling the trap requires a context switch mechanism and executing the VMM code.

An accurate implementation must then save the context in case of a trap and execute
the VMM code in the microarchitectural simulator. Note that our microarchitectural
simulator is inject inside the application memory image. The application is simulated
by forking a process and the simulator reading and executing code from the application
binary.

The context switch support can be extended in our simulator by keeping the VMM code
in a separate segment in the memory of the application’s address space. As a result in a
context switch to VMM the code from this segment could be simulated in the microar-
chitectural simulator.

However, the above implementation still would not simulate a full system environment.
Perhaps in order to support that the full system version of the simulator must be used.

7.1.7 Comparison with other Fine-grain Accelerators

There exists large differences between the proposals made in the prior works. Moreover,
the frameworks used in the prior works is quite different from the one used in this thesis.
As a result, a detailed comparison with the prior work is not an easy task. Therefore we
have left that as a future work.

7.2 List of Publications

Following are the list of publications that resulted from this thesis.

• A Co-designed HW/SW Approach to General Purpose Program Acceleration using
a Programmable Functional Unit. (INTERACT’11), 2011.

• A HW/SW Co-designed Programmable Functional Unit. (CAL’11), 2011.

• SoftHV : A HW/SW Co-designed Processor with Horizontal and Vertical Fusion.
(CF’11), 2011.

160 Chapter 7. Conclusions

• A Power-efficient Co-designed Out-of-Order Processor. (SBAC-PAD’11), 2011.

Acronyms

AGU Address Generation Unit

ALU Arithmetic and Logical Unit

AMD Advanced Micro Devices

ARM Advanced RISC Machines

BB Basic Block

BOA Binary-translated Optimized Ar-
chitecture

BRRT Backend Register Rename Table

BTB Branch Target Buffer

CAM Content-Addressable Memory

Cd-VM Co-designed Virtual Machine

CMOP Computtation Macro Operation

D-Cache Data Cache

DAISY Dynamically Architected In-
struction Set from Yorktown

DEC Digital Equipment Corporation

DRAM Dynamic Random Access Mem-
ory

FIFO First-in First-out

FRRT Frontend Register Rename Table

FU Functional Unit

HW Hardware

IBM International Business Machines

I-Cache Instruction Cache

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

JIT Just-in-Time

JTLB Jump Translation Lookaside
Buffer

LDU Load Unit

LRU Least Recently Used

LSB Least Significant Bit

LSQ Load Store Queue

macro-op Macro Operation

MIMD Multiple Instruction Multiple
Data

MOP Macro Operation

MSB Most Significant Bit

MS2B Two Most Significant Bits

µ-op Micro Operation

OOO Out-of-Order

PFU Programmable Functional Unit

RAS Retrurn Address Stack

ROB Reorder Buffer

SB SuperBlock

SIMD Single Instruction Multiple Data

SOB Superblock Ordering Buffer

SoftHV A HW/SW co-designed proces-
sor with horizontal and vertical
fusion

SPC Source PC

162 Acronyms

SPEC Standard Performance Evalua-
tion Corporation

SPECFP SPEC Floating Point Bench-
marks

SPECINT SPEC Integer Benchmarks

SpecRRT Speculative Register Rename
Table

SRAM Static Random Access Memory

SRRT Superblock Register Rename Ta-

ble

SSA Single Stage Assignment

STU Store Unit

SW Software

TLB Translation Lookaside Buffer

TPC Target PC

VLIW Very Long Instruction Word

VMM Virtual Machine Monitor

Index

AtomicSuperblocks, 39

BulkCommit, 71, 123

CMOP, 62
cmop, 61
CMS, 27
Co-DesignedVirtualMachine, 16
CodeCache, 21
CodeOptimizations, 23
CompletionRate, 40
Configuration, 67
ConfigurationCache, 67
ControlSignals, 66

FIFO, 114
Fusion, 100
FusionPerformanceObjectiveFunction, 77

GatedStoreBuffers, 127

HierarchicalIssueQueue, 68
HotSpotThreshold, 40

ICALU, 95
InternalRegisterFile, 65

ld-set, 61
ListScheduling, 43
LoopScheduling, 77

mv-set, 61

optimizer, 28

PhysicalRegisterCycling, 126
PreScheduling, 73
ProcessingElement, 66

ProgrammableFunctionalUnit, 64

RMOP, 62

SOB, 125
SpecRRT, 72
split-mop, 61
SRRT, 124
SuperblockTranslationOverhead, 48

TranslationOverhead, 22

VLDU, 95
VMM, 17

Bibliography

[1] Arco (architectures and compilers) research group. 29

[2] Arm cortex-a15, 20. 6

[3] Standard performance evaluation corporation (spec), 2000. 1, 7

[4] J. Abella, R. Canal, and A. González. Power- and complexity-aware issue queue
designs. IEEE Micro, 23, 2003. 154

[5] J. Abella and A. González. Low-Complexity Distributed Issue Queue. In Intl. Symp.
on High Performance Computer Architecture, 2004. 134, 135, 153, 157

[6] H. Akkary, R. Rajwar, and S.T. Srinivasan. Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors. In Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture, 2003. 152

[7] E. Altman, M. Gschwind, S. Sathaye, S. Kosonocky, A. Bright, J. Fritts, P. Ledak,
D. Appenzeller, C. Agricola, and Z. Filan. BOA: The Architecture of a Binary
Translation Processor. Technical report, IBM, 1999. 24, 25

[8] Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay J. Patel, and Mark Horowitz.
Energy-performance tradeoffs in processor architecture and circuit design: a marginal
cost analysis. In Proceedings of the 37th annual international symposium on Com-
puter architecture, ISCA ’10, 2010. 2

[9] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Opti-
mization System. In ACM SIGPLAN Intl. Conf. on Programming Language Design
and Implementation, 2000. 24, 39, 46, 50

[10] S. Banerjia, W.A. Havanki, and T.M. Conte. Treegion Scheduling for Highly Parallel
Processors. In European Conf. on Parallel Processing, 1997. 157

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In ACM Intl. Symp. on
Operating Systems Principles, 2003. 24

166 Bibliography

[12] James R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, 1973.
26

[13] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Cellss: a pro-
gramming model for the cell be architecture. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06, 2006. 1

[14] Marc Berndl and Laurie Hendren. Dynamic profiling and trace cache generation.
In Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO ’03, pages 276–285, 2003. 27

[15] A. Bracy, P. Prahlad, and A. Roth. Dataflow mini-graphs: Amplifying superscalar
capacity and bandwidth. In IEEE Intl. Symp. on Microarchitecture, 2004. 87

[16] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level
power analysis and optimizations. In Proceedings of the 27th annual international
symposium on Computer architecture, 2000. 34, 127, 145

[17] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prabhakar N.
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish Gupta,
and Peter W. Cook. Power-aware microarchitecture: Design and modeling challenges
for next-generation microprocessors. IEEE Micro, 20, 2000. 127

[18] R. Canal and A. González. A low-complexity issue logic. In Intl. conference on
Supercomputing, 2000. 108, 114, 153

[19] Ramon Canal and Antonio González. Reducing the complexity of the issue logic. In
Proceedings of the 15th international conference on Supercomputing, ICS ’01, 2001.
157

[20] J.E. Carrillo and P. Chow. The Effect of Reconfigurable Units in Superscalar Pro-
cessors. In ACM/SIGDA Intl. Symp. on Field Programmable Gate-Arrays, 2001. 86,
87

[21] J. Bradley Chen and Bradley D. D. Leupen. Improving instruction locality with
just-in-time code layout. In Proceedings of the USENIX Windows NT Workshop on
The USENIX Windows NT Workshop 1997, 1997. 27

[22] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S.B. Yadavalli,
and J. Yates. FX!32 A Profile-Directed Binary Translator. IEEE MICRO, 1998. 24,
50

[23] C. Cifuentes and M. Van Emmerik. Uqbt: adaptable binary translation at low cost.
Computer, 33(3):60 –66, mar 2000. 27

[24] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized Execution Accelerator for
Loops. In IEEE Intl. Symp. on Computer Architecture, 2008. 157

Bibliography 167

[25] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner. Liquid simd: Ab-
stracting simd hardware using lightweight dynamic mapping. In IEEE Intl. Symp.
on High-Performance Computer Architecture, 2007. 88

[26] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-Specific
Processing on a General-Purpose Core via Transparent Instruction set customization.
In IEEE Intl. Symp. on Microarchitecture, 2004. 9, 58, 63, 79, 80, 82, 85, 86, 87

[27] R.P. Colwell. The Pentium Chronicles: The People, Passion, and Politics Behind
Intel’s Landmark Chips. IEEE Computer Society Press, 2006. 24

[28] T. Conte, A.B. Patel, and J.S. Cox. Using branch handling hardware to support
profile-driven optimization. In IEEE Intl. Symp. on Microarchitecture, 1994. 54

[29] K.D. Cooper, P.J. Schielke, and D. Subramanian. An experimental evaluation of list
scheduling. Technical report, Dept. of Computer Science, Rice University, 1998. 41

[30] D. Cronquist, P. Franklin, S. Berg, and C. Ebling. Specifying and compiling ap-
plications for RaPiD. In IEEE Symp. on Field-Programmable Custom Computing
Machines, 1998. 86

[31] A. Deb, Josep M. Codina, and A. González. A Co-designed HW/SW Approach to
General Purpose Program Acceleration using a Programmable Functional Unit. In
Proceedings of the 15th Workshop on Interaction between Compilers and Computer
Architecture (INTERACT’11), held in conjunction with the 17th International Sym-
posium on High-Performance Computer Architecture (HPCA’11), 2011. 12

[32] A. Deb, Josep M. Codina, and A. González. A HW/SW Co-designed Programmable
Functional Unit. In IEEE Computer Architecture letters (CAL’11), 2011. 12, 61

[33] A. Deb, Josep M. Codina, and A. González. A Power-Efficient Co-designed Out-Of-
Order Processor. In Proceedings of the 23rd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD’11), 2011. 12

[34] A. Deb, Josep M. Codina, and A. González. SoftHV : A HW/SW Co-designed Proces-
sor with Horizontal and Vertical Fusion. In Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF’11), 2011. 12

[35] J.C. Dehnert, B.K. Grant, J.P. Banning, R. Johnson, T. Kistler, A. Klaiber, and
J. Mattson. The Transmeta Code Morphing Software: using speculation, recovery,
and adaptive retranslation to address real-life challenges. In IEEE Intl. Symp. on
Code Generation and Optimization, 2003. 17, 25, 50

[36] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. Dmp: deterministic
shared memory multiprocessing. In Proceedings of the 14th international conference
on Architectural support for programming languages and operating systems, ASPLOS
’09, pages 85–96. ACM, 2009. 1

168 Bibliography

[37] K. Diefendorff, P.K. Dubey, R. Hochsprung, and H. Scales. Altivec extension to
powerpc accelerates media processing. IEEE Micro, 2000. 90, 95

[38] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path prediction:
less is more. SIGPLAN Not., 35:202–211, November 2000. 27

[39] K. Ebcioglu and E.R. Altman. DAISY: Dynamic compilation for 100% architectural
compatibility. In IEEE Intl. Symp. on Computer Architecture, 1997. 8, 9, 21, 24, 25,
40, 46

[40] SSE extension. : Intel IA 64 and IA-32 Architectures Software Developer’s Manual,
1997. 9, 82

[41] E. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mohammad. A
fully bypassed six-integer datapath and register file on the itanium-2 microprocessor.
In IEEE Intl. Journal of Solid-State Circuits, 2002. 58, 66, 85

[42] J.A. Fisher. Trace scheduling: A technique for global microcode compaction. Com-
puters, IEEE Transactions on, C-30(7):478 –490, july 1981. 27

[43] Joseph A. Fisher. Very long instruction word architectures and the eli-512. In
Proceedings of the 10th annual international symposium on Computer architecture,
ISCA ’83, New York, NY, USA, 1983. ACM. 7

[44] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the cilk-5 multithreaded language. SIGPLAN Not., 33:212–223, 1998. 1

[45] S.C. Goldstein, H. Schmidt, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, and
R. Laufer. PipeRench: A coprocessor for streaming multimedia acceleration. In
IEEE Intl. Symp. on Computer Architecture, 1999. 86

[46] M.K. Gowan. Power considerations in the design of the alpha 21264 microprocessor.
In Design Automation Conference, 1998. 1, 6, 9, 108, 153

[47] M. Gschwind. Method and apparatus for determining branch address in programs
generated by binary translation. IBM Research Disclosures, 1998. 20

[48] R.W. Hartenstein, A.G. Hirschbiel, and M. Weber. The Machine Paradigm of Xputers
and its Application to Digital Signal Processing Acceleration. In Intl. Conf. on
Parallel Processing, 1990. 86

[49] J.R. Hauser and J. Wawrzynek. GARP: A MIPS processor with a Reconfigurable
Coprocessor. In IEEE Symp. on Field-Programmable Custom Computing Machines,
1997. 86

[50] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support
for lock-free data structures. SIGARCH Comput. Archit. News, 21:289–300, 1993. 1

Bibliography 169

[51] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rousell.
The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal, 2001.
6, 31, 52, 120

[52] S. Hu, I. Kim, M.H. Lipasti, and J.E. Smith. An approach for implementing efficient
superscalar CISC processors. In IEEE Intl. Symp. on High-Performance Computer
Architecture, 2006. 9, 26, 79, 82, 86, 87, 90, 92, 93, 97, 98, 104, 125

[53] S. Hu and J.E. Smith. Reducing startup time in co-designed virtual machines. In
IEEE Intl. Symp. on Computer Architecture, 2006. 15, 17, 20, 26, 46, 54

[54] Shiliang Hu and James E. Smith. Reducing startup time in co-designed virtual
machines. In In Proc. of the 33rd Annual International Symposium on Computer
Architecture, 2006. 20, 39

[55] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J.
Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiy-
ohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The superblock: An
effective technique for vliw and superscalar compilation. THE JOURNAL OF SU-
PERCOMPUTING, 1993. 16, 27

[56] AMD K8. Software Optimization Guide for AMD64 Processors. In
http://support.amd.com/us/Processor TechDocs/25112.PDF, 2005. 6, 31, 33, 52

[57] E. J. Kelly. Memory controller for a microprocessor for detecting a failure of specu-
lation on the physical nature of a component being addressed, 1998. 21, 25

[58] R.E. Kessler, E.J. McLellan, and D.A. Webb. The Alpha 21264 Microprocessor
Architecture. In IEEE Intl. Conf. on Computer Design, 1998. 6, 31, 52, 109

[59] H-S. Kim and J.E. Smith. Hardware support for control transfers in code caches. In
IEEE Intl. Symp. on Microarchitecture, 2003. 20

[60] A. Klaiber. The technology behind Crusoe Processors, 2000. 8, 9, 10, 25, 54, 152

[61] Peter M. Kogge. An architectural trail to threaded-code systems. IEEE Computer,
pages 22–32, March 1982. 26

[62] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value locality
and load value prediction. In Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems, ASPLOS-
VII, 1996. 5

[63] Josep Llosa. Swing modulo scheduling: A lifetime-sensitive approach. In Proceedings
of the 1996 Conference on Parallel Architectures and Compilation Techniques, PACT
’96, 1996. 7

170 Bibliography

[64] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichten-
stein, Robert P. Nix, John S. O’Donnell, and John Ruttenberg. The multiflow trace
scheduling compiler. J. Supercomput., 7:51–142, May 1993. 27

[65] C. Madriles, C. Garcia-Quinones, J. Sanchez, P. Marcuello, A. Gonzalez, D.M.
Tullsen, Hong Wang, and J.P. Shen. Mitosis: A speculative multithreaded processor
based on precomputation slices. Parallel and Distributed Systems, IEEE Transactions
on, 19:914 –925, 2008. 1

[66] S.A. Mahalke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. In Intl. Symp. on
Microarchitecture, 1992. 157

[67] Pedro Marcuello, Antonio González, and Jordi Tubella. Speculative multithreaded
processors. In Proceedings of the 12th international conference on Supercomputing,
ICS ’98, pages 77–84, 1998. 1

[68] J.F. Martinez, J. Renau, M.C. Huang, M. Prvulovic, and J. Torrellas. Cherry: Check-
pointed early recycling in out-of-order microprocessors. In IEEE Intl. Symp. on
Microarchitecture, 2002. 152

[69] C. May. Mimic: a fast system/370 simulator. In Papers of the Symposium on
Interpreters and interpretive techniques, SIGPLAN ’87, pages 1–13, 1987. 26

[70] Scott McFarling. Combining branch predictors, 1993. 5

[71] Matthew C. Merten, Andrew R. Trick, and Ronald D. Barnes. An architectural
framework for run-time optimization. IEEE Transactions on Computers, 2001. 15,
23, 46

[72] P. Michaud and A. Seznec. Data-flow prescheduling for large instruction windows in
out-of-order processors. In International Symposium on High-Performance Computer
Architecture, 2001. 153, 157

[73] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman,
1997. 40

[74] S. Oberman, G. Favor, and F. Weber. AMD 3Dnow! Technology: Architecture and
implementations. IEEE/MICRO, 1999. 9, 82

[75] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue, 3,
September 2005. 1

[76] S. Palacharla, N.P. Jouppi, and J.E. Smith. Complexity-effective superscalar proces-
sors. In IEEE Intl. Symp. on Computer Architecture, 1997. 1, 6, 9, 58, 66, 85, 108,
112, 113, 119, 122, 123, 153

Bibliography 171

[77] S.J. Patel and S.S. Lumetta. rePLay: A Hardware Framework for Dynamic Opti-
mization. IEEE Transactions on Computers, 2001. 22, 27, 37, 87

[78] J. Phillips and S. Vassiliadis. High performance 3-1 interlock collapsing ALUs. IEEE
Transactions on Computers, 1994. 58, 85, 87, 90, 92, 94, 99, 104

[79] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Program.
Lang. Syst., 1999. 43

[80] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipelin-
ing loops. In In Proceedings of the 27th Annual International Symposium on Microar-
chitecture, pages 63–74, 1994. 7

[81] R. Razdan and M.D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. In IEEE Intl. Symp. on Microarchitecture, 1994. 86,
87

[82] Roni Rosner, Yoav Almog, Micha Moffie, Naftali Schwartz, and Avi Mendelson.
Power awareness through selective dynamically optimized traces. In IEEE Intl. Symp.
on Computer Architecture, 2004. 27, 83

[83] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. Arnold, and
M. Gokhale. The NAPA Adaptive Processing Architecture. In IEEE Symp. on
Field-Programmable Custom Computing Machines, 1998. 86

[84] Yiannakis Sazeides and James E. Smith. The predictability of data values. In Proceed-
ings of the 30th annual ACM/IEEE international symposium on Microarchitecture,
MICRO 30, 1997. 5

[85] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand,
B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner,
C. F. Marino, E. Retter, and P. Williams. Ibm power7 multicore server processor.
IBM Journal of Research and Development, 2011. 6

[86] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. Binary translation. Commun. ACM, 36:69–81, February 1993. 26

[87] James E. Smith. A study of branch prediction strategies. In Proceedings of the 8th
annual symposium on Computer Architecture, ISCA ’81, 1981. 5

[88] J.E. Smith and R. Nair. Virtual Machines: A Versatile Platform for Systems and
Processes. Elsevier Inc., 2005. 2, 8, 14, 19, 20, 23, 24, 25, 50, 155

[89] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Proceed-
ings of the IEEE, 83(12):1609 –1624, 1995. 125

172 Bibliography

[90] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar processors. In Computer
Architecture, 1995. Proceedings., 22nd Annual International Symposium on, 1995. 1

[91] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
J. Res. Dev., 11, January 1967. 5, 6

[92] VMware Inc., Palo Alto, CA. VirtualCenter VMware Virtual Center Users Manual,
version 1.2. 24

[93] M.V. Wilkes. The genesis of microprogramming. IEEE Ann. Hist. Comput., 1986.
24

[94] D. Williamson. Arm cortex a8 : A high performance processor for low power appli-
cations. http://www.arm.com/files/pdf/A8 Paper.pdf. 5, 113

[95] M. J. Wing and G. P. D’Souza. Gated store buffer for an advanced microprocessor,
2000. 10, 22, 25, 53, 54, 112, 125, 152, 158

[96] Z.A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: A high-performance
architecture with a tightly-coupled reconfigurable functional unit. In IEEE Intl.
Symp. on Computer Architecture, 2000. 9, 79, 86, 87

[97] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive
branch prediction. In Proceedings of the 19th annual international symposium on
Computer architecture, ISCA ’92, 1992. 5

[98] S. Yehia and O. Temam. From sequences of dependent instructions to functions:
An approach for improving performance without ILP or speculation. In IEEE Intl.
Symp. on Computer Architecture, 2004. 9, 79, 86, 87

[99] M.T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator. In IEEE Intl. Symp. on Performance Analysis of Systems and Software,
2007. 29, 31

	thesis.pdf
	Acknowledgments
	Introduction
	A Brief Evolution of Uniprocessors
	Pipelining
	Pipeline Hazards and Eliminating the Hazards
	Modern Processors

	The case for Co-designed Processor
	The HW/SW Co-designed Virtual Machine
	The Co-designed Paradigm as an Enabler

	Instruction Fusion and Accelerators
	Low-Complexity Issue Logic
	Bulk Commit Mechanism
	The Contributions of the Thesis
	Co-designed Programmable Functional Unit
	SoftHV
	Co-designed Out-of-Order Processor

	Outline

	The Co-designed Virtual Machine
	Motivation
	The Co-designed Virtual Machine Architecture
	Basic Execution Model Overview
	The Dynamic Optimizer
	Frontend Support for Native x86 execution
	Memory System Architecture
	Code Cache

	Microarchitectural Support
	Reducing Overhead in Co-designed Virtual Machine
	Microarchitectural support to handle Code Optimizations
	Miss-speculation Recovery and Bulk Commit mechanism
	Profiling Support

	Related Work
	Virtual Machines
	IBM DAISY
	Transmeta Crusoe
	HP Dynamo
	Reducing Translation Overhead
	Optimizer and Interpreter
	Superblock Heuristics
	Hardware Dynamic Optimizers

	Summary of Design Choices

	Experimental Methodology
	The Choice of Microarchitecture Simulator
	Timing Simulator Enhancements
	Modifying the Execution Pipeline
	Simplifying Memory Disambiguation
	Write Ports
	Integrating Wattch into PTLsim

	Virtual Machine Monitor Implementation
	 VMM Optimizer Overview
	Fetching -ops from Superblocks
	Code Generation
	Performance benefits of Code Optimizations
	Superblock Details

	Simplifications to the Implementation
	Baselines Used
	The Baseline Out-of-Order Processor
	The Baseline Co-designed In-Order Processor
	Co-designing the baselines

	Co-designed Programmable Functional Unit
	Introduction
	The Co-designed PFU proposal
	Split-Mop Execution Model
	Alternate Split-Mop Execution Model
	PFU Microarchitecture

	The Co-designed Out-of-Order Processor
	Bulk Commit of Atomic Superblocks
	Bulk Commit using a Speculative Map Table

	Code Generation
	Pre-Scheduling
	Macro-op Fusion
	Final Code Generation

	Performance Evaluation
	Impact of Microarchitectural Constraints
	Impact of Fusion Heuristics
	Impact of Mov-set
	Comparison with alternate designs
	Qualitative Discussion on PFU

	Related Work
	Conclusions

	SoftHV
	Introduction
	Motivation for Horizontal and Vertical Fusion
	SoftHV Architecture Overview
	Microarchitecture Overview
	HW Accelerators : ICALU and VLDU
	Interlock Collapsing ALU
	Vector Load Units
	Instruction Encoding

	SoftHV Binary Optimizations
	-op Fusion

	Performance Evaluation
	Code Coverage of Fused Instructions
	Performance benefit due to horizontal and vertical fusion
	Comparison with an Out-Of-Order processor

	Related Work
	Conclusions

	A Power-efficient Co-designed Out-of-Order Processor
	Introduction
	Overview of the Proposed Microarchitecture
	Out-of-Order Logic
	Dependence-based Steering Heuristic
	Enhanced Steering Heuristic
	Early Release
	FIFO start policy
	Memory Disambiguation Logic

	Co-designing the Commit Logic
	Bulk Commit Problem 3
	A ROB-free Bulk Commit mechanism
	Register State
	Superblock Ordering Buffer
	Physical Register Recycling
	Memory State
	Handling Precise Exceptions

	Summary of Changes
	Evaluation
	Performance of new Steering Policy
	Bulk Commit Mechanism Study
	Dynamic Power and Energy Results
	SOB+FIFO Vs ROB+CAM processor

	Related Work
	Conclusion

	Conclusions
	Future Work
	Larger Regions
	Coarse-grained Accelerators
	Alternate Issue Logic
	Co-designing the Steering Heuristic
	Speculative Caches
	More accurate Cd-VM modeling
	Comparison with other Fine-grain Accelerators

	List of Publications

	Acronyms
	Index
	Bibliography

