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A: acceptor 
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D: Donor 
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Et3N: triethylamine 

ex-TTF: Extended Tetrathiafulvalene 

FAB-MS: Fast Atom Bombardment Mass Spectrometry 

G: guanidine 

GPC: Gel Permeation Chromatography 

Hex/Hexa: hexane 

HPLC :High Performance Liquid Chromatography 

HRMS: High Resolution Mass Spectrometry 

HSQC: heteronuclear single quantum correlation 

ITC: isothermal titration calorimetry 

MALDI: matrix-assisted laser desorption/ionization sprectrometry 
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Me: methyl 

MM: molecular modeling 
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MS-TOF: time of flight spectrometry 

MW or μW: microwave reactor 
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LC-MS: liquid chromatography-mass spectroscopy 

PG: protecting group 

Ph: phenyl 
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p53DBD: p53 DNA-binding domain 
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Quant.: quantitative 
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RMSD: root main square deviation 

RNA: ribonucleic acid 
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TBDPS: tert-butyldiphenylsilyl 

TCE: tetrachloroethane 
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TLC: thin layer chromatography 
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VT variable temperature 

wt: wild type 
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Objectives and Outline 

 

Nature frequently uses guanidinium group (mainly found in the amino acid arginine) 

to bind via ion pairing and hydrogen bonding different anions (mostly oxoanions), thus 

facilitating interactions between macromolecules such as proteins or DNA. This anion 

coordination is also employed for specific recognition of substrates in enzymatic active 

sites or modulators in allosteric pockets. 

Owing to these features, several artificial receptors based on guanidinium scaffold 

have been reported for binding a wide variety of anionic compounds. Within this 

context, our research group has extensively worked on a series of enantiomerically 

pure bicyclic guanidinium compounds (Figure 1) designed to complement different 

biomolecules such as amino acids, nucleotides or even proteins. 

 

Figure 1. General formula of bicyclic guanidinium compounds described in this manuscript. 

 

The aims of the work described in this thesis are: (i) to provide a robust and reliable 

synthetic methodology for the construction of bicyclic guanidinium oligomers of 

different lengths and functionalization degree, (ii) to gain a better insight into the 

biological activity of these compounds as ligands for the recognition of biomolecules 

(such as nucleic acids or peptide sequences) or as cell membrane carriers, (iii) to 

explore the use of the bicyclic guanidinium scaffold as a supramolecular building block 

for the construction of complex architectures, and finally (iv) to assess the 

physicochemical properties of these self-assembled systems for materials science 

applications. 
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This manuscript is divided into two clearly defined sections. The first one, including 

Chapters 1 to 3, is based on the binding properties of oligoguanidinium compounds 

with biologically relevant molecules such as p53 or targeted DNA sequences. 

Attributable to their cationic nature and hence similarity with cell penetrating peptides, 

bicyclic guanidinium oligomers are also known to interact and efficiently uptake cell 

membrane. Indeed, this feature is extensively studied in Chapter 2. 

The second part explores the self-assembly of bicyclic guanidines for calix[4]arene 

complexation and expansion of their cavities (Chapter 4), multiporphyrin-fullerene 

dyad arrays (Chapter 5), and their properties and potential applications as 

organogelators (Chapter 6). 

In particular, Chapter 1 describes different synthetic strategies towards 

oligoguanidinium ligands for the p53 tetramerization domain. A brief discussion about 

the design of those polycationic compounds and the mode of interaction with the 

protein arising from the NMR data is included. 

Analogous bicyclic guanidinium oligomers are presented in Chapter 2 to allow cell 

uptake of covalently attached peptide nucleic acid (PNA) compounds. Assessment of 

their antisense activity by luciferase antisense assay directly relates to the internalization 

efficiency. Moreover, interpretations about the cellular uptake mechanism will be 

derived from aggregation studies of these conjugates. Antibacterial oligoguanidinium-

PNA compounds targeting E. coli will be also evaluated. 

In Chapter 3 the interaction of DNA with these polycationic molecules is studied. In 

combination with a miniaturized transcription factor peptide, oligoguanidines should 

promote a binding enhancement as the number of interactions with the specific 

oligonucleotide fragment increases. Binding affinities will be assessed by means of 

circular dichroism (CD) and electrophoretic mobility shift assays (EMSA). 

Chapter 4 describes the design and synthesis of a macrocyclic tetraguanidium 

compound capable of strongly bind to oxoanionic calix[4]arenes even in highly polar 

media. This complexation results in the conformational stabilization and cavity 
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expansion of those calixarenes which will permit the inclusion of bulkier guests such as 

isoquinolinium salts. 

Chapter 5 explores guanidinium-carboxylate dyads bearing electron donor-acceptor 

functionalities (namely, porphyrins and fullerenes). Contribution of the individual 

interactions and determination of the overall association constant will be studied by 

NMR and UV-vis titrations. Self-assembly of these robust complexes into 

multiporphyrin arrays will be addressed by a bidentate ligand as structural element. 

Finally, the serendipitous finding on the gelation ability of some diguanidines is 

reported in Chapter 6. The role of chirality and the counterion on the gelation process 

will be further discussed. Indeed these gel-phase materials are anion responsive and 

moreover the use of enantiomeric mixtures results in the destabilization or complete 

disruption of the gel. The use of these gelators for controlled drug delivery applications 

is also explored. 
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New Bicyclic Guanidinium Oligomeric Ligands for the 

Tetramerization Domain of p53 

 

1.1 Introduction 

 

1.1.1 Protein p53: The Guardian of the Cell 

Our cells are sensitive to many dangers including chemicals, viruses, the presence of 

oncogenes and ionizing radiation. When cells are damaged by these factors in sensitive 

places (e.g. on critical spots), the effects on some of the key regulatory elements which 

promote cell growth control can be disastrous. These regulatory elements may be 

blocked and the cell will rapidly multiply and grow into a tumor. Protein p53 acts as a 

“guardian” against this type of damage.1,2 

Typically p53 is found at low levels but, as a response to DNA damage, the protein 

levels increase and a repair process is initiated through several independent 

mechanisms. p53 binds to specific regulatory sites in the genome and initiates the 

                                                         
1 Lane, D. P. Nature 1992, 358, 15-16. 

2 Levine, A. J. Cell 1997, 88, 323-331. 
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synthesis of proteins that stop cell division until the normal function is restored. If this 

damage is too severe, p53 promotes cell death, or apoptosis, which directs the cell to 

commit suicide. In summary, p53 acts as a transcriptional factor, involved in cell-cycle 

regulation, the initiation of apoptotic cell death, and DNA repair.3,4 

 

1.1.2 p53 Structure  

p53 tumor suppressor is a flexible molecule composed of four identical protein 

chains. This flexibility is related to p53’s ability to interact with different gene 

sequences and proteins. Each chain is composed by three main compact and globular 

domains with specific roles. A tetramerization domain (TD), that ties the four chains 

together, is located at the centre, defining the quaternary structure of the molecule. A 

long, flexible polypeptide region in each chain connects to the DNA-binding domain 

(DBD), responsible for the interaction with DNA to whom p53 binds through 

positively charged residues, mainly arginines, which allow contacts with the DNA 

phosphodiesters, and recognize specific regulatory sites on the gene sequence. Another 

flexible region connects this domain with the third stable domain, close to each arm, 

called the amino-terminal transactivation domain, which activates the DNA-reading 

machinery (Figure 1).5 

                                                         
3 Vogelstein, B.; Lane, D.; Levine, A. J. Nature 2000, 408, 307-310. 

4 Goodsell, D. S. The Oncologist 1999, 4, 138-139. 

5 Römer, L.; Klein, C.; Dehner, A.; Kessler, H.; Buchner, J. Angew. Chem. Int. Ed. 2006, 45, 2-23. 
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Figure 1. (A) Schematic picture of the whole p53 protein.4 (B) Transactivation domain crystal structure in 

space-fill representation, showing its globular shape. PDB (Protein Data Bank): 1YCQ. (C) Three DNA-

binding domains co-crystallized with a DNA fragment (DNA is showed in stick display, meanwhile the 

DBD’s are rendered in ribbon display). PDB: 1TUP. (D) Three-dimensional representation of oligomerization 

domain in ribbon display. PDB: 1OLG. 

 

Recently, Fersht et al. studied the quaternary structure of human p53 in solution, by 

combining small angle X-ray scattering (SAXS) data with NMR analysis.6 Indeed, open 

and closed structures of the protein complexing DNA fragments were solved by 

means of electron microscopy together with the techniques above mentioned.  

                                                         
6 Tidow, H.; Melero, R.; Mylonas, E.; Freund, S. M. V.; Grossmann, J. G.; Carazo, J. M.; 

Svergun, D. I.; Valle, M.; Fersht, A. L. Proc. Natl. Acad. Sci. USA 2007, 104, 12324-12329. 
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1.1.3 Functions of p53  

Since the early 90s, it is known that target genes of p53 facilitate cell-cycle arrest7 and 

DNA-repair mechanisms,8,9,10 or apoptotic cell death11 when DNA damage is too 

severe to be repaired.12,13,14 Nowadays, new aspects involving p53 function with 

replicative senescense (in somatic cells only a limited amount of cell division can occur) 

and cell aging have been found.15,16,17 Moreover, p53 also performs transcription 

reactions, as direct induction of apoptosis (Figure 2). 18,19 

                                                         
7 Ohki, R.; Nemoto, J.; Murasawa, H.; Oda, E.; Inazawa, J.; Tanaka, N.; Taniguchi, T. J. Biol. 

Chem. 2000, 275, 22627-22630. 

8 Tlsty, T. D. Curr. Top. Microbiol. Immunol. 1997, 221, 37-46. 

9 Wahl, G. M.; Linke, S. P.; Paulson, T. G.; Huang, L.-C. Cancer Surv. 1997, 29, 183-219. 

10 Tanaka, H. Arakawa, H.; Yamaguchi, T.; Shlralsh, K.; Fukuda, S.; Matsui, K.; Take, Y.; 

Nakamura, Y. Nature 2000, 404, 42-49. 

11 Vousden, K. H.; Lu, X. Nat. Rev. Cancer 2002, 2, 594-604. 

12 Adimoolam, S.; Ford J. M. DNA Repair 2003, 2, 947-954. 

13 Offer, H.; Wolkowicz, R.; Matas, D.; Blumenstein, S.; Livneh, Z.; Rotter, V. FEBS Lett. 1999, 

450, 197-204. 

14 Zhou, J.; Ahn, J.; Wilson, S. H.; Prives, C. EMBO J. 2001, 20, 914-923. 

15 Tyner, S. D.; Venkatachalam, S.; Choi, J.; Jones, S.; Ghebranious, N.; Igelmann, H.; Lu, X.; 

Soron, G.; Cooper, B.; Brayton, C.; Hee, P. S.; Thompson, T.; Karsenty, G.; Bradley, A.; 

Donehower, L. A. Nature 2002, 415, 45-53. 

16 Garcia-Cao, I.; Garcia-Cao, M.; Martín-Caballero, J.; Criado, L. M.; Klatt, P.; Flores, J. M.; 

Weill, J. C.; Blasco, M. A.; Serrano, M. EMBO J. 2002, 21, 6225-6235. 

17 Campisi, J. Nat. Rev. Cancer 2003, 3, 339-349. 

18 Marchenko, N. D.; Zaika, A.; Moll, U. M. J. Biol. Chem. 2000, 275, 16202-16212. 

19 Mihara, M.; Moll, U. M. Methods Mol. Biol. 2003, 234, 203-209. 
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Figure 2. Different cellular roles of p53 (reproduced from ref. 5). Influence of active p53 (blue) and mutant 

p53 (purple) on damaged eukaryotic cells.5 

 

1.1.4 p53 and DNA Binding 

p53 binds specifically to a palindromic double-strand DNA-promotor consensus 

site, which may be up to 13 base pairs away from a second copy.20 To form the stable 

DNA-p53 complex, the protein must be tetrameric.  

The macromolecular association is illustrated in Figure 3. In this case, the 

tetramerization domain is seen behind the helix, tying the four chains together. The 

four transactivation domains are free and ready to activate the proteins involved in 

reading the DNA and regulating transcription of the corresponding target genes. The 

products of these genes are responsible for the induction of DNA repair mechanisms, 

or apoptosis. 

                                                         
20 Cho, Y.; Gorina, S.; Jeffrey, P. D.; Pavletich, N. P. Science 1994, 265, 346-355. 
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Figure 3. Schematic representation of DNA-p53 binding. 

 

DNA binding of the DBD is highly cooperative,21,22 even when excess DNA is 

present,23 mainly because of the presence of inter-domain contacts in p53. In fact, a 

stabilizing dimerization interface (double salt bridge to residues E180 and R181) seems 

to be responsible for the observed cooperativity in DNA binding (Figure 4).24 

                                                         
21 Klein, C.; Planker, E.; Diercks, T.; Kessler, H.; Kunkele, K. P.; Lang, K.; Hansen, S.; 

Schwaiger, M. J. Biol. Chem. 2001, 276, 49020-49027. 

22 Klein, C.; Georges, G.; Konkele, A. P.; Huber, R.; Engh, R. A.; Hansen, S. J. Biol. Chem. 2001, 

276, 37390-37401. 

23 Rippin, T. M.; Freund, S. M. V.; Veprintsev, D. B.; Fersht, A. R. J. Mol. Biol. 2002, 319, 351-

358. 

24 Dehner, A.; Klein, C.; Hansen, S.; Muller, L.; Buchner, J.; Schwaiger, M.; Kessler, H. Angew. 

Chem. Int. Ed. 2005, 44, 5247-5251. 
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Figure 4. (A) DNA-binding domain interacting with a DNA structure. In red, the residues interacting 

with the minor groove of the chain; in pink, other highly conserved arginines. (B) The dimerization interface 

between two DBDs (the model is based in 1TSR structure).5 (C) Scheme showing the more common somatic 

mutations and the domains that are mainly post-translationally modified (reproduced from ref. 5). 

 

Inactivation of p53 is mainly due to mutations that interfere with the DNA-binding 

ability of the protein. A common mutation occurs on arginine 248. In Figure 4A, it can 

be observed how this residue snakes into the minor groove of the DNA, forming a 

strong stabilizing interaction. When it mutates to another amino acid, this interaction is 

lost and, as a result, p53 DNA binding ability disappears. Other frequently hot-spot 

mutations concern also arginine residues (colored in pink), including R175, R249, R273 

and R282.25 This highlights the importance of positively-charged residues in p53 to 

                                                         
25 Olivier, M.; Eeles, R.; Hollstein, M.; Khan, M. A.; Harris, C. C.; Hainaut, P. Hum. Mutat. 

2002, 19, 607-614. 

A B 

C 
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efficiently interact with DNA or to position other DNA-binding amino acids. 

 

1.1.5 Ripping p53 Tetramerization Domain 

The structure of p53TD has been determined both by X-ray crystallography and by 

NMR.26 The monomers of the tetramer are composed by a β-strand (residues 326 to 

333) linked to an α-helix (residues 335 to 355) by a single residue (Gly334, a common 

amino acid localized in regions where a secondary structure change takes place). The 

monomer has a V-shape where each of the two secondary structures is a branch of the 

V (Figure 5). In addition, three amino acids (Ile332, Phe338 and Phe341) establish 

contacts to form a small hydrophobic core at the hinge region that highly stabilizes the 

monomeric structure. 

Actually, p53TD is not a tetramer but a dimer of dimers.26b,27 Two monomers 

associate via their β-strands to form an antiparallel double-stranded sheet and via 

antiparallel association of their helices to create a double-helical bundle, as shown in 

Figure 5. The formation of the antiparallel β-sheet leads to the creation of eight 

backbone hydrogen bonds. In addition, a hydrophobic cluster is generated at the 

interface between the monomers. This core is composed by Phe328, Leu330 and 

Ile332 of the β-strands and Phe338, Phe341 and Asn345 from the α-helices.28 Arg337 

also establishes a salt bridge with Asp352 across the helix-helix interface within dimer 

                                                         
26 a) Clore, G. M.; Omichinski J. G.; Sakaguchi, K.; Zambrano, N.; Sakamoto, H.; Appella, E.; 

Gronenborn, A. M. Science 1994, 265, 386-391. b) Lee, W.; Harvey, T. S.; Yin, Y.; Yau, P.; 

Litchfield, D.; Arrowsmith, C. H. Nat. Struct. Biol. 1994, 1, 877-890. c) Clore, G. M.; Ernst, J.; 

Clubb, R.; Omichinski, J. G.; Kennedy, W. M.; Sakaguchi, K.; Appella, E.; Gronenborn, A. M. 

Nat. Struct. Biol. 1995, 2, 321-333. d) Jeffrey, P. D.; Gorina, S.; Pavletich, N. P. Science 1995, 267, 

1498-1502. e) Miller, M.; Lubkowski, J.; Rao, J. K.; Danishefsky, A. T.; Omichinski, J. G.; 

Sakaguchi, K.; Sakamoto, H; Appella, E.; Gronenborn, A. M.; Clore, G. M. FEBS Lett. 1996, 

399, 166-170. f) Chène, P.; Mittl, P.; Grutter, M. J. Mol. Biol. 1997, 273, 873-881. g) Mittl, P. R.; 

Chène, P.; Grutter, M. G. Acta Crystallogr. D. Biol. Crystallogr. 1998, 54, 86-89. 

27 Mateu, M. G.; Sánchez Del Pino, M. M.; Fersht, A. R. Nat. Struct. Biol. 1999, 6, 191-198. 

28 Mateu, M. G.; Fersht, A. R. EMBO J. 1998, 17, 2748-2758. 
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subunits, and it has been suggested that these ionic interactions are the driving force 

for dimerization and, subsequently, for tetramer formation. Therefore, mutations in 

these residues greatly influence the conformational stability of p53. 

 

Figure 5. Structure of tetramerization domain. (A) Ribbon representation of a monomer (residues 326-

356); the residues involved in the stabilization are indicated. (B) Primary dimer formation; the residues involved 

in the stabilization are shown. (C) The four chains of a tetramer are represented forming a dimer of dimers; the 

residues involved in the hydrophobic contacts are indicated only in one of the chains. 

 

Two dimers interact via their α-helices, mainly involving hydrophobic residues like 

Met340, Leu344, Ala347, Leu348 and Leu350 (Figure 6).29 The β-strands are on the 

outside of the tetramer and their residues are not directly related with the association 

between the two dimers. In addition, the presence of Arg342, Lys351 and four 

glutamates (Glu339, Glu343, Glu346 and Glu349) within the boundaries of the dimer-

dimer interface can be observed. Only the pairs of complementary charged side chains 

                                                         
29 Noolandi, J. Macromol. Symp. 2003, 191, 31-39. 
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close enough to form an intra-monomer salt bridge involve Lys351 with Glu343 

and/or Glu346 (Figure 6). These residues can contribute four or more ionic 

interactions to p53’s tetramer interface, favoring the stabilization and self-association 

of primary dimers.30,31  

 

Glu343 

Lys351 

Glu346 

 

Figure 6. Tetramerization domain view showing salt bridge interactions between two helices of different 

primary dimers. 

 

The hydrophobic residues mentioned before (between 340 and 351) form a nuclear 

export signal,32 which is exposed on the surface of the protein when p53 is monomeric 

(at low cellular concentration), and buried beneath the surface when it is tetrameric 

(after accumulation), modifying the cellular localization of p53 by changes in its 

quaternary structure. 

 

                                                         
30 Brokx, R. D.; Bolewska-Pedyczak, E.; Gariépy, J. J. Biol. Chem. 2003, 278, 2327-2332. 

31 Chène, P.; Bechter, E. J. Mol. Biol. 1999, 286, 1269-1276. 

32 Stommel, J. M.; Marchenko, N. D.; Jiménez, G. S.; Moll, U. M.; Hope, T. J.; Wahl, G. M. 

EMBO J. 1999, 18, 1660-1672. 
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1.1.6 p53 and Cancer: Who Guards the Guardian? 

Due to its function, p53 plays an important role as a tumor suppressor and, 

consequently, it represents a natural defense against cancer. Typically, cancer cells 

contain two types of mutations: those which cause uncontrolled growth and 

multiplication of cells, and those which block the defenses that avoid unnatural 

growth. p53 mutations belong to the second group and that is the reason why 

mutations in the p53 gene are found in about 50% of the cases of human cancer.5,33 

Most of these are missense mutations, changing the information in the DNA at one 

position. This causes p53 to be expressed with an error, swapping an incorrect amino 

acid at one point, which prevents the protein to stop multiplication in the damaged 

cell, or to repair the DNA damage. Consequently, if other mutations affecting at the 

regulatory elements which control cell growth are present, this cell will develop into a 

tumor. 

These are the key aspects of research on p53 which consists in the study of the 

activity of this protein and how altering it can have an influence on cancer 

development. As a result, different approaches have been established. Research on p53 

focuses on its interaction with partner proteins, and how these associations may 

modify, enhance or inhibit its function. Many studies are related to proteins that 

promote post-transcriptional modifications34,35 (phosphorylation,36,37 acetylation,38 

ubiquitinylation39,40 or sumoylation41,42,43) on p53 to modify its behavior (Figure 7). 

                                                         
33 Soussi, T.; Legros, Y.; Lubin, R.; Ory, K.; Schlichtholz, B. Int. J. Cancer 1994, 57, 1-9. 

34 Brooks, C. L.; Gu, W. Curr. Opin. Cell Biol. 2003, 15, 164-171. 

35 Bode, A. M.; Dong, Z. Nat. Rev. Cancer 2004, 4, 793-805. 

36 Helt, C. E.; Wang, W.; Keng, P. C.; Bambara, R. A. Cell Cycle 2005, 4, 529-532. 

37 Caspari, T. Curr. Biol. 2000, 10, R315-R317. 

38 Prives, C.; Manley, J. L. Cell 2001, 107, 815-818. 

39 Jesenberger, V.; Jentsch, S. Nat. Rev. Mol. Cell Biol. 2002, 3, 112-121. 

40 Fang, S.; Jensen, J. P.; Ludwig, R. L.; Vousden, K. H.; Weissman, A. M. J. Biol. Chem. 2000, 

275, 8945-8951. 

41 Rodríguez, M. S.; Desterro, J. M.; Lain, S.; Midgley, C. A.; Lane, D. P.; Hay, R. T. EMBO J. 
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Figure 7. Schematic representation (reproduced from ref. 34) of a mechanism for p53 transcriptional 

activation and, inherently, the changes in p53 function.34 

 

Another therapeutic strategy in p53 research is to reactivate and stabilize mutant44 or 

inactive p53. Inhibition of p53 might be an interesting option to protect normal tissue 

from the harmful consequences of stroke or cancer treatment, because under those 

conditions p53 accumulates and activates in normal tissue,45 being one of the reasons 

for neurodegeneration or the severe side effects observed with a conventional tumor 

therapy.46 This can be done by small molecules, enzymes, or gene therapy. 

To this aim, our proposal was to design a series of ligands able to interact with 

specific residues in the p53 tetramerization domain and consequently stabilize the 

                                                                                                                                         
1999, 18, 6455-6461. 

42 Gostissa, M.; Hengstermann, A.; Fogal, V.; Sandy, P.; Schwarz, S. E.; Scheffner, M.; Del Sal, 

G. EMBO J. 1999, 18, 6462-6471. 

43 Melchior, F.; Hengst, L. Cell Cycle 2002, 1, 245-249. 

44 Selivanova, G.; Kawasaki, T.; Ryabchenko, L.; Wiman, K. G. Sem. Cancer Biol. 1998, 8, 369-

378. 

45 Lakkaraju, A.; Dubinsky, J. M.; Low, W. C.; Rahman, Y. E. J. Biol. Chem. 2001, 276, 32000-

32007. 

46 Blagosklonny, M. V. Int. J. Cancer 2002, 98, 161-166. 
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structure of the whole protein, as p53 is only active as a tetramer.47 

In addition, mutations in this domain can inactivate p53 preventing it to fold into the 

active form. One of these missense mutations takes places when Arg337 is replaced for 

histidine (R337H mutant) which prevents salt bridge formation between Asp352 and 

His337 when this residue is not protonated at lower physiological pH range.48 As 

commented above, this interaction is crucial for the stability of the tetramer. In fact, 

this mutation has been linked to pediatric adrenal cortical carcinoma (ACC). Ribeiro 

and co-workers reported that in a localized population in southern Brazil, 97% of 

children that develop tumors in the adrenal gland harbor the p53-R337H mutation.49 

Stabilization of this mutated protein and, inherently, of the entire domain is one of the 

goals of our project. 

 

 

                                                         
47 Chène, P. Oncogene 2001, 20, 2611-2617. 

48 DiGiammariono, E. L.; Lee, A. S.; Cadwell, C.; Zhang, W.; Bothner, B.; Ribeiro, R. C.; 

Zambetti, G.; Kriwacki, R. W. Nat. Struct. Biol. 2002, 9, 12-16. 

49 Ribeiro, R. C. Sandrini, F.; Figueiredo, B.; Zambetti, G. P.; Michalkiewicz, E.; Lafferty, A. R.; 

DeLacerda, L.; Rabin, M.; Cadwell, C.; Sampaio, G.; Cat, I.; Stratakis, C. A.; Sandrini, R. Proc. 

Natl. Acad. Sci. USA 2001, 98, 9330-9335. 
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1.2 Objectives. Designed Ligands for p53TD 

 

1.2.1 Ligands Designed to Interact with p53TD 

It has been reported by our laboratory and others that a bicyclic guanidinium50,51 

(Figure 8) binds with high affinity to carboxylates by ion-pairing and hydrogen 

bonding with both oxygen atoms of the carboxylate group. The guanidinium NH 

hydrogen atoms have defined syn directionality due to the bicyclic framework. This 

structural element also improves its solubility in apolar solvents, where hydrogen 

bonds are stronger.52 

Hydrogen bonding is of a DD-AA type, which maximizes secondary interactions.53 

Transprotonation of the guanidinium-carboxylate would result in a non ionic, much 

weaker AD-DA guanidine-carboxylic acid interaction. However, transprotonation is 

unlikely, not only because of the weaker binding, but especially due to the large pKa 

difference between the guanidinium and a carboxylic acid group (ΔpKa ca. 9 in water). 

 

                                                         
50 Echavarren, A. M.; Galán, A.; de Mendoza, J.; Salmerón, A.; Lehn, J.-M. Helv. Chim. Acta 

1988, 71, 685-692. 

51 Kurzmeier, H.; Schmidtchen, F. P. J. Org. Chem. 1990, 55, 3749-3755. 

52 Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Chem. Soc. Rev. 2007, 36, 198-

211. 

53 Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008-2010. 
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Figure 8. A) Chiral bicyclic guanidinium receptor for carboxylate. B) Anti and syn conformations of 

guanidinium groups. 

 

Hydrogen-bonded salt bridges, such those involving guanidinium-carboxylate, are 

relevant contributors to α-helical stabilization and sometimes destabilization of 

peptides and proteins.54 In fact, it has been demonstrated that bicyclic guanidinium 

oligomers can induce an increase of helicity to helical secondary protein structures with 

acidic residues at (i, i+3) distances and, consequently, enhance the stability of these 

helices.55,56  

The sequence of one monomer of p53TD contains a highly conserved sequence of 

acidic residues (aspartic and glutamic acids) within i+3 and i+4 distances (Figure 9). 

Interaction studies with p53TD and symmetric tetraguanidinium oligomers were 

reported by our group, in collaboration with Prof. E. Giralt’s group (IRB, Barcelona). 

An association constant Ka = 0.1 µM in 10% aqueous methanol and 1H-15N HSQC 

and STD NMR studies indicated that the tetraguanidinium ligand scrambled over the 

                                                         
54 Luo, R.; David, L.; Hung, H.; Devaney, J.; Gilson, M. K. J. Phys. Chem. B, 1999, 103, 727-736. 

55 Peczuh, M. W.; Hamilton, A. D.; Sánchez-Quesada, J.; de Mendoza, J.; Haack, T.; Giralt, E. J. 

Am. Chem. Soc. 1997, 119, 9327-9328. 

56 Haack, T.; Peczuh, M. W.; Salvatella, X.; Sánchez-Quesada, J.; de Mendoza, J.;Hamilton, A. 

D.; Giralt, E. J. Am. Chem. Soc. 1999, 121, 11813-11820. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 1 

 

16 

different positions of the six anionic residues of the helical patch.57 Molecular 

dynamics simulations confirmed the different modes of binding between the 

tetracation and the hexaanionic patch.58  

LDGEYFTLQIR G  RERFEMFRELNEALELKDAQAGKEP

β-sheet α-helix

A

B

C

 

Figure 9. (A) Monomer sequence; negative charged residues are depicted in blue. (B) General structure of 

oligoguanidinium ligands. (C) Molecular modeling of p53TD (ribbon representation) interacting with 

hexaguanidinium ligand (ball and stick display). 

 

Thus, a hexaguanidinium polycation might act as a perfect counterpart to match with 

the entire sequence (Figure 9C). Moreover, the interaction should be stronger by 

increasing the number of guanidinium-carboxylate salt bridges. Indeed, circular 

dicroism studies on the interaction between a polyglutamate and guanidinium 

                                                         
57 Salvatella, X.; Martinell, M.; Gairí, M.; Mateu, M.; Feliz, M.; Hamilton, A. D.; de Mendoza, J.; 

Giralt, E. Angew. Chem. Int. Ed. 2004, 43, 196-198. 

58 Molecular dynamics calculations performed by E. Santos and C. Bo at the ICIQ. 
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oligomers of different lengths (Figure 10) were made in water at room temperature 

with hexafluorophosphate (PF6
-) as counterion, revealing that a strong interaction 

occurs with the octamer (Figure 11). 

 

 

Figure 10. Bicyclic guanidinium oligomers of different lengths. 
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Figure 11. Circular dichroism studies made by Giralt et al.59 Left side curves represent the peptide, the 

guanidinium chain and the sum of both curves. The right side curves show the superposition of the addition curve 

with the experimental one. 

 

Therefore, we decided to synthesize and evaluate a series of new bicyclic guanidinium 

oligomers to get a deeper insight into the nature of the association with p53TD.  

 

1.2.2 Theoretical Studies with the Hexaguanidinium and p53 

To further understand the interaction between p53 and the guanidinium oligomers, 

computer modeling studies were done in collaboration with Dr. Eva Santos under the 

supervision of Prof. Carles Bo at the ICIQ. Molecular dynamics (MD) simulations with 

                                                         
59 Salvatella, X.; Giralt, E.; Van Gool, M.; de Mendoza, J. unpublished results. 
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explicit water were performed on the following systems: (a) p53TD; (b) p53TD with 

four hexaguanidinium ligands, each of them bound to a monomer chain, to interact 

with residues E336, E339, E343, E346, E349, D352; (c) p53TD-R337H mutant; (d) 

p53TD-R337H mutant with four hexaguanidinium ligands located as in (b). 

Simulations (c) and (d) were carried out at 300K and 400K. This high temperature was 

applied to stress structural changes of the mutant protein at a reasonable time scale. 

The relative stability of the protein was assessed by the dynamic analysis of the 

backbone’s root mean square deviation (RMSD), as a measure of the inherent stability 

of the protein, along a 10 ns trajectory. This enables to evaluate the conformational 

stability of the protein. Typically, an increase of RMSD at the end of the trajectory 

means that the protein has not reached its most stable conformation. On the other 

hand, high RMSD values (beyond 2.5-3 Å) indicate significant deviations with respect 

to the initial structure.  

 

Figure 12. RMSD vs. time curves of p53TD wild type, with and without ligands (TG = 

Tetraguanidinium, HG = Hexaguanidinium). MDs with explicit water calculations were made using Gromacs 

program, Amber94 force field, and a total time of 10 ns at 300K. Initial p53TD structure coordinates were 

taken from PDB: 1AIE.  
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Figure 12 shows the curves for the p53TD (wild type) and the protein domain 

docked with tetraguanidinium (TG) and hexaguanidinium (HG) ligands. Starting from 

Glu336 (in the docking site), the RMSD value is lower in the presence of HG (in blue, 

RMSD < 1.5 Å) than of TG (in green). In both cases, the structure of the protein 

remains similar to the initial one suggesting that the conformation is not substantially 

disturbed by the ligands, although oscillations are stronger in the presence of 

tetraguanidinium. Nevertheless, all guanidinium-carboxylate interactions present in the 

initial system were progressively lost. At 4 ns, only half of the interactions remained 

and the complex continued losing protein-ligand interactions. 

Molecular dynamics performed on the less stable mutant R337H showed an 

increased RMSD of the protein backbone relative to the wild-type structure, thus 

meaning a destabilization effect (Figure 13). As expected, the RMSD value of the 

mutant at 300 K (red line) was lower than at 400 K (green line), a temperature at which 

the protein thermally unfolds. At this high temperature a significant stabilizing effect 

of the hexaguanidinium ligands becomes evident (purple line). 

 

Figure 13. RMSD vs. time curves of p53TD-R337H mutant, with and without hexaguanidinium ligand 

at different temperatures. MDs with explicit water; calculations were made using Gromacs program, Amber94 

force field, and a total time of 6.5 ns. 
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Simulations also revealed a successive loss of guanidinium-carboxylate interactions 

along the 6.5 ns trajectory. Thus, the initial protein-ligand complex did not reach 

stability during the whole trajectory. At 3 ns half of the interactions had already been 

lost. After 5 ns the RMSD of the mutant protein remained similar to the wild type one 

(Figure 14), although two hexaguanidines were not complexing and the other two were 

interacting through a new anionic patch between two different chains of the 

tetramerization domain with three and four anchorage points, respectively. 

  

Figure 14. Three-dimensional structures of p53TD-R337H mutant with hexaguanidinium ligand at 5 ns 

(Maestro program).  

 

In conclusion, the initial complex structures here considered turned out to be not 

stable. However, molecular dynamics show that guanidinium-carboxylate interactions 

of this nature can be effective in stabilizing the p53-R337H tetramer, which stress out 

the importance of testing ligands based on guanidinium moieties. Additional 

simulations are required, considering alternative stoichiometries (as 1:2 protein:ligand) 

and a correct arrangement of the ligands to reach more stable p53TD-HG complex 

structures. 
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1.3 Synthesis of Ligands for p53 

 

1.3.1 Synthetic Attempts to Hexaguanidinium Oligomers 

For the synthesis of hexaguanidinium ligand 15, two different routes were explored. 

The first one is based on the coupling of two non-symmetric monoprotected 

diguanidinium moieties on a central symmetric diguanidine. The reaction requires a 

nucleophilic attack of a thiol – formed from a thioacetate in the presence of cesium 

carbonate – on a mesylate leaving group, to generate the corresponding thioether. 

Within this route (2+2+2 path, Scheme 1), two different approaches were investigated: 

1) Use the symmetric moiety as the electrophile. 

2) Use the symmetric moiety as the nucleophile. 

 

 

Scheme 1. Retrosynthetic scheme of the symmetric (2+2+2) methodology. 

 

The second proposed synthetic route (4+2 path, Scheme 2) is based on the 

generation of the tetraguanidinium non-symmetric species, one-side protected with a 

TBDPS group and with a mesylate group on the other end, to allow the coupling with 

a thiol (from a thioacetate precursor) in one of the arms of a diguanidinium moiety 

which carries the protective TBDPS group in the other one. 
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Scheme 2. Retrosynthetic scheme of the non-symmetric (4+2) methodology. 

 

1.3.2 Synthesis of the Intermediates 

Bicyclic guanidine 1 is the precursor for the synthesis of these oligomers. This 

compound was obtained on a multi-gram scale following the methodology described 

by Schmidtchen51 and improved in our group at a multigram scale.60 As precursors, D-

asparagine and D-methionine were used, giving rise to the R,R enantiomer in nine 

steps with a 46% overall yield (Scheme 3). 

 

Scheme 3. Retrosynthetic pathway for the preparation of 1. 

 

The symmetric diguanidinium scaffold was synthesized using the methodology 

described in Scheme 4. First, the selective deprotection of the TBDMS group of 1 was 

performed, followed by activation of the corresponding alcohol as a methanosulfonate 

(mesylate) to generate a good leaving group. Then, reaction of a thioacetate group in 

the presence of a base leads to the formation of a nucleophilic thiolate, which reacts 

                                                         
60 Sánchez-Quesada, J. PhD Thesis, Universidad Autónoma de Madrid, 1996. 
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with compound 2 to give the symmetric diguanidinium molecule 4 with a thioether 

link. Deprotection of the TBDPS group takes place in good yields, generating a diol 

which was activated again as mesylate 6. The mesylates were then replaced by 

thioacetates, to generate the corresponding thiolates, yielding compound 7. 

 

Scheme 4. Synthesis of symmetric diguanidinium molecules. Conditions: i) H2O, AcOH, THF; ii) 

Ms2O, NMM, THF; iii) KSCOCH3, THF/H2O, reflux; iv) 1 eq. 2, 2.5 eq. Cs2CO3, ACN/MeOH, v) 

15 eq. MsOH, THF/H2O, reflux; vi) Ms2O, NMM, in dry CH2Cl2; vii) 7.5 eq. KSCOCH3, MW, 

140ºC, 15 min. ACN. 

 

Synthesis of non-symmetric diguanidinium compounds 10 and 11 is depicted in 

Scheme 5. Starting from compound 2 the corresponding disulfide 8 was formed. The 

disulfide bond was cleaved by reduction, generating the subsequent thiol which 

attacked mesylate 2. As a result, the asymmetric guanidinium 9 was formed in good 

yield. The activation of the alcohol to the mesylate (10) and subsequent thioacetylation 

provided the nucleophilic precursor 11. 
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Scheme 5. Synthesis of non-symmetric diguanidinium compounds. Conditions: i) KSCOCH3, 

THF/H2O, reflux; MsOH, THF/H2O, reflux; ii) 2, (nBu)2PhP polystyrene, Cs2CO3, MeOH; iii) Ms2O, 

NMM, THF; iv) KSCOCH3, ACN, MW 140 ºC, 10 min. 

 

1.3.3 Synthesis of the Symmetric Tetraguanidinium Oligomer 

In order to check the non-symmetric approach, the synthesis of model 

tetraguanidinium 12 was undertaken (Scheme 6).61,62 

 

Scheme 6. Synthesis of tetraguanidinium 12 and 13. Conditions: i) 2.5 eq. Cs2CO3, (nBu)2PhP 

polystyrene, ACN/MeOH; ii) ACN/3N HCl  

 

The nucleophilic attack of the thiol derivative on the activated methanesulfonate 

compound 10 produced tetraguanidine 12 in a 76% yield. Cleavage of the TBDPS 

                                                         
61 Fernández-Carneado, J.; Van Gool, M.; Martos, V.; Castel, S.; Prados, P.; de Mendoza, J.; 

Giralt, E. J. Am. Chem. Soc. 2005, 127, 869-874. 

62 Pérez Fernández, R. PhD Thesis, Universidad Autónoma de Madrid, 2005. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 1 

 

26 

groups generated ligand 13 (Scheme 6). 

This synthesis also provided additional amounts of this ligand to complete the 

reference binding studies with p53TD protein. 

 

1.3.4 Synthesis of the Hexaguanidinium Oligomer 

Despite its apparent simplicity, the formation of oligoguanidines linked by thioether 

bridges is not trivial. Although a thiolate is a quite reactive nucleophile, it easily 

oxidizes to the corresponding disulfide. Hence, the coupling reaction to generate the 

thioether link must be done under an inert atmosphere and in the presence of a 

reduction reagent, such as a phosphine. 

Another key aspect in the synthesis is the decrease of reactivity as the length of the 

chain grows, likely due to the increasing steric hindrance, higher conformational 

flexibility, and polycationic nature of the higher oligomers. 

As mentioned before, two approaches were followed. At first sight, the (2+2+2) 

symmetric route looks simpler and more convergent than the non-symmetric one. In 

addition, fewer steps are necessary. 

However, the (4+2) non-symmetric approach, requiring the preparation of more 

complex structures such as non-symmetric tetraguanidinium compounds, was 

nevertheless pursued owing to the expected higher yields of the individual steps.61,62 

 

1.3.4.1 Symmetric Approach 

The first attempt using this methodology was performed with one equivalent of the 

bis-thioacetyl diguanidinium molecule 7 in the presence of 2.2 eq. of mesyl non-

symmetric diguanidinium 10, as it is shown in Scheme 7. 
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Scheme 7. First attempt towards the hexaguanidinium oligomer using the symmetric approach. Conditions: 

i) 5 eq. Cs2CO3, ACN/MeOH, (nBu)2PhP polystyrene, semi-preparative HPLC purification. 

 

HPLC-mass spectra showed that a small amount of the desired compound was 

present in the reaction crude. The product was isolated by semi-preparative HPLC, 

affording hexaguanidinium oligomer 14 in a modest 6% yield. 

Owing to the low yield, another attempt was made, now using the dimesylated 

diguanidinium derivative and 2.2 eq. of the thioacetyl-containing non-symmetric one 11 

(Scheme 8).  

 

 

Scheme 8. Second attempt towards the hexaguanidinium ligand using the symmetric approach. Conditions: 

i) 5 eq. Cs2CO3, ACN/MeOH, (nBu)2PhP polystyrene; ii) Semi-prep. HPLC purification; iii) ACN/3N 

HCl. 
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In this case, using similar reaction conditions as beforehand described, an overall 

yield of 10% was reached for the hexaguanidinium compound 15. Likely, this increase 

in yield could be attributable to the relative stability of the thiol species formed during 

the reaction. In the initial attempt, a diguanidinium dithiol generated was able to 

partially oxidize giving rise to guanidinium oligomers and polymers linked by disulfide 

bridges. On the contrary, a single thiol function has less chance to get into 

intermolecular disulfide formation or polymerization.  

Purification of the protected hexaguanidinium 14 was carried out on a silica PF6
- 

chromatography column in a 24% yield. Although analytical chromatography did not 

reveal substantial impurities, only 50% of the initially isolated final product was 

recovered after semi-preparative HPLC purification.  

Moreover, only 90% purity was reached after HPLC purification, due to the 

difficulty of separating the product from by-products. Subsequently, TBDPS cleavage 

afforded ligand 15 in 83% yield. The compound was pure enough, indeed, to perform 

some preliminary NMR binding studies with the p53 tetramerization domain.  

 

1.3.4.2 Non-symmetric Approach 

This synthetic strategy was attempted to improve the yields obtained in the 

symmetric route. The coupling between one tetraguanidinium and one diguanidinium 

should be more efficient than the coupling in the symmetric route, as it is based on a 

single reactive point. 

The synthesis of the non-symmetrical tetraguanidinium was developed following the 

path shown in Scheme 9. 
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Scheme 9. Non-symmetric synthesis of tetraguanidinium 17. Conditions: i) KSCOCH3, THF/H2O, 

reflux; MsOH, THF/H2O, reflux; ii) 10, (nBu)2PhP polystyrene, Cs2CO3, ACN/MeOH. 

 

The deprotected tetraguanidinium disulfide 16 was generated from compound 10, 

and tetraguanidinium 17 was generated by reduction and subsequent nucleophilic 

attack of the diguanidinium thiol on 10. 

Subsequent activation of the alcohol as the mesylate intermediate took place in good 

yields and the coupling reaction between the non-symmetric diguanidinium 11 and 18 

produced the symmetric protected hexaguanidinium in good yield (57%) (Scheme 10). 

Cleavage of the silyl groups under acidic conditions and purification by semi-

preparative HPLC completed the synthesis of this ligand (93% purity). As a result of 

carrying out the purification after deprotection, an extra-step was necessary (ion-

exchange column) to restore the chloride counterion, since the mobile phase used 

contains some trifluoroacetic acid to ensure the protonation of the guanidinium groups 

and to facilitate the isolation. 
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Scheme 10. Non-symmetric synthesis of hexaguanidinium 15. R = TBDPS. Conditions: i) dry CH2Cl2, 

Ms2O, NMM; ii) (nBu)2PhP polystyrene, Cs2CO3, MeOH iii) ACN/3N HCl. 

 

1.3.5 New Oligoguanidinium Compounds 

New ligands were designed for protein p53TD surface recognition to better 

understand the position and orientation of the guanidinium residues in the protein 

surface, as well as their interaction features or stabilization/destabilization properties. 

Also, we wished to improve the association of these oligoguanidinium polycations with 

p53TD by introducing groups at the ends of the chain capable of altering its 

interaction mode. 

Inspection of the three-dimensional structure of the tetramerization domain 

complexed with our oligoguanidines revealed that Asp352 is buried into the tetramer 

and therefore significantly less accessible than the remaining carboxylates (glutamates). 

In addition, as mentioned above, this residue forms a stabilizing salt bridge with 

Arg337.63 Hence, removing or weakening this interaction could result in destabilization 

of the whole tetramer, thus justifying that the pentaguanidinium molecule 20 (Figure 

15) might fit better in the helical patch of the protein. 

                                                         
63 (a) Galea, C.; Bowman, P.; Kriwacki, R. Prot. Sci. 2005, 14, 2993-3003. (b) Bosshard, H. R.; 

Marti, D. N.; Jelesarov, I. J. Mol. Recognit. 2004, 17, 1-16. 
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Figure 15. Pentaguanidinium molecule 20. 

 

Alternatively, functionalization of these polycationic molecules with aromatic groups 

such as naphthylmethyl and benzyl (molecules 28 and 35, respectively, Figure 16) 

should provoke a preferred orientation of the ligand in allowing further contacts with 

the hydrophobic hairpin pocket of the domain (composed by residues Ile332, Phe338, 

Met340 and Phe341). These additional interactions would likely improve the binding 

and therefore stabilize the complex. 

 

Figure 16. Naphthylmethyl pentaguanidinium derivative 28 and pentaguanidinium 35. 

 

Pentaguanidinium compound 35 bearing a terminal benzoguanidinium should show 

major avidity for p53TD due to the increased acidity of the benzoguanidinium 

protons.64 

From the point of view of protein stabilization, the designed ligands should be able 

to embrace different monomers bringing them together and thus favoring 

                                                         
64 Ratel, F. DEA Report, Universidad Autónoma de Madrid, 2005. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 1 

 

32 

tetramerization of the domain.65 It is likely that the extended polycationic 

octaguanidinium ligand 38 (Figure 17), could interact simultaneously with more than 

one monomer in order to satisfy its complementary charge requirements.  

 

Figure 17. Octaguanidinium compound 38. 

 

Thus, the study of this complexation would bring into play the design of new highly 

multivalent ligands able to bind and stabilize different monomers or even consecutive 

domains of p53. 

 

1.3.5.1 Synthesis of the Pentaguanidinium Oligomer 20 

The synthesis of this new oligoguanidinium compound was performed following the 

non-symmetric (4+1) approach, since all starting compounds were already available 

(Scheme 11). 

 

                                                         
65 (a) Gordo, S.; Martos, V.; Santos, E.; Menéndez, M.; Bo, C.; Giralt, E.; de Mendoza, J. Proc. 

Nat. Acad. Sci. 2008, 105, 16426-16431. (b) Gordo, S.; Martos, V.; Vilaseca, M.; Menéndez, M.; 

de Mendoza, J.; Giralt, E. Chem. Asian J. 2011, 6, 1463-1469. 
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Scheme 11. Synthesis of pentaguanidinium compound 20. R=TBDPS. Conditions: i) (nBu)2PhP 

polystyrene, Cs2CO3, ACN/MeOH; ii) ACN/3N HCl . 

 

Coupling of the activated methanesulfonate tetraguanidinium compound 18 with the 

monoguanidinium thioether 3, yielded pentaguanidinium 19 in 62% yield after 

purification (Scheme 11). Cleavage of the R (TBDPS) groups gave rise to 20 

quantitatively. 

 

1.3.5.2 Synthesis of the Naphthylmethylpentaguanidinium Compound 28 

To synthesize pentaguanidinium 28 via the non-symmetric approach, it was first 

necessary to prepare a guanidinium monomer with a naphthylmethyl group on one 

side and a reactive function on the other. To achieve this goal, the synthetic pathway 

shown in Scheme 12 was attempted. 

 

Scheme 12. First attempt towards methylnaphthalene monoguanidinium 21. Conditions: i) (nBu)2PhP 

polystyrene, Cs2CO3, ACN/MeOH; reflux.  
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However, direct coupling of 2-(bromomethyl)naphthalene with guanidinium 3 was 

not successful because of the low reactivity of the aromatic species, even though the 

bromide is in a benzylic position. 

Alternatively, the thioacetyl derivative 22 was prepared to improve the process 

(Scheme 13). The nucleophilic attack of this aromatic moiety with the 

monoguanidinium methanesulfonate derivative 2, provided guanidinium 21 in a 72% 

yield. The reaction works well even without using the phosphine as a reducing agent, 

just keeping the inert atmosphere to avoid disulfide formation. 

 

Scheme 13. Second attempt towards methylnaphthalene monoguanidinium 21. Conditions: i) KSCOCH3, 

ACN, reflux; ii) 2, Cs2CO3, MeOH/ACN. 

 

With compound 21 in hand, we focused at generating a reactive point to connect this 

molecule to a tetraguanidinium moiety to produce pentamer 28. Firstly, cleavage of 21 

was performed in the presence of hydrochloric acid to afford the corresponding 

alcohol 23, which was activated as the chloride derivative 24, since activation as a 

mesylate was not possible due to the presence of chloride anions that usually interfer in 

similar reactions with bicyclic guanidines. Unfortunately, thioacetylation of 24 did not 

occur so another synthetic route was developed. Thus, cleavage of 21 was carried out 

in the presence of methanesulfonic acid, generating an alcohol with mesylate as the 

counter ion. Formation of methanosulfonate 25 was achieved in an 87% yield. Finally, 

refluxing 25 with potassium thioacetate in acetonitrile yielded compound 26 (Scheme 

14).  
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Scheme 14. Synthetic pathways for compound 26. R=TBDPS. Conditions: i) ACN/3N HCl; ii) 

thionyl chloride, DCM, reflux; iii) KSCOCH3, ACN, reflux; iv) MsOH, reflux; v) Ms2O, NMM, THF; 

vi) KSCOCH3, ACN, reflux. 

 

Using again the (4+1) approach (Scheme 15), pentaguanidinium 27 was synthesized 

in a 71% yield, after which acidic conditions are required to obtain the related 

deprotected product 28. 

 

Scheme 15. Synthesis of compound 28. R=TBDPS. Conditions: i) (nBu)2PhP polystyrene, Cs2CO3, 

ACN/MeOH; ii) ACN/3N HCl . 
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1.3.5.3 Synthesis of Pentaguanidinium with a Benzoguanidinium (35) 

For the formation of this oligomer, first benzoguanidinium 30 had to be prepared. 

This was done by the route outlined in Scheme 16, firstly developed in our group by 

Dr. Frédéric Ratel. 

 

Scheme 16. Synthesis of benzoguanidinium 30.
64

 R=TBDPS. Conditions: i) ACN, 3 days, r.t.; ii) 

MeOTf, DIPEA, CH2Cl2.  

 

Initially, 2-aminobenzylamine was reacted with the isothiocianate of the methionine 

derivative (a key intermediate in the synthesis of bicyclic guanidines), yielding thiourea 

29. Treatment of this compound with methyl triflate leads to methylation of both 

sulfur atoms, allowing the nucleophilic attack of the amines and the expected 

cyclization in the presence of DIPEA. Consequently, benzoguanidinium 30 was 

satisfactorily obtained by this procedure. 

By cleaving the protective TBDPS group, the corresponding alcohol was formed and 

subsequently activated as a methanosulfonate derivative. Thioacetylation and coupling 

of this benzoguanidinium (33) to mesylated tetraguanidinium 18 afforded 35 as 

depicted in Scheme 17. 
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Scheme 17. Synthesis of compound 35. R=TBDPS. Conditions: i) MsOH, reflux; ii) NMM, Ms2O; 

iii) ACN, KSCOCH3, reflux; iv) Cs2CO3, (
nBu)2PhP polystyrene, ACN/MeOH; v) ACN/3N HCl. 

 

1.3.5.4 Synthesis of Octaguanidinium Compound 38  

Following this synthetic methodology, octaguanidinium compound 38 was 

successfully prepared in 65% yield from tetramer 18 as described in Scheme 18. 

 

Scheme 18. Synthesis of oligoguanidinium derivative 38. Conditions: i) KSCOCH3, ACN, reflux; ii) 18, 

Cs2CO3, (
nBu)2PhP polystyrene, ACN/MeOH; iii) ACN/3N HCl. 

 

Deprotection of compound 37 in acidic media quantitavely afforded ligand 38. 

With these compounds in hand, we aimed to study their binding behavior in the 

presence of the tetramerization domain of p53. This work was performed in 

collaboration with Dr. Susana Gordo under the supervision of Prof. Ernest Giralt 

(IRB Barcelona). 
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1.4 NMR Binding Studies 

 

The effect of the oligoguanidinium ligands on the amino acid sequence of p53 

tetramerization domain was preliminary evaluated by NMR.66 A 15N-enriched sample 

of p53 tetramerization domain was titrated with ligands 13, 15, 20, 28, 35 and 38 and 

the titration was monitored by [1H,15N]-HSQC. These experiments were made with 0, 

2 and 4 equivalents of each ligand with respect of monomer, for both the wild type 

and R337H mutant of p53TD.  

As earlier reported,57 binding of ligand 13 to the surface of p53TD causes significant 

changes in the 1H and 15N chemical shifts of some protein residues (Figure 19). 
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Figure 19. [1H,15N]-HSQC spectrum of p53TD in the absence (black contours) and in the presence (red 

and green contours) of ligand 13 (2 and 4 eq, respectively). Signals in the [1H, 15N]-HSQC spectrum were 

assigned by 13C-NMR. 

 

                                                         
66 Work performed by Dr. S. Gordo and Prof. E. Giralt at Parc Científic of Barcelona. 
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As expected, amino acids pertaining to the anionic patch are affected by the presence 

of the ligand. Nearby residues also experiment significant changes. The fact that a 

tetraguanidinium ligand affects all the six carboxylic amino acids in the sequence could 

be interpreted by scrambling of the ligand along the anionic patch.  

For ligands 15, 20, and 35 the [1H,15N]-HSQC spectra were similar to the 

tetraguanidinium ligand 13 (Table 1). Ligand 28 produced relevant changes (Table 1), 

not only on the anionic patch but also on hydrophobic residues defining the hairpin 

pocket, accounting for the proximity of the aromatic naphthylmethyl moiety to the 

hairpin. Docking ligand 28 into the surface of a computer model of p53TD (Figure 20) 

showed that the naphthalene ring nicely fits between Arg337 and Met340, two of the 

most shifted amino acids in the sequence as shown in the chemical shift perturbation 

(CSP) plot (Table 1). Phe341 is also in close contact with the naphthalene group, 

interacting by π-stacking. Indeed, the strong chemical shift observed for these residues 

can be explained by a stable and robust interaction and by the anisotropic effect caused 

by the aromatic moiety. This proposed mode of binding justifies that Asp352 is 

affected by the ligand as one of its terminal bicyclic guanidines forms a salt bridge with 

this residue. On the contrary, chemical shift perturbation of Glu336 is probably 

influenced by the proximity of the aromatic naphthalene ring and not by the binding 

with a guanidinium moiety. 

     

Figure 20. (Left) Molecular modeling showing ligand 28 interacting with a monomer of p53TD. (Right) 

Detailed view of the contact between the naphthalene moiety and the hydrophobic pocket of the monomer. 
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Octaguanidinium ligand 38 showed new chemical shifts accounting for the 

interaction with residues at the end of the α-helix (Leu350, Asp352 and Ala355), 

although several amino acids along the whole sequence were strongly affected by the 

presence of this ligand. This points out to an alternative mode of association where 

this molecule probably interacts with different monomers of the tetramerization 

domain in order to satisfy its charge complementarity and maximize the number of 

contacts with the protein. 

 

Table 1. [1H, 15N]-HSQC signals for the p53TD most representative chemical shifts in the presence of 

ligands 13, 15, 20, 28, 35 and 38 (for color codes, see Figure 19). CSP plots of the protein-ligand interaction 

are also attached for clarity. 

 

  Ligand Representative [1H, 15N]-HSQC signals Chemical shift mapping 
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28 

  

 

 

35 

 

 

 

 

38 

   

 

 

Qualitative information about the binding affinity can be assessed, assuming an 

analogous binding behavior of these ligands. Perturbation of Met340 was compared 

for all ligands (Figure 21). Ligands 13, 15, 20 and 35 shifted Met340 resonance 

similarly; interestingly, the shift increased with the number of guanidinium moieties 

(Δδ of 13 < 20 < 15 < 35). That ligand 35 caused a strongest perturbation than ligand 

15 despite having one guanidinium less could be explained by higher acidity of the 

benzoguanidinium NHs moiety,67 and additional hydrophobic contacts with other 

residues of the protein. Finally, octaguanidinium ligand 38 and tetraguanidinium 28 

induced the highest shift, suggesting a stronger binding to the protein. Anisotropic 

                                                         
67 Ratel, F. PhD Thesis, Universidad Autónoma de Madrid, 2009. 
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effects attributable to the interaction between the naphthyl aromatic moiety and 

residue Met340 should be also considered for the perturbations caused by ligand 28. 
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Figure 21. Comparison of the chemical shifts observed for Met340 residue in the presence of the different 

oligoguanidinium ligands. 

 

Preliminar NMR experiments with p53TD R337H mutant in the presence of those 

ligands revealed new and unexpected shifts accounting for novel modes of binding. A 

more detailed study is however necessary to have a better insight into the interaction of 

these oligoguanidinium ligands with the mutant.68  

                                                         
68 See Section 1.6 (Appendix) where most representative [1H, 15N]-HSQC spectra are available. 
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1.5 Experimental Section 

 

1.5.1 General Procedures 

Synthesis. All commercially available reagents (Aldrich, Fluka, Acros, NovaBiochem, 

Panreac) were used without further purification. Anhydrous solvents were obtained 

from a solvent purification system (SPS). All reactions were performed under nitrogen 

atmosphere unless specified. Chiral bicyclic guanidinium derivatives were synthesized 

in the R,R configuration. 

Chromatography. Thin layer chromatography (TLC) was performed on pre-coated 

TLC-plates SIL G-25 UV254 (Macherey-Nagel) glass supported with detection by UV at 

254 nm and/or bromocresol green stain (in EtOH and 1N NaOH mixture). Column 

chromatography was done using silica gel from SDS (Chromagel 60 ACC, 40-60 mm) 

and Scharlau (ASTM, 40-60 mm) following the procedure described by W. C. Still.69 

HPLC chromatograms were recorded on an Agilent Technologies 1100 (UV-detector) 

analytical HPLC C18 Symmetry300 and SunFire C18 columns (4.6 × 150 mm, 5 µm). 

For semi-preparative HPLC a LC 18 column Symmetry (10 × 150 mm, 5 µm) was 

used. The mobile phase consisted of CH3CN/H2O mixture containing 0.05 or 0.1% 

TFA. The solvents were provided by Scharlau and Carlo Erba (HPLC gradient grade). 

Analysis. NMR spectra were performed on a Bruker Advance 400 (1H: 400 MHz; 13C: 

100 MHz) equipped with a z-gradient 5 mm BBO probe with ATM Ultrashield 

spectrometer. Deuterated solvents used are indicated in each case. Chemicals shifts () 

are expressed in ppm, and are referred to the residual peak of the solvent. Mass spectra 

were recorded in a Waters LCT Premier (ESI or APCI mode), Waters GCT (EI and CI 

ionization modes) or Bruker MALDI-TOF spectrometers. 

                                                         

69 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.  
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Microwave specifications. A CEM Discover microwave reactor carrying a magnetron 

(2455 MHz) with a power output of 300 ± 10% W was employed. 

 

1.5.2 Synthesis 

 

(2R,8R)-2-(tert-Butyldiphenylsilanyloxymethyl)-8-(hydroxymethyl)-3,4,6,7,8,9-

hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium hexafluorophosphate. 

 

A solution of guanidinium 1 (5.00 g, 7.02 mmol) in H2O/AcOH/THF (1:3:1, 125 

mL) was stirred for 20 h at room temperature. After removing the solvent, the crude 

was dissolved in CH2Cl2 (125 mL) and washed subsequently with saturated solutions of 

Na2CO3 (100 mL) and NH4Cl (3  100 mL). The organic phase was dried (Na2SO4) 

and after evaporating the solvent, the remaining oil was triturated with toluene/diethyl 

ether at 4 °C, resulting in the deprotected guanidinium as a white solid. The product 

was directly used in the next reaction step without further purification. 

To exchange chloride for hexafluorophosphate, the compound was dissolved in 

CH2Cl2, washed with a 2N KOH solution (2 x 50 mL) and subsequently with 0.1N 

NH4PF6 (2  50 mL). Afterwards, the organic phase was filtered over cotton and 

evaporation of the solvent resulted in the desired product (PF6
– salt). 1H-NMR (400 

MHz, CDCl3)  7.67-7.64 (m, 4H, CHAr), 7.46-7.40 (m, 6H, CHAr), 6.15 (s, 1H, NH), 

6.05 (s, 1H, NH), 3.86 (d, J = 12.5 Hz, 1H, CH2OSi), 3.76 (dd, J = 5.4, 12.5 Hz, 1H, 

CH2OSi), 3.67-3.47 (m, 4H, CH2O, CHα), 3.37-3.20 (m, 4H, CH2γ), 2.15-1.85 (m, 5H, 

OH, CH2β), 1.09 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  151.2 (Cguan) 135.5, 

135.4, 132.6, 129.8, 128.9, 127.9 (CAr, CHAr), 65.3, 63.7 (CH2O), 50.6, 49.3 (CHα), 45.6, 

44.6 (CH2γ), 26.7 (CH3t-Bu), 22.7 (CH2β), 19.1 (Ct-Bu). ESI m/z 474.5 [(M – PF6
–)+, 

100%]. 
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(2R,8R)-2-(tert-Butyldiphenylsilanyloxymethyl)-8-methanesulfonyloxymethyl-

3,4,6,7,8,9,-hexahydro-2H-pyrimido[1,2-a]-1-pyrimidinium hexafluorophosphate 

(2). 

 

To a solution of mono-deprotected guanidine (PF6
–) (4.67 g, 7.99 mmol) in dry THF 

(250 mL) a solution of Ms2O (3.48 g, 19.98 mmol) in 50 ml of dry THF was added. 

The mixture was treated with NMM (3.55 mL, 31.97 mmol) and stirred for 4 h at room 

temperature. After evaporation of the solvent, the resulting solid was dissolved in 

CH2Cl2 (500 mL) and washed with a 0.1N NH4PF6 solution (2  250 mL). The organic 

layer was filtered over cotton and concentrated at reduced pressure. Purification by 

silica gel column chromatography (CH2Cl2/MeOH, 98:2) afforded mesylate 2 (4.74 g, 

90%) as a white solid. 1H-NMR (400 MHz, CDCl3)  7.66 (m, 4H, CHAr), 7.46 (m, 6H, 

CHAr), 6.53 (s, 1H, NH), 6.31 (s, 1H, NH), 4.37 (m, 1H, CH2OMs), 4.23 (m, 1H, 

CH2OMs), 3.86 (m, 1H, CHα), 3.72 (m, 2H, CH2OSi), 3.63 (m, 1H, CHα), 3.38 (m, 4H, 

CH2γ), 3.17 (s, 3H, CH3MsO), 2.20-1.91 (m, 4H, CH2β), 1.01 (s, 9H, CH3t-Bu). 13C-NMR 

(100 MHz, CDCl3)  150.6 (Cguan), 135.5, 132.5, 130.0, 128.9 (CHAr, CAr), 69.5 

(CH2OMs), 66.2 (CH2OSi), 50.1, 47.7 (CHα), 45.3, 44.9 (CH2γ), 37.1 (CH3MsO), 26.7 

(CH3t-Bu), 22.4, 21.9 (CH2β), 19.1 (Ct-Bu). HRMS calcd. for [C26H38N3O4SSi]+ 516.2352; 

found 516.2354.  

 

(2R,8R)-2-Acetylsulfanylmethyl-8-(tert-butyldiphenylsilanyloxymethyl)-

3,4,6,7,8,9-hexahydro-2H-pyrimido-[1,2-a]-1-pyrimidinium 

hexafluorophosphate (3). 
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A solution of 2 (100 mg, 0.151 mmol) and potassium thioacetate (52 mg, 0.453 

mmol) in CH3CN (4 mL) was placed in a 6 mL microwave sealed tube. The reaction 

mixture was stirred and heated under microwaves for 10 min at 140 ºC. The resulting 

crude was allowed to cool to room temperature, the solvent was evaporated and the 

residue was dissolved in CH2Cl2 and washed with aqueous 0.1N NH4PF6 (2 × 10 mL). 

The organic phase was filtered over cotton and concentrated to dryness to give a crude 

residue which was purified by silica gel column chromatography (CH2Cl2/MeOH, 

99.5:0.5  98:2), affording 3 as a brown-yellow oil. The experiment was repeated for 

three times in sealed tubes to afford a total amount of 380 mg (98%) of 3. 1H-NMR 

(400 MHz, CDCl3)  7.66-7.63 (m, 4H, CHAr), 7.50-7.40 (m, 6H, CHAr), 6.57 (s, 1H, 

NH), 6.43 (s, 1H, NH), 3.76-3.64 (m, 2H, CH2O), 3.63-3.56 (m, 2H, CHα), 3.46-3.26 

(m, 4H, CH2γ), 3.10 (dd, J = 7.7, 14.2 Hz, 1H, CH2S), 3.08 (dd, J = 7.8, 14.2 Hz, 1H, 

CH2S), 2.41 (s, 3H, CH3CO), 2.12-2.02 (m, 2H, CH2β), 1.99-1.84 (m, 2H, CH2β), 1.09 

(s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  195.8 (CO), 150.8 (Cguan), 135.6, 134.4, 

132.6, 130.1, 127.9 (CHAr, CAr), 65.4 (CH2O), 49.7, 48.5 (CHα), 45.1, 45.0 (CH2γ), 32.5 

(CH2S), 30.5 (CH3CO), 26.8 (CH3t-Bu), 24.5, 22.7 (CH2β), 19.2 (Ct-Bu). ESI-MS m/z 

496.2 [(M - PF6
–)+, 100%]. HRMS calcd. for [C27H38N3O2SSi]+ 496.2454; found 

496.2429.  

 

(2R,8R)-2-(tert-Butyldiphenylsilanyloxymethyl)-8-[(2R,8R)-8-(tert-

butyldiphenylsilanyloxymethyl)-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]-2-

pyrimidin(methylsulfanylmethyl)-1-ium hexafluorophosphate]-3,4,6,7,8,9-

hexahydro-2H-pyrimido[1,2-a]-1-pyrimidinium hexafluorophosphate (4). 

 

A mixture of compound 3 (214 mg, 0.334 mmol), mesylate 2 (221 mg, 0.334 mmol) 

and Cs2CO3 (304 mg, 0.930 mmol) was dissolved in 15 mL of degassed 

CH3CN/MeOH (3:1) at 0 ºC under N2 and the solution was stirred for 2 h. The 
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solvent was evaporated under vacuum at room temperature. The crude was dissolved 

in CH2Cl2 (20 mL) and washed with aqueous 1N NH4PF6 (2 × 10 mL). The organic 

phase was filtered over cotton and concentrated to dryness to give a crude residue 

which was purified by silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 

96:4), affording diguanidinium 4 (381 mg, 98%) as a white-yellow solid. 1H-NMR (400 

MHz, CDCl3)  7.65-7.61 (m, 8H, CHAr), 7.49-7.37 (m, 12H, CHAr), 6.24 (s, 2H, NH), 

6.10 (s, 2H, NH), 3.84-3.79 (m, 2H, CH2O), 3.75-3.49 (m, 6H, CH2O, CHα), 3.48-3.18 

(m, 8H, CH2γ), 2.93-2.80 (m, 2H, CH2S), 2.70-2.62 (m, 2H, CH2S), 2.18-1.99 (m, 4H, 

CH2β), 1.98-1.79 (m, 4H, CH2β), 1.06 (s, 18H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  

150.6 (Cguan), 135.6, 135.5, 132.8, 129.9, 127.9 (CHAr, CAr), 65.2 (CH2O), 49.8, 47.7 

(CHα), 45.3, 44.9 (CH2γ), 36.6 (CH2S), 26.8 (CH3t-Bu), 25.7, 22.5 (CH2β), 19.2 (Ct-Bu). 

ESI-MS m/z 873.5 (M – HPF6 - PF6
–)+, 437.3 (M – 2 PF6

–)2+. HRMS calcd. for 

[C50H69N6O2SSi2]2+ 873.4741; found 873.4731. 

 

(2R,8R)-2-Hydroxymethyl-8-[(2R,8R)-8-hydroxymethyl-3,4,6,7,8,9-hexahydro-

2H-pyrimido[1,2-a]-2-pyrimidinyl(methylsulfanylmethyl)-1-ium 

hexafluorophosphate]-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]-1-

pyrimidinium hexafluorophosphate (5). 

 

Procedure 1 

A solution of 4 (385 mg, 0.330 mmol) and MsOH (24 µL, 0.400 mmol) in a mixture 

of THF/H2O (3:1, 40 mL) was heated overnight at 76 ºC. The solvent was evaporated, 

the acid mixture diluted in water and washed with CH2Cl2 (2  50 mL). The aqueous 

phase was partially evaporated under reduced pressure. Afterwards KHCO3 was added 

until a neutral pH was reached. The water was evaporated, and the crude was dissolved 

in a mixture of CH2Cl2/MeOH (1:20, 50 mL). The resulting precipitate was filtered off. 

The polarity of the solvent mixture was gradually reduced until pure CH2Cl2. The 
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solvent was then evaporated to afford compound 5 (173 mg, 89%) as a pale-yellow 

powder. 

 

Procedure 2 

A mixture of compound 4 (110 mg, 0.094 mmol) and Cs2CO3 (108 mg, 0.330 mmol) 

was dissolved in 30 mL of degassed CH3CN/MeOH at room temperature and heated 

at 85 ºC overnight. The solvent was evaporated under vacuum. The crude was 

dissolved in CH2Cl2 (30 mL) and washed with water (2  10 mL). The aqueous phase 

was concentrated at reduced pressure to give a crude residue which was then dissolved 

in a mixture CH2Cl2/MeOH (1:20, 50 mL). The resulting precipitate was filtered off. 

The polarity of the solvent mixture was gradually reduced until pure CH2Cl2. The 

solvent was evaporated to afford compound 5 (36 mg, 56%) as a pale-yellow powder.  

 

Procedure 3 

Compound 4 (147 mg, 0.126 mmol) was dissolved in acetonitrile (20 mL) and CsF 

(115 mg, 0.76 mmol) was added to this solution. The mixture was stirred for 8 h at 

room temperature. The solvent was evaporated under vacuum and the resulting crude 

was dissolved in CH2Cl2 (25 mL) and washed with water (2  10 mL). The aqueous 

phase was evaporated to give a crude residue which was dissolved in a mixture of 

CH2Cl2/MeOH (1:20, 50 mL). The precipitate formed was filtered off. The polarity of 

the solvent mixture was reduced until pure CH2Cl2. The solvent was evaporated to 

afford compound 5 (26 mg, 30%) as pale-yellow powder. 

 

Procedure 4 

A solution of 4 (101 mg, 0.087 mmol) in a mixture of 3N HCl/CH3CN (1:2, 20 mL) 

was stirred overnight at room temperature. The CH3CN was evaporated, the acid 

mixture diluted with water and washed with ether (2  50 mL). The aqueous phase was 
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partially evaporated under reduced pressure. Afterwards KHCO3 was added until a 

basic pH was reached. The water was evaporated, and the crude was dissolved in a 

mixture of CH2Cl2/MeOH (1:1, 50 mL). The resulting precipitate was filtered off. The 

polarity of the solvent mixture was gradually reduced until pure CH2Cl2. The solvent 

was evaporated to afford compound 5 (57 mg, quantitative) as a pale-yellow powder. 

1H-NMR (400 MHz, MeOD)  3.78-3.70 (m, 2H, CH2O), 3.69-3.41 (m, 14H, CH2O, 

CHα, CH2γ), 2.98 (dd, J = 5.2, 13.8 Hz, 2H, CH2S), 2.75 (dd, J = 7.9, 13.8 Hz, 2H, 

CH2S), 2.30-1.83 (m, 8H, CH2β).13C-NMR (100 MHz, MeOD)  152.1 (Cguan), 65.0 

(CH2O), 51.7 (CHα), 46.4 (CH2γ), 36.6 (CH2S), 26.7, 23.5 (CH2β). ESI-MS m/z 397.3 

(M - HCl - Cl–)+, 199.1 (M – 2 Cl–)2+. HRMS calcd. for [C18H34N6O2S]+ 397.2386; 

found 397.2392.  

 

(2R,8R)-2-Methanesulfonyloxymethyl-8-[(2R,8R)-8-

methanesulfonyloxymethyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]-2-

pyrimidinyl(methylsulfanylmethyl)-1-ium hexafluorophosphate]-3,4,6,7,8,9- 

hexahydro-2H-pyrimido[1,2-a]-1-pyrimidinium hexafluorophosphate (6). 

 

Compound 5 (100 mg, 0.17 mmol) and NMM (302 µL, 0.95 mmol) were mixed in 

dry CH2Cl2 (10 mL) under N2 at 0 ºC and the mixture was stirred for 5-10 minutes. 

Then, a solution of Ms2O (237 mg, 1.36 mmol) in dry CH2Cl2 (4 mL) was added and 

stirring was continued for 24 h. The solvent was evaporated under reduced pressure 

and the resulting crude dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution 

(2  15 mL). The organic layer was filtered over cotton and left slowly to evaporate. A 

white precipitate was filtered affording 6 (95 mg, 67%) as a white solid. 1H-NMR (400 

MHz, CD3CN)  6.51 (bs, 4H, NH), 4.33 (dd, J = 4.1, 10.7 Hz, 2H, CH2O), 4.16 (dd, J 

= 7.4, 10.5 Hz, 2H, CH2O), 3.85-3.76 (m, 2H, CHα), 3.59-3.51 (m, 2H, CHα), 3.43-3.30 

(m, 8H, CH2γ), 3.12 (s, 6H, CH3MsO), 2.83 (dd, J = 5.04, 14.0 Hz, 2H, CH2S), 2.58 (dd, J 
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= 8.6, 13.8 Hz, 2H, CH2S), 2.13-2.04 (m, 4H, CH2β), 1.93-1.78 (m, 4H, CH2β). 13C-

NMR (100 MHz, CD3CN)  150.4 (Cguan), 70.4 (CH2O), 47.5, 47.4 (CHα), 44.8, 44.4 

(CH2γ), 36.4 (CH3MsO) 35.3 (CH2S), 24.6, 21.3 (CH2β). HRMS calcd. for 

[C20H38N6O6S3PF6]+ 699.1657; found 699.1630.  

 

(2R,8R)-2-(Acetylthiomethyl)-8-((((2R,8R)-8-(acetylthiomethyl)-2,3,4,6,7,8-

hexahydro-1H-pyrimido[1,2-a]-9-pyrimidinium-2-yl)methylthio)methyl)-

2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]-9-pyrimidinium hexafluorophosphate 

(7). 

 

A mixture of 6 (91 mg, 0.101 mmol) and potassium thioacetate (27 mg, 0.250 mmol) 

in CH3CN was stirred and refluxed for 9 h. Then, the solution was evaporated under 

vacuum, dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution (2  20 mL). 

The organic layer was filtered over cotton and evaporated, affording 7 (78 mg, 90%) as 

a brownish powder. 1H-NMR (400 MHz, CDCl3)  6.50 (bs, 2H, NH), 3.72-3.60 (m, 

4H, CH2S), 3.54-3.34 (m, 8H, CHα), 3.2-3.06 (m, 4H, CH2S), 2.88 (dd, J =3.6, 13.5 Hz, 

2H, CH2S), 2.65 (m, 2H, CH2S), 2.41 (s, 6H, CH3COS), 2.20-2.09 (m, 4H, CH2γ), 1.98-

1.83 (m, 4H, CH2β). 13C-NMR (100 MHz, CD3CN)  195.1 (SCO), 150.2 (Cguan), 47.6, 

47.4 (CHα), 44.8, 44.5 (CH2γ), 37.5 (CH2SCO), 35.3 (CH2S), 30.8 (CH3COS), 24.6, 21.5 

(CH2β). ESI m/z 659.4 (M -PF6
–)+, 513.6 (M - PF6

– -HPF6) +. 
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(2R,8R)-2-(tert-Butyldiphenylsilanyloxymethyl)-8-[(2R,8R)-8-hydroxymethyl-

3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]-2-pyrimidinyl(methylsulfanylmethyl)-

1-ium hexafluorophosphate]-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]-1-

pyrimidinium hexafluorophosphate (9). 

 

A solution of mesylate 2 (500 mg, 0.76 mmol) and potassium thioacetate (430 mg, 

3.78 mmol) in a mixture of THF/H2O (3:1, 40 mL) was refluxed for 7 h. After cooling 

to room temperature, MsOH (490 µL, 7.54 mmol) was added and the mixture was 

refluxed for 16 h. The reaction mixture was cooled to room temperature, 10 mL of 

Et2O were added and then the aqueous phase was extracted and washed with CHCl3 (2 

 20 mL) and finally with Et2O (20 mL). After concentrating the aqueous layer to ca. 

50%, KHCO3 (607 mg, 9.06 mmol) was added and the solvent evaporated to dryness. 

Then, MeOH (50 mL) was added, the precipitate was removed by filtration and the 

solvent evaporated under reduced pressure. This procedure was repeated a few times 

increasing the amount of CH2Cl2 in the solvent mixture until pure CH2Cl2 was used, to 

afford the symmetric disulfide 8 (243 mg, 90%). 1H-NMR (400 MHz, CDCl3)  3.90-

3.81 (bs, 2H, OH), 3.80-3.67 (m, 3H, CH2O), 3.64-3.26 (m, 13H, CH2O, CHα, CH2γ), 

3.15 (dd, J = 5.2, 13.7 Hz, 2H, CH2S), 2.87-2.78 (m, 2H, CH2S), 2.28-2.20 (m, 2H, 

CH2β), 1.96-1.79 (m, 6H, CH2β). 

To a solution of 8, Cs2CO3 (250 mg, 0.77 mmol) in MeOH (5 mL) and PBu2Ph 

polystyrene resin (617 mg, 0.58 mmol) were added and the mixture was stirred for 40 

min. Then a solution of guanidine mesylate 2 (512 mg, 0.77 mmol) in THF (12 mL) 

was added and the mixture was stirred for 4 h. After evaporation of the solvent, the 

crude residue was dissolved in CH2Cl2 (25 mL) and washed with a 0.1N NH4PF6 

solution (2  20 mL). The organic layer was filtered over cotton and concentrated at 

reduced pressure. Purification by silica gel column chromatography (CH2Cl2/MeOH, 

96:4  94:6) afforded 9 (220 mg, 87%) as a white solid. 1H-NMR (400 MHz, CDCl3)  
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7.69-7.63 (m, 4H, CHAr), 7.49-7.39 (m, 6H, CHAr), 6.59 (s, 1H, NH), 6.50 (s, 2H, NH), 

6.39 (s, 1H, NH), 3.82-3.13 (m, 16H, CH2O, CHα, CH2γ), 2.95-2.82 (m, 2 H, CH2S), 

2.72 (dd, J = 3.6, 13.2 Hz, 1H, CH2S), 2.59 (dd, J = 3.6, 13.2 Hz, 1H, CH2S), 2.54 (dd, 

J = 3.8, 13.6 Hz, 1H, CH2S), 2.18-1.79 (m, 8H, CH2β), 1.08 (s, 9H, CH3t-Bu). 13C-NMR 

(100 MHz, CDCl3)  150.7 (Cguan), 150.3 (Cguan), 135.2, 132.7, 132.5, 129.8, 127.7 

(CHAr, CAr), 65.4, 65.2 (CH2OSi, CH2O), 50.1, 49.8, 47.7, 47.6 (CHα), 45.3, 44.8 (CH2γ), 

36.0, 35.7 (CH2S), 26.7 (CH3t-Bu), 26.5, 25.8, 22.4, 22.2 (CH2β), 19.1 (Ct-Bu). HRMS 

calcd. for [C34H52N6O2SSi]2+ 318.1821; found 318.1816.  

 

 (2R,8R)-8-[(2R,8R)-8-tert-Butyldiphenylsilanyloxymethyl-3,4,6,7,8,9-

hexahydro-2H-pyrimido[1,2-a]-2-pyrimidinyl(methylsulfanylmethyl)-1-ium 

hexafluorophosphate]-2-methanesulfonyloxymethyl-3,4,6,7,8,9-hexahydro-2H-

pyrimido[1,2-a]-1-pyrimidinium hexafluorophosphate (10). 

 

To a solution of alcohol 9 (180 mg, 0.19 mmol) and NMM (173 µL, 1.55 mmol) in 

dry CH2Cl2 (10 mL) a solution of Ms2O (169 mg, 0.97 mmol) in CH2Cl2 (4 mL) was 

added and the mixture was stirred for 4 h. The solvent was evaporated under reduced 

pressure and the resulting crude dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 

solution (2  30 mL). The organic layer was filtered over cotton and concentrated to 

dryness. Purification by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 96:4) afforded 10 (191 mg, 98%) as a white solid. 1H-NMR (400 

MHz, CDCl3)  7.67-7.63 (m, 4H, CHAr), 7.48-7.39 (m, 6H, CHAr), 6.55 (s, 1H, NH), 

6.45 (s, 2H, NH), 6.39 (s, 1H, NH), 4.27 (dd, J = 4.9, 10.4 Hz, 1H, CH2O), 4.21 (dd, J 

= 6.1, 10.4 Hz, 1H, CH2O), 3.86-3.22 (m, 16H, CH2O, CHα, CH2γ), 3.07 (s, 3H, 

CH3MsO), 2.91-2.83 (m, 2H, CH2S), 2.69-2.53 (m, 2H, CH2S), 2.12-1.79 (m, 8H, CH2β), 

1.06 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  151.4 (Cguan), 151.2 (Cguan), 135.8, 

132.7, 132.8, 130.3, 127.7 (CHAr, CAr), 68.4, 65.6 (CH2OSi, CH2O), 50.1, 49.8, 47.7, 
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47.4 (CHα), 45.7, 44.8 (CH2γ), 37.5 (CH2S), 37.0 (CH3MsO) 36.9 (CH2S), 26.7 (CH3t-Bu), 

26.5, 25.9, 22.6, 22.4 (CH2β), 19.2 (Ct-Bu). HRMS calcd. for [C35H53N6O4S2Si]+ 

713.3339; found 713.3344. 

 

 (2R,8R)-2-(Acetylsulfanylmethyl)-8-[(2R,8R)-8(tert-

butyldiphenylsilanyloxymethyl)-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]-2-

pyrimidinyl(methylsulfanylmethyl)-1-ium hexafluorophosphate]-3,4,6,7,8,9-

hexahydro-2H-pyrimido[1,2-a]-1-pyrimidinium hexafluorophosphate (11). 

 

Procedure 1 

A solution of 10 (318 mg, 0.316 mmol) and potassium thioacetate (90 mg, 0.79 

mmol) in CH3CN (4 mL) was placed in a 6 mL sealed reactor vessel. The mixture was 

irradiated in the microwave oven at 200 W for 10 min at 140 ºC. After cooling to room 

temperature the solvent was removed. The residue was dissolved in CH2Cl2 (50 mL) 

and washed with a 0.1N NH4PF6 solution (3  50 mL). The organic layer was filtered 

over cotton and concentrated at reduced pressure. Purification by silica gel (with 

KPF6) column chromatography (CH2Cl2/MeOH, 95:5) afforded 11 (231 mg, 75%) as a 

light brown solid.  

 

Procedure 2 

Compound 10 (150 mg, 0.140 mmol) and potassium thioacetate (51 mg, 0.45 mmol) 

were dissolved in CH3CN (10 mL) and the mixture was refluxed and stirred overnight. 

After cooling it to room temperature, the solvent was removed and the crude dissolved 

in CH2Cl2. Then, the solution was washed with a 0.1N NH4PF6 solution (3  40 mL). 

The organic phase was filtered over cotton and concentrated to dryness. Purification 

was performed as described in Procedure 1, yielding 11 (125 mg, 86%). 1H-NMR (400 
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MHz, CDCl3)  7.69-7.59 (m, 4H, CHAr), 7.49-7.37 (m, 6H, CHAr), 6.27 (s, 2H, NH), 

6.15 (s, 1H, NH), 6.08 (s, 1H, NH), 3.82-3.67 (m, 2H, CH2O), 3.65-3.54 (m, 4H, CHα), 

3.49-3.20 (m, 8H, CH2γ), 3.14-2.96 (m, 2H, CH2S), 2.93-2.80 (m, 2H, CH2S), 2.76-2.57 

(m, 2H, CH2S), 2.34 (s, 3H, CH3CO), 2.20-2.07 (m, 4H, CH2β), 1.99-1.80 (m, 4H, 

CH2β), 1.08 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  183.0 (CO), 150.6 (Cguan), 

135.6, 135.5, 129.9, 127.9 (CHAr, CAr), 65.2 (CH2O), 49.8, 47.7 (CHα), 45.3, 45.4 (CH2γ), 

36.6, 36.4 (CH2S), 30.5 (CH3CO), 26.8 (CH3t-Bu), 25.7, 22.5 (CH2β), 19.2 (Ct-Bu). ESI-MS 

m/z 839.3 (M - PF6
−)+. HRMS calcd. for [C36H54N6O2SSi2PF6]+ 839.3161; found 

839.3155.  

 

Compound 12  

 

A mixture of 11 (174 mg, 0.177 mmol), mesylate 10 (195 mg, 0.194 mmol) and 

Cs2CO3 (144 mg, 0.442 mmol) was dissolved in 25 mL of degassed CH3CN/MeOH at 

25 ºC under N2 and stirred for 6 h. The solvent was evaporated at reduced pressure at 

room temperature. The crude was dissolved in CH2Cl2 (30 mL) and washed with 1N 

NH4PF6 (2 × 30 mL). The organic phase was filtered over cotton and concentrated at 

reduced pressure to give a crude which was purified on silica gel (with KPF6) column 

chromatography (CH2Cl2/MeOH, 92:8), affording 12 (PF6) (234 mg, 72%) as a white 

solid. 1H-NMR (400 MHz, CDCl3) , 7.72-7.60 (m, 8H, CHAr), 7.51-7.38 (m, 12H, 

CHAr), 6.33-5.84 (bs, 7H, NH), 3.86-48 (m, 12H, CH2O, CHα), 3.47-3.18 (m, 16H, 

CH2γ), 2.95-2.75 (m, 6H, CH2S), 2.74-2.50 (m, 6H, CH2S), 2.28-1.99 (m, 8H, CH2β), 

1.98-1.75 (m, 8H, CH2β), 1.07 (s, 18H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  151.2 

(Cguan), 135.6, 135.5, 132.8, 129.9, 127.9 (CHAr, CAr), 65.2 (CH2O), 49.3, 48.2 (CHα), 

45.4, 44.9 (CH2γ), 37.2, 37.0 (CH2S), 26.8 (CH3t-Bu), 25.7, 22.5 (CH2β), 19.2 (Ct-Bu). ESI-
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MS m/z 1267.69 (M - PF6
− - 3HPF6

−)+.  

 

Compound 13 

 

A solution of 12 (145 mg, 0.077 mmol) in 12N HCl/CH3CN (1:1, 5 mL) was stirred 

for 12 h at room temperature. The solvent was removed and the resulting crude 

dissolved in distilled water (10 mL) and washed with CH2Cl2 (3 × 10 mL). The 

aqueous phase was evaporated to dryness, yielding 13 (71 mg, 98%) as a white solid. 

1H-NMR (400 MHz, MeOD)  3.74-3.64 (m, 8H, CH2O, CHα), 3.62-3.47 (m, 20H, 

CHα, CH2γ), 3.04-2.92 (m, 6H, CH2S), 2.85-2.73 (m, 6H, CH2S), 2.31-1.86 (m, 16H, 

CH2β). 13C-NMR (100 MHz, MeOD)  151.2 (Cguan), 65.2 (CH2O), 49.3, 48.2 (CHα), 

45.4, 44.9 (CH2γ), 37.1, 37.0 (CH2S), 26.4, 22.5 (CH2β). ESI-MS m/z 901.3 (M - Cl–)+. 

HRMS calcd. for [C36H66N12O2S3Cl3]+ 899.3659; found 899.3698.  

 

Compound 14 

 

Procedure 1 (first symmetrical trial) 

To a solution of 7 (52 mg, 0.065 mmol) and Cs2CO3 (105 mg, 0.323 mmol) in dry 

MeOH (15 mL), (nBu)2PhP polystyrene (178 mg, 0.155 mmol) was added and the 

mixture was stirred for 2 h. Then a solution of guanidine mesylate 10 (143 mg, 0.142 

mmol) in dry CH3CN (10 mL) was added and the mixture was stirred for 3 days at 

room temperature under N2. After evaporation of the solvent at room temperature, the 

crude residue was dissolved in CH2Cl2 (25 mL) and washed with a 0.1N NH4PF6 
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solution (2  20 mL). The organic layer was filtered over cotton and concentrated to 

dryness. Purification by semi-preparative HPLC (Analytical conditions: Column: 

SunFire C18 5 μm, 150 x 4.6 mm, Purification Method: CH3CN (0.1% TFA)/H2O 

(0.05% TFA), Gradient: 5-55% CH3CN (0.1% TFA) in 30 min, Flow: 1 mL/min, 

room temperature) afforded product 14 (9 mg, 6%) as a yellowish solid. 

 

Procedure 2 (second symmetrical trial) 

A mixture of compound 6 (54 mg, 0.034 mmol), PBu2Ph polystyrene (140 mg, 0.160 

mmol) and Cs2CO3 (103 mg, 0.317 mmol) was dissolved in 10 mL of dry MeOH at 25 

ºC under N2. After 15 min, compound 11 (152 mg, 0,139 mmol) was added and the 

solution was stirred for 2 days. The solvent was evaporated under vacuum at room 

temperature. The crude was dissolved in CH2Cl2 (30 mL) and washed with 0.1N 

NH4PF6 (2 × 20 mL). The organic phase was filtered over cotton and concentrated to 

dryness to give a crude which was purified by silica gel (with KPF6) column 

chromatography (CH2Cl2/MeOH, 98:2  94:6), yielding 14 (PF6) (40 mg, 24%). A 

further semi-preparative HPLC column was necessary to fully purify the product, 

affording 14 (CF3COO-) (18 mg, 12%) as a white solid. 

 

Procedure 3 (non-symmetrical trial) 

Compound 11 (89 mg, 0.090 mmol) was dissolved in MeOH (10 mL). Then, PBu2Ph 

polystyrene (103 mg, 0.090 mmol) and Cs2CO3 (65 mg, 0.200 mmol) were added to the 

solution and the mixture was stirred for 20 min under N2. Afterwards, compound 17 

(127 mg, 0.075 mmol) was added and the mixture was further stirred for 2 days. The 

solvent was evaporated under vacuum, dissolved in CH2Cl2 (30 mL) and washed with 

0.1N NH4PF6 (2 × 20 mL). The organic layer was filtered over cotton and 

concentrated at reduced pressure. Purification by silica gel (with KPF6) column 

chromatography (CH2Cl2/MeOH, 98:2  94:6) afforded 14 (108 mg, 57%) as a light 

yellow solid. 1H-NMR (400 MHz, CD3CN)  8.35, 8.15, 8.12 (s, 10H, NH), 7.72-7.61 
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(m, 8H, CHAr), 7.43-7.37 (m, 12H, CHAr), 6.32 (s, 2H, NH), 5.80 (s, 2H, NH), 3.70 (dd, 

J = 4.3, 10.2 Hz, 4H, CH2O), 3.63-3.48 (m, 12H, CHα), 3.45-3.19 (m, 24H, CH2γ), 2.87-

2.19 (m, 20H, CH2S), 2.22-1.75 (m, 24H, CH2β), 1.06 (s, 18H, CH3t-Bu). 13C-NMR (100 

MHz, CD3CN)  150.94 (Cguan), 135.6, 135.5, 134.8, 129.9, 127.9, 127.7 (CHAr, CAr), 

65.4 (CH2O), 49.1, 47.9 (CHα), 45.4, 44.9 (CH2γ), 36.8 (CH2S), 26.7 (CH3t-Bu), 25.5, 22.7 

(CH2β), 19.1 (Ct-Bu). ESI-MS m/z 2232.0 (M - TFA-)+, 1059.5 (M – 2 TFA-)2+.  

 

Compound 15 

 

A solution of 14 (18 mg, 0.008 mmol) in 3N HCl/CH3CN (1:1, 5 mL) was stirred for 

36 h at room temperature. The solvent was removed and the resulting crude dissolved 

in distilled water (10 mL) and washed with CH2Cl2 (3 × 10 mL). The aqueous phase 

was evaporated to dryness, yielding 15 (10 mg, 88%) as a white solid. 1H-NMR (400 

MHz, D2O)  3.67-3.43 (m, 16H, CH2O, CHα), 3.42-3.24 (m, 24H, CH2γ), 2.88-2.75 

(m, 10H, CH2S), 2.62 (dd, J = 8.2, 13.8 Hz, 10H, CH2S), 2.12-1.70 (m, 24H, CH2β). 

13C-NMR (100 MHz, D2O)  150.9 (Cguan), 65.4 (CH2O), 49.1, 47.9 (CHα), 45.4, 44.9 

(CH2γ), 36.8 (CH2S), 25.5, 22.7 (CH2β). ESI-MS m/z 1755.8 (M-PF6
-). HRMS calcd. for 

[C54H96N18O2S5]4+ 297.1636; found 297.1648. 

 

Compound 16 

 

A solution of mesylate 10 (280 mg, 0.279 mmol) and potasium thioacetate (159 mg, 

1.39 mmol) in a mixture THF/H2O (3:1, 40 mL) was refluxed for 7 h. After cooling to 
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room temperature, MsOH (270 µL, 4.18 mmol) was added and the mixture was 

refluxed overnight. The reaction mixture was cooled to room temperature, evaporated 

to dryness and the crude was dissolved in water (30 mL). Then, 10 mL of Et2O were 

added and the aqueous phase was extracted and washed with CHCl3 (2 × 20 mL) and 

finally with Et2O (20 mL). After concentration of about 50% of the aqueous layer, 

KHCO3 (474 mg, 4.74 mmol) was added and the solvent evaporated to dryness. 

Afterwards, MeOH (50 mL) was added, the precipitate was removed by filtration and 

the solvent evaporated at reduced pressure. This procedure was repeated for a few 

times increasing the amount of CH2Cl2 in the solvent mixture until pure CH2Cl2, to 

afford the symmetric disulfide 16 (165 mg, 97%). This compound was immediately 

used in the next synthetic step. 1H-NMR (400 MHz, MeOD)  3.86-3.72 (m, 2H, 

CH2O), 3.70-3.47 (m, 10H, CH2O, CHα), 3.46-3.35 (m, 16H, CH2γ), 3.05 -2.82 (m, 6H, 

CH2S), 2.79-2.62 (m, 2H, CH2S), 2.21-1.78 (m, 16H, CH2β).  

 

Compound 17 

 

To a solution of feshly prepared 16 (218 mg, 0.180 mmol), Cs2CO3 (118 mg, 0.361 

mmol) in MeOH (15 mL), PBu2Ph polystyrene (332 mg, 0.289 mmol) was added and 

the mixture was stirred for 1 h. Then a solution of diguanidine mesylate 10 (327 mg, 

0.325 mmol) in THF (10 mL) was added and the mixture was stirred for 6 h. After 

evaporation of the solvent, the crude residue was dissolved in CH2Cl2 (25 mL) and 

washed with a 0.1N NH4PF6 solution (2  20 mL). The organic layer was filtered over 

cotton and concentrated at reduced pressure. Purification by silica gel column 

chromatography (CH2Cl2/MeOH, 99:1  95:5) afforded 17 (280 mg, 96%) as a white 

solid. 1H-NMR (400 MHz, CD3CN)  7.69-7.63 (m, 4H, CHAr), 7.49-7.39 (m, 6H, 

CHAr), 6.59 (s, 1H, NH), 6.50 (s, 2H, NH), 6.39 (s, 1H, NH), 3.82-3.13 (m, 16H, 
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CH2O, CHα, CH2γ), 2.95-2.82 (m, 2 H, CH2S), 2.72 (dd, J = 3.6, 13.2 Hz, 1H, CH2S), 

2.59 (dd, J = 3.6, 13.2 Hz, 1H, CH2S), 2.54 (dd, J = 3.8, 13.6 Hz, 1H, CH2S), 2.18-1.79 

(m, 8H, CH2β), 1.08 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CD3CN)  151.3, 151.2 

(Cguan), 135.7, 133.2, 133.1, 130.3, 128.2 (CHAr, CAr), 66.3, 64.4 (CH2OSi, CH2O), 51.1, 

50.6, 48.2, 48.1, 48.0 (CHα), 45.7, 45.5, 45.4, 45.3 (CH2γ), 36.3, 36.2, 36.1 (CH2S), 26.6 

(CH3t-Bu), 26.0, 25.8, 25.7, 22.8, 22.7 (CH2β), 19.2 (CtBu). HRMS calc for 

[C52H81N12O2S3Si]+ 1029.5537 found 1029.5512.  

 

Compound 18 

 

To a solution of alcohol 17 (150 mg, 0.093 mmol) and NMM (83 µL, 0.744 mmol) in 

dry CH2Cl2 (10 mL) a solution of Ms2O (81 mg, 0.495 mmol) in CH2Cl2 (4 mL) was 

added and the mixture was stirred for 4 h. The solvent was evaporated under reduced 

pressure and the resulting crude dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 

solution (2  30 mL). The organic layer was filtered over cotton and concentrated to 

dryness. Purification on silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 96:4) afforded 18 (137 mg, 87%) as a white solid. 1H-NMR (400 

MHz, CD3CN)  7.67-7.63 (m, 4H, CHAr), 7.48-7.39 (m, 6H, CHAr), 6.55 (s, 1H, NH), 

6.45 (s, 2H, NH), 6.39 (s, 1H, NH), 4.27 (dd, J = 4.9, 10.4 Hz, 1H, CH2O), 4.21 (dd, J 

= 6.1, 10.4 Hz, 1H, CH2O), 3.86-3.22 (m, 16H, CH2O, CHα, CH2γ), 3.07 (s, 3H, 

CH3MsO), 2.91-2.83 (m, 2H, CH2S), 2.69-2.53 (m, 2H, CH2S), 2.12-1.79 (m, 8H, CH2β), 

1.06 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CD3CN)  151.9, 151.8 (Cguan), 136.3, 136.2, 

133.7, 133.6, 130.9, 128.8 (CHAr, CAr), 71.7 (CH2OMs), 66.9 (CH2OSi), 51.2, 48.7, 48.6 

(CHα), 46.0, 45.9, 45.5 (CH2γ), 37.2, 36.6 (CH3, CH2S), 27.2 (CH3t-Bu), 26.3, 26.2, 23.2, 

22.6 (CH2β), 19.7 (Ct-Bu). HRMS calcd. for [C53H85F12N12O4P2S4Si]2+ 700.2421; found 

700.2412.  
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Compound 19 

 

Compound 3 (46 mg, 0.071 mmol) was dissolved in MeOH (10 mL). Then, PBu2Ph 

polystyrene (68 mg, 0.059 mmol) and Cs2CO3 (51 mg, 0.158 mmol) were added to the 

solution and the mixture was stirred for 20 min under N2 at room temperature. 

Afterwards, a solution of compound 18 (100 mg, 0.059 mmol) in CH3CN (15 mL) was 

added to the mixture and stirred for 2 days. The solvent was evaporated under 

vacuum, dissolved in CH2Cl2 (30 mL) and washed with 0.1N NH4PF6 (2 × 20 mL). 

The organic layer was filtered over cotton and concentrated to dryness. Purification on 

silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 98:2  94:6) afforded 

19 (80 mg, 62%) as a white solid. 1H-NMR (400 MHz, CD3CN)  7.74-7.67 (m, 8H, 

CHAr), 7.56-7.44 (m, 12H, CHAr), 6.44-6.11 (bs, 8H, NH), 3.81-3.47 (m, 14H, CH2O, 

CHα), 3.44-3.27 (m, 20H, CH2γ), 2.90-2.19 (m, 16H, CH2S), 2.26-1.75 (m, 20H, CH2β), 

1.09 (s, 18H, CH3t-Bu). 13C-NMR (100 MHz, MeOD)  150.8 (Cguan), 135.7, 135.4, 

134.5, 129.8, 127.8, 127.5 (CHAr, CAr), 65.5 (CH2O), 48.9, 47.7 (CHα), 45.4, 45.1 (CH2γ), 

36.6 (CH2S), 26.8 (CH3t-Bu), 25.4, 22.6 (CH2β), 19.3 (Ct-Bu). HPLC-MS: Conditions: 

Column: SunFire C18 5 μm, 150 x 4.6 mm, CH3CN (0.1% TFA)/H2O (0.05% TFA), 

Gradient: 10-100% CH3CN (0.1% TFA) in 25 min, Flow: 1 mL/min, room 

temperature. Retention time: 14.5 min. ESI-MS m/z 1921.8 (M – TFA-)+, 903.9 (M – 2 

TFA-)2+, 564.9 (M – 3 TFA-)3+, 395.7 (M – 4 TFA-)4+.  

 

Compound 20 
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A solution of 19 (79 mg, 0.034 mmol) in 3N HCl/CH3CN (1:1, 10 mL) was stirred 

for 36 h at room temperature. The solvent was removed and the resulting crude was 

dissolved in distilled water (15 mL) and washed with CH2Cl2 (3 × 15 mL). The 

aqueous phase was evaporated to dryness, affording 20 (45 mg, quantitative) as a white 

solid. Afterwards this solid was purified by semi-preparative HPLC (Analytical 

conditions: Column: SunFire C18 5 μm, 150 x 4.6 mm, MP: CH3CN (0.1% TFA)/H2O 

(0.05% TFA), Gradient: 10-40% CH3CN (0.1% TFA) in 30 min, Flow: 1 mL/min, 

room temperature) yielding 20 (41 mg, 91%). 1H-NMR (400 MHz, MeOD)  3.69-3.40 

(m, 14H, CH2O, CHα), 3.39-3.22 (m, 20H, CH2γ), 2.84-2.75 (m, 8H, CH2S), 2.65-2.56 

(m, 8H, CH2S), 2.10-1.70 (m, 20H, CH2β). 13C-NMR (400 MHz, MeOD)  150.9 

(Cguan), 65.4 (CH2O), 49.1, 47.9 (CHα), 45.4, 44.9 (CH2γ), 36.8 (CH2S), 25.5, 22.7 

(CH2β). HRMS calcd. for [C45H81N15O2S4]4+ 247.8896; found 247.8881.  

 

S-(2-Naphthylmethyl)ethanethioate (22). 

 

2-(Bromomethyl)naphthalene (210 mg, 0.91 mmol) and potassium thioacetate (312 

mg, 2.74 mmol) were dissolved in CH3CN (15 mL) and the mixture was refluxed and 

stirred overnight. After cooling to room temperature the solvent was removed and the 

residue was dissolved in CH2Cl2. Then, the solution was washed with a 0.1N NH4PF6 

solution (3 x 40 mL). The organic phase was filtered over cotton and concentrated to 

dryness. Purification by silica gel column chromatography (CH2Cl2/MeOH, 99:1  

97:3) afforded 22 (198 mg, quantitative) as a brownish oil. 1H-NMR (400 MHz, 

CDCl3)  7.92-7.75 (m, 4H, CHAr), 7.57-7.47 (m, 2H, CHAr) 7.43 (d, J = 8.3 Hz, 1H, 

CHAr), 4.34 (s, 2H, CH2), 2.40 (s, 3H, CH3COS). 13C-NMR (100 MHz, CDCl3)  194.0 

(SCO), 133.1, 131.8 (CAr), 127.7, 127.6, 127.3, 127.0, 126.9, 126.0, 125.1 (CHAr), 33.4 

(CH2), 30.3 (CH3).  
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(2R,8R)-2-[(tert-Butyldiphenylsilyloxy)methyl]-8-[(2-

naphthylmethylthio)methyl]-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a].9-

pyrimidinium hexafluorophosphate (21). 

 

To a solution of compound 22 (100 mg, 0.454 mmol) in MeOH (10 mL), Cs2CO3 

(394 mg, 1.209 mmol) was added and the mixture was stirred for 15 min under N2 at 

room temperature. Then a solution of 2 (200 mg, 0.302 mmol) in CH3CN (15 mL) was 

added and the mixture was stirred for 4 h. Afterwards the solvent was evaporated to 

dryness and then dissolved in CH2Cl2. The solution was washed with a 0.1 N NH4PF6 

solution (3  25 mL). The organic phase was filtered over cotton and concentrated at 

reduced pressure to give a crude which was purified by silica gel (with KPF6) column 

chromatography (CH2Cl2/MeOH, 98:2  94:6), yielding 21 (160 mg, 72%) as a yellow 

solid. 1H-NMR (400 MHz, CDCl3)  7.92-7.77 (m, 4H, CHAr), 7.67-7.58 (m, 4H, 

CHAr), 7.54-7.40 (m, 9H, CHAr), 6.15 (s, 1H, NH), 5.93 (s, 1H, NH), 3.93 (s, 2H, 

CArCH2S), 3.72-3.60 (m, 2H, CH2O), 3.51-3.36 (m, 2H, CHα), 3.29-3.12 (m, 4H, CH2γ), 

2.74 (dd, J = 5.8, 13.7 Hz, 1H, CH2S), 2.58 (dd, J = 7.8, 13.7 Hz, 1H, CH2S), 2.07-1.75 

(m, 4H, CH2β), 1.07 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  151.2 (Cguan) 135.5, 

135.4, 133.1, 132.6, 131.8, 129.8, 128.9, 127.9, 127.8, 127.6, 127.4, 127.1, 126.9, 126.2, 

125.3 (CAr, CHAr), 65.3 (CH2O), 50.6, 49.3 (CHα), 45.6, 44.6 (CH2γ), 35.8, 33.4 (CH2S), 

26.7 (CH3t-Bu), 22.7 (CH2β), 19.1 (Ct-Bu). 

 

(2R,8R)-2-(Hydroxymethyl)-8-[(2-naphthylmethylthio)methyl]-2,3,4,6,7,8-

hexahydro-1H-pyrimido[1,2-a]-9-pyrimidinium mesylate (23). 
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Procedure 1 

Compound 21 (160 mg, 0.216 mmol) was dissolved in 3N HCl/CH3CN (1:1, 15 mL) 

and stirred for 24 h at room temperature. The solvent was removed and the resulting 

crude dissolved in distilled water (15 mL) and washed with CH2Cl2 (3 × 15 mL). The 

aqueous phase was evaporated to dryness, yielding 23 (Cl-) (33 mg, 30%) as a white 

solid. 

 

Procedure 2 

To a solution of 21 (175 mg, 0.237 mmol) in THF/H2O (2:1, 25 mL), MsOH (0.230 

mL, 3.553 mmol) was slowly added at room temperature. The mixture was stirred and 

refluxed overnight. The solvent was evaporated to dryness and then dissolved in water 

(20 mL). The aqueous layer was washed with Et2O (25 mL), CHCl3 (3  15 mL) and 

Et2O (15 mL). Afterwards the aqueous phase was concentrated over 50%. KHCO3 

(474 mg, 4.74 mmol) was added and the solvent was removed. MeOH (50 mL) was 

added, the precipitate was removed by filtration and the solvent evaporated at reduced 

pressure. This step was repeated a few times increasing the amount of CH2Cl2 until 

pure CH2Cl2 to afford 23 (MsO-) (81 mg, 96%). 1H-NMR (400 MHz, CDCl3)  7.88-

7.69 (m, 4H, CHAr), 7.55-7.43 (m, 3H, CHAr), 3.92 (s, 2H, CArCH2S), 3.72-3.62 (m, 2H, 

CH2O), 3.50-3.34 (m, 2H, CHα), 3.28-3.07 (m, 4H, CH2γ), 2.70 (dd, J = 5.7, 13.3 Hz, 

1H, CH2S), 2.51 (dd, J = 7.7, 13.3 Hz, 1H, CH2S), 2.07-1.72 (m, 4H, CH2β). 13C-NMR 

(100 MHz, CDCl3)  151.2 (Cguan) 133.1, 131.8, 127.9, 127.8, 127.6, 127.4, 127.1, 126.9, 

126.2, 125.3 (CAr, CHAr), 64.5 (CH2O), 50.5, 49.5 (CHα), 45.6, 43.9 (CH2γ), 35.7, 33.5 

(CH2S), 22.7 (CH2β). 
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(2R,8R)-2-(Chloromethyl)-8-[(naphthalen-2-ylmethylthio)methyl]-2,3,4,6,7,8-

hexahydro-1H-pyrimido[1,2-a]pyrimidin-9-ium chloride (24). 

 

To a solution of compound 23 (33 mg, 0.066 mmol) in CH2Cl2 (10 mL), thionyl 

chloride (48 μL, 0.659 mmol) was added dropwise. Then the reaction mixture was 

stirred and refluxed for 5 h. The solvent was evaporated to dryness and the residue was 

dissolved in CH2Cl2 (20 mL). The solution was washed with Et2O (2  15 mL) and a 

0.1N NH4Cl solution. The organic layer was filtered over cotton and concentrated at 

reduced pressure to give a crude which was purified by silica gel column 

chromatography (CH2Cl2/MeOH, 98:2  94:6), affording 24 (10 mg, 29%) as a yellow 

solid. 1H-NMR (400 MHz, CDCl3)  9.25 (s, 1H, NH), 8.92 (s, 1H, NH), 7.90-7.67 (m, 

4H, CHAr), 7.55-7.44 (m, 3H, CHAr), 3.97 (s, 2H, CArCH2S), 3.79-3.64 (m, 2H, CH2O), 

3.54-3.44 (m, 2H, CHα), 3.34-3.13 (m, 4H, CH2γ), 2.84 (dd, J = 4.8, 13.5 Hz, 1H, 

CH2S), 2.57 (dd, J = 8.36, 13.5 Hz, 1H, CH2S), 2.15-1.84 (m, 4H, CH2β). 13C-NMR (100 

MHz, CDCl3)  151.2 (Cguan), 133.1, 131.8, 127.9, 127.8, 127.6, 127.4, 127.1, 126.9, 

126.2, 125.3 (CAr, CHAr), 50.5, 49.5 (CHα), 45.6, 45.3, 43.9 (CH2γ, CH2Cl), 35.5, 33.5 

(CH2S), 22.7 (CH2β).  

 

(2R,8R)-2-[(Methylsulfonyloxy)methyl]-8-[(2-naphthalylmethylthio)methyl]-

2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]-9-pyrimidinium hexafluorophosphate 

(25). 

 

To a solution of alcohol 23 (MsO-) (81 mg, 0.179 mmol) and NMM (160 µL, 1.44 

mmol) in dry CH2Cl2 (15 mL) was added Ms2O (156 mg, 0.898 mmol) and the mixture 

was stirred for 6 h. The solvent was evaporated at reduced pressure and the resulting 
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crude dissolved in CH2Cl2 (20 mL) and washed with a 0.1N NH4PF6 solution (2  20 

mL). The organic layer was filtered over cotton and concentrated to dryness. 

Purification by silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 97:3) 

afforded 25 (91 mg, 87%) as a clear yellowish solid. 1H-NMR (400 MHz, CDCl3)  

7.93-7.87 (m, 3H, CHAr) 7.81 (s, 1H, CHAr), 7.58-7.50 (m, 3H, CHAr), 6.39 (s, 1H, NH), 

6.33 (s, 1H, NH), 4.31-4.24 (m, 1H, CH2OMs), 4.12 (dd, J = 7.4, 10.5 Hz, 1H, 

CH2OMs), 3.97 (s, 2H, CArCH2S), 3.73 (m, 1H, CHα), 3.53 (m, 1H, CHα), 3.35-3.23 (m, 

4H, CH2γ), 3.12 (s, 3H, CH3MsO), 2.70 (dd, J = 5.4, 13.8 Hz, 1H, CH2S), 2.53 (dd, J = 

8.3, 13.8 Hz, 1H, CH2S), 2.12-1.73 (m, 4H, CH2β). 13C-NMR (100 MHz, CDCl3)  

150.6 (Cguan), 133.1, 131.8, 127.9, 127.8, 127.6, 127.4, 127.1, 126.9, 126.2, 125.3 (CHAr, 

CAr), 69.5 (CH2OMs), 50.1, 47.7 (CHα), 45.3, 44.9 (CH2γ), 37.1 (CH3MsO), 35.5, 33.8 

(CH2S), 22.4, 21.9 (CH2β).  

 

(2R,8R)-2-(Acetylthiomethyl)-8-[(2-naphthylmethylthio)methyl]-2,3,4,6,7,8-

hexahydro-1H-pyrimido[1,2-a]-9-pyrimidinium hexafluorophosphate (26). 

 

Compound 25 (90 mg, 0.154 mmol) and potassium thioacetate (91 mg, 0.622 mmol) 

were dissolved in CH3CN (20 mL) and the mixture was refluxed and stirred for 7 h. 

After cooling it to room temperature the solvent was removed and then dissolved in 

CH2Cl2 (20 mL). Then, the solution was washed with a 0.1N NH4PF6 solution (3  20 

mL). The organic phase was filtered over cotton and concentrated to dryness. 

Purification by silica gel column chromatography (CH2Cl2/MeOH, 99:1  95:5) 

afforded 26 (73 mg, 84%) as a brownish oil. 1H-NMR (400 MHz, CDCl3)  7.87-7.78 

(m, 3H, CHAr) 7.75 (s, 1H, CHAr), 7.53-7.41 (m, 3H, CHAr), 6.21 (s, 1H, NH), 6.16 (s, 

1H, NH), 3.88 (s, 2H, CArCH2S), 3.53-3.40 (m, 2H, CHα), 3.39-3.14 (m, 4H, CH2γ), 

2.99 (d, J = 6.5 Hz, 2H, CH2S), 2.58 (d, J = 6.5 Hz, 2H, CH2S), 2.37 (s, 3H, CH3CO), 

2.07-1.95 (m, 2H, CH2β), 1.83-1.69 (m, 2H, CH2β). 13C-NMR (100 MHz, CDCl3)  
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195.8 (CO), 150.2 (Cguan), 135.2, 133.3, 132.5, 128.6, 127.9, 127.6, 127.1, 126.4, 126.0 

(CHAr, CAr), 48.6, 47.9 (CHα), 45.3, 45.0 (CH2γ), 36.7, 35.7, 32.6 (CH2S), 30.5 (CH3CO), 

25.2, 24.5 (CH2β). ESI-MS m/z 414.2 (M-PF6
-)+.  

 

Compound 27 

 

Cs2CO3 (56 mg, 0.174 mmol) and PBu2Ph polystyrene (94 mg, 0.078 mmol) were 

added to a solution of 26 (44 mg, 0.078 mmol) in MeOH (10 mL). The mixture was 

stirred for 30 min under N2 at room temperature. Afterwards, a solution of compound 

18 (110 mg, 0.065 mmol) in CH3CN (15 mL) was added and the mixture was stirred 

for 2 days. The solvent was evaporated under vacuum, dissolved in CH2Cl2 (30 mL) 

and washed with 0.1N NH4PF6 (2 × 20 mL). The organic layer was filtered over cotton 

and concentrated to dryness. Purification by silica gel (with KPF6) column 

chromatography (CH2Cl2/MeOH, 98:2  94:6) afforded 27 (90 mg, 71%) as a 

yellowish solid. 1H-NMR (400 MHz, CD3CN)  7.94-7.87 (m, 3H, CHAr) 7.81 (s, 1H, 

CHAr), 7.73-7.68 (m, 4H, CHAr), 7.59-7.43 (m, 9H, CHAr), 6.47-6.05 (bs, 5H, NH), 3.97 

(s, 2H, CArCH2S), 3.80-3.44 (m, 12H, CH2O, CHα), 3.43-3.22 (m, 20H, CH2γ), 2.93-2.42 

(m, 18H, CH2S), 2.20-1.70 (m, 20H, CH2β), 1.09 (s, 9H, CH3t-Bu). HPLC-MS: 

Conditions: Column SunFire C18 5 μm, 4.6x150 mm. Gradient H2O/ACN 

(0.1%TFA) 95% 100% ACN in 34 min. Retention time: 18.07 min. ESI-MS m/z 

1838.5 (M-TFA-)+.  

 

Compound 28 
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A solution of 27 (90 mg, 0.046 mmol) in 3N HCl/CH3CN (1:1, 10 mL) was stirred 

for 2 days at room temperature. The solvent was removed and the resulting crude was 

dissolved in distilled water (15 mL) and washed with CH2Cl2 (3 × 15 mL). The 

aqueous phase was evaporated to dryness, yielding 28 as a yellowish oil. Afterwards 

this oil was purified by semi-preparative HPLC (Analytical conditions: Column: 

SunFire C18 5 μm, 150 x 4.6 mm, MP: CH3CN (0.05% TFA)/H2O (0.05% TFA), 

Gradient: 30-45% CH3CN (0.05% TFA) in 30 min, Flow: 1 mL/min, room 

temperature) and lyophilized, yielding 28 (13 mg, 21%). 1H-NMR (400 MHz, MeOD) 

 3.95 (s, 2H, CArCH2S), 3.71-3.43 (m, 12H, CH2O, CHα), 3.45-3.24 (m, 20H, CH2γ), 

2.84-2.65 (m, 9H, CH2S), 2.62-2.49 (m, 9H, CH2S), 2.21-1.70 (m, 20H, CH2β). HPLC-

MS: Conditions: Column SunFire C18 5 μm, 4.6x150 mm. Gradient H2O/ACN 

(0.1%TFA) 5% 100% ACN in 25 min. Retention time: 11.1 min. ESI-MS m/z 

1600.5 (M - TFA-)+, 743.8 (M – 2 TFA-)+2. HRMS calcd. for [C56H90N15O2S5]3+ 

328.1961; found 328.1942.  

 

(R)-1-(2-Aminobenzyl)-3-[1-(tert-butyldiphenylsilyloxymethyl)-4-

(methylthio)-2-butyl] thiourea (29). 

 

A solution of (2R)-1-(tert-butyldiphenylsilyloxy)-5-thia-2-hexyl isothiocyanate (3.91 g, 

9.45 mmol) and 2-aminobenzylamine (1.27 g, 11.34 mmol) in CH3CN (15 mL) was 

stirred for 3 days at room temperature. Solvent was eliminated at reduced pressure and 

the crude was purified by silica gel column chromatography (Et2O/hexane, 70:30  

55:45), affording 29 (3.21 g, 65%). 1H-NMR (400 MHz, CDCl3)  7.63-7.59 (m, 4H, 

Ph-Si), 7.45-7.35 (m, 6H, Ph-Si), 7.10 (dt, J = 1.6, 8.0 Hz, 1H, Ha), 7.02 (d, J = 7.6 Hz, 

1H, Hd), 6.67 (t, J = 7.6 Hz, 1H, Hc), 6.63 (d, J = 8.0 Hz, 1H, Hb), 6.40-5.95 (m, 3H, 

NH, NH2), 4.82 (bs, 1H, NH), 4.52 (dd, J = 14.0, 3.2 Hz, 1H, CHα), 4.14 (bs, 2H, 
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ArCH2), 3.69 (m, 2H, CH2OSi), 2.40 (t, J = 6.8 Hz, 2H, CH2γ), 2.00-1.75 (m, 5H, 

SCH3, CH2β), 1.06 (s, 9H, CH3t-Bu). 13C-NMR (400 MHz, CDCl3)  180.3 (C=S), 144.6 

(CAr-NH2), 134.6, 131.8, 129.5, 129.0, 128.4, 126.9, 119.7, 116.9, 114.8 (CHAr, CAr), 

64.5 (CH2O), 53.3 (CHα), 46.4 (ArCH2NH), 29.6 (CH2β, CH2γ), 25.9 (CH3t-Bu), 18.2 (C t-

Bu), 14.1 (SCH3).  

 

(R)-2,3,4,6-Tetrahydro-2-(tert-butyldiphenylsilyloxymethyl)-1H-pyrimido[2,1-

b]quinazolinium hydrochloride (30).  

 

To a solution of 29 (2.54 g, 4.73 mmol) in dry CH2Cl2 were added 

diisopropylethylamine (DIPEA) (286 μL, 1.630 mmol) and methyl 

trifluoromethanesulfonate (1.1 mL, 10.402 mmol) at low temperature and under argon. 

The mixture was stirred for 2 h at room temperature and more DIPEA (6.84 mL, 

38.99 mmol) was added dropwise and the mixture was refluxed for 12 h. Solvent was 

eliminated at reduced pressure and the residue was distributed between 1N NaOH (5 

mL) and diethyl ether (10 mL). The organic phase was washed with 1N NaOH (50 

mL) and water (50 mL). The organic phase was then collected in a flask and a solution 

of 1N NH4Cl was added to allow the product to precipitate via vigorous agitation. 

Compound 30 was filtered off (819 mg, 35%) and the organic phase was dried over 

Na2SO4. After elimination of the solvent a yellow oil was obtained, which was purified 

by silica gel column chromatography (CH2Cl2/MeOH, 100  95:5). The isolated 

compound was still impure and did not precipitate in diethyl ether. Therefore, 

purification still needs improvement. 1H-NMR (400 MHz, CDCl3)  11.67 (bs, 1H, Ph-

NH), 9.39 (s, 1H, NH), 7.71-7.63 (m, 4H, CHAr), 7.50-7.38 (m, 6H, CHAr), 7.28-7.23 

(m, 1H, CHAr), 7.14-6.97 (m, 3H, CHAr), 4.43 (ABX system, 2H, CH2γCAr), 3.93-3.87 

(dd, J = 4.1, 10.3 Hz, 2H, CH2O), 3.78-3.63 (m, 2H, CHα), 3.38-3.23 (m, 2H, CH2γ), 

2.24-2.02 (m, 2H, CH2β), 1.10 (s, 9H, CH3t-Bu). 13C-NMR (400 MHz, CDCl3)  149.7 
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(Cguan), 135.5, 135.4, 132.5, 132.4, 129.9, 128.9, 127.8, 125.3, 123.8, 115.6, 115.5 (CHAr, 

CAr), 65.1 (CH2O), 49.6 (PhCH2N), 49.2 (CHα), 44.4 (CH2γ), 26.8 (CH3t-Bu), 22.5 

(CH2β), 19.0 (C t-Bu). HRMS calcd. for [C28H34N3OSi]+ 456.2471; found 456.2472. 

 

(R)-2-(Hydroxymethyl)-2,3,4,6-tetrahydro-1H-pyrimido[2,1-b]-11-

quinazolinium mesylate (31). 

 

To a solution of 30 (256 mg, 0.520 mmol) in THF/H2O (2:1, 25 mL), MsOH (675 

µL, 10.41 mmol) was slowly added at room temperature. The mixture was stirred and 

refluxed overnight. The solvent was evaporated to dryness and then dissolved in water 

(20 mL). The aqueous layer was washed with Et2O (25 mL), CHCl3 (3  15 mL) and 

Et2O (15 mL). Afterwards the aqueous phase was concentrated over 50% and KHCO3 

(1.04 g, 10.41 mmol) was added and the solvent was removed completely. MeOH (50 

mL) was added, the precipitate was removed by filtration and the solvent evaporated at 

reduced pressure. This step was repeated for a few times increasing the amount of 

CH2Cl2 until pure CH2Cl2 was reached, affording 31 (114 mg, 70%) as an oil. 1H-NMR 

(400 MHz, CDCl3)  7.11 (t, J = 7.2 Hz, 1H, CHAr), 6.92-6.78 (m, 3H, CHAr), 4.37 

(ABX system, 2H, CH2γCAr), 3.81-3.72 (m, 2H, CH2O), 3.69-3.58 (m, 1H, CHα), 3.53-

3.43 (m, 1H, CHα), 3.28 (td, J = 4.1, 11.6 Hz, 1H, CH2γ), 3.22-3.13 (m, 1H, CH2γ), 2.05-

1.94 (m, 1H, CH2β), 1.82-1.67 (m, 1H, CH2β). 13C-NMR (400 MHz, CDCl3)  149.7 

(Cguan), 135.5, 129.9, 128.9, 128.2, 127.8, 126.0 (CHAr, CAr), 63.9 (CH2O), 49.6 

(PhCH2β), 49.2 (CHα), 44.4 (CH2γ), 22.5 (CH2β). ESI-MS m/z 218.1 (M-MsO-)+. HRMS 

calcd. for [C12H16N3O]+ 218.1293; found 218.1296.  
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(R)-2-[(Methylsulfonyloxy)methyl]-2,3,4,6-tetrahydro-1H-pyrimido[2,1-b]-11-

quinazolinium hexafluorophosphate (32). 

 

To a solution of compound 31 (MsO-) (113 mg, 0.362 mmol) and NMM (322 µL, 

2.90 mmol) in dry CH2Cl2 (15 mL) was added Ms2O (315 mg, 1.81 mmol) and the 

mixture was stirred for 6 h. The solvent was evaporated under reduced pressure and 

the resulting crude was dissolved in CH2Cl2 (20 mL) and washed with a 0.1N NH4PF6 

solution (2  20 mL). The organic layer was filtered over cotton and concentrated at 

reduced pressure. Purification by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 99:1  95:5) afforded 32 (90 mg, 57%) as a white solid. 1H-NMR 

(400 MHz, CD3CN)  7.34-7.28 (m, 1H, CHAr), 7.20-7.14 (m, 2H, CHAr), 6.95 (d, J = 

7.9 Hz, 1H, CHAr), 4.59 (s, 2H, CH2γCAr), 4.40-4.34 (dd, J = 4.5, 10.6 Hz, 1H, 

CH2OMs), 4.23 (dd, J = 7.0, 10.7 Hz, 1H, CH2OMs), 3.98-3.90 (m, 1H, CHα), 3.52-

3.41 (m, 2H, CH2γ), 3.14 (s, 3H, CH3MsO), 2.15-1.82 (m, 4H, CH2β).13C-NMR (400 

MHz, CD3CN)  150.9 (Cguan), 135.3, 129.5, 128.7, 128.2, 127.6, 125.8 (CHAr, CAr), 60.5 

(CH2O), 49.6 (PhCH2β), 49.2 (CHα), 44.4 (CH2γ), 39.2 (CH3MsO), 22.5 (CH2β).  

 

(R)-2-((Acetylthio)methyl)-2,3,4,6-tetrahydro-1H-pyrimido[2,1-b]-11-

quinazolinium hexafluorophosphate (33)  

 

Compound 32 (91 mg, 0.205 mmol) and potassium thioacetate (82 mg, 0.716 mmol) 

were dissolved in CH3CN (15 mL) and the mixture was refluxed and stirred overnight. 

After cooling to room temperature, the solvent was removed and the crude was 

dissolved in CH2Cl2 (20 mL). Then, the solution was washed with a 0.1N NH4PF6 

solution (3  20 mL). The organic phase was filtered over cotton and concentrated to 
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dryness. Purification by silica gel column chromatography (CH2Cl2/MeOH, 100:0  

95:5) afforded 33 (65 mg, 75%) as a brownish oil. 1H-NMR (400 MHz, CDCl3)  8.40 

(s, 1H, NH), 7.27-7.21 (m, 1H, CHAr), 7.13-7.00 (m, 2H, CHAr), 6.93 (d, J = 7.9 Hz, 

1H, CHAr), 6.71 (s, 1H, NH), 4.55 (s, 2H, CH2γCAr), 3.81-3.69 (m, 1H, CHα), 3.56-3.40 

(m, 2H, CH2γ), 3.20-3.06 (m, 2H, CH2S), 2.39 (s, 3H, CH3CO), 2.26-2.12 (m, 2H, 

CH2β). 13C-NMR (100 MHz, CD3CN/CDCl3)  195.5 (CO), 148.8 (Cguan), 128.9, 126.1, 

124.5, 118.9 (CHAr), 49.1 (CH2γ), 48.7 (CHα), 44.5 (CH2γ), 32.3 (CH2S), 29.9 (CH3CO), 

23.9 (CH2β). ESI-MS m/z 276.1 (M – PF6
-)+. HRMS calcd. for [C14H18N3OS]+ 

276.1171; found 276.1177.  

 

Compound 34 

 

To a solution of 33 (27 mg, 0.065 mmol) in MeOH (5 mL), Cs2CO3 (51 mg, 0.158 

mmol) and PBu2Ph polystyrene (78 mg, 0.065 mmol) were added and stirred for 30 

min. under N2 at room temperature. Afterwards, a solution of compound 18 (100 mg, 

0.059 mmol) in CH3CN (15 mL) was added to the mixture and stirred overnight. The 

solvent was evaporated under vacuum, dissolved in CH2Cl2 (30 mL) and washed with 

0.1N NH4PF6 (2 × 20 mL). The organic layer was filtered over cotton and 

concentrated to dryness. Purification by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 98:2  94:6) afforded 34 (73 mg, 63%) as a yellowish solid. 1H-

NMR (400 MHz, CD3CN)  8.36 (s, 1H, NH), 7.74-7.67 (m, 4H, CHAr), 7.56-7.44 (m, 

6H, CHAr), 7.32 (t, J = 7.4 Hz, 1H, CHAr), 7.22-7.13 (m, 2H, CHAr), 6.94 (d, J = 7.9 Hz, 

1H, CHAr), 6.58 (s, 1H, NH), 6.23 (s, 7H, NH), 4.59 (s, 2H, CH2γCAr), 3.76 (dd, J = 4.3, 

10.2 Hz, 1H, CH2O), 3.73-3.50 (m, 10H, CH2O, CHα), 3.49-3.28 (m, 18H, CH2γ), 2.94-

2.77 (m, 8H, CH2S), 2.71-2.52 (m, 8H, CH2S), 2.14-2.07 (m, 10H, CH2β), 1.91-1.77 (m, 

8H, CH2β), 1.09 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CD3CN)  150.8, 150.7, 150.6 
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(Cguan), 135.5, 135,4, 132.4 (CAr), 130.1, 128.9, 128.0, 126.2, 124.4, 114.9 (CHAr), 65.9 

(CH2O), 50.1 (CHα), 49.1 (CH2γ), 47.8, 47.7 (CHα), 45.1, 45.0, 44.8 (CH2γ), 36.0, 35.9, 

35.8, 35.7 (CH2S), 26.2 (CH3), 25.2, 25.1, 24.8, 22.1 (CH2β), 18.8 (C t-Bu). HPLC-MS: 

Conditions: Column SunFire C18 5 μm, 4.6x150 mm. Gradient H2O/ACN 

(0.1%TFA) 5% 100% ACN in 20 min. Retention time: 10.40 min. ESI-MS m/z 

1700.794 (M – TFA-)+. 

 

Compound 35 

 

Compound 34 (37 mg, 0.019 mmol) was dissolved in 3N HCl/CH3CN (1:1, 10 mL) 

and stirred for 2 days at room temperature. The solvent was removed and the resulting 

crude dissolved in distilled water (15 mL) and washed with CH2Cl2 (3 × 15 mL). The 

aqueous phase was evaporated to dryness, yielding 35 (22 mg, quantitative) as a 

yellowish oil. Analytical conditions: Column: Symmetry300 C18 5 μm, 150 x 4.6 mm, 

MP: CH3CN (0.05% TFA)/H2O (0.05% TFA), Gradient: 5-100% CH3CN (0.05% 

TFA) in 20 min, Flow: 1 mL/min, room temperature, wavelength 220 nm. Retention 

time: 8.7 min. HRMS calcd. for [C48H76N15OS4]+ 1006.5235; found 1006.4870.  

 

Compound 36 

 

Compound 18 (10 mg, 0.006 mmol) and potassium thioacetate (2.7 mg, 0.024 mmol) 

were dissolved in CH3CN (2 mL) and the mixture was refluxed and stirred overnight. 

After cooling it to room temperature, the solvent was removed and the crude dissolved 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



1.5 Experimental Section 

 

73 

in CH2Cl2. Then, the solution was washed with a 0.1N NH4PF6 solution (2  10 mL). 

The organic phase was filtered over cotton and concentrated to dryness. Compound 

36 (9 mg, 91%) was characterized by NMR and used directly in the next synthetic step 

without further purification. 1H-NMR (400 MHz, CD3CN)  7.76-7.67 (m, 4H, CHAr), 

7.56-7.39 (m, 6H, CHAr), 3.83 (dd, J = 4.3, 9.8 Hz, 1H, CH2O), 3.68 (dd, J = 7.3, 9.8 

Hz, 1H, CH2O), 3.65-3.41 (m, 6H, CHα), 3.40-3.20 (m, 18H, CHα, CH2γ), 2.97-2.54 (m, 

12H, CH2S), 2.48-2.42 (m, 2H, CH2S), 2.76-2.57 (m, 2H, CH2S), 2.35 (s, 3H, CH3CO), 

2.12-2.02 (m, 8H, CH2β), 1.91-1.65 (m, 8H, CH2β), 1.05 (s, 9H, CH3t-Bu). 13C-NMR (100 

MHz, CD3CN)  135.5, 135.4, 130.0, 128.1, 128.0 (CAr), 65.3 (CH2O), 49.3, 48.8, 48.3, 

47.5 (CHα), 44.9, 44.5, 44.3 (CH2γ), 36.4, 36.3, 36.2 (CH2S), 30.0 (CH3CO), 26.2 (CH3t-

Bu), 25.4, 25.1, 22.4 (CH2β). 

 

Compound 37 

 

To a solution of 36 (74 mg, 0.044 mmol) in MeOH (5 mL), Cs2CO3 (30 mg, 0.092 

mmol) and PBu2Ph polystyrene (53 mg, 0.044 mmol) were added and stirred for 5 min 

under N2 at room temperature. Afterwards, a solution of compound 18 (100 mg, 0.059 

mmol) in CH3CN (5 mL) was added to the mixture and stirred overnight. The solvent 

was evaporated under vacuum and the crude was triturated with 0.1N NH4PF6 (2 × 20 

mL) and filtered. Purification by reverse phase–C18 column chromatography 

(H2O/CH3CN: 40/60  30/70) afforded 37 (93 mg, 65%) as a yellowish solid. 1H-

NMR (400 MHz, acetone-d6)  7.74-7.69 (m, 8H, CHAr), 7.56-7.45 (m, 12H, CHAr), 

7.23 (s, 1H, NH), 7.18 (bs, 6H, NH), 7.05 (s, 1H, NH), 3.87-3.70 (m, 20H, CH2O, 

CHα), 3.60-3.48 (m, 32H, CH2γ), 3.05-2.96 (m, 14H, CH2S), 2.78-2.70 (m, 14H, CH2S), 

2.29-2.15 (m, 16H, CH2β), 2.06-1.90 (m, 16H, CH2β), 1.08 (s, 18H, CH3t-Bu). 13C-NMR 
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(100 MHz, acetone-d6)  151.4, 151.3, 151.2 (Cguan), 135.9, 135.8, 133.3, 133.2, 130.5, 

130.4, 128.3 (CHAr, CAr), 66.4 (CH2O), 50.6, 48.3, 48.2 (CHα), 45.6, 45.5 (CH2γ), 36.3, 

36.2 (CH2S), 26.7 (CH3t-Bu), 25.9, 25.8, 22.8 (CH2β), 19.3 (Ct-Bu). HRMS calcd. for 

[C104H166F36N24O2P6S7Si]+2 1466.4525; found 1466.4358.  

 

Compound 38 

 

Compound 37 (55 mg, 0.017 mmol) was dissolved in 3N HCl/CH3CN (1:1, 10 mL) 

and stirred for 2 days at room temperature. The solvent was removed and the resulting 

crude dissolved in distilled water (15 mL) and washed with CH2Cl2 (3 × 15 mL). The 

aqueous phase was evaporated to dryness, yielding 38 (33 mg, quant.) as a yellowish oil. 

1H-NMR (400 MHz, D2O)  3.67-3.44 (m, 20H, CH2O, CHα), 3.42-3.26 (m, 32H, 

CH2γ), 2.89-2.76 (m, 14H, CH2S), 2.62 (dd, J = 8.0, 13.8 Hz, 14H, CH2S), 2.15-1.93 (m, 

16H, CH2β), 1.92-1.72 (m, 16H, CH2β). 13C-NMR (100 MHz, D2O)  62.2 (CH2O), 

48.8, 46.6, 46.4, 46.2 (CHα), 43.6, 43.4 (CH2γ), 34.6, 34.5 (CH2S), 23.8, 20.9 (CH2β). 

HPLC-MS: Conditions: Column SunFire C18 5 μm, 150 x 4.6 mm, MP: CH3CN 

(0.05% TFA)/H2O (0.05% TFA), Gradient: 5-100% CH3CN (0.05% TFA) in 20 min, 

Flow: 1 mL/min, room temperature, wavelength 214 nm). Retention time: 6.0 min. 

ESI-MS m/z 2379.0 (M – TFA-)+. HRMS calcd. for [C72H130Cl5N24O2S7]+3 587.2426; 

found 587.2390. 
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1.6 Appendix 

 

 

 

Figure 22. [1H, 15N]-HSQC spectrum of p53TD wild type in the absence (black contours) and in the 
presence (2 and 4 eq. in red and green contours, respectively) of ligand 13 (top) and 20 (bottom). 
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Figure 23. [1H, 15N]-HSQC spectrum of p53TD wild type in the absence (black contours) and in the 
presence (2 and 4 eq. in red and green contours, respectively) of ligand 15 (top) and 28 (bottom). 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



1.6 Appendix 

 

77 

 

 

Figure 24. [1H, 15N]-HSQC spectrum of p53TD R337H mutant in the absence (black contours) and in 
the presence (2 and 4 eq. in red and green contours, respectively) of ligand 13 (top) and 20 (bottom). 
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Figure 25. [1H, 15N]-HSQC spectrum of p53TD R337H mutant in the absence (black contours) and in 
the presence (2 and 4 eq. in red and green contours, respectively) of ligand 15 (top) and 28 (bottom). 
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PNA-Oligoguanidinium Conjugates as Potential Tools for 

Gene Therapy 

 

2.1 Introduction and Objectives 

 

Peptide nucleic acids (PNAs) are oligonucleotide mimics whose nucleobases are 

attached through a pseudo-peptide backbone typically composed by N-(2-

aminoethyl)glycine (aeg) subunits (Figure 1).1 Different backbone modifications have 

been explored over the last decade. However, they have shown inferior selectivity and 

hybridization properties than the simplest aegPNA, although some of these backbone 

modifications have demonstrated specific improved features.2 This DNA mimic 

combines the ability to store genetic information with the chemical robustness of 

peptides. Conceptually, a PNA can be considered as a hybrid structure between a 

regular oligonucleotide (nucleobase) and a peptide (amide-based backbone) and 

                                                           
1 (a) Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Science 1991, 254, 1497-1500. (b) 

Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624-630. 

2 (a) Ganesh, K. N.; Nielsen, P. E. Curr. Org. Chem. 2000, 4, 931-943. (b) Pensato, S.; Saviano 

M.; Romanelli, A. Expert Opin. Biol. Ther. 2007, 7, 1219-1232. 

Chapter2
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therefore exhibits properties from both worlds. Thus, the molecules are not degraded 

in the cell by nucleases (RNases or DNases), which is in contrast with natural 

exogenous oligonucleotides. The PNA molecule also displays higher chemical stability 

than the corresponding natural oligonucleotides. In contrast to DNA, which 

depurinates on treatment with strong acids, PNAs are completely acid stable.3 In 

addition, due to their inherent flexibility and the lack of charge repulsion between 

phosphodiester groups commonly found in DNA or RNA backbone, PNA molecules 

show efficient and sequence-specific binding to both single stranded RNA and DNA 

as well as to double stranded DNA.1c,4 

 

Figure 1. Differences between the DNA structure and aegPNA. 

                                                           
3 Dueholm, K. L.; Egholm, M.; Behrens, C.; Christensen, L.; Hansen, H. F.; Vulpius, T.; 

Petersen, K. H.; Berg, R. H.; Nielsen, P. E.; Buchardt, O. Org. Chem. 1994, 59, 5767-5773. 

4 For reviews see: (a) Nielsen, P. E.; Haaima, G. Chem. Soc. Rev. 1997, 26, 73-78. (b) Uhlmann, 

E.; Peyman, A.; Breipohl, G.; Will, D. W. Angew. Chem. Int. Ed. 1998, 37, 2796-2823. (c) Nielsen, 

P. E Chem. Biodivers. 2010, 7, 786-803. 
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Indeed, PNA was initially designed to bind double stranded DNA via major groove 

triplex formation, through Hoogsteen base pairing (T-A-T and C+-G-C). However, in 

addition to triple helix formation with natural oligonucleotides, PNA follows the 

Watson-Crick rules on hybridization with complementary DNA and RNA, thus 

favoring helix disruption and strand invasion both forming duplex or triplex 

structures.5 Therefore, the PNA scaffold opens the possibility towards other 

hybridization modes and complex structures, with a high dependence on the explored 

sequences (Figure 2). 

DNA

DNA
loopPNA

Hoogsteen Watson-Crick

Hoogsteen Watson-Crick

b)

Triplex Triplex Invasion Duplex Invasion
Double

Duplex Invasion
Tail-Clamp

a)

 

Figure 2. (a) Different hybridization modes of PNA. (b) Detail of the Hoogsteen and Watson-Crick base 

pairing possibilities of PNA constructs. 

                                                           
5 Egholm, M.; Buchardt, O.; Christensen,L.; Behrens,C.; Freier, S. M.; Driver, D. A.; Berg, R. 

H.; Kim, S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 566-568. 
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Peptide nucleic acids do not only show astonishing specificity but also high binding 

affinity towards DNA and RNA sequences. In fact, antiparallel PNA/DNA hybrids 

are more stable than the corresponding double stranded DNA and RNA sequences 

(average Tm increase of 1K and 1.5K/base ca., respectively).6 PNA complexes showed 

remarkable stability at very low ionic strength due to their uncharged framework (no 

cation shielding of the phosphodiester backbone is required).7 The introduction of 

non-standard (or alternative) nucleobases and the effect of base-pairing mismatches 

have been extensively studied to further assess the binding properties and sequence 

discrimination of these biological constructions.8 

 

2.1.1 Potential Applications 

Owing to their unique physicochemical properties and the inherent similarities with 

regular oligonucleotides, PNAs have been developed in view of their medical, 

biomolecular and nanobiotechnological potential applications. 

Antisense drug approaches have been explored over the last decade, either by 

mRNA or by rRNA targeting. PNA can effectively inhibit the translation process by 

blocking both the elongation and the initiation phase (Figure 3).9 In addition, splice 

junctions show to be very sensitive targets for antisense PNAs.10 By interfering with 

exon-intron junctions, alternative splicing can occur with the consequent skipping of 

the exons and/or non-splicing of the introns. Hence, targeting mRNA during splicing 

as an alternative antisense strategy may afford interesting applications and opens new 

perspectives in drug discovery. Indeed, alternative splice redirection has been 

                                                           
6 (a) Rose, D. J. Anal. Chem. 1993, 65, 3545-3549. (b) Jesen, K. K.; Oerum, H.; Nielsen, P. E.; 

Norden, B. Biochemistry 1997, 36, 5072-5077. 

7 Tomac, S.; Sarkar, M.; Ratilainen, T.; Wittung, P.; Nielsen, P. E.; Norden, B.; Gralund, A. J. 

Am. Chem. Soc. 1996, 118, 5544-5552. 

8 Wojciechowski, F.; Hudson, R. H. Curr. Top. Med. Chem. 2007, 7, 667-679. 

9 Knudsen, H.; Nielsen, P. E. Nucleic Acids Res. 1996, 24, 494-500. 

10 Karras, J. G.; Maier, M. A.; Lu, T.; Watt, A.; Manoharan, M. Biochemistry 2001, 40, 7853-7859. 
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successfully applied with promising results in both in vitro and in vivo models for 

muscular dystrophy.11 Recent developments on targeting and inhibition of micro-

RNAs (MiRs) by PNAs have also been reported as an alternative antisense strategy.12 

Since these MiRs are known to play a crucial role on gene regulation, this approach 

offers significant possibilities in drug discovery. 

PNA has also been used as an antigene agent to control gene expression at DNA 

level by inhibiting transcription processes (Figure 3). Inhibition occurs via triple helix 

formation or strand invasion. These hybridization motifs block the access of DNA 

binding proteins such as transcription factors or DNA methylases. Elongation of 

DNA primers by DNA polymerases and thus DNA replication can also be inhibited 

through PNA helix invasion. Indeed, efficient arresting of replication in mitochondrial 

DNA (predominantly single stranded during replication) has been reported using this 

PNA technology.13 

DNA + PNA mRNA mRNA + PNA Protein

Nucleus Cytoplasm

Antigene Antisense

 

Figure 3. Antigene and antisense PNA interference mechanisms. 

 

                                                           
11 Yin, H.; Lu, Q.; Wood, M. Mol. Ther. 2008, 16, 38-45. 

12 (a) Fabani, M. M.; Gait, M. J. RNA 2008, 14, 336-346. (b) Oh, S. Y.; Ju, Y.; Park, H. A.; Mol. 

Cell. 2009, 28, 341-345. 

13 Taylor, R. W.; Chinnery, P. F.; Turnbull, D. M.; Lightowlers, R. N. Nat. Genet. 1997, 15, 212-

215. 
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More interesting is the ability of PNA to activate transcription (Figure 4). Initiation 

of transcription from double stranded DNA to RNA involves formation of an open 

DNA complex, in which ca. 12 base pairs stay single stranded for hybridization with 

the synthesized RNA. This structure is equivalent to the P-loop formed upon triplex 

invasion of a double stranded PNA with the corresponding DNA template.14 This 

complex is effectively detected by RNA polymerases, and thus RNA transcription is 

initiated in the P-loop structure formed by this artificial PNA-based “transcription 

factor”.15 

Growing RNA

DNA 3’
DNA 5’

DNA @ (PNA)2

RNA polymerase

Growing RNA

DNA 3’
DNA 5’

RNA polymerase

Growing RNA

DNA 3’
DNA 5’

RNA polymerase

DNA @ (PNA)2

A)

B)

C)

 

Figure 4. (A) Normal transcription mechanism through formation of an open promoter complex. (B) 

Inhibition of transcription via PNA strand invasion and triple helix formation. (C) Activation of transcription 

by PNAs. 

                                                           
14 (a) Cherny, D. Y.; Belotserkovskii, B. P.; Frank-Kamenetskii, M. D.; Egholm, M.; Buchardt, 

O.; Berg, R. H.; Nielsen, P. E. Proc. Natl. Acad. Sci. USA 1993, 90, 1667-1670. (b) Nielsen, P. E.; 

Egholm, M.; Buchardt, O. J. Mol. Recognit. 1994, 7, 165-170. (c) Demidov, V. V.; Yavnilovich, 

M. V.; Belotserkovskii, B. P.; Frank-Kamenetskii, M. D.; Nielsen P. E. Proc. Natl. Acad. Sci. 

USA 1995, 92, 2637-2641. 

15 Mollegaard, N. E.; Buchardt, O.; Egholm, M.; Nielsen, P. E. Proc. Natl. Acad. Sci. USA 1994, 

91, 3892-3895. 
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One of the most promising applications of peptide nucleic acids is related to 

targeting gene repair. For instance, correction of a thalassemia-associated β-globin 

mutation was recently assessed by targeting proximal genome sites to the mutated site 

with a homopurine rich pseudo-complementary PNA sequence.16 

PNAs have also been used as scaffolds to template different reactions and DNA 

ligations.17 In addition, some examples reported by Winssinger et al.18 have shown the 

potential application of PNAs as sequence tags in peptide combinatorial libraries. 

These libraries are encoded with PNAs and self-assemble into an organized microarray 

through hybridization to generate DNA arrays. This technology has been successfully 

applied to screen and profile different kinases19 and proteases, as well as to identify 

protease inhibitors. 

The use of PNAs in diagnostics and bioanalytics has been widely explored over the 

last decade. In contrast with DNA, PNA is not a substrate for DNA polymerase and 

therefore cannot act as a primer in PCR. Instead, PNAs behave as highly effective 

blockers of PCR amplification as they showed competitive binding with DNA primers 

for the DNA template. PNA sequence specificity can allow the discrimination and 

detection of single mismatch sequences and genetic mutations such as the CFTR gene 

in cystic fibrosis.20 Thereby, discrimination of single point mutations in the Ki-ras gene 

has been achieved using PCR clamping.21 

                                                           
16 (a) Chin, J. Y.; Kuan, J. Y.; Lonkar, P. S.; Krause, D. S.; Seidman, M. M.; Peterson, K. R.; 

Nielsen, P. E.; Kole, R.; Glazer, P. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 13514-13519. (b) 

Lonkar, P.; Kim, K. H.; Kuan, J. Y.; Chin, J. Y.; Rogers, F. A.; Knauert, M. P.; Kole, R.; 

Nielsen, P. E.; Glazer, P. M. Nucleic Acids Res. 2009, 37, 3635-3644. 

17 Grossmann, T. N.; Seitz, O. Chem. Eur. J. 2009, 15, 6723-6730. 

18 (a) Winssinger, N.; Damoiseaux, R.; Tully, D. C.; Geierstanger, B. H.; Burdick, K.; Harris, J. 

L. Chem. Biol. 2004, 11, 1351-1360. (b) Urbina, H. D.; Winssinger, N. Chem. Eur. J. 2005, 11, 

6792-6801. (c) Urbina, H. D.; Debaene, F.; Jost, B.; Bole-Feysot, C.; Mason, D. E.; Kuzmic, P.; 

Harris, J. L.; Winssinger, N. ChemBioChem 2006, 7, 1790-1797. 

19 Pouchain, D.; Diaz-Mochon, J. J.; Bialy, L.; Bradley, M. ACS Chem. Biol. 2007, 2, 810-818. 

20 Carlsson, C.; Jonsson, M.; Norden, B.; Dulay, M. T.; Zare, R. N.; Noolandi, J.; Nielsen, P. E.; 
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Additionally, several PNA probes have been used by means of Fluorescence in situ 

Hybridization (FISH) assays on quantitative measurements of telomere length,22 

chromosome painting techniques23 and detection of viruses and bacteria.24 

Furthermore, replacement of DNA with PNA as a more robust biomolecular probe 

for the development of new nanobiosensors and microarrays has raised high 

expectations in the field. This PNA-based technology can be applied to areas such as 

molecular genetic diagnosis and cytogenetics, among other pharmacological 

purposes.25 

 

2.1.2 Antibacterial/Antimicrobial PNAs 

PNAs have been widely reported as antibiotic agents due to their antisense 

properties. Some of the traditional antibiotics directly affect the microbial protein 

synthesis by blocking bacterial translation through binding to ribosomes and ribosomal 

RNA. Nielsen et al. described a bis-PNA able of targeting the α-sarcin loop of 23S 

ribosomal RNA, hence inhibiting the growth of E. coli.26 However, it was shown that 

the antibacterial activity of these constructs was limited by their poor cellular uptake.27 

                                                                                                                                              
Tsui, L-C.; Zielenski, J. Nature, 1996, 380, 207. 

21 Bayerdörffer, T. C.; Blasczyk, E.; Wittig, R.; Neubauer, B. Nucleic Acids Res. 1996, 24, 983-984. 

22 Lansdorp, P. M.; Verwoerd, N. P.; van de Rijke, F. M.; Dragowska, V.; Little, M-T.; Dirks, R. 

W.; Raap, A. K.; Tanke, H. J. Hum. Mol. Genet. 1996, 5, 685-691. 

23 Chen, C.; Wu, B. L.; Wei, T.; Egholm, M.; Strauss, W. M. Mamm. Genome 2000, 11, 384-391. 

24 (a) Drobniewski, F. A.; More, P. G.; Harris, G. S. J. Clin. Microbiol. 2000, 38, 444-447. (b) 

Worden, A. Z.; Chisholm, S. W.; Binder, B. J. Appl. Environ. Microbiol. 2000, 66, 284-289. (c) 

Hongmanee, P.; Stender, H, Rasmussen, O. F. J. Clin. Microbiol. 2001, 39, 1032-1035. (d) 

Stender, H.; Oliveira, K.; Rigby, S.; Bragoot, F. Coull, J. J. Microbiol. Methods 2001, 45, 31-39.  

25 (a) Brandt, O.; Hoheisel J. D. Trends Biotechnol. 2004, 22, 618-622. (b) Singh, R. P.; Oh, B-K.; 

Choi, J-W. Bioelectrochemistry 2010, 79, 153-161. 

26 (a) Good, L.; Nielsen, P. E. Proc. Natl. Acad. Sci. USA 1998, 95, 2073-2076. (b) Good, L.; 

Nielsen, P. E. Nat. Biotechnol. 1998, 16, 355-358. 

27 (a) Nikaido, H. Science 1994, 264, 382-388. (b) Good, L. M; Sandberg, R.; Larsson, O.; 

Nielsen, P. E.; Wahlestedt, C. Microbiology 2000, 146, 2665-2670. 
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Conjugation of PNAs to a peptide sequence, known to interact with the anionic 

membrane lipopolysaccharides and thus to cross bacterial cell wall, increased the 

potency of PNAs targeting both α-sarcin loop as well as essential acpP gene.28 

Moreover, work on PNA targeting HIV RNA has demonstrated the potential 

application of PNA oligomers for antisense-HIV drugs.29 

 

2.1.3 Cell Delivery Strategies 

PNA oligomers are large, uncharged, hydrophobic molecules with limited antisense 

activity without a support or technique to assist bypassing the cell membrane. Over the 

last decade, major efforts have been devoted to promote efficient internalization and 

thus enhancement of the intracellular effect of PNA.30 For example, cellular uptake of 

unmodified PNAs has been developed using different techniques and strategies such as 

microinjection,31 electroporation,10,32 co-transfection with DNA33 or direct delivery 

                                                           
28 (a) Good, L.; Awasthi, S. K.; Dryselius, R.; Larsson, O.; Nielsen, P. E. Nat. Biotechnol. 2001, 

19, 360-364. (b) Eriksson, M.; Nielsen, P. E.; Good, L. J. Biol. Chem. 2002, 277, 7144-7147. (c) 

Tan, X. X.; Actor, J. K.; Chen, Y. Antimicrob. Agents Chemother. 2005, 49, 3203-3207. (d) 

Nikravesh, A.; Dryselius, R.; Faridani, O. R.; Goh, S.; Sadeghizadeh, M.; Behmanesh, M.; 

Ganyu, A.; Jan Klok, E.; Zain, R.; Good, L. Mol. Ther. 2007, 15, 1537-1542. 

29 (a) Tripathi, S.; Chaubey, B.; Ganguly, S.; Harris, D.; Casale, R. A.; Pandey, V. N. Nucleic Acids 

Res. 2005, 33, 4345-4356. (b) Chaubey, B.; Tripathi, S.; Ganguly, S.; Harris, D.; Casale, R. A.; 

Pandey, V. N. A. Virology 2005, 331, 418-428. (c) Tripathi, S.; Chaubey, B.; Barton, B. E.; 

Pandey, V. N. A. Virology 2007, 363, 91-103. 

30 For reviews see: (a) Koppelhus, U.; Nielsen, P. E. Adv. Drug. Deliv. Rev. 2003, 55, 267-280. (b) 

Nielsen, P. E. Q. Rev. Biophys. 2005, 38, 345-350. (c) Shiraishi, T.; Nielsen, P. E. Delivery 

Technologies for Biopharmaceuticals: Peptides, Proteins, Nucleic Acids and Vaccines 2009, Ed. John Wiley 

& Sons, 305-338. 

31 Hamilton, S. E.; Simmons, C. G.; Kathiriya, I. S.; Corey, D. R. Chem. Biol. 1999, 6, 343-351. 

32 (a) Shammas, M. A.; Simmons, C. G.; Corey, D. R.; Shmookler-Reis, R. J. Oncogene 1999, 18, 

6191-6200. (b) Wang, G.; Xu, X.; Pace, B.; Dean, D. A.; Glazer, P. M.; Chan, P.; Goodman, S. 

R.; Shokolenko, I. Nucleic Acids Res. 1999, 27, 2806-2813. 
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(showing low antisense activity).26,34 However, new and more efficient methods have 

been developed to allow cell permeability of PNA molecules by their own without 

external stimuli. This usually requires modification of the PNA structure by anchoring 

auxiliary molecular vectors to allow entry into the cell. 

Most work in the field is related to the so-called “Trojan peptides” or cell 

penetrating peptides (CPPs). These peptides are mainly composed of positively 

charged and hydrophobic residues, which allow interaction with the anionic surface of 

the cell membrane and therefore cellular uptake. 

Several examples of PNA cellular uptake have been described by attachment of 

CPPs to the PNA oligomers. Some have shown promising results and applicability 

both for in vitro and in vivo systems.35 A systematic study reported by Nielsen et al. 

describes the covalent incorporation of several CPPs to PNA and the evaluation of 

their antisense potency. Interestingly, attachment of lipid moieties to the sequences, 

referred to as “CatLip domains” results in an increase of their antisense activity.36 

Improved cellular delivery and hence antisense activity of these CPP-PNAs has been 

achieved by photochemical internalization.37 Thus, cell penetrating peptides and their 

                                                                                                                                              
33 (a) Faruqi, A. F.; Egholm, M.; Glazer, P. M. Proc. Natl. Acad. Sci. USA 1998, 95, 1398-1403. 

(b) Doyle, D. F.; Braasch, D. A.; Simmons, C. G.; Janowski, B. A.; Corey, D. R. Biochemistry 

2001, 40, 53-64. 

34 Sei, S.; Yang, Q. E.; O’Neill, D.; Yoshimura, K.; Nagashima, K.; Mitsuya, H. J. Virol. 2000, 

74, 4621-4633. 

35 (a) Pooga, M.; Soomets, U.; Hällbrink, M.; Valkna, A.; Saar, K.; Rezaei, K.; Kahl, U.; Hao, J. 

X.; Xu, X. J.; Wisenfeld-Hallin, Z.; Hökfelt, T.; Bartfai, T.; Langel, Ü. Nat. Biotechnol. 1998, 16, 

857-861. (b) Bendifallah, N.; Rasmussen, F. W.; Zachar, V.; Ebbesen, P.; Nielsen, P. E.; 

Koppelhus, U. Bioconjugate Chem. 2006, 17, 750-758. (c) Ivanova, G. D.; Arzumanov, A.; Abes, 

R.; Yin, H.; Wood, M. J.; Lebleu, B.; Gait, M. J. Nucleic Acids Res. 2008, 36, 6418-6428. 

36 Koppelhus, U.; Shiraishi, T.; Zachar, V.; Pankratova, S.; Nielsen, P. E. Bioconjugate Chem. 2008, 

19, 1526-1534. 

37 (a) Shiraishi, T.; Nielsen, P. E. FEBS Lett. 2006, 580, 1451-1456. (b) Shiraishi, T.; Nielsen, P. 

E. Cell-Penetrating Peptides: Methods and Protocols, Methods in Molecular Biology, 2011 Ed. Springer 

Science, 683, 391-397. 
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derivatives may be developed for in vivo medical application as efficient PNA 

transporters. However, endosomal trapping of these conjugates is known to hamper 

their activity inside the cell and remains one of the major obstacles for enhancing the 

effectiveness of this strategy.38 

Another synthetic modification of a PNA sequence aimed at improving cellular 

uptake consists of introduction of negatively charged groups to allow transfection via 

the widespread commercially available cationic lipids (such as lipofectamineTM). These 

cationic transfection reagents are originally employed for DNA transfection. Charge 

neutral PNA cannot interact (or at least not efficiently) with these cationic reagents. 

Therefore, PNAs were either complexed with DNA (consequently formed 

PNA/DNA heteroduplex) or chemically modified with lipidic ligands or phosphonate 

ligands to form transfectional complexes with these reagents through 

hydrophobic/electrostatic interactions. Conjugation of phosphonate glutamine and bis-

phosphonate lysine amino acid derivatives to the PNA scaffold, in combination with 

lipofectamine, afforded subnanomolar antisense activity.39 However, this strategy is 

limited to in vitro studies owing to the toxicity of the transfection agents. 

Finally, use of crosslinked cationic nanoparticles,40 or polymers such as 

polyethyleneimine (PEI)41 have been reported, showing interesting results for the 

efficient cellular permeability of PNAs. 

 

 

                                                           
38 (a) Koppelhus, U.; Awasthi, S. K.; Zachar, V.; Holst, H. U.; Ebbesen, P.; Nielsen, P. E. 

Antisense Nucleic Acid Drug Dev. 2002, 12, 51-63. (b) Shiraishi, T.; Pankratova, S.; Nielsen, P. E. 

Chem. Biol. 2005, 12, 923-929. (c) Abes, S.; Williams, D.; Prevot, P.; Thierry, A.; Gait, M. J.; 

Lebleu, B. J. Control. Release 2006, 110, 595-604. 

39 Shiraishi, T.; Hamzavi, R.; Nielsen, P. E. Nucleic Acids Res. 2008, 36, 4424-4432. 

40 (a) Zhang, K.; Fang, H.; Shen, G.; Taylor, J-S. A.; Wooley, K. L. Proc. Am. Thorac. Soc. 2009, 6, 

450-457. (b) Fang, H.; Zhang, K.; Shen, G.; Wooley, K. L.; Taylor, J-S. A. Mol. Pharm. 2009, 6, 

615-626. 

41 Berthold, P. R.; Shiraishi, T.; Nielsen, P. E. Bioconjug. Chem. 2010, 21, 1933-1938. 
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2.1.4 Objectives  

Our focus is based on the employment of bicyclic guanidinium oligomers as new 

efficient transporters for PNA delivery. Guanidinium (or arginine)-containing cell 

penetrating peptides have been widely used in cellular uptake of biologically relevant 

cargos. Previous studies by Wender et al. highlighted the importance of the length, the 

number of arginine residues, and the spacer between the guanidinium groups to allow 

efficient internalization.42 In our group, we have explored the cell penetrating 

properties of TBDPS protected tetraguanidinium oligomer as a non-peptide carrier. By 

attaching a fluorescence probe, confocal microscopy experiments confirmed the 

preferential cellular localization and accumulation of this molecular vector in 

mitochondria (Figure 5). Moreover, these molecules showed more efficient 

translocation through HeLa membranes than the corresponding Tat or Antp 

peptides.43 Further studies using terbium complexes attached to this tetraguanidinium 

carrier confirmed mitochondrial targeting.44 This paves the way to the attachment of 

drugs to this tetraguanidinium transporter, to target mitochondria. Indeed, it was 

recently reported that attachment of Gamitrinibs, a molecule designed to target and 

inhibit Hsp90, to our tetraguanidinium vector results in the efficient inhibition of 

Hsp90 ATPase activity, therefore showing mithocondrial accumulation.45 

 

                                                           
42 (a) Goun, E. A.; Pillow, T. H.; Jones, L. R.; Rothbard, J. B.; Wender, P. A. ChemBioChem 2006, 

7, 1497-1515. (b) Wender, P. A.; Galliher, W. C.; Goun, E. A.; Jones, L. R.; Pillow, T. H. Adv. 

Drug Deliver. Rev. 2008, 60, 452-472. 

43 Fernández-Carneado, J.; Van Gool, M.; Martos, V.; Castel, S.; Prados, P.; de Mendoza, J.; 

Giralt, E. J. Am. Chem. Soc. 2005, 127, 869-874. 

44 Kielar, F.; Congreve, A.; Law, G.; New, E. J.; Parker, D.; Wong, K-L.; Castreño, P.; de 

Mendoza, J. Chem. Commun. 2008, 2435-2437. 

45 Kang, B. H.; Plescia, J.; Song, H. Y.; Meli, M.; Colombo, G.; Beebe, K.; Scroggins, B.; 

Neckers, L.; Altieri, D. C. J. Clin. Invest. 2009, 119, 454-464. 
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a)

b) c)

CF         II           I        CF-Tat CF-Antp  

Figure 5. (a) Structure of the fluorescein-labelled tetraguanidinium vectors. (b) Fluorescence measurements in 

HeLa cells incubated with these non-peptide vectors I and II, compared with Tat and Antp peptide vectors. (c) 

Cellular localization of vector I showing accumulation in mitochondria. 

 

The goal of this project is not only to improve the internalization of PNA by 

conjugation with oligoguanidinium molecules, but also to study in detail which 

structural factors of these oligomers are essential for cellular uptake. Several 

experiments were thus designed to gain some insight into the internalization 

mechanism of these conjugates. Furthermore, the application of these 

oligoguanidinium-PNA conjugates as antibacterial agents have been explored.  
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2.2 Synthesis of PNA-Oligoguanidinium Conjugates 

 

A series of oligoguanidinium-PNA conjugates were prepared in order to evaluate 

their internalization and antisense activity properties. The construction of the 

oligoguanidinium fragment was achieved using an iterative synthetic strategy as 

described in Chapter 1. Bicyclic guanidinium monomers were bound together through 

thioether linkages by means of the nucleophilic attack of the corresponding thiolate 

species to the electrophile (mesylate). The thiolate species can be formed in situ, via 

thioacetate cleavage or via a disulfide reduction, using a polymer-bound phosphine. 

These two synthetic approaches were explored to afford polycationic oligomers (44a-e, 

10, 18, 46 and 48) in moderate to high yields, and were subsequently coupled with the 

PNA construct (see details in the experimental section). 

The number of bicyclic guanidinium subunits and the nature of the lipophilic group 

were evaluated to optimize the cellular uptake (Scheme 1). Thus, mono-, di-, tri-, tetra-, 

and pentaguanidinium-PNA oligomers bearing a TBDPS silyl group were synthesized 

and studied. 
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Scheme 1. Synthetic path for triguanidinium-PNA conjugates 44; a R = hexyl, b R = decyl, c R = 

tetradecyl, d R = cholesteryl and e R = triethylene glycol chains. Conditions: i) (a-d) 2 eq. of corresponding 

alkylthiol, 2,5 eq. of tBuOK in acetone at r.t., under N2; i) (e) 2,5 eq. of Cs2CO3 in ACN/MeOH, 4 h at 

r.t. under N2; ii) (a-c, e) TBAF in THF, 4 h at r.t.; ii) (d) HF/pyr 70%, o.n.; iii) 2,5 eq. of NMM, 4 eq. 

of Ms2O in CH2Cl2; iv) 1 eq. of 11, 2,5 eq. of Cs2CO3 in ACN/MeOH, 3 h at r.t. under N2; v) TBAF in 

THF, o.n. at r.t.; vi) 4 eq. of NMM, 6 eq. of Ms2O in THF. 

 

Several lipophilic (R) groups were attached to the bicyclic guanidinium mesylate 2 by 

nucleophilic substitution. Cleavage of the silyl protecting group with TBAF, followed 

by mesylation of the resulting alcohol afforded compounds 41a-e. Subsequent 

coupling to a thioacetyl diguanidinium derivative (11), which was obtained by treatment 

of diguanidinium mesylate 10 with potassium thioacetate, afforded the desired 

triguanidinium compounds 42a-e. These molecules were again submitted to 

deprotection and mesylation, to obtain compounds 44a-e in moderate to good yields. 

For the construction of the oligoguanidinium compounds bearing the TBDPS 

protecting group, the synthesis was based on the generation of a thiolate species from 

the corresponding disulfide by reduction (Scheme 2). 
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Scheme 2. Synthesis of TBDPS-protected oligoguanidinium molecules 46 and 48 (R’=OTBDPS). 

Conditions: i) 1 eq. of 8, 2 eq. of 10, 2,5 eq. of Cs2CO3 and 1.3 eq. of n(Bu)2PhP polystyrene resin, in 

ACN/MeOH, 5 h at r.t. under N2; ii) 2,5 eq. of NMM, 4 eq. of Ms2O in CH2Cl2; iii) 1 eq. of 16, 2 eq. of 

46, 2,5 eq. of Cs2CO3 and 1.3 eq. of n(Bu)2PhP polystyrene resin, in ACN/MeOH, 5 h at r.t. under N2; iv) 

4 eq. of NMM, 6 eq. of Ms2O in THF. 

 

Thus, disulfide 8 was generated by thioacetylation of mesylate 2, cleavage of the 

TBDPS groups and subsequent treatment with base. The disulfide bond of compound 

8 was then reduced with nBu(Ph)2P polymeric resin, allowing the nucleophilic attack of 

the resulting thiolate over mesylate 10, to afford triguanidinium 45. This strategy was 

used for the synthesis of the di-, tetra- (both described in Chapter 1, see Experimental 

Section) and pentaguanidinium oligomers bearing the silyl protecting group at the end, 

by varying the length (number of bicyclic guanidinium groups) of the starting 

compounds. Hence, this synthetic strategy successfully allowed linear growth of these 

molecules.  

Two different synthetic approaches were considered to link these oligoguanidinium 

compounds to the biologically active PNA sequences, both based on the use of the 
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mesylate oligomers as electrophiles to be coupled with the PNA moiety. 

Monoguanidinium compound 2 was employed as a model for the screening and 

optimization of the reaction conditions. 

Firstly, direct N-alkylation to the N-terminus of the PNA (Scheme 3) was tested using 

previously reported methodologies46 (Table 1), and the reaction was monitored by 

HPLC analysis. This strategy does not require further modifications of the PNA or the 

guanidinium scaffold. However, no product was obtained and only low conversions 

were achieved using phosphate buffer at pH =11 as a base. Moreover, isolation of the 

product was not successful. 

 

Scheme 3. N-alkylation model reaction between the N-terminus of PNA and the monoguanidinium 

mesylate 2.  

 

Table 1. Reaction conditions for N-alkylation between PNA and monoguanidinium molecule 2. 

# Solvent Base

Eq. of 

base or 

conc./pH

Eq. of 

Mesylate 1
Temp. (ºC)

Additional 

info.

Conversion

(%)

1 DMSO/H2O LiOH 3 eq. 4 eq. r.t. --- No product

2 DMF/MeOH CsOH 5 eq. 5 eq. 25 80 MS  4Å ---

3 ACN/MeOH/DMF Cs2CO3 5 eq. 5 eq. 25 60 --- ---

4 ACN/MeOH phosphate 0,1 M / 11 5 eq. 25 60 --- 9 %

 

The second approach was based on the S-alkylation of a modified PNA bearing an 

N-acetylated cysteine at the end of the sequence (Scheme 4). 

 

 

                                                           
46 Salvatore, R. N.; Nagle, A. S.; Jung K. W. J. Org. Chem. 2002, 67, 674-683. 
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Scheme 4. S-alkylation between the terminal cysteine of PNA and monoguanidinium mesylate 2. 

 

Different conditions were tested to perform this reaction (Table 2). Parameters such 

as the nature of the base, the number of equivalents of electrophile or the temperature 

were screened to optimize the reaction and thus improve conversions. Reducing agents 

such as DTT or polymer bound n(Bu)2PhP to prevent disulfide formation were also 

examined. The best conversion rate (56%) was obtained using 0.1M phosphate buffer 

at pH=10, with five equivalents of mesylate and heating at 60 ºC overnight under an 

inert atmosphere (entry 15). 

 

Table 2. Reaction conditions for coupling cysteine-PNA to the monoguanidinium molecule 2. 

# Solvent Base
Eq. of base 

or conc./pH
Eq. of 1

Temp. 

(ºC)
Additional info.

Conversion 

(%)

1 DMSO --- --- 1  10 eq. r.t. --- No product

2 DMSO/H2O K2CO3 2,5 eq. 1  10 eq. r.t. --- No product

3 DMF/MeOH Cs2CO3 5 eq. 5 eq. r.t. Inert atmosfere (N2) ---

4 ACN/MeOH K2CO3 5 eq. 10 eq. r.t. --- ( 6-8%)

5 ACN/H2O DIPEA 3 eq. 5 eq. r.t. Inert atmosfere (N2) ---

6 ACN/H2O DIPEA 3 eq. 5 eq. r.t. 15 eq. DTT in NH4HCO3 39- 43%

7 ACN/H2O DIPEA 3 eq. 5 eq. r.t.
15 eq. DTT in NH4HCO3 

with sephadex separation
5%

8 ACN/H2O Cs2CO3 3 eq. 10 eq. r.t. 1,5 eq. (nBu)2PhP pol. ---

9 ACN/H2O phosphate 10 mM / 7,7 2  12 eq. r.t. Inert atmosfere (N2) 19%

10 ACN/H2O phosphate 0,1 M / 8 2  12 eq. r.t. Inert atmosfere (N2) 37%

11 ACN/H2O phosphate 0,1 M / 8 20 eq. r.t. Inert atmosfere (N2) 13%

12 ACN/H2O phosphate 0,1 M / 8 5 eq. r.t. Inert atmosfere (N2) 14%

13 ACN/H2O phosphate 0,1 M / 9 5 eq. 25 60 --- 14%

14 ACN/H2O phosphate 0,1 M / 9 5 eq. 60 Inert atmosfere (N2) 38 %

15 ACN/H2O phosphate 0,1 M / 10 5 eq. 60 Inert atmosfere (N2) 56 %
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Under these reaction conditions, oligoguanidinium-PNA conjugates (49a-e and 50 

to 56) were successfully synthesized (Scheme 5) from moderate to high conversion 

rates (Table 3). The compounds were purified by preparative HPLC and lyophilized 

to obtain a white solid in almost all the cases. HPLC purification of these PNA 

molecules was performed in collaboration with Ms. Jolanta Barbara Ludvigsen (Prof. 

Nielsen’s group). With these compounds in hand, biological assays were set up to 

evaluate their antisense activity and thus their cellular uptake.  

 

Scheme 5. Coupling of oligoguanidinium molecules to PNA. For definitions of residues R in a-e see 

Scheme 1. Conditions: i) 0.1M phosphate buffer pH 10 in water/ACN mixture at 60ºC during 2 days; ii) 

(1:1:1) H2O/TFA/ACN, overnight. 
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Table 3. List of conjugates synthesized with their corresponding molecular weight and conversions. *From 

acid hydrolysis of the protecting group in ACN/H2O 15% TFA. 

PNA # Name
Mass found 

(Calcd)
Conv. (%) Purity (%)

49a Hexa-(BG)3-PNA 5588 (5587) 28% 90+

49b Deca-(BG)3-PNA 5643 (5643) 22% 90+

49c Tetradeca-(BG)3-PNA 5708 (5699) 14% 90+

49d cholesterol-(BG)3-PNA 5879 (5873) 13% 95+

49e eg-(BG)3-PNA 5661 (5660) 22% 90+

50 TBDPSO-(BG)-PNA 5330 (5330) 56% 95+

51 TBDPSO-(BG)2-PNA 5522 (5528) 37% 95+

52 TBDPSO-(BG)3-PNA 5730 (5727) 36% 95+

53 HO-(BG)3-PNA 5492 (5489) 100%* 80+

54 TBDPSO-(BG)4-PNA 5930 (5925) 66% 95+

55 HO-(BG)4-PNA 5691 (5688) 100%* 90+

56 TBDPSO-(BG)5-PNA 6124 (6120) 31% 95+
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2.3 Internalization and Antisense Properties Determined by Luciferase 

Antisense Assays 

 

Antisense splice correction assays for luciferase protein were performed to 

quantitatively assess the antisense activity of the PNA-oligoguanidinium conjugates 

previously described.47 This work was done in collaboration with Dr. Takehiko 

Shiraishi (Prof. Nielsen’s group). 

Thus, the antisense splice correction of the aberrant globin intron was determined by 

measuring luciferase activity in HeLa pLuc 705 cells. This intron insertion to luciferase 

gene comes from a naturally occurring mutation in salacemia patients. In normal 

splicing, pre-mRNA introns are removed and the exons are joined. This gives rise to 

the final mRNA, which contains the information to be translated into the 

corresponding protein. HeLa pLuc 705 cells carry a luciferase gene interrupted with a 

mutated β-globin intron, which causes aberrant splicing of luciferase mRNA, and 

subsequently prevents translation of luciferase. Selective targeting of this aberrant 

intron using the complementary oligonucleotide sequence induces the correct splicing 

and thus leads to recovery of the luciferase activity (Figure 6). The amount of luciferase 

protein after incubation (measured luminescent activity by using the enzyme substrate 

luciferin) is directly related with the splice correction, and thus with the antisense 

activity of the PNA-oligoguanidinium conjugate. The targeting PNA sequence used for 

the splice correction was CCT CTT ACC TCA GTT ACA.36,39 

                                                           
47 (a) Kang, S. H.; Cho, M. J.; Kole, R. Biochemistry 1998, 37, 6235-6239. (b) Kang, S. H.; Zirbes, 

E. L.; Kole, R. Antisense Nucleic Acid Drug Dev. 1999, 9, 497-505. 
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Normal splicing
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Figure 6. Mechanism of normal cellular splicing, abnormal splicing and splicing correction mediated by 

PNA recognition. 

 

Initially, a range of oligoguanidinium-PNA conjugates were tested by varying the 

number of bicyclic guanidinium moieties (from 1 to 4), and with each bearing the 

highly hydrophobic TBPDS protecting group. These conjugates were compared with 

an octaarginine-PNA construct (a CPP commonly used for transfection) and with a 

more hydrophilic triguanidinium-PNA conjugate bearing a triethyleneglycol chain at 

the end of the oligomer. As observed in Figure 7, tetraguanidinium-PNA conjugate 54 

showed the highest antisense activity, about 5-fold superior than the octaarginine-PNA 

(R8-PNA). As the number of guanidines increases in the sequence, the antisense 

activity also rises. The triguanidinium-PNA conjugate 49e with the terminal 

triethyleneglycol was noticeably less active than the corresponding TBDPS protected 

one. This suggests that not only the number of bicyclic guanidinium moieties affects in 

the cellular uptake of these constructs, but also its hydrophobicity. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



2.3 Internalization and Antisense Properties Determined by Luciferase Assay 

 

101 

PNA conc.

0

2000

4000

6000

8000

10000

12000

TBDPSO-BG1 TBDPSO-BG2 TBDPSO-BG3 TBDPSO-BG4 eg-BG3- R8-

L
u

c
if

e
ra

s
e

 (
R

L
U

/w
e

ll
)

0.2 μM

0.6 μM

2 μM

6 μM

0.2μM + CQ

0.6μM + CQ

2μM + CQ

6μM + CQ

 

Figure 7. Relative cellular luciferase antisense activity in HeLa pLuc705 cells of oligoguanidinium-PNA 

conjugates with different number of bicyclic guanidinium monomers. 

 

The experiments were also performed in presence of chloroquine (CQ), a well-

known endosomal disrupting agent (Figure 7). As expected, the antisense activity of 

the corresponding PNA-conjugates increased upon addition of chloroquine, although 

for tetraguanidinium-PNA 54 the effect was less pronounced (only 2-fold increase, as 

compared with the antisense activity in absence of chloroquine). This likely indicates 

that this conjugate facilitates endosomal escape by its own or it crosses the membrane 

through a non-endosomal pathway. The octaarginine-PNA reference compound 

showed a higher activity enhancement upon chloroquine addition, confirming that 

cellular entry mechanism for this cell penetrating peptide is mainly endosomal. 

As the cellular uptake trend clearly indicates a higher antisense activity upon 

increasing the number of guanidinium moieties, it seemed feasible that TBDPS 

protected pentaguanidinium-PNA 56 shows higher luciferase activity than the 

corresponding tetraguanidinium one. However, when comparing the different 

oligoguanidinium-PNA conjugates bearing the TBDPS protecting group, the 

tetraguanidinium-PNA still showed the highest activity (Figure 8). Cell viability 

experiments (Figure 9) demonstrated that the pentaguanidinium-PNA conjugate was 

toxic at higher concentrations (6 μM), thus explaining the decrease in antisense activity. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 2 

 

102 

These oligoguanidinium-based PNA conjugates were compared to the Tat-Deca-PNA 

conjugate, which contains Tat peptide (a well-known cell penetrating peptide) bound 

to the PNA oligomer and a decanoic acid coupled to the ε-amine of a central lysine. 

This type of cationic peptide-lipid hybrid (CatLip) has been reported to improve 

cellular uptake of PNA and enhance its antisense activity. In fact, this specific 

conjugate was evaluated along with other CPP-PNA and CatLip-PNA conjugates, 

showing superior luciferase activity.36 As depicted in Figure 6, the tetraguanidinium-

PNA conjugate exhibits higher antisense activity than the corresponding Tat-Deca-

PNA conjugate. Hence, oligoguanidinium vectors can be considered as promising 

internalizing carriers for the cellular uptake of peptide nucleic acids with antisense 

activity. 
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Figure 8. Relative cellular luciferase antisense activity in HeLa pLuc705 cells of oligoguanidinium-PNA 

conjugates with different number of bicyclic guanidinium monomers. 
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Figure 9. Cellular viabilities analyzed by MTS assay (Promega) (values normalized to the average value of 

non-PNA treated sample).  
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RT-PCR (Reverse Transcription PCR) measurements were performed to 

quantitatively assess the amount of mRNA corrected by the antisense activity of the 

PNA conjugates (Figure 10). This technique is based on the separation and the reverse 

transcription of the RNA present in the cell into DNA. Subsequently, this DNA is 

amplified by PCR, analyzed by gel electrophoresis and quantified. As a result, the 

splicing correction ratio and thus the efficiency of the process are assessed by 

measuring the amount of corrected and uncorrected mRNA. 

TBDPSO-BG4-PNA Tat-Deca-PNA

( M )   0   1   2   3   4   5   6   1   2   3   4   5   6 
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Figure 10. Antisense activities of Tat-Deca-PNA and TBDPSO-BG4-PNA (54) measured by RT-

PCR. 

 

As shown in Figure 10, splice correction with Tat-Deca-PNA appears to be more 

efficient than with the tetraguanidinium-PNA conjugate 54. Nevertheless, melting 

temperatures (Tm) of the corresponding DNA/PNA hybrids indicated that Tat-Deca-

PNA shows higher affinity for the target DNA sequence than the unmodified PNA 

sequence or the tetraguanidinium-PNA conjugate (Table 4). This suggests that the 

affinity for targeting the corresponding DNA or RNA sequence increases upon 

increasing the number of positive charges present in the sequence (8 charges for Tat 

peptide vs. 4 for the tetraguanidinium molecule). Hence, we possibly overestimate the 

splicing correction efficiency, since these PNA sequences, and especially Tat-Deca-

PNA, can strongly bind to the uncorrected mRNA and DNA sequence and inhibit its 

reverse transcription and PCR amplification, respectively. 
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Table 4. Melting temperatures of the PNA hybrids with its complemetary sequence. 

PNA Tm (ºC)

Unmodified PNA 68.0

TBDPS-BG4-PNA 72.1

Tat-Deca-PNA 78.2

 

 

To assess the influence of hydrophobic groups at the end of oligoguanidinium-PNA 

conjugates, the antisense activity of a range of triguanidinium-PNA compounds was 

evaluated and compared with 54 and Tat-Deca-PNA. These conjugates only differed in 

the group attached at the end of the oligomer. As illustrated in Figure 11, the best 

luciferase activity was reached for the triguanidinium compound bearing a terminal 

decyl chain (49b). Indeed, at lower concentrations the deca-triguanidinium-PNA 

showed higher activity than the TBDPS protected one at 6 μM. However, upon 

increasing the concentration to 4 μM, the antisense activity drops, thus suggesting an 

increase in cytotoxicity. 
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Figure 11. Relative luciferase antisense activity of oligoguanidinium-PNA conjugates with different 

lipophilic substituents. 
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In conclusion, we have been able to determine and optimize some structural 

parameters essential in the cellular uptake by measuring the antisense activity of a set 

of oligoguanidinium-PNA conjugates. Four bicyclic guanidinium subunits seem to be 

the optimal length to afford an efficient internalization without compromising cell 

viability. On the other hand, hydrophobic groups such as TBDPS are required for the 

efficient cellular entry of these molecules, although a decyl alkyl chain appears to be a 

good alternative as shown with the triguanidinium-PNA series. Therefore, 

tetraguanidinium-PNA conjugates bearing a decyl alkyl chain could be good future 

candidates to achieve higher antisense activity at lower concentrations. 
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2.4 Aggregation Studies and Internalization Mechanistic 
Interpretations 

 

Luciferase activity assays reveal a concentration dependence of the activities of the 

TBDPS-(BG)4-PNA conjugate. At 2 μM, the compound showed almost no activity in 

contrast with the experiment run at 6 μM concentration. In a more detailed study from 

0 to 6 μM (Figure 12), the Tat-Deca-PNA conjugate showed typical concentration vs. 

activity response compared with other conjugates previously reported, whereas the 

tetraguanidinium conjugate 54 exhibited an abrupt increase in activity. These antisense 

splice correction assays pointed to a cooperative mechanism in the internalization of 

these conjugates. Since these TBDPSO-oligoguanidinium-PNA oligomers are 

amphiphilic compounds able to self-assemble, the formation of higher aggregates 

could explain the anomalous increment in activity observed in the 0-6 μM range 

(Figure 10). Indeed, this effect has been previously described for similar modified 

PNAs with analogous physicochemical properties.48 
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Figure 12. Proposed aggregation mechanism for oligoguanidinium-PNA conjugates (left). Antisense activity 

jump in the concentration range studied (right). 

 

                                                           
48 (a) Lau, C.; Bitton, R.; Bianco-Peled, H.; Schultz, D. G.; Cookson, D. J.; Grosser, S. T.; 

Schneider, J. W. J. Phys. Chem. B 2006, 1110, 9027-9033. (b) Shen, G.; Fang, H.; Song, Y.; 

Bielska, A. A.; Wang, Z.; Taylor, J-S. A. Bioconjugate. Chem. 2009, 20, 1729-1736. 
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A series of experiments were setup for studying both the formation and the 

properties of these complexes. Dynamic light scattering (DLS) experiments were 

performed to measure the diffusion coefficient and thus the hydrodynamic radius of 

the particles formed by aggregation of the TBDPSO-(BG)4-PNA conjugate 54 (Figure 

13). 
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Figure 13. Particle size distribution histograms of the oligoguanidinium-PNA conjugate 54 at different 

concentrations. PI refers to the polydispersity index. 

 

Concentration dependent experiments with aqueous solutions of 54 (from 2-12 μM) 

were analyzed by dynamic light scattering. Large particles were observed in samples 

with concentrations higher than 4 μM (Figure 13). Upon increasing the concentration, 

the polydispersity index drops, giving rise to well-defined aggregates with an average 

diameter of ca. 220 nm. Below this critical concentration, no aggregate or particle with 
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a considerable size could be detected. Indeed, at this concentration range the 

tetraguanidinium-PNA conjugate showed an increased antisense activity, suggesting a 

cooperative cellular uptake mechanism where the oligoguanidinium-PNA molecules 

interact and self-assemble, forming a supramolecular aggregate, which could be 

responsible for promoting efficient cell entry. 

Transmission electron microscopy (TEM) was used to study these tetraguanidinium-

PNA aggregates in more detail. This technique has enough resolution to distinguish 

the nanoparticles previously detected by DLS. A concentrated aqueous solution was 

deposited on a copper conducting film and allowed to slowly evaporate to dryness. 

The film was stained with ammonium phosphomolybdate as contrasting agent to 

improve the sharpness of the images. As shown in Figure 14, some micelle-like 

spherical aggregates of different sizes were formed. The larger ones (between 600 and 

1000 nm in diameter) differ from the values obtained in solution by dynamic light 

scattering. However, there are also smaller aggregates (between 150 and 250 nm) of 

more consistent sizes with our data (Figure 13). These differences in size could be 

explained by the loss of solvent during the deposition process. Under such conditions, 

the sample concentration, which is an essential factor for the formation of these 

supramolecular structures, is not controlled. Thus, it is expected that more 

heterogeneous aggregates are formed. 

 

Figure 14. TEM images of the micellar-like aggregates using phosphomolybdate as a contrast agent. The 

two predominant particle sizes are shown in the expansion. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



2.4 Aggregation Studies and Internalization Mechanistic Interpretations 

 

109 

 

 

Figure 15. TEM pictures of the smaller micellar aggregates. 

 

In summary, the formation of spherical micellar-like aggregates by the interaction 

and self-association of a TBDPS-(BG)4-PNA compound has been demonstrated, both 

by dynamic light scattering (DLS) and TEM imaging. The diameter of these particles is 

ca. 200 nm in aqueous media in the concentration range studied. At lower 

concentrations (≤ 3.5 μM) aggregation does not occur, in agreement with the data 

from the antisense activity tests. This could explain the cellular uptake mechanism for 

the tetraguanidinium-PNA conjugate, thus justifying the gap in activity previously 

observed at certain concentrations. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 2 

 

110 

2.5 Novel Chiral Bicyclic Guanidinium Monomer for Solid-Phase 

Synthesis 

 

In view of the encouraging results obtained with these oligoguanidinium-PNA 

conjugates, we proposed to expand the number of these hybrids with the intention of 

improving their activity as antisense agents. Inspired by previous attempts in our 

research group49 and owing to PNA constructs are traditionally synthesized through 

solid-phase synthesis,4b,50 we designed compound 57, which can be used as a 

“unnatural amino acid” monomer for solid-phase synthesis. With this molecule in 

hand, we would be able to easily afford bicyclic guanidinium oligomers directly 

attached to PNAs (or any peptide in general). In contrast with the original 

oligoguanidinium salts, the bicyclic guanidinium moiety is not linearly oriented but 

stays branched which respect to the linear peptide sequence as a non-natural side-chain 

amino acid. Within this context, it can be considered as an artificial Boc-arginine 

analog. This new class of oligomers would present different properties and thus they 

may improve the internalization of the corresponding PNA conjugates. Moreover, it 

would allow the facile and sequential introduction of different spacers, functionalities 

and other amino acids, increasing exponentially the synthetic possibilities. 

The synthesis of this new bicyclic guanidinium monomer is based on the attachment 

of a Boc-cysteine with mesylate 2 in the presence of Cs2CO3, giving rise to 57 in gram 

scale and good yields (Scheme 6). 

 

 

 

                                                           
49 Martos, V.; Castreño, P.; Royo, M.; Albericio, F.; de Mendoza, J. J. Comb. Chem. 2009, 11, 

410-421. 

50 de Koning, M. C.; van der Marel, G. A.; Overhand, M. Curr. Op. Chem. Biol. 2003, 7, 734-740. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Martos%20V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Castre%C3%B1o%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Royo%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Albericio%20F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22de%20Mendoza%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/19267477


2.5 Novel Chiral Bicyclic Guanidinium Monomer for Solid Phase Synthesis 

 

111 

 

Scheme 6. Synthesis of bicyclic guanidinium monomer 57. Conditions: i) 3 eq. of Cs2CO3, 1.3 eq. of Boc-

cysteine in THF/MeOH (3:1), under N2. 

 

One of the inconveniences of this synthesis relies on the removal of the TBDPS 

group upon cleavage of the polymeric resin support with trifluoroacetic acid. As 

previously commented, silyl protected oligoguanidinium-PNA conjugates showed 

higher antisense activity than the non-protected ones. However, this can be easily fixed 

by the introduction of non-labile lipophylic groups. Indeed, this synthetic strategy not 

only can be applied on the TBDPS protected monoguanidinium molecule but also 

with other functionalized monoguanidines and oligoguanidinium compounds by 

attaching them to a Boc-cysteine. 

To conclude, bicyclic guanidinium monomer 57 has been successfully used for the 

solid-phase synthesis of new PNA conjugates bearing up to seven of these 

guanidinium subunits with and without linkers (6-aminohexanoic acid) connecting the 

monomers. This work has been performed by Ms. Jolanta Barbara Ludvigsen under 

the supervision of Prof. Peter E. Nielsen. Determination of the antisense activity of 

these new oligoguanidinium-PNA conjuguates is currently under evaluation. 
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2.6 Antibacterial Oligoguanidinium-PNA Conjugates  

 

Peptide nucleic acids have been widely studied as gene targeting therapeutic agents, 

able to inhibit or enhance gene expression by both antigene and antisense mechanisms 

(affecting transcription or translation processes, respectively).51 One promising 

application is bacterial growth inhibition by targeting mRNA and ribosomal RNA.52  

Antisense inhibition requires efficient cellular uptake, and delivery across bacterial 

cell walls constitutes one of the major drawbacks for these oligonucleotides mimics.27 

To explore the antisense activity of oligoguanidinium-PNA conjugates in bacteria, a 

range of constructs targeting an essential mRNA sequence for E. coli was synthesized. 

The PNA compounds were designed to bind strongly to the mRNA sequence of the 

acpP gene (Figure 16), inhibiting its correct translation and thus the biosynthesis of 

molecules such as fatty acids, crucial for bacterial development. 

Chromosomal acpP mRNA

Oligoguanidinium-PNA conjugate

TCTCATACTC-eg1-pentaguanidinium-OTBDPS

5’…AUUUAAGAGUAUGAGCACUA…3’

 

Figure 16. PNA sequence alignment with chromosomal acpP mRNA target. 

 

2.6.1 Synthesis of the Antibacterial Oligoguanidinium-PNA Conjugates 

A series of TBDPS protected oligoguanidinium molecules were successfully attached 

to the PNA oligomer, which targets the mRNA of the acpP gene. These PNA 

compounds differed in the nature of the linker between the bicyclic guanidinium 

                                                           
51 For reviews see: (a) Nielsen, P. E. Pharm. Toxicol. 2000, 86, 3-7. (b) Zaffaroni, N.; Villa, R.; 

Folini, M. Lett. Pept. Sci. 2004, 10, 287-296. (c) Braasch, D. A.; Corey, D. R. Biochemistry 2009, 41, 

4503-4510. 

52 Hatamoto, M.; Ohashi, A.; Imachi, H. Appl. Microbiol. Biotechnol. 2010, 86, 397-402. 
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oligomer and the peptide nucleic acid (from a simple ethyleneglycol linker (eg1) to an 

extended one with phenylalanine and glycine (Phe-Gly-eg1)). Mismatch PNA 

compounds were also linked to the corresponding oligoguanidinium vectors to 

determine sequence-specificity inhibition. These mismatch conjugates would serve as 

controls to evaluate possible side effects caused by the oligoguanidinium moiety on E. 

coli and to further support the antisense inhibitory mechanism. 

Therefore, TBDPS-protected tri-, tetra- and pentaguanidinium molecules were 

attached to the terminal cysteine residue present in the antibacterial PNA sequence by 

using the same synthetic strategy and reaction conditions as previously shown. Semi-

preparative-HPLC purification and subsequent lyophilization of the polar solvent 

mixture afforded compounds 58 to 67. 

 

2.6.2 Antibacterial Activity Evaluation of the Conjugates Targeting E. coli 

The antibacterial potency of the oligoguanidinium-PNA conjugates targeting 

chromosomal acpP mRNA in E. coli was evaluated (Table 5). This work was performed 

by Mr. Anubrata Ghosal under the supervision of Prof. Peter E. Nielsen. MIC 

(Minimum Inhibitor Concentration) values, determined for each of the conjugates, 

clearly confirmed efficient antibacterial activity. As expected, mismatch conjugates 

showed almost no activity. By increasing the number of bicyclic guanidine moieties 

from tri- to pentaguanidinium oligomer, the activity also increases. This antibacterial 

effect enhancement suggested more efficient cellular uptake for the PNA conjugates 

bearing longer guanidinium oligomers. As for luciferase antisense assays, previously 

described, these molecular vectors efficiently assist the internalization of the PNA 

conjugates. In those assays, a decrease in activity was observed for the 

pentaguanidinium conjugates with respect to the tetraguanidinium analogous, probably 

due to their inherent increase in toxicity (see Figure 9, in section 2.3). Nonetheless, 

different cellular systems have been examined in each case (HeLa cells and E. coli, 

respectively), suggesting also different internalization mechanisms and toxicity. In 

addition, lower concentrations were required to induce the antibacterial effect (beyond 
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the minimum oligoguanidinium-PNA concentration necessary to induce toxicity for 

HeLa cells, Figure 9, in section 2.3). MIC values from the oligoguanidinium-PNA 

mismatch conjugates accounted for sequence-specificity inhibition and thus the 

antibacterial effect observed is driven by the specific PNA targeting and not by the 

guanidinium oligomer or the mismatch PNA sequence. Finally, conjugates containing 

longer linkers between the PNA sequence and the tetraguanidinium moiety showed 

lower MIC values than those with the ethyleneglycol connection (0.1 and 0.3 µM, 

respectively). This antibacterial enhancement can be attributable to two factors: a 

better cellular uptake and/or a stronger sequence affinity for the target mRNA. 

 

Table 5. Oligoguanidinium-PNA sequences tested and MIC values for E. coli. PNA (Target) CTC 

ATA CTC T; PNA (Mismatch) CTC TTA CAC T. 

PNA # PNA sequence Gene Target
Bacteria 

Target
MIC (µM)

58 TBDPSO-(BG)3-eg1-PNA (Target) acpP
E. Coli

(MG1655)
>0.5

59 TBDPSO-(BG)3-eg1-Phe-Gly-PNA (Target) acpP “ 0.5

60 TBDPSO-(BG)4-eg1-PNA (Target) acpP “ 0.5

61 TBDPSO-(BG)4-eg1-PNA (Mismatch) --- “ >0.5

62 TBDPSO-(BG)4-eg1-Phe-Gly-PNA (Target) acpP “ 0.3

63 TBDPSO-(BG)4-eg1-Phe-Gly-PNA (Mismatch) --- “ >0.5

64 TBDPSO-(BG)5-eg1-PNA (Target) acpP “ 0.1

65 TBDPSO-(BG)5-eg1-PNA (Mismatch) --- “ >0.5

66 TBDPSO-(BG)5-eg1-Phe-Gly-PNA (Target) acpP “ 0.1

67 TBDPSO-(BG)5-eg1-Phe-Gly-PNA (Mismatch) --- “ >0.5

 

Representative growth curves accounting for the antibacterial response of 

pentaguanidinium-PNA conjugates towards E. coli are depicted below (Figure 17). No 

growth inhibition was observed using the scrambled PNA control conjugate (67), 

whereas the anti-acyl carrier protein (ACP) pentaguanidinium-PNA clearly showed 

complete growth inhibition upon addition of 300 nM of the corresponding conjugate. 
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Figure 17. Growth curves of E. coli K12 treated with pentaguanidinium-PNA conjugates incorporating the 

mismatch (left) and the target (right) sequences. 

 

Compared with a similar antibacterial anti-acpP peptide-PNA (MIC value of 0.8 µM) 

which contains a cationic cell penetrating peptide (KFFKFFKFFK),28a,b,d the 

oligoguanidinium-PNA conjugates here described showed lower MIC values (ca. 0.1 

µM) and have thus more potent antibacterial effect in full-strength Mueller-Hilton 

(MH) broth.  

In conclusion, we have demonstrated the practical use of oligoguanidinium-PNA 

conjugates as antibacterial agents with promising gene therapeutic antisense 

applications. They show remarkably higher antibacterial activity than the peptide-PNA 

conjugates reported to date. Issues concerning their bioavailability, human and animal 

toxicity, and pharmacokinetic behavior remain to be addressed. Nevertheless, this 

opens the possibility towards the use of these PNA-based vectors not only for 

targeting bacterial growth but also for other biologically relevant systems. 
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2.7 Experimental Section 

 

General procedure for compounds 39 a-c. Compound 39b 

To a stirred solution of 1-decanethiol (130 µL, 0.61 mmol) in dry MeOH (5 mL) t-

BuOK (85 mg, 0.76 mmol) was added under N2, and subsequently 2 (200 mg, 0.30 

mmol) in dry THF (10 mL). The resulting mixture was stirred for 4 h at room 

temperature. The solvent was removed and the solid residue was dissolved in CH2Cl2 

(30 mL) and washed with a solution of 0.1N NH4PF6 (2  30 mL). The organic phase 

was filtered over cotton and concentrated in vacuo to give a crude residue which was 

purified by silica gel column chromatography (CH2Cl2/MeOH, 100:0 98:2), 

affording 39b (226 mg, quantitative) as a white solid. 

 

(39a): 1H-NMR (400 MHz, CDCl3) δ 7.67-7.61 (m, 4H, CHAr), 7.50-7.41 (m, 6H, 

CHAr), 6.29 (s, 1H, NH), 6.14 (s, 1H, NH), 3.77-3.65 (m, 2H, CH2OSi), 3.61-3.50 (m, 

2H, CHα ), 3.41-3.26 (m, 4H, CH2γ), 2.76 (dd, J = 5.7, 13.8 Hz, 1H, CH2S), 2.64 (dd, J 

= 8.0, 13.8 Hz, 1H, CH2S), 2.57 (t, J = 7.4 Hz, 2H, SCH2hex), 2.24-2.14 (m, 1H, CH2β), 

2.07-1.88 (m, 3H, CH2β), 1.59-1.55 (m, 2H, CH2hex), 1.43-1.24 (m, 6H, CH2hex), 1.09 (s, 

9H, CH3t-Bu), 0.90 (t, J = 6.8 Hz, 3H, CH3hex). 13C-NMR (100 MHz, CDCl3) δ 150.4 

(Cguan), 135.6, 135.5 (CHAr), 132.6, 132.5 (CAr), 130.1, 128.0 (CHAr), 65.5 (CH2OSi), 

50.2, 48.5 (CHα ), 45.6, 45.3 (CH2γ), 36.3 (CH2S), 32.6 (SCH2hex), 31.4, 29.5, 28.4 

(CH2hex), 26.8 (CH3t-Bu), 25.2 (CH2β), 22.6, 22.5 (CH2β), 19.2 (Ct-Bu), 14.0 (CH3hex). 

HRMS calcd. for [C31H48N3OSSi]+ 538.3290; found 538.3292. 

 

(39b): 1H-NMR (400 MHz, CDCl3) δ 7.68-7.62 (m, 4H, CHAr), 7.50-7.40 (m, 6H, 

CHAr), 6.23 (s, 1H, NH), 6.07 (s, 1H, NH), 3.76-3.65 (m, 2H, CH2OSi), 3.61-3.49 (m, 
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2H, CHα ), 3.40-3.26 (m, 4H, CH2γ), 2.75 (dd, J = 5.5, 13.5 Hz 1H, CH2S), 2.63 (dd, J = 

8.1, 13.5 Hz 1H, CH2S), 2.56 (t, J = 7.5 Hz, 2H, SCH2dec), 2.25-2.14 (m, 1H, CH2β), 

2.09-1.87 (m, 3H, CH2β), 1.63-1.55 (m, 2H, CH2dec), 1.46-1.26 (m, 14H, CH2dec), 1.09 (s, 

9H, CH3t-Bu), 0.90 (t, J = 6.8 Hz, 3H, CH3dec). 13C-NMR (100 MHz, CDCl3) δ 150.4 

(Cguan), 135.6, 135.5 (CHAr), 132.6, 132.6 (CAr), 130.1, 130.1, 128.0 (CHAr), 65.5 

(CH2OSi), 50.2, 48.5 (CHα ), 45.6, 45.3 (CH2γ), 36.4 (CH2S), 32.6 (SCH2dec), 31.9, 29.6, 

29.6, 29.5, 29.3, 29.2, 28.8 (CH2dec), 26.8 (CH3t-Bu), 25.2 (CH2β), 22.7, 22.6 (CH2β), 19.2 

(Ct-Bu), 14.1 (CH3dec). HRMS calcd. for [C35H56N3OSSi]+ 594.3916; found 594.3895. 

 

(39c): 1H-NMR (400 MHz, CDCl3) δ 7.67-7.60 (m, 4H, CHAr), 7.49-7.37 (m, 6H, 

CHAr), 6.29 (s, 1H, NH), 6.14 (s, 1H, NH), 3.75-3.63 (m, 2H, CH2OSi), 3.60-3.48 (m, 

2H, CHα ), 3.40-3.23 (m, 4H, CH2γ), 2.75 (dd, J = 5.7, 13.6 Hz, 1H, CH2S), 2.62 (dd, J 

= 8.2, 13.5 Hz, 1H, CH2S), 2.55 (t, J = 7.4 Hz, 2H, SCH2tetradec), 2.23-2.12 (m, 1H, 

CH2β), 2.06-1.86 (m, 3H, CH2β), 1.56-1.52 (m, 1H, CH2tetradec), 1.43-1.20 (m, 23H, 

CH2tetradec), 1.07 (s, 9H, CH3t-Bu), 0.88 (t, J = 6.8 Hz, 3H, CH3tetradec). 13C-NMR (100 

MHz, DEPTQ, CDCl3) δ 150.4 (Cguan), 135.6, 135.5 (CHAr), 132.6, 132.6 (CAr), 130.1, 

130.0, 128.0 (CHAr), 65.5 (CH2OSi), 50.2, 48.5 (CHα ), 45.6, 45.3 (CH2γ), 36.3 (CH2S), 

32.6 (SCH2tetradec), 31.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.2, 28.8 (CH2tetradec), 26.8 

(CH3t-Bu), 25.1 (CH2β), 22.7, 22.6 (CH2β), 19.1 (Ct-Bu), 14.1 (CH3tetradec). HRMS calcd. for 

[C39H64N3OSSi]+ 650.4537; found 650.4537. 

 

Compound 39d  
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To a stirred solution of 2 (300 mg, 0.45 mmol) in dry THF (40 mL) a solution of 

thiocholesterol (270 mg, 0.68 mmol) and t-BuOK (76 mg, 0.68 mmol) in THF/MeOH 

(2:1, 15 mL) was added. The resulting mixture was stirred for 4 h at room temperature. 

The solvent was removed and the residue was dissolved in CH2Cl2 and washed with a 

solution of 0.1N NH4PF6. The organic phase was filtered over cotton and 

concentrated in vacuo. Purification by silica gel column chromatography 

(CH2Cl2/MeOH, 100:0 99:1) afforded 39d (410 mg, 93%) as a white solid. 1H-NMR 

(400 MHz, COSY, CDCl3) δ 7.69-7.62 (m, 4 H, CHAr), 7.49-7.39 (m, 6H, CHAr), 6.48 

(s, 1H, NH), 6.29 (s, 1H, NH), 5.39-5.33 (m, 1H, CHchol), 3.74-3.62 (m, 2H, CH2OSi), 

3.60-3.43 (m, 2H, CHα ), 3.38-3.26 (m, 4H, CH2γ), 2.79 (dd, J = 5.7, 13.6 Hz, 1H, 

CH2S), 2.66 (dd, J = 6.2, 13.6 Hz, 1H, CH2S), 2.63-2.53 (m, 1H, CHSchol), 2.30-2.23 (m, 

2H, CH2CHchol), 2.22-2.14 (m, 2H, CH2β), 2.08-1.78 (m, 8H, CH2β, CHchol, CH2chol), 

1.65-1.11 (m, 17H, CH2chol, CHchol, CH2CH), 1.08 (s, 9H, CH3t-Bu), 1.00 (s, 3H, CH3chol), 

1.00-0.90 (m, 1H, CHchol), 0.93 (d, J = 6.6 Hz, 3H, CH3), 0.89 (dd, J = 1.7, 6.6 Hz, 6H, 

CH3), 0.69 (s, 3H, CH3). 13C-NMR (100 MHz, HSQC-DEPTQ, CDCl3) δ 150.4 (Cguan) 

141.2 (C=CH), 135.6, 135.5, 132.6, 132.6, 130.1, 128.0, (CAr, CHAr), 121.4 (CH=C), 

65.5 (CH2O), 56.7, 56.2 (CHchol), 50.2, 50.1 (CHα ), 48.9 (CHchol), 45.6, 45.2 (CH2γ), 

45.0, 42.3 (CHchol), 40.0, 39.7 (CH2chol), 39.5, 39.4 (CH2), 36.8 (CH), 36.2 (CH2), 35.8 

(CH), 34.0, 31.9 (CH2), 31.8 (CH), 29.7 (CH2), 28.2 (CH), 28.0 (CH2), 26.8 (CH3t-Bu), 

25.1, 24.3, 23.9 (CH2), 22.8 (CH3), 22.6 (CH2), 22.6 (CH3), 20.9 (CH2), 19.3 (CH3), 19.2 

(Ct-Bu), 18.7, 11.9 (CH3). ESI-MS m/z 822.7 (M - PF6
–)+. HRMS calcd. for 

[C52H80N3OSSi]+ 822.5791; found 822.5779. 

 

Compound 39e 
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To a stirred solution of triethyleneglycol monomethyl tioacetate (202 mg, 0.91 

mmol) and Cs2CO3 (221 mg, 0.68 mmol) in dry MeOH (10 mL) was added a solution 

of 2 (300 mg, 0.45 mmol) in acetonitrile (20 mL). The resulting mixture was stirred for 

4 h at room temperature. The solvent was removed, and the solid residue dissolved in 

CH2Cl2 (30 mL) and washed twice with a solution of 0.1N NH4PF6 (2 x 30 ml). The 

organic phase was filtered over cotton and concentrated in vacuo. Purification by silica 

gel column chromatography (CH2Cl2/MeOH, 100:0 98:2) afforded 39e (330 mg, 

98%) as a yellowish oil. 1H-NMR (400 MHz, CDCl3) δ 7.67-7.62 (m, 4H, CHAr), 7.58-

7.38 (m, 6H, CHAr), 6.86 (s, 1H, NH), 6.42 (s, 1H, NH), 3.79-3.49 (m, 14H, CH2OSi, 

CH2Ogly, CH3Ogly, CHα ), 3.43-3.27 (m, 9H, CH2Ogly CH2γ), 2.93-2.69 (m, 4H, CH2S, 

SCH2gly), 2.12-1.98 (m, 2H, CH2β), 1.95-1.83 (m, 2H, CH2β), 1.09 (s, 9H, CH3t-Bu). 13C-

NMR (100 MHz, CDCl3) δ 150.6 (Cguan), 135.5, 135.5 (CHAr), 132.7, 132.6 (CAr), 130.1, 

130.1, 128.0, 127.9 (CHAr),71.9, 71.3, 70.9, 69.6, 69.6 (CH2Ogly), 65.8 (CH2OSi), 58.5 

(OCH3gly) 50.3, 48.8 (CHα ), 45.5, 45.2 (CH2γ), 37.1 (CH2S), 32.2 (SCH2gly), 26.8 (CH3t-

Bu), 25.4 (CH2β), 22.6 (CH2β), 19.2 (Ct-Bu). ESI-MS m/z 600.3 (M - PF6
–)+. 

 

General procedure for compounds 40 a-c. Compound 40a 

Compound 39a (155 mg, 0.23 mmol) was dissolved in dry THF (15 mL). Then, 1M 

THF TBAF solution (680 µL, 0.68 mmol was added and the mixture was stirred 

overnight under inert atmosphere. The solvent was removed under vacuum and the 

compound was redissolved in CH2Cl2 (25 mL) and washed with a solution of 0.1N 

NH4PF6 (15 mL). The aqueous phase was extracted back with CH2Cl2 (2 x 20 mL) and 

CHCl3 (20 mL). The organic phases were mixed and filtered over cotton, and then 

concentrated in vacuo to give a crude residue which was purified by silica gel column 

chromatography (CH2Cl2/MeOH, 100:0 95:5), to give 40a (90 mg, 89%) as a 

yellowish oil.  
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(40a): 1H-NMR (400 MHz, CDCl3) δ 6.60 (s, 1H, NH), 6.38 (s, 1H, NH), 3.71-3.60 

(m, 2H, CH2OSi), 3.58-3.43 (m, 2H, CHα ), 3.40-3.19 (m, 4H, CH2γ), 2.75 (dd, J = 6.0, 

13.6 Hz, 1H, CH2S), 2.60 (dd, J = 7.8, 13.6 Hz, 1H, CH2S), 2.51 (t, J = 7.5 Hz, 2H, 

SCH2hex), 2.21-2.00 (m, 2H, CH2β), 1.95-1.80 (m, 2H, CH2β), 1.63-1.56 (m, 2H, CH2hex), 

1.33-1.27 (m, 4H, CH2hex), 0.91 (t, J = 6.8 Hz, 3H, CH3hex). 13C-NMR (100 MHz, 

DEPTQ, CDCl3) δ 151.1 (Cguan), 64.4 (CH2OH), 50.6, 48.3 (CHα ), 45.7, 45.4 (CH2γ), 

36.8 (CH2S), 32.7 (SCH2hex), 31.4, 30.9, 29.6, 28.5 (CH2hex), 25.5 (CH2β), 22.7 (CH2β), 

22.5 (CH2hex), 14.0 (CH3hex). HRMS calcd. for [C15H30N3OS]+ 300.2110; found 

300.2114. 

 

(40b): 1H-NMR (400 MHz, CDCl3) δ 6.62 (s, 1H, NH), 6.38 (s, 1H, NH), 3.85 (d, J = 

7.8 Hz, 1H, CH2OH), 3.67-3.30 (m, 7H, CH2OH, CHα, CH2γ), 2.73 (dd, J = 6.0, 13.7 

Hz, 1H, CH2S), 2.62 (dd, J = 7.9, 13.7 Hz, 1H, CH2S), 2.55 (t, J = 7.5 Hz, 2H, 

SCH2dec), 2.19-2.00 (m, 2H, CH2β), 1.96-1.77 (m, 2H, CH2β), 1.62-1.55 (m, 2H, CH2dec), 

1.39-1.28 (m, 14H, CH2dec), 0.90 (t, J = 6.8 Hz, 3H, CH3dec). 13C-NMR (100 MHz, 

DEPTQ, CDCl3) δ 151.0 (Cguan), 64.4 (CH2OH), 50.5, 48.2 (CHα ), 45.7, 45.4 (CH2γ), 

36.7 (CH2S), 32.6 (SCH2dec), 31.9, 29.7, 29.6, 29.3, 29.3, 28.8 (CH2dec), 25.5 (CH2β), 22.7 

(CH2dec), 22.7 (CH2β), 14.1 (CH3dec). HRMS calcd. for [C19H38N3OS]+ 356.2736; found 

356.2753. 

 

(40c): 1H-NMR (400 MHz, CDCl3) δ 6.61 (s, 1H, NH), 6.42 (s, 1H, NH), 3.75-3.63 

(m, 2H, CH2OSi), 3.60-3.48 (m, 2H, CHα ), 3.40-3.23 (m, 4H, CH2γ), 2.75 (dd, J = 5.7, 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



2.7 Experimental Section 

 

121 

13.6 Hz, 1H, CH2S), 2.62 (dd, J = 8.2, 13.5 Hz, 1H, CH2S), 2.55 (t, J = 7.4 Hz, 2H, 

SCH2tetradec), 2.23-2.12 (m, 1H, CH2β), 2.06-1.86 (m, 3H, CH2β), 1.56-1.52 (m, 1H, 

CH2tetradeca), 1.43-1.20 (m, 23H, CH2tetradeca), 1.07 (s, 9H, CH3t-Bu), 0.88 (t, J = 6.8 Hz, 

3H, CH3tetradeca). 13C-NMR (100 MHz, DEPTQ, CDCl3) δ 151.0 (Cguan), 64.4 (CH2OH), 

50.5, 48.3 (CHα ), 46.0 (CH2γ), 36.9 (CH2S), 32.7 (SCH2tetradeca), 31.9, 29.7, 29.7, 29.6, 

29.4, 29.3, 29.2, 29.1, 28.9 (CH2tetradeca), 26.2 (CH2β), 22.7 (CH2β), 14.2 (CH3tetradeca). 

HRMS calcd. for [C23H46N3OS]+ 412.3362; found 412.3369. 

 

Compound 40d  

 

To a solution of 39d (200 mg, 0.21 mmol) in dry THF (20 mL) HF/Py (70%, 1.3 

mL) was added dropwise at 0ºC. The resulting mixture was stirred overnight at room 

temperature. The solvent was removed and the crude was redissolved in CH2Cl2. After 

neutralization with an aqueous saturated solution of Na2CO3, the organic phase was 

collected, filtered over cotton and evaporated again. The final residue was purified by 

silica gel column chromatography (CH2Cl2/MeOH, 97:3  95:5), affording 40d (136 

mg, 90%) as a yellowish oil. 1H-NMR (500 MHz, COSY, CDCl3) δ 6.79 (s, 1H, NH), 

6.57 (s, 1H, NH), 5.35 (d, J = 5.1 Hz, 1H, CHchol), 3.80 (br s, 1H, OH), 3.58 (dd, J = 

7.6, 18.7 Hz, 2H, CH2OH), 3.49-3.41 (m, 2H, CHα ), 3.40-3.20 (m, 4H, CH2γ), 2.76 (dd, 

J = 6.6, 13.5 Hz, 1H, CH2S), 2.70 (dd, J = 7.2, 13.5 Hz, 1H, CH2S), 2.57 (m, 1H, 

CHSchol), 2.28-2.14 (m, 4H, CH2CHchol), 2.01-1.77 (m, 12H, CH2β, CH2chol), 1.55-1.20 

(m, 11H, CH2CHchol, CH2chol, CHchol), 1.18-1.09 (m, 1H, CHchol), 1.00-0.92 (m, 4H, 

CH2chol, CHchol), 0.98 (s, 3H, CH3), 0.91 (d, J = 6.5 Hz, 3H, CH3), 0.87 (d, J = 6.6 Hz, 

3H, CH3), 0.86 (d, J = 6.6 Hz, 3H, CH3), 0.66 (s, 3H, CH3). 13C-NMR (125 MHz, 

DEPT, CDCl3) δ 150.7 (Cguan) 141.1 (C=CH), 121.4 (CH=C), 64.6 (CH2O), 56.7 
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(CHchol), 56.2 (CHchol), 50.2 (CHα ), 48.5 (CHchol), 45.6, 45.4 (CH2γ), 44.8, 42.3 (CHchol), 

39.8, 39.7 (CH2chol), 39.5, 39.4 (CH2), 36.8 (CH), 36.2 (CH2), 35.8 (CH), 34.6, 31.8 

(CH2), 31.7 (CH), 29.8 (CH2), 28.2 (CH), 28.0, 25.5, 24.3, 23.8 (CH2), 22.7 (CH3), 22.5 

(CH2), 22.46 (CH3), 20.9, 19.3 (CH2), 18.7, 11.8 (CH3). ESI-MS m/z 584.5 (M - PF6
–)+. 

HRMS calcd.for [C36H62N3OS]+ 584.4613; found 584.4633. 

 

Compound 40e 

 

A solution of 39e (330 mg, 0.34 mmol) and TBAF (1M THF solution, 1.02 mL, 1.02 

mmol) in THF (20 mL) was stirred overnight. The solvent was removed and the crude 

dissolved in CH2Cl2 (30 mL) and washed with a 1N NH4PF6 (10 mL) solution. The 

organic phase was filtered over cotton and concentrated in vacuo to give a crude residue 

which was purified by silica gel column chromatography (CH2Cl2/MeOH, 100:0  

96:4), giving rise to 40e (135 mg, 78%) as a yellowish oil. 1H-NMR (400 MHz, CDCl3) 

δ, 6.82 (s, 1H, NH), 6.76 (s, 1H, NH), 3.84-3.53 (m, 15H, CH2OSi, CH2Ogly, CH3Ogly, 

CHα ), 3.52-3.32 (m, 8H, CH2Ogly CH2γ), 2.86 (dd, J = 5.0, 14.0 Hz, 1H, CH2S), 2.79 (q, 

J = 5.0 Hz, 2H, SCH2gly), 2.71 (dd, J = 8.2, 14.1 Hz, 1H, CH2S) 2.21-2.11 (m, 1H, 

CH2β), 2.07-1.98 (m, 1H, CH2β), 1.96-1.82 (m, 2H, CH2β). 13C-NMR (100 MHz, 

CD3OD) δ 150.6 (Cguan), 71.6, 70.9, 69.8, 69.7, 69.1 (CH2Ogly), 63.8 (CH2OH), 57.8 

(OCH3gly) 50.3, 48.1 (CHα ), 45.2, 45. (CH2γ), 36.7 (CH2S), 31.5 (SCH2gly), 25.5 (CH2β), 

22.5 (CH2β). ESI-MS m/z 362.2 (M - PF6
–)+. 
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General procedure for compounds 41 a-c. Compound 41b 

To a solution of 40b (118 mg, 0.24 mmol) and NMM (157 µL, 1.41 mmol) in dry 

THF (15 mL) was added Ms2O (164 mg, 0.94 mmol). The reaction mixture was stirred 

for 4 h at room temperature. After evaporating the solvent, the resulting crude was 

dissolved in CH2Cl2 (30 mL) and washed with a 0.1N NH4PF6 solution (2 x 20 mL). 

The organic layer was filtered over cotton and concentrated in vacuo. Purification by 

silica gel column chromatography (CH2Cl2/MeOH, 100:0  96:4) afforded 41b (118 

mg, 86%) as a yellowish oil. 

 

(41a): 1H-NMR (400 MHz, CDCl3) δ 6.82 (s, 1H, NH), 6.69 (s, 1H, NH), 4.41-4.32 

(m, 1H, CH2OMs), 4.24-4.11 (m, 1H, CH2OMs), 3.93-3.84 (m, 1H, CHα ), 3.63-3.32 

(m, 5H, CHα, CH2γ), 3.17 (s, 3H, CH3MsO), 3.02-2.78 (m, 2H, CH2S), 2.73-2.67 (m, 1H, 

CH2S), 2.58 (t, J = 7.4 Hz, 1H, SCH2), 2.23-2.11 (m, 2H, CH2β), 2.10-1.88 (m, 2H, 

CH2β), 1.51-1.40 (m, 2H, CH2hex), 1.39-1.29 (m, 6H, CH2hex), 0.91 (t, J = 7.0 Hz, 3H, 

CH3hex). 13C-NMR (100 MHz, HSQC-DEPT, CDCl3) δ 150.7 (Cguan), 70.3 (CH2OMs), 

47.7, 45.7 (CHα ), 44.9, 44.1 (CH2γ), 37.1 (CH3MsO), 36.5 (CH2S), 33.3 (SCH2hex), 32.4, 

31.9, 31.4, 29.7 (CH2dec), 28.4 (CH2β), 22.7 (CH2β), 14.1 (CH3hex). HRMS calcd. for 

[C16H32N3O3S2]+ 378.1885; found 378.1883. 

 

(41b): 1H-NMR (400 MHz, CDCl3) δ 6.21 (s, 1H, NH), 6.17 (s, 1H, NH), 4.28 (dd, J 

= 4.3, 10.5 Hz, 1H, CH2OMs), 4.10 (dd, J = 6.7, 10.5 Hz, 1H, CH2OMs), 3.82-3.76 (m, 

1H, CHα), 3.49-3.45 (m, 1H, CHα), 3.40-3.26 (m, 4H, CH2γ),3.07 (s, 3H, CH3MsO), 

2.60-2.58 (m, 2H, CH2S), 2.47 (t, J = 7.4 Hz, 2H, SCH2dec), 2.16-2.05 (m, 2H, CH2β), 

1.96-1.80 (m, 2H, CH2β), 1.52-1.46 (m, 2H, CH2dec), 1.30-1.19 (m, 14H, CH2dec), 0.81 (t, 

J = 6.8 Hz, 3H, CH3dec). 13C-NMR (125 MHz, HSQC-DEPT, CDCl3) δ 151.0 (Cguan), 
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70.1 (CH2OMs), 48.8, 48.2 (CHα), 46.2, 45.4 (CH2γ), 37.7 (CH3MsO), 36.8 (CH2S), 33.0 

(SCH2dec), 32.3, 30.0, 29.9, 29.7, 29.6, 29.2 (CH2dec), 25.6 (CH2β), 23.1 (CH2dec), 22.4 

(CH2β), 14.5 (CH3dec). HRMS calcd. for [C20H40N3O3S2]+ 434.2511; found 434.2510. 

 

(41c): 1H-NMR (400 MHz, CDCl3) δ 6.84 (s, 1H, NH), 6.71 (s, 1H, NH), 4.40-4.32 

(m, 1H, CH2OMs), 4.25-4.11 (m, 1H, CH2OMs), 3.85-3.84 (m, 1H, CHα ), 3.64-3.32 

(m, 5H, CHα, CH2γ), 3.17 (s, 3H, CH3MsO), 3.00-2.80 (m, 2H, CH2S), 2.74-2.67 (m, 1H, 

CH2S), 2.57 (t, J = 7.5 Hz, 1H, SCH2), 2.37-2.11 (m, 2H, CH2β), 2.09-1.89 (m, 2H, 

CH2β), 1.53-1.42 (m, 2H, CH2tetradec), 1.41-1.20 (m, 22H, CH2tetradec), 0.90 (t, J = 7.0 Hz, 

3H, CH3tetradec). 13C-NMR (125 MHz, HSQC-DEPT, CDCl3) δ 151.2 (Cguan), 70.7 

(CH2OMs), 48.1, 47.8 (CHα ), 46.1, 45.0 (CH2γ), 37.4 (CH3MsO), 37.0 (CH2S), 32.4 

(SCH2tetradeca), 32.2, 30.0, 29.9, 29.88, 29.81, 29.7, 29.6, 29.5, 29.1 (CH2tetradeca), 26.1 

(CH2β), 23.0 (CH2tetradeca), 22.2 (CH2β), 14.3 (CH3tetradeca). HRMS calcd. for 

[C24H48N3O3S2]+ 490.3137; found 490.3141. 

 

Compound 41d 

 

 

To a solution of 40d (136 mg, 0.19 mmol) and NMM (83 µL, 0.75 mmol) in dry 

THF (10 mL) Ms2O (98 mg, 0.56 mmol) in dry THF (5 mL) was added. The reaction 

mixture was stirred for 4 h at room temperature. After evaporating the solvent, the 

resulting crude was dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



2.7 Experimental Section 

 

125 

The organic layer was filtered over cotton and concentrated in vacuo. Purification by 

silica gel column chromatography (CH2Cl2/MeOH, 96:4) afforded 41d (140 mg, 93%) 

as a white solid. 1H-NMR (500 MHz, COSY, CDCl3) δ 7.22 (s, 1H, NH), 7.09 (s, 1H, 

NH), 5.36 (s, 1H, CHchol), 4.32-4.17 (m, 2H, CH2OMs), 3.60-3.35 (m, 6H, CHα, CH2γ), 

3.15 (s, 3H, CH3MsO), 2.88-2.63 (m, 2H, CH2S), 2.60-2.57 (m, 1H, CHSchol), 2.35-2.10 

(m, 4H, CH2CHchol, CH2β), 2.04-1.86 (m, 10H, CH2CHchol, CH2chol, CH2β), 1.68-1.43 

(m, 9H, CH2chol, CHchol), 1.22-1.07 (m, 5H, CH2, CH), 0.99 (s, 3H, CH3), 0.91 (d, J = 

6.4 Hz, 3H, CH3), 0.87 (d, J = 6.6 Hz, 3H, CH3), 0.86 (d, J = 6.6 Hz, 3H, CH3), 0.67 (s, 

3H, CH3). 13C-NMR (125 MHz, CDCl3) δ 150.7 (Cguan) 141.2 (C=CH), 121.4 (CH=C), 

69.8 (CH2O), 56.7 (CHchol), 56.2 (CHchol), 50.2, 49.0 (CHα ), 47.5 (CHchol), 45.6, 45.2 

(CH2γ), 44.8, 42.3 (CHchol), 39.8, 39.7 (CH2chol), 39.5, 39.4 (CH2), 37.2 (CH3), 36.8, 36.2 

(CH2), 35.8 (CH), 34.1, 31.8 (CH2), 31.78, 29.9, 29.7 (CH), 28.2, 28.0, 25.0, 24.3, 23.8 

(CH2), 22.8, 22.5 (CH3), 21.0 (CH2), 19.3, 18.7, 11.8 (CH3). FAB/LSIMS m/z 662.3 [(M 

- PF6
–)+, 100%]. HRMS calcd. for [C37H64N3O3S2]+ 662.4389; found 662.4388. 

 

Compound 41e 

 

To a solution of 40e (135 mg, 0.27 mmol) in dry THF (15 mL) was added Ms2O 

(139 mg, 0.80 mmol). The mixture was treated with NMM (118 µL, 1.06 mmol) and 

stirred for 4 h at room temperature. After evaporating the solvent, the resulting solid 

was dissolved in CH2Cl2 (60 mL) and washed with a 0.1M NH4PF6 solution (2  30 

mL). The organic layer was filtered over cotton and concentrated in vacuo. Purification 

by silica gel column chromatography (CH2Cl2/MeOH, 97:3) afforded 41e (157 mg, 

94%) as a yellowish oil. 1H-NMR (400 MHz, CDCl3) δ, 7.07 (s, 1H, NH), 6.95 (s, 1H, 

NH), 4.38 (dd, J = 4.5, 10.3 Hz, 1H, CH2OMs), 4.25 (dd, J = 7.0, 10.3 Hz, 1H, 

CH2OMs), 3.92-3.60 (m, 13H, CH2OSi, CH2Ogly, CH3Ogly, CHα ), 3.58-3.31 (m, 8H, 

CH2Ogly CH2γ), 3.12 (s, 1H, CH3OMs), 2.85-2.71 (m, 4H, CH2S), 2.29-2.12 (m, 2H, 
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CH2β), 2.10-1.99 (m, 1H, CH2β), 1.94-1.82 (m, 2H, CH2β). 13C-NMR (100 MHz, 

HSQC-DEPTQ CDCl3) δ 150.9 (Cguan), 71.9, 71.5, 70.9, 70.3 (CH2Ogly), 70.0 

(CH2OMs), 69.7 (CH2Ogly), 58.8 (OCH3gly) 48.5, 47.6 (CHα ), 45.7, 44.9 (CH2γ), 37.3 

(CH3MsO), 37.2 (CH2S), 32.1 (SCH2gly), 25.4 (CH2β), 22.1 (CH2β). ESI-MS m/z 440.2 (M 

- PF6
–)+. 

 

General procedure for compounds 42 a-c. Compound 42a 

A mixture of diguanidinium tioacetate compound 11 (55 mg, 0.06 mmol), mesylate 

41a (32 mg, 0.06 mmol) and Cs2CO3 (46 mg, 0.14 mmol) was dissolved in 20 mL of 

degassed CH3CN/MeOH at room temperature under N2 and stirred for 4 h. The 

solvent was evaporated and the crude was dissolved in CH2Cl2 (30 mL) and washed 

with 1N NH4PF6 (2 × 10 mL). The organic phase was filtered over cotton and 

concentrated in vacuo to give a crude residue which was purified by silica gel column 

chromatography (CH2Cl2/MeOH, 100:0  96/4), affording 42a (58 mg, 75%) as a 

yellowish oil. 

 

(42a): 1H-NMR (400 MHz, CDCl3) δ 7.69-7.63 (m, 4H, CHAr), 7.49-7.40 (m, 6H, 

CHAr), 6.75-6.13 (bs, 2H, NH), 3.86-3.20 (m, 20H, CH2OSi, CHα,CH2γ), 2.93-2.49 (m, 

10H, CH2S), 2.28-2.01 (m, 6H, CH2β), 1.99-1.78 (m, 6H, CH2β), 1.57-1.54 (m, 2H, 

CH2hex), 1.44-1.24 (m, 8H, CH2hex), 1.07 (s, 9H, CH3t-Bu), 0.90 (t, J = 6.8 Hz, 3H, 

CH3hex). 13C-NMR (100 MHz, CDCl3) δ 150.7, 150,6, 150.5 (Cguan), 135.6, 135.5 (CHAr), 

132.8, 132.7 (CAr), 130.0, 128.8, 128.0 (CHAr), 65.4 (CH2OSi), 50.1, 49.6, 48.5, 47.7, 

47.5, 47.1 (CHα ), 45.6, 45.5, 45.4, 45.3, 45.2, 45.0 (CH2γ), 36.4, 36.3, 36.2 (CH2S), 32.6 

(SCH2hex), 31.4, 29.6, 28.5 (CH2hex), 26.8 (CH3t-Bu), 25.7, 25.6, 25.1 (CH2β), 22.5 (CH2β), 

19.2 (Ct-Bu), 14.1 (CH3hex). HRMS calcd. for [C49H79F6N9OPS3Si]+ 1078.4909; found 

1078.4908. 
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(42b): 1H-NMR (400 MHz, CDCl3) δ 7.73-7.65 (m, 4H, CHAr), 7.51-7.42 (m, 6H, 

CHAr), 6.65-6.03 (bs, 3H, NH), 3.87-3.16 (m, 20H, CH2OSi, CHα,CH2γ), 2.91-2.45 (m, 

10H, CH2S), 2.34-1.74 (m, 12H, CH2β), 1.59-1.55 (m, 2H, SCH2deca), 1.43-1.21 (m, 14H, 

CH2deca), 1.08 (s, 9H, CH3t-Bu), 0.89 (t, J = 7.0 Hz, 3H, CH3dec). 13C-NMR (100 MHz, 

CDCl3) δ 150.7 (Cguan), 135.6, 135.5 (CHAr), 132.7, 132.6 (CAr), 130.0, 127.9 (CHAr), 

65.4 (CH2OSi), 53.5, 50.1, 49.5, 47.8, 47.7, 47.3 (CHα ), 45.6, 45.5, 45.4, 45.3, 45.0 

(CH2γ), 36.5, 36.4, 36.2 (CH2S), 32.6 (SCH2deca), 31.9, 29.7, 29.6, 29.5, 29.3, 29.2, 28.8, 

28.7 (CH2deca), 26.8 (CH3t-Bu), 26.0, 25.7, 25.6, 25.1 (CH2β), 22.7, 22.5 (CH2β), 18.9 (Ct-

Bu), 14.1 (CH3deca). HRMS calcd. for [C53H86N9OS3Si]+ 988.5881, found 988.5795. 

 

(42c): 1H-NMR (400 MHz, CDCl3) δ 7.70-7.62 (m, 4H, CHAr), 7.49-7.39 (m, 6H, 

CHAr), 6.58-5.82 (bs, 3H, NH), 3.83-3.15 (m, 20H, CH2OSi, CHα,CH2γ), 2.93-2.48 (m, 

10H, CH2S), 2.31-1.77 (m, 12H, CH2β), 1.57-1.54 (m, 2H, CH2tetradeca), 1.43-1.18 (m, 

22H, CH2tetradeca), 1.08 (s, 9H, CH3t-Bu), 0.90 (t, J = 7.0 Hz, 3H, CH3tetradec). 13C-NMR 

(100 MHz, CDCl3) δ 150.6 (Cguan), 135.6, 135.5 (CHAr), 132.8, 132.7 (CAr), 130.0, 128.0 

(CHAr), 65.4 (CH2OSi), 50.1, 49.7, 48.5, 47.5, 47.1, 46.9 (CHα), 45.5, 45.4, 45.3, 45.2, 

45.0 (CH2γ), 36.5, 36.3, 36.2 (CH2S), 32.7 (SCH2tetradeca) 31.9, 29.7, 29.65, 29.6, 29.4, 

29.3, 29.2, 28.9, 28.7 (CH2tetradeca), 26.8 (CH3t-Bu) 25.8, 25.7, 25.1 (CH2β), 22.7, 22.5 

(CH2β), 19.0 (Ct-Bu), 14.1 (CH3tetradeca). HRMS calcd. for [C57H96F6N9OPS3Si]2+ 

595.8155; found 595.8193. 
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Compound 42d 

 

Diguanidinium tioacetate compound 11 (78 mg, 0.08 mmol) was dissolved in dry 

MeOH (10 ml) in the presence of Cs2CO3 (64 mg, 0.18 mmol) and the mixture was 

stirred for 5 minutes. Then a solution of mesylated guanidinium 41d (64 mg, 0.08 

mmol) in dry acetonitrile was added and the mixture was stirred for 4 h under N2 

atmosphere at room temperature. The solvent was evaporated under low pressure. The 

crude was dissolved in CH2Cl2 (30 mL) and washed with a 1N NH4PF6 solution (2 × 

10 mL). The organic phase was filtered over cotton and concentrated in vacuo to give a 

crude residue which was purified by silica gel column chromatography 

(CH2Cl2/MeOH, 100:0  96:4), affording 42d (92 mg, 71%) as a yellowish oil. 1H-

NMR (400 MHz, CDCl3) δ 7.70-7.63 (m, 4H, CHAr), 7.50-7.39 (m, 6H, CHAr), 6.64-

5.85 (bs, 4H, NH), 5.36 (s, 1H, CHchol), 3.89-3.22 (m, 20H, CH2OSi, CHα,CH2γ), 2.93-

2.74 (m, 5H, CH2S), 2.73-2.53 (m, 6H, CH2S, CHSchol), 2.37-1.73 (m, 22H, CH2β, 

CH2CHchol, CH2chol), 1.62-1.25 (m, 12H, CH2, CH2chol, CHchol), 1.22-1.11 (m, 5H, CH2, 

CH), 1.07 (s, 9H, CH3t-Bu), 1.00 (s, 3H, CH3), 0.93 (d, J = 6.5 Hz, 3H, CH3), 0.89 (dd, J 

= 1.1, 6.6 Hz, 6H, CH3), 0.69 (s, 3H, CH3). 13C-NMR (100 MHz, HSQC-DEPTQ, 

CDCl3) δ 150.4 (Cguan) 141.2 (C=CH), 135.6, 135.5, 130.0, 128.0 (CAr, CHAr), 121.3 

(CH=C), 65.4 (CH2O), 56.7, 56.1 (CHchol), 50.2, 50.1, 50.0 (CHα ), 48.5 (CHchol), 45.5, 

45.3, 45.0 (CH2γ), 42.5, 42.3 (CHchol), 40.0, 39.8, 39.7 (CH2chol), 39.5, 39.4 (CH2), 37.4 

(CH), 36.8, 36.5, 36.2 (CH2), 35.8 (CH), 34.1, 31.9 (CH2), 31.8 (CH), 29.7, 28.2 (CH2), 

28.0 (CH), 26.8 (CH3t-Bu), 25.5, 25.3, 25.0, 24.8, 24.3, 23.9 (CH2), 22.8 (CH3), 22.6 

(CH3), 22.5 (CH2), 21.2 (CH), 20.9 (CH2), 19.2 (Ct-Bu), 19.3, 18.7, 11.9 (CH3). ESI-MS 

m/z 1216.7 (M -PF6
– -2HPF6)+.  
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Compound 42e 

 

A mixture of diguanidinium thioacetate compound 11 (100 mg, 0.1 mmol), mesylate 

41e (65 mg, 0.11 mmol) and Cs2CO3 (82 mg, 0.25 mmol) was dissolved in 20 mL of 

degassed CH3CN/MeOH at room temperature under N2 and stirred for 3 h. The 

solvent was removed and the resulting crude was dissolved in CH2Cl2 (30 mL) and 

washed with a 1N NH4PF6 solution (2 × 20 mL). The organic phase was filtered over 

cotton and concentrated in vacuo to give a crude residue which was purified by silica gel 

column chromatography (CH2Cl2/MeOH, 100:0  96:4), affording 42e (86 mg, 59%) 

as a yellowish oil. 1H-NMR (400 MHz, CDCl3) δ 7.69-7.63 (m, 4H, CHAr), 7.49-7.40 

(m, 6H, CHAr), 6.80-6.00 (bs, 3H, NH), 3.81-3.54 (m, 19H, CH2OSi, CH2Ogly, CH3Ogly, 

CHα ), 3.53-3.22 (m, 14H, CH2Ogly CH2γ), 2.93-2.54 (m, 12H, CH2S), 2.31-1.79 (m, 

12H, CH2β), 1.08 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, C-DEPTQ, HSQC, CD3CN) δ 

150.7, 150.6 (Cguan), 135.5, 135.4 (CHAr), 132.7, 132.6 (CAr), 130.1, 127.9 (CHAr), 71.6, 

71.4, 70.5, 69.8, 69.5, 68.9 (CH2Ogly) 65.9 (CH2OSi), 57.9 (OCH3gly), 50.3, 48.3, 47.8, 

47.7 (CHα), 45.3, 45.2, 45.1 (CH2γ), 38.6, 36.7 35.7, 35.6 (CH2S), 31.5 (SCH2), 26.2 

(CH3t-Bu), 25.3, 25.2, 25.1 (CH2β), 22.1 (CH2β), 20.1 (Ct-Bu). ESI-MS m/z 1096.3 (M - 

PF6
– - HPF6)+, 950.3 (M - PF6

– - 2 HPF6)+, 475.7 (M - PF6
– - 2 HPF6)2+. 

 

General procedure for compounds 43 a-c. Compound 43b  

A solution of 42a (64 mg, 0.05 mmol) and TBAF (1M THF solution, 137 µL, 0.14 

mmol) in THF (20 mL) was stirred overnight. The solvent was removed and the crude 

dissolved in CH2Cl2 (30 mL) and washed with a 1N NH4PF6 (10 mL) solution. The 

organic phase was filtered over cotton and concentrated in vacuo to give a crude residue 

which was purified by silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 

100:0  92:8), giving rise to 43b (42 mg, 79%) as a white solid, which was directly 
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used in the next step without further characterization. 

 

(43a): 1H-NMR (400 MHz, CD3CN) δ 7.37-6.89 (bs, 5H, NH), 3.66 (dd, J = 3.8, 10.5 

Hz, 1H, CH2OH), 3.60-3.29 (m, 19H, CH2O, CHα,CH2γ), 2.97-2.86 (m, 3H, CH2S), 

2.77 (dd, J = 5.6, 13.8 Hz, 1H, CH2S), 2.64-2.51 (m, 6H, CH2S), 2.16-2.07 (m, 6H, 

CH2β), 1.88-1.78 (m, 6H, CH2β), 1.65-1.54 (m, 2H, SCH2hex), 1.45-1.27 (m, 8H, CH2hex), 

0.92 (t, J = 6.9 Hz, 3H, CH3hex). 

 

(43b): 1H-NMR (400 MHz, CD3CN) δ 7.25-7.06 (bs, 2H, NH), 6.98-6.77 (bs, 3H, 

NH), 3.66 (dd, J = 3.7, 10.4 Hz, 1H, CH2OH), 3.62-3.29 (m, 19H, CH2O, CHα,CH2γ), 

2.94-2.87 (m, 3H, CH2S), 2.78 (dd, J = 5.3, 13.7 Hz, 1H, CH2S), 2.66-2.50 (m, 6H, 

CH2S), 2.18-2.05 (m, 6H, CH2β), 1.88-1.69 (m, 6H, CH2β), 1.67-1.52 (m, 2H, SCH2dec), 

1.44-1.26 (m, 16H, CH2dec), 0.91 (t, J = 6.9 Hz, 3H, CH3dec). 

 

(43c): 1H-NMR (400 MHz, CD3CN) δ 7.30-6.75 (bs, 5H, NH), 3.67 (dd, J = 3.7, 10.5 

Hz, 1H, CH2OH), 3.63-3.28 (m, 19H, CH2O, CHα,CH2γ), 2.95-2.85 (m, 3H, CH2S), 

2.76 (dd, J = 5.5, 13.8 Hz, 1H, CH2S), 2.63-2.49 (m, 6H, CH2S), 2.19-2.04 (m, 6H, 

CH2β), 1.85-1.71 (m, 6H, CH2β), 1.65-1.53 (m, 2H, SCH2tetradec), 1.45-1.27 (m, 24H, 

CH2tetradec), 0.91 (t, J = 6.8 Hz, 3H, CH3tetradec). 
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General procedure for compounds 44 a-c. Compound 44a 

To a solution of alcohol 43a (38 mg, 0.03 mmol) and NMM (22.3 µL, 0.20 mmol) in 

dry THF (10 mL) was added Ms2O (23 mg, 0.13 mmol) and the mixture was stirred for 

4 h. The solvent was evaporated under reduced pressure and the resulting crude was 

dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution (2  30 mL). The 

organic layer was filtered over cotton and concentrated in vacuo. Purification by silica 

gel (with KPF6) column chromatography (CH2Cl2/MeOH, 94:6) afforded 44a (21 mg, 

52%) as a white solid. 

 

(44a): 1H-NMR (400 MHz, CD3CN) δ 7.15-6.64 (bs, 4H, NH), 4.32 (dd, J = 4.2, 10.6 

Hz, 1H, CH2OMs), 4.18-4.11 (m,  1H, CH2OMs), 3.80 (m, 1H, CHα ), 3.60-3.29 (m, 

17H, CHα,CH2γ), 3.13 (s, 3H, CH3MsO), 2.94-2.84 (m, 3H, CH2S), 2.82-2.75 (dd, J = 5.0, 

13.6 Hz, 1H, CH2S), 2.63-2.52 (m, 6H, CH2S), 2.15-2.03 (m, 6H, CH2β), 1.89-1.74 (m, 

6H, CH2β), 1.65-1.54 (m, 2H, SCH2hex), 1.45-1.27 (m, 8H, CH2hex), 0.92 (t, J = 6.6 Hz, 

3H, CH3hex). 13C-NMR (100 MHz, C-DEPT, CD3CN) δ 150.1, 150.0 (Cguan), 70.7 

(CH2OMs), 47.6, 47.5, 47.5, 47.3 (CHα), 45.3, 45.2, 45.2, 44.8, 44.6 (CH2γ), 36.7 

(CH3MsO), 36.0, 35.9, 35.9, 35.7 (CH2S), 31.1 (SCH2hex), 29.4, 28.2, 28.0 (CH2hex), 25.7, 

25.6, 25.4 (CH2β), 24.5 (CH2hex), 22.1, 21.7, 21.5 (CH2β), 13.3 (CH3hex). HRMS calcd. for 

[C34H64F12N9O3P2S4]+ 1064.3255; found 1064.3269. 

 

(44b): 1H-NMR (400 MHz, CD3CN) δ 7.25-6.55 (bs, 4H, NH), 4.32 (dd, J = 3.8, 10.3 

Hz, 1H, CH2OMs), 4.19-4.09 (m, 1H, CH2OMs), 3.86-3.76 (m, 1H, CHα), 3.65-3.27 

(m, 17H, CHα,CH2γ), 3.13 (s, 3H, CH3MsO), 2.99-2.83 (m, 3H, CH2S), 2.78 (dd, J = 5.2, 

13.9 Hz, 1H, CH2S), 2.66-2.49 (m, 6H, CH2S), 2.16-2.05 (m, 6H, CH2β), 1.90-1.73 (m, 

6H, CH2β), 1.66-1.51 (m, 2H, SCH2dec), 1.46-1.24 (m, 16H, CH2dec), 0.91 (t, J = 6.7 Hz, 
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3H, CH3dec). 13C-NMR (100 MHz, HSQC-DEPTQ, CD3OD) δ 150.0 (Cguan), 70.1 

(CH2OMs), 48.0, 47.5, 47.5 (CHα), 45.1, 44.9, 44.7, 44.4 (CH2γ), 36.0 (CH3MsO), 36.1, 

36.0 (CH2S), 31.7 (SCH2dec), 29.3, 29.2, 29.2, 29.1, 29.0, 28.4 (CH2dec), 25.3, 25.2, 25.1, 

25.0 (CH2β), 22.4 (CH2dec), 22.2, 21.9 (CH2β), 13.1 (CH3dec). HRMS calcd. for 

[C38H71F6N9O3PS4]+ 974.4227; found 974.4218 

 

(44c): 1H-NMR (400 MHz, CD3CN) δ 7.03-6.59 (bs, 4H, NH), 4.32 (dd, J = 4.4, 10.5 

Hz, 1H, CH2OMs), 4.16 (dd, J = 7.2, 10.5 Hz, 1H, CH2OMs), 3.86-3.76 (m, 1H, CHα ), 

3.62-3.47 (m, 5H, CHα), 3.46-3.28 (m, 12H, CH2γ), 3.13 (s, 3H, CH3MsO), 2.93-2.82 (m, 

3H, CH2S), 2.78 (dd, J = 5.4, 13.9 Hz, 1H, CH2S), 2.68-2.51 (m, 6H, CH2S), 2.16-2.07 

(m, 6H, CH2β), 1.91-1.75 (m, 6H, CH2β), 1.67-1.53 (m, 2H, SCH2tetradec), 1.45-1.23 (m, 

24H, CH2tetradec), 0.91 (t, J = 6.8 Hz, 3H, CH3tetradec). 13C-NMR (100 MHz, CD3CN) δ 

150.1, 150.0 (Cguan), 70.8 (CH2OMs), 47.6, 47.5, 47.5, 47.3 (CHα), 45.3, 45.2, 44.7 

(CH2γ), 36.6 (CH3MsO), 36.0, 35.9, 35.9, 35.7 (CH2S), 31.7 (SCH2tetradec), 29.9, 29.4, 29.3, 

29.3, 29.2, 29.1, 28.4, 28.3 (CH2tetradec), 25.7, 25.6, 25.4 (CH2β), 25.0, 24.4 (CH2tetradec), 

22.1, 21.7, 21.5 (CH2β), 13.4 (CH3tetradec). HRMS calcd. for [C42H79F6N9O3PS4]+ 

1030.4831; found 1030.4791 

 

Compound 44d 

 

A solution of 42d (89 mg, 0.05 mmol) and TBAF (1M THF solution, 161 µL, 0.16 

mmol) in THF (15 mL) was stirred overnight. The solvent was removed and the crude 

was dissolved in CH2Cl2 (30 mL) and washed with a 1N NH4PF6 solution (10 mL). 
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The organic phase was filtered over silica first with pure CH2Cl2 to elute the 

tetrabutylammonium salts formed and then with a mixture CH2Cl2/MeOH (96:4) to 

obtain product 43d as a yellowish oil (93%, 70 mg), which was directly used in the next 

step without further purification. To a solution of alcohol 43d (70 mg, 0.05 mmol) and 

NMM (44 µL, 0.40 mmol) in dry THF (15 mL) was added Ms2O (52 mg, 0.3 mmol) 

and the mixture was stirred for 5 h. The solvent was evaporated under reduced 

pressure and the resulting crude was dissolved in CH2Cl2 and washed with a 0.1N 

NH4PF6 solution (2  20 mL). The organic layer was filtered over cotton and 

concentrated in vacuo. Purification by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 96:4) afforded 44d (33 mg, 44 %) as a yellow oil. 1H-NMR (400 

MHz, CD3CN) δ 7.13-6.54 (bs, 5H, NH), 5.39 (s, 1H, CHchol), 4.32 (dd, J = 4.2, 10.3 

Hz, 1H, CH2OMs), 4.15 (dd, J = 7.5, 10.3 Hz, 1H, CH2OMs), 3.86-3.77 (m, 1H, 

CHα,CH2γ), 3.66-3.30 (m, 16H, CHα,CH2γ), 3.14 (s, 3H, CH3MsO), 3.13-3.10 (m, 1H, 

CHSchol), 2.95-2.80 (m, 5H, CH2S), 2.67-2.52 (m, 5H, CH2S), 2.41-2.01 (m, 14H, CH2β, 

CH2CHchol, CH2chol), 1.93-1.75 (m, 7H, CH2β, CH2CHchol, CH2chol), 1.65-1.08 (m, 19H, 

CH2, CH2chol, CHchol), 1.03 (s, 3H, CH3), 0.96 (d, J = 6.6 Hz, 3H, CH3), 0.89 (dd, J = 

1.6, 6.5 Hz, 6H, CH3), 0.73 (s, 3H, CH3). 13C-NMR (100 MHz, HSQC-DEPTQ 

CD3CN) δ 150.8, 150.8, 150.7 (Cguan) 141.7 (C=CH), 121.0 (CH=C), 70.7 (CH2O), 56.7 

(CHchol), 56.1 (CHchol), 50.3(CHchol), 48.6, 47.7, 47.6, 47.4, 47.4 (CHα ), 45.3, 45.3, 45.1, 

44.6 (CH2γ), 44.4 (CHchol), 39.8, 39.7 (CH2chol), 39.4, 39.2 (CH2), 36.7 (CH3MsO), 36.0 

(CH2), 35.7 35.7, 35.6 (SCH2), 35.4 (CH), 34.1 (SCH2), 31.7 (CH), 31.6, 29.8, 28.0 

(CH2), 27.7 (CH), 25.4, 25.4, 25.3(CH2), 25.0 (CH3), 24.0, 23.5 (CH2), 22.0, 21.8 (CH3), 

21.7, 20.7 (CH2), 18.8, 18.2, 11.3 (CH3). ESI-MS m/z 1348.1 (M -PF6
–)+, 1202.2 (M - 

PF6
– - HPF6)+, 1056.3 (M - PF6

– - 2 HPF6)+, 601.6 (M – 2 PF6
–)2+, 528.7 (M – 2 PF6

– - 

HPF6)2+.  
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Compound 44e 

 

A solution of 42e (86 mg, 0.06 mmol) and TBAF (1M THF solution, 180 µL, 0.18 

mmol) in THF (15 mL) was stirred overnight. The solvent was removed and the crude 

was dissolved in CH2Cl2 (30 mL) and washed with a 1N NH4PF6 solution (10 mL). 

The organic phase was filtered over silica, first with CH2Cl2 to elute the 

tetrabutylammonium salts formed and then with a mixture CH2Cl2/MeOH (94:6) to 

elute the corresponding product 43e (91%, 65 mg), which was directly used in the next 

step without further purification. To a solution of alcohol 43e (65 mg, 0.05 mmol) and 

NMM (24 µL, 0.21 mmol) in dry THF (15 mL) was added Ms2O (28 mg, 0.16 mmol) 

and the mixture was stirred for 5 h. The solvent was evaporated under reduced 

pressure and the resulting crude was dissolved in CH2Cl2 and washed with a 0.1N 

NH4PF6 solution (2  20 mL). The organic layer was filtered over cotton and 

concentrated in vacuo. Purification by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 95:5) afforded 44d (41 mg, 60 %) as an oil. 1H-NMR (400 MHz, 

CD3CN) δ 7.20 (bs, 4H, NH), 4.46 (dd, J = 4.3, 10.4 Hz, 1H, CH2OMs), 4.28 (dd, J = 

7.4, 10.5 Hz, 1H, CH2OMs), 4.03-3.93 (m, 1H, CHα ), 3.80-3.46 (m, 27H, CH2Ogly, 

CHα,CH2γ), 3.33 (s, 3H, CH3Ogly), 3.19 (s, 3H, CH3MsO), 3.07-2.93 (m, 6H, CH2S), 2.82-

2.68 (m, 6H, CH2S), 2.31-2.19 (m, 6H, CH2β), 2.02-1.87 (m, 6H, CH2β). 13C-NMR (100 

MHz, C-DEPT, CD3CN) δ 150.8, 150.7 (Cguan), 71.5, 70.7 (CH2Ogly), 70.5 (CH2OMs), 

69.8, 69.7, 69.5 (CH2Ogly), 57.9 (OCH3gly), 48.2, 48.1, 47.7, 47.7, 47.6, 47.6 (CHα), 45.2, 

45.2, 45.1, 45.1, 45.0, 44.6 (CH2γ), 36.7 (CH2S), 36.6 (CH3MsO), 35.8, 35.7, 35.6, 31.3 

(CH2S),25.3, 25.2, 25.2, 25.1 (CH2β), 21.6 (CH2β). ESI-MS m/z 1126.0 (M -PF6
–)+, 980.1 

(M - PF6
– - HPF6)+, 834.1 (M - PF6

– - 2 HPF6)+, 490.5 (M – 2 PF6
–)2+, 417.6 (M – 2 PF6

– 

- HPF6)2+. 
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Compound 45 

 

 

To a solution of disulfide 8 (50 mg, 0.08 mmol) in MeOH (3 mL), Cs2CO3 (52 mg, 

0.16 mmol) and P(nBu)2Ph polystyrene (110 mg, 0.10 mmol) was added and the 

mixture was stirred for 40 min. Then a solution of 10 (145 mg, 0.15 mmol) in THF (10 

mL) was added and the mixture was stirred for 3 h. After evaporation of the solvent, 

the crude residue was dissolved in CH2Cl2 (20 mL) and washed with a 0.1N NH4PF6 

solution (2  30 mL). The organic layer was filtered over cotton and concentrated in 

vacuo. Purification by silica gel column chromatography (CH2Cl2/MeOH, 98:2 → 94:6) 

afforded 45 (148 mg, 81%) as a white solid. 1H-NMR (400 MHz, CDCl3) δ 7.64-7.24 

(m, 4H, CHAr), 7.43-7.38 (m, 6H, CHAr), 6.47 (s, 2H, NH), 6.35 (s, 2H, NH), 6.23 (s, 

2H, NH), 3.72-3.23 (m, 22H, CH2O, CHα, CH2γ), 2.86-2.50 (m, 8H, CH2S), 2.65-2.63 

(m, 2H, CH2S),  2.12-1.81 (m, 12H, CH2β), 1.05 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, 

CD3CN) δ 150.8, 150.7 (Cguan), 135.5, 135.4, 130.1, 128.0, 127.9 (CHAr, CAr), 65.9, 63.7 

(CH2OSi, CH2O), 50.5, 50.2, 47.8, 47.7, 47.6 (CHα), 45.4, 45.1, 45.0 (CH2γ), 35.7, 35.6 

(CH2S), 26.2 (CH3t-Bu), 25.4, 25.2, 22.2, 22.1 (CH2β), 19.0 (Ct-Bu). HRMS calcd. for 

[C43H68N9O2F6PS2Si]2+ 489.7180; found 489.7166. 

 

Compound 46 

 

To a solution of alcohol 45 (148 mg, 0.12 mmol) and NMM (64 µL, 0.58 mmol) in 

dry CH2Cl2 (10 mL) was added Ms2O (81 mg, 0.47 mmol) and the mixture was stirred 

for 4 h. The solvent was evaporated under reduced pressure and the resulting crude 
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was dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution (2  30 mL). The 

organic layer was filtered over cotton and concentrated in vacuo. Purification by silica 

gel column chromatography (CH2Cl2/MeOH, 100:0  96:4) afforded 46 (145 mg, 

93%) as a white solid. 1H-NMR (400 MHz, CDCl3) δ 7.68-7.66 (m, 4H, CHAr), 7.43-

7.38 (m, 6H, CHAr), 6.37 (s, 2H, NH), 6.28 (s, 2H, NH), 6.22 (s, 2H, NH), 4.22-4.01 

(m, 2H, CH2O), 3.72-3.68 (m, 2H, CH2O), 3.47-3.23 (m, 18H, CHα, CH2γ), 3.10 (s, 3H, 

CH3MsO), 2.84-2.52 (m, 8H, CH2S), 2.13-1.79 (m, 12H, CH2β), 1.06 (s, 9H, CH3t-Bu). 13C-

NMR (100 MHz, CDCl3) δ 150.8, 150.8, 150.7 (Cguan), 135.5, 135,4, 133.0, 132.8, 130.1, 

128.0 (CHAr, CAr), 70.7 (CH2OMs), 65.9 (CH2OSi), 50.2, 47.7, 47.7, 47.6, 47.5 (CHα), 

45.2, 45.1, 45.0, 44.6 (CH2γ), 36.6 (CH3MsO), 35.7, 35.7, 35.6 (CH2S), 26.2 (CH3t-Bu), 

25.3, 25.2, 25.1, 22.2, 21.6 (CH2β), 18.8 (Ct-Bu). HRMS calcd. for [C44H69F6N9O4PS3Si]+ 

1056.4044; found 1056.4033. 

 

Compound 47 

 

To a solution of disulfide 16 (75 mg, 0.05 mmol) in MeOH (3 mL), Cs2CO3 (33 mg, 

0.10 mmol) and P(nBu)2Ph polystyrene (71 mg, 0.07 mmol) was added and the mixture 

was stirred for 40 min. Then a solution of 46 (132 mg, 0.10 mmol) in THF (10 mL) 

was added and the mixture was stirred for 5 h. After evaporation of the solvent, the 

crude residue was dissolved in CH2Cl2 (20 mL) and washed with a 0.1N NH4PF6 

solution (2  30 mL). The organic layer was filtered over cotton and concentrated in 

vacuo. Purification by silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 

98:2 → 90:10) afforded 47 (105 mg, 46%) as a white solid. 1H-NMR (400 MHz, 

CD3CN) δ 7.74-7.68 (m, 4H, CHAr), 7.55-7.44 (m, 6H, CHAr), 7.03-6.40 (bs, 8H, NH), 

3.79-3.46 (m, 14H, CH2O, CHα), 3.44-3.28 (m, 20H, CH2γ), 2.92-2.82 (m, 8H, CH2S), 

2.65-2.50 (m, 8H, CH2S), 2.17-2.05 (m, 10H, CH2β), 1.89-1.69 (m, 10H, CH2β), 1.08 (s, 

9H, CH3t-Bu). 13C-NMR (100 MHz, CD3CN) δ 150.8, 150.7, 150.6 (Cguan), 135.5, 135.4, 
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130.0, 128.0, 127.9 (CHAr, CAr), 65.7, 63.9 (CH2OSi, CH2O), 50.5, 50.2, 47.8, 47.8, 47.7, 

47.6 (CHα), 45.4, 45.1, 45.0, 44.9 (CH2γ), 35.7, 35.6, 35.5 (CH2S), 26.1 (CH3t-Bu), 25.4, 

25.3, 25.2, 22.2, 22.1 (CH2β), 19.1 (Ct-Bu). HRMS calcd. for [C61H100F24N15O2P4S4Si]+ 

1810.5398; found 1810.5701. 

 

Compound 48 

 

To a solution of alcohol 47 (40 mg, 0.02 mmol) and NMM (18 µL, 0.16 mmol) in dry 

THF/CH3CN (15 mL, 1:0.1) was added Ms2O (21 mg, 0.12 mmol) and the mixture 

was stirred for 4 h. The solvent was evaporated under reduced pressure and the 

resulting crude was dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution (2  

30 mL). The organic layer was filtered over cotton and concentrated in vacuo. 

Purification by silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 100:0 

 92:8) afforded 48 (25 mg, 60%) as a white solid. 1H-NMR (400 MHz, CD3CN) δ 

7.73-7.67 (m, 4H, CHAr), 7.54-7.43 (m, 6H, CHAr), 7.13-6.49 (bs, 9H, NH), 4.35-4.29 

(m, 1H, CH2O), 4.15 (dd, J = 7.4, 10.0 Hz, 1H, CH2O), 3.84-3.64 (m, 2H, CH2O), 

3.62-3.46 (m, 10H, CHα), 3.47-3.29 (m, 20H, CH2γ), 3.13 (s, 3H, CH3MsO) 2.91-2.80 (m, 

8H, CH2S), 2.65-2.52 (m, 8H, CH2S), 2.15-2.07 (m, 10H, CH2β), 1.90-1.76 (m, 10H, 

CH2β), 1.09 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CD3CN) δ 150.8, 150.7, 150.7 

(Cguan), 135.5, 135,4, 130.1, 130.1, 128.0, 127.9 (CHAr, CAr), 70.7 (CH2OMs), 65.9 

(CH2OSi), 50.2, 47.8, 47.7, 47.7, 47.6 (CHα), 45.2, 45.1, 45.0, 44.6 (CH2γ), 36.6 

(CH3MsO), 36.0, 35.9, 35.9, 35.8, 35.7 (CH2S), 26.2 (CH3t-Bu), 25.3, 25.3, 25.2, 22.2, 21.6 

(CH2β), 18.8 (Ct-Bu). HRMS calcd. for [C62H102F24N15O4P4S5Si]+ 1888.5174; found 

1888.5498. 
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Compound 57 

 

To a stirred solution of Boc-cysteine (494 mg, 2.231 mmol) and Cs2CO3 (1.51 g, 4.65 

mmol) in dry MeOH (15 mL) was added a solution of 2 (1.23 mg, 1.86 mmol) in dry 

THF (30 mL). The resulting mixture was stirred for 4 h at room temperature. The 

solvent was removed, and the solid residue dissolved in CH2Cl2 (30 mL) was washed 

twice with an aqueous solution of 0.1N NH4PF6 (2 x 30ml). The organic phase was 

filtered over cotton and concentrated in vacuo. Purification by silica gel column 

chromatography (CH2Cl2/MeOH, 100:0 95:5) afforded 57 (1.1 g, 75%) as a white 

solid. 1H-NMR (400 MHz, CDCl3) δ 7.67-7.62 (m, 4H, CHAr), 7.48-7.38 (m, 6H, CHAr), 

5.89 (s, 1H, NH), 4.25 (s, 1H, CHCO) 3.80 (dd, J = 3.3, 9.5 Hz, 1H, CH2OSi), 3.57 (m, 

3H, CH2OSi, CHα), 3.33 (d, J = 13.5 Hz, 1H, SCH2), 3.26-3.09 (m, 5H, CH2γ, CH2S), 

3.02 (d, J = 13.5 Hz, 1H, SCH2), 2.55-2.44 (m, 1H, CH2S), 2.16-1.82 (m, 4H, CH2β), 

1.43 (s, 9H, NHCH3t-Bu), 1.08 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3) δ 178.5, 

175.5 (CO), 151.1 (Cguan), 135.6, 135,5, 133.0, 132.9, 129.9, 127.8 (CHAr, CAr), 65.5 

(CH2OSi), 55.2 (CHN), 49.1, 48.4 (CHα), 45.2, 44.8 (CH2γ), 37.7, 36.0, 35.9 (CH2S), 

28.5 (CH3Boc), 26.9 (CH3t-Bu), 24.5, 23.0 (CH2β), 19.2 (Ct-Bu). ESI-MS m/z 641.3 (M -PF6
–

)+, 663.3 (M+Na)+. 

 

General procedure for compounds 49a-e to 56 and 58-67. Compound 54  

PNA-Cysteine (1.7 mg, 0.35 µmol) and TBDPS-tetraguanidinium mesylate 18 (2.5 

mg, 1.5 µmol, See Experimental Section Chapter 1) were dissolved in a mixture of 

buffer phosphate (pH 10, 0.1M), acetonitrile and water (1 mL, 1:1:0.5). This solution 

was sealed in an Eppendorf tube under N2 atmosphere and heated at 60 ºC overnight. 

The mixture was purified by semipreparative HPLC and afterwards lyophilized to 

obtain 54 as a white powder.  
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Experimental Procedure for TEM imaging 

A drop of a concentrated aqueous solution of compound 54 was deposited with a 

micropipette on top of a 200 mesh copper grid with a thin film of Formvar polymer. 

To improve the sharpness of the images, a 5% ammonium phosphomolybdate 

solution was added and mixed with the sample acting as a contrast agent. After 

evaporation of the sample at room temperature, a film was obtained. TEM 

experiments were performed using a JEOL 1011 transmission electron microscope 

operating at 80 KeV with an ultra-high-resolution pole piece providing a point 

resolution of 2 Å. Micrographs were acquired using a Megaview III multiscan-CCD 

camera. 

 

Dynamic light scattering studies  

Different aliquots from an aqueous concentrated solution of sample 54 were 

prepared in order to study the particle diameter and the size distribution by means of 

dynamic light scattering. The measurements were done using Zeta Sizer 3000H [He-

Ne laser (633 nm), detector angle of 90º] equipment from Malvern Instruments, Inc., 

which measures the rate of fluctuation of the light scattered from the particles using 

photon correlation spectroscopy. 
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Design and Synthesis of Peptide-Oligoguanidinium 

Conjugates for Specific DNA Sequence Recognition and 

Binding Enhancement 

 

3.1 Introduction and Objectives 

 

Gene transcription and regulation is mainly controlled by several proteins called 

transcription factors which are responsible for tightly binding to specific sequences of 

DNA and promoting the subsequent initiation of transcription machinery.1 This 

process is essential for the expression of proteins and, depending on the requirements 

of the organism, any anomaly in the mechanism can result in a cellular malfunction.2 

One of the major interests in the study of these transcription factors is the assessment 

of their specificity towards certain DNA sequences, which is key to discriminate 

between a vast number of genes. 

                                                           
1 Orphanides, G.; Reinberg, D. Cell 2002, 108, 439-451. 

2 (a) Pandolfi, P. P. Oncogene 2001, 20, 3116-3127. (b) Darnell, J. E. Nat. Rev. Cancer 2002, 2, 740-

749. (c) Hurley, L. H. Nat. Rev. Cancer 2002, 2, 188-200. 

Chapter3
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Some common structural elements in these transcription factors are essential for 

achieving efficient DNA-protein interactions.3 Basically there are four types of 

interactions that drive protein-DNA assembly.4 Firstly, the DNA phosphodiester 

backbone is prone to interact via salt bridges and hydrogen bonding with the basic 

amino acids (Lys, Arg and His). Usually, this assembly does not confer binding 

selectivity but increases the affinity of the association and anchors the protein complex 

to the DNA skeleton, favoring its optimal orientation for a proper recognition. 

Secondly, specific hydrogen bond contacts between several amino acid residues and 

DNA nucleobases are responsible for the specificity of the protein-DNA binding. 

Proteins preferentially interact with DNA through the major groove, allowing 

hydrogen bonding of amino acids such as Arg, Lys, Asp or Gln with the exposed 

functional groups of the nucleobases (Figure 1). Protein binding usually does not 

disturb base pairing, and thus functional groups involved in regular Watson-Crick 

interactions are not affected. Finally, to a lesser extent, hydrophobic interactions, van 

der Waals forces and secondary water-mediated hydrogen bonding also influence and 

contribute to the overall protein-DNA binding. However, these interactions are 

considered secondary, and owing to the inherent lack of directionality or geometrical 

constraints, they are usually not responsible for the sequence selectivity displayed by 

the transcription factors. 

 

Figure 1. Specific interactions between nucleobases and hydrogen bond donor residues in protein-DNA 

assemblies. 

                                                           
3 Choo, Y.; Klug, A. Curr. Opin. Struct. Biol. 1997, 7, 117-125. 

4 (a) Larson, C. L.; Verdine, G. L. Bioorganic Chemistry: Nucleic acids 1999, Ed. S. M. Hetch, 

Oxford University Press, NY. (b) Luscombe, N. M.; Laskowski, R. A. Nucleic Acids Res. 2001, 

29, 2860-2874.  
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There are several families of transcription factors classified by their structural 

domains.5 As previously mentioned, DNA recognition essentially occurs via major 

groove insertion of specific recognition motifs. These motifs are analogous in all the 

transcription factors, but not their geometrical disposition and quaternary folding, 

which mainly depends on the so-called structural domains. These domains are not 

responsible to only hold the protein structure together, but also to afford the correct 

orientation of the recognition domains towards the DNA.6 

Some of the most representative families of transcription factors are HTH (helix-

turn-helix) and the homeodomain families, the zinc finger proteins (ZFP) or bZIP 

(basic region-leucine zipper) and bHLH (basic region-helix-loop-helix) families (Figure 

2). 

 

Figure 2. Structures of the two most representative transcription factors bound to their respective DNA 

sequences. (Left) bZIP structure in purple (PDB entry: 1YSA).7 (Right) Zinc finger protein in yellow (PDB 

entry: 2NLL).8  

                                                           
5 (a) Tan, S.; Richmond, T. J. Curr. Opin. Struct. Biol. 1998, 8, 41-48. (b) Latchman, D. S. 

Transcriptional Factors: Structural Families and Principles of DNA Recognition, 1998, Academic Press, 

San Diego. 

6 Pabo, C. O. Annu. Rev. Biochem. 1992, 61, 1053-1095. 

7 Ellenberger, T. E.; Brandl, C. J.; Struhl, K.; Harrison, S. C. Cell 1992, 71, 1223-1237. 

8 Rastinejad, F.; Perlman, T.; Evans, R. M.; Sigler, P. B. Nature 1995, 375, 203-211. 
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Two of the most widespread transcription factors for eukaryotic gene regulation are 

the zinc finger and bZIP families. Zinc finger proteins9,10 are based on regular peptide 

sequences containing His and Cys residues in certain positions to favor chelation with 

Zn. These residues, upon tetrahedral coordination with a Zn2+ ion, promote the 

correct structural folding to enable DNA-protein complex formation.11 On the other 

hand, bZIP12 family consists of α-helix dimeric structures containing two subdomains: 

the basic region, which is located in the N-terminus and is responsible for interaction 

with the DNA sequence; and the C-terminal leucine-rich area, which promotes helix 

dimerization through a parallel coiled-coil.13 A special feature of these transcription 

factors is that the basic region of bZIP only adopts the helical secondary structure in 

the presence of the complementary DNA sequence.14 Moreover, dimerization is 

required in order to afford a stable complex by cooperativity of both α-helices of the 

domain, and thus compensating the unfavourable entropic term derived from DNA-

protein complexation. Indeed, it has been reported that monomers or minimized basic 

regions of bZIP proteins are unable to effectively recognize DNA consensus 

sequences.15  

                                                           
9 Brown, S. R.; Sander, C.; Argos, P. FEBS Lett. 1985, 186, 271-274. 

10 For reviews see: (a) Berg, J. M. Science 1986, 232, 485-487. (b) Kaptein, R. Curr. Opin. Struct. 

Biol. 1991, 1, 63-70. (c) Berg, J. M. Curr. Opin. Struct. Biol. 1993, 3, 11-16. (d) Hurst, H. C. Protein 

Profile, 1995, 2, 101-164. (e) Wolfe, S. A.; Nekludova, L. Pabo, C. O. Annu. Rev. Biophys. Biomol. 

Struct. 2000, 29, 183-212. (f) Laity, J. H.; Lee, B. M.; Wright, P. E. Curr. Opin. Struct. Biol. 2001, 

11, 39-46.  

11 Elrod-Erikson, M.; Benson, T. E.; Pabo, C. O. Structure 1998, 6, 451-464. 

12 Landschulz, W. H.; Johnson, P. F.; McKnight, S. L. Science 1998, 240, 1759-1764. 

13 For reviews see: (a) Pathak, D.; Sigler, P. B. Curr. Opin. Struct. Biol. 1991, 2, 116-123. (b) 

Kerppola, T. K.; Curran, T. Curr. Opin. Struct. Biol. 1991, 1, 71-79. (c) Ellenberger, T. Curr. Opin. 

Struct. Biol. 1994, 4, 12-21. 

14 (a) Weiss, M. A.; Ellenberger, T.; Wobbe, C. R.; Lee, P. J. ; Harrison, S. C.; Struhl, K. Science 

1990, 347, 575-578. (b) O’Neil, K. T.; Shuman, J. D.; Ampe, C.; DeGrado, W. F. Biochemistry 

1991, 30, 9030-9034. (c) Zhang, M.; Wu, B.; Zhao, H.; Taylor, J. W. J. Peptide Sci. 2002, 8, 125-

136. 

15 (a) Turner, R.; Tjian, R. Science 1989, 243, 1689-1694. (b) Neuberg, M.; Adamkiewicz, J. 
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In recent years, the design and synthesis of miniaturized transcription factors have 

raised special interest.16 These modified constructs are capable of interacting strongly 

with specific DNA sequences owing to the recognition properties of the original 

transcription factors. These chimera proteins would act as “synthetic transcription 

factors” able to promote or inhibit the transcription of genes, hence regulating the 

expression of certain proteins. Indeed, protein engineering of these artificial DNA 

binders have become a promising tool for gene targeting and gene therapy. 

Most of the strategies reported on miniaturized transcription factors have been 

based on the recognition motif of the bZIP family. Early work by Kim et al., described 

an artificial bZIP protein in which, upon removal of the leucine rich region, the basic 

recognition motifs were tied together through a disulfide bond in order to form the 

active dimeric species (Figure 3).17 This artificial dimerization approach has been 

explored by other groups using covalent and non-covalent linkers such 

adamantane@cyclodextrin dyads18 or Fe(II) terpyridine metal complexes.19 Mascareñas 

et al. reported the first light triggered DNA-binding peptide.20 By covalent attachment 

of two basic regions of GCN4 (a well-known transcription factor from bZIP family) to 

an azobenzene central moiety, they were able to control the conformation of the azo 

group by light irradiation, and therefore the affinity towards the target DNA sequence 

(Figure 3). Indeed, while the cis conformer binds at low nanomolar affinity, the 

corresponding trans isomer showed about 60-fold decrease. 

                                                                                                                                              
Hunter, J. P.; Muller, R. Nature 1989, 341, 243-245. 

16 For reviews see: (a) Vázquez, M. E.; Caamaño, A. M.; Mascareñas, J. L. Chem. Soc. Rev. 2003, 

32, 338-349. (b) Jantz, D.; Amann, B. T.; Gatto, G. J. Jr.; Berg, J. M. Chem. Rev. 2004, 104, 789-

799. (c) Majmudar, C. Y.; Mapp, A. K. Curr. Opin. Chem. Biol. 2005, 9, 467-474. 

17 Talanian, R. V.; McKnight, C. J.; Kim, P. S. Science 1990, 249, 769-771. 

18 (a) Ueno, M.; Murakami, A.; Makino, K.; Morii, T. J. Am. Chem. Soc. 1993, 115, 12575-12576. 

(b) Ueno, M.; Sawada, M.; Makino, K.; Morii, T. J. Am. Chem. Soc. 1994, 116, 11137-11138. 

19 Cuenoud, B.; Schepartz, A. Science 1993, 259, 510-513. 

20 Caamaño, A. M.; Vázquez, M. E.; Martínez-Costas, J.; Castedo, L.; Mascareñas, J. L. Angew. 

Chem. Int. Ed., 2000, 39, 3104-3107. 
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S-S

 

Figure 3. Schematic representation of the artificial dimerization strategies explored by Kim et al.17 (left) and 

Mascareñas et al.20 (right). 

 

Another strategy used for the design of these DNA molecular binders consists of the 

combination of the monomeric binding motifs to small synthetic molecules which can 

interact with DNA. These molecules are based on DNA intercalating agents or minor 

groove binders and generally show low affinity and specificity to DNA, as compared 

with natural transcription factors and its derived constructs. However, their 

combination has been successful in acting cooperatively and enhancing the binding 

properties of these artificial DNA receptors. Woodbury et al. reported the attachment 

of an intercalating cyanide dye to different DNA-binding proteins which improved the 

affinity with selected DNA sequences up to 100 times, compared with the unmodified 

peptide.21 This dye not only increased the interaction with DNA and showed 

interesting fluorescence properties for detection purposes but also can act as a photo-

cleaving agent. This would open the possibility for the construction of synthetic 

nucleases able to recognize and cleave specific DNA sequences. Mascareñas et al. 

reported the synthesis of a hybrid conjugate based on a bZIP monomeric analogue 

linked to a minor-groove binder such as Distamycin.22 This concave shape molecule is 

                                                           
21 Thompson, M.; Woodbury, N. W. Biophys. J. 2001, 81, 1793-1804. 

22 Vázquez, M. E.; Caamaño, A. M.; Martínez-Costas, J.; Castedo, L.; Mascareñas, J. L. Angew. 

Chem. Int. Ed., 2001, 40, 4723-4725. 
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known to effectively intercalate with the narrow minor groove of A/T-rich DNA 

sequences. Special attention was required to choose the appropriate linker between 

Distamycin and the peptide. This geometrical requirement is essential to afford the 

simultaneous binding of both moieties, thus docking selectively with the target 

oligonucleotide. 

As previously described in Chapter 1, oligoguanidinium molecules are able to 

recognize polyanionic peptide sequences. By means of hydrogen bonding and 

electrostatic interactions, each bicyclic guanidine unit faces a carboxylate from the side 

chain of an aspartate or glutamate residue. However, some spatial requirements are 

essential to allow binding. For peptides, the optimal distance between the anionic 

amino acids for an optimal interaction with a tetraguanidinium framework is i, i+3 or i, 

i+4.23 This distance permits the correct orientation, and thus interaction of the 

guanidinium moieties with each acid residue. 

To further extend this study to the recognition of other biologically relevant systems, 

we propose that oligoguanidinium molecules would also be able to efficiently interact 

with oligonucleotide strands. Indeed, preliminary molecular modeling studies24 

revealed that bicyclic guanidinium moieties tethered by thioether linkages can interact 

with DNA structures by means of hydrogen bonding and salt bridge contacts with its 

phosphodiester backbone (Figure 4). This assembly is unspecific since it takes place 

mostly via electrostatic contacts with the phosphodiester chain. However, this has 

become controversial since different studies reported the specific sequence recognition 

of DNA by several naturally occurring polyamines.25 The distance between phosphate 

                                                           
23 (a) Peczuh, M. W.; Hamilton, A. D.; Sánchez-Quesada, J.; de Mendoza, J.; Haack, T.; Giralt, 

E. J. Am. Chem. Soc. 1997, 119, 9327-9328. (b) Haack, T.; M. W.; Peczuh, M. W.; Salvatella, X.; 

Sánchez-Quesada, J.; de Mendoza, J.; Hamilton, A. D.; Giralt, E. J. Am. Chem. Soc. 1999, 121, 

11813-11820. (c) Salvatella, X.; Martinell, M.; Gairí, M.; Mateu, M.; Feliz, M.; Hamilton, A. D.; 

de Mendoza, J.; Giralt, E. Angew. Chem. Int. Ed. 2004, 43, 196-198. 

24 Molecular modeling studies performed by Dr. Eva Santos (group of Prof. C. Bo). 

25 (a) Lindemose, S.; Nielsen, P. E.; Møllegaard, N. E. Nucleic Acids Res. 2005, 33, 1790-1803. (b) 

Patel, M. M.; Anchordoquy, T. J. Biophys. Chem. 2006, 122, 5-15. (c) Venkiteswaran, S.; Thomas, 
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groups is not regular along a DNA strand and their spatial disposition mainly depends 

on the sequence. Hence, even flexible molecules such polyamines which interact 

mainly through electrostatic contacts with DNA backbone, can discriminate between 

diverse DNA sequences due to these spatial constraints. Therefore, our bicyclic 

guanidinium oligomers may eventually show specific binding with DNA sequences. 

 

Figure 4. Top and side view of the molecular model between two undecaguanidinium strands interacting 

together with a double stranded DNA.24 

 

Our initial approach will combine oligoguanidinium strands with peptide sequences, 

which bind certain DNA tracks, to enhance this interaction. These peptide sequences 

derived from natural transcription factors (TFs), bind to specific DNA sequences with 

high affinity to control the flow (or transcription) of genetic information from DNA to 

mRNA.  

In particular, we will use the widespread basic region of the GNC4 protein, which 

                                                                                                                                              
T.; Thomas, T. J. Polyamine Cell Signaling: Physiology, Pharmacology, and Cancer Research 2006, Ed. 

Wang, J.-Y.; Casero, R. A.; Jr. Humana Press Inc., Totowa, NJ. 
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belongs to the bZIP family. As previously mentioned, most of the isolated monomeric 

DNA-binding motifs are unable to associate with their complementary DNA 

sequences. Indeed, the GNC4 protein only adopts the active helical structure upon 

binding with its specific DNA sequence. By conjugation with different 

oligoguanidinium strands we will study the binding properties of these hybrid 

constructs, which should increase the affinity and selectivity towards target DNA 

sequences. Furthermore, owing to the membrane-permeable character of these bicyclic 

guanidinium oligomers, this approach could offer some advantages in future 

therapeutic applications. 
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3.2 Design and Molecular Modeling Studies 

 

Kim et al. described the synthesis of different derivatives of GNC4 in order to 

identify the essential residues for specific DNA-binding by a disulfide dimerization 

strategy.26 Based on this pioneering work, we selected a minimalist structure of the 

basic region of GNC4 protein to be covalently attached to our synthetic 

oligoguanidinium strand. Previous accounts from Mascareñas’ group pointed out the 

importance of the linker between both molecules, which is crucial to fit the 

supramolecular ligand on the DNA structure. However, due to the high flexibility of 

the bicyclic guanidinium oligomers, we first decided to directly connect this molecule 

through a C-terminal cysteine present in the peptide motif. Likely, the 

oligoguanidinium strand would unspecifically interact with the phosphodiester 

backbone, thus considerably reducing any geometrical constraint or sequence 

requirements to maximize contacts with the DNA sequence. 

Modeling studies were performed from the X-ray crystal structure of the leucine 

zipper GNC4 interacting with the AP-1 site (a DNA specific sequence) reported by 

Harrison et al. (PDB entry: 1YSA) as a reference.7 We selected one of the monomers, 

in particular the peptide fragment responsible for the specific binding to the major 

groove. Subsequently, we replaced the Arg249 residue for a cysteine and attached a 

bicyclic guanidinium pentamer from the previous minimized structure with the 

Dickerson-Drew dodecamer. Rearrangement of the oligoguanidinium strand along the 

new DNA sequence and geometry optimization of the new linkage finally gave rise to 

the structure depicted in Figure 5. 

 

                                                           
26 Talanian, R. V.; McKnight, C. J.; Rutkowski, R.; Kim, P. S. Biochemistry 1992, 31, 6871-6875. 
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Figure 5. (Left) Top view of the complex between the oligoguanidinium-peptide conjugate and the DNA 

structure. (Right) Side view evidencing the major groove binding of the peptidic sequence. DNA (in ribbon), 

GNC4-based peptide (in blue) and pentaguanidinium oligomer (stick representation in CPK colors). 

 

Each guanidinium moiety nicely fits in front of a phosphodiester unit from the DNA 

sequence, forming a ladder-shape structure. The first guanidinium linked to the peptide 

is partially distorted with respect to the others due to the geometrical constraints 

imposed by the peptide. However, the bicyclic guanidine establishes salt bridges and 

hydrogen bond contacts with the closest non-bound phosphate in the sequence. This 

seems to be the most feasible binding mode, as the next phosphate is not at a suitable 

distance to interact properly with this first guanidinium molecule. As shown in Figure 

5, this leads to the formation of a pincer like structure where the specific recognition is 

driven by the peptide binding, which is interacting with AP-1 site (ATGACTCAT), 

with the oligoguanidinium strand bound to the DNA skeleton through unspecific ionic 

contacts. Hence, it is expected that the oligoguanidium-peptide hybrids enhance the 

binding to the corresponding DNA sequences by the cooperative contribution of both 

molecules. 

The synthesis and the determination of the binding properties of these constructs 

have been performed by Jesús Mosquera under the supervision of Prof. Mascareñas 

(University of Santiago). 
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3.3 Synthesis of Oligoguanidinium-Peptide Conjugates 

 

The synthesis of the oligoguanidinium-peptide conjugates was achieved following a 

similar strategy as previously described for oligoguanidinium-PNA conjugates. 

Therefore, the C-terminal cysteine from the peptide sequence was used to covalently 

attach the corresponding mesyl derivative of the oligoguanidinium. Milder conditions 

compared to those reported in Chapter 2 were employed to avoid racemization of the 

α-peptide. Thus, the reaction was performed in a (1:1) acetonitrile:phosphate buffer 

solution (0.1 N, pH 10) at 40 ºC overnight. Three different conjugates were 

synthesized: pentaguanidinium 69 and tetraguanidinium analogues 68 and 70 (Scheme 

1) starting from the previously described tetra- and pentaguanidinium precursors (18 

and 48). With these compounds it would be possible to determine the influence of the 

guanidinium oligomer length and the spacer between the peptide and the polycationic 

strands on the binding. 

 

Scheme 1. Synthesis of oligoguanidinium-peptide conjugates. Conditions: i) ACN/phosphate buffer (pH 

10) mixture at 40ºC. Peptide sequence: DPAALKRARNTEAARRSRARKLQ-C(or K). The N-

terminus was modified as p-acetamidobenzoate to facilitate quantification by UV spectroscopy. 
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For the conjugates directly attached to the terminal cysteine, conversion was 

completed after 14 h. With the lysine derivative (70), bearing an extended linker, longer 

reaction times were required (up to 3 days) and lower conversions (20%) were 

obtained. 
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3.4 Preliminary Binding Assays and Specific Sequence Affinity 

 

Circular dichroism (CD) was employed to study the binding of oligoguanidinium-

GNC4 conjugates with DNA sequences. The monomeric basic regions derived from 

the GNC4 protein are unable to bind to their complementary DNA sequence. In 

solution the peptide shows a random structure in the absence of the target DNA, only 

forming the active α-helical conformation upon specific DNA binding. Consequently, 

binding to DNA can be monitored by measuring the α-helical content in solution. This 

can be achieved by monitoring the variation of the negative band intensity at 222 nm 

in the CD spectrum. The experiments were performed with the tetraguanidinium-

GNC4 conjugate 68 in the presence of two different DNA sequences (ADN04 and 

ADN139). ADN139 contains the binding site for the GCN4 peptide, whilst ADN04 is 

a random sequence employed as a control to evaluate the sequence specificity of the 

hybrid. As shown in Figure 6, the presence of the DNA target sequence (ADN139) 

induced an increase in the helicity of compound 68 (red line), whereas the non-

complementary DNA sequence did not produce any effect, as expected (green line). 
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Figure 6. Circular dichroism spectra of compound 68 in absence (black line) and in the presence of a 

complementary (red line) and a random (green line) DNA sequence. 
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To further assess the association ability of these artificial constructs towards 

different DNA sequences, fluorescence electrophoretic mobility shift assays (EMSA) 

were performed. This is a common technique used for the affinity determination of 

DNA or RNA with proteins and other complexes. The oligonucleotides are shifted 

under the influence of an electric field in agarose or acrilamide gels and its mobility 

depends on the size and the charge of the overall complex. Protein complexation 

should slow down the mobility of these molecules due to steric hindrance. Moreover, 

protein-DNA binders usually interact through electrostatic contacts, compensating the 

negative charge of the oligonucleotides and thus affecting its mobility in the assays. 

Thus, the affinity of oligoguandinium-GNC4 compounds (68-70) towards the two 

different oligonucleotide sequences previously tested in the CD assays (ADN04 and 

ADN139) was evaluated. As shown in Figure 7, tetraguanidinium compound 68 

displays moderate affinity towards ADN139, and no binding with control ADN04, 

even at micromolar concentrations. A similar effect was also observed with 

pentaguanidinium 69. Indeed, this new conjugate exhibited higher affinity to the target 

DNA sequence than tetraguanidinium 68. 
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Figure 7. Fluorescence EMSA analysis of oligoguanidinium conjugates 68 and 69 at different 

concentrations (0.2 to 1 µM) in the presence of target ADN139 and random sequence ADN04 (at constant 

50 nM concentration). 

 

Introduction of a longer linker between the peptide and the guanidinium oligomer 

(compound 70) resulted in the loss of binding affinity with respect to the analogous 

tetraguanidinium compound 68, as depicted in Figure 8. 
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Figure 8. Fluorescence EMSA assay of compound 70 in the presence of both the target and the control 

sequences. 

 

This suggests that although longer linkers favor the enthalpic term of the association, 

the entropic penalty paid for such flexible and highly adaptable systems contributes 

negatively to the overall binding and finally results in formation of a 

thermodynamically less stable complex. 

The specificity shown by these conjugates confirmed the predicted mode of binding 

with the selected DNA sequences in which the peptide is bound to the major groove 

through sequence specific interactions, and in which the oligoguanidium moiety should 

be mainly bound to the phosphodiester backbone. In addition, as predicted by 

molecular modeling, direct thioether linkage of the peptide fragment to the 

polycationic oligoguanidine afforded the correct spatial disposition of the ligand to 

efficiently assemble with DNA. 
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3.5 Preliminary Thermal Stability Study of Bicyclic Guanidinium 

Oligomer-DNA Complexation 

 

To further assess the association mode and consequences of the interaction between 

oligoguanidinium molecules and DNA, thermal stability UV studies were performed. 

This work was done under the supervision of Prof. Peter E. Nielsen. 

As previously discussed, naturally occurring polyamines are able to interact with the 

phosphodiester chains of DNA and RNA via electrostatic interactions, although it has 

also been reported that polyamines can bind within the minor and the major grooves. 

In fact, specific DNA binding in the major groove of G/C rich sequences,27 TATA 

elements and bent adenine tracks have been described.25,28 Despite the molecular 

mechanisms of action are not well understood, implications in functions ranging from 

gene expression to cell growth regulation have been reported.29 Interestingly, these 

molecules are able to bind and stabilize double stranded DNA forms, favoring duplex 

formation even under non-optimal conditions. Owing to the similarities between 

oligoguanidinium molecules and cationic polyamines, as both are positively charged 

and flexible, we decided to study DNA duplex stabilization upon oligoguanidinium 

complexation. Melting temperatures (Tm) were therefore measured (by UV) for the 

different oligonucleotides, in the presence of spermine and tetraguanidinium 

compound 13 (Figure 9). These cationic molecules provide the ionic strength necessary 

to shield and stabilize the anionic phosphodiester DNA skeleton, thus favoring base 

pairing and double helix formation. Kan et al. reported the effect of several cationic 

                                                           
27 (a) Feuerstein, B. G.; Pattabiraman, N.; Marton, L. J. Nucleic Acids Res. 1990, 18, 1271-1282. 

(b) Haworth, I. S.; Rodger, A.; Richards, W. G. Proc. R. Soc. Lond. B Biol. Sci. 1991, 244, 107-116. 

28 Zakrzewska, K.; Pullman, B. Biopolymers 1986, 25, 375-392. 

29 (a) Cohen, S. S. A Guide to the Polyamines 1998, Oxford University Press, NY. (b) Igarashi, K.; 

Kashiwagi, K. Biochem. Biophys. Res. Commun. 2000, 271, 559-564. 
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molecules, especially polyamines, on duplex formation.30 Indeed, at pH 7.3, the 

effectiveness of helix stabilization by different cations followed the order of: spermine 

> spermidine > Mg+2 > Na+ > Tris buffer alone, suggesting that polyamines, and 

particularly spermine, allow stabilization of abnormal DNA structures such as loops, 

hairpins and mismatch sequences.  

Initially, we decided to evaluate the thermal stabilities of short oligonucleotides rich 

in A/T bases at different concentrations of spermine and tetraguanidinium compound 

13 (See experimental details in Chapter 1). As a control, Tm curves were also recorded 

in a buffer solution with a high ionic strength (100 mM NaCl and 20 mM MgCl2). 

Despite the obvious structural differences between both molecules, we selected 

spermine as control since it is one of the most effective polyamines for double helix 

DNA stabilization and because both compounds have the same number of positive 

charges. 

 

 

Figure 9. Chemical structures of compound 13 and spermine. 

 

As depicted in Figure 10, the three oligonucleotides selected showed low melting 

temperatures (ca. 10-15 ºC) in Tris buffer (20 mM, pH 7.3), as a consequence of their 

short lengths, combined with their high A/T base content, which is related with less 

stable DNA duplex structures. As expected, addition of NaCl and MgCl2 salts at high 

                                                           
30 Hou, M.-H.; Lin, S.-B.; Yuann, J.-M. P.; Lin, W.-C.; Wang, A. H.-J.; Kan, L.-S. Nucleic Acids 

Res. 2001, 29, 5121-5128. 
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concentrations provoked a considerable increase in Tm due to the inherent rise in 

ionic strength. This effect was improved in the presence of spermine (above 0.1 mM), 

and the enhancement became even more evident with compound 13.  
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Figure 10. Melting temperatures Tm (ºC) of A/T rich oligonucleotide sequences in the presence of different 

concentrations of spermine and tetraguanidine 13. Oligonucleotide concentration 0.6 O. D. units (ca. 10-5 µM 

depending on the oligonucleotide). 

 

This result implies that at low concentrations (0.5-1.0 mM), tetraguanidinium 13 is 

able to stabilize the double stranded form of DNA oligonucleotides even at 

physiological temperature (ca. 37 ºC). 

We also evaluated the stabilization effect in a mismatch oligonucleotide sequence 

(Figure 11). The mismatch oligonucleotide has a Tm value below 5 ºC (our lower 

experimental limit) and thus behaves as a single strand in solution. Addition of 50 µM 

of the tetraguanidinium compound 13 provoked an effect comparable with the 

stabilization produced by a highly concentrated solution of Na+ and Mg+2 salts. 

Interestingly, a noticeable increase in thermal stability (ca. 25%) was also reached upon 
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raising the concentration of 13 to 0.5 mM with respect to an experiment in the absence 

of this compound. 
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Figure 11. Melting temperatures of a mismatch oligonucleotide sequence at different concentrations of 13. 

 

High concentrations of spermine (5 mM) did not produce a significant increase in 

Tm for the mismatch oligonucleotide compared with the melting temperature found in 

highly ionic strength medium. 

Finally, we tested the thermal stability of G/C rich oligonucleotide sequences upon 

addition of compound 13. Unfortunately, precipitation occurred even at low 

concentrations of the tetraguanidine and consequently it was not possible to accurately 

assess Tm values in this case. Considering a mode of binding similar to that suggested 

by molecular modeling (see section 3.1), DNA-oligoguanidinium complexation should 

cause a change in the solubility character of the overall complex. Bicyclic guanidinium 

moieties interact with the phosphodiester skeleton of the double stranded DNA, thus 

decreasing its hydrophilicity and eventually leading to the collapse of the complex in 

aqueous solution. This could imply different binding modes for sequences depending 
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on the GC/AT base pair content, suggesting a preferential sequence binding behavior. 

Nonetheless, more experiments would be required to corroborate this hypothesis. 
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3.6 Experimental Section 

 

Compounds 18 and 48 were synthesized as previously described in Chapters 1 and 2 

(Experimental Section), respectively. Conjugation with the corresponding GNC4 

peptide giving rise to the corresponding compounds 68-70 was performed by Jesús 

Mosquera (group of Prof. Mascareñas) in University of Santiago de Compostela.  

Tm measurements were performed on a Cary 300 Bio UV-visible spectrophotometer 

(Varian, Cary, NC, USA) connected to a temperature controller. 

 

Thermal denaturation (Tm) 

800 µL of aqueous Tris-buffered solutions of oligonucleotide at 0.6 O.D. 

concentration were placed in 1 ml cuvettes (1 cm path length). Subsequently, a 

temperature ramp program (using heating-cooling cycles) was performed, first from 90 

to 5 ºC (to ensure no hybridization artifacts at the earlier steps), and then from 5 to 90º 

(which gives the final Tm value, ΔT = 0.5ºC), acquiring at 260 nm wavelength. The 

melting temperature (Tm) was determined from the maximum of the first derivative of 

the heating curve. 

All the solutions measured contained a fixed oligonucleotide concentration of 0.6 

O.D. which corresponds with a 10-5 µM concentration depending on the extinction 

coefficient (ε260) of the oligomer. The solutions were prepared from 10-60 O.D. 

concentrated solutions of each single stranded oligonucleotide. Spermine and 

tetraguanidinium compound 13 were added from CH3CN/H2O (1:1) stock solutions.
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A Tetraguanidinium Macrocycle for the Recognition and 

Cavity Expansion of Calix[4]arene Tetraoxoanions 

 

4.1 Introduction and Objectives 

 

Nature uses clefts, well-defined pockets and solvent-hindered structures to allow 

direct and efficient molecular recognition. By means of size and shape discrimination, 

in addition to other essential interactions, biological systems are able to selectively bind 

target molecules. This enables their transport, delivery to a different organelle, or 

diverse synthetic transformations. This is mainly possible due to the existence of 

robust architectures capable of reversibly accommodating guest molecules inside, such 

as in the case of enzymatic active sites, allosteric pockets or transmembrane pore 

channel proteins. Increasing one step further in complexity, nature utilizes a variety of 

tools, from virus capsids and cellular membrane systems to tissue 

compartmentalization, to ensure segregation of different biological events, thus 

providing diverse chemical environments (Figure 1). 

Chapter4
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Figure 1. (Left) Retro-aldolase enzymatic pocket. (Right) Papillomavirus capsid. 

 

Inspired by these complex systems, synthetic molecular containers are based on the 

same fundamental principles that govern host-guest recognition at biological level. 

Different pre-organized concave scaffolds such as resorcinarenes, calixarenes or 

cyclotriveratrylenes have been used as supramolecular baskets and capsules for 

binding, isolation and sensing of small molecules and ions,1 catalysis,2 or trapping of 

unstable intermediates.3 

Two main strategies have been explored for the construction of molecular 

containers. Early work by Cram,4 Sherman,5 Collet,6 and others, described the 

                                                           

1 (a) Rebek, J. Jr. Chem. Commun. 2000, 637-643. (b) Biros, S. M.; Rebek, J. Jr. Chem. Soc. Rev. 

2007, 36, 93-104. (c) Schmuck, C. Angew. Chem. Int. Ed. 2007, 46, 5830-5833. (d) Ballester, P. 

Chem. Soc. Rev. 2010, 39, 3810-3830. 

2 Vriezema, D. M.; Comellas Aragonès, M.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; 

Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005, 105, 1445-1489. (b) Lützen, A. Angew. Chem. Int. 

Ed. 2005, 44, 1000-1002. (c) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 

37, 247-262. (d) Lützen, A. ChemCatChem 2010, 2, 1212-1214. 

3 Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009, 324, 1697-1699. 

4 (a) Cram, D. J. Science 1983, 219, 1177-1183. (b) Sherman, J. C.; Cram, D. J. J. Am. Chem. Soc. 

1989, 111, 4527-4528. (c) Sherman, J. C.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1991, 

113, 2194-2204. 
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formation of covalently linked capsules able to accommodate guest molecules inside 

(Figure 2). Carceplexes and carcerands (with and without the guest inside, respectively) 

do not allow the reversible binding of the target molecule which is permanently 

imprisoned inside the cavity unless some covalent bonds are broken. On the other 

hand, although covalently bonded, hemicarcerands and hemicarceplexes contain 

“windows” large enough to allow the entrance and exit of small molecules in their 

cavities upon heating. 

 

Figure 2. Cram’s carceplexes (n = 1) and hemicarceplexes (n = 4). 

 

A second approach towards molecular cages is based on the self-assembly of 

different building blocks by means of non-covalent interactions. This strategy is similar 

to the processes encountered in nature, as it provides more flexibility, binding 

reversibility and a wide variety of stimuli to trigger host-guest complexation. A number 

                                                                                                                                              

5 (a) Chapman, R. G.; Chopra, N.; Cochien, E. D.; Sherman, J. C. J. Am. Chem. Soc. 1994, 116, 

369-370. (b) Chapman, R. G.; Sherman, J. C. J. Org. Chem. 1998, 63, 4103-4110. 

6 (a) Canceill, J.; Lacombe, L.; Collet, A. J. Am. Chem. Soc. 1985, 107, 6993-6996. (b) Collet, A. 

Tetrahedron 1987, 43, 5725-5759. (c) Collet, A.; Dutasta, J.-P.; Lozach, B.; Canceill, J. Top. Curr. 

Chem. 1993, 165, 103-129. 
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of examples can be found in the literature depending on the driving force of the 

assembly. 

Rebek and de Mendoza reported the first example of the so-called “tennis ball” 

structure based on the hydrogen bonding self-assembly of two glycoluril-derived 

moieties (Figure 3). This association not only affords a robust architecture capable of 

binding different guests,7 but also a system that can function as a molecular reactor. As 

an example, the Diels-Alder reaction in this confined space inside a larger glycoluril-

based capsule was reported.8  

 

Figure 3. Self-assembly of two glycoluryl moieties into the “tennis ball” structure. 

 

Hydrogen-bonded dimeric capsules based on cavitands such as calixarenes and 

resorcinarenes have been extensively described by Rebek, Böhmer, de Mendoza and 

Shinkai.9 In the solid state, larger hexameric cages have been reported by Atwood et al. 

(Figure 4) taking advantage of the hydrogen bonding properties of resorcinarenes and 

                                                           

7 (a) Wyler, R.; de Mendoza, J.; Rebek, J. Jr. Angew. Chem. Int. Ed. Engl. 1993, 32, 1699-1701. (b) 

Meissner, R. S.; Rebek, J. Jr.; de Mendoza, J. Science 1995, 270, 1485-1488. 

8 (a) Kang, J.; Rebek, J. Jr. Nature 1997, 385, 50-52. (b) Kang, J.; Hilmersson, G.; Santamaria, J.; 

Rebek, J. Jr. J. Am. Chem. Soc. 1998, 120, 3650-3656. 

9 (a) Koh, K.; Araki, K.; Shinkai, S. Tetrahedron Lett. 1994, 35, 8255-8258. (b) Conn, M. M.; 

Rebek, J. Jr., Chem. Rev. 1997, 97, 1647-1668. (c) Ebbing, M. H. K.; Villa, M.-J.; Valpuesta, J.-M.; 

Prados, P.; de Mendoza, J. Proc. Natl. Acad. Sci. USA 2002, 99, 4962-4966. (d) Rudzevich, Y.; 

Rudzevich, V.; Böhmer, V. Supramol. Chem. 2010, 22, 717-725. 
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pyrogallol[4]arenes.10 These large spherical complexes are able to encapsulate solvent 

molecules and a range of different ions such as tetraalkylammonium salts.11 

    

Figure 4. X-ray structures of two different hexameric capsules in stick and space filling representation, 

respectively, described by Atwood et al.10 

 

To ensure assembly in aqueous solvents, Reinhoudt et al. described the design of 

water-soluble calix[4]arene capsules formed by means of electrostatic interactions 

between positively charged amidinium groups and negatively charged carboxylate or 

sulfonate groups (Figure 5).12 This type of interaction is widely present in biological 

systems and displays a robust bonding even in competitive polar solvents.13 Hence, the 

reported oppositely charged cavitands self-assemble with association constants ranging 

from 105 to 106 M-1 to afford stable closed-shell molecular containers. These systems 

                                                           

10 Atwood, J. L.; Barbour, L. J.; Jerga, A. Proc. Natl. Acad. Sci. USA 2002, 99, 4837-4841. 

11 Avram, L.; Cohen, Y.; Rebek, J. Jr. Chem. Commun. 2011, 47, 5368-5375. 

12 (a) Corbellini, F.; Di Costanzo, L.; Crego-Calama, M.; Geremia, S.; Reinhoudt, D. N. J. Am. 

Chem. Soc. 2003, 125, 9946-9947. (b) Corbellini, F.; Knegtel, R. M. A.; Grootenhuis, P. D.; 

Crego-Calama, M.; Reinhoudt, D. N. Chem. Eur. J. 2005, 11, 298-307. (c) Corbellini, F.; van 

Leeuwen, F. W. B.; Beijleveld, H.; Kooijman, H.; Spek, A. L.; Verboom, W.; Crego-Calama, M.; 

Reinhoudt, D. N. New J. Chem. 2005, 29, 243-248. 

13 Goshe, A. J.; Steele, I. M; Ceccarelli, C.; Rheingold, A. L.; Bosnich, B. Proc. Natl. Acad. Sci. 

USA 2002, 99, 4823-4829. 
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showed efficient guest inclusion of small molecules such as acetylcholine, 

tetramethylammonium salts, and N-methylquinuclidinium cations.14  

 

Figure 5. Water-soluble molecular capsules described by Reinhoudt. 

 

By means of metal coordination, a range of cavitands have been employed to self-

assemble and form dimeric cages with diverse affinity properties in their inner void.15 

Special attention should be paid to the work described by Stang and Fujita on 

metallocages,16 which illustrate the construction of macromolecular and robust 

                                                           

14 Corbellini, F.; Fiammengo, R.; Timmerman, P.; Crego-Calama, M.; Versluis, K.; Heck, A. J. 

R.; Luyten, I.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 6569-6575. 

15 (a) Fox, O. D.; Dalley, N. K.; Harrison, R. G. J. Am. Chem. Soc. 1998, 120, 7111-7114. (b) 

Ikeda, A.; Yoshimura, M.; Udzu, H.; Fukuhara, C.; Shinkai, S. J. Am. Chem. Soc. 1999, 121, 4296-

4297. (c) Zhong, Z.; Ikeda, A.; Ayabe, M.; Shinkai, S.; Sakamoto, S.;Yamaguchi, K. J. Org. Chem. 

2001, 66, 1002-1008. (d) Fochi, F.; Jacopozzi, P.; Wegelius, E.; Rissanen, K.; Cozzini, P.; 

Marastoni, E.; Fisicaro, E.; Manini, P.; Fokkens, R.; Dalcanale E. J. Am. Chem. Soc. 2001, 123, 

7539-7552. 

16 (a) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. 

Commun. 2001, 509-518. (b) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-983. (c) 
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complex host 3D architectures from well-established simple 2D ligands and metals 

with different geometries. Small modifications in the ligand (e.g. size, flexibility, shape) 

or the nature of the metal resulted in formation of a wide variety of nanoscale 

molecular cavities. Moreover, Fujita et al. reported the crystal structure of some of 

these metallocages and explored their behavior in the solid state. These new and stable 

“crystalline molecular flasks” (Figure 6) showed inherent crystal porosity and were able 

to incorporate guest molecules with reactivities dissimilar from those observed in 

solution.17 

 

 

Figure 6. Illustrative example of Fujita’s crystalline “molecular flasks” (reproduced from reference 17). 

 

                                                                                                                                              

Northrop, B. H.; Yang, H.; Stang, P. J. Chem. Commun. 2008, 5896-5908.  

17 Inokuma, Y.; Kawano, M.; Fujita, M. Nat. Chem. 2011, 3, 349-358.  
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Another significant group of molecular containers is based upon the expansion of 

hollow cavitands to afford open void-like molecular architectures. Rebek and others 

explored this approach by deepening resorcinarenes-based self-assembled cavities.18 

Recently, our group detailed different examples of calix[4]arene deep cavitands, in 

which the confined space was locked by either hydrogen bonding19 or metallobridges20 

between their aromatic extended walls (Figure 7). These interactions prevented the 

molecules from adopting partially collapsed pinched conformations. These molecular 

vessels offer a solvent accessible space to effectively encapsulate different guests inside 

without the dependence on the dynamic assembly of diverse components, due to the 

fact that encapsulation occurs with closed capsular-like structures. Indeed, guest 

inclusion of smaller calix[4]arenes and resorcinarenes inside these large extended 

cavities through size, shape and electronic complementarity was reported. 

 

                                                           

18 (a) Tucci, F. C.; Renslo, A. R.; Rudkevich, D. M.; Rebek, J. Jr. Angew. Chem. Int. Ed. 2000, 39, 

1076-1079. (b) Menozzi, E.; Onagi, H.; Rheingold, A. L.; Rebek, J. Jr. Eur. J. Org. Chem. 2005, 

3633-3636. (c) Ajami, D.; Rebek, J. Jr. Proc. Natl. Acad. Sci. USA 2007, 104, 16000-16003. (d) 

Lledó, A.; Rebek, J. Jr. Chem. Commun. 2010, 46, 8630-8632. 

19 Botana, E.; Nättinen, K.; Prados, P.; Rissanen, K.; de Mendoza, J. Org. Lett. 2004, 6, 1091-

1094. 

20 (a) Botana, E.; Da Silva, E.; Benet-Buchholz, J.; Ballester, P.; de Mendoza, J. Angew. Chem. Int. 

Ed. 2007, 46, 198-201. (b) Botana, E.; Lubinu, M. C.; Da Silva, E.; Espinet, P.; de Mendoza, J. 

Chem. Commun. 2010, 46, 4752-4754. 
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Figure 7. Expanded calix[4]arenes reported by de Mendoza and co-workers. 

 

Herein, we describe the construction of stable and robust open molecular containers 

based on the binding between different oxoanionic calix[4]arenes and the cationic 

macrocyclic tetraguanidinium ligand 71 (Figure 8). Namely, ligand 71 should stabilize 

the cone conformation of these calix[4]arenes by means of electrostatic interactions 

and expand the inner volume of the cavity allowing association with a guest that would 

otherwise not fit inside. To the best of our knowledge, this is the first example of a 

cavity expansion promoted by non-covalent reversible bonds to generate an open-shell 

construct. 

 

Figure 8. Tetraguanidinium macrocyclic ligand 71.
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4.2 Design and Synthesis of the Tetraguanidinium Macrocycle 71 

 

Macrocyclic tetraguanidinium hexafluorophosphate salt 71 was prepared after five 

synthetic steps starting from functionalized monoguanidines 2 and 3 (Scheme 1). R,R-

Thioacetylated monoguanidine 3 was coupled by nucleophilic attack of its thiolate to 

S,S-guanidine mesylate 2, giving rise to R,R-S,S-diguanidinium 4. Cleavage of the silyl 

groups and activation of the diol with methanesulfonic anhydride afforded dimesylate 

diguanidinium 6 in good yields. Thioacetylation of 6 resulted in dithiolate precursor 7. 

Finally, coupling of diguanidinium dimesylate 6 with dithioacetylated diguanidinium 

salt 7 afforded tetraguanidine 71 in a 21% overall yield. 

The macrocyclization step deserves several considerations. First, high dilution 

conditions are required to avoid formation of undesirable linear oligomeric or 

polymeric products. In that sense, it is worth mentioning that the configuration of each 

stereogenic center in the molecule is not trivial. Indeed, R,R-S,S-diguanidines (“meso”), 

despite their inherent flexibility, should provide the correct orientation of their reactive 

side-arms pointing towards the same face of the molecule to allow formation of the 

macrocycle.  

On the other hand, a polymer bound phosphine is used to prevent oxidation of the 

dithiolate precursor and thus formation of disulfide by-products.  
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Scheme 1. Synthesis of tetraguanidinium macrocycle 71. Conditions: i) 2.7 eq. Cs2CO3, MeOH/ACN, 

N2; ii) MsOH, THF/H2O; iii) Ms2O, NMM in CH2Cl2; iv) KSCOCH3, ACN, reflux; v) 1 eq. 6, 2.7 

eq. Cs2CO3, (
nBu)2PhP polystyrene, in MeOH/ACN (high dilution conditions), 2 days, N2. 

 

In collaboration with Dr. Vera Martos and Dr. Aritz Durana from our research 

group, calix[4]arenes (a, c-e) were synthesized whereas compound b was commercially 

available (see further details in experimental section) (Figure 9). Formylation of the 

corresponding O-alkyl calix[4]erenes, followed by oxidation with sulfamic acid and 

sodium chlorite afforded tetracarboxylic compounds a, c and d in moderate to good 

yields. Subsequent O-debenzylation of compound a gave rise to calix[4]arene e. 
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Figure 9. Calix[4]arene tetracarboxylic and sulfonic acids a-e. 
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4.3 Preliminary Characterization of the Complexes 

 

The 1H-NMR spectra of 1:1 mixtures of macrocyclic tetraguanidine 71 and the 

sodium salts of calix[4]arenes a, b and c revealed no significant chemical shifts with 

respect to the original calix[4]arene signals in a CD3CN/D2O (2:1) mixture. However, 

the broadening of the original proton signals of the independent species indicated that 

molecular assembly was likely taking place.  

Molecular models of macrocyclic tetraguanidinium calix[4]arenate complexes 

pointed out that molecule 71 should sit on the anionic edge of the calix[4]arenes, 

compensating the four positive charges of 71. Hence, it was expected to find nOe 

contacts between the upper rim proton signals of the calix[4]arene and 

tetraguanidinium molecule 71. To corroborate this hypothesis, NMR ROESY 

experiments were performed. Indeed, after selective irradiation of the aromatic signals 

of calix[4]arene c, 1D ROESY showed nOe contacts with almost all signals of 

macrocyclic tetraguanidinium 71 (Figure 10). 

 

Figure 10. 1D ROESY experiment showing contacts between the aromatic part of calixarene c and 71. 

 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 4 

 

178 

From the molecular model it can be assumed that only the CH2S and CHα protons 

of macrocycle 71 should be within the optimal distance to display nOe contacts with 

the aromatic protons of the calix[4]arene. However, the β and γ methylene protons 

also showed nOe contacts, indicating that the inherent flexibility of macrocycle 71 

could allow for the dynamic bending and twisting of some of the bicyclic guanidines of 

the ring, resulting in a closer proximity of these protons to the aromatic protons of the 

calixarene in the NMR time scale. 

In addition, 71@a and 71@b were also characterized by means of mass spectrometry 

analysis21 ([M-H]- = 1555.8 and 1531.5 m/z, respectively), revealing the interaction 

between the anionic calix[4]arenates with tetraguanidinium 71. The masses of the 

individual species were also found in the gas phase, as a result of complex 

fragmentation. 

Further structural studies were carried out by NMR DOSY experiments. This 

technique affords information about the number of species in solution and their 

diffusion coefficients.22 Experimental hydrodynamic radii for each species can be 

calculated by utilizing the Stokes-Einstein equation (Rh = KbT/6ηπD) where D is the 

diffusion coefficient of the species as determined by DOSY. The experimental radii 

can then be compared with the calculated hydrodynamic radii for the different 

species.23 

DOSY spectra of complexes 71@a and 71@c were measured in a D2O:CD3CN (1:3) 

solvent mixture. For each sample, one sharp DOSY peak was observed, accounting for 

                                                           

21 Zadmard, R.; Kraft, A.; Schrader, T.; Linne, U. Chem. Eur. J. 2004, 10, 4233-4239. 

22 Cohen, Y.; Avram, L.; Frish, L. Angew. Chem. Int. Ed. 2005, 44, 520-554. 

23 (a) Timmerman, P.; Weidmann, J.-L.; Jollife, K. A.; Prins, L. J.; Reinhoudt, D. N.; Shinkai, S.; 

Frish L.; Cohen, Y. Perkin Trans. 2 2000, 2, 2077-2089. (b) Giuseppone, N.; Schmitt, J.-L.; 

Allouche, L.; Lehn, J.-M. Angew. Chem. Int. Ed. 2008, 120, 2267-2271. (c) Oliva, A. I.; Gómez, 

K.; González, G.; Ballester, P. New J. Chem. 2008, 32, 2159-2163. (d) Metselaar, G. A.; Sanders, 

J. K. M.; de Mendoza, J. Dalton Trans. 2008, 588-590. 
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a single complexed species in solution and thus no scrambling between the free species 

in the NMR time scale was detected (Figure 11). 
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Figure 11. DOSY spectra of 71@a (left) and 71@c measured in D2O:CD3CN (1:3) (right) with the 

corresponding molecular models used to calculate their theoretical Rh. 

 

Hydrodynamic radii of a range of free and complexed species were determined both 

experimentally and theoretically. As illustrated in Table 1, theoretical hydrodynamic 

radii of the calix[4]arene carboxylate salts and macrocycle 71 are similar, and therefore 

it was expected to observe similar values of the hydrodynamic radii as well as for the 

complexes. Indeed, the experimental hydrodynamic radii obtained for the complexes 

are in good fit with the calculated ones. Two theoretical radii were considered 

depending on the conformation of the calix[4]arene a: 5.9Å for the cone conformation 

and 6.5Å for the pinched cone, which is the preferred conformation for this compound. 

Indeed, the experimental hydrodynamic radius (6.7Å) is in good agreement with the 

one extracted from the model. Moreover, the X-ray crystal structure of the molecule 
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finally confirmed this pinched disposition and the resulting hydrodynamic radius 

(Figure 12). 

13.7  Å

11.2  Å
 

Figure 12. X-ray structure of Calix (OBn) a. 

 

Table 1. Theoretical and experimental hydrodynamic radius extracted from the molecular models and 

DOSY experiments, respectively. 

 Rcalc (Å) Rexp (Å) 

Tetraguanidinium 71 5.6 5.1 

Calix (OBn) a 5.9/6.5 6.7 

Calix (OPr) c 5.6 -- 

Complex 71@a 8.1 8.9 

Complex 71@c 7.5 7.8 

 

In conclusion, the data provides qualitative information about the complexation that 

validates the postulated model for the association. 
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4.4 Conformational Study of the Tetraguanidinium Calix[4]arenate 

Complexes in Solution 

 

Calixarenes can adopt different conformations due to the inherent flexibility of the 

phenol rings around the methylene bridges. Several factors can drastically influence the 

most stable conformation of the calixarene, and therefore its geometrical and spatial 

disposition.24 

Calix[4]arenes with bulky substituents such as a and c (i.e. benzyl or propyl chains at 

the lower rim) show a restricted conformation due to obvious sterical reasons, whereas 

the aryl moieties of calix[4]arenes b and e, with hydroxyl groups at the lower rim, can 

unrestrictedly rotate. These hydroxyl groups provide an intramolecular hydrogen 

bonding array which predominantly stabilizes the cone conformation. However, in the 

presence of polar solvents, hydrogen bonding is disrupted and consequently the 1H-

NMR signal of the methylene protons appears as a broad singlet indicating a statistical 

distribution of the different conformations due to a rapid exchange between 

conformers.  

The macrocyclic tetraguanidinium compound 71 should stabilize the cone 

conformation of otherwise flexible calix[4]arenes, providing a strong and robust 

complex which should prevent or slow down the conformational exchange. Each 

bicyclic guanidinium may face a negatively charged group of the calix[4]arene, hereby 

influencing its orientation by means of electrostatic and hydrogen bonding 

interactions. Therefore, the association should increase the inversion energy barriers 

which can be measured by the determination of coalescence temperatures using 

variable temperature 1H-NMR experiments. 

                                                           

24 (a) Jaime, C.; de Mendoza, J.; Prados, P.; Nieto, P. M.; Sánchez, C. J. Org. Chem. 1991, 56, 

3372-3376. (b) Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955-4962. 
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In order to perform these experiments, the solvent should provide good solubility 

for both the complex and the calix[4]arenes and should afford a wide range of 

temperatures in which the conformational interconversion occurs. Sodium 

calix[4]arenate salts of b and e required solvent mixtures containing D2O, which 

restricts the lower limit of the ramp temperature. Thus, tetrabutylammonium salts of 

the anionic calix[4]arenes were formed to enhance their solubility in organic solvents. 

Hence, mixtures of CD3CN:CD3OD (6:4) which tolerate a wide range of temperatures 

(from -45 to 55º C) were used in the variable temperature NMR experiments.  

As shown in Figure 13, the methylene protons of calix[4]arene b appeared as a broad 

signal at room temperature, accounting for a rapid interconversion between different 

conformers in solution. Upon cooling, the cone conformation was stabilized and thus, 

the proton signal became a doublet at 278 K. Conversely, at room temperature in the 

presence of tetraguanidinium ligand 71, the calix[4]arene b adopted a more stable cone 

conformation which should facilitate the complexation with this polycationic molecule. 

Consequently, the doublet signal was observed up to 318 K (the upper temperature 

limit for this solvent system). A similar trend was observed for calix[4]arene e. 

 

Figure 13. Example of a variable temperature 1H-NMR experiment monitoring the protons in the 

methylene bridge of calix[4]arene b with 71 (right) and without 71 (left). 
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Gutsche et al. described a method to assess conformational mobilities in 

calix[n]arenes by means of dynamic 1H-NMR spectroscopy (Figure 14).25,26 Applying 

this methodology, conformational barriers of calix[4]arene inversions with and without 

ligand 71 were deduced from the coalescence temperatures extracted from the variable 

temperature 1H-NMR data. 

 

Figure 14. Formula used for determining conformational barriers of calixarenes and calixarene-

guanidinium complexes. 

 

Table 2 summarizes the data obtained from these experiments. In general, 

tetrabutylammonium calix[4]arene salts display lower coalescence temperatures (Tc) 

than the corresponding tetraguanidinum calix[4]arenate complexes. The numbers were 

calculated assuming an accuracy of ±5º C for the value of Tc; ± 15 Hz for the value of 

Δν and ± 1 Hz for the value of JAB. It is also estimated that ΔG≠ values are accurate to 

± 0.4 kcal/mol. 

 

 

 

 

 

 

                                                           

25 (a) Gutsche, C. D.; Bauer, L. J. J. Am. Chem. Soc. 1985, 107, 6052-6059. (b) Kanamathareddy, 

S.; Gutsche, C. D. J. Org. Chem. 1994, 59, 3871-3879. (c) Stewart, D. R.; Gutsche, C. D. J. Am. 

Chem. Soc. 1999, 121, 4136-4146. 

26 van Hoorn, W. P.; Briels, W. J.; van Duynhoven, J. P. M.; van Veggel, F. C. J. M.; Reinhoudt, 

D. N. J. Org. Chem. 1998, 63, 1299-1308. 
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Table 2. Calculated values for the coalescent constant (Kc) and ΔG≠ in the system depicted. 

 

In CD3CN/CD3OD Tc (K) Δν JAB Kc (s-1) 
ΔG≠ (±0.4 

kcal/mol) 

Calix b (Z = SO3
- ) 308-318 280 12.5 626.4 14.36 

Calix e (Z = CO2
-) 308-318 255 12.9 570.5 14.42 

Complex 71@b >328 271 12.9 609.0 --- 

Complex 71@e >328 273 12.5 608.7 --- 

 

However, Tc values are higher than 328 K for the tetraguanidinium calix[4]arenate 

complexes and therefore free energy interconversion barriers cannot be accurately 

determined since the solvent mixture employed (CD3CN/CD3OD) does not allow to 

reach this temperature. 

In DMSO, the upper limit of the temperature range increases, but extrapolation 

from previous experiments made in CD3CN/CD3OD mixture was necessary for 

parameters such as JAB and Δν, since the lower temperature limit of DMSO does not 

allow their direct measurement. 

Control tests with mono- and diguanidinium calix[4]arene salts were performed to 

evaluate their effect in the conformational stability of the complexes. Addition of 

stoichiometric amounts (4 equivalents) of a bicyclic guanidinium monomer 72 (see 

formula in Figure 16, Section 4.5) did not influence the interconversion rate (Table 3), 

the calix[4]arene carboxylate salts showing similar coalescence temperatures as the 

tetrabutylammonium salts. Interestingly, diguanidine 4 had an effect on the 
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conformational barrier of calix[4]arene tetracarboxylate e but not on tetrasulfonate b. 

This accounts for the stronger interaction of guanidinium cations with carboxylates 

than with sulfates.27 This trend is also observed with macrocyclic tetraguanidinium 

ligand 71 (the complex 71@e showed higher coalescence temperatures (up to 408 K) 

than the 71@b adduct (ca. 393 K)). 

 

Table 3. Calculated values for the coalescent constant (Kc) and ΔG≠ in DMSO.  

In DMSO Tc (K) Δν (Hz) JAB (Hz) Kc (s-1) 
ΔG≠ (±0.4 

kcal/mol) 

Calix b (Z = SO3
-) 298-308 280 12.5* 626.4 13.9 

Calix b + 4 eq. 72 298-308 280 12.5* 626.4 13.9 

Calix b + 2 eq. 4 298-308 280 12.5* 626.4 13.9 

Complex 71@e 388-398 210 12.8 471.4 18.4 

Calix e (Z = CO2
-) 318-328 200 12.95* 438.6 15.3 

Calix e + 4 eq. 72 318-328 200 12.95* 438.6 15.3 

Calix e + 2 eq. 4 368-378 200 12.95* 438.6 17.4 

Complex 71@b >408 232.5** 12.45** 520.6 >19.1 

*Extrapolated from the experiment performed in CD3CN/MeOD (6/4). **These numbers correspond to the 

last complex observed. 

 

In conclusion, binding of tetraguanidinium multivalent ligand 71, and to a lesser 

extent diguanidine 4, stabilizes the conformation of oxoanionic calix[4]arenes by 

hindering the mobility of their aryl moieties. This effect is not attributable to the 

intrinsic interaction of four “monovalent” guanidine ligands with anionic calix[4]arenes 

                                                           

27 Jadhav, V. D.; Herdtweck, E.; Schmidtchen, F. P. Chem. Eur. J. 2008, 14, 6098-6107. 
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as demonstrated by control experiments. The higher conformational stabilization of 

the calix[4]arene carboxylates over the corresponding sulfonates indicates that a 

stronger interaction results in a structurally more stable complex. Indeed, as the 

number of guanidinium moieties increases, the strength of the interaction should also 

increase, both by effective molarity (EM) and by the cooperativity effect. 

This structural behavior in solution is essential to allow molecular recognition at 

these interfaces, because stabilization of the cone conformations allows for the 

formation of robust and well-defined void-like structures which are able to bind other 

guest molecules even at high temperatures. 
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4.5 Isothermal Titration Calorimetry (ITC) Studies 

 

Isothermal titration calorimetry (ITC) was used to assess quantitatively and 

qualitatively the thermodynamic factors of the binding between macrocyclic 

tetraguanidinium ligand 71 and tetraoxoanionic calix[4]arenes. The experiments were 

carried out in a THF/H2O (3:1) mixture to allow solubilization of the more 

hydrophilic sodium calix[4]arenate salts a-d (Figure 15). 
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Figure 15. ITC curves for the titrations with calix[4]arene anions. 
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Binding constants were high (within the range of 104-106 M-1, see Table 4) even in 

the presence of polar solvents such as water, accounting for a robust and cooperative 

enthalpically driven interaction. Hence, the binding is dominated by hydrogen bonding 

and ion-pair formation. Conversely, the entropic factor, which mainly depends on 

disorder in the molecular assembly process, solvation effects and solvent-shell 

reorganization upon complexation, has only a minor contribution in these systems. 

Table 4. Thermodynamic data obtained by ITC measurements. 

 
Complex 

71@a 

Complex 

71@b 

Complex 

71@c 

Complex 

71@d 

Ka (M-1) 2.46 x 104 2.03 x 105 8.25 x 105 2.45 x 106 

ΔH (Kcal·mol-1) -10.4 -11.7 -9.9 -12.6 

ΔS (cal·mol-1·K1) -14.7 -14.8 -10.8 -12.9 

ΔG (Kcal·mol-1) -6.0 -7.3 -6.7 -8.8 

 

As previously discussed, molecular modeling and VT 1H-NMR experiments 

suggested that the preferred calix[4]arene conformation to maximize the interaction 

with macrocyclic tetraguanidinium ligand 71 is the cone conformation. 

In fact, the highly preorganized calix[4]arene d showed an association constant with 

ligand 71 up to two orders of magnitude higher than the more flexible calix[4]arenes a 

and c. This molecule, bearing bridges between vicinal phenols at the lower rim, 

displays a restricted cone conformation28 which promotes and facilitates the interaction 

with 71. Tetrasulfonato calix[4]arene b should also show a preferred cone 

conformation due to the intramolecular hydrogen bonding array between the phenolic 

groups of the lower rim. However, in polar media this array is less stable. Indeed, the 

binding constant drops by one order of magnitude due to the weaker sulfonate-

                                                           

28 Arduini, A.; Fabbi, M.; Mantovani, M.; Mirone, L.; Pochini, A.; Secchi, A.; Ungaro, R. J. Org. 

Chem. 1995, 60, 1454-1457.  
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guanidinium interaction, and also the fact that this molecule is conformationally less 

robust than calix[4]arene d. Indeed, compounds a and c preferentially display a pinched 

conformation which results in weaker binding to the tetraguanidinium ligand 71 (Ka = 

2.5 x 104 and 8.3 x 104 M-1, respectively). This pinched disposition of the aryl moieties 

prevents interaction with the macrocyclic tetraguanidine and thus lack of a correct 

preorganization in a conical shape translates into a lower association constant. 

Finally, titrations with bicyclic guanidinium monomer 72 and diguanidinium 5 did 

not produce any significant heat exchange in the presence of tetracarboxylic 

calix[4]arene a, as illustrated in Figure 16. This highlights the requirement of having 

multivalent systems such as ligand 71 to allow complexation even in highly competitive 

polar solvents. 
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Figure. 16. ITC curves for the blank experiments with monoguanidinium 72 and diguanidinium 5 

molecules, respectively, showing no relevant heat exchange. 
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From these calorimetric measurements it can be concluded that binding of the 

oxoanionic calix[4]arene anions with tetraguanidinium ligand 71 is an enthalpically 

driven process involving ion-pairing and hydrogen bonding interactions. Moreover, the 

sum of these interactions in a cooperative and multivalent fashion is essential for the 

successful complexation.  
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4.6 Guest Complexation in Calix[4]arene-Tetraguanidinium Expanded 

Cavities 

 

As shown in previous molecular models, complexation of the tetraguanidinium 

ligand 71 with oxoanionic calix[4]arenes by means of ionic interactions may result in 

the increase of the inner volume of these molecular containers. Herein, to the best of 

our knowledge we present the first example of non-covalently expanded calix[4]arene 

with an open cavity structure. 

To demonstrate the ability of calixarene-guanidinium expanded cavities to effectively 

include and bind guest molecules, titration experiments of 71@d with two different 

quinolinium iodide salts (73 and 74) (Figure 17) were carried out. For this purpose, we 

selected the most robust tetraguanidinium calix[4]arenate complex (71@d) in terms of 

binding and structural stability. 

 

Figure 17. 2-Methylisoquinolinium and 1-ethyl-2methylquinolinium iodide salts 73 and 74, respectively. 

  

Host-guest interactions between calixarenes and ammonium salts have been 

extensively reported.29 Their inclusion is mainly driven by cation-π, CH-π and π-π 

contacts, although hydrophobic effects should be also taken into account in polar 

solvents (Figure 18). 

                                                           

29 For reviews see: (a) Abraham, W. J. Incl. Phen. Macrocyc. Chem. 2002, 43, 159-174. (b) Mutihac, 

L.; Lee, J. H.; Kim, J. S.; Vicens, J. Chem. Soc. Rev. 2011, 40, 2777-2796. 
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Figure 18. Molecular model (MM3) of guest encapsulation complex 73@[71@e]. 

 

In terms of size it is likely that the 2-methylisoquinolinium guest 73 should not allow 

an effective complexation with a simple calix[4]arene. Indeed, no binding was observed 

by 1H-NMR titration experiments between calix[4]arenate d and quinolinium 73 

(Figure 19) in the absence of tetraguanidinium. Also, no appreciable changes in the 

spectra were observed upon adding guest 73 to a solution containing macrocyclic 

tetraguanidine 71. 
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Calix d

Calix d +
1 eq. Guest

Calix d +
2 eq. Guest

Calix d +
4 eq. Guest

Calix d +
12 eq. Guest

 

Figure 19. 1H-NMR titration (in 3:1 THF-d6/D2O mixture) of the selected guest 73 with oxoanionic 

calix[4]arene d. 

 

1H-NMR titration experiments with guest 73 in the presence of the supramolecular 

tetraguanidinium calix[4]arenate host 71@d (Figure 20) in a (3:1) THF-d6/D2O 

mixture revealed upfield shifting of the guest proton signals, accounting for a 

molecular encapsulation process. As illustrated in Figure 20, the addition of an excess 

of ammonium guest resulted in the appearance of new broad signals which 

corresponds in chemical shift with the free 2-methylisoquinolinium guest in solution. 

The data strongly support slow exchange equilibrium between the free and the bound 

guest.30 The broadness of the signals did not allow an accurate integration for the 

association constant determination. 

 

                                                           

30 (a) Saito, S.; Nuckolls, C.; Rebek, J. Jr. J. Am. Chem. Soc. 2000, 122, 9628-9630. (b) Trembleau, 

L.; Rebek, J. Jr. Science 2003, 301, 1219-1220.  
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Complex 1@d

Complex 1@d +
0.5 eq. Guest

Complex 1@d +
1 eq. Guest

Complex 1@d +
4 eq. Guest

Guest

 

Figure 20. 1H-NMR titration (in 3:1 THF-d6/D2O mixture) of guest 73 with the complex 71@d. 

 

As shown in Figure 21, nOe crosspeaks between these two bound and free species 

confirmed the existence of a chemical exchange due to guest inclusion. 

 

Figure 21. NOESY spectrum showing exchange crosspeaks between free and bound guest (73) signals. 
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1H-NMR titrations in a (3:1) THF-d6/D2O mixture with 1-ethyl-2-

methylquinolinium iodide guest 74 were also performed to explore the possibility of 

this bulkier molecule to be included into 71@d complex. Indeed, the spectra showed 

well defined upfield shifted signals accounting for the complexation of 74 (Figure 22). 

When an excess guest was added, a new set of signals corresponding to the free species 

appeared, clearly indicating a slow exchange process on the NMR time scale. 

 

Complex 1@d

Complex 1@d +
0.5 eq. Guest

Complex 1@d +
1 eq. Guest

Complex 1@d +
4 eq. Guest

 

Figure 22. 1H-NMR titration (in 3:1 THF-d6/D2O mixture) of guest 74 with the complex 71@d. 

 

The chemical exchange observed in the NOESY spectrum (Figure 23) confirmed 

this two-state (free and bound) behavior for guest 74. 
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Figure 23. NOESY spectrum showing exchange crosspeaks between free and bound guest (74) signals. 
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4.7 Experimental Section 

 

4.7.1 Materials and Methods 

Calorimetric measurements were preformed in an isothermal titration 

microcalorimeter Microcal VP-ITC. The operating temperature range varies from 2 ºC 

up to 80 ºC with a noise level of 1 nanocal/sec (4 nanowatts).  

 

4.7.2 Synthesis 

Calix[4]arenes a, c, d and e were synthesized according to described procedures.31 

Calix[4]arene tetrasulfonic acid b was commercially available. 

 

(2S,8S)-2-(tert-Butyldiphenylsilanyloxymethyl)-8-methanesulfonyloxymethyl-

3,4, 6,7,8,9,-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium 

hexafluorophosphate (2). 

 

To a solution of mono-deprotected guanidine (PF6
–) (1.23 g, 2.11 mmol) in dry 

CH2Cl2 (25 mL) was added Ms2O (1.84 g, 10.55 mmol) and NMM (1.87 ml, 16.87 

mmol) and the mixture was stirred for 4 h at room temperature. After evaporation of 

the solvent, the resulting solid was dissolved in CH2Cl2 (100 mL) and washed with a 

                                                           

31 (a) Sansone, F.; Barboso, S.; Casnati, A.; Fabbi, M.; Pochini, A.; Ugozzoli, F.; Ungaro, R. Eur. 

J. Org. Chem. 1998, 897-905. (b) Sansone, F.; Barboso, S.; Casnati, A.; Sciotto, D.; Ungaro, R. 

Tetrahedron Lett 1999, 40, 4741-4744. (c) Zhou, H.; Wang, D.; Baldini, L.; Ennis, E.; Jain, R.; 

Carie, A.; Sebti, S. M.; Hamilton, A. D. Org. Biomol. Chem. 2006, 4, 2376-2386. (d) Martos, V.; 

Bell, S. C.; Santos, E.; Isacoff, E. Y.; Trauner, D.; de Mendoza, J. Proc. Natl. Acad. Sci. USA 

2009, 106, 10482-10486. 
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0.1N NH4PF6 solution (2  50 mL). The organic layer was filtered over cotton and 

concentrated at reduced pressure. Purification by silica gel column chromatography 

(CH2Cl2/MeOH, 98:2) afforded the corresponding mesylate 2 (1.23 g, 88%) as a white 

solid. M.p. 60-61 °C. [α]25
D +78 (c = 0.8, CHCl3). 1H-NMR (400 MHz, CDCl3)  7.68-

7.63 (m, 4H, CHAr), 7.50-741 (m, 6H, CHAr), 6.28 (s, 1H, NH), 6.12 (s, 1H, NH), 4.33 

(dd, J = 4.5, 10.3 Hz, 1H, CH2OMs), 4.19 (dd, J = 6.5, 10.3 Hz, 1H, CH2OMs), 3.86-

3.79 (m, 1H, CHα), 3.72-366 (m, 2H, CH2OSi), 3.63-3.56 (m, 1H, CHα), 3.43-3.27 (m, 

4H, CH2γ), 3.11 (s, 3H, CH3MsO), 2.15-1.87 (m, 4H, CH2β), 1.08 (s, 9H, CH3t-Bu). 13C-

NMR (100 MHz, CDCl3)  150.7 (Cguan), 135.6, 135.5, 132.6, 132.5, 130.1, 130.1, 128.0 

(CHAr, CAr), 69.5 (CH2OMs), 65.4 (CH2OSi), 50.2, 47.8 (CHα), 45.4, 45.0 (CH2γ), 37.2 

(CH3MsO), 26.8 (CH3t-Bu), 22.5, 22.0 (CH2β), 19.2 (Ct-Bu). HRMS calcd. for 

[C26H38N3O4SSi]+ 516.2352; found 516.2354. 

 

(2S,8S)-2-(tert-Butyldiphenylsilanyloxymethyl)-8-[(2R,8R)-8-(tert-

butyldiphenylsilanyloxymethyl)-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-

a]pyrimidin-2-ylmethylsulfanylmethyl-1-ium hexafluorophosphate]-3,4,6,7,8,9-

hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium hexafluorophosphate (4). 

 

A mixture of compound R,R-3 (751 mg, 1.17 mmol), mesylate S,S-2 (774 mg, 1.17 

mmol) and Cs2CO3 (761 mg, 2.34 mmol) was dissolved in 20 mL of degassed (3:1) 

CH3CN/MeOH  at 0 ºC under N2 and the solution was stirred for 4 h. The solvent 

was evaporated under vacuum at room temperature. The crude was dissolved in 

CH2Cl2 (20 mL) and washed with aqueous 1N NH4PF6 (2 × 15 mL). The organic 

phase was filtered over cotton and concentrated to dryness to give a crude residue 

which was purified by silica gel (with KPF6) column chromatography (CH2Cl2/MeOH, 

96:4), affording symmetric diguanidinium 4 (1.20 g, 88%) as a white solid. M.p. 84-86 

°C. [α]25
D +3 (c = 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3)  8.24 (s, 2H, NH), 8.05 
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(s, 2H, NH), 7.71-7.55 (m, 8H, CHAr), 7.50-7.33 (m, 12H, CHAr), 3.73 (dd, J = 4.7, 9.8 

Hz, 2H, CH2O), 3.67-3.50 (m, 5H, CH2O, CHα), 3.48-3.10 (m, 9H, CHα,CH2γ), 3.00 

(dd, J = 2.7, 13.5 Hz, 2H, CH2S), 2.59 (dd, J = 10.8, 13.5 Hz, 2H, CH2S), 2.18-1.69 (m, 

8H, CH2β), 1.06 (s, 18H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  151.2 (Cguan), 135.6, 

135.6, 132.8, 132.7, 129.9, 127.9, 127.9 (CHAr, CAr), 65.2 (CH2O), 49.7, 48.3 (CHα), 

45.1, 44.7 (CH2γ), 38.5 (CH2S), 26.9 (CH3t-Bu), 26.2, 22.6 (CH2β), 19.2 (Ct-Bu). HRMS 

calcd. for [C50H69N6O2SSi2]+ 873.4741; found 873.4754. 

 

(2S,8S)-2-Hydroxymethyl-8-[(2R,8R)-8-hydroxymethyl-3,4,6,7,8,9-hexahydro-

2H-pyrimido[1,2-a]pyrimidin-2-ylmethylsulfanylmethyl-1-ium 

hexafluorophosphate]-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-

ium mesylate (5). 

 

A solution of 4 (1.20 g, 1.03 mmol) and MsOH (1.46 mL, 22.53 mmol) in a mixture 

of THF/H2O (3:1, 40 mL) was heated overnight at 76 ºC. The solvent was evaporated, 

the acid mixture diluted in water and washed with CH2Cl2 (2  50 mL). The aqueous 

phase was partially evaporated under reduced pressure. Afterwards KHCO3 was added 

until a neutral pH was reached. The water was evaporated, and the crude was dissolved 

in a mixture of CH2Cl2/MeOH (1:20, 50 mL). The resulting precipitate was filtered off. 

The polarity of the solvent mixture was gradually reduced until pure CH2Cl2. The 

solvent was then evaporated to afford compound 5 (573 mg, 93%) as a pale-yellow 

powder. 1H-NMR (400 MHz, MeOD)  3.78 (dd, J = 4.0, 11.7 Hz, 2H, CH2O), 3.68-

3.48 (m, 6H, CH2O, CHα, CH2γ), 3.60-3.40 (m, 10H, CHα, CH2γ), 3.01 (dd, J = 3.9, 13.8 

Hz, 2H, CH2S), 2.75 (dd, J = 8.0, 13.8 Hz, 2H, CH2S), 2.19-2.08 (m, 2H, CH2β), 2.07-

1.84 (m, 6H, CH2β).13C-NMR (100 MHz, MeOD)  152.1 (Cguan), 65.0 (CH2O), 51.7 

(CHα), 46.4 (CH2γ), 36.6 (CH2S), 26.7, 23.5 (CH2β). ESI-MS m/z 397.3 (M - HCl - Cl–)+, 

199.1 (M – 2Cl–)2+. HRMS calcd. for [C18H33N6O2S]+ 397.2386; found 397.2381. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 4 

 

200 

(2S,8S)-2-Methanesulfonyloxymethyl-8-[(2R,8R)-8-

methanesulfonyloxymethyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-

2-ylmethylsulfanylmethyl-1-ium hexafluorophosphate]-3,4,6,7,8,9- hexahydro-

2H-pyrimido[1,2-a]pyrimidin-1-ium hexafluorophosphate (6). 

 

Compound 5 (610 mg, 1.04 mmol) and NMM (1.84 mL, 16.59 mmol) were mixed in 

dry CH2Cl2 (25 mL) under N2 at 0 ºC and the mixture was stirred for 5-10 minutes. 

Then, Ms2O (1.81 g, 10.37 mmol) was added and the stirring was continued for 24 h. 

The solution was directly washed with a 0.1N NH4PF6 solution (2  15 mL). The 

organic layer was filtered over cotton and left slowly to evaporate. A white precipitate 

was filtered off affording 6 (771 mg, 88%) as a yellowish oil. 1H-NMR (400 MHz, 

CD3CN)  6.60 (s, 2H, NH), 6.50 (s, 2H, NH), 4.32 (dd, J = 4.1, 10.5 Hz, 2H, CH2O), 

4.15 (dd, J = 7.1, 10.5 Hz, 2H, CH2O), 3.87-3.77 (m, 2H, CHα), 3.61-3.51 (m, 2H, 

CHα), 3.44-3.29 (m, 8H, CH2γ), 3.12 (s, 6H, CH3MsO), 2.83 (dd, J = 5.4, 14.0 Hz, 2H, 

CH2S), 2.64 (dd, J = 8.4, 13.9 Hz, 2H, CH2S), 2.17-2.05 (m, 4H, CH2β), 1.94-1.80 (m, 

4H, CH2β).13C-NMR (100 MHz, CD3CN)  150.4 (Cguan), 70.4 (CH2O), 47.5, 47.4 

(CHα), 44.8, 44.4 (CH2γ), 36.4 (CH3MsO) 35.3 (CH2S), 24.6, 21.3 (CH2β). HRMS calcd. 

for [C20H38N6O6S3PF6]+ 699.1657; found 699.1630. 
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(2S,8S)-2-(Acetylthiomethyl)-8-[(2R,8R)-8-(acetylthiomethyl)-2,3,4,6,7,8-

hexahydro-1H-pyrimido[1,2-a]pyrimidin-9-ium-2-yl)methylthio)methyl)-

2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidin-9-ium hexafluorophosphate 

(7). 

 

A mixture of 6 (250 mg, 0.296 mmol) and potassium thioacetate (203 mg, 1.776 

mmol) in CH3CN (20 mL) was stirred and refluxed overnight. Then, the solution was 

evaporated under vacuum, dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 

solution (2  20 mL). The organic layer was filtered over cotton and evaporated giving 

a crude residue which was purified by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 98:2  96:4), affording 7 (171 mg, 72%) as a brownish oil. 1H-NMR 

(400 MHz, CD3CN  6.15 (bs, 4H, NH), 3.63-3.49 (m, 4H, CHα), 3.44-3.28 (m, 8H, 

CH2γ), 3.14-3.03 (m, 4H, CH2SCO), 2.78 (dd, J = 5.8, 13.7 Hz, 2H, CH2S), 2.62 (dd, J 

= 7.9, 13.7 Hz, 2H, CH2S), 2.40 (s, 6H, CH3COS), 2.15-2.03 (m, 4H, CH2β), 1.90-1.78 

(m, 4H, CH2β). 13C-NMR (100 MHz, CD3CN)  195.1 (SCO), 150.2 (Cguan), 47.6, 47.4 

(CHα), 44.8, 44.5 (CH2γ), 37.5 (CH2SCO), 35.3 (CH2S), 30.8 (CH3COS), 24.6, 21.5 

(CH2β). ESI m/z 659.4 (M - PF6
–)+, 513.6 (M - PF6

– - HPF6
–)+. 

 

Compound 71 

 

A solution of compound 7 (95 mg, 0.118 mmol), cesium carbonate (173 mg, 0.531 

mmol) and (nBu)2PhP polystyrene resin (323 mg, 0.260 mmol) in dry MeOH (40 mL) 
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was stirred under inert atmosphere for 20 minutes. Then, a solution of compound 6 in 

MeCN (100 mL) was added dropwise and the final mixture was stirred for 2 days. The 

phosphine resin was filtered off and the solvent was evaporated under vacuum, 

dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 solution (3  30 mL). The 

organic phase was filtered over cotton and concentrated to dryness to give a crude 

residue which was purified by silica gel (with KPF6) column chromatography 

(CH2Cl2/MeOH, 100:0  94:6), affording cyclic tetraguanidinium 71 (60 mg, 41%) as 

a pale yellow solid. 1H-NMR (400 MHz, CD3CN:D2O (3:1))  3.58-3.45 (m, 8H, CHα), 

3.41-3.25 (m, 16H, CH2γ), 2.91-2.77 (m, 8H, CH2S), 2.68-2.52 (m, 8H, CH2S), 2.15-2.02 

(m, 8H, CH2β), 1.87-1.67 (m, 8H, CH2β). 13C-NMR (100 MHz, CD3CN)  151.2, 151.1 

(Cguan), 48.4, 48.2, 47.5 (CHα), 45.0, 44.9, 44.8 (CH2γ), 37.8, 37.5, 36.3 (CH2S), 25.7, 

25.4, 25.3, 22.5 (CH2β). MALDI m/z 789.6 (M - PF6
– -3HPF6

–)+. HRMS calcd. for 

[C36H61N12S4]+ 789.4019; found 789.4458. 

 

(2S,8S)-2,8-Bis-(hydroxymethyl)-3,4,6,7,8,9-hexahydro-2H-pyrimido-[1,2-a]-

pyrimidin-1-ium chloride (72) 

 

A solution of 1 (3 g, 5.1 mmol) in 3N HCl/CH3CN (1:2, 75 mL) was stirred at room 

temperature for 2 days. The solvent was removed and the resulting crude was 

dissolved in H2O (50 mL) and washed with CH2Cl2 (4 × 50 mL). The aqueous phase 

was evaporated under reduced pressure affording 72 (1.16 mg, 97%) as a white solid. 

Mp 178-180°C. [α]25
D -64 (c = 0.5, H2O). 1H-NMR (400 MHz, D2O)  3.46 (m, 2H, 

CH2O), 3.35 (m, 2H, CH2O), 3.32 (m, 2H, CHα), 3.26-3.13 (m, 4H, CH2γ), 1.86-1.66 

(m, 4H, CH2β). 13C-NMR (100 MHz, D2O)  151.2 (Cguan), 64.3 (CH2OSi), 48.8 (CHα), 

45.0 (CH2γ), 22.7 (CH2β). ESI m/z 200.13 [(M - Cl–)+, 100%]. 

4.7.3 1H-NMR complexation host-guest studies 

These experiments were done mixing 1:1 equivalents of the host and the guest, in 
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the solvents specified before. All trials were made at the millimolar range 

concentration. 

 

4.7.4 Variable temperature 1H-NMR experiments 

These experiments required the formation of the tetrabutylammonium salt of the 

corresponding calix[4]arene for solubility. After adding 4 equivalents of 1M 

tetrabutylammonium hydroxide solution to 1 equivalent of tetraacid calix[4]arene, the 

mixture was evaporated until dryness. Then, another equivalent of tetraguanidinium 

salt was added and the resulting powder was dissolved in the methanol:acetonitrile 

mixture as previously described. 

 

4.7.5 ITC studies 

The general conditions for the performance of these experiments consist of 

previously dissolving all the species in THF/H2O (8:2), and adding a 4 mM solution of 

oxoanionic calix[4]arene (syringe) over a 0.5 mM solution of the cyclic tetraguanidine 

at 25 ºC. 

 

4.7.6 Host-Guest encapsulation experiments 

These experiments were done in (3:1) THF/D2O in the millimolar range (between 2 

and 10 mM), successively adding different amounts of isoquinolinium guests (73 and 

74) to tetraguanidinium calixarenate (71@d) complex. 
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Guanidinium Bis-porphyrin Tweezers for the Complexation of 

Fullerene Carboxylate Derivatives 

 

5.1 Introduction 

 

Fullerene-porphyrin dyads have been widely studied over the last decade, not only 

for their inherent strong affinity but also for the attractive electronic and photophysical 

properties they display.1 Charge transfer processes have been described between the 

electron-rich porphyrin and the electron-acceptor fullerene, similar to those observed 

in natural photosynthetic systems.2 Most strategies for the construction of these 

supramolecular complexes consist of a careful design of porphyrin-based receptors 

which bind strongly to the fullerene guest, resulting in the assembly of stable and 

                                                           
1 (a) Guldi, D. M. Chem. Commun. 2000, 321-327. (b) Sun, D.; Tham, F. S.; Reed, C. A.; Boyd, P. 

D. W. Proc. Natl. Acad. Sci. USA 2002, 99, 5088-5092. (c) Guldi, D. M. Chem. Soc. Rev. 2002, 31, 

22-36. (d) Boyd, P. D. W.; Reed, C. A. Acc. Chem. Res. 2005, 38, 235-242. (e) Tashiro, K.; Aida, 

T. Chem. Soc. Rev. 2007, 36, 189-197. 

2 (a) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40-48. (b) Imahori, H.; 

Fukuzumi, S. Adv. Func. Mater. 2004, 14, 525-536.  

Chapter5
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robust architectures. In particular, major efforts have been focused in the design of 

dimeric porphyrin systems. Aida and co-workers reported the first cyclic bis-porphyrin 

host I for fullerene recognition in 1999 (Figure 1).3 This macrocyclic receptor 

contained two Zn-porphyrins tied together via hexyl bridges and exhibited efficient C60 

inclusion through π-electron donor-acceptor interactions, with high binding affinities 

(6.7 x 105 M-1). By exchanging the Zn metal for Rh or Ir, the association constants 

further experienced a 103-fold increase.4 Other modifications of this original scaffold 

have been recently reported to allow the enantiomeric spectroscopic resolution of 

chiral (±)-C76.5 

 

Figure 1. Macrocyclic bis-porphyrin host I reported by Aida et al.3 

 

 

                                                           
3 Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto,. S.; Yamaguchi, K. J. 

Am. Chem. Soc. 1999, 121, 9477-9478. 

4 (a) Zheng, J. Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.; Aida, T.; Sakamoto, S.; 

Yamaguchi, K. Angew. Chem. Int. Ed. 2001, 40, 1857-1861. (b) Tashiro, K.; Hirabayashi, Y.; Aida, 

T.; Saigo, K.; Fujiwara, K.; Komatsu, K.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2002, 

124, 12086-12087. (c) Yanagisawa, M.; Tashiro, K.; Yamasaki, M.; Aida, T. J. Am. Chem. Soc. 

2007, 129, 11912-11913. 

5 Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2010, 132, 5928-5929. 
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The first acyclic bis-porphyrin receptor was described by Boyd et al.6 This “jaws 

porphyrin” host II was formed through a PdCl2 linkage between two meso-pyridyl 

functionalized porphyrins (Figure 2). An association constant of 5.2 x 103 M-1 was 

determined for C60 by 13C-NMR titrations. The study was extended by introduction of 

novel covalently-attached jaws porphyrin structures.7 The effect of the porphyrin metal 

on the binding of C60 and C70 guests was also assessed. Unexpectedly, the free-base 

bis-porphyrins showed higher binding affinities as compared to the metallated ones. 

Another example based on a metallo-bridge acyclic bis-porphyrin receptor was 

reported by Shinkai and co-workers.8 They reported a covalently linked tweezer 

structure which was capable of switching from the anti to the syn conformation by 

coordination with a Pd(II) complex. Indeed, the syn conformer was able to bind C60 

(5.1 x 103 M-1) due to the cleft formed between the porphyrins. 

        

Figure 2. “Jaws” porphyrin receptor II reported by Boyd et al.6 

                                                           
6 Sun, D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Burgess, M.; Boyd, P. D. W. J. Am. Chem. Soc. 

2000, 122, 10704-10705. 

7 Sun, D. Y.; Tham, F. S.; Reed, C. A.; Chaker, L.; Boyd, P. D. W. J. Am. Chem. Soc. 2002, 124, 

6604-6612. 

8 Ayabe, M.; Ikeda, A.; Shinkai, S.; Sakamoto, S.; Yamaguchi, K. Chem. Commun. 2002, 1032-

1033. 
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Li and co-workers reported an elegant example of tweezer-like structures based on 

hydrogen-bonded preorganized architectures (Figure 3).9 Different aryl amide 

frameworks were employed in the design. However, only receptor III with a suitable 

porphyrin separation to encapsulate fullerenes showed high binding affinities (from 105 

to 106 M-1, depending on the fullerene guest). Addition of a competitive solvent such 

as methanol to the system resulted in a drop of affinity constants by about two orders 

of magnitude. This suggests that disruption of the hydrogen-bonded network caused 

by the polar solvent hampers its preorganization. A similar water-soluble receptor IV 

was designed to effectively encapsulate fullerene dicarboxylate derivatives in polar 

solvents (Ka = 1.1 x 105 M-1).10 In this particular system, the binding is mainly driven by 

electrostatic interactions, which compensates the loss of the preorganized hydrogen-

bonded structure. 

 

 

Figure 3. Amide-based bis-porphyrin receptors described by Li et al.9,10 

 

 

                                                           
9 Wu, Z.-Q.; Shao, X.-B.; Li, C.; Hou, J.-L.; Wang, K.; Jiang, X.-K.; Li, Z. T. J. Am. Chem. Soc. 

2005, 127, 17460-17468. 

10 Liu, H.; Wu, J.; Jiang, X.-K.; Li, Z.-T. Tetrahedron Lett. 2007, 48, 7327-7331. 
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There are several reports on tweezer bis-porphyrin receptors using calix[4]arenes as 

central supramolecular scaffolds.11 The calixarene scaffold provides the necessary 

cofacial arrangement of the alternated substituents for the design of porphyrin-based 

fullerene receptors. Indeed, lower and upper rim bis-porphyrin 1,3-substituted 

calix[4]arenes, as well as more sophisticated ones such as thiocalix[4]arene-based 

receptors,12 have been reported to efficiently bind fullerene guest molecules. 

Supramolecular fullerene@bis-porphyrin interactions have been further explored in 

the stabilization and isolation of potential bullvalene bis-porphyrin receptors from a 

population of hundreds of interconverting structural isomers. Indeed, binding studies 

of a bullvalene-based receptor with C60 demonstrated the shifting of the dynamic 

isomeric equilibrium towards the most favourable isomers for the encapsulation of a 

fullerene guest (Figure 4).13 

 

 

                                                           
11 (a) Dudič, M.; Lhoták, P.; Král, V.; Lang, K.; Stibor, I. Tetrahedron Lett. 1999, 40, 5949-5952. 

(b) Dudič, M.; Lhoták, P.; Stibor, I.; Dvořáková, H.; Lang, K. Tetrahedron 2002, 58, 5475-5482. 

(c) Dudič, M.; Lhoták, P.; Stibor, I.; Lang, K.; Prošková, P. Org. Lett. 2003, 5, 149-152. (d) 

Dudič, M.; Lhoták, P.; Petříčková, H.; Stibor, I.; Lang, K.; Sýkora, J. Tetrahedron 2003, 59, 2409-

2415. (e) Hosseini, A.; Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C. A.; Boyd, P. D. W. J. Am. 

Chem. Soc. 2006, 128, 15903-15913. 

12 (a) Dudič, M.; Lhoták, P.; Stibor, I.; Petříčková, H.; Lang, K. New J. Chem. 2004, 28, 85-90. (b) 

Kundrát, O.; Tkadlecová, M.; Lang, K.; Cvacka, J.; Stibor, I.; Lhoták, P. Tetrahedron. Lett. 2007, 

48, 6620-6623. 

13 (a) Lippert, A. R.; Keleshian, V. L.; Bode, J. W. Org. Biomol. Chem. 2009, 7, 1529-1532. (b) 

Lippert, A. R.; Naganawa, A.; Keleshian, V. L.; Bode, J. W. J. Am. Chem. Soc. 2010, 132, 15790-

15799. 
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Figure 4. Bullvalene-based acyclic bis-porphyrin receptor (reproduced from ref. 13b). 

 

A novel example of a cyclic bis-porphyrin fullerene receptor was reported using 

dynamic combinatorial chemistry with disulfide bridges as linkage between the 

porphyrin molecules.14 These flexible connections afforded the complexation with 

fullerene guests among with other ditopic amines such DABCO or 4,4’-bipyridine. 

Conversely, a rigid porphyrin dimer was described by Tani and co-workers.15 This 

cyclic bis-porphyrin was attached by butadiyne moieties and contained up to four p-

pyridyl groups that formed stable hydrogen bonds with the pyrrole-β CH protons of a 

contiguous cyclic porphyrin. Hence, the bis-porphyrin molecules self-assembled into 

tubular arrays capable of entrapping C60 guests.  

Although most of the reported fullerene receptors based on the porphyrin moiety 

are dimers, there are also relevant examples on extended porphyrin as trimeric, 

tetrameric or even hexameric assemblies (Figure 5). In this context, Anderson and co-

workers reported a cyclic porphyrin trimer (V) able to strongly bind C60 and C70 (Ka = 

2 x 106 and 2 x 108 M-1 in toluene, respectively). Indeed, this receptor showed 

increased affinity for higher fullerenes and endohedral fullerenes such as C86 or 

La@C82.16 As an example of a tetramer-based receptor, the Ni-porphyrin nano-barrel 

                                                           
14 Kieran, A. L.; Pascu, S. I.; Jarrosson, T.; Sanders, J. K. M. Chem. Commun. 2005, 1276-1278. 

15 (a) Nobukuni, H.; Shimazaki, Y.; Tani, F.; Naruta, Y. Angew. Chem. Int. Ed. 2007, 46, 8975-

8978. (b) Nobukuni, H.; Shimazaki, Y.; Uno, H.; Naruta, Y.; Ohkubo, K.; Kojima, T.; 

Fukuzumi, S.; Seki, S.; Sakai, H.; Hasobe, T.; Tani, F. Chem. Eur. J. 2010, 16, 11611-11623. 

16 Gil-Ramírez, G.; Karlen, S. D.; Shundo, A.; Porfyrakis, K.; Ito Y.; Briggs, G. A. D.; Morton, 

J. J. L.; Anderson H. L. Org. Lett. 2010, 12, 3544-3547. 
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VI was reported to effectively encapsulate C60.17 This barrel-like structure was 

synthesized by a convenient 2+2 Suzuki cross-coupling between a 

tetraboronylporphyrin and a tetra(-6-bromopyridyl)porphyrin, giving rise to a structure 

composed of four covalently attached porphyrin walls on a concave shape. The X-ray 

crystal structure confirmed the inclusion of a C60 molecule in the void of this 

porphyrin nano-wheel. Recently, a cubic porphyrin self-assembled array (VII) was 

described by Nitschke et al.18 This hexameric architecture is bridged through six C3 

symmetric iron (II) tris(bipyridylimine) centers. Moreover, large π-electron rich guests 

(i.e. coronene, C60 and C70) were accommodated inside this cubic receptor.  

V VI

VII
 

Figure 5. Porphyrin receptors based on trimeric,16 tetrameric,17 and hexameric18 assemblies (reproduced 

from the corresponding references). 

 

                                                           
17 Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A. J. Am. Chem. Soc. 2010, 132, 16356-16357. 

18 Meng, W.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.; Nitschke, J. R. Angew. Chem. 

Int. Ed. 2011, 50, 3479-3483. 
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Our research group has extensively worked in the design of new supramolecular 

fullerene receptors. In particular, the CTV-based dimeric capsule VIII was found to 

bind different fullerene derivatives upon ureidopyrimidinone hydrogen bonding self-

assembly (Figure 6).19 Indeed, these concave capsules showed high selectivity towards 

C84, allowing its enrichment from fullerene mixtures.20 Tripodal exTTF-CTV host IX 

was also reported to bind fullerenes by a combination of shape and charge 

complementarity with high affinity (Ka > 105 M-1).21  

IX
Optimized Model with C 60IX XVIII IX

 

Figure 6. Model of the CTV-ureidopyrimidinone capsule VIII and CTV-exTTF host IX with C60 

guests. 

 

On the other hand, the synthesis and the study of stable supramolecular donor-

acceptor dyads (Xa-b and XIa-b) were reported in our laboratories.22 The approach 

consisted of the assembly of the electron rich C60 derivative with a donor 

tetrathiafulvalene (TTF) moiety through complementary guanidinium-carboxylate 

                                                           
19 Huerta, E.; Metselaar, G. A.; Fragoso, A.; Santos E.; Bo, C.; de Mendoza, J. Angew. Chem. Int. 

Ed. 2007, 46, 202-205. 

20 Huerta, E.; Cequier, E.; de Mendoza, J. Chem. Commun. 2007, 5016-5018. 

21 Huerta, E.; Isla, H.; Pérez, E. M.; Bo, C.; Martín, N.; de Mendoza, J. J. Am. Chem. Soc. 2010, 

132, 5351-5353. 

22 Segura, M.; Sanchez, L.; de Mendoza, J.; Martin, N.; Guldi, D. M. J. Am. Chem. Soc. 2003, 125, 

15093-15100. 
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interactions (Figure 7). From the spectroscopic characterization, formation of charge-

separated radical pairs C60
˙-·TTF˙+, exhibiting lifetimes in the range of hundreds of 

nanoseconds, was demonstrated. Indeed, the flexibility of the system and the spatial 

proximity of the two moieties via non-covalent interactions facilitate through-space 

electron-transfer processes. 

 

 

Figure 7. TTF-C60 assemblies based on carboxylate-guanidinium dyads reported by de Mendoza et al.22  
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5.2 Objectives 

 

To further expand the robustness and possibilities of these systems we describe 

herein the synthesis and properties of guanidinium bis-porphyrin 75 which has been 

specifically designed to interact with fullerene carboxylate 76 (Figure 8). It is expected 

that this novel dyad will increase the stability and the strength of the complex with 

respect to the previously reported dyads, and would likely display interesting 

photoelectronic properties. 

 

Figure 8. Guanidinium bis-porphyrin host 75 and fullerene carboxylate guest 76. 

 

With this aim, we decided to replace the TTF moiety by two Zn-porphyrins attached 

to the guanidinium scaffold. This porphyrin-based tweezer should show effective 

interaction with fullerene molecules, as the porphyrin molecules are facing each other 

with the right spacer to accommodate these large aromatic guests. In terms of 

complementarity, fullerenes act as electron-withdrawing molecules and thus are known 

to bind strongly to electron-rich aromatic surfaces, such as porphyrins. Depending on 

their association and proximity, electron transfer effects can occur between both 

systems. Bicyclic guanidines bind a wide variety of anions, in particular oxoanions due 

to the possibility of establishing well oriented hydrogen-bonded ion pairs.23 Thus, the 

                                                           
23 Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Chem. Soc. Rev. 2007, 36, 198-

210. 
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guanidinium scaffold not only acts as a structural linker between the two porphyrins 

but it has an active role to complement anionic guests. In fact, (1,2-methanofullerene 

C60)-61-carboxylic acid 76 seems to fit nicely with the geometrical and electronic 

requirements of supramolecular host 75. We will evaluate the binding affinity of 

receptor 75 for both C60 and carboxylate C61 molecules. Furthermore, the contribution 

of each binding motif will be evaluated by comparison with suitable models, to allow 

an estimation of cooperative effects. 

Photophysical measurements will afford information about possible 

electron/energy-transfer processes. Finally, inspired by biological photosynthetic 

systems, we will try to self-assemble several fullerene@bis-porphyrin complexes by 

using a bipyiridine carbazole linker which would eventually coordinate with the Zn 

centres of these constructs, in a wheel-like supramolecular assembly (Figure 9). 

 

Figure 9. Expected tetrameric assembly by the coordination of four bipyridines to the Zn centers of 76@75 

complex. 
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5.3 Design and Synthesis of Guanidinium Bis-porphyrin Tweezer 

 

The choice of the spacer and bonding between the guanidinium scaffold and the 

porphyrin moieties was evaluated by molecular modeling. The ether linkage fits nicely 

with the geometrical and spatial requirements of the complex. Longer spacers would 

increase the distance between the porphyrin planes and also with the bicyclic 

guanidinium scaffold, disfavouring binding of the fullerene carboxylate guest. Indeed, 

subtle structural considerations are essential for the design of this receptor. For 

instance, p-phenoxy-porphyrins are required to afford the correct geometry for guest 

complexation. As shown in Figure 10, the molecular model of complex 76@75 

indicates that the porphyrin planes are at a 12.2 Å distance in a parallel orientation, 

thus inducing a proper fitting with the C60 scaffold. A search through the Cambridge 

Structural database16 indicates that average distance between the centroids of the Zn-

porphyrin plane and C60 was 6.28±0.08 Å (mean value for 21 C60@Zn-porphyrin co-

crystal structures). This value is consistent with the calculated for our 76@75 complex. 

With meso-substitution, the distance between porphyrins in parallel disposition would 

be above 14 Å, and therefore the porphyrins would be forced to bend to provide a 

proper complexation with fullerene guests. Moreover, meso substituted porphyrins 

would remain too close to the guanidinium scaffold, and thus would not allow the 

suitable orientation and distance to form simultaneously the salt bridge with the 

carboxylate and the corresponding π-electron interactions with the fullerene. 
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1
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Figure 10. Optimized structure (SCIGRESS, standard conditions, no solvent) of the 76@75complex in 

top view (left) and front view (right). Zn-fullerene distance is ca. 3.2 Å. 

 

Nevertheless, the acyclic receptor 75 is highly adaptable since the porphyrins are 

only tethered from one side. However, the binding of fullerene guest 76 should restrict 

the conformation of the molecule, thus favouring the parallel conformation of the two 

porphyrins as shown in molecular models. 

The Zn-meso-5-(4'-hydroxyphenyl)-10,15,20-triphenylporphyrin (77) was synthesized 

as reported,24 by mixing statistical proportions of the corresponding benzaldehydes 

with freshly distilled pyrrole and refluxing in propionic acid. On the other hand, 

guanidinium bis-porphyrin tweezer receptor was prepared by O-alkylation of 77 with 

guanidinium compound 78 in 42% yield. Previous zinc metallation of the porphyrin is 

necessary in order to avoid the undesired N-alkylation of the pophyrin nitrogens 

(Scheme 1). 

 

                                                           
24 Slagt, V. F.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun. 2003, 2474-2475. 
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Scheme 1. Synthesis of guanidinium bis-porphyrin tweezer 75. Conditions: i) 2.2 eq. of 77, 4.5 eq. 

K2CO3, acetone, reflux. 

 

The (1,2-methanofullerene C60)-61-carboxylic acid guest 76 is commercially available. 

The corresponding carboxylate tetrabutylammonium salt was prepared by addition of 

equimolar amounts of tetrabutylammonium hydroxide to a solution of 76 in o-

dichlorobenzene to improve the solubility of this aromatic guest. 

Guanidinium hexafluorophosphate salt 79 was prepared as a control receptor for the 

individual assessment of the guanidinium-carboxylate contribution to the overall 

binding with guest 76. Synthesis of 79 was achieved as previously described by O-

alkylation of phenol with guanidinium 78 (Scheme 2, see details in the experimental 

section). 

 

Scheme 2. Synthesis of bis-aryl guanidinium control 79. Conditions: i) 2.9 eq. of phenol, 5 eq. K2CO3, 

acetone, reflux. 

 

Finally, guanidinium mono-porphyrin compound 80 was synthetized as a reference 

molecule to gain a better insight into the thermodynamics of the association process, 

including the determination of the effective molarity (EM) and the assessment of the 

cooperative factor. Following the methodology depicted above, O-alkylation of Zn-
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phenolporphyrin 77 with mono-protected guanidine 8125 afforded compound 80 in 

good yields (Scheme 3). 

 

Scheme 3. Synthesis of guanidinium mono-porphyrin compound 80. Conditions i) 1.5 eq of 81, 1 eq. of 

77, 1.5 eq. K2CO3, acetone, reflux.  

 

 

 

                                                           

25 Sánchez-Quesada, J. PhD Thesis, Universidad Autónoma de Madrid, 1996. 
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5.4 Preliminary Complexation Studies with C60 and C61-Carboxylate 

 

In order to evaluate the binding mode and association constants of receptor 75 with 

C60 and fullerene-carboxylate 76, preliminary 1H-NMR experiments were performed. 

As shown in Figure 11, only small changes were observed upon addition of C60 to the 

guanidinium bis-porphyrin receptor in deuterated toluene. 

//

//

//

No C60

1 eq. C60

3 eq. C60

 

Figure 11. 1H-NMR spectra (in toluene-d8) of bis-pophyrin receptor 75 with and without C60 in toluene. 

 

In contrast, 13C-NMR spectrum of the complex in tetrachloroethane showed an 

upfield shift of the C60 signal accounting for an effective guest complexation as 

previously reported by Boyd et al.7 C60 has a unique 13C signal due to the equivalence of 

all its carbons. Complexation results in a chemical shift (average signal corresponding 

to free and complexed fullerene) (Figure 12). Upon heating, the stability of the 

complex decreases, and the signal shifts towards the resonance for free C60. On the 

contrary, the association process becomes more favorable at lower temperatures. 

However, we were unable to reach the coalescence temperature where the equilibrium 

is slow enough to detect both signals accounting for the bound and free species. 
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Figure 12. 13C-NMR spectra (in TCE-d2) of free and bound C60 guest.  

 

The C60@75 complex was further characterized by mass spectrometry analysis (ESI 

M+ = 2269.5 m/z for the complex and M+ = 1548.5 m/z for receptor 75 alone). As 

shown in Figure 13, the experimental and the calculated isotopic pattern fit nicely.  

 

Figure 13. Mass profile of the C60@75 complex. 

 

 

Therefore, it can be concluded that guanidinium bis-porphyrin receptor 75 binds C60 
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and this interaction has been unambiguously assessed by means of 13C-NMR 

spectroscopy and mass spectrometry. Quantification of the binding affinity for this 

supramolecular dyad was further assessed by UV-vis titration experiments (see section 

5.5). 

Preliminary 1H-NMR titrations were also performed with fullerene carboxylate guest 

76. As with C60, the spectra showed minor chemical shifts in o-dichlorobenzene (Figure 

14). Upfield shifts of the guanidinium protons suggested a structural rearrangement of 

the flexible scaffold in order to maximize and enhance the interaction with the 

fullerene-carboxylate guest. Aromatic protons in the ortho positions of the phenoxy 

moieties also showed both upfield shifts and broadening. Moreover, complex 76@75 

was also detected by mass spectrometry analysis (MALDI m/z 2328 (M+)). 

a)

b)

 

Figure 14. 1H-NMR spectra (in ODB-d4) of guanidinium bis-porphyrin host 75 in presence (a) and 

absence (b) of tetrabutylammonium fullerene-carboxylate guest 76.  

 

Finally, 1H-NMR titration in chlorobenzene-d5 of model receptor 79 with fullerene-

carboxylate 76 was performed in order to assess the binding contribution of the 

guanidinium-carboxylate salt bridge. As depicted in Figure 15, the downfield shift of 

the guanidinium protons upon complexation was used to estimate an association 

constant of 3.3 x 103 M-1 for this system. This value is consistent with the association 

constants previously determined for other guanidinium carboxylate systems in non-
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polar media.23,26 

 

 

Figure 15. 1H-NMR titration in chlorobenzene-d5 of model guanidinium 79 with fullerene-carboxylate 76. 

 

Thus, preliminary 1H-NMR studies and mass spectrometry analysis of the complexes 

demonstrated the interaction of C60 and fullerene carboxylate guest 76 with receptor 

75. By means of variable temperature 13C-NMR studies the encapsulation of C60 with 

the bis-porphyrin tweezer receptor 75 was demonstrated. The nature of this 

complexation relies on the electronic complementarity between the electron rich 

porphyrin tweezer and the electron poor fullerene. With the fullerene-carboxylate 

guest, the higher chemical shifts corresponded to the guanidinium scaffold protons, as 

expected. This pointed to a structural rearrangement of the flexible moiety to properly 

adapt and dock with guest 76. 

 

                                                           
26 Blondeau, P. PhD Thesis, Universidad Autónoma de Madrid, 2007. 
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5.5 UV-Visible Spectroscopy Titration Studies 

 

To further assess the strength of the interaction between this bisporphyrin host 

tweezer and the different fullerene guests, UV–visible titrations were performed. 

Complexation of similar porphyrin receptors with fullerene guests has been widely 

described to provoke changes in the Soret band of the bis-porphyrin host. The 

spectrophotometric titrations were performed using micromolar solutions of receptor 

and adding fullerene guest solution in tetrachloroethane (TCE). UV titration of 

receptor 75 with C60 showed the expected quenching of the Soret absorption band, 

suggesting that the binding takes place through π-electron interactions. As depicted in 

Figure 16, an association constant of 7.8 x 103 M-1 was determined for this system. 
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Figure 16. UV titration spectra in TCE of the complex between receptor 75 and C60 guest (inside: 

isotherm curve at 402 nm). 

 

The association constant is in agreement with previous values reported in the 

literature for acyclic fullerene@porphyrin assemblies. For macrocyclic Zn-porphyrin 

dimers such as those described by Aida et al.3, the association constant of the 

corresponding complexes with C60 increases to 6.7 x 105 M-1, due to the highly 
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preorganized nature of the system. Tweezer-like structures such as our guanidinium 

bis-porphyrin receptor are more flexible and thus the association constant should 

drop.  

UV titrations of host 75 with tetrabutylammonium fullerene-carboxylate guest 76 

showed the same spectroscopic behavior as for regular C60. This suggests that the type 

of host-guest interactions relies on the same π-electronic contacts as before. However, 

higher association constant was observed for this supramolecular complex. Thus, a 

preliminary titration at the same concentration range as for regular C60 afforded an 

estimated value of 108 M-1. We decide to work more diluted in view of the high 

association constant value determined. Hence, at 0.3 µM a value of Ka = 1.4 x 108 M-1 

in TCE was obtained (Figure 17), which indeed is still too high to be unambiguously 

assigned by UV titrations. 
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Figure 17. (Left) UV-vis titration spectra (in TCE) of complex 76@75 (inside: isotherm curve at 402 

nm). (Right) Job plot indicating a 1:1 complex. 

 

A 1:1 binding stoichiometry was unambiguously assessed by Job´s titration curves. 

Indeed, this binding mode fitted nicely with the previous UV data. 

Finally, UV titration of reference guanidinium mono-porphyrin compound 80 with 

76 gave rise to a similar spectroscopic behavior, yielding a stability constant of 1.8 x 

105 M-1 in TCE (Figure 18). This value is consistent with the combination of the 

carboxylate-guanidinium pairing and the π-π contacts between the 
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fullerene@porphyrin dyad, which contributes simultaneously in the enhancement of 

the interaction strength. 
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Figure 18. UV titration spectra (in TCE) of complex 76@80 (inside: detail of the Soret region).  

 

With this data in hand, the contribution of each individual interaction and the 

possible cooperativity effects arising from these multivalent systems were discussed. 

Indeed, for the binding of 76 with 75, we should take into account different stepwise 

equilibrium processes, as depicted in Scheme 4. The order of events should not alter 

the overall process. Hence, initially guanidinium-carboxylate pairing takes place (K1) 

followed by the intramolecular (EM1) binding of one of the porphyrin arms (K2). 

Successive intramolecular (EM2) binding of the second porphyrin (K2) leads to the 

formation of the final complex. 
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Scheme 4. Possible equilibria involved in the binding of fullerene-carboxylate 76 with receptor 75. 

 

By definition, cooperativity factor (α) is the ratio between the experimental 

association constant, affected by cooperative interactions (KA), and the statistical or the 

reference constant (Kref).
27 A consistent cooperativity factor should tend to 1 in 

absence of cooperativity and consequently differ from this value in the case of positive 

(α>1) or negative (α<1) cooperativity. In our system, chelate cooperativity should be 

considered as there are two or more intramolecular binding interactions interplaying 

collectively. However, chelate cooperativity depends on ligand concentration and for 

clarity, in this case we will assume the simplified definition described in Equation 1. 

 

 

 

                                                           
27 (a) Hunter, C. A.; Anderson, H. L. Angew. Chem. Int. Ed. 2009, 48, 7488-7499. (b) Ercolani, 

G.; Schiaffino, L. Angew. Chem. Int. Ed. 2011, 50, 1762-1768. 
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Equation 1. Cooperativity factor (α) formula considered for our supramolecular system. 

 

Assuming a microscopic constant for the fullerene@Zn-porphyrin interaction (K2) 

of 1 x 103 M-1, we will be able to calculate the effective molarities (EM1 and EM2) from 

the stability constant values of the 76@80 and C60@75 complexes, respectively. This 

data will allow us to estimate a reference constant for this system that will be the 

constant in the denominator for the determination of the cooperativity factor. In the 

numerator we will use the experimental stability constant found for the 76@75 

complex. 

As shown in Scheme 5, the complexation between guanidinium mono-porphyrin 80 

and the fullerene carboxylate 76 (KB = 1.8 x 105 M-1), can be used to determine the first 

effective molarity (EM1) that we defined in our system. 

 

Scheme 5. Thermodynamic equilibrium processes involving the complexation of ditopic guanidinium mono-

porphyirin compound 80 with 76. 

 

The guanidinium-carboxylate stability constant can be extrapolated from the titration 

of bis-aryl guanidinium compound 79 with 76 (K1 = 3.3 x 103 M-1). Using the estimated 
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value previously described for the microscopic constant (K2), we calculated an EM1 

value of 5.4 x 10-2 M.  

Likewise, by using the experimental association constant (KC = 7.8 x 103 M-1) from 

the complexation between compound 75 and C60 (Scheme 6), we were able to 

determine an EM2 value of 7.8 x 10-3 M. 

  

Scheme 6. Thermodynamic equilibrium processes involving the complexation of guanidinium bis-porphyrin 

75 with C60. 

 

With this data in hand, we were able to estimate a Kref of 1.4 x 106 M-1, which divided 

by the experimental stability constant previously found for 76@75 complex (KA = 1.4 

x 108 M-1), afforded a cooperative factor of α ≈ 100. This suggests that positive 

cooperativity is influencing the interaction and thus enhancing the thermodynamic 

stability of 76@75 complex. However, as previously pointed out, experimental error 

derived from the determination of this high association constant by UV-visible 

spectroscopy should be considered. Besides, to facilitate the interpretation of this 

system, we have dismissed side-processes (such as self-aggregation or higher 

stoichiometries) which can possibly occur during the equilibrium between the species 

depicted above. Therefore, those values should be analyzed qualitatively rather than 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 5 

 

230 

quantitatively and their significance should be placed within this context. 

To conclude, we have demonstrated the formation of a stable and robust 

fullerene@bis-porphyrin dyad which interacts not only by electronic complementarity 

but also by means of hydrogen bonding and electrostatic interactions between the 

bicyclic guanidinium scaffold and the carboxylate moiety of the fullerene.  

Moreover, Zn metallic centers of the porphyrin can be used to self-assemble this 

robust dyad by means of axial coordination with mono- and bidentate ligands. The 

geometry of the ligand should determine the spatial disposition of the resulting 

porphyrin array (see section 5.7). 
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5.6 Preliminary Photophysical Characterization of Complex 76@75  

 

Femtosecond transient absorption experiments were performed to study the excited-

state interactions between bis-porphyrin 75 and fullerenes C60 and 76. This work was 

carried out by Dr. Bruno Grimm and Rafael Krick Calderon under the supervision of 

Prof. Dirk Guldi (University of Erlangen). 

Laser pulse irradiation at 420 nm yielded the formation of the bis-porphyrin singlet 

excited state. In the case of 1:1 mixtures with fullerene 76, this is followed by charge-

transfer to the electron-deficient fullerene. This provokes a charge separated 76˙-

@75˙+ radical-ion-pair state which decays via charge recombination to the ground state 

(Figure 19). Generation of the fullerene 76 anion is unequivocally proven by the 

appearance of the absorption peak between 1000 and 1100 nm. Moreover, excitation at 

420 nm gives rise to transient absorption changes when parts of the bound and free 

fullerene species are excited to its singlet excited state (singlet-singlet absorption in the 

near-infrared, around 900-950 nm) which rapidly decays through intersystem crossing 

to the energetically lower triplet excited state (that absorbs around 750 nm). As a result 

of the weaker binding of 75 with C60, charge transfer spectral features are barely 

observed in 1:1 mixtures and presumably higher proportions of this fullerene are 

required in order to unequivocally form the complex at the concentration range of the 

experiment, thus yielding efficient electron-transfer processes. 
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Figure 19. Differential absorption spectra (visible and near-infrared) obtained upon femtosecond laser 

photolysis (420 nm) in Ar saturated toluene with time delays between 2 and 7500 ps of 1:1 mixtures of bis-

porphyrin 75 with 76 (left) and C60 (right). 

 

Finally, kinetic analysis of this data provided a lifetime of the charge separated state 

for the 76@75 complex in oDCB around 1.3 ns (fitted by the decay of the fullerene 

anion at different wavelengths: 970, 1000 and 1030 nm). Longer lifetimes are expected 

for this complex in toluene. However, it seems that more than one process is involved 

in the decay of the fullerene anion in this solvent and thus, a careful analysis of the 

data is required in order to provide reliable lifetimes for this system. 
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5.7 Cyclic Poly-Porphyrin Arrays Derived from the Guanidinium Bis-

porphyrin-Fullerene Scaffold 

 

5.7.1 Introduction and Objectives 

Nature uses photosynthetic systems to obtain energy from light, transforming and 

storing this energy into chemical energy.28 In particular, light harvesting antenna 

complexes absorb one photon from sunlight and this follows with an efficient energy 

migration until reaching the enzymatic reaction center. These large protein complexes 

contain several chromophores or pigments (mainly porphyrins and porphyrinoids) 

with an optimal orientation and distance to allow electron coupling, photon caption 

and electron/energy transfer processes.29 Thus, the peptide scaffold acts as a structural 

template to hold this supramolecular chromophore array in a ring-shaped disposition 

(Figure 20).30 

                                                           
28 (a) Moser, C. C.; Keske, J. M.; Warncke, K.; Farid, R. S.; Dutton, P. L. Nature 1992, 355, 796-

802. (b) Wasielewski, M. R. Chem. Rev. 1992, 92, 435-461. (c) Regan, J. J.; Onuchic, J. N. In The 

Reaction Centers of Photosynthetic Bacteria; Michel-Beyerle, M. E., Ed.; Springer: Berlin, 1996. 

29 Pullerits, T.; Sundström, V. Acc. Chem. Res. 1996, 29, 381-389. 

30 McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; 

Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517-521. 
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Figure 20. Light-harvesting complexes II from Rhodospirillum molischianum (left, PDB entry: 1LGH)31 

and Rhodopseudomonas acidophila (right, PDB entry: 1KZU).32 

 

The energetic efficiency in light-harvesting bacteriochlorophyll systems relies in the 

interaction between the chlorin (chromophoric) moieties by means of π-π interactions 

and metal-coordination through the central magnesium ion of the macrocycle, among 

other non-covalent contacts involving different domains of the protein. Inspired by 

these biological assemblies, many efforts have been dedicated to pursue such energy 

efficient synthetic chromophoric arrays.33 In particular, due to their similarities with 

chlorophyll-based light-harvesting complexes, porphyrin cyclic arrays have raised an 

enormous interest in the field. Indeed, they have been extensively studied for assessing 

the basis of the energy transfer (ET) mechanism and to improve the efficiency of the 

process. 

Different strategies have been designed to afford these cyclic structures by means of 

                                                           
31 Koepke, J.; Hu, X.; Muenke, C.; Schulten, K.; Michel, H. Structure 1996, 4, 581-597. 

32 Prince, S. M.; Papiz, M. Z.; Freer, A. A.; McDermott, G.; Hawthornthwaite-Lawless, A. M.; 

Cogdell, R. J.; Isaacs, N. W. J. Mol. Biol. 1997, 268, 412-423. 

33 (a) Ward, M. D. Chem. Soc. Rev. 1997, 26, 365-375. (b) Balaban, T. S. Acc. Chem. Res. 2005, 38, 

612-623. (c) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42, 1890-1898. 
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covalent bonds,34 non-covalent bonds and metal coordination.35 In theory, the non-

covalent and metal coordinating strategies are synthetically more accessible than the 

covalent one, but the resulting complexes are obviously less stable. In fact, the 

presence of competitive solvents or coordinating ligands could result in the disruption 

of these assemblies. 

Our approach consists of the generation of a light-haversting photosystem mimic 

using the robust fullerene@guanidinium bis-porphyrin (76@75) complex. As we have 

described, the fullerene-carboxylate guest would afford the contact between two 

bridged porphyrins by means of π-electron interactions and would template their 

orientation in a parallel disposition to maximize the binding strength as shown in the 

molecular model (Figure 9). On the other hand, we will use a bidentate ligand to 

connect two of these fullerene@bis-porphyrin complexes, taking advantage of the 

coordinating properties of Zn porphyrins. Both the geometry of the ligand and the 

coordination sphere of the metal dictate the shape of the supramolecular assembly. In 

some way, the fullerene scaffold and the bidentate ligand should play the role of the 

peptidic matrix which templates the spatial orientation of the pigments in the natural 

photosynthetic systems. However, owing to their donor-acceptor electronic 

characteristics they are not “innocent” structural factors and presumably will influence 

the electronic properties of the assembly. 

 

 

 

                                                           
34 (a) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Chem. Rev. 2001, 101, 2751-

2796. 

35 For reviews see: (a) Wojaczynski, J.; Latos-Grazynski, L. Coord. Chem. Rev. 2000, 204, 113-171. 

(b) Sugiura, K. Top. Curr. Chem. 2003, 228, 65-85. (c) Elemans, J. A. A. W.; van Hameren, R.; 

Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006, 18, 1251-1266. (d) Nakamura, Y.; Aratani, N.; 

Osuka, A. Chem. Soc. Rev. 2007, 36, 831-845. (e) Aratani, N.; Kim, D.; Osuka, A. Acc. Chem. Res. 

2009, 42, 1922-1934. 
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5.7.2 Design and Molecular Modeling  

As previously described, the geometry of the bidentate ligand plays a pivotal role in 

the resulting geometry of the assembly. In order to mimic the circular shape of the 

biological photosystems, we selected a bidentate ligand with a bend angle of 90º 

between the coordinative positions. This would allow the formation of square-like 

structures, assuming that the porphyrin moieties remain planar and parallel with 

respect to each other by sandwiching the fullerene guest. The bis-pyridine-carbazole 

ligand 82 fulfills both the coordination and geometrical prerequisites to give rise to the 

desired assembly. On one hand, pyridine ligands have been widely reported to axially 

bind to Zn porphyrins with stability constants about 103-104 M-1. On the other hand, 

the carbazole scaffold affords a 90º angle between its substituents at the 3 and 6 

positions, respectively. Moreover, solubility issues will be avoided by N-alkylation of 

the carbazole with 2-ethylhexyl bromide (Figure 21). 

 

Figure 21. Schematic representation of the cyclic assembly proposed between 82 and complex 76@75.  
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Higher aggregates or polymers could also be formed despite these options are 

entropically unfavorable. As shown in the molecular model (Figure 22), four bipyridine 

carbazole ligands are bridging up to eight porphyrins which simultaneously form stable 

donor-acceptor dyads with four fullerene carboxylate guests. The strength of the 

fullerene@bis-porphyrin complex is essential for the formation of the cyclic porphyrin 

array. Indeed, the binding of the fullerene-carboxylate guest restricts the 

conformational movement of the flexible guanidinium receptor, forcing the parallel 

orientation of its pendant porphyrins. Previously reported bis-porphyrin tweezer 

receptors showed association constant values of approximately 103 M-1 with C60. For 

our guanidinium-based receptor this experimental assessment on the association 

constant was confirmed (7.8 x 103 M-1). However, bipyridine ditopic ligands are known 

to bind bis-porphyrin receptors 10 to 100 fold stronger than C60.36 This would result in 

the displacement of C60 guest by the bipyridine ligand. To avoid this situation, we 

decided to use the fullerene-carboxylate derivative which binds strongly (ca. 108 M-1) to 

the guanidinium bis-porphyrin host, thus preventing complex disruption upon addition 

of the bipyridine cabazole ligand and consequently favoring intermolecular 

coordination. 

                                                           
36 Camara-Campos, A.; Hunter, C. A.; Tomas, S. Proc. Natl. Acad. Sci. USA 2006, 103, 3034-

3038. 
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Figure 22. Minimized structures (SCIGRESS, standard conditions, no solvent) of the tetrameric assembly 

containing up to eight porphyrins and four fullerene moieties.  

 

5.7.3 Synthesis of the 3,6-Bis(4-pyridyl)carbazole Ligand 82  

As depicted in Scheme 7, bipyridine carbazole ligand 82 was achieved in 3 steps 

starting from carbazole. Bromination and subsequent N-alkylation with 2-ethylhexyl 

bromide gave rise to compound 83.37 Finally, Suzuki coupling of 3,6-dibromo-9-

ethylhexyl-carbazole with 4-pyridyl boronic acid38 yielded the desired carbazole ligand 

82. 

                                                           
37 Huang, J.; Niu, Y.; Yang, W.; Mo, Y.; Yuan, M.; Cao, Y. Macromolecules 2002, 35, 6080-6082. 

38 Kim, H.-J.; Lee, E.; Park, H.-S.; Lee, M. J. Am. Chem. Soc. 2007, 129, 10994-10995. 
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Scheme 7. Synthesis of bipyridine carbazole 82. Conditions: i) Br2, pyr; ii) 2-ethylhexyl bromide, NaH in 

THF; iii) 4-pyridine boronic acid, Na2CO3, 15% mol Pd(PPh3)4. 

 

This ditopic ligand 82 displays the correct angle to fulfill the geometrical 

requirements for the formation of fullerene@bis-porphyrin arrays. 

 

5.7.4 Complexation Studies with 82 and Complex 76@75  

Preliminary 1H-NMR titrations of complex 76@75 with bis-pyridyl carbazole 

derivative 82 showed evident chemical shifts from both the complex and the protons 

of 82 (Figure 23). Upon addition of almost 20 equivalents of 82, no free ligand was 

observed. Broadness of the proton signals prevented to assign them and thus to extract 

further information about the complex structure. 
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Figure 23. 1H-NMR spectra (in chlorobenzene) of the different supramolecular complexes and ligand 82 

(top). 

 

In addition, it was difficult to assign a diffusion coefficient value from the DOSY 

spectrum of the 1:1 mixture of 82 and 76@75 complex. However, a unique species 

seemed to be present in solution. Size exclusion chromatography (SEC/GPC) was also 

explored in order to observe the formation of higher aggregates upon addition of the 

carbazole ligand 82 to the bisporphyrin-fullerene complex. Different GPC columns, 

eluents (THF, toluene and dichloromethane) and chromatographic conditions were 

tested to assess variations in size between the different species. However, guanidinium 

bisporphyrin compound 75 tends to self-aggregate under these analytic conditions and 

it was not possible to obtain reliable information from these experiments.  

UV titrations were set up in order to assess the binding affinity of this carbazole 

ligand towards the bis-porphyrin fullerene complex. As shown in Figure 24, the Soret 

band of 76@75 complex is quenched upon addition of ligand 82 and a new red-shifted 

band emerges, as expected for Zn-porphyrins upon coordination of an axial nitrogen 
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containing ligand.39 In Zn bis-porphyrin systems, the shift of this band is indicative of 

the exiton coupling between the Zn-porphyrin transitions when they are cofacially 

oriented upon amine axial coordination. The association constant measured for the 

assembly was 1.3 x 105 M-1 in TCE (Figure 24).  
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Figure 24. UV-vis titration (in TCE) and Job´s plot measurements of complex 76@75 with bispyridyl 

carbazole ligand 82. 

 

This value is higher than expected as we had anticipated an affinity constant close to 

the simple pyridine:Zn-porphyrin coordination (103-104 M-1). Instead, we found a value 

close to the intramolecular binding of a bipyridine ligand with a bis-porphyrin receptor. 

This has two possible interpretations; on one hand, the bis-pyridyl carbazole ligand 

could compete with the fullerene-carboxylate guest, displacing it. This would result in 

the intramolecular binding of the ditopic ligand. It is reported in the literature that this 

intramolecular bis-pyridyl binding is approximately two orders of magnitude higher 

than that of the monotopic pyridine:Zn-porphyrin complex. However, this binding 

mode is unlikely since the fullerene guest blocks the inner face of the bis-porphyrin 

tweezer and this complex is quite stable. Indeed, it has been described that higher 

stoichiometries could result from binding of a ditopic DABCO ligand with an acyclic 

                                                           
39 Anderson, H. L. Inorg. Chem. 1994, 33, 972-981. 
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bis-porphyrin which is conformationally unable to form intramolecular 1:1 complexes. 

Instead, intermolecular 2:2 stoichiometries were found for these assemblies.40 In our 

particular system we expected the formation of 4:4 complexes due to the geometrical 

restrictions imposed. On the other hand, the last ditopic interaction should be 

considered as intramolecular and hence would be energetically more favourable, due to 

the ring closing effect of the cyclic aggregate. This would result in a higher value of the 

association constant, in agreement with our experimental data. Both the titration and 

Job´s plot experiments pointed to 1:1 stoichiometry for the complexation. 

Nevertheless, this model fits with all kinds of cyclic aggregates, linear polymers or even 

intramolecular complexes. 

Further experiments should be performed to precisely determine the stoichiometry 

and the association mode of this supramolecular assembly. However, due to the 

relative weakness of the interactions involved in the formation of this porphyrin array, 

it can be anticipated that a mixture of different species exists in solution under 

thermodynamic equilibrium. Regarding this, we are currently working in collaboration 

with Prof. Hans Elemans (Univ. of Nijmegen) in order to detect by scanning probe 

microscopy (STM) those aggregates in surface. 

 

                                                           
40 Ballester, P.; Costa, A.; Castilla, A. M.; Deya, P. M.; Frontera, A.; Gomila, R. M.; Hunter, C. 

A. Chem. Eur. J. 2005, 11, 2196-2206. 
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5.8 Experimental Section 

 

5.8.1 Materials and Methods 

UV-visible spectra were measured on a UV-Vis spectrophotometer Shimadzu UV-

2401PC. The experimental data was fitted using SPECFIT software, version 3.0; 

Spectra Software Associates, Marlborough, MA (USA), 2007. 

 

5.8.2 Synthesis 
 

Compound 75 

 

A mixture of phenol porphyrin 77 (200 mg, 0.290 mmol), guanidinium salt 78 (50 

mg, 0.132 mmol) and potassium carbonate (72 mg, 0.521 mmol) in acetone (15 mL) 

was placed in a sealed tube and refluxed for two days. After removing the solvent, the 

resulting solid was dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 aqueous 

solution (2 x 20 mL). Subsequently, the organic phase was filtered over cotton and 

concentrated in vacuo. Purification by silica gel column chromatography (slow gradient 

of CH2Cl2/MeOH, 100:0 to 96:4) afforded 75 as a purple solid (93 mg, 42%). 1H-

NMR (400 MHz, d6-acetone)  8.93-8.85 (m, 16H, CHpyrrol), 8.27-8.20 (m, 12H, CHAr 

(g,j)), 8.19 (d, J = 8.6 Hz, 4H, CHAr(b)), 7.89-7.74 (m, 16H, CHAr(h,i)), 7.45 (d, J = 8.6 Hz, 

4H, CHAr(a)), 4.67 (dd, J = 3.8, 9.7 Hz, 1H, CH2O), 4.47 (t, J = 9.0 Hz, 2H, CH2O), 

4.38-4.30 (m, 2H, CHα), 3.92-3.83 (m, 4H, CH2γ), 2.60-2.49 (m, 2H, CH2β), 2.41-2.28 

(m, 2H, CH2β). 13C-NMR (100 MHz, d6-acetone).  158.0 (CAr-phenol), 150.2 150.0, 149.9, 

143.3, 143.2, 136.4 (Cguan, CAr), 135.4 (CHAr-phenol), 134.3 (CHAr), 131.5, 131.4 (CHpyrrol), 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 5 

 

244 

127.4, 126.5 (CHAr), 120.6, 120.2 (CAr), 112.7 (CHAr-phenol), 70.1 (CH2O), 48.6 (CHα), 

45.5 (CH2γ), 22.7, 22.5 (CH2β). ESI-MS m/z 1548.5 (M – PF6
–)+. HRMS calcd. for 

[C97H70N11O2Zn2]+ 1548.4291; found 1548.4194. 

 

Zn-meso-5-(4’-Hydroxyphenyl)-10,15,20-triphenylporphyrin (77)  

 

A mixture of benzaldehyde (4.14 mL, 40.9 mmol) and 4-hydroxybenzaldehyde (2 g, 

16.4 mmol) was dissolved in propionic acid (250 mL) and heated until reflux. Then, 

fresly distilled pyrrole (4.26 mL, 61.4 mmol) was added and the mixture was heated for 

an additional hour. The solvent was evaporated and the residue was eluted through a 

Florisil column (CH3Cl). The organic phase was concentrated in vacuo and purified by 

silica gel column chromatography (Hexane/CH3Cl, 50:50  0:100) affording the non-

metallated porphyrin (730 mg, 7%) as a purple solid. Subsequently, the free porphyrin 

(730 mg, 1.16 mmol) and Zn(OAc)2 (2.12 g, 11.57 mmol) were dissolved in a (7:3) 

CH3Cl/MeOH mixture (15 mL) and stirred overnight. Afterwards, this solution was 

washed with water (3 x 15 mL) and the organic phase was evaporated, yielding 77 as a 

dark purple solid (800 mg, quantitative from the free porphyrin precursor). 1H-NMR 

(400 MHz, CD3Cl)  9.00 (d, J = 4.6 Hz, 2H, CHpyrrol), 8.97 (d, J = 4.6 Hz, 2H, 

CHpyrrol), 8.96 (s, 4H, CHpyrrol), 8.24 (dd, J = 1.9, 7.8 Hz, 6H, CHAr), 8.10 (d, J = 8.5 Hz, 

2H, CHAr), 7.84-7.73 (m, 8H, CHAr), 7.24 (d, J = 8.5 Hz, 2H, CHAr), 5.13 (s, 1H, OH). 

13C-NMR (100 MHz, CDCl3)  150.5, 150.3, 150.2, 142.8 (CAr), 135.5 (CHAr-phenol), 

135.4 (CAr), 134.5 (CHAr), 132.0 (CHpyrrol), 127.5, 126.6 (CHAr), 113.6 (CHAr-phenol). 

HRMS calcd. for [C44H28N4OZn]+ 692.1549; found 692.1596. 
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(2S,8S)-2,8-Bis-(chloromethyl)-3,4,6,7,8,9-hexahydro-2H-pyrimido-[1,2-a]-

pyrimidin-1-ium hexafluorophosphate (78) 

 

A solution of compound 72 (350 mg, 1.48 mmol) in SOCl2 (12 mL) was stirred 

under reflux for 4 h. The solvent was removed, re-dissolved in CH2Cl2 and washed 

with 0.1N NH4PF6 aqueous solution. The organic phase was filtered over cotton, 

concentrated in vacuo and purified by silica gel column chromatography eluting with a 

solvent mixture (CH2Cl2/MeOH, 98:2 96:4) to afford 78 (379 mg, 95%) as a light 

yellowish solid. Mp 76-79°C. 1H-NMR (500 MHz, CDCl3)  6.30 (s, 2H, NH), 3.57-

3.53 (m, 2H, CH2Cl), 3.50-3.40 (m, 4H, CH2Cl, CHα), 3.28-3.25 (m, 4H, CH2γ), 2.02-

1.96 (m, 2H, CH2β), 1.86-1.80 (m, 2H, CH2β). 13C-NMR (100 MHz, CDCl3)  151.3 

(Cguan), 49.4 (CH2Cl), 48.2 (CHα), 45.6 (CH2γ), 23.5 (CH2β). ESI-MS m/z 236.1 (M - Cl–

)+. HRMS calcd. for [C9H16Cl2N3]+ 236.0721; found 236.0722. 

 

(2S,8S)-2,8-Bis-(phenoxymethyl)-3,4,6,7,8,9-hexahydro-2H-pyrimido-[1,2-a]-

pyrimidin-1-ium hexafluorophosphate (79) 

 

A mixture of phenol (66 mg, 0.713 mmol), guanidinium salt 78 (90 mg, 0.242 mmol) 

and potassium carbonate (130 mg, 0.945 mmol) in acetone (10 mL) was placed in a 

sealed tube and refluxed overnight. After removing the solvent, the resulting solid was 

dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 aqueous solution (2 x 15 mL). 

The organic phase was filtered over cotton and concentrated in vacuo. Purification by 

silica gel column chromatography (CH2Cl2/MeOH, 100:0  95:5) afforded 79 as a 

white solid (30 mg, 26%). 1H-NMR (400 MHz, CD3CN)  7.33 (t, J = 8.0 Hz, 4H, 

CHAr), 7.03-6.94 (m, 6H, CHAr), 6.40 (s, 2H, NH), 4.15 (dd, J = 3.7, 9.3 Hz, 2H, 

CH2O), 3.88 (dd, J = 8.7, 9.3 Hz, 2H, CH2O), 3.86-3.78 (m, 2H, CHα), 3.48-3.34 (m, 
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4H, CH2γ), 2.16-2.08 (m, 2H, CH2β), 1.92-1.83 (m, 2H, CH2β). 13C-NMR (100 MHz, 

CD3CN)  158.2 (CAr), 150.9 (Cguan), 129.7, 121.4, 117.3, 114.5 (CHAr, CAr), 69.6 

(CH2O), 48.2 (CHα), 45.2 (CH2γ), 22.2 (CH2β). HRMS calcd. for [C21H26N3O2]+ 

352.2025; found 352.2020. 

 

Compound 80 

 

A mixture of phenol porphyrin 77 (55 mg, 0.079 mmol), guanidinium salt 81 (71 mg, 

0.119 mmol) and potassium carbonate (16 mg, 0.119 mmol) in acetone (25 mL) was 

placed in a sealed tube and refluxed overnight. After removing the solvent, the 

resulting solid was dissolved in CH2Cl2 and washed with a 0.1N NH4PF6 aqueous 

solution (2 x 20 mL). Subsequently, the organic phase was filtered over cotton and 

concentrated in vacuo. Purification by silica gel column chromatography (slow gradient 

of CH2Cl2/MeOH 100:0 to 95:5) afforded 80 as a purple solid (70 mg, 70%). 1H-NMR 

(400 MHz, CD3Cl)  8.99-8.93 (m, 8H, CHpyrrol), 8.27-8.20 (m, 6H, CHAr (g,j)), 8.12 (d, J 

= 8.6 Hz, 2H, CHAr(b)), 7.82-7.71 (m, 10H, CHAr(h,i)), 7.70-7.65 (m, 4H, CHAr), 7.51-

7.39 (m, 6H, CHAr), 7.28 (d, J = 8.5 Hz, 2H, CHAr(a)), 6.75 (s, 1H, NH), 6.46 (s, 1H, 

NH), 4.31 (d, J = 5.7 Hz, 2H, CH2O), 4.10-4.00 (m, 1H, CHα), 3.81-3.70 (m, 2H, 

CH2O), 3.69-3.61 (m, 1H, CHα), 3.60-3.35 (m, 4H, CH2γ), 2.37-2.20 (m, 2H, CH2β), 

2.12-1.93 (m, 2H, CH2β), 1.10 (s, 9H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3).  157.5 

(CArO), 150.9, 150.4, 150.2, 142.8, 136, 2 (CAr, Cguan), 135.6, 135.5, 135.5, 134.4 (CHAr), 

132.6, 132.5, 132.0, 130.1, 130.0, 128.0, 127.5, 126.5 (CAr), 121.1, 121.0, 120.6 (CHAr), 

112.8 (CHAr-phenol),. 69.2 (CH2O), 65.5 (CH2O), 50.2, 48.2 (CHα), 45.5 (CH2γ), 26.8 

(CH3t-Bu), 23.0, 22.7 (CH2β), 19.2 (Ct-Bu). HRMS calcd. for [C69H62N7O2SiZn]+ 

1112.4020; found 1112.4123. 
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Compound 81 

 

A solution of monodeprotected guanidine (See Experimental Section, Chapter 1) 

derived from compound 1 (500 mg, 1.05 mmol) in SOCl2 (5 mL) was stirred refluxing 

it for 2 h. The solvent was removed and the resulting crude dissolved in CH2Cl2 (50 

mL) and washed with a saturated solution of NaHCO3 (50 mL) and NH4PF6 1N (50 

mL). Purification by silica gel column chromatography (CH2Cl2/MeOH, 95:5) afforded 

81 (498 mg, 97%) as a brownish solid. 1H-NMR (400 MHz, CDCl3)  7.69-7.61 (m, 

4H, CHAr), 7.49-7.39 (m, 6H, CHAr), 6.15 (s, 1H, NH), 6.02 (s, 1H, NH), 3.74-3.52 (m, 

6H, CH2O, CH , CH2Cl), 3.76-3.75 (m, 1H, CH2O), 3.44-3.26 (m, 4H, CH2 ), 2.18-

1.97 (m, 3H, CH2 ), 1.95-1.84 (m, 1H, CH2 ), 1.08 (s, 9H, CH3t-Bu). 13C-NMR (100 

MHz, CDCl3)  150.5 (Cguan), 135.6, 135.5, 132.6, 132.5, 130.1, 128.0 (CHAr, CAr), 65.5 

(CH2O), 50.3, 49.8 (CH ), 45.5 45.2, 44.9 (CH2Cl, CH2 ), 26.8 (CH3t-Bu), 23.3, 22.5 

(CH2 ), 19.1 (Ct-Bu). ESI-MS m/z 456.2 (M – PF6
–)+. 

 

3,6-Bis(4-pyridyl)carbazole bipyridine (82)  

 

3,6-Dibromo-9-(2-ethylhexyl)carbazole (83) (220 mg, 0.503 mmol), 4-pyridyl boronic 

acid (309 mg, 2.52 mmol), and Pd(PPh3)4 (233 mg, 0.201 mmol) were added to a 

mixture of 1,4-dioxane (5 mL) and 2M Na2CO3 aqueous solution (5 mL). The mixture 

was degassed and then heated at 60ºC for 24 hours. Subsequently, the solvent was 

evaporated and the resulting crude was poured into water and extracted with CH2Cl2. 

The organic solution was washed with distilled water, filtered over cotton, and 
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evaporated again. Finally, the crude was purified by silica gel column chromatography 

(MeOH/EtOAC, 0:100 10:90) to yield compound 82 (70 mg, 32 %) as a yellowish 

oil. 1H-NMR (400 MHz, CD3Cl)  8.71 (d, J = 6.1 Hz, 4 H, CHAr), 8.48 (d, J = 1.7 Hz, 

2H, CHAr), 7.83 (dd, J = 1.7, 8.5 Hz, 2H, CHAr), 7.68 (d, J = 6.1 Hz, 4H, CHAr), 7.54 

(d, J = 8.5 Hz, 2H, CHAr), 4.27 (dd, J = 2.7, 7.5 Hz, 2H, CH2N), 2.18-2.08 (m, 1H, 

CH), 1.53-1.30 (m, 8H, CH2), 0.97 (t, J = 7.3 Hz, 3H, CH3), 0.89 (t, J = 7.3 Hz, 3H, 

CH3). 13C-NMR (100 MHz, CDCl3)  149.8, 125.3, 121.7, 119.1, 110.0 (CHAr), 47.8 

(CH2N), 39.6 (CH), 31.0, 28.8, 24.4, 23.0 (CH2), 14.0, 10.9 (CH3). ESI-MS m/z 434.2 

(M +H)+. 

 

3,6-Dibromo-9-(2-ethylhexyl)carbazole (83)37 

 

To a solution of 3,6-dibromocarbazole37 (1.00 g, 3.10 mmol) in THF (15 mL) was 

added NaH (111 mg, 60% in mineral oil, 4.65 mmol) gradually to the mixture. The 

reaction was stirred at room temperature for 30 min. and 2-ethyl-hexyl bromide (0.692 

mg, 3.61 mmol) was added and the mixture was refluxed overnight under argon. Water 

was added to destroy the excess of NaH, and the organic phase was evaporated under 

reduced pressure, the crude dissolved in CH2Cl2 and washed with 2N HCl (2 x 15 mL) 

and water (15 mL). The organic phase was concentrated in vacuo and the crude was 

purified by silica gel column chromatography (Et2O/EtOAc, 5:1) to yield compound 

83 (1.23 g, 92%) as a colorless oil. 1H-NMR (400 MHz, CD3Cl)  8.16 (d, J = 2.0 Hz, 

2H, CHAr), 7.65 (dd, J = 2.0, 7.6 Hz, 2H, CHAr), 7.27 (d, J = 8.0 Hz, 2H, CHAr), 4.13 

(dd, J = 2.0, 7.5 Hz, 2H, CH2N), 2.08-1.96 (m, 1H, CH), 1.45-1.20 (m, 8H, CH2), 0.97-

0.82 (m, 6H, CH3). 
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5.8.3 UV-Vis Titrations 

UV-visible titrations were carried out by running a spectrum of the host solution of 

host (usually guanidinium bis-porphyrin compound) in tetrachloroethane, at low µM 

concentration range in a 1 cm path length quartz cuvette, and adding incremental 

amounts of host solution (fullerene or bispyridine). To avoid dilution effects, the guest 

solution was prepared using the host starting solution. 

5.8.4 1H-NMR Titration 

To a 1 mM solution of compound 79 it was added aliquots of a 10 mM solution of 

guest 76 in deuterated chlorobenzene, until approximately 7.5 eq. of guest. Chemical 

shift of guanidinium NHs signals was taken to fit the data into a theoretical model 

using Origin software. 
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Anion-Responsive Diguanidinium-Based Organogelators 

 

6.1 Introduction 

Gels are materials commonly found in our everyday life (shampoos, toothpastes, 

gelatins, contact lenses, etc.) that are used for a wide variety of applications such as 

cosmetics, medicine, food or materials science, among others. Although gels are 

usually composed of polymeric gelators which have been known for centuries, a new 

class of low molecular weight gelators (LMWGs) has raised an enormous interest over 

the last few decades.1 These are gel-phase materials composed of small molecules able 

to self-assemble and to aggregate (supramolecular gelators), thus creating reticular 

colloidal networks in which the solvent molecules are trapped. Depending on the 

nature of the solvent, these LMWGs can be classified as organogelators (organic 

solvents) or hydrogelators (aqueous solvents). Supramolecular gelators self-assemble 

mainly via non-covalent interactions, such metal coordination, hydrogen bonding, ion-

pairing, and van der Waals or hydrophobic contacts, among others. However, it is 

                                                           
1 For reviews see: (a) Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133-3159. (b) Abdallah, D. 

J.; Weiss, R. G. Adv. Mater. 2000, 12, 1237-1247. (c) George, M.; Weiss, R. G. Acc. Chem. Res. 

2006, 39, 489-497. (d) Dastidar, P. Chem. Soc. Rev. 2008, 37, 2699-2715. 

Chapter6
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difficult to predict gelation phenomena and the relationship between the molecular 

structure and the final reticular gel structure and properties.2  

A large variety of chemical motifs and structures, such as steroids,3 alkyl chains, 

amino acids,4 nucleobases,5 amides and ureas,6 peptides, saccharides, metal-

coordinating ligands7 or dendrimers,8 are commonly found in molecular gelators. 

These components are essential for the molecular arrangement allowing formation of 

an ordered fibrillar network. Indeed, gelation can be considered as a midway process 

between crystallization (highly ordered self-assembled molecular architectures) and 

precipitation (random aggregation resulting in amorphous structures).9 Supramolecular 

gels are usually formed by means of a heating-and-cooling method. However, recent 

developments on gels obtained upon sonication have also been reported.10 

Over the last years, molecular gelators capable of tuning by means of an external 

chemical or physical stimulus have gained increasing occurrence. Changes in 

temperature, pH, light wavelength, oxidation state, ion binding or guest inclusion 

phenomena11 can reversibly trigger the gel-to-sol phase and/or modify its physical 

properties. These stimuli-response gelators have found innovative applications in a 

                                                           
2 van Esch, J. H. Langmuir 2009, 25, 8392-8394. 

3 (a) Mallia, V. A.; Tamaoki, N. Chem. Soc. Rev. 2004, 33, 76-84. (b) Žiníc, M.; Vögtle, F.; Fages 

F. Top. Curr. Chem. 2005, 256, 39-76. 

4 Suzuki, M.; Hanabusa, K. Chem. Soc. Rev. 2009, 38, 967-975.  

5 Araki, K.; Yoshikawa, I. Top. Curr. Chem. 2005, 256, 133-165. 

6 Fages F.; Vögtle, F.; Žiníc, M. Top. Curr. Chem. 2005, 256, 77-131. 

7 (a) Fages, F. Angew. Chem. Int. Ed. 2006, 45, 1680-1682. (b) Piepenbrock, M-O. M.; Lloyd, G. 

O.; Clarke, N.; Steed, J. W. Chem. Rev. 2010, 110, 1960-2004. 

8 (a) Hirst, A. R.; Smith, D. K. Top. Curr. Chem. 2005, 256, 237-273. (b) Smith, D. K. Chem. 

Commun. 2006, 34-44. 

9 Liu, X. Y. Top. Curr. Chem. 2005, 256, 1-37. 

10 (a) Cravotto, G.; Cintas, P. Chem. Soc. Rev. 2009, 38, 2684-2697. (b) Bardelang, D. Soft Matter 

2009, 5, 1969-1971. 

11 Foster, J. A.; Steed, J. W. Angew. Chem. Int. Ed. 2010, 49, 6718-6724. 
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range of currently relevant areas such as biomedicine,12 catalysis,13 nanotemplated 

synthesis,14 light harvesting,15 photonics or electro-optics,16 taking advantage of their 

on-off (switchable) behavior. 

Shinkai et al. have extensively studied cholesterol-based organogels with 

photoisomerizable groups which respond to UV-light changes.17 An interesting 

example of photo-switchable gelators was reported by Feringa and coworkers, in 

which control of the gelation process of dithyenylethene I, both thermally and 

photochemically, caused the chirality of the gel to switch due to high stereoselective 

aggregation (Figure 1).18 

                                                           
12 (a) Zhao, F.; Ma, M. L.; Xu, B. Chem. Soc. Rev. 2009, 38, 883-891. (b) Shah, R. N.; Shah, N. A.; 

Del Rosario Lim, M. M.; Hsieh, C.; Nuber, G.; Stupp, S. I. Proc. Natl. Acad. Sci. USA 2009, 107, 

3293-3298. (c) Zelzer, M. M; Ulijn, R. V. Chem. Soc. Rev. 2010, 39, 3351-3357. 

13 (a) Escuder, B.; Rodríguez-Llansona, F.; Miravet, J. F. New J. Chem. 2010, 34, 1044-1054. (b) 

Rodríguez-Llansona, F.; Miravet, J. F.; Escuder, B. Chem. Eur. J. 2010, 16, 8480-8486. 

14 (a) Jung, J. H.; Shinkai, S. Top. Curr. Chem. 2004, 248, 223-260. (b) Kimura, M.; Kobayashi, S.; 

Kuroda, T.; Hanabusa, K.; Shirai, H. Adv. Mater. 2004, 16, 335-338. (c) Moffat, J. R.; Coates, I. 

A.; Leng, F. J.; Smith, D. K. Langmuir 2009, 25, 8786-8793.  

15 Ajayaghosh, A.; Praveen, V. K.; Vijayakumar C. Chem. Soc. Rev. 2008, 37, 109-122. 

16 (a) Kato, T. Science, 2002, 295, 2414-2418. (b) Kato, T.; Mizoshita, N.; Moriyama, M.; 

Kitamura T. Top. Curr. Chem. 2005, 256, 219-236. 

17 (a) Murata, K.; Aoki, M.; Nishi, T.; Ikeda, A.; Shinkai, S. Chem. Comm. 1991, 1715-1718. (b) 

Murata, K.; Aoki, Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; 

Shinkai J. Am. Chem. Soc. 1994, 116, 6664-6676. (c) Sugiyasu, K.; Fujita, N.; Shinkai, S. Angew. 

Chem. Int. Ed. 2004, 43, 1229-1233. (d) Kawano, S.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2004, 

126, 8592-8593. (e) Kawano, S.; Fujita, N.; Shinkai, S. Chem. Eur. J. 2005, 11, 4735-4742. 

18 de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B. L. Science 2004, 304, 

278-281. 
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Figure 1. Example of a photoswitchable chiral gelator reported by Feringa et al. 

 

pH sensitive gelators based on scaffolds such as calix[4]arenes19 and 

resorcin[4]arenes20 have been described by several authors. Ballester et al. recently 

reported a calix[4]pyrrole gelator capable of triggering its gel flow behavior through 

subtle changes in pH or in the presence of sodium cations.21 

Another elegant application of cavities not used as scaffolds, but as active elements 

which confer structural features to the gelators has been reported by Harada et al.22 

Thus, acrilamide-based gelators functionalized with either cyclodextrin hosts (III) and 

different hydrocarbon guests (IV) were synthesized in order to study molecular 

recognition at the macroscopic level (Figure 2). By modulating the size and shape of 

                                                           
19 Becker, T.; Goh, C. Y.; Jones, F.; McIldowie, M. J.; Mocerino, M.; Ogden M. I. Chem. 

Commun. 2008, 3900-3902. 

20 Haines, S. R.; Harrison, R. G. Chem. Commun. 2002, 2846-2847. 

21 Verdejo, B.; Rodríguez-Llansola, F.; Escuder, B.; Miravet, J. F.; Ballester P. Chem. Commun. 

2011, 47, 2017-2019. 

22 Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Nat. Chem. 2011, 

3, 34-37. 
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the host and guest moieties, different gels can assemble selectively, taking advantage of 

the cavity insertion phenomenon at the molecular scale. Hence, this leads to the 

construction of programmable “smart” materials capable of binding exclusively its 

complementary guest molecule, even in the presence of other building blocks.  

 

 

Figure 2. Acrilamide-based gelators with macroscopic self-assembly properties. 

 

Ion binding can be used to tune molecular self-assembly and thus gelation. Cation-

dependent gels (also known as metallogels)6 have been designed by introducing 

coordinating subunits as structural components in the gelator. Work by Lehn et al. has 

shown that use of naturally occurring cation-templated structures such as G-quartets 

(V), can afford gelation under certain pH and cation concentration conditions (Figure 

3).23 This association can be reversibly triggered with cryptands capable of arresting K+ 

                                                           
23 Ghoussoub, A.; Lehn, J-M. Chem. Commun. 2005, 5763-5765. 
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cations from the supramolecular assembly. Complex dynamic hydrogels were also 

reported using hydrazine derived G-quartet architectures in the presence of aldehydes 

to allow reversible formation of gels with diverse structures and physical features.24 

 

Figure 3. Bis-guanine gelator repored by Lehn and coworkers. 

 

Over the last few years, anion-responsive supramolecular gels have raised a growing 

interest due to their tunability and unique reversible characteristics.7b,25 The structural 

information contained in these architectures is highly dependent on the choice of both 

the ligand and the anion. The design of these anion-switchable gelators and the study 

of macroscopic changes induced by subtle variations at the molecular level is one of 

the major goals in this field.  

Amide and urea based organogelators capable of tuning their properties in the 

presence of certain anions have been recently described. For example, the tris-urea 

compound VI (Figure 4) forms opaque gels in acetone after sonication.26 In the 

presence of anions such as Cl- or F-, the gel is transformed into a solution, although 

this behavior is not observed with BF4
-. Sol-to-gel transitions occur with BF3·OEt2 

even in the presence of Cl- anions. ZnBr2 was used as a non-specific chemical stimulus 

for the recovery of the gel phase previously disrupted by the addition of other anions.  

                                                           
24 Sreenivasachary, N.; Lehn, J-M. Proc. Natl. Acad. Sci. USA 2005, 106, 5938-5943. 

25 For reviews see: (a) Maeda, H. Chem. Eur. J. 2008, 14, 11274-11282. (b) Lloyd, G. O.; Steed, J. 

W. Nat. Chem. 2009, 1, 437-442. 

26 Yamanaka, M.; Nakamura, T.; Nakagawa, T.; Itagaki, H. Tetrahedron Lett. 2007, 48, 8990-8993. 
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Figure 4. Examples of urea-based anion-responsive gelators. 

 

Steed et al. reported a bis-urea-based series of compounds (VII) in which the number 

of methylene groups in the bridge between the urea moieties was found to be essential 

for gelation control (Figure 4).27 With an even number of methylene units (n = 2, 4, 6, 

8) gels were successfully formed. Conversely, only solutions were obtained when an 

odd number of carbon atoms were present (n = 3, 5, 7, 9). This behavior can be 

explained by the relative orientation of the urea moieties, which is critical for the 

molecular self-assembly. Moreover, the rheological properties of these gels change 

dramatically upon addition of specific anions, affecting the hydrogen bonding network 

between the ureas. In this case, not only sol-to-gel transitions were detected, but also 

the strength of the gel decreased in the presence of small amounts (0.1 equiv. of TBA 

salts) of AcO-, Cl- or BF4
-. 

Proline functionalized calix[4]arene VIII forms gels only in the presence of nitrate or 

halide anions (Figure 5).19 Therefore, anion binding can be seen as a structural factor in 

this system, in order to induce molecular aggregation, thus enhancing gelation. 

                                                           
27 Piepenbrock, M.-O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Chem.Commun. 2008, 2644-

2646. 
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Figure 5. Calix[4]arene VIII forms stable anion-tunable gels.  

 

A further step in the rational design of anion-tunable gelators was made by Chiu et 

al.28 They introduced the urea-based rotaxane IX (Figure 6) to switch reversibly from 

gel to sol phase by means of anion exchange and pH variation. Selective anion 

coordination was responsive to provoke molecular motion over the rotaxane 

framework thus inhibiting or enhancing the correct geometry to induce gelation.  

  

Figure 6. Anion switchable rotaxane gelator IX reported by Chiu et al. 

 

 

 

                                                           
28 Hsueh, S-Y.; Kuo, C-T.; Lu, T-W.; Lai, C-C.; Liu, Y-H.; Hsu, H-F.; Peng, S-M.; Chen, C.; 

Chiu, S-H. Angew. Chem. Int. Ed. 2010, 49, 9170-9173. 
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These new types of innovative materials with switchable properties have raised a big 

interest over the last decade,29,30 mainly due to their adaptability to different stimulus 

and stresses, which is a major issue in areas such as medicine or electronics. 

Within this context, we introduce herein a new family of anion responsive chiral gels, 

which are able to shift from the gel to the sol phase in the presence of specific 

chemical stress. 

Enantiomerically pure oligomers of chiral bicyclic guanidinium salts have been 

successfully employed for the molecular recognition of oxoanions, such as sulfates, 

carboxylates, phosphates (nucleotides), and other anions.31  These molecules have been 

widely studied in solution, but since only a few crystallographic data were thus far 

available, the structural packing and the tridimensional network that these compounds 

adopt in the solid state was largely unknown. We now describe how diguanidinium 

molecule 4 (Scheme 1) can form gels under certain conditions and solvents (See Table 

1). These gels are formed in the concentration range between 0.5-1.5% wt. depending 

on the solvent used. The study of the properties and the structural features of these 

colloidal systems could be extremely interesting for achieving molecular recognition at 

those interfaces. Part of this work (microscopy and NMR characterization) has been 

done in collaboration with Prof. Beatriu Escuder in Universitat Jaume I. 

 

                                                           
29 Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K. Angew. Chem. Int. Ed. 2008, 47, 8002-

8018. 

30 de Loos, M.; Feringa, B. L.; van Esch, J. H. Eur. J. Org. Chem. 2005, 3615-3631. 

31 Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Chem. Soc. Rev. 2007, 36, 198-

210. 
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6.2 Synthesis, Characterization and Gelation Behavior of Bicyclic 

Diguanidinium Organogelators 

 

As previously reported, synthesis of diguanidinium chloride 4 was achieved by 

nucleophilic attack of the monoguanidinium thiolate precursor 3 on mesylate 2, 

yielding diguanidine 4 as a white solid (Scheme 1). 

 

Scheme. 1. Synthetic scheme for diguanidinium salt 4. Conditions: i) 1 eq. 2, 2.7 eq. Cs2CO3, N2. 

 

To have an insight on the conformation of this molecule in the solid state, 

preliminary crystallization experiments were performed in a variety of solvents and 

solvent mixtures. Unfortunately, no single crystals were obtained under any of these 

conditions. Instead, gelation was observed in some cases. Table 1 summarizes the 

solvents employed. 

Table 1. Representative solvent conditions for gelation of 4 (chloride). 

Solvent Result       Solvent Result Solvent Result 

Toluene G Acetonitrile S Toluene/Hexane G 

Hexane I Acetone S THF/Hexane G 

Chloroform S Chloroform/Ether G AcOEt/Hexane G 

DCM S Acetonitrile/Ether I Chloroform/Hexane PG 

THF S THF/Ether PG THF/Water I 

iPrOH S iPrOH/Ether I MeOH/Water I 

EtOH S Toluene/Ether I Ether I 

MeOH S Hexane/EtOH I p-Xylene G 

AcOEt S Acetone/Ether I Mesitylene G 

[gelator]=10.5 mM at room temp., I= Insoluble, S= Solution, G= Gel, PG = Partial Gel 
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In general, 4 (chloride) formed gel phases in solvents such as chloroform, THF, 

toluene, or ethyl acetate when mixed with diethyl ether or hexane, in the concentration 

range 0.5-1.5 % w/w. This behavior was also observed with pure aromatic solvents 

such as toluene, p-xylene and mesitylene. 

Gelation experiments with unprotected diguanidinium diol 5 (Figure 7), showed no 

gel under similar conditions and solvents as for gelation of 4, revealing the important 

role of the bulky hydrophobic TBDPS groups in the gelation process.  

 

Figure 7. Diguanidinium diol 5. 

 

As expected, when the configuration of the chiral centers was switched from R,R-

R,R to S,S-S,S (named as (R)-4 and (S)-4, respectively), the gelation properties 

remained the same. On the contrary, no gel was observed for the R,R-S,S 

diastereoisomer ((R,S)-4). Moreover, mixtures of the enantiomerically pure (R)-4 and 

(S)-4 enantiomers gave rise to weaker gels or even to total disruption of the aggregates. 

This highlights the relevance of stereochemistry in the gelation process. 

Exchange of the counterion from chloride to hexafluorophosphate resulted in the 

collapse of the gel. This points out the pivotal role of the anion in the self-assembly 

and gelation of diguanidinium salt 4. Chiral effects and anion stimulus over gelator 4 

will be discussed in more detail later on. 

The thermal stability of gelator 4, was assessed by simple tube inversion 

experiments.32 Aromatic solvents afforded robust and transparent gels, suggesting 

good solubility behavior. Hence, gels formed in toluene, p-xylene and mesitylene were 

                                                           
32 Raghavan, S. R.; Cipriano, B. H. Gel Formation: Phase Diagrams using Tables of Rheology 

and Calorimetry. In Molecular Gels: Materials with Self-Assembled Fibrillar Networks; Weiss, R. G., 

Terech, P., Eds.; Springer: Dordrecht, The Netherlands, 2006; Chapt. 8. 
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selected to construct their corresponding thermal profiles. In addition, both 

enantiomers ((R)-4 and (S)-4) were tested independently at different concentrations to 

evaluate their stability upon heating. Typically, as the concentration of gelator 

increases, the sol-gel transition temperature (Tgel) also raises until reaching a plateau, as 

depicted in Figure 8. 
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Figure 8. Thermal profiles showing sol-gel transition processes depending on the aromatic solvent used (● 

toluene, ■ xylene, ▲ mesitylene). 

 

Gels in toluene showed a maximum Tgel at 32 ºC, whereas those formed in xylene 

and mesitylene (56 and 52 ºC, respectively) were thermally more stable. 

To better understand these differences, thermodynamic parameters (ΔH, ΔS) for the 

sol-gel process were deduced from the slopes of Tgel curves, using a derivation of the 

van’t Hoff equation (Equation 1). 
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Equation 1. Van’t Hoff derived equation for the thermodynamics involving sol-gel processes. 

 

Linear plots of the fitting curves resulting from this formula are shown in Figure 9. 
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Figure 9. Tgel
-1 vs. ln[conc.] slopes for the estimation of the thermodynamic parameters involving gelation 

process (● toluene, ■ xylene, ▲ mesitylene). 

 

The enthalpic contribution increases as the number of methyl substituents of the 

solvent increase (Table 2). A feasible explanation for this solvent-dependent gelation 

tendency relies in considering the solution of the gel as a two independent step 

processes. The first one would be the gel-to-sol phase transition followed by a second 

one which implies the discrete dispersion of the organogelator into the solvent.17b 

Obviously, the solvent will affect this second process, except when differences in 

solubility of organogelator 4 are negligible. The gel-to-sol phase transition step could 

be also influenced by the solvent if it forms an active part of the reticular structure. 
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Table 2. Thermodynamic values extracted from the van’t Hoff derived equation. 

Solvent 
(R)-4 

 Toluene 

(R)-4 

 p-Xylene 

(R)-4 

 Mesitylene 

(R)-4 / (S)-4 

(1:1) 

 p-Xylene 

ΔH (KJ mol-1) 34.4 (2.7) 39.3 (3.1) 42.3 (3.3) 56.2 (4.0) 

TΔS (KJ mol-1)* 24.2 (2.8) 25.0 (3.0) 27.1 (3.2) 45.4 (4.0) 

ΔG (KJ mol-1)*  10.3 14.4 15.2 10.8 

*ΔG and TΔS values calculated at T=298.15 K. Numbers in parenthesis represent the associated error. 

 

In addition, 1:1 enantiomeric mixtures ((R)-4/(S)-4) of the bicyclic guanidinium 

dimer in p-xylene were studied in order to establish their sol-gel transition temperatures 

and thus the thermodynamic parameters involving gelation process. As previously 

observed, these gels are less stable that the enantiomerically pure ones and therefore 

higher concentrations of gelator are required (Figure 10). Indeed, for the heterochiral 

gel in p-xylene the entropic penalty is higher than for the homochiral one but this is 

compensated by a more favorable enthalpic term. This results in a lower free energy 

(10.8 KJ·mol-1 for (R)-4/(S)-4 and 14.4 KJ·mol-1 for (R)-4 in p-xylene), which is in 

good agreement with the differences in thermal stability (Tgel), and minimum gelation 

concentration (MGC) found for both gels. 
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Figure 10. Thermal profiles of the racemic diguanidinium mixture in p-xylene. 
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6.3 Microscopy Imaging  

 

To determine the morphology of these gels, diverse microscopic techniques were 

employed. Optical micrographs were taken from toluene gels as shown in Figure 11. 

These gels were composed by bundles of macroscopic crystalline-like fibers able to 

disperse polarized light. 

 

 

Figure 11. Optical micrographs of (R)-4 gels formed in toluene. 

 

Transmission electron microscopy (TEM) confirmed the existence of well-defined 

fibrillar structures of approximately 20-30 nm width and several micrometers length 

(Figure 12). 
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Figure 12. TEM images of (R)-4 gels formed in toluene. 

 

Besides, Field Emission Scanning Electron Microscopy (FESEM) imaging clearly 

showed how the matrix microstructure was altered from fibrillar to vesicular 

nanostructures upon changing the solvent (Figure 13). This emphasizes again the role 

of the solvent in the colloidal network formation. 

 

 

Figure 13. FESEM images of (R)-4 gels formed in toluene/hexane, chloroform/hexane and ethyl 

acetate/hexane mixtures (from left to right, respectively). 

 

Finally, TEM images of both enantiomeric gels in p-xylene evidenced unambiguously 

the existence of supramolecular chiral induction. As shown in Figure 14, gels 

composed by the diguanidinium salt (R)-4 provided left handed coils whereas the (S)-

4 enantiomer produced the inverse right handed helices. This observation fully 

supports the experimental data from the circular dichroism (see section 6.5), pointing 
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out to the effective expression of the molecular chirality into helical fibers. 

 

Figure 14. TEM images of (R)-4 (left) and (S)-4 (right) which form chiral gels in p-xylene. 
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6.4 NMR Studies 

 

To further examine the sol-to-gel transition of organogelator 4, concentration-

dependent 1H-NMR experiments were performed. 

Different concentrations (from 2.5 to 30 mM) of (R)-4 in deuterated toluene were 

measured in order to obtain additional information about the self-assembly process 

which controls gelation.  

As the concentration increases the signals became broader suggesting molecular 

aggregation, and a restricted molecular motion resulting in larger relaxation times 

relative to the free species in solution. 

//

//

//

//

//

//

//

//

 

Figure 15. 1H-NMR spectra (in toluene-d8) of organogelator (R)-4 at different concentrations (from 2.4 to 

30 mM). 

 

The NH guanidinium protons were shifted up- and downfield, respectively, as the 

amount of organogelator raised (Figure 15). Split signals corresponding to CH2O 

protons also merged into a unique doublet indicating a similar chemical environment 

for both protons caused by inherent molecular interactions upon self-assembly. 

The guanidine skeleton and the CH2S protons also showed downfield shifts, 

supporting the aggregation. With these NMR data in hand, several aggregation models 
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were considered but any of them fitted with the experimental values obtained and thus, 

the stability constant of the aggregation could not be unequivocally determined. To 

overcome this, different experimental conditions (temperature, solvent) are currently 

investigated. 

NOESY experiments were performed at different concentrations to get a better 

insight on the aggregation of compound (R)-4 in deuterated toluene. Unexpected 

intermolecular nOe contacts were found between different protons in the concentrated 

gel sample which supports a new spatial disposition of diguanidinium chloride 4 upon 

aggregation (Figure 16). Control experiments with the diluted sample showed the 

predicted nOe contacs for these molecules, corroborating this aggregation process. 

1 2 3, 4 14 5 11 9,10 16,8 15

 

Figure 16. (Top) Sections of the NOESY spectrum of organogelator (R)-4 in toluene-d8 at 21.4 mM. 

(Below) Scheme of the most representative nOe contacts. 
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6.5 Role of Chirality on Gelation 

 

Circular dichroism (CD) studies were performed to assess the supramolecular 

helicity observed by microscopy and to study in detail the chiral induction process 

from diguanidinium chloride 4 to the corresponding gel-phase material.33 

Previous studies and molecular modeling demonstrated that guanidinium oligomers 

fold into helical systems in the presence of suitable tetrahedral counterions. Indeed, 

tetraguanidinium strands were able to wrap around sulfate anions forming double 

helicates (Figure 17).34 It is likely that the aggregates resulting from 4 are also organized 

into helical fibers. 

 

Figure 17. Optimized model of a sulfate helicate from (S,S)-guanidines. 
 

 

Aromatic solvents were avoided because their λ cutoff directly interferes with the 

CD signal of the gel. Hence, CD experiments were carried out in a (1:3) THF:hexane 

                                                           
33 For reviews see: (a) Brizard, A.; Oda, R.; Huc, I. Top. Curr. Chem. 2005, 256, 167-218. (b) 

Gottarelli, G.; Lena, S.; Masiero, S.; Pieraccini, S.; Spada, G. P. Chirality 2008, 20, 471-485. (c) 

Smith, D. K. Chem. Soc. Rev. 2009, 38, 684-694. 

34 Sánchez-Quesada, J.; Seel, C.; Prados, P.; de Mendoza, J. J. Am. Chem. Soc. 1996, 118, 277-278. 
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mixture at 0.3 mM concentration. Transparent gels were in situ formed in a 0.1 cm 

path length cuvette. Gels of (R)-4 enantiomer produced a strong positive band at 225 

nm, while the (S)-4 ones gave the inverse negative Cotton effect, as expected. 

Interestingly, ellipticity of (R)-4 in solution using pure THF at the same concentration 

significantly decreased and showed opposite sign compared to the corresponding gel. 

This indicates that the formation of a gel-phase material alters the intrinsic chirality of 

the system and therefore a strong cooperative effect in the molecular stacking is 

responsible for inducing supramolecular helicity. Indeed, this is a well-known 

phenomenon extensively occurring in nature, where for instance L-amino acids fold 

into α-helix as a secondary structure with opposite ellipticity.35  

To demonstrate that gel integrity is directly related to its chiral behavior, 

temperature-dependent CD experiments were performed (Figure 18). As the sample 

was slowly heated up, ellipticity gradually decreased until showing almost a silent CD at 

65 ºC. At this temperature the gel disassembled and the CD spectrum was similar to 

the one of the molecule in solution. Signal was recovered upon cooling down and 

increased considerably at lower temperatures (5 ºC). Hence, the stability of the gel-

phase is essential for the maintenance of its helicity. 

 

                                                           
35 (a) Pauling, L.; Corey, R. B.; Bramson, H. R. Prod. Natl. Acad. Sci. USA 1951, 37, 205-211. (b) 

Dunitz, J. D. Angew. Chem. Int. Ed. 2001, 40, 4167-4173. 
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Figure 18. (Left) Temperature-dependent (from 65 to 5 ºC) circular dichroism spectra of enantiomers (R)-

4 and (S)-4 performed in THF:hexane (1:3). (Right) Helicity values at 227 nm for (S)-4 at different 

temperatures. 

 

As previously reported, the gelation was dramatically affected by the chiral nature of 

diguanidinium gelator. Indeed, the “meso” diguanidinium diastereoisomer (R,S)-4 was 

not capable of forming gels under the standard gelation conditions. Besides, 1:1 

mixtures of the (R)-4 and (S)-4 enantiomers required higher amounts of organogelator 

to form the colloid. Moreover, these “racemic” gels in xylene showed lower sol-gel 

temperatures (37 ºC) than the enantiomerically pure ones (56 ºC). 

Chiral amplification CD measurements with mixtures of enantiomers of 4 were 

performed to further discuss the effect on the stability and the intrinsic ellipticity of the 

gel.36 

On one hand, gels of enantiomerically pure diguanidinium choride salts were doped 

with different amounts of the mirror enantiomer. For systems driven by the so-called 

                                                           
36 (a) van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 14759-

14769. (b) Cai, W.; Wang, G-T.; Du, P.; Wang, R-X.; Jiang, X-K.; Li, Z-T. J. Am. Chem. Soc. 

2008, 130, 13450-13459. (c) Das, R. K.; Kandanelli, R.; Linnanto, J.; Bose, K.; Maitra, U. 

Langmuir 2010, 26, 16141-16149.  
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“majority rule” effect,37,38 the major enantiomer dictates the helicity of the aggregate, 

even in the presence of the opposite enantiomer. In our system, supramolecular 

chirality is governed by the formation of stable aggregates able to gel. However, these 

enantiomeric mixtures provide weaker gels. Thus, when the gel-phase is not well 

defined, it is expected that the overall ellipticity decreases upon decreasing the optical 

purity of the mixture. 
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Figure 19. (Left) Circular dichroism spectra (in THF:hexane (1:3)) of different enantiomeric mixtures 

(R,R-R,R and S,S-S,S) of diguanidinium organogelator 4. (Right) Ellipticity values at 225 nm at different 

enantiomeric ratios of organogelator. 

 

As shown in Figure 19, this is the general tendency at room temperature. 

Nevertheless, the trend is not completely linear accounting for chiral amplification due 

to an appreciable “majority rule” effect. Ellipticity is maintained upon addition of small 

                                                           
37 (a) Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. Science 1995, 

268, 1860-1866. (b) Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. 

B.; Selinger, J. V. Angew. Chem. Int. Ed. 1999, 38, 3138-3154. (c) Green, M. M.; Cheon, K.-S.; 

Yang, S.-Y.; Park, J.-W.; Swansburg, S.; Liu, W. Acc. Chem. Res. 2001, 34, 672-680. (d) van 

Gestel, J. Macromolecules 2004, 37, 3894-3898. (e) Smulders, M. M. J.; Stals, P. J. M.; Mes, T.; 

Paffen, T. F. E.; Schenning, A. P. H. J.; Palmans, A. R. A.; Meijer, E. W. J. Am. Chem. Soc. 2010, 

132, 620-626. 

38 Langeveld-Voss, B. M. W.; Waterval, R. J. M.; Janssen, R. A. J.; Meijer, E. W. Macromolecules 

1999, 32, 227-230. 
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amounts of the opposite enantiomer (80% ee) and subsequently, the intensity of CD 

signal decreases linearly until 20% ee, where it becomes almost negligible. Within this 

enantiomeric excess range (0-20 % ee), gel samples collapse and supramolecular chiral 

contribution is lost.  

On the other hand, gels containing (R)-4 enantiomer were doped with different 

amounts of “meso” diguanidinium salt (R,S)-4 in order to evaluate its chiral and 

structural contribution. The “meso” diguanidinium diastereoisomer has an almost 

silent CD signal and is not able to form gels. As observed in Figure 20, helicity 

decreases as the amount of the “meso” diastereoisomer increases. At 40% 

diasteroisomer content, the gel-phase is disrupted with a consequent loss of ellipticity. 
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Figure 20. Circular dichroism spectra of different enantiomeric mixtures of diguanidinium organogelator 

(R)-4 and (R,S)-4 at 25 ºC in THF:hexane (1:3). (inside: ellipticity values at different ratios of diguanidines 

(R)-4 and (R,S)-4). 

 

When cooling down at 5 ºC the trend was similar although the ellipticity was 

maintained unambiguously up to 20% diastereoisomer content, as depicted in Figure 

21. 
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Figure 21. Circular dichroism spectra of different enantiomeric mixtures of diguanidinium organogelator 

(R)-4 and (R,S)-4 at 5 ºC in THF:hexane (1:3). (inside: ellipticity values at different ratios of diguanidines 

(R)-4 and (R,S)-4). 

 

In conclusion, the “meso” diguanidinium molecule provokes a destabilization on the 

aggregate architecture, which affects the overall ellipticity. However, at lower 

temperatures the chiral and structural features of the gel are preserved, even in the 

presence of small amounts of diastereoisomer (R,S)-4. As demonstrated, at 5 ºC gel 

stability is higher and small changes in composition do not drastically influence its 

helicity. Those experiments rely on the “sergeants-and-soldiers” fundaments, where 

some chiral “sergeant” molecules dictate the overall ellipticity of a system mainly 

composed by achiral “soldier” molecules.39 In our case, the chiral “sergeant”, namely 

diguanidinium enantiomer (R)-4, is able to retain the initial ellipticity only in the 

presence of a small amount of “meso” diguandinium “soldiers”, thus maintaining the 

gel chiral information. These soldiers are not purely achiral but at those concentrations 

they show no significant CD signal and are able to induce gel disruption. Thus, it can 

be pointed out that chiral amplification subtly occurs. 

                                                           
39 Nam, S. R.; Lee, H. Y.; Hong, J-I. Chem. Eur. J. 2008, 14, 6040-6043. 
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6.6 Anion Responsive Properties 

 

Previous experiments with diguanidininum hexafluorophosphate salts showed no gel 

formation, pointing out once again to the influence of the anion on the gelation 

process. Some literature examples report this anion tunability and its potential 

applications.25 For instance, Steed et al described a bis-urea type organogelators for the 

crystal growth of pharmacological active molecules and their subsequent release using 

anion switchable conditions.40 

Anion exchange experiments were designed in order to examine this effect in more 

detail. Diguanidinium chloride gels of (R)-4 formed in toluene and p-xylene and were 

tested in concentration ranges from 10 to 20 mM. Approximately the same volume 

(150 μL) of different aqueous ammonium salt solutions (0.1M) was added to each of 

the samples. Upon heating, a liquid-liquid biphase was formed and efficient anion 

exchange was promoted by mixing it vigorously. Finally, the biphasic system was 

cooled down to room temperature, allowing the sol-gel transition to occur. 

Interestingly, aqueous ammonium and tetrabutylammonium solutions of chloride or 

bromide anions led to the formation of stable gels whereas solutions containing AcO-, 

BzO-, NO3
-, PF6

-, HSO4
- resulted in disruption of the colloid. 

This process was completely reversible (up to 5 cycles) upon removal of the aqueous 

phase and subsequent replacement by another one able to cause a change in the sol-gel 

transition (Figure 22). 

                                                           
40 Foster, J. A.; Piepenbrock, M-O. M.; Lloyd, G. O.; Clarke, N.; Howard, J. A. K.; Steed, J. W. 

Nat. Chem. 2010, 2, 1037-1043. 
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Figure 22. Schematic representation of the anion dependent sol-gel transition. 

 

This suggests that the anion dependence on gel formation mainly responds to 

geometrical and spatial factors. Likely, spherical halides such as chloride or bromide 

allow for a correct arrangement of aggregates while oxoanions with different 

geometries such as acetates, sulfates and nitrates do not permit a suitable interaction 

between diguanidinium molecules, preventing gel formation. This explanation is 

extensive for less coordinative anions such as hexafluorophosphate. Probably, the pKa 

variation between diverse diguanidinium salts also influences the NH-anion distance, 

the aggregation behavior and therefore the gelation process. However, it has been 

widely discussed that the protonation state of the bicyclic guanidinium moiety in 

organic solvents is not affected within the pKa range used in our experiments,41 

meaning that the sol-gel transition is not governed by a simple 

protonation/deprotonation step. 

In addition, solubility is dramatically affected by the counterion of these cationic 

compounds, and this property has been recently described as a determinant factor for 

the gelation ability of a molecule.42 Indeed, this study pointed out the use of Hansen 

solubility parameters to predict the range of solvents that are likely to be gelled by a 

given gelator.  

                                                           
41 Ratel, F. PhD Thesis, Universidad Autónoma de Madrid, 2009. 

42 Raynal, M.; Bouteiller, L. Chem. Commun. 2011, 47, 8271-8273. 
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6.7 X-ray Diffraction Studies 

 

Serendipitously, single crystals suitable for X-ray diffraction analysis from an 

abandoned solution of (S)-4 enantiomer in a toluene/diethyl ether mixture were 

observed upon evaporation of the solvent over several months. The solid-state 

structure (Figure 23) revealed the unexpected formation of diguanidinium sulfone 84. 

The crystals were re-dissolved and by means of mass spectrometry analysis it was 

corroborated the presence of the three possible oxidation states of the sulfur-

containing products (thioether, sulfoxide and sulfone). Likely some ether peroxides 

were formed during the long crystallization period in the presence of oxygen and light, 

which could oxidize the thioether bond to the corresponding sulfoxide and sulfone 

derivatives, respectively. In view of the negative attempts to obtain a crystal structure 

of 4, X-ray diffraction data of the corresponding sulfone was analyzed to search for 

structural and conformational similarities between both molecules. 

 

Figure 23. Crystal structure of diguanidinium sulfone 84. 

 

In the crystal structure the chloride anions are located in front of each guanidinium 

subunit and interact with the NHs by hydrogen bonding (Figure 23). A closer look into 

the molecular packing indicates a head-to-head disposition of the diguanidines, where 

the silyl groups are interacting through π-π and CH-π contacts. The solvophobic effect 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



Chapter 6 

 

280 

governs the crystal packing in which the polar parts of the molecule are buried inside 

the “bilayer-like” structure formed by the bulky and solvent-exposed TBDPS groups 

(Figure 24). 

 

Figure 24. Molecular packing of diguanidinium sulfone 84. 

 

Diguanidinium sulfone (R)-84 was independently synthesized from (R)-4 using m-

CPBA as oxidizing agent. Unfortunately, after an extensive screening for gelation 

conditions, only weak and unstable gels were found in toluene at high concentrations 

(up to 30 mM) and low temperatures (5-8ºC). Therefore, (R)-4 and its sulfone adduct 

(R)-84 exhibit different gelation abilities and their structural features and molecular 

packing likely differ. Indeed, the sulfone group has a pivotal role in the crystal 

structure. Its tetrahedral geometry forces the conformation and the orientation of the 

diguanidinium molecule. Moreover, one of the sulfone oxygens is hydrogen-bonded to 

a methanol molecule, which is filling an empty space in the crystal packing and thus 

preventing collapse of the structure. 
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Further information about the molecular arrangement of the diguanidinium gelator 4 

was obtained from powder X-ray diffraction experiments.43 As depicted in Figure 25, 

the diffractogram of the dried xerogel in p-xylene showed wide but regular peaks 

indicating some degree of periodicity. The most intense peak corresponds to a distance 

of ca. 21 Å which is close to the distance between the layers previously found in the 

crystal packing of the analogous sulfone 84, suggesting a similar layered pattern. 

Hence, electrostatic interactions would influence the directionality of the fibrils, 

whereas different layers of this structure would be joined by means of weaker contacts. 

 

Figure 25. X-ray diffractogram of the xerogel formed in p-xylene. 

 

Thus, a model can be considered where columnar arrays of diguanidinium molecules 

are organized in layers, as illustrated in Figure 26. The spacing between the subunits is 

compatible with the experimentally found in the low-angle diffraction peaks.  

                                                           
43 Ostuni, E.; Kamaras, P.; Weiss. R. G. Angew. Chem. Int. Ed. 1996, 35, 1324-1326. 
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Figure 26. Proposed model for the arrangement of organogelator 4. 
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6.8 Drug Release Experiments 

 

One of the potential applications of low molecular gelators is the controlled release 

of a pharmacologically active drug through the gel fibrillar matrix. Despite the 

relatively high number of literature precedents on hydrogels about this topic, only a 

few examples relate to biologically active organogels for drug release. Their use is still 

limited due to scarce toxicological information about these drug delivery systems. 

However, applications of organogels for the administration of pharmaceutical active 

compounds (mainly hydrophobic) via diverse routes such as oral, parenteral or 

transdermal are known.  

Herein, we describe initial attempts to use our diguanidinium organogelator as a 

potential platform for the controlled delivery of bioactive drugs. A key factor is the 

choice of a biocompatible solvent system for gelation. After an extensive screening, 

formation of robust gel phase materials was observed with mixtures of ethyl esters 

(ethyl acetate or ethyl benzoate, commonly used in food industry as artificial fruit 

flavors) with isopropyl palmitate (with applications in cosmetics and drug 

formulations) in the presence of gelator 4. 

Owing to the chirality of these organogelators, it would be feasible to find 

differences in the kinetic release of two enantiomeric drugs. Assuming that there is a 

certain degree of interaction between the organogel and the drug, the diffusion of the 

enantiomers through this chiral supramolecular matrix should be highly dependent on 

the helical packing of the gel. This hypothesis has been widely proven in other closely 

related systems such as in chiral chromatography or stereoselective catalysis using 

supramolecular gelators as active media,13 but not further developed for drug delivery 
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applications.44 

S- and R-naproxen enantiomers were tested as a model drug for these proof-of-

concept experiments. Naproxen is hydrophobic enough to be delivered by organogels 

and contains a good chromophore which would facilitate its eventual quantification by 

HPLC. Gels containing 2.5 mg of diguanidinium gelator (R)-4 and 0.75 mg of S- or R-

naproxen were formed in an ethyl acetate/isopropyl palmitate mixture (1:3, 165 µL) 

and placed in a 5 mL vial with a 1 mL aqueous buffer solution. The presence of 

chloride (or bromide) anions in the buffer is critical for the integrity of the organogel, 

as previously indicated. PBS (with a high concentration of NaCl) at pH 7.4, and NH4Cl 

buffers at pH 5.4 and 7.4, respectively, were tested to assess the effect of the pH and 

the anion content in the naproxen release. As shown in Figure 27, small but significant 

differences in the release of naproxen enantiomers was found in all cases. As a general 

trend, R-naproxen showed enhanced release with respect to the S enantiomer (up to 

6% ee at pH 5.4). However, these differences were almost negligible if compared 

within the standard deviation range. The almost similar release behavior could be also 

explained due to the overloading of the gel matrix with naproxen molecules. Indeed, 

the gels contain an excess naproxen relative to diguanidinium chloride 4 (1.2:1, 

naproxen:diguanidine). Hence, as it occurs in chiral chromatography when there is 

overloading of the column, both enantiomers would elute together with no substantial 

kinetic differences in release. 

                                                           
44 (a) Suedee, R.; Bodhibukkana, C.; Tangthong, N.; Amnuaikit, C.; Kaewnopparat, S.; Srichana, 

T. J. Cont. Rel. 2008, 129, 170-178. (b) Solinís, M. A.; de la Cruz, Y.; Hernández, R. M.; Gascón, 

A. R.; Calvo, B.; Pedraz, J. L. Int. J. Pharm. 2002, 239, 61-68. 
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Figure 27. Drug release kinetics of diguanidinium organogels loaded with R- and S-naproxen, respectively, 

in PBS buffer at pH 7.4 (left) and NH4Cl buffer at pH 5.4 (right). 

 

On the other hand, evidences for a differential release behavior were found when 

these experiments were performed at different pH, as depicted below (Figure 28). 
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Figure 28. Drug release kinetics of diguanidinium organogels loaded with R-naproxen, with the three 

different buffers tested as receiving phase. 
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Two factors are indeed responsible for the different release kinetics: the limited 

solubility of protonated naproxen in water,45 and the erosion of the matrix system, as 

the structural integrity of organogels depends on the buffer composition of the 

receiving phase. As previously demonstrated, these gels can transit from gel to sol 

phase by means of anion switching and thus the presence of OH- anions should affect 

the stability of the gel. In fact, gels remained almost intact when buffer at pH 5.4 was 

used for release, but degradation was noticeable after 1 day in contact with buffers at 

physiological pH.  

The release behaviour of a drug is determined by its hydrosolubility, the more 

hydrosoluble it is the more relevant would be the diffusion contribution. Conversely, 

the erosion factor would predominate in less water soluble drugs.46 Hence, in naproxen 

delivery, the integrity of the matrix is essential to determine and control the release 

rate. 

To further study the release kinetics, the data were adjusted to different drug release 

kinetic models, which afford relevant information about the release mechanism.47 

Higuchi model fits nicely with the data obtained at acidic pH, whereas kinetic rate 

curves obtained at physiological pH were more consistent with the Korsmeyer-Peppas 

model.48 From the diffusion exponent obtained applying Korsmeyer-Peppas model the 

drug release mechanism can be assessed. For n > 0.5 a non-Fickian diffusion model is 

described for these systems, where a combination of both erosion and diffusion 

through the matrix is acting together in the release. 

As concluding remarks, kinetic release experiments demonstrate a slow controlled 

                                                           
45 Yazdanian, M.; Briggs, K.; Jankovsky, C.; Hawi, A. Pharm. Res. 2004, 21, 293-299. 

46 Vázquez, M. J.; Pérez-Marcos, B.; Gómez-Amoza, J. L.; Martínez-Pacheco, R.; Souto, C.; 

Concheiro, A. Drug Dev. Ind. Pharm. 1992, 18, 1355-1375. 

47 (a) Shoaib, M. H.; Tazeen, J.; Merchant, H. A.; Yousuf, R. I. Pak. J. Pharm. Sci. 2006, 19, 119-

124. (b) Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Acta Pol. Pharm. 2010, 67, 217-223. 

48 (a) Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Int. J. Pharm. 1983, 15, 

25-35. (b) Peppas, N. A. Pharm. Acta Helv. 1985, 60, 110-111. 
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release of naproxen through a diguanidinium-based gel matrix and the tunability of the 

drug delivery rate by anion triggering. Further studies accounting for the 

enantioselective release of chiral drugs should be performed to account on the scope 

and limitations of this method. 
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6.9 Experimental Section 

 

6.9.1 Materials and Methods 

Crystal data set were collected on a Bruker-Nonius diffractometer equipped wth 

APPEX 24K CCD area detector, a FR597 rotating anode with MoKα radiation, Montel 

mirrors as monochromator and a Kryoflex low temperature device (T=-173 ºC). CD 

measurements were carried out in a Chirascan circular dichroism spectrometer from 

Applied Photophysics, with simultaneous measurement of UV-vis and CD spectra in 

the range 165 to 900 nm. The device is equipped with a Peltier thermal control unit (-

40/+100 ºC) with possibility of temperature ramp control. 

 

6.9.2 General Procedure for Gelation of Diguanidine 4 

Compound (R)-4 (chloride) (1 mg) was dissolved in a minimum amount (between 

50 and 100 μL aprox.) of chloroform (or other solubilizing solvent such as THF, 

toluene, AcOEt, etc.) and then hexane or ether were slowly added dropwise until 

turbidity was observed (0.2-0.5 mL) or the gel was spontaneously formed at room 

temperature. Gelation with pure aromatic solvents such as toluene, p-xylene or 

mesitylene also occurs. 

 

6.9.3 General Procedure for Anion Exchange Experiments 

Gels formed in toluene or p-xylene (10-20 mM) were placed in a vial and 

subsequently the same approximate volume of an aqueous ammonium solution (0.1N) 

containing the anion to exchange was added. The mixture was heated until a liquid 

biphase was formed and then the phases were mixed vigorously. Once the two phases 

separated defined again, the system was cooled at the fridge or slowly cooled down to 

room temperature. 
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6.9.4 General Procedure for VT-Circular Dichroism Experiments 

To a solution of diguanidinium (R)-4 (Cl-) in THF (50 µL) was added hexane (150 

µL) in a 0.1 cm path length quartz cuvette, and subsequently the corresponding gel was 

formed. To obtain a homogeneous mixture sometimes heating was required. The 

sample was subjected to dirverse cooling-heating cycles (from -5ºC to 65ºC) and the 

corresponding curves were collected each 5ºC step at the specified wavelength range.  

 

6.9.5 Synthesis 

 

General procedure for 2. See Experimental Section in Chapter 1 for the synthesis 

and further characterization (MS, 1H- and 13C-NMR) of compound 2. 

 

(R)-2 [α]25
D -45 (c = 0.5, CHCl3). 

(S)-2 [α]25
D +78 (c = 0.8, CHCl3).  

 

General procedure for 3. See Experimental Section in Chapter 1 for the synthesis 

and further characterization (MS, 1H- and 13C-NMR) of compound 3. 

 

(R)-3 [α]25
D -42 (c = 0.3, CHCl3).  

(S)-3 [α]25
D +54 (c = 0.4, CHCl3). 
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General procedure for 4 (Cl-). See Experimental Section in Chapter 1 for the 

synthesis of compound 4. For Compound (R,S)-4 See Experimental Section in 

Chapter 4. 

 

(R)-4 (Cl-) [α]25
D -64 (c = 0.9, CHCl3). 1H-NMR (400 MHz, CDCl3)  8.36 (s, 2H, 

NH), 8.14 (s, 2H, NH), 7.67-7.58 (m, 8H, CHAr), 7.50-7.34 (m, 12H, CHAr), 3.68 (dd, J 

= 4.8, 10.5 Hz, 2H, CH2O), 3.62-3.53 (m, 4H, CH2O, CHα), 3.49-3.41 (m, 2H, CHα), 

3.39-3.14 (m, 8H CH2 ), 2.91 (dd, J = 2.5, 13.3 Hz, 2H, CH2S), 2.55 (dd, J = 11.5, 13.3 

Hz, 2H, CH2S), 2.12-1.99 (m, 4H, CH2 ), 1.97-1.81 (m, 4H, CH2 ), 1.06 (s, 18H, CH3t-

Bu). 13C-NMR (100 MHz, CDCl3)  151.2 (Cguan), 135.6, 135.5, 132.8, 132.7, 129.9, 

127.9, 127.8 (CHAr, CAr), 65.1 (CH2O), 49.2, 46.4 (CHα), 45.1, 44.4 (CH2 ), 36.0 (CH2S), 

26.9 (CH3t-Bu), 26.3, 22.2 (CH2 ), 19.2 (Ct-Bu). ESI-MS m/z 873.5 (M - HCl - Cl–)+, 437.3 

(M – 2Cl–)2+. HRMS calcd. for [C50H69N6O2SSi2]2+ 873.4741; found 873.4754. 

(S)-4 (Cl-) [ ]25
D +84 (c = 1.2, CHCl3). 

(R,S)-4 (Cl-) [ ]25
D +3 (c = 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3)  8.24 (s, 2H, 

NH), 8.05 (s, 2H, NH), 7.71-7.55 (m, 8H, CHAr), 7.50-7.33 (m, 12H, CHAr), 3.73 (dd, J 

= 4.7, 9.8 Hz, 2H, CH2O), 3.67-3.50 (m, 5H, CH2O, CHα), 3.48-3.10 (m, 9H, 

CH ,CH2  3.00 (dd, J = 2.7, 13.5 Hz, 2H, CH2S), 2.59 (dd, J = 10.8, 13.5 Hz, 2H, 

CH2S), 2.18-1.69 (m, 8H, CH2 ), 1.06 (s, 18H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  

151.2 (Cguan), 135.6, 135.6, 132.8, 132.7, 129.9, 127.9, 127.9 (CHAr, CAr), 65.2 (CH2O), 

49.7, 48.3 (CHα), 45.1, 44.7 (CH2 ), 38.5 (CH2S), 26.9 (CH3t-Bu), 26.2, 22.6 (CH2 ), 19.2 

(Ct-Bu). 
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Procedure for Compound 5. See Experimental Section in Chapter 1 for the 

synthesis of compound 5. 

 

[ ]25
D -95 (c = 0.5, CHCl3). 

 

(2R,8R)-2-(tert-Butyldiphenylsilyloxymethyl)-8-[(2R,8R)-8-(tert-

butyldiphenylsilyloxymethyl)-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-

a]pyrimidin-9-ium-2-ylmethylsulfonylmethyl chloride]-2,3,4,6,7,8-hexahydro-

1H-pyrimido[1,2-a]pyrimidin-9-ium chloride (84) 

 

A mixture of compound (R)-4 (PF6
-) (30 mg, 0.026 mmol) and m-chloroperbenzoic 

acid (9.4 mg, 0.054 mmol) was dissolved in CH2Cl2 (5 mL) and stirred at room 

temperature for 4 h. Then, more solvent was added (10 mL) and the mixture was 

washed with aqueous 1N NH4PF6 (2 × 10 mL). The organic phase was filtered over 

cotton and concentrated to dryness to give a crude residue which was purified by silica 

gel column chromatography (CH2Cl2/MeOH, 97:3), affording symmetric 

diguanidinium (R)-84 (PF6
-) as a white solid (28 mg, 91%). The solid was redissolved 

in CH2Cl2 and washed again with aqueous 1N NH4Cl (2 × 10 mL) giving rise to the 

corresponding diguanidinium chloride salt. 1H-NMR (400 MHz, CDCl3)  8.90 (s, 2H, 

NH), 8.46 (s, 2H, NH), 7.69-7.60 (m, 8H, CHAr), 7.50-7.35 (m, 12H, CHAr), 4.36-4.14 

(m, 4H, CH2O, CHα), 3.81-3.46 (m, 10H, CH2O, CHα CH2 ), 3.31-3.07 (m, 6H CH2 , 

CH2S), 2.29-1.83 (m, 8H, CH2 ), 1.07 (s, 18H, CH3t-Bu). 13C-NMR (100 MHz, CDCl3)  

150.9 (Cguan), 135.6, 135.5, 132.7, 132.7, 130.0, 127.9, 127.9 (CHAr, CAr), 65.3 (CH2O), 

59.5, 49.4 (CHα), 44.9, 43.8 (CH2 ), 29.7 (CH2S), 26.9 (CH3t-Bu), 26.0, 22.5 (CH2 ), 19.2 

(Ct-Bu). ESI-MS m/z 905.2 (M - HCl - Cl–)+, 453.1 (M – 2 Cl–)2+. 
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Conclusions 

 

This thesis overviews the synthesis and design of different bicyclic guanidinium 

oligomers, exploring their principal features and potential applications in biomolecular 

recognition, cell delivery and material science. 

In Chapter 1, we describe the synthesis of a family of oligoguanidinium ligands for 

the tetramerization domain of p53. These polycationic compounds are designed to 

effectively interact with a conserved region of acidic residues by means of hydrogen 

bonding and salt bridges. Moreover, we introduce aromatic moieties to enhance the 

hydrophobic contacts with the domain. A deeper analysis of these ligand-protein 

interactions would be crucial for designing attractive drug candidates to target and 

stabilize this key protein. 

Chapter 2 explores the use of these oligomers as internalization vectors for drug 

delivery inside the cell. Indeed, their attachment to different peptide nucleic acids 

(PNAs) provokes an increase in the antisense effect of those molecules. Cell uptake 

was found to be concentration dependant for some of these conjugates and several 

studies supported an aggregation mechanism for enhancing cell penetration. 

Antibacterial oligoguanidinium-PNA compounds targeting E. coli showed high 

bactericide activity compared to other related PNA structures. 

We report in Chapter 3 the design and synthesis of miniaturized transcription factors 

(TF) based on a peptide fragment of GNC4 protein which provides specificity towards 

consensus DNA sequences, conjugated with tetra- or pentaguanidinium compounds 

which should strongly bind to the anionic phosphodiester skeleton of DNA, thus 

increasing the association constant of the ligand. Stabilization effect of bicyclic 

guanidinium tetramer 13 on double stranded DNA structure is compared with natural 

polyamines and briefly discussed. 

The design and synthesis of tetraguanidinium macrocycle 71 are described in Chapter 

4. This compound is capable of strongly interact with oxoanionic calix[4]arenes with 
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Ka ≥ 104-106 M-1even in competitive polar media. As a result of this complexation, the 

cone conformation of the calixarenes is stabilized and their concave cavity expanded, 

thus allowing the inclusion of bulky isoquinolinium salt guests. 

In Chapter 5, we study fullerene@bis-porphyrin dyads bearing guanidinium-

carboxylate functionalities in order to enhance the robustness of the association. 

Herein, stable complexes are formed and used as molecular scaffolds for constructing 

macrocyclic porphyrin:fullerene arrays inspired in biological photosystems. Even 

though, only some preliminary experiments and molecular modelling studies have been 

performed to-date. 

Finally, Chapter 6 explores the use of diguanidine 4 as organogelator. This chiral 

compound is able to form gels and self-assemble into nanoscopic helical fibers. 

Indeed, circular dichroism (CD) and thermal analysis experiments stressed out the role 

of chirality in the gelation process. Besides, these colloidal materials are capable of 

reversibly switching from gel-to-sol via anion exchange. Finally, the use of this new 

diguanidinium-based gelator as matrix for drug delivery is explored. 
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Resumen 

 

El presente trabajo tiene por objetivo el diseño y la síntesis de diferentes oligómeros 

de guanidina bicíclica, así como el estudio de sus propiedades. El grupo guanidinio es 

conocido por su capacidad para interaccionar con aniones (especialmente 

oxonaniones) mediante puentes de hidrógeno e interacciones de tipo electrostático. En 

nuestro grupo de investigación se ha descrito cómo oligómeros lineales de guanidina 

bicíclica (concretamente tetrámeros) son capaces de interaccionar con secuencias 

peptídicas específicas, ricas en aminoácidos cargados negativamente (ácidos aspártico y 

glutámico) e incluso mostrar gran afinidad por determinadas secuencias del dominio de 

tetramerización de p53 (proteína cuya actividad resulta esencial en el mecanismo de 

reparación génica celular). 

Los tres primeros capítulos de esta tesis están dedicados al estudio de la interacción 

de derivados oligoméricos de guanidina bicíclica con sistemas biológicos de gran 

relevancia. 

Concretamente, en el Capítulo 1 se asientan las bases metodológicas para la síntesis 

de estos compuestos policationicos. Asimismo, se estudia la interacción de dichos 

compuestos con el dominio de tetramerización de p53 (p53TD). El ligando 

hexaguanidinio cumple con todos los requisitos geométricos para el reconocimiento 

específico de la superficie proteica de dicho dominio, puesto que cada monómero de 

p53TD contiene una secuencia altamente conservada de 6 aminoácidos ácidos a una 

distancia óptima (i, i+3; i, i+4) para la unión con estos compuestos oligoguanidínicos. 

Otros ligandos fueron sintetizados con el objetivo de evaluar mediante RMN (trabajo 

realizado por la Dra. Susana Gordo, bajo la supervisión del profesor Giralt en el IRB) 

la influencia de factores como la longitud del oligómero o la presencia de grupos 

aromáticos en la interacción con la proteína. 

En el capítulo 2 se explora la utilización de estos compuestos oligoguanidínicos 

como vectores no-proteicos de internalización celular. Dado su carácter catiónico y 
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amfifílico estas moléculas son capaces de interaccionar y traspasar la membrana celular, 

siendo potencialmente activas en el trasporte de fármacos u otras moléculas con 

actividad terapéutica dentro de la célula. En colaboración con el grupo del Prof. Peter 

E. Nielsen se prepararon diversos conjugados oligoguanidínicos unidos a ácidos 

peptidonucleicos (PNAs) para evaluar su actividad antisentido (corrigiendo el pre-

ARNm aberrante que codifica para la proteína luciferasa), íntimamente relacionada con 

su capacidad como agente internalizante. Se determinó también que la elevada 

actividad mostrada por ciertos conjugados era consecuencia directa de su mecanismo 

de internalización, basado en la formación de agregados de tipo liposomal. Por último, 

la unión de tetra- y pentaguanidinios a un PNA con actividad bactericida contra E. coli, 

resultó en el aumento drástico de su efecto antisentido al permitir su transporte a 

través de la pared celular bacteriana. 

En colaboración con el grupo del Prof. J. L. Mascareñas, en la universidad de 

Santiago, se estudió la interacción de híbridos oligoguanidina-péptido con 

determinadas secuencias consenso de ADN (capítulo 3), siendo la secuencia peptídica 

una versión miniaturizada del factor de transcipción (GNC4) perteneciente a la familia 

de las cremalleras de leucina. Estudios preliminares demuestran cómo estos 

compuestos policatiónicos aumentan la afinidad de dichos péptidos por el ADN sin 

perder especificidad de unión. Mediante estudios de desnaturalización térmica de 

diversas secuencias de ADN se determinó el efecto de estabilización que tienen estos 

compuestos oligoguanidínicos sobre la estructura de doble hélice del ADN, mayor 

incluso que el efecto de poliaminas naturales como espermina o espermidina. 

Los tres últimos capítulos de este trabajo doctoral versan sobre la capacidad que 

tienen las guanidinas bicíclicas para auto-ensamblarse formando complejos 

supramoleculares con diferentes compuestos oxoaniónicos y las propiedades físico-

químicas derivadas de esa unión. 

Así, en el Capítulo 4 se describe la síntesis del macrociclo tetraguanidínico y su 

interacción con diversos calixarenos tetraoxoaniónicos. Dicha unión restringe 

conformacionalmente la movilidad de los arilos y produce un considerable aumento 
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del tamaño de la cavidad del calix[4]areno, permitiendo la inclusión de diversas 

moléculas en su interior.  

El Capítulo 5 abarca la formación de díadas bis-porfirina:fullereno mediante la 

utilización del par iónico guanidina-carboxilato. La contribución de cada uno de los 

elementos partícipes de la interacción es medida individualmente para evaluar su 

aportación en la formación de la díada. Se explorará la auto-asociación de dicho 

compuesto mediante interaciones no-covalentes Zinc-piridina, creando complejos 

supramoleculares macrocíclicos similares a los fotosistemas porfirínicos artificiales 

descritos por otros grupos. Actualmente se están realizando diversos estudios para 

elucidar el estado de agregación de estos compuestos tanto en solución como en 

estado sólido. 

Por último, el Capítulo 6 trata sobre la capacidad de determinados compuestos 

quirales diguanidínicos para formar geles (proyecto en el cuál ha participado 

activamente la Dra. Beatriu Escuder de la universidad de Castellón). Estas moléculas 

auto-agregan para dar lugar a fibras quirales y cuyo entramado tridimensonal alberga las 

moléculas de disolvente que componen estos organogeles. Además, se estudió como el 

intercambio aniónico en estos compuestos catiónicos afecta a su transición líquido-gel 

y como ésta puede modularse fácilmente mediante extracciones líquido-líquido. Por 

último, se explora la posible utilidad de estos geles para albergar fármacos en su 

interior y facilitar así su liberación gradual y controlada a través de estas fases 

coloidales. 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 



 

UNIVERSITAT ROVIRA I VIRGILI 
BICYCLIC GUANIDINIUM OLIGOMERS FOR RECOGNITION, CELL DELIVERY, AND MOLECULAR MATERIALS 
Julián Valero Moreno 
DL:T. 276-2012 


	ADP77.tmp
	Dipòsit Legal: T. 276-2012




