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Abstract—Interference is a major impediment to the perfor-
mance of a wireless network as it has a significant adverse
impact on Network Capacity. There has been a gradual and
consistent densification of WiFi networks due to Overlapping
Basic Service Set (OBSS) deployments. With the upcoming
802.11ax standards, dense and ultra-dense deployments will
become the norm and the detrimental impact of Interference
on Capacity will only exacerbate. However, the precise nature
of the association between Interference and Network Capacity
remains to be investigated, a gap we bridge in this work. We
employ linear and polynomial regression to find answers to
several unexplored questions concerning the Capacity Interference
Relationship (CIR). We devise an algorithm to select regression
models that best explain this relationship by considering a variety
of factors including outlier threshold. We ascertain the statistical
significance of their association, and also determine the ex-
plainability of variation in Network Capacity when Interference
is varied, and vice versa. While the relationship is generally
believed to be non-linear, we demonstrate that scenarios exist
where a strong linear correlation exists between the two. We
also investigate the impact of WMN topology on this relationship
by considering four carefully designed Wireless Mesh Network
(WMN) topologies in the experiments. To quantify endemic
Interference, we consider four popular Theoretical Interference
Estimation Metrics (TIEMs) viz., Total Interference Degree (TID),
Channel Distribution Across Links Cost (CDALcost), Cumulative
X-Link-Set Weight (CXLSwt), and Channel Assignment Link-
weight Metric (CALM). To ensure a sound regression analysis, we
consider a large set of 100 Channel Assignment (CA) schemes, a
majority of which are generated through a Generic Interference-
aware CA Generator proposed in this work. Finally, we test
the TIEMs in terms of their reliability and the ability to model
Interference. We carry out the experiments on IEEE 802.11g/n
WMNs simulated in ns-3.

I. INTRODUCTION

There has been a phenomenal 17-fold increase in the global

mobile data between 2012 and 2017, and a 71% rise in

2017 alone. There were speculations that with the increase in

penetration of 4G/LTE and 5G networks, WiFi will no longer

be the prime driver of data demand. The numbers are in, and

despite the much higher speeds and relaxed data caps that 5G

networks will boast of, WiFi is here to stay for the foreseeable

future. Over half of all data traffic on 4G was offloaded on to

WiFi in 2017, which is expected to rise to 59% by 2022. 5G

deployments will be even more dependent on WiFi, as over

71% data offload is expected by 2022.

The global mobile data traffic is estimated to rise to a

staggering 77 exabytes/month by the end of 2022. With a

simultaneous rise in Wi-Fi offloading by the telecom networks,

the WiFi networks have become increasingly dense, and even

ultra-dense with inter-AP (Access Point) distance now less

than 10m in the urban centers of countries such as Japan. Such

dense and ultra-dense deployments often have Overlapping

Basic Service Set (OBSS) owing to a higher density of APs

whose coverage area overlaps. Although the OBSS deploy-

ments facilitate better spatial reuse, higher order modulations,

and better signal strength, the AP coverage overlap creates

plethora of performance bottlenecks, the most significant of

which is co-channel Interference.

A study group has been tasked with the release of the

IEEE802.11ax standard for dense and ultra-dense Wireless

Mesh Networks (WMNs) which will cater to the increased

data demand by ensuring enhanced system performance in

terms of network throughput and spectrum efficiency. Dense

deployments comprising of multiple OBSS will enable the

802.11ax amendment to offer High Efficiency WLAN (HEW)

services to end-users.

However, due to the dense OBSS deployment, several chal-

lenges posed by interference, which have been successfully

addressed in conventional 802.11 networks, will require to

be addressed anew in the 802.11ax supported HEWs. For

example, the problem of hidden nodes will acquire new

dimensions as the RTS-CTS mechanism in its current form

is incapable of addressing the challenges of co-channel inter-

ference and hidden-node problems in multi-AP OBSS deploy-

ments. Likewise, other problems cause by endemic interfer-

ence that adversely impact network performance will need to

be revisited in dense and ultra dense networks, viz., AP-AP

Interference, Interference amplification effect, exposed node

problem, Interference deadlock, deadlock and link suppression

etc.

Although, the overarching challenge of OBSS management

has been given due consideration in all working groups

commissioned by IEEE since the 802.11aa task group, the

detrimental impact of interference in dense OBSS deploy-

ments requires special emphasis. Several recent works have

begun addressing the interference related challenges in dense

and ultra-dense WiFi deployments, and we briefly review

a few state-of-the-art works. Authors in [1] investigate the

effect of inter-AP distance on network performance in dense

OBSS scenarios, and state that increasing the density of APs

does not necessarily translate into improvement in network

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/199314597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1904.12125v1


capacity. They recommend designing efficient load balancing

and channel assignment mechanisms that specifically cater to

802.11ax HEWs. The work also highlights several interference

related challenges in context of the upcoming dense OBSS

deployments, but an analysis of the relationship between

network capacity and Interference is lacking.

In [2], authors propose the use of dynamic sensitivity

control for adaptive Clear Channel Assessment, among other

solutions, to maximize network capacity in ultra-dense WiFi

networks. In a recent prominent work on 802.11ax [3], in-

terference is stated to be the primary challenge to dense net-

works. Likewise, expected challenges to 802.11ax HEWs from

internal interference, WiFi-LTE coexistence, and interference

in mobile/vehicular environments are discussed [4].

However, these works fall short of investigating the Ca-

pacity Interference Relationship (CIR) in conventional WiFi

deployments or current dense and ultra-dense networks. The

same goes for the earlier research literature on Interference

mitigation to enhance network performance of conventional

WiFi deployments. Almost invariably, the objective of in-

terference alleviation strategies was to enhance the Network

Capacity, while secondary objectives included a reduction in

packet loss and end-to-end latency. The determination of the

maximal achievable throughput in a wireless network, under

the adverse impact of endemic Interference and mechanisms

employed to alleviate it, is a non-trivial NP-hard problem [5].

So, research studies have attempted to explore an approximate

relationship between Interference and Network Capacity and

have revealed an inverse relationship between the two [6], [7].

Some studies have even suggested an upper-bound on maximal

achievable throughput [8], but they require several vital inputs

about the network beforehand, such as the network layout and

the location of static nodes, expected traffic load etc. It is

well established that the Network Capacity and the intensity

of Interference prevalent in a wireless network are inversely

related, i.e., to improve network throughput the transmission

conflicts must be reined in. However, an exact quantification

of this inverse relationship that is not specific to the network

layout, or limited to a theoretical upper-bound, is lacking.

To the best of our knowledge, a statistical analysis of

the relationship between Capacity and Interference based on

empirical observations is lacking. We contend that with the

densification of WiFi deployments and the emergence of

802.11ax standard, such an analysis is not only relevant, but of

great necessity. In this work we bridge this gap by conducting

CIR analysis in four conventional (802.11g/n) Wireless Mesh

Networks (WMN) through the statistical tools of linear and

polynomial regression. The findings of this work are counter-

intuitive and hold great relevance to practical applications in

dense and ultra-dense WiFi deployments.

To measure the impact and intensity of prevalent interfer-

ence, we make use of four commonly used Theoretical Inter-

ference Estimation Metrics (TIEMs). TIEMs offer a theoretical

measure of the Interference prevalent in a wireless network,

and its adverse impact on network performance. Several

TIEMs have been devised in earlier studies to offer a measure

of Interference prevalent in WMNs. The most commonly used

TIEM is the Total Interference Degree [9], which is a measure

of all potential link-conflicts present in the conflict graph of the

wireless network. Over the years, countless Interference-aware

Channel Assignment (CA) schemes have been proposed based

on this guiding principle to maximize the network throughput

[10]–[12]. The Channel Distribution Across Links (CDAL)

approach offers an Interference metric called CDALcost [13].

Its design is inspired by the Law of Marginal Returns from

microeconomics theory, which it applies to assess the fairness

in channel allocation to the radios in a wireless network.

Cumulative X-Link-Set Weight or CXLSwt metric is another

TIEM, which operates at the level of X-Link-Set (XLS), i.e., it

takes into account the link-conflicts within a set of X wireless

links in a WMN and assigns every XLS a weight (XLSwt),

which is indicative of its resilience to Interference. Channel

Assignment Link-weight Metric (CALM) is another reliable

TIEM proposed in [14], [15]. CALM is inspired by social

theory and its design is based on the Durkheimian concept of

a sui generis social reality.

A. Capacity Interference Relationship : Open Questions

A review of earlier studies that either aim to optimize

network performance, or study the impact of Signal and Noise

plus Interference Ratio (SINR) on the capacity of traditional

WiFi networks reveals that the relationship between the two

is inverse and largely curvilinear [16].

However, the true nature of this inverse relationship is

unclear and no study, to the best of our knowledge, has

demonstrated its statistical significance with high confidence.

In the landmark work [6], authors theoretically demonstrate

an inverse quadratic association between Interference and

maximal achievable throughput, which we will verify in

this work. Network Capacity and Interference share a close

association, which is corroborated with substantial evidence

[17], [18]. However, no study has explored the nature of

the relationship to ascertain if it is always curvilinear or

quadratic. If not, it remains to be seen under what conditions

do Interference and Network Capacity demonstrate a strong

linear correlation. Further, impact of network design choices,

topological constraints, and technical factors, such as network

layout, type of CA scheme, PHY datarate, no of radios/node,

etc., must be investigated and analyzed to determine if the

relationship remains unaltered due to these modifications.

Another important aspect is the statistical credibility of

the discovered relationship i.e., can the variation in one be

explained through the other? By varying the intensity of

Interference, to what degree can the consequent variation in

Network Capacity be explained by the observed relationship,

and vice-versa. Further, TIEMs are used to represent the

impact of Interference on network performance, especially

Network Capacity. A substantial amount of research literature

is based on the premise that an estimate showing lower levels

of Interference in a WMN implies high Network Capacity.

Evaluation of TIEMs is limited to observing an inverse pattern

between their recorded values and the recorded Network Ca-



pacity. Again, the exact nature of association between TIEMs

and Network Capacity has not been investigated. This creates

a problem which we call, the double unknown, i.e., neither

the relationship between Interference & Network Capacity, nor

TIEMs & Network Capacity has been precisely identified, yet

we try to compare various TIEMs with each other employing

Network Capacity as the network parameter of choice. A

deeper insight into the association between them will provide

better benchmarks for evaluating TIEMs and their ability to

model Interference efficiently.

These questions hold great relevance in the context of the

IEEE802.11ax standard which is designed to cater to the needs

of dense and ultra-denseWiFi deployments [19]. As discussed

earlier, densification of OBSS and multi-AP deployments will

require novel solutions to the age old problem of Interference

mitigation, avoidance, and cancellation. The impetus on the

self-organizing EasyMesh technology by Wi-Fi Alliance [20]

also adds to the importance of the questions raised and

addressed in this work.

B. Research Contributions

In this work, we investigate the relationship of Interference

and Network Capacity, and determine its nature by subjecting

the observed results and theoretical Interference estimates to

Linear and Polynomial Regression. For successful regression

analysis, it is imperative that the best regression models are

chosen for each scenario based on appropriate criteria. To

achieve that, we devise a generic algorithm for Regression

Model selection/rejection that is not limited to Capacity Inter-

ference Relationship (CIR), as well as a criteria for selecting

a suitable Alternate Regression Model.

To generate a theoretical measure of the endemic Interfer-

ence, we consider four TIEMs viz., TID, CDALcost, CXLSwt,

and CALM. We also explore if a statistical correlation exists

between Interference and Network Capacity, and under what

conditions. Further, we determine the extent to which variation

in one can be explained through the other. We assess the

influence that WMN topology has on their relationship by

considering four different WMN topologies, of which two

are planned grid WMNs while the other two topologies are

specifically designed to emulate real-world WMNs by consid-

ering two deployment scenarios viz., a sub-urban residential

community and an urban complex with open public spaces.

C. Relevance of Findings

Theoretical proofs of a non-linear relationship between

Interference and network performance proposed in the state-

of-the-art work [6], have formed the basis of the solutions

to numerous optimization problems concerned with Network

Capacity, node-placement, and resource allocation in conven-

tional WiFi networks. A non-linear relationship when for-

mulated as a constraint in an optimization problem makes

it computationally resource-intensive. It also increases the

convergence time, often exponentially, which is not feasible for

dense and ultra-dense OBSS scenarios and dynamic vehicular

networks [21]. We demonstrate through extensive simulations

and analysis that a non-linear relationship between the two

variables does not always exist, and should not be assumed

to be so. This work paves the way for an empirical and

practical approach to reflect the CIR in network optimization

formulations, thereby relaxing the time and computational

overhead through the use of linear constraints.

Further, several network-optimization solutions first assume

a non-linear relationship, and given its resource demands,

relax these constraints to arrive at simpler, more easily solved

constraints. Commonly employed simplification techniques are

to replace the non-linear relationship with a linear constraint,

derive a less-computationally intensive heuristic, or consider

simpler Interference distribution functions [22], [23]. However,

these simplification techniques are seldom guided by empirical

and practical considerations of the CIR. This work offers

experimental evidence in support of the use of linear con-

straints to model their relationship, and by making the actual

optimization model less resource-intensive it also reduces the

need for a simpler heuristic. Thus the findings of this work

will facilitate improved and quicker network optimization.

This will greatly benefit the emerging dense 802.11ax HEWs,

vehicular networks, and proximity-centric mobile networks.

II. STATISTICAL ANALYSIS OF CIR

Regression Analysis is a set of statistical tools that are

employed to determine relationship between variables in a

system [24]. These variables can be classified as dependent

variables (Dvar) and independent variables (Ivar). Regression

Analysis helps in investigating if, and how, changes in one

or more Ivars effects the Dvar being studied, and offers a

regression model (RM) that explains their relationship. We

analyze the CIR from both directions, i.e.,

1) IxTy : Capacity is Dvar, Interference is Ivar .

2) TxIy : Interference is Dvar, Capacity is Ivar .

In our analysis, we choose two regression techniques, viz.,

Linear Regression and Polynomial Regression. It is notewor-

thy, that the latter is in effect a type of Multivariate Linear

Regression. Our choice is predicated upon the simplicity

provided by these techniques in the analysis and interpretation

of the CIR. These techniques offer valuable insights into

the relationship by determining its statistical significance (P-

value), and calculating the percentage of variation in the

dependent variable (R-Squared) that can be explained by

the change in the independent variable. In non-linear regres-

sion, P-value and R-Squared are not feasible, which makes

it complicated to use. Further, Linear Regression facilitates

determination of scenarios in which Network Capacity and

Interference may have a linear relationship, and up to what

extent, based on the observed Correlation Coefficient (CC). As

Capacity and Interference are expected to have a non-linear

relationship [6], Polynomial Regression fits non-linear data

along a curve by expressing a dependent variable (Y ) as an

nth degree polynomial of one or more independent variables,

where n > 1. We evaluated numerous regression models,

and for efficient categorization we classify the relationship



between Interference and Capacity based on the following P-

value criteria.

1) P-value < 0.001 : Highly Statistically Significant (HSS).

2) 0.001 ≤ P-value < 0.05 : Statistically Significant (SS).

3) P-value ≥ 0.05 : Not Statistically Significant (NSS).

Further, we also consider a level of risk (α = 0.05), in

accepting that a relationship between Capacity and Inter-

ference exists, when actually it does not. We also account

for the Outliers, which are aberrations that usually have a

disproportionate influence on statistical analysis, and can lead

to misleading interpretations and conclusions.

III. SELECTION OF REGRESSION MODELS

The CIR for a given scenario can be explained through

several regression models, which makes selection of the right

regression model a crucial task. The right regression model not

only captures the relationship with high statistical accuracy,

it also gives an insight into the relationship in terms of its

statistical significance, explanation of the variation in the

response variable, etc. However, often the question arises as to

which regression model is to be chosen when R-squared values

of two models are comparable. Clearly, selecting a regression

model requires some objective criteria. It also involves some

subjectivity, especially in terms of the type of regression

analysis we choose to carry out, based on the expected nature

of relationship. We propose a generic Selection Algorithm for

Regression Model (SAM) for CIR in Algorithm 1. It is generic

as it does not depend upon the WMN topology, physical layer

(PHY) data-rate, IEEE802.11 standard or any other WMN

design choice. It only concerns itself with statistical aspects

of the association between Capacity and Interference. SAM

considers the universal set of all regression models that are

run, and outputs two models that best explain the CIR for the

given scenario viz., the Best Regression Model (BRM), and

the Alternate Regression Model (ARM). It begins by pruning

the regression models that are not statistically significant. For

polynomial regression models of nth degree, SAM rejects

the model if the nth term is not statistically significant, else

the model is considered for further analysis regardless of the

statistical significance of lower-order terms. We introduce an

element of empirical propriety by placing an upper-limit on the

number of outlier data points in the model, which is denoted by

Ω and defined by the user. In our analysis, we consider Ω as

“10% of the total number of observations”. Finally, SAM uses

Adjusted R-squared (AR
2) to assess every regression model’s

explanatory ability and considers two models with the highest

AR
2 values [24]. Thus, SAM relies on several criteria for

model selection and not just the ability of the model to explain

the variation in the response variable. So, even if an nth

degree polynomial model boasts of a higher AR
2 value, it is

rejected if its nth term is not significant. Likewise, regardless

of impressive AR
2 values, or high significance of a model,

if the number of Outliers breaches the acceptable threshold,

the model is rejected. These factors make SAM a robust and

comprehensive regression model selection mechanism.

In the next section, we discuss various aspects of WMNdesign considered in the ns-3 simulations.

Algorithm 1 Selection Algorithm for Regression Model

Input: URM ; RMi ∈ URM , i ∈ {1 . . . n}; SRM ; α; Ω; Outi ∀

RMi; ρi ∀ RMi; AR
2

i ∀ RMi; Pi ∀ Polynomial RMi

Output: BRM, ARM

Notations : URM ← Set of all Regression Models RMi

considered for the relationship; n ← mod (URM ); SRM

← Set of statistically significant Regression Models; α

← Significance Level; Ω ← Outlier Threshold; Outi ←

Number of Outliers observed in RMi; ρi ← P-value for

RMi ; AR
2

i ← Adjusted R-squared value for RMi; Pi ← P

value for higher-order polynomial term in RMi; BRM ←

Best Regression Model; ARM ← Alternate (Second Best)

Regression Model.

1: AR
2

max1
, AR

2

max2
← 0 {AR

2

max1
& AR

2

max2
← Largest and

Second-largest Adjusted R-squared (AR
2

i ) values, respec-

tively.}

2: for i ∈ {1 . . . n} do

3: if ((ρi > α) ‖ ((RMi ← PolynomialModel) && (Pi >

α)) ‖ (Outi > Ω)) then

4: Reject RMi

5: else

6: SPRM ← SRM ∪RMi

7: AR
2

max1
, AR

2

max2
← GetMax(AR

2

i )

8: end if

9: end for

10: m← mod (SRM )

11: for j ∈ {1 . . .m} do

12: if (AR
2

j == AR
2

max1
) then

13: BRM ← RMj

14: else if (AR
2

j == AR
2

max2
) then

15: ARM ← RMj

16: end if

17: end for

IV. WMN DESIGN CONSIDERATIONS

A. Factors Affecting the Choice of WMN Topology

Topology of WiFi deployments shapes the Interference

dynamics of wireless transmissions, and it is for this reason

that topology control is a popular tool of Interference allevi-

ation in wireless networks [25]. We classify the conventional

WMN layouts into three broad categories, viz., Grid WMN

(GWMN), Random WMN (RWMN), and Planned Real-world

WMN (PWMN). GWMNs perform better than RWMNs in

terms of network coverage area, and offer a wider network

span than the latter [26]. PWMNs are real-world communi-

cation networks which when theoretically modeled, result in

complex graphs that conform neither to grid nor to arbitrary

WMN layouts [27].

Thus, while GWMNs are the preferred choice in scientific

studies and industrial applications, PWMNs constitute the

class of real-world WMNs which have high relevance from

both, technological and socio-economic perspectives [28]. It is

then imperative that the CIR is investigated in both GWMNs

and PWMNs.



(a) GWMN5×5 (b) GWMN7×7 (c) PWMN25 (d) PWMN50

Fig. 1: WMN Topologies Considered for Simulation.

Parameter Real-World Networks PWMN25 PWMN50 GWMN5×5 GWMN7×7

δ 0.05 − 0.1 0.067 0.073 0.67 0.036

εmin (m) 2− 22 14.86 7.07 250 250

T 0.1 − 0.8 0.29 0.37 NA NA

TABLE I: Global Parameters’ Values for Simulated WMNs.

B. WMN Topologies Simulated in ns-3

Bearing these facts in mind, we consider four conventional

WMN topologies for the simulations which includes two

GWMNs and two PWMNs. We consider GWMNs of two

square-grid topologies, 5 × 5 and 7 × 7, labeled GWMN5×5

and GWMN7×7, and depicted in Figure 1 (a) and Figure 1 (b),

respectively. Further, we design two PWMNs consisting of

25 nodes and 50 nodes, spanning a simulated environment

of 1000m× 1000m and 1500m× 1500m, respectively. They

are referred to as PWMN25 and PWMN50, and presented in

Figure 1 (c), and Figure 1 (d), respectively.

The motivation behind the design of PWMN25 is to simulate

a suburban row-housing complex, with linear arrangement of

houses (end-user nodes) located along three pathways/streets

creating a relatively sparse network. Through PWMN50, we

aim to create some semblance of an urban landscape that

includes clusters of residential and office structures, situated

on the periphery of two open public spaces. Our topological

choice is also guided by the premise that the upcoming

IEEE802.11ax amendment will lead to a densification of

existing WiFi deployments, and the CIR analysis of present

networks will aid in ensuring optimal AP placement and inter-

AP distance in dense OBSS scenarios. In Table I, we present

the values of three global parameters for real-world networks

viz., Network Density (δ), Radius (εmin), and Transitivity

Coefficient (T ). Values of all three parameters for both planned

WMNs lie within the expected range, which validates our

contention that the twin PWMNs emulate real-world WMNs.

In contrast, GWMNs do not demonstrate the topological

characteristics of real-world deployments.

C. Generic Interference-aware CA Generator

We consider a large set of a 100 CA schemes, some of which

have been implemented by considering popular approaches

which includes the state-of-the-art Breadth First Search CA

proposed in [10]. A majority of the CA schemes considered

in this work are generated from the Interference-aware CA

Generator (ICAG) presented in Algorithm 2. ICAG offers a

Algorithm 2 Interference-aware CA Generator.

Input: G = (V,E), C = {1 . . . n}, STIEM .

Notations ⇒ G : WMN Graph, Channel : Set of n orthog-

onal channels, STIEM : Set of Theoretical Interference

Metrics, TIE : Theoretical Interference Estimate; For

i ∈ V → Adji : List of adjacent nodes, ChRadi : Channel

set assigned to radios, Seqi : Node sequence number ;

For i, j ∈ V → Chmut : Channels mutual to i & j, Chex :

Channels exclusive to either i or j.

Output: Channel Assignment for G

1: Select TIEM ∈ STIEM

2: Graph Preserving CA ← IMF (TIEM)

3: if Topology Preserving CA then

4: for i ∈ V do

5: for j ∈ Adji do

6: if ((Seqi < Seqj) && (|ChRadi ∩ ChRadj | == 0)

&& (TIEcurr < TIEprev)) then

7: ChRadj ← ChRadj + {Chmut} − {Chex}

| {(Chmut ∈ ChRadi) && (Chex ∈ ChRadj)}

8: end if

9: end for

10: end for

11: Output Topology Preserving CA

12: else

13: Output Graph Preserving CA

14: end if

generic mechanism to generate both, graph preserving CA

(GPCA), and topology preserving CA (TPCA), with the help

of any TIEM. The TIEM set we consider to generate CA

schemes through ICAG includes TID, CDALcost, CXLSwt,

and CALM . ICAG invokes the Interference Mitigation Func-

tion which starts from the most-interfering CA where all

radios are assigned the default channel and generates theoret-

ically improved Interference-aware GPCAs in each iteration.

It continually lowers the value Theoretical Interference Es-

timate (TIE), and randomly returns GPCAs to Algorithm 2.

Thereafter, if a TPCA is required, ICAG will ensure topology



Algorithm 3 Interference Mitigation Function.

Input: G = (V,E), C = {1 . . . n}, TIEM , ChRad.

Notation ⇒ G : WMN Graph, Channel : Set of n orthog-

onal channels, TIEM : Selected Theoretical Interference

Estimation Metric, ChRad : Set of Channel-sets assigned

to radios of all nodes ∈ V , TIE : Theoretical Interference

Estimate.

Output: Return Minimal Interference Graph Preserving CA

1: TIEprev ← CalcT IE(G,ChRad, T IEM). {Initially all

radios are set to default channel 1.}

2: for Node ∈ V do

3: for Channel ∈ C do

4: Channelprev ← CurrChannel(Node)

5: if Node is assigned Channel && G is connected then

6: TIEcurr ← CalcT IE(G,ChRad, T IEM)

7: if ((TIEcurr < TIEprev)) then

8: TIEprev ← TIEcurr

9: else

10: Node← Channelprev

11: end if

12: end if

13: if (rand()% 2==0) then

14: Return Graph Preserving CA.

15: else

16: Continue CA processing.

17: end if

18: end for

19: end for

preservation while ensuring a minimal Interference estimate.

The forward correction algorithm for topology preservation is

similar to the one proposed in [12].

V. EXPERIMENTAL SET-UP

Multi-hop data transmissions are the characteristic feature

of WMNs, and with upcoming dense multi-AP deployments

the number of hops are expected to increase significantly. To

create a maximal Interference scenario anticipated in dense

WiFi deployments, we design test cases in which all nodes

of the network participate in communication of data traffic. A

10 MB datafile is sent across every source-destination pair via

multi-hop transmissions or n-Hop-Flows (nHFs). We create a

diverse traffic scenario which includes source-destination pairs

that are over 10 hops away, and others which are neighbors

that communicate directly. Thus, both 1HFs and 10HFs are

active in the simulated environment. Experiments are carried

out in ns-3 and the simulation parameters are presented in

Table II. We make use of the native ns-3 BulkSendApplication

to determine the Network Capacity by observing the Network

Aggregate Throughput (NAT) in Mbps, for every CA scheme.

Our aim is to determine and analyze the CIR under vary-

ing topological configurations. Thus, we create a set of 48

test-scenarios (TS) by varying the WMN topology, the CA

type, and the TIEM used. They are labeled as TSi, where

i ∈ {1 . . . 48}. In TS1 to TS4, we consider generic CA type in

GWMN5×5, considering one of the four TIEMs as a response

TABLE II: ns-3 Simulation Parameters.

Parameter Value

IEEE Standard 802.11g (2.4 GHz)† &
802.11n (5 GHz)¶

No. of Radios/Node 2†, 3¶

Range of Radios 250m

Orthogonal Channels 3†, 4¶

802.11g/n PHY data rate 9 Mbps† & 54 Mbps¶

File size 10 MB

Maximum Segment Size (TCP) 1 KB

MAC Fragmentation Threshold 2200 Bytes

RTS/CTS Enabled

Routing Protocol OLSR

Propagation Delay Model Constant Speed

Propagation Loss Model Range Propagation

Transmission Power 16 dBm
†

GWMN ;
¶

PWMN

variable in each TS. Further, for every combination of WMN

layout, CA type, and TIEM, we approach the CIR from both

directions viz., IxTy and TxIy , explained earlier. Therefore in

TS4 to TS8, we consider the TIEMs as predictors and NAT

as the response variable. A similar pattern is followed for the

other three WMN layouts as well. Further, we also consider

two other CA types, viz., GPCAs and TPCAs, keeping the

WMN topology constant as GWMN5×5, and investigate the

relationship between TIEMs and Capacity in both configura-

tions, i.e., IxTy and TxIy .

VI. RESULTS AND ANALYSIS

For every CA scheme implemented on the four conventional

WMN topologies, the simulations are run on ns-3 and NAT

values are observed. Thereafter, theoretical estimates of Inter-

ference are generated for each CA, through the four TIEMs

viz., CALM, CDALcost, CXLSwt, and TID. For each TSi,

after pruning through several undesirable regression models,

we select the Best Regression Model (BRM) and the Alter-

nate Regression Model (ARM) through the SAM algorithm.

Several aspects of the CIR are expressed by the regression

model through the parameters discussed earlier such as R-sq,

Correlation Coefficient, Outliers, etc. We analyze the raw data

collected for each of these parameters and present concrete

observations across four dimensions in the following sub-

sections.

A. Statistical Significance of the CIR

In 40 out of the 48 test-scenarios, a statistically significant

or a highly statistically significant relationship is present.

If we also consider the ARMs, for 6 additional scenarios

the relationship is NSS, i.e., only one SS/HSS regression

model exists for each of these 6 scenarios. The results are

illustrated in Figure 2 (a) and Figure 2 (b) for BRMs &

ARMs, respectively. It can be discerned that with CALM

and CXLS as the TIEMs, the CIR is at least statistically

significant for all scenarios. In contrast, in all scenarios where

the relationship is considered non-significant by the RM, the

TIEMs used are CDAL and TID. Further analysis of statistical

significance of BRMs & ARMs presented in Figure 2 (c) and
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Fig. 2: Regression Analysis of the Capacity Interference Relationship.

Figure 2 (d), respectively shows that only RMs with CALM

and CXLS as TIEMs exhibit high statistical significance, while

RMs involving CDAL and TID as TIEMs are just statistically

significant.

B. The Nature of CIR

It can be inferred from the analysis that Capacity and

Interference have a statistically significant relationship which

conforms to the theoretical hypothesis that they share an in-

verse relationship. The nature of this relationship is considered

to be curvilinear in general and is shown to be quadratic in

earlier state-of-the-art works [6], [7]. A remarkable finding

of our work is that the nature of CIR is not always non-

linear. Although CIR remains to be quadratic in over half the

scenarios, we encounter a linear correlation between Network

Capacity and Interference estimates in 47% cases. A deeper

analysis of with respect to TIEMs is presented in Figure 2 (e).

Apart from CDAL, where the number of linear models is half

that of quadratic, other TIEMs generate an equal number of

linear and quadratic models. The linear nature of CIR does not

appear to be an outcome of specific conditions, and presents

itself consistently independent of the TIEM and WMN layout.

Thus, the primary and a rather counter-intuitive finding of this

work is that the CIR can be linear in certain scenarios. This

inference will hold great relevance in dense OBSS scenarios,

especially with respect to optimal AP-placement and Network

Capacity optimization in 802.11ax HEWs.

Fig. 3: Outliers and TIEMs.

C. Reliability of TIEMs

Analysis of these results also sheds light on the reliability

of TIEMs in effectively estimating Interference in wireless

networks. Statistically significance of RMs shows that all HSS

relationship scenarios either have CALM or CXLS as the

TIEM while SS and NSS scenarios involve CDAL and TID as

TIEMs. To asess how TIEMs influence the number of Outliers,

we present an individual value plot in Figure 3, where the

mean Outlier counts are represented by black solid squares

and the Mean Connect Line joins them. It can be discerned

that TIEMs clearly have a bearing upon the number of Outliers

as CALM has the least mean outlier count, while TID has the

maximum. The impact of TIEMs on Correlation Coefficient

can be observed in the dot plot presented in Figure 4. For

CALM and CXLS, the CC values are close to +1, while for

CDAL and TIEM they are relatively farther from −1.



Fig. 4: Correlation Coefficient of Linear Models and TIEMs.

D. Impact of WMN Topology on CIR

WMN topology also seems to have an impact on the CIR, al-

though no concrete inference can be drawn with respect to size

or placement of the nodes in the WMN. We illustrate this by

observing the R-sq of scenarios involving CALM and CXLS as

TIEM in all four network topologies considered. Topological

independence should ensure similar R-sq values for a single

TIEM variable since the CA type is constant. However, in

Figure 2 (f) a significant amount of variation can be observed

for both CALM and CXLS. Clearly, with the densification of

WiFi networks in the upcoming of 802.11ax implementations,

placement of APs and the consequent network topology will

have a great bearing upon CIR.

VII. CONCLUSIONS AND FUTURE WORK

The foremost conclusion of this work is that the association

of Network Capacity and Interference is not necessarily non-

linear or quadratic, as is widely believed. A strong linear

correlation exists between the two in several scenarios. Further,

network topology influences the ability of the model to explain

the change in target variable as the predictor variable changes.

Finally, a regression model is only as accurate as the predictor

variable used. Clearly, some TIEMs (e.g., CALM, CXLS)

are more reliable estimates of Interference than others (e.g.,

CDAL, TID). Models involving CALM and CXLS offer high

R-sq and fewer Outliers, which makes the analysis of the

relationship more accurate. As an extension to this work,

we will conduct experiments on a dense WiFi network and

observe real-time SINR and Capacity values to carry out

a direct evaluation. Further, we will investigate the benefits

of linear correlation between Capacity and Interference in

network optimization problems in dense WiFi deployments.

We also intend to introduce the element of mobility in our

investigations.
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