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ABSTRACT  

 

Plasma (an electrified gas with atoms dissociated into 

positive ions and negative electrons) is often said to be the most 

abundant form of matter in the universe. The density of a 

plasma can vary over 28 orders of magnitude – lower density 

plasmas behaving like alternating gradient synchrotrons (where 

single particle trajectories need to be considered) while higher 

density plasmas tend to behave like fluids (motions of individual 

particles are unimportant) – thus encouraging us to think of 

plasmas as a ‘fourth state of matter’. In this report, we analyse 

the basic parameters of a plasma, briefly looking at the equations 

governing its behaviour to start with. We then proceed to study 

the Weibel Instability, and explore its evolution with time using 

numerical simulations. 
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INTRODUCTION 

 

Most of the matter in the universe is said to exist in the 

form of a plasma – an electrified gas with positively charged ions 

and negatively charged electrons. Although this hypothesis is 

based on the existence of dark matter, the estimate is not an 

entirely unreasonable one. Consider the Saha equation for a 

moment, which predicts the amount of ionization in a gas in 

thermal equilibrium:  

 

 

 

The left hand side is the ratio of the number density of the 

ionized atoms to the neutral atoms in the gas; T is the 

temperature of the gas in question, Ui the ionization energy, and 

K the Boltzmann constant. Plugging in the values corresponding 

to our immediate surroundings, we obtain an extremely low 

value for the fractional ionization of the gas, roughly 10 -122. This 

explains why we don’t encounter plasmas on a daily basis. At 

the same time, however, it is evident that for very high values 

of T (say millions of degrees), the fraction takes a more 
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appreciable value – thus giving credibility to the hypothesis 

stated earlier (most astronomical bodies boast of ridiculously 

high temperatures).  

 

Not all ionized gases are classified as plasmas though. 

Strictly speaking, plasmas are defined as ‘quasineutral’ gases that 

exhibit ‘collective behaviour’. The latter simply indicates that 

the motion of particles in one part of a plasma is influenced not 

only by local conditions, but also by the conditions of the plasma 

in remote regions as well, owing to long range electrodynamic 

forces. To understand what the former term means, we need to 

examine the phenomenon of ‘Debye shielding’. Consider the 

diagram below:  
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We insert two oppositely charged spheres into a plasma. Ideally, 

the two spheres would attract opposite charges to themselves, 

and the potential produced by the spheres in question would be 

shielded out perfectly by the charge clouds surrounding them. 

However, if the plasma has a finite temperature, some electrons 

near the ‘edge’ of the cloud would possess enough thermal energy 

to cross the potential barrier, thereby rendering the shielding 

incomplete. The thickness of the charge cloud in a plasma, called 

the ‘Debye length’, is given by:  

 

 

 

By ‘quasineutral’, we mean that the electron and ion densities in 

the plasma are roughly equal (so we may refer to a common 

plasma density n, which appears in the equation above), but not 

so equal that the electromagnetic forces of interest vanish. For 

an ionized gas to qualify as a plasma, we require the density to 

be high enough for the Debye length to be negligible in 

comparison to the dimensions of the system L, so that any 

potentials in the plasma are shielded out in a distance short 

compared to L, leaving a majority of the plasma free of any 

potentials or fields. We also require enough particles in the 
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‘Debye sphere’ for the shielding to be a statistically valid 

concept, that is:  

 

 

 

Finally, for a plasma to behave differently from a neutral gas 

governed by ordinary hydrodynamic forces, we require:  

 

 

 

Omega being the frequency of plasma oscillations, and tau 

representing the mean time between collisions with neutral 

atoms.  
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MAGNETIC MIRRORS 

 

One of the key topics of interest in the study of plasma 

physics is the confinement of plasmas. A magnetic ‘mirror’ is a 

way of achieving this. Consider the following field for example:  

 

 

 

Here, we are considering a field whose gradient is parallel to the 

field itself. For such a configuration, we find that the magnetic 

moment of a charged particle, given by  

 

 

 

happens to be conserved, where the component of the particle’s 

velocity perpendicular to the field appears on the right hand side 
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of the equation. Applying energy conservation at the two points 

indicated in the diagram (BO corresponds to the region of 

minimum magnetic field; Bm corresponds to the maximum value 

of the field, at the ‘throat’ of the mirror configuration), and 

taking into account the invariance of the magnetic moment of 

the particle, we find:  

 

 

 

where theta is the pitch angle of the particle’s orbit in the weak 

field region (B’ is the field at the point where the particle 

‘reflects’, that is, its velocity parallel to the field is zero at this 

point). Now, B’ must be less than Bm, the maximum value of the 

field. This gives:  

 

 

 

where Rm is called the ‘mirror ratio’. The relation above says 

that any particle with a pitch angle greater than 1/Rm will 
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reflect, implying that all particles having a pitch angle less than 

the value above will be ‘lost’. This inspires the concept of a ‘loss 

cone’. Given below is the pictorial representation of the same: 

  

 

 

A naturally occurring example of a magnetic mirror is in the 

Van Allen belts. As the magnetic field of the Earth happens to 

be strong at the poles and weak at the equator, a natural mirror 

is formed, with a rather large value of Rm.  
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PLASMAS AS FLUIDS 

 

If we were to try to solve the equations corresponding to 

plasmas exactly, it would be a ridiculously difficult job. Even 

assuming the electric and magnetic fields beforehand, we find it 

a herculean task to evaluate the trajectories of the particles 

exactly, and approximate methods are usually employed. To 

take into account the fields generated by the particles, and to 

then solve for the trajectories of the particles, in a time varying 

case no less, represents a near impossible task. Fortunately, a 

majority (close to 80%) of the plasma phenomena that we 

observe can be explained by a rather simple mathematical 

model. We employ the model used in fluid dynamics, where the 

identity of the individual particles is ignored, and only the 

motion of the fluid elements is taken into consideration. Only in 

the case of plasma, the ‘fluid’ contains electrical charges.  

 

A more refined method applied to study plasmas is via the 

kinetic theory, but in some problems, neither model is good 

enough to describe the plasma’s behaviour. In such cases, we are 

forced to follow individual trajectories of particles – this is often 

done with the help of computer simulations. Modern computers 

have enough memory to store the position and velocity 
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components of close to 104 particles, but this too, is only enough 

to solve problems in one or two dimensions. Regardless, 

computer simulations are playing an important role in bridging 

the gap between theory and experiment, and help explain plasma 

behaviour in cases where kinetic theory fails miserably.  

 

We find that the equation of motion of the plasma ‘fluid’ 

can be written down as follows:  

 

 

 

where n is the number density, u is the fluid velocity, P the 

stress tensor, and uo the velocity of the neutral gas with which 

the charged fluid exchanges momentum upon collision (the last 

term on the right hand side simply indicates that the momentum 

lost is proportional to the relative velocity).  

 

Comparing the equation above with ordinary fluids that 

obey the Navier Stokes equation,  
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we see that the two equations are very similar. Electromagnetic 

forces (and the collision term) do not appear in the equation 

above (to be expected), whereas the viscosity term (the last term 

in the right hand side of the equation above) represents the 

collisional part of the difference of the gradient of the stress 

tensor and the gradient of the pressure, in the absence of any 

magnetic field. 

 

One reason why the fluid model seems to work for plasmas 

is that, the magnetic field can simulate collisions, in a sense – it 

limits the free streaming of particles by forcing them to gyrate 

along Larmor orbits. Free streaming does occur, however, along 

the magnetic field, which indicates that the fluid model is not 

exactly suitable for motions in that direction. For motions 

perpendicular to the field though, the fluid theory serves as a 

good approximation.  

 

The complete set of fluid equations for a plasma (neglecting 

collisions and viscosity) can be described by:  
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where the j corresponds to i or e (ion or electron), and the other 

quantities have their usual meanings.  
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PLASMA OSCILLATIONS 

 

Another interesting phenomenon occurring in plasmas is 

plasma oscillations. If the electrons in a plasma are slightly 

displaced from a uniform background of positive ions, electric 

fields will be so established as to restore the electrons to their 

original positions, in a bid to maintain neutrality. The electrons, 

however, shoot past their original positions because of their 

inertia, and begin oscillating about their equilibrium positions. 

We can show this pictorially as follows:  

 

 

 

The open rectangles correspond to the ion fluid elements, while 

the darkened ones represent the electron fluid elements. The 

resulting grouping of charges causes the development of a 
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periodic E field in space, which tries to restore the electrons to 

their original positions.  

 

These oscillations are referred to as plasma oscillations, and 

there is a characteristic frequency associated with them, which 

we can show (using fluid equations) to be: 

  

 

 

Note that these frequencies will have very large values, given 

how small m is. For instance, a plasma with a density of around 

1018 m -3, the frequency works out to be close to 9 GHz.  

 

The relation above also tells us that the plasma frequency 

depends only on the plasma density, and not k. The group 

velocity, given by the derivative of the frequency with respect 

to k, is therefore zero.  
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THE WEIBEL INSTABILITY – A 

QUALITATIVE DESCRIPTION 

 

Consider a simple situation – an electron beam launched 

into a plasma chamber. As the beam enters the chamber, it 

creates an azimuthal magnetic field around itself, leading to the 

rise of a counter electromotive force (CEMF). The CEMF 

interacts with the plasma electrons, resulting in a plasma current 

in the direction opposite to that of the beam. If the beam current 

and the plasma current overlap, the net current is zero, and 

there is no effective magnetic field. 

 

However, if we consider a small magnetic field – a 

perturbation – we begin to see an increasing filamentation of the 

beam. This happens because the variation in the magnetic field 

causes electrons to “bunch” at specific pathways, creating regions 

of varying densities. The initial filamentation of the beam (and 

the plasma current) reinforces the perturbation, resulting in 

more filamentation, and so on. This is the primary mechanism 

of the Weibel instability. 
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The above interpretation of the Weibel instability was 

presented by Burton Fried, who proposed that the mechanism 

could be understood in a simple fashion as the superposition of 

two or more counter streaming electron beams. The Weibel 

instability differs from what is called the ‘two stream instability’ 

– the perturbations are electromagnetic instead of electrostatic, 

and the result is current filamentation instead of charge 

bunching. 
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MATHEMATICAL PARAMETERS – 

WEIBEL INSTABILITY 

 

The growth of the instability is characterized by the growth 

rate γ, given by: 

 

 

 

where v0 is the unperturbed velocity of the beam, k is the wave 

number, c is the speed of light, and ωp is the ‘effective plasma 

frequency’. 

 

The electric and magnetic fields are then calculated to be: 
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where A is the amplitude of the EM wave. 

 

The relative magnitude of the fields works out to be: 

 

 

 

showing that it is a primarily magnetic perturbation. 
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SIMULATING THE INSTABILITY 

 

As mentioned earlier, analytically solving for the solutions 

of the equations in plasma physics can represent a near 

impossible task, and numerical methods have to be employed 

from time to time to obtain greater insight into the problems at 

hand. Attempts were made to replicate the results produced in 

L. V. Borodachev and D.O. Kolomiets’ work (‘Single Species 

Weibel Instability of Radiationless Plasma’). In what follows, a 

basic understanding of the logic employed (and an interpretation 

of some of the results) is discussed. 

 

The paper employs a Particle–in–Cell (PIC) numerical 

simulation of the electron Weibel Instability (WI) under the 

radiationless approximation of self consistent fields. The 

motivation behind the work is to supplement the classical 

picture of the instability by exploring the evolution of the initial 

(thermal) anisotropy with time, and also understand the 

dependency of important instability parameters on the initial 

degree of anisotropy. 
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Without loss of generality, we consider an initial velocity 

distribution ux, uy, uz such that uz is greater than the other two 

components, which are assumed to be equal. We then consider 

a perturbation in the y direction, which leads to a Lorentz force 

that results in a change in the direction of a particle moving 

along the z axis, thereby bunching the currents into spatially 

separated sheets (as explained in a previous section). We expect 

to see two current sheets forming for each wavelength of the 

magnetic perturbation, as shown in the figure below: 

 

 

 

We assume the perturbations to be exponential in nature, 

as we usually do in cases of linear analyses. This leads to a 

dispersion relation given by: 
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This equation is then numerically solved to see the dependence 

of the growth rate gamma with wave number k, which can be 

graphically represented as follows: 

 

 

 

Next, we employ the Maxwell’s equations, only with the 

elimination of the transverse displacement current, which 

corresponds to us neglecting radiation. Inductive effects 

associated with Faraday’s laws are partially retained by the 

system, which implies that the continuity equations still hold. 
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The characteristic linear size of the computational domain 

is chosen such that the initial values of anisotropy correspond to 

wavelengths that maximize the growth rate. The total number 

of the particles has to be such that the time frame is sufficient 

for the instability to develop – however, the computational cost 

per simulation must also be kept in mind (This works out to be 

roughly 106, considering some test runs and theoretical estimates 

for collisionless time for large particles). 

 

We then proceed to plot the average magnetic field energy 

density against time for different values of initial anisotropy: 
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Notice that the initial value of the energy density is close to 

zero, which then increases sharply – this corresponds to different 

areas of current localization. Also note that the increase is larger 

for larger values of initial anisotropy. The peak corresponds to 

the end of the linear stage, when the particles become 

significantly magnetized on average. The non linear regime that 

follows corresponds to a phase where current filaments in similar 

directions merge to form larger structures (This overlaps with a 

stabilization of the magnetic field energy density). 

 

Another plot of interest is the development of the 

anisotropy parameter A with time: 
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Observe that irrespective of the initial degree of anisotropy, the 

system saturates to a non zero threshold value. Our original 

problem described with appropriate boundary conditions 

mandates that waves longer than the linear size of the domain 

cannot exist, which explains the residual anisotropy. 

 

Finally, we proceed to calculate (through theoretical 

estimates) the dependence of the magnetic energy density on the 

anisotropy parameter (A). This coupled with the calculation of 

the maximum value of A gives us the maximum value of the 

magnetic energy density, given by: 

 

 

 

Simply put, this expression means that the fraction of the kinetic 

energy (associated with the z direction) which is eventually lost 

to the creation of the Weibel Instability, cannot exceed 1/6. 

Furthermore, using the dependency of the magnetic energy 

density on time, and the anisotropy parameter A, one can 

deduce the characteristic time of the instability, which could be 
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thought of as the time required to reach the maxima of the 

magnetic energy density. 
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CONCLUSION 

 

The study of plasma physics covers a range of applications 

– from the development of fusion power to our understanding of 

astrophysical phenomena. Other important features of plasmas 

– such as plasma instabilities (that is, regions of space which see 

turbulence due to change in plasma characteristics) have 

important applications in space physics. An in depth study of 

Weibel instability in particular was undertaken. 

 

Attempts were made to replicate the results produced in 

[5]. The paper was chosen as it adds to the classical 

understanding of the instability, by exploring the time 

evolutions of key parameters such as the anisotropy and the 

magnetic field energy density using PIC simulations. It also 

explores the non linear regime, which would be an extremely 

difficult task through analytical methods alone. 
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