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Abstract

Computational aerothermodynamics is the branch of science which focuses on the

computation of the effect of thermodynamic and transport models on aerodynamics

and heating. They are widely used for external flow cases. On the other hand, the

computation of heat and stress in the design of Nano/Micro Electronic Mechanical

Systems from the point of view of a fluid mechanics engineer is also an important area

of study. A generalized computational tool which can simulate the low and high speed

flows at both the macro and micro levels is desirable from the perspective of industry,

academics and research. For a developing nation, it is extremely important to have

such a solver developed indigenously to create self-sufficiency and self-reliance.

In this work, a robust three-dimensional density-based general purpose computa-

tional fluid dynamics solver was developed in house by our research group. The cell-

centred finite volume discretization method is used on an unstructured grid, which

is more desirable for computation on a complex geometry from the perspective of

pre-processing (meshing). Compressible flow solutions obtained from density-based

solvers usually do not work well at low speeds where the flow is close to incom-

pressible, unless special schemes and/or special treatments are used. An all-speed

algorithm was incorporated using two different methods: (a) preconditioning of the

governing equations or (b) through the use of the recently developed SLAU2 all-

speed convective scheme. The time-stepping discretization is done implicitly, using

the lower-upper symmetric-Gauss-Seidel method, which allows us to take a high CFL

number during computations. Throughout this work, we have used a second-order

accurate reconstruction with limiters to accurately capture the shocks without dis-

persive error. Turbulence modelling is done using Favre- and Reynolds- Averaged

Navier-Stokes equations using the Spalart Allmaras turbulence model.

The developed solver is used to solve external flow problems at low and high speeds

(hypersonic regimes). In these problems, the thesis focus is on the implementation and

testing of an automatic wall function treatment for the Spalart-Allmaras turbulence

model.

The applicability of the solver is extended to rarefied gas flow regimes in the

following manner. Thermal non-equilibrium which exists in the rarefied flow regime

is tackled using non-equilibrium boundary conditions in the slip flow regime. The use

of non-equilibrium boundary conditions allows the applicability of the Navier-Stokes

equation to be extended beyond the continuum to the slip regime. This approach

is used to solve problems of hypersonic rarefied flows and nano/micro flows; and for

testing and validation of several recently proposed boundary conditions for several
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problems in the slip flow regime.

The main focus of this work is in developing newer numerical methods and on

testing and improving other recently proposed numerical techniques that are used for

solving the problems covered in this thesis. In the following paragraphs we present

the major outcomes of the thesis.

The Spalart-Allmaras (SA) is one of the most popular turbulence models in the

aerospace CFD community. In its original (low-Reynolds number) formulation it

requires a very tight grid (with y+ ' 1) spacing near the wall to resolve the high flow

gradients. The use of fine grids increases the computational cost of the solutions.

However, the use of wall functions with an automatic feature of switching from the

wall function to the low-Reynolds number approach is an effective solution to this

problem. We have extended Menter’s automatic wall treatment (AWT), devised for

the K − ω SST, to the SA model. It is shown, for both momentum and energy

equations, that the formulation gives excellent predictions with low sensitivity to the

grid spacing near the wall, and allows the first grid point to be placed at y+ as high

as 150 without loss of accuracy, even for curved walls. In practical terms, this means

a near-wall grid 10-30 times as coarse as that required in the original model would be

sufficient for the computations.

Extending the solver capability for rarefied flows, we have incorpoarted various

non-equilibirum wall boundary conditions to extend the applicability of the Navier-

Stokes equation to the slip flow regime, 0.001 ≤ Kn ≤ 0.1. A new type of Smolu-

chowski temperature jump condition considering the viscous heat generation (sliding

friction) has been recently proposed as an alternative jump condition for the ac-

curate prediction of the surface gas temperature at solid interfaces for high-speed

non-equilibrium gas flows. It extends the concept of including the effect of sliding

friction in the calculation of surface heat flux to the temperature jump condition.

The effect of the new jump condition on temperature and heat flux has been reported

for various flow situations in the literature. However, this jump conditions seems to

adversely affect the prediction of surface pressure. Hence, there is therefore a need

for a more comprehensive evaluation of the new jump condition taking into account

its effect on the other flow properties such as pressure and slip velocity, the effect

of various inlet flow conditions and the effect on the convergence. We evaluate the

jump condition for various cases of hypersonic rarefied gas flows over a flat plate.

The results are compared with the experimental data in addition to direct simulation

Monte Carlo results. It is found that for the cases considered the pressure is over-

predicted using the new temperature jump condition. We then revisit a previously



x Abstract

derived but largely neglected pressure jump boundary condition and find an optimal

way for its implementation. The use of the new temperature jump with the pres-

sure jump boundary condition circumvents the problem of over-prediction of pressure

without affecting other flow parameters. We also report a possible limitation of the

new temperature jump boundary condition.

In order to further analyse the new temperature and the pressure jump condition,

we carry out a numerical study using these boudary conditions for four cases of

nano/micro flows: 1) 90◦ bend Microchannel pressure driven flow, 2) Nanochannel

backward facing step with a pressure driven flow, 3) Nanoscale flat plate and 4) NACA

0012 Microairfoil. The results are compared with the available DSMC results. We

have also demonstrated the capability of the low-speed preconditioned density-based

algorithm for rarefied gas flows. The algorithm captured flows at even very low Mach

numbers of 2.12× 10−5. Based on this study, we conclude that the effect of inclusion

of sliding friction in improving the thermodynamic prediction is case-dependent. It is

shown that its performance depends not only on the slip velocity at the surface but

also on the mean free path of the gas molecule and the shear stress at the surface.

Finally, we have carried out a numerical study to understand the effect of rar-

efaction in external hypersonic computations using the case of flow over cylinder.

We have proposed a modification to the SLAU2 convective scheme to improve the

accuracy of flow predictions in the presence of strong shocks. We then perform the

numerical simulation of hypersonic viscous flow over a cylinder at Mach 8 and 16.34

at different Knudsen numbers. We carry out the study using the modified SLAU2 and

the classical Roe schemes. The numerical computation of hypersonic flows over blunt

bodies is challenging due to the difficulty in robust and accurate wall heat flux predic-

tion and proper capturing of shock waves free from the “carbuncle” phenomenon and

other shock anamolies. We study how the shock anomalies found in the continuum

hypersonic flows behave with the degree of rarefaction. It is found that the modified

SLAU2 captures the shock free from the shock anomalies at all Kn, while the Roe

scheme lacks robustness for Kn . 10−3. The variation of different flow properties

such as heat flux, wall shear stress and the Mach number is investigated. The peak

heating value was observed to decrease with the degree of rarefaction.
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Chapter 1

Introduction

1.1 Background

Aerothermodynamics is the branch of fluid mechanics that focuses on the effect of

the thermodynamic and transport models on aerodynamics and heating [2]. The

aerothermodynamics challenge requires [3]:

1. Providing an optimal design which satisfies the mission requirements, and

2. Reducing design margin and thus the design costs.

External aerothermodynamics refers to the study of the aerothermodynamic char-

acteristic of an object in an open environment, such that the boundary layer develops

freely without the constraints imposed by the adjacent surfaces. The investigation

of such fluid flow and heat transfer problems would require the use of experimen-

tal or theoretical analysis. However, these have the limitation of being complicated,

expensive and in some cases nearly impossible to perform. The advent of advanced

numerical techniques and high-speed computation has allowed us to study such flow

dynamics using numerical methods. Computational fluid dynamics (CFD) is the

branch of fluid mechanics in which numerical simulation of the flow-field is performed

by solving the governing partial differential equations for mass, momentum and energy

conservation while coupling them with the appropriate relations for thermodynamic

and transport properties.

A general purpose CFD solver is a preferred choice for many researchers as it

gives the freedom to work on different applications and geometry using a common

framework. For a developing nation, it is beneficial to have such a solver developed
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1.2 Development of an All-Speed Density-Based Navier-Stokes Solver for

Unstructured grid

indigenously to develop much needed expertise. This thesis is partially a result of

the effort being put to develop a 3D unstructured grid density-based solver at In-

dian Institute of Technology, Hyderabad, India. This solver is designed to tackle

external flow problems at both low-speed (incompressible) and very high speed (hy-

personic) regimes. Unstructured finite volume method is used for this purpose. Also,

nano/micro flows can be solved using the same CFD code. The main focus of this

work has been on testing and improving recently proposed numerical methods for

solving the class of problems covered in this thesis.

1.2 Development of an All-Speed Density-Based

Navier-Stokes Solver for Unstructured grid

Many industrial applications would require us to solve the three-dimensional fluid flow

problems with an all-speed feature [4, 5, 6, 7]. The governing fluid flow equations, the

Navier-Stokes equations, are commonly solved using either pressure-based or density-

based solvers [8]. Pressure-based solvers are used for incompressible flows, while

density-based solvers are generally used for compressible flows. However, for flows

that involve both low-Mach number essentially incompressible flow along with high-

speed compressible flow it is required that the solver should have an all-speed com-

putation capacity. This is generally obtained using preconditioning methods [9, 10]

or else by using an all-speed convective scheme [11, 12].

In the first part of this work, we present the development of the robust three-

dimensional density-based solver on an unstructured grid to solve flow problems in-

volving complex geometry. The finite volume discretization method is used, wherein

the whole flow domain is divided into a number of small control volumes (or cells).

The numerical solution is obtained at the center of these cells. The discretization

of the temporal, convective and diffusive terms of the Navier-Stokes equations are

discussed in this thesis. The various convective schemes used in this work – such as

Roe [13], preconditioned Roe [9] and SLAU2 [12] are then explained. The solution in

the finite volume framework requires the solution values at the face of the cells (to be

obtained by interpolation). In this work, we have used second-order accurate recon-

struction flux with limiters to obtain the face value. The diffusion term is discretized

using a central order approximation. The various forms of boundary conditions which

are used in this work are also explained.
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The developed laminar solver has been validated for various regimes of the flow

[14, 15, 16, 17] but these test cases have not been presented in this thesis1, as this

work deals primarily with turbulent and rarefied gas flow computations.

1.3 Turbulence Modeling

Computational aerodynamics also plays a key critical role in aircraft and missile

aerodynamic design. An accurate prediction of flow-fields even for complex (w.r.t ge-

ometry) flow simulations with low computational cost is always desirable. Turbulence

adds further difficulty in such predictions. As a step further into the development of

the solver, the incorporation of the turbulence models is also discussed in this work.

A laminar Navier-Stokes code could be used to obtain the complete turbulent flow

through the method which is known as the direct numerical simulation (DNS) [18, 19].

But the accuracy, computational power and memory requirements to do this are

exorbitant. The use of DNS is limited to simple flows at low Reynolds number (Re) (∼
104−105) [8]. For complex flows or flows at higher Re, the DNS computation is limited

by the huge computational requirements. Therefore, the researchers usually use an

approximate modeling method to obtain the statistically averaged flow quantities.

As compressible flow involves variation in density, the governing equations are

obtained by performing a time and mass averaging of the Navier-Stokes equations, to

obtain the Favre- and Reynolds- Averaged Navier-Stokes equations [20, 21]. The set

of governing equations is then “closed” using different approaches [8]. One commonly

used closure is the Boussinesq eddy-viscosity hypothesis [22] which then requires the

computation of an effective or turbulent viscosity, µT . The method to obtain µT is

through the use of turbulence models.

Principally, there are five classes of turbulence models [8]:

1. algebraic

2. one-equation

3. multiple-equations

4. Reynolds-Stress models

1except, for the case of hypersonic laminar flow over the cylinder, for which the validation case
will be presented in Chapter 7 and for the M-SLAU2 scheme for which validation case is presented
in Appendix A
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of which the first three use the Boussinesq hypothesis.

In this work, the one-equation Spalart Allmaras model [23] is used to find the

eddy viscosity. However, we have also incorporated the two multiple-equations model,

Standard K − ε model [24] and Menter’s SST K − ω Model [25] in the solver. These

are discussed in brief/detail in Section 3.3.

A challenge for these models is the computation of the flow near walls, where the

strongest gradients of flow variables are found. The near-wall modeling strategies are

briefly discussed in Chapter 3. Later, we separately present a major discussion on

how we have developed a novel method to perform the near-wall modeling when using

the Spalart-Allmaras turbulence model.

The turbulent model equations are convective-diffusive with stiff non-linear source

terms for the production, dissipation and diffusion of turbulent energy and other

quantities. These terms change the flow variables very rapidly, at a much smaller time-

scales as compared to the mean flow. This causes significant stiffness in the governing

equations, which in turn stalls their convergence. Also, non-physical solutions can be

obtained, with positive turbulent quantities, like energy, taking negative values, as the

solution evolves over time. These lead to numerical instability. Positive preserving

and convergence issues being the focus of many researchers [26, 27, 28]. In this

work, we have used the unconditional positive convergent implicit time integration

procedure for the turbulence model equations developed by Mor-Yossef and Levy

[29, 30]. They have a general implicit time integration procedure that guarantees the

positivity of two-equation turbulence model dependent variables, that is applicable

on both structured and unstructured grids.

1.4 Automatic Wall Treatment

In industrial cases, most of the fluid dynamic applications involve turbulent bounded

flows. This requires flow behavior to be captured accurately and efficiently near

walls. The presence of a wall causes the mean velocity to reduce to zero. Also, near

to the wall, viscous damping and kinematic blocking cause the velocity to reduce and

the turbulence to be considerably modified. However, in the outer part of the near-

wall region, due to the presence of strong mean velocity gradients, the production of

turbulence kinetic energy and turbulence increase rapidly [31, 32].

The standard procedure to accurately capture the near wall region is to have a very
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fine mesh close to the wall. This procedure is known as the integration method and

requires an low-Reynolds-number (LRN) type of turbulence model. This approach

becomes computationally expensive as the cell count of the mesh becomes large. To

counter this, we can alternatively use the log law of wall to model the flow very near

the wall, and place the first grid point further from the wall. This latter approach is

known as the wall function method, which commonly is used with an high-Reynolds-

number (HRN) type of the turbulence model [33].

In this work, we have chosen to use one-equation Spalart-Allmaras [23] because

of its accurate predictions of a wide range of aerodynamic flow problems [34, 35, 36]

even in comparison with the two-equation RANS based turbulence models. However,

this model is a low-Reynolds number model and hence would require very tight grid

spacing near the wall. The use of the wall function method with SA is therefore de-

sirable. The wall function method requires the first-grid point to be placed optimally

to get accurate results [33] with less computational effort, at y+ around 30. This

placement is difficult to do a-priori during grid generation, as it depends on the yet-

unknown flow variables. This has led to developments of ‘automatic wall’ treatment

(AWT, also called ‘adaptive’ or ‘enhanced’ by different researchers) which allows for

a wider range of first-grid-point placement as it switches between the wall functions

to the low-Re formulation depending on the grid spacing [37, 38, 39, 40]. Craft et al.

[41] developed a wall function which solves boundary-layer type transport equation

across a locally defined sub-grid. Segunda et al. [42] have used the AWT available in

commercial solvers for the K − ω SST turbulence models for predicting flow over a

wavy wall. Recently, Berger and Aftosmis [43] have developed an ODE-based subgrid

wall model that is valid even vary far from the wall and into the boundary layer’s

wake region (y+ > 500). They also reviewed, Spalding’s classic formula and the an-

alytic Spalart-Allmaras wall function model [44, 45]. Goldberg and Batten [46] have

recently used wall functions over rough walls with a one-equation turbulence model

and obtained results close to those from two-equation models.

Menter et al. [47, 48] applied an AWT with the SST turbulent model [49, 50], a

two-equation turbulent model. We use, and modify, this AWT to obtain an automatic

wall treatment for the low-Re SA model. It allows for consistent modeling of eddy

viscosity in the inner and outer layers of the near-wall region. This approach allows

the desired automatic switching, between a low-Re formulation and the wall function

approach, based on the grid density. The detailed description of this work along with
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validation and verification will be presented in Chapter 4

1.5 Non-Equilibrium Boundary Conditions

The simulation of rarefied gas flow in hypersonic aerodynamics is important for the

design of space and re-entry vehicles. Computer simulations can provide the neces-

sary aerodynamic data at less cost and for cases where experiments are difficult to

conduct. Therefore, there is a constant effort to develop newer numerical methods

and to improve the existing ones based on appropriate physical modeling to bring the

computer simulations closer to reality.

In compressible flows, the regimes based on the rarefaction effect of gas molecules

can be classified as continuum, slip, transition and free molecular flow. These different

regimes are characterized by the Knudsen number(Kn), defined as [51]:

Kn =
λ

L
(1.1)

where λ and L are the molecular mean free path and characteristic length scale of

the flow, respectively. For high gas density, Kn is small; gas flows can be simulated

by solving the Euler (Kn ≤ 0.0001) or the Navier-Stokes (NS) equation with no-

slip boundary conditions (0.001 ≤ Kn ≤ 0.01). As the Knudsen number increases

further, there is a corresponding decrease in collisions among the molecules, and the

assumptions of the fluid as a continuum begin to fail. The range 0.001 ≤ Kn ≤ 0.1

is called the slip regime, where the no-slip conditions are no longer applicable. For

0.1 ≤ Kn ≤ 10 called the transition regime, the NS equation cannot be used, as the

near-equilibrium assumptions for flows breaks down. Flow with Kn > 10 is called

the free molecular regime. Hypersonic rarefied flows come under the category of non-

equilibrium gaseous flows. High velocities, high temperatures and low gas density are

major contributors for non-equilibrium [52, 53].

There have been many studies for rarefied gas flows using Direct Simulation Monte

Carlo (DSMC) and Computational Fluid Dynamics (CFD) [54, 55]. The DSMC

method is computationally more viable for higher Kn regimes and has been shown to

converge to solutions of the Boltzmann equation [56, 57]. However, the DSMC method

is an order of magnitude costlier than the CFD methods for flows in the continuum and

slip flow regime [57]. Thus, efforts are made to improve the validity of CFD methods

beyond the continuum regime. One such method, used in the slip regime, is to replace
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the typically used no-slip boundary conditions with slip velocity and temperature-

jump boundary conditions [58]. This allows us to capture the non-equilibrium effects

near the surface and helps in a more accurate prediction of heat transfer and flow

stresses at the surface which are very important for the design of high altitude vehicles.

Non-equilibrium velocity slip and temperature jump boundary conditions have been

proposed by several researchers such as Maxwell [59], Smoluchowski [60], Myong [61],

Le [55, 62], etc..

Surface temperature and heat flux are very important design considerations for

hypersonic vehicles. In the CFD methods, the wall heat transfer is computed using

the temperature gradient and the Fourier heat conduction law, whereas in the DSMC

method it is computed using the particle velocities [63]. The absence of a velocity

contribution causes the result obtained from CFD to differ considerably from the

DSMC results for heat transfer. Maslen [64] overcame this problem by adding a

sliding friction term to the heat transfer calculation that is obtained from the slip

velocity boundary condition applied to the surface. This slip results in a higher

heat transfer between the gas molecules and the surface. Recently, Le et al. [65]

revisited the formulation proposed by Maslen [64] for a planar surface and extended

it for a curved geometrical surfaces. In another recent work [62] they modified the

Smoluchowski temperature jump condition by considering the sliding friction viscous

heat generation and derived a new temperature jump condition (referred to as the

Le temperature jump condition, henceforth) which gives good agreement, for the

surface gas temperature and heat transfer, with DSMC results. However, they did not

investigate the effect of the jump condition on the prediction of other flow properties.

There is a need for more comprehensive analysis of the effect of the Le temperature

jump boundary condition on all relevant flow properties for different flow conditions.

The detailed study on this is performed in the Chapter 5 using the case of hypersonic

flow over a flat plate.

1.6 Applications to Micro/Nano Flows

Accurate prediction of temperature and heat is crucial for the design of various

nano/micro devices in engineering. Non-equilibrium effects such as rarefaction and

gas-surface interactions have an important influence on fluid mechanics and heat

transfer for nano/micro gas flows in Nano/Micro Electronic Mechanical Systems
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(NEMS/MEMS). These find many applications in areas such as microprocessor cool-

ing and biomedical analyses, etc., and have led to certain common terminologies such

as micropumps, micro-ducts, micro-heat-exchangers and micro-sensors [66, 67]. Rar-

efaction effects are present in various NEMS/MEMS devices. In the Chapter 5, as

discussed in the previous section, we will present the recently proposed Le temperature

jump boundary condition considering the viscous heat generation (sliding friction) as

an alternative jump condition for the prediction of the surface gas temperature at

solid interfaces. Through the study of hypersonic flow over a flat plate [68, 69] in

Chapter 5, it will be shown that the Le temperature jump boundary condition should

be complemented with a pressure jump boundary condition at the wall, [70, 53]. An

over-prediction of pressure, especially at the leading edge of the flat plate, that is

seen when using the Le temperature jump condition alone can be corrected by the

pressure jump condition.

Le et al. [62] have investigated the flow over a micro-airfoil and have studied

the temperature and heat flux distribution over the airfoil surface using their jump

condition considering, sliding friction. It would be interesting to study the effect of

the jump conditions considering sliding friction, on the other flow properties as well

and for different types of nano/micro devices. The detailed study is performed in the

Chapter 6.

1.7 Hypersonic Flow over a Cylinder

The design of a thermal protection system for hypersonic vehicles is highly dependent

on the accurate prediction of the aero-thermal characteristics [71, 72]. CFD, being

a cheaper and more accessible design tool, is used extensively in the design of such

hypersonic vehicles. However, the computation of hypersonic flows in the continuum

regime has been found to be surprisingly difficult, with the standard methods seldom

achieving accurate and robust prediction of the wall heat flux. Another problem is

the robust capture of shocks free from the “carbuncle” phenomena [73, 74, 75, 76].

These predictions are dependent on the mesh geometry, mesh size, near wall grid

spacing, the choice of the convective scheme, etc. [77].

Kitamura et al. [78] have stated that a numerical scheme must have the property

of shock stability, enthalpy conservation and accurate capture of the boundary layer

to be used for such problems. Hoffmann et al. [79] have shown that the wall heat flux
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value is highly dependent on the chosen first grid point near the wall. In a separate

study, Kitamura [12] have defined the shock related anomalies as “shock oscillations”

and “shock instabilities”. Shock oscillations refer to the oscillating nature of the shock

in time or space. It is usually found to be confirmed to two cells only and in grids

which are not aligned with the shock. The shock in such cases jumps from one cell to

another. Shock instabilities called as “carbuncles” appear only for multi-dimensional

cases. However, it is worth noting that shock-fitting methods do not report such

anomalies [12], but they are algorithmically difficult, although researchers are still

developing more efficient algorithms [80]. These studies are in general confined to the

flow at normal atmospheric conditions.

Knowledge of how existing convective schemes behave with the degree of rarefac-

tion is required to better understand the above shock anomalies. How serious is the

problem of “shock oscillations” and “shock instabilities” in a rarefied regime? Does

the convective scheme used for hypersonic flows behave differently in the rarefied

regime, as compared to the continuum regime? These questions are needed to be

looked upon to better understand numerical modeling of rarefied gas flows.

Ivanov et al. [81] have shown that the Navier-Stokes equations yield a qualita-

tively correct solution up to Kn = 0.5 in their study of rarefaction effects over a

blunt body. Panda and Moulic [82] have shown in their study of buoyancy-induced

(natural convective) gas microflow using the Navier-Stokes equation with the first-

order slip and jump boundary condition that the Nusselt number decreases with the

increase in Knudsen number, i.e. rarefaction. Shoja-Sani et al. [83] studied the effect

of increase in Knudsen number from slip to transition regime on the aerodynamic

characteristics of the NACA 0012 airfoil. Huang and Agarwal [84] have analyzed the

effect of rarefaction on heat transfer and drag prediction to simulate the hypersonic

flow around a blunt body. They have used the commercial solver ANSYS FLUENT

and have carried out a shape-optimization study to minimize the drag and heat flux.

However, they have not taken into consideration the behavior of different convective

schemes with regards to the shock anomalies.

In the continuum regime, a new all-speed convective scheme SLAU (Simple Low-

dissipation AUSM [Advection Upstream Splitting Method]) and its extension SLAU2

is gaining popularity [85, 12, 86]. The SLAU2 scheme is designed to reduce the

numerical dissipation for the low speed computations and to improve the robustness

of the SLAU scheme in case of strong shocks [12]. However, they still suffer from
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shock anomalies under certain test conditions as shown in references [87, 88]. The

original idea of the SLAU2 has been to add dissipation to the numerically captured

shock according to the shock strength. But, as noted by Kitamura et al. [12] SLAU2

still showed discrepancies in the prediction of heat flux for the case of hypersonic

flow over a blunt body. We have proposed a modification to the SLAU2 scheme by

altering the calculation method for interfacial speed of sound and have found it to

improve the prediction of heat flux in the presence of strong shocks, in comparison

with the SLAU2 scheme.

Also, to the authors’ knowledge, these schemes have not been tested for rarefied

flows. Therefore, there is need to study how does these schemes behave with the

degree of rarefaction. The nature of shock and its related anomalies with rarefaction

is required to be studied in order to understand the shock related phenomena in the

hypersonic regime better.

To meet this objective, we have carried out the hypersonic flow simulation over

a cylinder at two hypersonic Mach numbers, M∞ = 8.0 and M∞ = 16.34, using the

proposed modified SLAU2 and Roe convective schemes. By reducing the free-stream

pressure, we increase the degree of rarefaction (Kn), and study how these two schemes

behave at various Kn by studying the predicted flow parameters such as wall heat

flux, wall shear stress, the flow Mach number and the peak heating value. Also, the

relationship of nature of the shock with degree of rarefaction is studied. The detailed

study on this is performed in Chapter 7.

1.8 Thesis Outline

The present dissertation deals with the development of an unstructured three-dimensional

density-based all-speed computational fluid dynamics solver for the application of ex-

ternal aerothermodynamics and micro/nano flows. The thesis is organized into a total

of eight chapters including this introduction chapter.

• Chapter 2 describes the governing equations and boundary conditions along

with their discretization method which is used to develop the laminar CFD

solver.

• Chapter 3 describes the procedure through which turbulence is incorporated

into the solver.
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• Chapter 4 describes the necessity of the near-wall treatment and our develop-

ment of an automatic wall function for the Spalart-Allmaras turbulence model.

• Chapter 5 describes the nature of rarefied gas flows and the different types

of non-equilibrium wall boundary conditions which are studied in this work.

In this chapter, we perform a comprehensive analysis of a recently developed

temperature jump condition and have proposed a possible correction for the

observed anomaly in the results.

• Chapter 6 further investigates the recently developed temperature jump con-

dition along with the possible correction suggested in the previous chapter for

various cases of micro/nano flows.

• Chapter 7 presents the modification to the SLAU2 convective scheme and the

parametric study of the effect of rarefaction in hypersonic computations using

the case of hypersonic flow over a cylinder at two hypersonic Mach numbers.

• Chapter 8 summarizes the conclusions of the complete dissertation and high-

lights possible future work.





Chapter 2

Governing Equations and

Discretization

2.1 Introduction

In this chapter, we present a numerical procedure for solving the Navier-Stokes equa-

tion using a density-based algorithm. The discretization is done using the finite

volume method on an unstructured grid. The Navier-Stokes equation is derived from

the conservation of momentum while the commonly referred system of Navier-Stokes

equations also includes the laws of conservation for mass and energy. They consist

of four terms classified as temporal, convection, diffusion and source. The discretiza-

tion of these terms is also discussed in this chapter. A computational domain in a

finite volume approach consists of interior cells and boundary faces. The governing

equations are numerically solved at the interior cell-center points, and appropriate

boundary conditions are applied at the boundary faces.

2.2 Navier-Stokes Equations

The study of the behavior of fluids is termed “fluid dynamics”. The principal math-

ematical equations governing the study of fluid dynamics are determined using the

following conservation laws:

1. Conservation of mass,

2. Conservation of momentum,
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3. Conservation of energy.

The details of these conservation laws can be found in any popular fluid dynamics

text-book e.g. Ref. [89, 8]. The complete system of equations derived using the

above conservation laws assuming Newton’s law of viscosity is called the Navier-

Stokes Equations. They can be used both in a differential form or in integral form. In

their integral form, they describe the flow based on the exchange of mass, momentum

and energy across the boundary S of a control volume Ω as shown in Fig. 2.1.

Figure 2.1: A finite control volume (non-moving).

The complete system of Navier-Stokes equations for conservation flow is shown below:

∂

∂t

∫
Ω

WdΩ +

∮
S

[F −G]dS =

∫
V

SW dΩ (2.1)

where,

W =


ρ

ρu

ρv

ρw

ρE

 (2.2)



2.2 Navier-Stokes Equations 31

The vector of convective fluxes is written as

F =


ρVn

ρVnu+ pnx
ρVnv + pny
ρVnw + pnz
ρVnH

 (2.3)

where, Vn is the contravariant velocity - the velocity normal to the surface element

dS with unit normal, n̂- being defined as

Vn ≡ ~v · n̂ = nxu+ nyv + nzw (2.4)

and the total specific energy, E is:

E = cvT +
u2 + v2 + w2

2

and the total specific enthalpy, H is:

H = E +
p

ρ

The viscous fluxes vector is written as

G =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxθx + nyθy + nzθz


(2.5)

where,

θx = uτxx + vτxy + wτxz + k
∂T

∂x

θy = uτyx + vτyy + wτyz + k
∂T

∂y

θz = uτzx + vτzy + wτzz + k
∂T

∂z

The θ’s are the terms relating to the heat influx due to viscous stresses and to the
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heat conduction in the fluid. The shear (or viscous) stress terms are defined as:

τxx =
2

3
µ
(

2
∂u

∂x
−∂v
∂y
−∂w
∂z

)
, τyy =

2

3
µ
(

2
∂v

∂y
−∂u
∂x
−∂w
∂z

)
, τyy =

2

3
µ
(

2
∂w

∂z
−∂u
∂x
−∂v
∂y

)

τxy = µ
(∂u
∂y

+
∂v

∂x

)
= τyx, τxz = µ

(∂u
∂z

+
∂w

∂x

)
= τzx, τyz = µ

(∂w
∂y

+
∂v

∂z

)
= τzy

The right-hand side term of Eq. 2.1, SW is the source term which is set equal to zero

in this work. To close the entire system of equation, we need to specify the viscosity

coefficient µ and the thermal conductivity k as functions of the thermodynamic state

of the system. Following are the additional equations which are derived on the as-

sumption that the working fluid behaves like a calorically perfect gas, as is generally

taken in the literature [90, 8] for the study of pure aerodynamic flows.

The ideal gas law is:

p = ρRT (2.6)

where R denotes the specific gas constant. The specific enthalpy is given as,

h = cpT (2.7)

The pressure is then conveniently expressed in terms of conservative variables using

R = cp − cv , γ = cp
cv

as,

p = (γ − 1)ρ
[
E − u2 + v2 + w2

2

]
(2.8)

The viscosity coefficient for a perfect gas has a strong dependence on temperature but

is nearly independent of pressure. The commonly used relationship between dynamic

viscosity (µ) and the absolute temperature (T) is the Sutherland’s formula [91], which

is shown below:

µ = As
T 1.5

T + Ts
(2.9)

where As = 1.45× 10−6 Pa · s · K−1/2 and Ts = 110 K for air.

The other commonly used viscosity relation, especially for some cases of rarefied
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flows is the variable hard sphere (VHS) model [92, 57]. It is given as:

µ = µref

( T

Tref

)ω̄
(2.10)

where,

µref =
15
√
πmkBTref

2πd2
ref (5− 2ω̄)(7− 2ω̄)

(2.11)

where ω̄ is the VHS temperature exponent, m is the mass of one molecule of the

gas, dref is the diameter of the molecule, Tref is the reference temperature and kB

is the Boltzmann constant. For air, m = 4.81 × 10−26 kg, dref = 4.19 × 10−10 m,

Tref = 273.0 K and ω̄ = 0.77.

Assuming, the Prandtl number Pr is constant in the entire flow field, we get,

k = cp
µ

Pr
(2.12)

Popularly, there are two classes of numerical methods for solving the Navier-Stokes

Equation, which are as follows:

1. Pressure-Based solvers [93]

2. Density-Based solvers [8]

Traditionally, the pressure-based solvers were used for low-speed incompressible flows

while the density-based solvers were used for high-speed compressible flows. However,

in recent times both have been extended to solve for a wide range of flow conditions

[94]. The density-based solver solves the continuity, momentum and energy equations

simultaneously. The continuity equation is solved to obtain the flow density while

pressure is calculated using the equation of state. The accuracy and convergence of a

density-based algorithm are reduced at low-speed [95, 96]. Time-derivative precondi-

tioning provides a methodology for making the convergence and accuracy independent

of the Mach number. For this preconditioning, we pre-multiply the temporal term

by a suitable preconditioning matrix. This helps to obtain a well-conditioned system

by scaling the eigenvalues of the system to similar orders of magnitude [95]. This

is done by changing the acoustic speed of the system such that we get a system of

equations with eigenvalues of similar magnitudes, to improve the convergence. In

the research literature, several approaches to preconditioning have been proposed

[97, 98, 99]. Low-speed preconditioning [100] enables simulation of incompressible
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flow by a compressible (density-based) solver. The present study uses this algorithm

in an indigenous unstructured three-dimensional cell-based finite volume CFD solver

[14].

An integral form of the preconditioned compressible Navier-Stokes equation for

an arbitrary control volume Ω with an elemental surface area dS is written as [8],

Γ

∫
∂

∂t
QdΩ +

∫
[F−G]dS = 0 (2.13)

where Q is the vector of primitive variables and F and G are convection and viscous

flux vectors at the cell-face, respectively given as:

F =



ρVn

ρVnu+ pnx

ρVnv + pny

ρVnw + pnz

ρVnH


G =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxθx + nyθy + nzθz


QT =

(
p u v w T

)
where nx, ny, nz are the components of the outward unit vector at the cell boundaries,

and Vn, θx, θy, θz are defined as,

Vn = nxu+ nyv + nzw (2.14)

θx = uτxx + vτxy + wτxz + k
∂T

∂x

θy = uτyx + vτyy + wτyz + k
∂T

∂y

θz = uτzx + vτzy + wτzz + k
∂T

∂z

Using the Gauss divergence theorem, the Navier-Stokes equation is discretized for

a general multi-hydral element as,

Γ
∂

∂t
Qn+1 +

1

Ω
Σf (Ff −Gf )

n+1 dSf = 0 (2.15)

where Γ is the preconditioning matrix which helps in getting accurate solutions of both

compressible and incompressible flows at low speeds [100] when using the density-
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based algorithm.

Γ =



Φ 0 0 0 ρT

uΦ ρ 0 0 uρT

vΦ 0 ρ 0 vρT

wΦ 0 0 ρ wρT

HΦ− 1 uρ vρ wρ ρTH + ρcp


(2.16)

where Φ is defined as

Φ =
1

U2
r

− ρT
ρcp

(2.17)

and Ur is the reference velocity whose definition can be found in [100, 14] and ρT

is the temperature derivative of density at constant pressure. The quantity Ur is

chosen so that the eigenvalues are of similar magnitude and the system remains well

conditioned for the time-scale for the convective and diffusive terms [9]. In the above

formulation, the non-preconditioned system is retrieved by setting Φ = ρp = ρ
p
, in

Eq. 2.16.

The above system of governing equations is solved numerically. In this work, we

have used the finite volume method to discretize the governing equations. We shall

now see how the various terms of Eq. 2.15 are discretized.

2.3 Spatial Discretization

The numerical approximation of the convective and viscous terms is called the spatial

discretization of the Navier-Stokes equations. In the governing equation Eq. 2.15 there

are two separate flux terms – convective flux (F ) and viscous flux (G). In this section,

we see in detail the methodology adopted for their discretization.

2.3.1 Convective Flux

The convective flux, to be evaluated, would require the information at the faces of

the cell. This has to be obtained by interpolation from the cell-centered values. In

compressible flows, the following points has to be considered so as to have a viable

numerical method to discretize the convective term.

1. For a supersonic flows, the convective flux assumes a hyperbolic nature based

on the theory of characteristics where all the information travels from upstream
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to downstream. Hence for these flows, the flux calculations should ensure that

only (or mainly) the cell-center values on the upstream side of the face are

considered in the interpolation.

2. For a subsonic flow, the convective flux discretization assumes a elliptic nature,

wherein the information can move from upstream to downstream and vice versa.

The flux calculation for a subsonic flow should therefore ensure that it uses the

cell-center values on both sides of the face in the interpolation.

3. A shock wave has both a supersonic and subsonic region on either side; and also

creates a mathematical discontinuity in the flow variables. The convective flux

term should be able to capture the shock properly.

The convective flux is discretized in this work by using one of three upwind for-

mulations viz., Roe’s flux difference splitting [13], or Preconditioned Roe1 [9], or the

SLAU22 scheme [12]. The Roe scheme is a classical method and most popular. Pre-

conditioned Roe is an extension of the Roe scheme which is used in a preconditioned

Navier-Stokes equation and allows for low-speed calculations even while using the

density-based algorithm. The SLAU2 scheme is an extension of the SLAU ((Simple

Low-dissipation AUSM (Advection Upstream Splitting Method))) scheme. It allows

all-speed calculations even without using a preconditioned system [12, 101]. Also, it

is proven to capture hypersonic flows accurately as will be seen later in this thesis.

2.3.1.1 Roe’s flux difference splitting

Roe’s scheme belongs to the group of flux-difference splitting methods. It is based on

the solution of the Riemann problem for each wave speed. The Riemann problem for a

wave requires the solution of the Euler equation in the neighborhood of a point across

which there is initially a discontinuity in the solution variables. Mathematically, it

is expressed as a hyperbolic PDE with a discontinuous initial conditions. For the

one-dimensional Euler equations, it is represented as [102, 103, 104]:

∂W

∂t
+ A

∂W

∂x
= 0 , t > 0 (2.18)

1The coding for preconditioning was done by Vatsalya Sharma and the final implementation of
the method was done in collaboration with the author.

2The coding for SLAU2 was done independently by Nikhil Kalkote and Saketh Chandra and the
final version used in this thesis is done in collaboration with them and Nived MR.
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W (x, 0) =

WL, for x < 0

WR, for x > 0
(2.19)

where W is the vector of the conserved variables and L and R indicate the left and

right initial state of the interface across which the solution is to be obtained, here it

is x = 0. Here, A is the Jacobian matrix of the conserved variables W , given as:

A(W ) =
∂F

∂W
(2.20)

where F is the convective flux vector. As A depends on W , the solution of the above

Riemann problem requires iterations and a large computational effort. A complete

Euler solution in an entire domain would require solution of the Riemann problem for

each cell for each time-step, making it computationally very intensive [104]. Thus,

an approximate non-iterative solution is usually used for the Riemann problem, for

computational efficiency.

An approximate Riemann solver developed by Roe [13] is the most widely used con-

vective scheme today. It has the advantage of higher accuracy in boundary layer flows

and has a good resolution of shocks. We show below how the Roe scheme is derived

from Eqs. 2.18–2.20 [103].

The Jacobian matrix A(W ) is approximated as:

A(W ) ' Â(WL,WR) (2.21)

where the approximate flux Jacobian matrix Â is represented as a function of the left

and right states at t = 0. The approximate Riemann problem then becomes:

∂W

∂t
+ Â

∂W

∂x
= 0 , t > 0 (2.22)

W (x, 0) =

WL, for x < 0

WR, for x > 0
(2.23)

Eq. 2.22 is now a linear system with constant coefficients. An approximate Jacobian

has to satisfy [104] the property of hyperbolicity of the system, consistency with the
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exact Jacobian and conservation across discontinuities. Hyperbolicity of the system

requires A to have real eigenvalues and the corresponding eigenvectors to be linearly

independent. Consistency of the Jacobian requires the approximate and the exact

Jacobian to become identical for WL = WR, such that Â(W ,W ) = A(W ). The

property of conservation across discontinuity requires the convective flux to be con-

served across the discontinuity, i.e. F (WR)− F (WL) = Â(WR −WL).

Using the above properties, the Roe flux formula is derived. The detail derivation

can be found in [13], [104] (Chapter 11) and [103] (Chapter 2, Page 15-16). The

final form of the flux is split into three parts. The first two correspond to the two

directions along which information is traveling (along the characteristic lines) at the

face, and the third part is upwind differencing of the flux split consistent with their

corresponding eigenvalues, which is expressed as [8]:

FR − FL = |Â|f (∆W ) (2.24)

The final expression for the flux at each face being:

F =
1

2

[
FR + FL − |Â|f (∆W )

]
(2.25)

Here, ∆W = WR −WL, FR = F (WR) and FL = F (WL); where WR and WL

are the reconstructed conservative vectors on the “right” and “left” side of the face.

The product of |Â|f (∇W ) is written as [8]

|Â|f (WR −WL) = |∆F1|+ |∆F2,3,4|+ |∆F5| (2.26)

where

|∆F1| = |Ṽn − c̃|
(∆p− ρ̃c̃∆Vn

2c̃2

)


1

ũ− c̃nx
ṽ − c̃ny
w̃ − c̃nz
H̃ − c̃Ṽn


(2.27)
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|∆F2,3,4| = |Ṽn|


(

∆ρ− ∆p

c̃2

)


1

ũ

ṽ

w̃

q̃2

2


+ ρ̃



0

∆u−∆Vnnx

∆v −∆Vnny

∆w −∆Vnnz

ũ∆u+ ṽ∆v + w̃∆w − Ṽn∆Vn




(2.28)

|∆F5| = |Ṽn + c̃|
(∆p+ ρ̃c̃∆Vn

2c̃2

)


1

ũ+ c̃nx

ṽ + c̃ny

w̃ + c̃nz

H̃ + c̃Ṽn


(2.29)

The term ∆(•) = (•)R−(•)L, is defined as the jump condition. The Roe-averaged

variables are defined following [13, 8], using the left and the right state of the face

(the reconstructed value of left and right cell at the current face):

ρ̃ =
√
ρLρR

ũ =
uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

ṽ =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

w̃ =
wL
√
ρL + wR

√
ρR√

ρL +
√
ρR

w̃ =
HL
√
ρL +HR

√
ρR√

ρL +
√
ρR

c̃ =

√
(γ − 1)(H̃ − q̃2

2
)

Ṽn = ũnx + ṽny + w̃nz

q̃ = ũ2 + ṽ2 + w̃2

(2.30)

Eq. 2.24 will produce unphysical solutions for the case of expansion waves, as

FL = FR, but ∆W 6= 0 . It will cause a discontinuity in the solution for an expansion

wave, which should have a smooth solution. It may also lead to the “carbuncle

phenomena” where a perturbation occurs ahead of a strong bow shock along the
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stagnation line. The underlying problem is that the scheme does not model the

sonic point. This anomaly is corrected by modifying the modulus of eigenvalues

|Λc| = |Ṽ + c̃|, using the Harten’s entropy correction [105, 106] given as:

|Λc| =

 |Λc|, if |Λc| > δ

Λ2
c+δ

2

2δ
if |Λc| ≤ δ

(2.31)

where δ is a small value, generally taken as 1/10 of the local speed of sound [8], or a

value between 0 and 0.125 [107, 8]. In this work, we have used the former definition

of δ, unless otherwise mentioned.

2.3.1.2 Preconditioned Roe

The inviscid flux expression given by Eq. 2.25 can be defined as a second-order central

difference with an additional dissipation term. However, for nearly incompressible

flows, unphysical results are obtained because the pressure term is not scaled properly;

as is shown by an asymptotic analysis of pressure fluctuation with respect to Mach

number [108]. This leads to inaccuracy in the result. In order to overcome the above

difficulty, preconditioning is applied to the Roe scheme which then shows correct

asymptotic behavior even at very low Mach number.

Furthermore, at very low Mach number the system of governing equation be-

comes stiff, because the flow velocity magnitude is very low compared to the acoustic

speed. This reduces the scheme’s convergence to the steady state. Preconditioning

changes the acoustic speed of the system such that we get a system of equations with

eigenvalues of similar magnitude. This helps to improve the rate of convergence.

In this section, we show how we obtain the preconditioned Roe flux, following the

derivation given by Weiss and Smith[9]. The flux difference Roe scheme presented

in Sec. 2.3.1.1 needs to be adapted to be compatible with the preconditioned system

[109]. The matrix Âf can also be written in terms of flux Jacobian ∂(F )/∂(W ) and

|Â|f as:

|Â|f = M̄ |Λc|M̄−1

where Λc = diag(Vn, Vn, Vn, Vn + c, Vn − c), M̄ is the modal matrix that is used to

diagonalize Âf in the non-preconditioned system.

The preconditioned eigenvalues are used to transform Eq. 2.25 in terms of primitive
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variables. The reconstructed primitive variables QR and QL on either side of the face

are used to recompute the fluxes FL and FR. The dissipative term on the right hand

side of Eq. 2.25 is transformed as follows [9]:

|Â|f∆W ' Âf∆W

= ΓΓ−1 ∂F

∂W
∆W

= Γ(Γ−1∂F

∂Q
)∆Q

= Γ|ÂΓ|f∆Q

(2.32)

where ∆Q = QR −QL. The term |ÂΓ|f is defined as:

|ÂΓ|f = M̄Γ|ΛΓ|M̄−1
Γ (2.33)

The modal matrix in Eq. 2.33 is derived based on the preconditioned system, with

ΛΓ = diag(Vn , Vn , Vn , V
′
n + c′ , V ′n − c′).

where,

Vn = ~v · n̂

V ′n = Vn(1− α)

c′ =
√
α2V 2

n + U2
r

α = (1− βU2
r )/2

β =
(
ρP +

ρT
ρCp

)
The resultant preconditioned flux can be written in the following form:

Γ|ÂΓ|f∆Q = |Vn|



∆(ρ)

∆(ρu)

∆(ρv)

∆(ρw)

∆(ρE)


n̂+ δVn



ρ

ρu

ρv

ρw

ρH


n̂+ δp



0

nxî

ny ĵ

nzk̂

Vn


(2.34)

where,

δVn = M∗∆Vn + [c∗ − (1− 2α)|Vn| − αVnM∗]
∆p

ρU2
r
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δp = M∗∆p+ [c∗ − |Vn|+ αVnM
∗]ρ∆Vn

∆Vn = ∆v · n̂

c∗ =
|u′ + c′|+ |u′ − c′|

2

M∗ =
|u′ + c′| − |u′ − c′|

2c′

The above preconditioned system reduces to Roe’s flux difference for α = 0, V ′n = Vn

and c′ = Ur = c. For preconditioning, we have not used Roe-averaged values. Instead,

we have used simple averaging of left and right variables values at the face. For more

details of the above formulation, the interested readers can refer to [9].

2.3.1.3 SLAU2

Although preconditioned Roe helps to overcome the difficulty associated in the low-

speed computation with a density-based solver, it inherits the shortcomings associated

with the original Roe scheme. The preconditioned Roe suffers from the lack of ac-

curacy and robustness for high Mach number flows with shocks, as does the original

Roe scheme [85]. Also, preconditioning destroys the temporal accuracy of the system.

So, it can be directly used only for steady-state problems.

Kitamura and Shima [12] have recently proposed the SLAU2 scheme which is

an extension of their previous SLAU scheme. This scheme can be used without

preconditioning even at low Mach number and it was designed so as to be robust and

accurate for the high Mach number flows and unsteady computations. This scheme

reduces the numerical dissipation in low Mach number flows. At high Mach number, it

is supposed to add a proper amount of dissipation to the numerically captured shock

according to the shock strength. Both these features will make it a more general

all-speed scheme in comparison to the preconditioned Roe. The inviscid flux using

the SLAU2 scheme is mentioned below. We have used the same notation as used in

the original paper of Kitamura et al. [12, 11].

F1/2 =
ṁ+ |ṁ|

2
Ψ+ +

ṁ− |ṁ|
2

Ψ− + p̃N (2.35)

where,

Ψ = (1, u, v, w,H)T (2.36)

N = (0, nx, ny, nz, 0)T (2.37)
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The mass flux can be written as:

ṁ =
1

2

{
ρL(VnL + |V n|+) + ρR(VnR − |Vn|−)− χ

c1/2

∆p
}

(2.38)

where,

|V n| =
ρL|VnL|+ ρR|VnR|

ρL + ρR
(2.39)

where,

|V n|+ = (1− g)|V n|+ g|VnL|

|V n|− = (1− g)|V n|+ g|VnR|

g = −max[min(ML, 0),−1] ·min[max(MR, 0), 1] ∈ [0, 1]

The pressure flux can be written as:

p̃ =
pL + pR

2
+
f+
pL − f

−
pR

2
(pL − pR)

+

√
u2
L + v2

L + w2
L + u2

R + v2
R + w2

R

2
(f+
pL + f−pR − 1)

ρL + ρR
2

c1/2 (2.40)

where, c1/2 is the inter-facial speed of sound given as:

c1/2 =
cL + cR

2
(2.41)

and other terms are defined as:

χ = (1− M̂)2 (2.42)

M̂ = min
(

1.0,
1

c1/2

√
u2
L + v2

L + w2
L + u2

R + v2
R + w2

R

2

)
(2.43)

f±p =


1
2
(1± sign(M)), if |M | ≥ 1

1
4
(M ± 1)2(2∓M), otherwise

(2.44)

M =
Vn
c1/2

=
unx + vny + wnz

c1/2

(2.45)
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The third term in the Eq. 2.40, is the dissipation term. It causes the numerical

dissipation in the pressure flux term to be proportional to the Mach number at su-

personic speed. This correction is intended to help remove the shock anomalies in

presence of strong shocks.

However, we shall show in Chapter 7 that the SLAU2 scheme still shows shock

anomalies leading to decrease accuracy in the heat flux prediction in presence of

strong shocks. We have proposed a simple modification to the SLAU2 scheme, which

will help to improve the robustness in flow prediction in the presence of strong shocks.

This will be discussed in detail in Chapter 7.

2.3.2 Viscous Flux

To evaluate the diffusive fluxes (~Fv) we need to to know the values of flow variables

and their gradient at the face centers of the control volume. The viscous term has a

non-convective nature which allows the values of velocity components (u , v and w),

the dynamic viscosity (µ) and the heat conduction coefficient (k) to be computed as

simple average at a face. Taking U as any of these flow variables we get,

Uf =
U0 + U1

2
(2.46)

To evaluate the gradient of the velocity components and temperature we follow

the following two steps:

1. Simple average of the cell gradients on either side of the face center.

∇U f =
1

2
[∇U0 +∇U1] (2.47)

where ∇U0 and ∇U1 are the gradient computed in cell0 and cell1 respectively,

using the Green Gauss method.

2. The Green Gauss method has a very wide stencil and does not use nearby

information effectively. So, we incorporate local information by replacing the

component of the gradient along the line joining the adjacent cell centers (named

here as cell0 and cell1) by the directional derivative using the cell-center values.

This involves modifying the gradient calculated to allow for use of the two
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nearest cell centers [110]:

∇Uf = ∇U f −
[
∇U f · ~tf −

(∂U
∂l

)
f

]
~tf (2.48)

where ~tf is the unit vector along the line connecting cell0 and cell1; and lf is

the distance between the cell-centroids of cell0 and cell1.

~tf =
~rf
lf

(2.49)

and the directional derivative along the line between the cell-centroids,
(
∂U
∂l

)
f

is given as (∂U
∂l

)
f
≈ U1 − U0

lf
(2.50)

It is to be noted that this procedure is in the spirit of Rhie-Chow interpola-

tion which is to add and subtract the same quantity but evaluate them in two

different ways to the linearly interpolated gradient.

0

1

C

B

A

Figure 2.2: Gradient Computation on a tetrahedral grid. The cross denotes the
location where the gradients are evaluated in order to compute the viscous fluxes
(mid-point of the face ABC).

2.3.3 Solution Reconstruction

As seen earlier, the convective term discretization requires the flow states to be defined

on the left and right side of the face of a cell. A finite volume cell stores only the

cell center value and therefore the solution variation within the cell is lost [111].

Therefore, it is required to approximately represent the solution variation within the

cell using the cell center value. This process is termed as reconstruction. We choose

to reconstruct the primitive variable, as its gradient is also required for the viscous
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flux computation and thus makes it computationally cheaper. In this work, we follow

the reconstruction procedure of Barth and Jespersen [112], called the piecewise linear

reconstruction. The assumption underlying this procedure is that the solution is

piecewise linearly distributed over the control volume. Thus, the face value from the

left and right side of a face f of a cell0 (see Fig. 2.3) is obtained using the following

formulation:
UL = U0 + Ψ0∇U0 · ~rL
UR = U1 + Ψ1∇U1 · ~rR

(2.51)

where∇U0 and∇U1 is the gradient of U at the cell center of cell0 and cell1, Ψ0 and Ψ1

is the limiter function corresponding to cell0 and cell1, respectively, ~rL and ~rR are the

distance vectors from the cell-center to the face-midpoint as shown in Fig. 2.3. The

above formulation is based on the Taylor series expansion about the cell-center and

gives second-order accuracy in space. The gradient computation can be accomplished

using either least-squares or the Green-Gauss approach. In this work we have used

the Green-Gauss approach, owing to its simple form of implementation, which we

shall explain below:

0

nb

f

Figure 2.3: Piecewise linear reconstruction.

2.3.4 Green-Gauss Method

This method approximates the gradient of a scalar function U , by using the special

form of the Gauss divergence theorem:∫∫∫
V0

∇UdΩ =

∫∫
S

U ~dS (2.52)



2.3 Spatial Discretization 47

This yields the discretized form for the cell-center gradient as:

∇U0 ≈
1

Ω0

∑
f

1

2
(U0 + Unb) ~Sf (2.53)

where nb denotes the neighboring cell at each face f and the summation is over all

the faces of the cell0 with the volume V0, and ~Sf denotes the face area vector.

2.3.5 Limiters

In the regions where the solution has large gradients, e.g. at shocks, high-order

schemes (more than 1st order accurate) will suffer from loss in monotonicity; leading

to spurious oscillations in the solution. The reason for this is explained based on

Godunov theorem, which states: “All linear monotone scheme schemes for the con-

vection equation are necessarily first order accurate” [113]. In other words, high-order

linear schemes will always generate numerical solutions which violate the principle of

monotonicity. The way around this problem has been to move to nonlinear schemes

and make them to be monotonic with high-order accuracy. Limiters are defined as

a non-linear fix that enforces monotonicity [111]. A limiter must have the following

properties:

1. At strong discontinuities, the limiter function must obtain a first-order upwind

scheme to guarantee monotonicity.

2. The gradient should not be limited in the region of smooth flow regions.

3. The concept is - Within a given cell the interpolated state at the face using the

reconstructed gradients must not take values outside the range specified by the

cell-averaged states in its neighbours. (ref. Pg. No.25 [111])

Consider a cell ‘0’ with N neighbors cell with index ‘nb’. Let U0 and the Unb

denote the cell-center values of the concerned variables at these cells. We define

∆max = max(Unb)− U0 (2.54)

∆min = min(Unb)− U0 (2.55)

where the subscripts max and min indicate the maximum and minimum differences

using all the neighbours of Cell0.
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To denote the spatial change of a variable in the direction of face f (at ~rf ) of cell0,

we first use the component of cell-gradient in the required direction.

∆ = ∇U0 ·∆~r (2.56)

where,

∆~r = ~rf − ~r0

However, this value of ∆ is not directly used but is multiplied by Ψ0 (cell0 limiter)

before use (Eq. 2.51) in the solution reconstruction. It is also used as switch indicator

for varying the value of limiter from 0 to 1. We present below the two popularly

used limiters for unstructured meshes which are implemented in our solver, viz. the

Max-Min and Venkatakrishnan limiters.

2.3.5.1 Max-Min Limiter

The Max-Min limiter [114] for the cell0 is given as

Ψ0 = minf


min(1, ∆max

∆
) if ∆ > 0

min(1, ∆min

∆
) if ∆ < 0

1 if ∆ = 0

(2.57)

where minf means the minimum of the values at the faces forming cell0. This limiter

not being continuously differentiable, may lead to convergence problems for steady

flows. Furthermore, the limiter is active even in the smooth flow regions thus ham-

pering the accuracy of the solution [111].

2.3.5.2 Venkatkrishnan’s Limiter

The limiter of Venkatkrishnan [115, 116] is widely used for its better convergence

properties. The limiting factor for cell0 is given as

Ψ0 = minf


1
∆

[
(∆2

max+ε2vk)∆+2∆2∆max

∆2
max+2∆2+∆max∆+ε2vk

]
if ∆ > 0

1
∆

[
(∆2

min+ε2vk)∆+2∆2∆min

∆2
min+2∆2+∆min∆+ε2vk

]
if ∆ < 0

1 if ∆ = 0

(2.58)

where ε2vk is a limiter controlling parameter. It controls the effect of limiting and

preventing the limiter to get active in smooth flow regions. A value of εvk → 0
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indicates more limiting and εvk →∞ indicates no limiting. An ad hoc expression for

εvk [8] is given as

ε2vk = (K ∗ hvk)3 (2.59)

where K is a constant of O(1) (taken as 2 in this work [8]) and hvk represents the

characteristic length of the scale, taken here hvk = (Ω0)
1
3 , Ω0 being the volume of

the cell. In order to avoid division by zero in the Eq. 2.58 we set the denominator as

∆ + 1e−15

2.4 Temporal Discretization

The governing equation, Eq. 2.15 can be written for cell0 as:

d(ΩΓQ)0

dt
= −R0 (2.60)

Here, Ω denotes the control volume. R0 stands for the spatial discretization terms

(also called the residual) in Eq. 2.15, that serve to couple the system of differential

equations for the cells in the domain.

For a static grid, the time derivative is approximated through a non-linear scheme

[117], given as

(ΩΓ)0

∆t
∆Qn

0 = − β

1 + ω
Rn+1

0 − 1− β
1 + ω

Rn
0 +

ωΩΓ

(1 + ω)∆t0
∆Qn−1

0 (2.61)

with

∆Qn
0 = Qn+1

0 −Qn
0 (2.62)

where ∆t is the time step. By specifying different values for β and ω, we get explicit

or implicit schemes with different order of accuracy in time.

2.4.1 Explicit Scheme (β = 0, ω = 0)

Eq. 2.61 becomes

Γ0∆Qn
0 = −∆t0

Ω
Rn

0 (2.63)

The following points can be noted down for an explicit scheme:

• Eq. 2.63 is a first order accurate single-stage scheme.
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• However explicit multistage time-stepping schemes (Runge-Kutta schemes) can

be implemented.

• It is numerically cheap.

• ∆t is extremely restricted, particularly for viscous flows.

• For stiff systems (e.g. real gas simulation, turbulence models), ∆t becomes very

small and the computations required to reach the steady state can be very large.

• An explicit scheme can become unstable and also may have spurious steady

solutions. [118]

• For accelerating the convergence, several techniques have been proposed:

(a) local-time stepping

(b) characteristic time-stepping

(c) Jacobi preconditioning

(d) Implicit residual smoothing or residual averaging

(e) Implicit-explicit residual smoothing

(f) Multigrid Method

2.4.2 Implicit Schemes (β 6= 0 )

In spite of the acceleration techniques mentioned previously an explicit scheme still

suffers from small ∆t restrictions. This motivates us to use implicit time-stepping

methods3. Various forms of implicit time stepping can be developed by using β 6= 0

in Eq. 2.61. An implicit scheme can be formed by setting ω = 0 and is best suited

for stationery flow problems [8]. Eq. 2.61 can then be written as:

(ΩΓ)0

∆t
∆Qn

0 = −βRn+1
0 − (1− β)Rn

0 (2.64)

The solution of Eq. 2.64 is cumbersome as it is a non-linear equation involving the

unknown flow variables at the time (t + ∆t). It requires calculating Rn+1
0 , which

3The conception and initial testing for this was done by Nikhil Kalkote and the final implemen-
tation of the method was done in collaboration with the author.
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cannot be done as Qn+1
0 is unknown. In order to solve this problem we expand the

residual Rn+1
0 around the known residual flux Rn, we get

Rn+1
0 = Rn

0 +

(
∂R

∂Q

)n
0

∆Qn
0 + H.O.T (2.65)

where ∂R
∂Q

is the flux Jacobian.

The parameter β in Eq. 2.64 is set to 1 for a first order temporal accuracy [8]. Thus,

using β = 1 and Eq. 2.65, we can rewrite the Eq. 2.64 as:[
Ω

∆t
Γ + ΣfJf,0Sf

]
∆Qn

0 − ΣfJf,nb∆Qn
nb = −Rn

0 (2.66)

where 0 , nb refers to centers of the cell and its neighbors, respectively, Jf,0/nb is the

flux Jacobian matrix of the discretized flux (F n −Gn) with respect to variables at

the 0 or nb cell-centres. The discretized flux at face f is a function of the 0th cell

value as well as the neighboring cell values, thus the neighboring nb term appears in

the equation above. Rearranging Eq. 2.66 for the whole domain, we get

[I − ΣfJf,nbSf ]∆Qn
global = −Rn

global or [A]global∆Qn
global = −Rn

global (2.67)

where

I ≡
[

Ω

∆t
Γ + ΣfJf,0Sf

]
(2.68)

is a diagonal matrix and the equation set Eqs. 2.67 is solved using the symmetric

Gauss-Seidal procedure [119, 120]. The Jacobian used is the exact Jacobian of the

approximate flux. We have used the direct method for the inner iteration (while LU

preconditioner takes care of the outer iterations) since the matrix involved is only

5 × 5. More details can be found in [8] and in the upcoming Nikhil Kalkote’s PhD

Thesis.

2.4.3 Courant number

In order to have the time-stepping choice based on the flow solution at the end of each

time-step, we determine the overall time-step size using the user-specified constant

CFL number. For the case of explicit schemes the choice of CFL is restricted based

on von Neumann Stability analysis (usually < 1), however implicit schemes being
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much more stable allow for the use of large CFL number ( even 109 and more4 [17]).

However, in this work, we have limited to a maximum CFL of 500 as, there is not

much change in the convergence rate at large CFL. It has been reported in literature

[8] that the time-stepping method of Vijayan [121] gives a more accurate time-step

estimation:

∆tlocal =
Ω

(Λ̂x
c + Λ̂y

c + Λ̂z
c) + C(Λ̂x

v + Λ̂y
v + Λ̂z

v)
(2.69)

where C is the chosen Courant number, and the convective spectral radii are defined

as:

Λ̂x
c = (|u|+ c)∆Ŝx

Λ̂y
c = (|v|+ c)∆Ŝy

Λ̂z
c = (|w|+ c)∆Ŝz

(2.70)

and assuming the eddy-viscosity turbulence model, the viscous spectral radii are

defined as:

Λ̂x
v = max

(4

3
,
γ

ρ

)( µL
PrL

+
µT
PrT

)(∆Ŝx)2

Ω

Λ̂y
v = max

(4

3
,
γ

ρ

)( µL
PrL

+
µT
PrT

)(∆Ŝy)2

Ω

Λ̂z
v = max

(4

3
,
γ

ρ

)( µL
PrL

+
µT
PrT

)(∆Ŝz)2

Ω

(2.71)

where ∆Ŝx, ∆Ŝy and ∆Ŝz are the projections of the control volume on the y − z,

x− z and x− y plane. They are given as:

∆Ŝx =
1

2

NF∑
i=1

|Sx|F

∆Ŝy =
1

2

NF∑
i=1

|Sy|F

∆Ŝz =
1

2

NF∑
i=1

|Sz|F

(2.72)

where Sx, Sy and Sz denotes the component of surface area vector at the face of the

cell, in the x, y and z-directions respectively. Eq. 2.69 represents the local time-step

calculated for one particular cell. The global time-step used for the computation is

taken as the minimum of all the local time-step in the entire zone.

4This statement obviously cannot be generalized as it will be problem-dependent.
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∆t = min(∆tlocal) (2.73)

This method is used to calculate the ∆t for all the simulations in this work that are

done using a fixed Courant number C.

2.5 Initial and Boundary Conditions

In order to solve the governing equation Eq. 2.1 we need to specify appropriate initial

and boundary conditions. The simulations in this thesis are false-transient solutions

of steady-state flow. Hence, the initial conditions given can be arbitrary. Throughout

this work we have used the free-stream or the inlet values to initialize the entire flow-

field. The simulations in this thesis are mostly of external flows, that have at least

some open boundaries where the flow domain is artificially truncated. The following

are the types of boundaries which are implemented in our solver and are discussed

below.

• Inviscid wall

• No-Slip wall

• Non-Equilibrium wall

• Pressure Far-field

• Pressure inlet

• Symmetry

2.5.1 Inviscid wall

This boundary condition is used when the inviscid Euler equations are being solved.

It is assumed that the velocity vector remains tangential to the surface. This implies

that there is no flow perpendicular to the surface. It is given as:

~v · n̂ = 0 (2.74)

where n̂ is the unit normal vector at the surface. Eq. 2.74 implies that the contra-

variant velocity Vn (Eq. 2.4) is zero at the wall and thus the convective flux (Eq. 2.3)
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at the wall has only the pressure terms:

F =


0

pwnx
pwny
pwnz

0

 (2.75)

where pw is the pressure at the wall.

2.5.2 No-Slip Wall

This boundary condition is used for the Navier-Stokes equation. In case of a viscous

fluid passing over a solid wall, the relative velocity between the wall and the fluid is

taken to be zero. Therefore, for a stationary surface, this boundary condition becomes

u = v = w = 0 (2.76)

Since, the velocity component is zero at the wall, in this case also Eq. 2.75 applies

for the convective flux calculation.

2.5.3 Non-Equilibrium wall

In non-equilibrium flows, when the mean free path of the molecules of the work-

ing fluid is of the order of the characteristic length of the flow domain, the gaseous

molecules slip over the surface, and we have to use non-equilibrium boundary condi-

tions. The details of these will be discussed separately later in this thesis.

2.5.4 Pressure Farfield [111]

When the flow field is truncated by an artificial boundary, we require that the bound-

ary condition minimizes the artificial reflections of outgoing disturbances (such bound-

ary conditions are called non-reflecting). At the farfield we can assume the flow is

isentropic. Riemann invariants, are formed by assuming the flow to be locally one-

dimensional, in the normal direction to the boundary face. Based on these considera-

tions, we define two Riemann invariants (i.e. characteristic variables), corresponding
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to incoming (fixed) and outgoing (extrapolated) waves [111, 122]:

R∞ = vn∞ −
2c∞
γ − 1

(2.77)

Ri = vni +
2ci
γ − 1

(2.78)

where,

vni = ~vi · n̂ ~vi = [ui , vi , wi]
T c2

i = γRTi (2.79)

vn∞ = ~v∞ · n̂ ~v∞ = [u∞ , v∞ , w∞]T c2
∞ = γRT∞ (2.80)

Mi =
|vni |
ci

(2.81)

If the flow is locally supersonic (Mi > 1) and is leaving the domain (i.e. super-

sonic outflow), it means there is no incoming characteristic waves and thus R∞ is

modified as,

R∞ = vni −
2ci
γ − 1

(2.82)

while Ri remains the same as Eq. 2.78.

Similarly, if the flow is supersonic and entering the domain (i.e. supersonic

inflow), then there is no outgoing characteristic waves and thus Ri is modified as,

Ri = vn∞ +
2c∞
γ − 1

(2.83)

while R∞ remains the same as Eq. 2.77.

Thus, in terms of these Riemann invariants, we can obtain the normal velocity and

local speed of sound at the boundary b as follows:

vnb =
1

2
(Ri +R∞) (2.84)

cb =
γ − 1

4
(Ri −R∞) (2.85)

Using the above values, we obtain the velocity vector and entropy on the farfield

boundary as follows:
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~vb =

~v∞ + (vnb − vn∞)n̂, if vnb ≤ 0 (inflow)

~vi + (vnb − vni)n̂, if vnb > 0 (outflow)
(2.86)

sb =


c2∞

γργ−1
∞

if vnb ≤ 0 (inflow)

c2i
γργ−1
i

if vnb > 0 (outflow)
(2.87)

Using the above expressions, the density and pressure is calculated as:

ρb =
( c2

b

γsb

)1/(γ−1)

, pb =
ρbc

2
b

γ
(2.88)

2.5.5 Pressure Inlet

This boundary condition is generally used for internal flows. This is used to provide

a loss-free transition from the inlet flow conditions to the stagnation region. For the

ideal gas assumptions, this allows the use of the isentropic flow relations. It requires

specification of total pressure (Po), total temperature (To) and the static pressure

(Pb) at the inlet.

po = pb

(
1 +

γ − 1

2
M2
) γ
γ−1

(2.89)

To = Tb

(
1 +

γ − 1

2
M2
)

(2.90)

We then use the isentropic relation for total pressure, Eq. 2.89 to determine the

Mach number at the inlet. Then using the temperature isentropic relation, Eq. 2.90 we

determine the static temperature (Tb) at the inlet using the computed Mach number

(M). Using the temperature, we obtain the sonic speed at the inlet and thus, the

velocity based on the Mach number is obtained.

2.5.6 Symmetry Plane

For symmetry, there should be no flux across the plane. It is required that the

velocity normal to the symmetry plane is zero. A zero gradient is applied to all the

flow variables at the symmetry plane.
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2.6 Closure

In this chapter, we have presented the basic governing equations which can be used

for simulating laminar compressible flows. We have presented the all-speed frame-

work of our solver using the preconditioned Roe and the SLAU2 convective schemes.

The basic boundary conditions which will be used have been explained. A detailed

methodology for the spatial and temporal discretization of the governing Navier-

Stokes equations has been discussed.





Chapter 3

Turbulence Modeling

3.1 Overview

As we have earlier mentioned, in the absence of an exact theory, many heuristic tur-

bulence models compete for the attention of the CFD analyst. The most common

approach is to use the Reynolds averaged Navier-Stokes equations (RANS) with a

“closure” model for the effective, or turbulent, “eddy viscosity”. These require the

governing equations to be the Favre- (for compressible flows) or Reynolds-averaged

Navier-Stokes (for incompressible flows) equations with an appropriate turbulence

model. The formulation is based on the time or ensemble averaged instantaneous

transport equations for mass, momentum and reactive scalars. The primary com-

plexity introduced by averaging is that non-linear terms in the governing equations

result in unclosed terms, which cannot be fully determined by the quantities being

computed. Thus a closure model is needed to represent the unresolved physics. Most

of the closure models involve the Boussinesq assumption that the Reynolds stresses

obtained from the convective terms of the governing equations can be represented in a

pseudo-Newtonian stress-strain rate relationship, with the constant laminar viscosity

being replaced by a variable turbulent viscosity which is computed by the turbulence

model.

In this chapter, we present the statistically averaged governing equations and show

how it is derived, the particular turbulence models that has been used, and the near

wall modeling and the unconditional positive convergent implicit scheme for solving

the turbulent equations.
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3.2 Governing Differential Equation

Theoretically speaking, the Navier-Stokes equations discussed in the previous chapter

can be used to obtain the complete turbulent flow by solving for the instantaneous

velocity and pressure fields. The procedure to do so is known as the direct numerical

simulation (DNS) [18] of the flow. However, the amount of storage and computational

time required is very huge due to the fact that all spatial and time scales, down

to the smallest, have to be adequately resolved by taking appropriately small grid

intervals and time-steps. However, for engineering applications, merely accounting of

turbulence in an appropriate manner so as to obtain the gross flow characteristics is

looked upon as being more practicable and accessible. It is done by solving the Navier-

Stokes equation for statistically averaged flow quantities instead of the instantaneous

flow variables directly.

3.2.1 Reynolds and Favre averaging

The instantaneous Navier-Stokes equations are averaged to solve them, along with

turbulence models, in order to obtain the mean turbulent flow. Let Φ be any depen-

dent variable. It is convenient to define two different types of averaging of Φ:

Classical time averaging (Reynolds averaging): In this approach the flow vari-

ables are divided into two parts – mean and fluctuating. Then, the Eq. 2.13 is solved

using the mean values. The variables are decomposed as:

Φ = Φ + Φ′ (3.1)

where, Φ denotes the mean value while, the Φ′ denotes the turbulent fluctuation of

the variable Φ. For, stationary turbulence (Steady turbulence), the mean value is

determined using time-averaging as shown below:

Φ = lim
T̄→∞

1

T̄

∫ t+T̄

t

Φ(t)dt (3.2)

For flow where the temperature and density fluctuations can be neglected, using

the above Reynold’s averaging method leads to a closure problem (i.e. insufficient

number of equations for all the unknowns in the governing equations). Using, Eq. 3.1

to obtain RANS equation from Eq. 2.13, leads to additional unknown quantities.

These are then solved using additional equations, i.e. the turbulence model.
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Density weighted time averaging (Favre Reynolds averaging):

The above approach works well for constant density flows. But for compressible

flows, it yields additional unknown quantities related to the statistical moments of

the density. Favre [123] proposed to use density-weighted averaging procedure, which

reduces this problem. Favre averaging for velocity can be obtained as:

ṽ =
1

ρ
lim
T̄→∞

1

T̄

∫ t+T̄

t

ρvdt (3.3)

where ρ is the Reynolds-averaged density. The decomposition of instantaneous ve-

locity into mass-averaged component (ṽ) and a fluctuating component (v′′) is shown

below:

v = ṽ + v′′ (3.4)

3.2.2 Favre- and Reynolds-Averaged Navier-Stokes Equations

For hypersonic flows, compressible free shear layers, combustion or flow with signifi-

cant heat transfer, density fluctuation cannot be neglected. We present in this section

the compressible flow equations obtained by performing the Reynold’s averaging for

density and pressure, and Favre averaging for the other flow variables. A detailed

derivation of the Favre- and Reynolds-averaged Navier-Stokes equations can be found

in many textbook such as Ref. [20, 113]. The final form of the equations can be

written as:

∂ρ

∂t
+

∂

∂xi
[ρṽi] = 0

∂

∂t
(ρṽi) +

∂

∂xj
(ρṽj ṽi) = − ∂

∂xj
(p) +

∂

∂xj
(τ̃ij − ρṽ′′i v′′j )

∂

∂t

(
ρẼ
)

+
∂

∂xj
(ρṽjH̃) =

∂

∂xj

(
k
∂T̃

∂xj
− ρṽ′′j h′′ + τ̃ ′′ijv

′′
i − ρṽ′′jK

)
+

∂

∂xj

[
ṽi(τ̃ij − ρṽ′′i v′′j )

]
(3.5)

where

H̃ = Ẽ +
p

ρ

The Favre-averaged Reynolds-stress tensor is defined as:

τFij = −ρṽ′′i v′′j (3.6)
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Boussinesq [22] observed that the momentum transfer in the case of turbulent flow

is dominated by the fluctuating component of the flow (large energetic turbulent

eddies). This leads to the notion that the turbulent shear stress is proportional to

the mean strain rate, as is the case in laminar flow. This is known as the Boussinseq

eddy-vicosity hypothesis. This further leads to the idea that the Reynolds stress can

be modeled by an equation similar to the laminar viscous stress, with the molecular

viscosity being replaced by a similar “eddy viscosity”. Mathematically, it is written

as:

τFij = 2µT S̃ij −
(2µT

3

)∂ṽk
∂xk

δij −
2

3
ρK̃δij (3.7)

where µT , S̃ij and K̃ respectively denote the turbulent viscosity, Favre-averaged strain

rate and turbulent kinetic energy. Almost all the RANS based models use the Boussi-

nesq approximations as their basis. The different models differ only in the way they

find the eddy-viscosity µT , using either an algebraic prescription or one or two partial

differential equations - which are therby called zero-, one- or two equation models.

Following the Reynolds analogy, i.e. the heat flux in a turbulent system is treated

as analogous to the shear stress, and the turbulent heat-flux vector is modeled as:

ρṽ′′j h
′′ = −kT

∂T

∂xj
(3.8)

where the turbulent thermal conductivity coefficient kT is approximated and obtained

from µT , using a prescribed constant value of PrT , the so-called turbulent Prandtl

number:

kT = cP
µT
PrT

(3.9)

For the turbulence case, Eq. 2.13 is interpreted as the Favre- and Reynolds-

averaged Navier Stokes equations and all the flow variables are taken to be the corre-

sponding Favre-averaged quantities except the pressure and density which are taken

to be Reynolds averaged, as seen through Eq. 3.5. We use the Boussinesq hypothesis

discussed above and replace the dynamic viscosity used for stress term definition and

thermal conductivity in Eq. 2.13 with the following expression [8]:

µ = µL + µT (3.10)

k = kL + kT = cp

( µL
PrL

+
µT
PrT

)
(3.11)
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where µL and µT are respectively the laminar dynamic and turbulent viscosities (the

latter being obtained from the turbulence model, as seen later in Eq. 3.13), while cp,

PrL and PrT are the specific heat coefficient, laminar Prandtl number (≈ 0.71) and

turbulent Prandtl number (assumed to be a constant between 0.7-0.9 [124]) respec-

tively. It is to be noted that we include the 2
3
ρK̃δij term in Eq. 3.7 (which is often

dropped), as it is generally considered for supersonic flows [125].

3.3 Turbulence models

The above Favre-averaged equation requires additional equations to model the tur-

bulent viscosity. This is achieved using any one of the various turbulence models.

A turbulence model, in general, is expected to have local behavior independent

of the grid or dimensions of the flow, insensitivity to the free-stream values, smooth

transition from laminar to turbulence, in terms of grid resolution requirement. Fur-

ther, its predictions in different problems with separated flows, wakes or free vortices,

shock-boundary layer interaction reveal the strengths and weaknesses of a model. In

the 50 years or so from the start of RANS based turbulence modelling many dif-

ferent models have been proposed, and a vast literature exists on their comparative

strengths and weaknesses.

We have chosen three commonly used turbulence models which are popular and

well-regarded for implementations in the solver. However, we discuss below in detail

only the Spalart-Allmaras model which is primarily used in this thesis, while the other

two turbulence model are discussed in brief1.

3.3.1 Spalart-Allmaras (SA)

The Spalart-Allmaras (SA) one-equation model [23] uses a transport equation for an

eddy-viscosity variable ν̃: The salient features of this model are [8]:

• Accurate predictions of turbulent flow in adverse pressure gradients leading to

flow separation.

• It is designed especially for aerospace applications and performs well for wall-

bounded flows.

1 The turbulence modeling was done by the author in collaboration with Vatsalya Sharma for
the explicit code and later with Nikhil Kalkote for the implicit version of the solver.
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• It is “local,”which implies that the equation at any one point does not depend

on the solution at the other points, which allows for greater grid independence

and applicability of the model in three dimensions also.

• It is robust, converges fast to the steady-state, and requires only moderate grid

resolution in the near-wall region. However, it is a “low-Reynolds” number

model that requires the grid to extend very close to the wall (unlike, “high-Re”

models that allow a coarse grid near the wall, by fitting the log-law of the wall

in the near-wall regions).

The governing equation for the model is

∂

∂t
(ρν̃)+

∂

∂xi
(ρν̃ui) = Gν+

1

σν̃

[ ∂

∂xj
{(µ+ ρν̃)

∂ν̃

∂xj
}+ Cb2ρ

( ∂ν̃
∂xj

)2]
− Yν

(3.12)

where Gν is the production of turbulent viscosity, and Yν is the destruction of tur-

bulent viscosity that occurs in the near-wall region due to wall blocking and viscous

damping. The parameters σν̃ and Cb2 are model constants.

The turbulent viscosity is modeled as:

µT = ρν̃fv1 (3.13)

where the viscous damping function fv1 is given as:

fv1 =
χ3

χ3 + C3
v1

(3.14)

where

χ ≡ ν̃

ν
(3.15)

The production term, Gν is modeled by:

Gν = Cb1(1.0− ft2)ρS̃ν̃ (3.16)

where

ft2 = Ct3e
−Ct4χ2

(3.17)
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and

S̃ ≡ S ′ +
ν̃

κ2d2
fv2 (3.18)

and

fv2 = 1− χ

1 + χfv1

(3.19)

Here, Cb1 and κ are two more model constants, d is the distance from the nearest

wall, ν = µL/ρ is the molecular kinematic viscosity and S ′ is a scalar measure of the

vorticity magnitude. The formulation for S ′ is written as follows [126, 127]:

S ′ ≡ |Ωij|+ Cprodmin(0, |Sij| − |Ωij|) (3.20)

where Cprod = 2.0, Ω ≡
√

2ΩijΩij, where Ωij is the mean rate-of-rotation tensor

defined by:

Ωij =
1

2

(∂ui
∂xj
− ∂uj
∂xi

)
(3.21)

and S ≡
√

2SijSij where Sij is the mean strain rate tensor defined by:

Sij =
1

2

(∂uj
∂xi

+
∂ui
∂xj

)
(3.22)

The destruction term Yν is modeled by:

Yν =
(
Cw1fw −

Cb1
κ2

ft2

)
ρ
( ν̃
d

)2

(3.23)

where

fw = g
[ 1 + C6

w3

g6 + C6
w3

]1/6

(3.24)

and

g = r + Cw2(r6 − r) (3.25)

where

r = min
[ ν̃

S̃κ2d2
, 10
]

(3.26)

Model Constants

The above formulation has a number of model constants that are given the standard

values [23, 128]: Cb1 = 0.1355, Cb2 = 0.622, σν̃ = 2
3
, Cv1 = 7.1, Ct3 = 1.2, Ct4 = 0.5,

Cw1 = Cb1
κ2

+ (1+Cb2)
σν̃

, Cw2 = 0.3, Cw3 = 2.0 and κ = 0.4187
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Initial and boundary conditions

The inflow boundary condition for the Spalart-Allmaras turbulence model is set to

the free-stream turbulent viscosity ratio (µT/µL) obtained from the relevant reference.

For most of the external flows, it is small; it is generally taken between 1 < µT/µL <

10. At outflow and symmetry boundaries the turbulent variables are extrapolated

from interior values. At the wall, for low-Reynolds number modeling, ν̃ = 0 and

hence µT = 0. The uniform free-stream inflow condition is used to set the initial

conditions throughout the flow-field, for the pseudo-transient solution.

3.3.2 Standard K − ε model

The standard K − ε model was proposed by Launder and Spalding [24]. It is a two-

equation model. The K − ε model is derived considering the flow is fully turbulent

and the effect of laminar viscosity can be neglected. The standard K − ε model is

therefore valid only for fully turbulent flows. It is the most widely used two-equation

model and is most suited for free-shear flows.

The governing equations for the model are

∂

∂t
(ρK) +

∂

∂xi
(ρKui) =

∂

∂xj

[(
µ+

µT
σk

)
∂K

∂xj

]
+Gk +Gb − ρε− YM (3.27)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µT
σε

)
∂ε

∂xj

]
+ C1ε

ε

K
(Gk + C3εGb)− C2ερ

ε2

K
(3.28)

where:

• Gk represents the generation rate of turbulence kinetic energy due to the mean

velocity gradients.

• Gb is the generation rate of turbulence kinetic energy due to buoyancy.

• YM represents the contribution of the fluctuating dilatation in compressible

turbulence to the overall dissipation rate.

• C1ε, C2ε, and C3ε are constants.

• σk and σε are the turbulent Prandtl numbers for K and ε, respectively.
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Modelling of µT

The turbulent (or eddy) viscosity , µT , is computed by combining K and ε as follows:

µT = ρCµ
K2

ε
(3.29)

where Cµ is a constant.

Model Constants: C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3

3.3.3 Menter’s SST K − ω Model

Shear-stress transport (SST) [49] K − ω model includes a blend between the K − ω
model (robust and accurate in the near wall region) and K − ε model (free-stream

independence). For this, the K − ε is transformed into a K − ω formulation. This

model has the advantage of accurately predicting flows with strong adverse pressure

gradients and boundary layer separation.

The governing equation for the model is

∂

∂t
(ρK) +

∂

∂xi
(ρKui) =

∂

∂xj

[
Γk
∂K

∂xj

]
+ G̃k − Yk + Sk (3.30)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

[
Γω

∂ε

∂xj

]
+Gω − Yω +Dω + Sω (3.31)

where:

• G̃k represents the generation rate of turbulence kinetic energy due to the mean

velocity gradients.

• Gω is the generation rate of ω.

• Γk and Γω represent the effective diffusivity of K and ω, respectively.

• Yk and Yω represents the dissipation rate of K and ω due to turbulence.

• Dω is the cross-diffusion term.

Modelling of µT

The turbulent (or eddy) viscosity , µT , is computed based on the description given in

[25]

µT =
ρa1K

max(a1ω, SF2)
(3.32)
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where S =
√

2SijSij, is strain rate magnitude, given as

S =
∣∣∣1
2

(∂jui + ∂iuj)
∣∣∣ (3.33)

F2 is a blending function that is equated to 1.0 for the boundary-layer flows and

0.0 for free shear flows, and a1 is a model constant given the value of 0.31. This

modification is done so as to keep the Bradshaw’s assumption that the shear stress

is proportional to the turbulent kinetic energy k (τ = ρa1K) satisfied in adverse

gradient flows, where the ratio of production to dissipation can be significantly large

[129]. It leads to an over-prediction of turbulent shear stress τ . The blending function

F2 is used to recover the turbulent viscosity formulation of µT = ρK/ω for free shear

layers (where the Bradshaw’s assumption does not hold).

3.4 Near Wall Physics

One of the major problem encountered in turbulence is to accurately compute flows

near walls. Turbo-machinery, external flows over vehicles and internal flows in pipe

are some of the examples of flow influenced by turbulence near the wall. The wall

causes two effects [33]:

1. Turbulent flow becomes anisotropic due to damping of the wall normal compo-

nents.

2. Because of shear introduced by the wall, the production of turbulence increases.

An important requirement in the accurate modelling of turbulent flows is the

proper treatment of the equations near the wall. This is called near-wall treatment

and is important as the flow variables have strong gradients with momentum and

turbulent transport occurring most vigorously near the wall. The near-wall zone

(see Fig. 3.1) is generally subdivided into three regions: the innermost layer is called

the viscous sublayer (y+ < 5), where the turbulence is suppressed by viscosity, the

outer layer is the fully-turbulent layer and is called log-law region (y+ > 30) and

the in-between layer is called the buffer region (5 < y+ < 30). Here, y+ is the non-

dimensional normal to the wall given as:

y+ =

√(τw
ρ

)
(3.34)
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where τw is the wall shear-stress.

The wall-function treatment and the low Reynolds number method are two al-

ternate approaches for modeling the near-wall region. The wall function treatment

employs a semi-theoretical formula to avoid computations in the sublayer region and

thus provides the boundary conditions for the mean flow and turbulent variables di-

rectly in the buffer layer. This method reduces the computational cost by allowing a

coarser grid near the wall. However, its predictive accuracy usually deteriorates if the

first grid point, where the boundary conditions are prescribed, does not fall within

the buffer region. This region depends on the wall stress, which again is not known

apriori at the time of grid generation. As the semi-theoretical formulation used for

the wall treatment is obtained from flow over a flat plate, this method cannot be used

for predicting accurately decelerating flows and boundary-layer separations.

On the other hand, the low Reynolds number method employs a very fine grid

near the wall to resolve the viscous sublayer. This approach, thus, uses significantly

more computation due to the fine grid involved. So, for efficient computation in

flows where the low-Re approach is not strictly necessary, we would like to use a

wall function treatment that would automatically switch from the wall-function to a

low-Re formulation depending on the grid-spacing near the wall. Menter et al. [48]

proposed an AWT for the SST turbulence model, and we have extended that AWT

formulation to the SA model, which we shall discuss in detail in the next chapter.

3.5 Time Integration Method

Eq. 2.67 shows the algebraic equation for the mean flow equations. A similar simplified

form of the algebraic equation for turbulence can be written as [30]:

[ Ω

∆t
I − ∂R

∂U

]n
∆Un+1 = Rn (3.35)

For this, we use the same LU-SGS method used for solving the mean flow equa-

tions. However, direct use of the exact Jacobian ∂R
∂U

, would usually lead to instability,

showing convergence and positive preserving2 difficulties. We have used the uncon-

ditional positive-convergent (UPC) time-integration implicit scheme developed by

Mor-Yossef and Levy [30] for turbulence transport equations.

2Certain turbulent quantities, e.g. µT and K, etc., need to be always positive, otherwise they
can cause a catastrophic failure of the computations.
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Figure 3.1: Turbulence boundary layer u-velocity profile. (The velocity profile ob-
tained by [130] is also shown.)

3.5.1 Theoretical Motivation

The turbulence model equations are convective-diffusive-source equations. The inclu-

sion of a source term causes instability when it becomes dominant. This is generally

observed when using turbulence or chemistry models. A large source term changes the

flow variables rapidly in space and time, and needs a very small time-step size (stiff-

ness) for stable computations. This can be avoided by using temporal linearization

of the negative part of the source term [29]. This method allows for the calculation of

Jacobian which is close to the true Jacobian so that one gets a rapid convergence when

the residuals are small while at the same time it retains the unconditional positivity

condition [23].

Mor-Yossef and Levy [30] have given the following definition for an unconditional

positive implicit scheme of a discretized form of the turbulence model equations

(TME):

Definition (Unconditional positive scheme) For a numerical scheme to be uncondi-
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tionally positive, Un+1 > 0 for any given Un > 0 and for any time step ∆t.

The convective part of TME is discretized using the first order upwind to allow

for stability. For an implicit scheme to be unconditionally positive-convergent, the

concept of M-matrix3 is used [131]. An M-matrix has many properties out of which

the following is important for the design of an UPC scheme. The Jacobian, −∂R
∂U

in

Eq. 3.35 is approximated by a matrix M ≈ −∂R
∂U

such that it follows the following

two conditions [132]:

1. M is an M-matrix.

2. R+MU is a non-negative vector.

Eq.3.35 can be written in terms of M as follow:[ Ω

∆t
I −M

]n
∆Un+1 = Rn (3.36)

Eq. 3.36 is a representation of the UPC scheme. It is solved uncoupled from the mean

flow equations. The complete algorithm will be presented in the next chapter while

discussing the implementation of the wall function with the SA turbulence model.

The detail of the proof and derivation is mentioned in the work of Mor-Yossef and

Levy [30].

3.6 Constructing the M matrix

Below we demonstrate using the Spalart-Allmaras turbulence model as an example

of how we construct the implicit Jacobian, following references [30, 133]. The Jaco-

bian M is split into the convective-diffusive implicit Jacobian and the source term

Jacobian. It is defined as:

M = N + J (3.37)

In the first step, we show how the R in Eq. 3.36 is constructed. The motivation

is to have the residual vector (R) as a product of the matrix with the solution vector

(U). This helps in constructing the desired residual Jacobian easily and shows that

the implicit Jacobian depends on the residual vector. For a cell i, let Ri denotes the

3M-matrix is a Z-matrix having the eigenvalues whose real part is nonnegative. Z-matrix is the
matrix whose off-diagonal terms are non-positive.
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turbulence model residual with Ci, Di and Si being the convective residual, diffusive

residual and source term residual, respectively.

Ri = Ci +Di + Si (3.38)

The convective residual vector Ci is written as:

Ci = −
∑
j∈N(i)

FcijSij =
∑
j∈N(i)

Ci
ijUi +

∑
j∈N(i)

Cj
ijUj (3.39)

where, Sij is the face area of interface ij, between the cell i and its neighbor cell j.

Using HLLC flux discretization [134], Ci
ij is written as:

Ci
ij = −SijI


Vni if Si > 0,
Si−Vni
Si−SM

SM if Si ≤ 0 < SM ,

0 otherwise.

(3.40)

Similarly, Cj
ij is written as:

Cj
ij = −SijI


Sj−Vnj
Sj−SM

SM if SM ≤ 0 ≤ Sj,

Vnj if Sj < 0,

0 otherwise.

(3.41)

where for the SA model I is a unit matrix of size 1. The choice of using the HLLC

scheme is due to its positive characteristics [29]. Also, we use first order accuracy

for the turbulent convective term so as to allow for a positive and stable spatial

discretization. The diffusive term is also discretized accordingly as:

Di =
∑
j∈N(i)

FdijSij =
∑
j∈N(i)

Di
ijUi +

∑
j∈N(i)

Dj
ijUj (3.42)

where,

Di
ij = −Sij

1

ρiσ

((µ+ ρν̃)r · n̂
|r|2

)
ij

(3.43)

and

Dj
ij = Sij

1

ρjσ

((µ+ ρν̃)r · n̂
|r|2

)
ij

(3.44)
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In the same way the source term can be written as:

Si = SiUi (3.45)

where Si = Si

ρν̃
for SA equation, Eq. 3.12. The complete residual vector as a matrix

multiplied with the turbulence solution vector can now be written as using Eq. 3.39-

3.45:

Ri =
∑
j∈N(i)

Ci
ijUi +

∑
j∈N(i)

Cj
ijUj +

∑
j∈N(i)

Di
ijUi +

∑
j∈N(i)

Dj
ijUj + SiUi (3.46)

3.6.1 Convective-Diffusion and Source Jacobian

The construction of the convective-diffusive Jacobian (N ) is simplified by splitting

each of the matrices Ci
ij, C

j
ij, C

i
ij, C

j
ij into their positive and negative parts as shown

below using matrix A.

A = AP −AN (3.47)

where

Ap =
(

(aP )kl ∈ R2×2
)

and

AN =
(

(aN)kl ∈ R2×2
)

where

(aP )kl =
1

2
(|akl|+ akl)

(aN)kl =
1

2
(|akl| − akl)

(3.48)

Using the above notation we can re-write the convective (Eq. 3.39) and diffusion

(Eq. 3.42) residual vector as shown below:

Ci =
∑
j∈N(i)

[
(Ci

ij)P − (Ci
ij)N + (I − Bij)(C

j
ij)PT ij − (Cj

ij)NT ij
]
Ui

+
∑
j∈N(i)

Bi
j(C

j
ij)PUj

(3.49)
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M = N + J
(Eq. 3.37)

Obtain Nii using Eq. 3.51 &
Nij = −Bij(C

j
ij)P − Bij(D

j
ij)P

(Eq. 3.52)

Ji = max(−Si, 0) + max(SiD, 0)
(Eq. 3.54)

Convective-
Diffusion
Jacobian
N

Source term
Jacobian
J

Desired residual vector, R = f(U): for obtaining the N and J Jacobian

Ri =
∑

j∈N(i) C
i
ijUi +

∑
j∈N(i) C

j
ijUj +

∑
j∈N(i) D

i
ijUi +

∑
j∈N(i) D

j
ijUj + SiUi

(Eq. 3.46)

•

Figure 3.2: Flowchart summarizing the construction of M matrix.

Di =
∑
j∈N(i)

[
(Di

ij)P − (Di
ij)N + (I − Bij)(D

j
ij)PT ij − (Dj

ij)NT ij
]
Ui

+
∑
j∈N(i)

Bi
j(D

j
ij)PUj

(3.50)

where T ij is the diagonal matrix with the diagonal element =
(ρν̃)j
(ρν̃)i

for SA. The above

formulation is the exact convective-diffusive residual and is best suited to construct

the desired Jacobian. The quantities Nii and Nij shown below are the diagonal and

off-diagonal block matrices of row i of the matrix N , respectively.

Nii =
∑
j∈N(i)

[
(Ci

ij)N + (Cj
ij)NT ij − (I − Bij)(C

j
ij)P

∂T ij
∂Ui

Ui

]
+
∑
j∈N(i)

[
(Di

ij)N + (Dj
ij)NT ij − (I − Bij)(D

j
ij)P

∂T ij
∂Ui

Ui

] (3.51)
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Nij = −Bij(C
j
ij)P − Bij(D

j
ij)P (3.52)

where

Bij = T ij [I + T ij ]−1 (3.53)

The source term Jacobian Ji is approximated as follows:

Ji = max(−Si, 0) + max(SiD, 0) (3.54)

where SiD = − ∂Si

∂Ui
Ui. Figure 3.2 shows the flowchart summarizing the construction

of the M matrix.

3.7 Closure

In this chapter, we have presented the method to model the mean turbulent flow for

the case of compressible flows wherein the density fluctuations cannot be neglected.

Favre- and Reynolds averaged Navier-Stokes equations together with the Boussinesq

hypothesis along with the appropriate turbulence model equations form the com-

plete system of governing equations required to solve the mean turbulent flow. We

briefly presented the near-wall modeling which will be discussed in more detail in the

next chapter. The condition of the matrices that are solved to obtain the turbulent

quantities for the next time-step was demonstrated. It is to be noted that in the

construction of M matrix for the convective part of turbulent flows, a HLLC dis-

cretization is assumed. However, the mean flow equation uses Roe and SLAU2 for

the convective term discretization. This inconsistency however does not matter since

the turbulence model is solved decoupled from the rest of the variables.





Chapter 4

Automatic Wall Treatment for

Spalart-Allmaras Turbulence

Model

4.1 Overview

In the previous chapter we discussed three popular turbulence models – the one

equation Spalart-Allmaras (SA) and the two-equation standard K − ε and Menter’s

SST K − ω turbulence models. The one-equation Spalart-Allmaras (SA) [23] has

become popular for its reasonably accurate predictions of a wide range of aerodynamic

flow problems [34, 35, 36] even in comparison with the two-equation RANS based

turbulence models.

However, as discussed previously the standard SA is a low-Reynolds number model

that requires very tight grid spacing near the wall to resolve the large gradients in flow

and turbulent variables and would thus require the use of a good wall function which

can work equally well for a wider range of grid point placements near the wall. In this

chapter, we demonstrate how we have developed an automatic wall treatment (AWT)

for the SA turbulence model, for predicting the wall shear stress and heat flux. We

have validated and verified [135] the proposed formulation for four cases involving

adiabatic and constant temperature wall boundary conditions, thus validating the

wall function modeling for both energy and momentum equations. To demonstrate

the power of the AWT with SA, results are presented for grids with significantly

different grid spacing at the wall, and their accuracy is reported.
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4.2 Automatic Wall Treatment

As noted previously in Sec. 1.4 and in Sec. 3.4, the need is to model the wall function

such that it switches automatically from the wall-function to a low-Re formulation

depending on the grid-spacing near the wall. This would prevent the deterioration in

the solution which happens when using a low-Reynolds model on an under-resolved

mesh. Menter [48] while applying the automatic wall treatment to the K − ω tur-

bulence model took the advantage of the fact that the analytical equation for ω is

available in the viscous sublayer and the log-law region. He developed a formulation

which blended these analytical equations as a function of y+ to achieve automatic (or

smooth) switching for a given grid. Using, the Menter [48] notation, the analytical

equations for ω in the viscous sublayer and log-law region is given as:

ωvis =
6υ

βy2

ωlog =
uτ

C
1/4
µ κy

(4.1)

The above Eq. 4.1 is written in terms of y+ and a smooth blending is achieved by:

ωwall(y
+) =

√
ω2
vis(y

+) + ω2
log(y

+) (4.2)

Menter’s similarly used the formulation for the friction speed near the wall to

obtain the velocity profile near the wall:

uvisτ =
Up
y+

(4.3)

ulogτ =
Up

1
κ
ln(y+) + C

uτ =
4

√
(uvisτ )4 + (ulogτ )4 (4.4)

The above Eqs. 4.3-4.4 provide the relation between the velocity at the wall-

adjacent cell (Up) and the friction speed (uτ =
√

τw
ρ

). Menter has shown [48] that the

grid dependency is reduced significantly when using automatic wall treatment com-

pared to the standard low-Re formulation and the standard wall function approach.

In the low-Re SA formulation, the boundary conditions for ν̃ is homogeneous

Dirichlet that is applied at the wall. However, a homogeneous Dirichlet condition for

ν̃ will not be applicable for a coarser grid that does not adequately resolve the viscous
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sublayer; however, a homogeneous Neumann condition will make the results relatively

insensitive to the coarseness of the grid. We employ a homogeneous Neumann bound-

ary condition for ν̃ in our AWT (instead of employing an automatic switch as done

for the ω term by Menter [48] for K − ω SST turbulence model as shown earlier).

The friction speed is blended as in Menter’s method discussed above. It is to be

noted that the AWT does not “switch” abruptly between the low-Re and wall func-

tion procedures at some prescribed y+ of the first point. Rather, as y+ decreases uvisτ

dominates the value of uτ , hence implicitly applying the low-Re condition.

For the energy equations a similar automatic wall function was employed by

Menter [48] following Kader [136]:

T+ ≡ (Tw − Tp)ρwcpuτ
q̇

= eΓT+
lam + e1/ΓT+

turb (4.5)

Γ = − a(Pry+)4

1 + bPr3y+
(4.6)

T+
lam = Pr

(
u+
lam +

ρuτ
2q̇

V 2
)

(4.7)

T+
turb = PrT

{
u+
turb + p+

ρuτ
2q̇

[
U2
p −

( Pr
PrT

− 1.0
)

(u+
c )2(uτ )

2
]}

(4.8)

where u+
c is the value of u+ (≡ u/uτ ) at the intersection point of the logarithmic and

the linear law of the wall for momentum, Tp is the temperature at the wall-adjacent

cell, q̇ is the wall heat flux, and the constants a = 0.01 and b = 5. However, in the

present work, we have not used the above formulation but instead, find the turbulent

heat flux by employing a turbulent Prandtl number between 0.7-0.9. We have found

the results to be quite insensitive to the actual value of the turbulent Prandtl number

within this range. This method of calculating the turbulent heat flux is explained in

the following subsection which describes the algorithm used.

4.2.1 Algorithm for implementing the AWT

The following steps are taken for every time-step in order to implement the AWT

formulation:

1. Solve for (a) the mean flow equations (Eq. 3.5) and (b) the SA equation (Eq. 3.12)

uncoupled from each other, based on the previous time-step values of the flow
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variables and turbulent viscosity.

2. Calculate the new values of µT at all the interior cell-centers using the new

values of ν̃.

3. At the wall ν̃ and µT are obtained based on AWT in the following manner:

(a) Solve Eq.4.3-4.4 to obtain the shear velocity (uτ ).

(b) Using uτ =
√

τw
ρ

we obtain shear stress value τw.

(c) Following references [33, 137]:

τw
ρ

= u2
τ = (ν + µT/ρ)

Up
yp

(4.9)

where Up is the magnitude of velocity at the cell adjacent to the wall and

yp is the normal distance from the centroid of that cell, i.e., the “first cell-

center” or “first grid point” from the wall. This distance is calculated as

the magnitude of the component of the vector joining the cell-center to the

face-center of the boundary face in the direction of the face unit normal.

More details for this can be found in the PhD Thesis of Dalal (2008) [138].

The last part of the equation seems to suggest that we assume the velocity

profile to be linear, and so Eq. 4.9 apparently can be applied only in the

viscous sublayer. This is however not true as is seen in step 3(3d) below.

(d) Obtain µT and kT at the wall using the following relation:

µT = ρ(u2
τ

yp
Up
− ν) (4.10)

kT = µT
cp
PrT

(4.11)

Note that, following [33, 137], in Eq. 4.10, the turbulent viscosity is pre-

scribed at the wall by inverting Eq. 4.9. That is, the effective viscosity at

the wall is modified so that the Eq. 4.9 gives the correct wall shear stress

even if yp lies outside the linear region, i.e., the viscous sublayer.

4. Repeat steps 1-3 till convergence is achieved.
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4.3 Boundary and initial conditions

For the inlet and outlet, the characteristic boundary conditions based on Riemann

invariants are used for the mean flow equations [139, 8] (Sec. 2.5). The inflow bound-

ary condition for the Spalart-Allmaras turbulence model is set to the free-stream

turbulent viscosity ratio obtained from the experimental data or relevant reference.

At outflow and symmetry boundaries, the turbulent variables are extrapolated from

interior values. At the wall, the AWT wall function is applied and is used to compute

the turbulent variables. The uniform free-stream inflow condition is used to set the

initial conditions throughout the flow-field, for the pseudo-transient solution.

4.4 Results and Discussion

The automatic wall function treatment presented in this chapter is validated using

four test cases involving (a) turbulent flow over a flat plate, (b) forced turbulent con-

vection over a flat plate, (c) turbulent flow over a bump in a channel and (d) turbulent

flow over a NACA 0012 airfoil. In these cases, the results are computed on a series

of meshes with different y+ values at the wall-adjacent cell in order to demonstrate

the accuracy of AWT on different grids. To solve the mean flow equations we have

used low-speed preconditioning with Roe flux [9] (Sec. 2.3.1.2). The time-stepping

has been done implicitly using LU-SGS (Sec. 2.4.2) with the turbulent equation be-

ing discretized using the unconditionally positive convergent (UPC) scheme (Sec. 3.5)

[29, 133] as discussed in the previous chapters.

4.4.1 Case 1: Turbulent flow over a flat plate

The first case considered is the turbulent flow over a flat plate [140] at M = 0.2 with

Reynolds number Re = 5 × 106 and T∞ = 540 °R = 300 K. The Reynolds number

is calculated based on the half-length of the plate. The flow domain and boundary

conditions are shown in Fig. 4.1. The turbulent inflow boundary condition uses a

turbulent viscosity ratio of 3 [125]. The turbulent Prandtl number is taken to be

0.9. The main aim of this case is to verify the AWT formulation for momentum

by comparing the surface skin friction coefficient and the velocity profile with those

results given on the Turbulence Modeling Resource (TMR) web-page [125].

Four different meshes are studied with different first cell-center distance from the
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wall which in the final solution (see Fig. 4.2) corresponds to y+ ranging from 2-7 (

Mesh-1, the first point is in the border region between sublayer and buffer layer), 15-30

(Mesh-2, completely in buffer layer), 24-46 (Mesh-3, in between the buffer layer and

log region) and 33-62 (Mesh-4, completely in the log region). Figure 4.3(a) shows

the velocity profile at two locations (x = 0.97008 and x = 1.90334) over the flat

plate with the results being compared with CFL3D [141] results. The CFL3D results

used 545× 385 (= 209825) cells with the viscous sublayer fully resolved (i.e. no wall-

function) and are considered a benchmark for this case. The present computation has

been done using only 50× 70 (=3500) cells. All the four meshes give nearly identical

and accurate profiles, thereby showing the capability of the AWT. The corresponding

result for the skin-friction coefficient (Cf ) compared against experiment [142] is shown

in Fig. 4.3(b). A slight deviation is observed at the leading edge of the plate for

Mesh-1 which corresponds to 5 < y+ <7. The result shows that while the AWT

gives accurate results for different coarser grid-spacings, a grid with first cell-centre

5 < y+ < 15 in the present results show slight inaccuracy. However, it is also known

that the standard SA model gives inaccuracy if the first grid point is in the buffer

regions [143]; the computation on this finest mesh will correspond most closely with

the standard SA model. The wall function treatment, unexpectedly, seems to remedy

this inaccuracy. The main purpose of wall functions, however, is to allow a coarser

grid near the wall and thus reduce the computational cost. This purpose is well-served

by the current implementation, judging by these results.

4.4.2 Case 2: Forced Convection Over a Flat Plate.

In Case 2, we simulate forced convection over a flat plate with U∞ = 1m/s, T∞ = 353

K, P∞ = 101325.0 Pa, Tw(= Tp) = 413 K, ReL = 1.5 × 106 and Pr = 0.71. The

turbulent viscosity ratio for the SA model at the inlet is chosen to be 1 [144]. The

turbulent Prandtl number is taken to be 0.85. The flow domain is shown in Fig. 4.4.

Four different meshes are studied with different first cell-center distance from the

wall which, in the final solution (see Fig. 4.5), corresponds to y+ ranging from 2-4 (

Mesh-1, first point is completely in the sublayer), 13-23 (Mesh-2, completely in the

buffer layer), 23-37 (Mesh-3, in between the buffer layer and log region) and 32-52

(Mesh-4, completely in the log region).

Figure 4.6(a) shows the velocity profile at the outlet with the results being com-

pared with a fully resolved (no wall-function) computation on a 30× 100 grid [144].
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The present AWT computation used a 29 × 40 grid. The corresponding result for

the local Nusselt number is validated in Fig. 4.6(b) against Reynolds correlation [145]

and experiments [146]. It is observed that the numerical solutions on all all grids are

very accurate.

The above results demonstrate the capability of AWT for both momentum and

energy equations near the wall with the four mesh configurations with their first point

locations ranging from the viscous sublayer to well within the log layer. In this case,

we have not used the law of wall for energy equation of Kader [136] shown in Eq. 4.5-

4.8, but have instead used the algorithm presented in this work, i.e. a constant Prt

is prescribed to find the turbulent thermal conductivity.

4.4.3 Case 3: Turbulent flow over a bump in channel

The third case is the turbulent flow over a bump in a channel at M∞ = 0.2 with

Reynolds number Re = 3 × 106 and T∞ = 540 °R =300 K. The flow domain and

boundary conditions applied are shown in Fig. 4.7. The lower wall from x = 0 to 1.5

is a viscous adiabatic wall. The maximum bump height is 0.05 (= y0) at x =0.75. The

Reynolds number mentioned above is based on the unit length of the bump between

x = 0.2 to x = 1.2, which is also used as the nondimensionalizing length scale.

The turbulent inflow boundary condition used a turbulent viscosity ratio of 3 [125].

The turbulent Prandtl number is taken to be 0.9. This case is to verify the AWT

formulation for momentum by comparing the surface skin friction coefficient and the

velocity profile with the results on the Turbulence Modeling Resource (TMR) web-

page [125]. Other quantities such as pressure coefficient Cp and µT are also verified.

This case involves wall curvature which causes pressure gradients and thus is a good

test for the verification of AWT formulation for SA. The bump height is given as:

y =
1

20
sin4

(πx
0.9
− π

3

)
for 0.3 ≤ x ≤ 1.2

y = 0 for 0 ≤ x < 0.3 and 1.2 < x ≤ 1.5 (4.12)

Three different meshes are studied with different first cell-centre distance from

the wall which in the final solution (see Fig. 4.8) corresponds to y+ ranging from

2-8 (Mesh-1), 13-40 (Mesh-2) and 18-55 (Mesh-3). As against the previous two cases

here the y+ variation first decreases and then increases upstream of the bump, then
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decreases downstream and then increases again over the downstream flat plate. The

reference solution chosen for the verification is provided by CFL3D [141] using a fine

grid with 1409× 641 (= 903169) cells, with the viscous sublayer being fully resolved,

that is considered a benchmark for this case. The present AWT computation used a

grid with 180×50 (=9000) cells. Figure 4.9 shows the plot for the computed pressure

coefficient along the wall for the various mesh configurations compared against the

CFL3D results. The results are very good. Figure 4.10 shows the normalized eddy

viscosity obtained for the three different meshes. Once again the contours match well

with those obtained by the CFL3D computation on the much finer mesh. Through-

out the boundary layer, there is good agreement with the reference solution in the

prediction of eddy viscosity. A slight inaccuracy in the sharpness of eddy-viscosity

contours can be attributed to the fact that the present meshes are much coarser than

that used in the CFL3D computations.

Figure 4.11(a) shows the velocity profile at two locations: one being at the mid-

plane of the bump and the other being at the downstream of the bump (x = 0.75

and x = 1.20148) with the results being compared with CFL3D results. These results

from all the three meshes show very good agreement with the fully resolved solution

obtained from CFL3D. The corresponding results for the skin-friction coefficient (Cf )

are shown in Fig. 4.11(b). All the predictions are in good agreement with the CFL3D

results over the bump except for mesh-1. However, mesh-1, the finest grid of the three

used, shows the best accuracy at the leading edge. The largest error on meshes 2 and

3 is found near the leading edge (x / 0.15) where the boundary layer is beginning to

form and so is extremely thin and the eddy viscosity is still developing. This region

is most challenging [43] to capture and is known to remain under-resolved by the

wall function approach. For mesh-1 we can see this error is least as the mesh is fine

near the wall (4 < y+ ≤ 8). The inaccuracy observed for Mesh-1 compared to other

meshes over the bump reinforces the observation in Case-1, i.e., the AWT seems to

give more accurate results for the coarser grid-spacings of y+ > 15. We conclude that

a grid with 5 < y+ < 15 may lead to slight inaccuracy with AWT since there is no

buffer layer treatment.

We can also note that y+ (Fig. 4.8) which is obtained as part of the solution follows

a similar trend as Cf (Fig. 4.11(b)), the reason being is for this incompressible case

is that y+ is proportional to τw (or Cf ).
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Figure 4.10: Case 3: Contours of eddy viscosity (normalized by free-stream laminar
viscosity = 1.846 × 10−5) for the three different mesh configuration compared with
the fine grid results obtained using CFL3D.
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Figure 4.11: Case 3: Flow over bump in a channel with inlet Ma = 0.2, with the
three mesh configurations and the reference [125].
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4.4.4 Case 4: Turbulent flow over 2D NACA 0012 Airfoil

The fourth case considered is the turbulent flow over a NACA 0012 airfoil with angle

of attack of θ = 10° at M∞ = 0.15 with Reynolds number Re = 6 × 106, T∞ = 540

°R =300 K and adiabatic wall conditions. The Reynolds number is calculated based

on the chord length of the airfoil (here taken as unity). The far-field boundary in the

grid is located almost 500 chords away from the airfoil, in order to avoid the issues

associated with the effect of far-field boundary conditions. The flow domain and

boundary conditions applied are shown in Fig. 4.12. The turbulent inflow boundary

condition assumes a turbulent viscosity ratio of 3 [125]. The turbulent Prandtl number

is taken to be 0.9. This case is to validate and verify the AWT formulation for

SA for the NACA 0012 airfoil [43] by comparing the results with experiment and

CFL3D numerical benchmark given on the Turbulence Modelling Resource (TMR)

webpage [125]. The results are compared for surface pressure coefficient (Cp) both

with experiment and CFD (CFL3D) while the skin friction coefficient (Cf ) results

are compared only with CFL3D as there are no corresponding experimental data

available.
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Three meshes are studied with different first cell-centre distance from the wall

which in the final solution (see Fig. 4.13) correspond to different y+ ranges at both

the upper and lower walls of the airfoil. Figure 4.13 shows y+ ranges from 0.001-18
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Figure 4.14: Case 4: Flow over the NACA 0012 airfoil with Ma = 0.15 with the three
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(Mesh-1), 0.7-83 (Mesh-2) and 1.4-154 (Mesh-3). The y+ variation is smoother for

the upper wall. However, over the lower airfoil the y+ value shows a dip especially

at x ∼ 0.04m and then it increases followed by a very gradual monotonic decrease

in the y+ value. Since, the flow is at an angle of attack of 10°, the sudden dip is

due to the formation of the stagnation region at the beginning of the airfoil lower

surface. The reason for a gradual monotonic decrease in the y+ value is because of

the presence of more favorable pressure gradient to the flow in comparison with the

upper surface. These plots show, as against the previous cases, here the y+ variation

is spread over a larger range of y+ values, far beyond what would be considered

acceptable in conventional CFD practice, especially for the Mesh-3 considered here.

The reference solution chosen for the verification is provided by CFL3D [141] using a

fine grid with 230529 cells with the viscous sublayer being fully resolved. In contrast,

the meshes used in this study have 10000 cells.

Figure 4.14 (a) shows the plots for the pressure coefficient along the wall against

the CFL3D results and the experiment results [147] available for the upper surface.

The results from all meshes are in good agreement with the references. Figure 4.14(b)

shows the plot of skin friction coefficient along the wall of the airfoil. The results

are in very good agreement with those of CFL3D for all three mesh configurations.

This completes our validation of the present AWT formulation for the SA turbulence

model.

In order to highlight the role played by AWT we compare in Fig. 4.15 the results,

on coarsest mesh (Mesh-3), with and without AWT. Fig. 4.15 (a) shows the plot for

the pressure coefficient along the wall of the airfoil and Fig. 4.15 (b) shows the plot

of skin friction coefficient along the upper wall of the airfoil. It can be seen that for

the coarse mesh both AWT (i.e., wall function) and no-AWT (i.e. no wall-function)

method gives the same result for pressure. But for the skin-friction coefficient the

result deteriorates without AWT. To capture the wall shear stress arising due to

viscous flow near the wall would require a fully-resolved mesh at the wall or else the

use of a wall treatment.

4.5 Closure

In this chapter, an AWT formulation is validated for the Spalart-Allmaras (SA) one-

equation model. The SA model is originally a low-Re model requiring a fine grid near
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walls. Industrial flow predictions require low sensitivity to grid spacing, as typically

not all walls are well-resolved with fine grids. However, with the present AWT, the

SA model can be used for wall-bounded flows with relatively coarse grids at the wall.

The automatic switching of µt, depending on the y+ of the first grid point, is implicit

in the AWT procedure. The test cases considered in this work have been computed on

different grids with the first grid point variously located in the sublayer layer region, in

the buffer region, and in the log region and have always yielded near-identical results

that have also matched well with benchmark reference and experimental data. The

last two test-cases considered here are close to real-world simulations, for which y+

values go well beyond the traditionally accepted values to be as high as 150. However,

even here, the results are good. It is also shown that the energy equation solutions

can be obtained even without the use of the law of the wall, by merely using an

assumed constant Prt. It should be noted; however while the standard SA model can

capture the laminar-turbulent transition in the boundary layer, the AWT assumes

the flow to be turbulent throughout. We expect, in regions of separated flows thus

the AWT cannot be used.

This work has much practical significance for researchers who use turbulence mod-

els to compute complex flows in aerospace applications, as the AWT allows a near-wall

grid 10–30 times as coarse as that required in the standard SA model (without wall

function). Apart from this, the flexibility accruing from the freedom of not having to

place the first-grid point in a narrow range of y+ (which cannot be predicted apriori

during grid generation) will be very helpful to practitioners, who otherwise routinely

re-grid after computations to satisfy the earlier criteria. Finally, it would interest

researchers of turbulence theory, which can be so piece-meal at times, that a model

developed for SST would work without modification for a completely different model

like SA.



Chapter 5

Non-Equilibrium Boundary

Conditions

5.1 Overview

In this chapter, we take a step forward into the flow dynamics of rarefied flows.

In introduction (Sec. 1.5), we had discussed the method of replacing the commonly

used no-slip boundary conditions with slip velocity and temperature jump boundary

conditions for studying the rarefied gas flow in the slip regime, 0.001 ≤ Kn ≤ 0.1. We

discuss here how the boundary conditions are modified (as mentioned in Sec. 2.5.3),

for the computation of these non-continuum flows in the slip regime using the Navier-

Stokes equations.

We have mentioned, in Sec. 1.5, the need for a more comprehensive analysis of

the recently published Le temperature jump boundary condition [62] on all relevant

flow properties for different flow conditions. Here, after introducing the various non-

equilibrium boundary condition, we have use the Le temperature jump condition

for different inflow conditions for hypersonic rarefied gas flow over a flat plate. In

the next chapter (Chapter 6) we further study different micro/nano flow cases. The

results here are compared with the available experimental data and the DSMC results.

Interestingly, we found an over-prediction of pressure, especially at the leading edge

of the flat plate when using the Le temperature jump condition. We have proposed a

correction to the anomaly by using a previously published pressure jump condition,

whose use was termed by the author as “unclear” [53]. This condition does not seem

to have been used in CFD studies [70], although researchers have pointed to the

existence of a pressure jump at the wall [148, 149]. We begin our discussion in this



100 5.2 Direct Simulation Monte Carlo (DSMC)

chapter with a description of the DSMC method, which is considered as a benchmark

for solutions obtained from the CFD calculations.

5.2 Direct Simulation Monte Carlo (DSMC)

The DSMC calculation is a statistical method, originally proposed by Bird [92]. For

the case of rarefied gas flows it is considered to be a reliable computational tool [92]

and has been shown to converge to the solutions of Boltzmann equation [56, 57].

Unlike the molecular dynamics simulation where each molecule in the gas flow is

simulated, in DSMC each particle represents many molecules in the real flow. A

probabilistic method is used to solve for the intermolecular collisions and molecule-

surface collisions. The commonly-used collision models are the variable hard sphere

(VHS) model, hard sphere (HS) model, and the variable soft-sphere model. The

DSMC method requires certain conditions which are [57] as follows:

(a) The flow time-step should be small enough with respect to the mean time taken

for the collision so that the molecular motion and intermolecular collision can

be uncoupled from each other. In general, the time-step is taken to be about

1/3 of the mean collision time [57].

(b) In the computational mesh, the cell-size should be less than the mean-free-path

of the particles.

(c) Each cell should have a sufficient number of DSMC particles so that perform-

ing a statistical average to obtain the macroscopic averaged flow quantities is

meaningful. In general, 20 particles per cell is taken.

For rarefied gas flows, as experimental data are scarce, DSMC calculations are often

taken as the benchmark for results obtained from the CFD calculations [63, 150]. The

details of parameters chosen to perform the DSMC calculation can be found in the

stated references.

5.3 Interactions of Gas with the Surface

The interaction between of the gas molecules with the surface is defined in terms

of the collision, as determined by the chosen collision model. After, the collision of
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the incoming molecules with the surface if the molecules rebound elastically, i.e., the

incoming angle is equal to the reflecting angle and with the same momentum and

energy, this is called specular interaction [151, 152]. Also, the value of surface shear

stress and heat flux will be zero. This corresponds to the case when the surface is

smooth and adiabatic.

However, if the molecule rebounds inelastically, i.e., the incoming angle is not

equal to the reflecting angle and with a change of momentum and energy, then the

interaction is called diffuse [151, 152]. In this case, the surface is termed rough and

isothermal. The value of surface shear stress and heat flux is not equal to zero.

In reality, molecules will have both specular and diffuse interaction with the sur-

face. This is accommodated by the (constant) accommodation coefficient which is de-

fined as the fraction of incoming molecules which are reflected diffusely [152]. Agrawal

and Prabhu [153] have conducted a survey on the value of accommodation coefficient

σu which they have shown to be constant with respect to the Knudsen number for

monoatomic gases at about 0.926 and decrease with increase in the Knudsen number

for non–monoatomic gases. They have shown that it depends on several parame-

ters including gaseous nature, gas pressure, surface related terms like cleanliness and

roughness and, to some extent, surface temperature. We however, in this work choose

the value as taken from the corresponding references for each test case. Molecule can

also slip over the surface which leads to viscous heat generation, and is also known

as sliding friction (or shear work). These effects are considered through the different

types of non-equilibrium boundary conditions, as we shall see in the next section.

5.4 Different types of Boundary Conditions

The Navier-Stokes equations are generally used for flows in the continuum fluid

regime. They are valid with the no-slip boundary condition upto the Kn ≤ 0.001.

In the continuum regime of flow, the presence of sufficient number of molecules al-

lows them to reach local thermodynamics equilibrium, through repeated molecular

collisions. This flow is then said to be in equilibrium. However, for the rarefied

regime, when the molecular number density is low, the flow experiences few collisions

and cannot reach local thermodynamics equilibrium. This flow is then said to be in

non-equilibrium.

As the flow becomes more rarefied, at first there is an insufficient number of
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collisions near the wall which causes the gas molecules to be in non-equilibrium with

the wall. This leads to the flow violating the no-slip condition. This is known as

the slip condition, where the velocity and temperature of the gas molecules next

to the surface is not taken as equal to the surface velocity and temperature. In

CFD, to accommodate this problem, it is recommended to use the velocity-slip and

temperature jump condition [57, 152] in the range of 0.001 < Kn ≤ 0.1 (slip-regime).

Here, it is assumed that far from the walls, continuum condition prevail and the NS

equations are valid. This helps to model the flow for a certain degree of rarefaction.

In this regime, an appropriate boundary conditions are important to obtain CFD

results comparable with the experimental data and the DSMC solution [152]. We

explore below various non-equilibrium wall boundary conditions that are used in this

work. We first explain the popular Maxwell first order velocity slip [154] and the

Smoluchowski temperature jump condition [60]. Next, the new temperature jump

condition [62] considering the sliding friction is discussed, followed by the pressure

jump condition.

5.4.1 Maxwell slip boundary condition

The Maxwell slip boundary condition [59], including the effect of thermal creep1, can

be written as [52]:

u− uw = −2− σu
σu

λτ

µ
− 3

4
Pr

γ − 1

γp
q (5.1)

where u is the flow velocity at the surface; uw is the surface velocity; the tangential

shear stress is τ ≡ S·(n·Π); n is the outward unit normal vector, and S = I−nn is a

tensor (with I being the identity tensor) which retains only the tangential components

of any vector variable (e.g. velocity) which is dot product with it [52]; Π is the stress

tensor at the surface; the heat flux is q ≡ Q̄ · S at the surface where Q̄ is the

heat flux vector; P is the gas pressure at the surface; σu is tangential momentum

accommodation coefficient (which lies between 0 and 1) and λ is the mean free path

[151] defined as

λ =
µ

ρ

√
π

2RT
(5.2)

1Thermal creep is the process in which the presence of temperature gradient at the surface creates
an extra slip flow in the direction of increase in temperature. In other words, the gas slides from
the colder to hotter region over the surface.
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where ρ is the gas density at the surface; R is the specific gas constant; and µ is the gas

viscosity at the surface. The tangential momentum accommodation coefficient (σu)

gives the proportion of the molecules which are reflected from the surface diffusely

(= σu) or specularly (= 1− σu) [152].

The boundary condition (Eq. 5.1) can be expressed as a Robin (or mixed) type

boundary condition [52] by substituting

τ = S · (n ·Π)

and

Π = µ∇u + Πmc

with

Πmc = µ((∇u)T − (2/3)Itr(∇u))

where the superscript T denotes the transpose and tr is the trace. Also, using

S.∇nφ ≡ ∇n(S · φ), Eq.5.1 becomes:

u+
(2− σu

σu

)
λ∇n(S · u) = uw −

(2− σu
σu

)λ
µ
S · (n ·Πmc)−

3

4

µ

ρ

S · ∇T
T

(5.3)

In Equation 5.3 the right hand side consist of three terms that are associated with

the wall velocity, the so-called curvature effect and the thermal creep, respectively

[52].

5.4.2 Smoluchowski temperature jump boundary condition

In rarefied conditions, the gas temperature of the surface is not equal to the surface

temperature, and the corresponding difference is called the “temperature jump”. It

is dependent on the heat flux normal to the surface. The Smoluchowski model [60]

expressed as a Robin (or mixed) boundary condition is shown below:

T +
(2− σT

σT

) 2γ

(γ + 1)

λ

Pr
∇nT = Tw (5.4)

where,

Pr =
µcp
kL

; (5.5)
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T is the surface gas temperature; Tw is the surface wall temperature; σT is thermal

accommodation coefficient (which lies between 0 and 1); Pr is the Prandtl number;

γ is specific heat ratio, cp is specific heat capacity at constant pressure and kL is

the thermal conductivity. The thermal accommodation coefficient (σT ) is used to

assign the temperature of the reflected molecules. In case of specular interaction, the

reflected molecules rebound from the surface with the same energy as the incident

molecules while for the case of purely diffusive interaction the reflected molecules have

a temperature at thermal equilibrium with the surface. Overall, σT = 1 corresponds

to complete diffusive reflection, with a perfect exchange of energy between the gas

and the solid surface, while σT = 0 corresponds to zero energy exchange [62].

We have used, in this work, a form of the Prandtl number obtained using the

kinetic theory, known as Eucken’s relation [155, 57]:

Pr =
4γ

9γ − 5
(5.6)

By using Eq. 5.5 we obtain the thermal conductivity as follows:

kL =
9γ − 5

4γ − 4
Rµ (5.7)

5.4.3 The Le Temperature Jump boundary Condition [62]

This boundary condition for temperature at the wall is a modified form of the Smolu-

chowski temperature jump condition which was derived considering the viscous heat

generation (sliding friction) due to the presence of a slip velocity of the fluid at the

wall. Following the notation used in the previous subsection, the Le temperature

jump condition as proposed in [62] is:

T +
(2− σT

σT

) 2γ

(γ + 1)

λ

Pr
∇nT = Tw−

(2− σT
σT

)
× 2λ(γ − 1)

µ(γ + 1)R
((S · (n ·Π)) · (u−uw)

(5.8)

Equation 5.8 differs from the one used in [62] only in that we have replaced cv by

R/(γ − 1).

It is to be noted that the velocity slip and both the temperature jump boundary

condition given by Eqs. 5.3, 5.4.2 and 5.8 reduce to no-slip and constant wall tem-

perature boundary condition as Kn assumes a smaller value, in the continuum regime.

This aspect of non-equilibrium boundary condition will be studied in more depth in

Chapter 7.
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5.4.4 Pressure Jump Boundary Condition

The Maxwell-Smoluchowski boundary conditions given by Eqs. 5.3 and 5.4 are usually

used with a homogeneous Neumann condition (zero normal gradient) for pressure

[152, 55, 156]. Using the Le temperature jump condition given by Eq. 5.8 with

a homogeneous Neumann pressure condition at the wall, however, leads to over-

prediction of the pressure for various cases of hypersonic flows over the flat plate (as we

shall see in Sec. 5.9). This is inconsistent with the notion that sliding friction, which

is taken into account for temperature, should tend to lower the pressure and so would

require consideration even in the pressure boundary condition. This observation

motivates us to reconsider the pressure boundary condition at the wall.

Patterson [157] used an alternative derivation for non-equilibrium BCs using

Grad’s moment method [158]. It is based on the conservation laws for mass, mo-

mentum and energy for the incident and reflected molecules at a surface. Vidal et

al. [148] in their study of hypersonic flow over a flat plate have used this method for

velocity slip and temperature jump and have mentioned the existence of a pressure

jump. Recently, Greenshields and Reese [53] have revisited those formulations and

have given a derivation for the non-equilibrium BCs following Patterson’s derivations.

The final form of the pressure jump boundary condition, as given in [53], is presented

below.

Using the analysis of mass conservation, the expression for the fluid density at the

wall is obtained as
ρw
ρ

=

√
T

Tw
(1 + ζ) (5.9)

where ρ is the actual density of the fluid at the wall surface; ρw is the density of fluid

with an equilibrium distribution at the wall temperature Tw, and

ζ = −Π : nn

2p
(5.10)

is the ratio of the normal viscous stresses to pressure. The normal unit vector (n)

is assumed to be pointing outward. Using, ρw we can obtain the wall pressure as

pw = ρwRTw, from the ideal gas relation. A point to note here (following [53]) is

the subscript w denotes the presumed properties of the fluid having an equilibrium

distribution with the wall temperature Tw and those with no subscript denote the

actual fluid property at the wall surface.

Using the analysis of normal-momentum conservation, the expression for the pressure
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jump is obtained as follows:

p
(

1 + 2ζ +
2− σ
σ

4

5
√

2π
a · n

)
= pw (5.11)

or,

p =
pw(

1 + 2ζ + 2−σ
σ

4
5
√

2π
a · n

) (5.12)

where using q = −k∇nT we have:

a · n = − 1

p
√
RT

q · n =
1

p
√
RT

k∇nT

Here, p is the pressure of the fluid at the wall and a is tensor of rank 1 defined in

such a way that the assumed distribution function (in terms of molecular velocity)

for the incident molecule in Patterson’s derivation of non-equilibrium BCs reproduces

the corresponding basic variable as its moments [53]. The pressure jump BC is incor-

porated using this value of p as the Dirichlet condition at the wall, instead of giving

it a homogeneous Neumann condition. Eq. 5.12 is usually ignored in simulations of

rarefied gas flows. Greenshields and Reese [53] have written “its use is unclear” citing

Gupta et al. [70]. We have however, chosen to examine the role of pressure jump

condition with the Le temperature jump condition (Eq. 5.8) for various hypersonic

flow situations over the flat plate cases considered in this work. In the numerical

implementation, Eq. 5.10 is unphysical when ζ ≤ −1 and almost impossible when

ζ > 1 [53]. The value of |ζ| is therefore assumed to be always less than 1 [157, 70],

but this assumption may not hold true in the case of rarefied high speed flows [53].

To circumvent this problem researchers suggest clipping ζ when it falls below some

level. Greenshields and Reese [53] have chosen to set ζ = 0 for the cases considered

in their work. We have, for our cases considered in this chapter, clipped the values

of ζ as follows:

ζ =


1, if ζo > 1

−1, if ζo < −1

ζo, otherwise

(5.13)

where, ζo = −Π:nn
2p

. We also analyze the influence of choosing ζ = 0 instead of using

a clipping. In Eq. 5.12, based on the assumption of diffuse reflection everywhere,
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the accommodation coefficient (σ) is chosen as 1 [53]. In this work, we use the above

formulation for the pressure jump condition with the Maxwell velocity slip and the Le

temperature jump condition. Previously, Greenshields and Reese [53], as mentioned

above have, used it with the velocity slip and the temperature jump condition given

by Patterson [157]. For ζ = −1, Eq. 5.9 will give, ρw value as zero, in such cases one

may use a very small value for ρw (∼ 10−15) to ensure numerical stability.

5.5 Heat transfer in a rarefied gas flow simulations

With sliding friction being taken into the account in computing the heat transfer at

the wall, Maslen [64] proposed a formulation for planar surfaces which was extended

for curved surfaces by Le et al. [65, 62] as follows:

q = −k∇nT − (S · (n ·Π)) · (u− uw) (5.14)

where the right-hand side consists of two terms that respectively incorporate Fourier

heat conduction and sliding friction (shear work per unit area).

5.6 Hypersonic Flat Plate Case

Several experimental and theoretical investigation has been carried out to study rar-

efied hypersonic flow over a flat plate with a sharp leading edge. These investigations,

especially the striking experimental results obtained very near the leading edge, have

generated a lot of interest in the problem [152, 156]. In this work we attempt a compre-

hensive analysis of different flat plate cases using the Le temperature jump condition

[65] by not only studying the temperature and heat flux at the wall but also other flow

properties such as pressure and slip-velocity. We compare the obtained results with

DSMC results and the experimental data available in the literature [152, 53, 65, 62].

We first verify, in this section, our numerical implementation of the first order

Maxwell Slip (Eq. 5.3), the Smoluchowski temperature jump (Eq. 5.4) and the Le

temperature jump (Eq. 5.8) boundary condition with the results published in liter-

ature [62]. We then present our study of the different flat plate cases in the next

section.
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5.7 Boundary and initial conditions

Figure 5.1 also shows the boundaries of the flow domain for the flat plate problem.

For the inlet and outlet, the characteristic boundary conditions based on Riemann

invariants are used [139, 8] (Sec. 2.5). At the wall, nonequilibrium boundary condi-

tions are applied (see Table 5.3). The uniform free-stream inflow condition is used to

set the initial conditions throughout the flow-field, for the pseudo-transient solution.

5.8 Numerical Verification and Validations

We have implemented the non-equilibrium boundary condition in the our 3D un-

structured grid solver. The first order Maxwell Slip (Eq. 5.3) and Smoluchowski

temperature jump (Eq. 5.4) boundary condition have been tested for various con-

figuration of the flow [159]. In this section, we present a numerical verification of

our present code including the Le temperature jump condition (Eq. 5.8) with the

results presented by Le et al. [62] for a hypersonic flow over a flat plate. The flow

domain is shown in Fig. 5.1. The inlet condition is the same as that of Metcalf et

al. [160] with Tw = 77 K as presented in Table 5.1. The gas used is Nitrogen, and

its properties are given in Table 5.2. The accommodation coefficients σT and σu used

in the nonequilibrium boundary conditions are taken to be unity, as in the reference

[62]. The results are compared with the DSMC results presented in [62]. Fig. 5.2(a)

and Fig. 5.2(b) shows the plot of surface gas temperature and heat flux over the flat

plate surface along with the results obtained by Le et al. [62]. The results show a

good match with the reference study. However, the heat flux at the leading edge in

the case of without sliding friction shows an over-prediction in comparison with the

same reference’s [62] CFD results but is close to their DSMC results. This is possible

because we have implemented gradient correction for obtaining the ∇nT (used in heat

flux computation) [8] (see Sec. 2.3.2), which hopefully gives a more accurate result in

that high temperature gradient regions.

5.9 Results and Discussion

In this section, we investigate the behaviour of pressure and other quantities along

the flat plate surface for various cases. To solve the Navier-Stokes equations at low

speeds with a density-based solver we have used preconditioning with Roe flux [9] (see
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Figure 5.1: Flat plate problem.

Sec. 2.3.1.2). The time-stepping has been done implicitly using LU-SGS (Sec. 2.4.2).

The CFL number for all the cases is taken as 500. We have considered the three

hypersonic flat plate cases taken from Metcalf et al. [160] (Tw = 77 and 294K) and

Becker [161]. The flow domain is shown in Fig. 5.1. The detail inflow condition and

the corresponding gas properties are listed in Table 5.1 and 5.2 respectively. The

Sutherland law of viscosity (Eq. 2.9) is used for the cases considered in this chapter.

In all the cases, we plot the value of surface pressure, surface gas temperature, slip

velocity and heat flux at the wall against x/λ∞(= 1
Kn

). For all the cases, the value of

σu = 0.7 (used in Eq. 5.3) and σT = 1 (used in Eq. 5.4 and 5.8) are taken, based on

the study done by Le [152]. The grid spacing near the wall is taken to be the same as

presented in the thesis of Le ( [152]; Table 4.4, Pg. no 54). The first order Maxwell slip

and Smoluchowski temperature jump along with the Le temperature jump boundary

condition have been numerically verified in the previous section Sec. 5.6. Le et al.

[62] have verified their temperature jump condition with the DSMC results of tem-

perature and heat flux. In this section we attempt a more comprehensive analysis of

their temperature jump boundary condition by studying the behaviour of pressure,

temperature, slip velocity and heat flux along the wall. We perform studies for three

different flow situations (Case 1, Case 2 and Case 3) of hypersonic flow over a flat
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Table 5.1: Different experimental flow conditions for flat plate cases considered [152].

Case Reference M∞ T∞ (K) P∞(Pa) λ∞(mm) Tw (K) Gas Kn
I Metcalf et al. [160] 6.1 83.4 2.97 0.35 77 Nitrogen 0.004
II Metcalf et al. [160] 6.1 83.4 2.97 0.35 294 Nitrogen 0.004
III Becker [161] 12.7 64.5 3.73 0.23 292 Argon 0.00264

Table 5.2: Coefficients of transport properties of the different gases considered [152].

Gas R (m2s−2K−1) γ As (Pa.sK−1/2) Ts (K)
Argon 208.1 1.67 1.93× 10−6 142
Nitrogen 296.8 1.40 1.41× 10−6 111

plate and compare them with the DSMC and the experimental results available in the

literature. For each of these cases, we use three different numerical models, labelled

in Table 5.3, differing in the boundary conditions used for the governing equations. It

can be noted that PC1 corresponds to the “Standard” model [59, 60, 58, 152], PC2 to

the Le temperature jump proposed in [62] and PC3 has the Le temperature jump and

the new pressure jump condition [53]. For PC1, the heat flux is computed using only

the Fourier law of heat conduction; while for PC2 and PC3, it is computed including

the sliding friction component Eq. 5.14.

Table 5.3: Different studies performed based on the wall BC’s for velocity, tempera-
ture and pressure.

Label Abbreviation Velocity Temperature Pressure
(Present Code)-1 PC1 Maxwell, Eq. 5.3 Smoluchowski, Eq. 5.4 Zero Normal Gradient
(Present Code)-2 PC2 Maxwell, Eq. 5.3 Le temperature jump, Eq. 5.8 Zero Normal Gradient
(Present Code)-3 PC3 Maxwell, Eq. 5.3 Le temperature jump, Eq. 5.8 Pressure Jump, Eq. 5.12

5.9.1 Case 1: Metcalf et al.’s, M∞ = 6.1 and Tw = 77K

In this first case of hypersonic flow over a flat plate [160], we have considered the

flow of Nitrogen with the free-stream Mach number of M∞ = 6.1 and temperature

T∞ = 83.4 K. The wall temperature is given as Tw = 77 K. The flow condition is

described in detail in Table 5.1. The corresponding DSMC and experimental results

are obtained from [162, 62] and [160, 152] respectively. In this case, the Mach number

is at the lower end of the hypersonic regime, and the wall temperature is close to (and

less than) the free-stream temperature. The calculated surface gas temperature and

surface pressure are shown in Fig. 5.3(a) and Fig. 5.3(b) respectively. We can see that

the surface gas temperature in Fig. 5.3(a) using the Le temperature jump boundary
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condition (PC2) comes closer to the DSMC results than the standard approach (PC1),

but for the pressure (Fig. 5.3(b)) it clearly shows an over-prediction (the peak pressure

being nearly 66% over-predicted w.r.t DSMC), especially at the leading edge, in

comparison to both the experiment and the DSMC results. Using the Le temperature

jump + the pressure jump condition (PC3) corrects this unusual rise in the pressure,

showing a much closer match with the DSMC and experimental results at the leading

edge (the peak pressure being merely 2.8% under-predicted w.r.t DSMC). The reason

for this is probably that the calculation of pressure is based on the conservation

of normal momentum which is ignored in the standard non-equilibrium BC’s (i.e.

Maxwell and Smoluchowski). Model PC3 also gives a somewhat closer match with

the DSMC result for the surface gas temperature in comparison with PC2. Both PC2

and PC3 are closer to experiment for the temperature far from the leading edge, while

at the tip both (and DSMC) over-predict the temperature. Figure 5.4(a), 5.4(b) and

5.4(c), respectively show the slip velocity, computed heat flux and the friction heating

rate (wall shear stress × slip velocity) for the three models. In these figures, only

the DSMC results are used for comparison, as experimental data are unavailable. It

is observed that all three models give close results, but far from the DSMC, for the

slip velocity. But for the most important wall heat flux, PC2 and PC3 both give

results very close to DSMC while PC1 is unexpectedly quite erroneous. All three

models give close results (except at the leading edge) for the friction heating rate in

Fig. 5.4(c). The region (x/λ∞ ≥ 100) corresponds to Kn ≤ 0.01 (weakly slip regime)

where CFD and DSMC are expected to give close results [53, 62]. Indeed, we see the

three models better match the DSMC results in this range. Most importantly, we

can clearly see the Le temperature jump + pressure jump condition (PC3) is able to

model the flow in a more comprehensive way than the use of merely the temperature

jump (PC2). Model PC3 ensures a good prediction of pressure at the leading edge

without deterioration in the prediction of other quantities.

It is important to note that the slip velocity computed from PC1 to PC3 is far

from the DSMC. However, despite this, the heat flux calculation, which now uses

the slip velocity to find the heat gradients at the surface is accurate. This shows

an inconsistency of the model which is probably due to the Maxwell velocity slip

boundary model. As shown by Le (see Fig. 9 of [55]), using σu = 1 = σT gives a better

match with the DSMC result for slip velocity, however the pressure and temperature

along the wall are predicted better by using σu = 0.7 and σT = 1. Therefore, we feel
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that an additional non-equilibrium consideration, perhaps the Knudsen number, is

required while modeling the boundary conditions, so as to obtain an overall numerical

consistency.

5.9.2 Case 2: Metcalf et al.’s, M∞ = 6.1 and Tw = 294K

For the second case of hypersonic flow over a flat plate [160], we have considered

Nitrogen flow with the free-stream Mach number of M∞ = 6.1 and temperature

T∞ = 83.4 K. The wall temperature is Tw = 294 K. The flow condition is detailed

in Table 5.1. The corresponding DSMC and experimental results are obtained from

[152, 65] and [160, 152] respectively. In this case, the Mach number is the same

as in Case 1, but the wall temperature is high in comparison to the free-stream

temperature. The calculated surface gas temperature and pressure are shown in

Fig. 5.5(a) and Fig. 5.5(b) respectively. We can see that the surface gas temperature

using the Le temperature jump boundary condition (PC2) comes very close to the

DSMC results, especially at the leading edge. But, for the pressure, the solution

clearly shows an over-prediction (the peak pressure being nearly 78.6% over-predicted

w.r.t DSMC) at the leading edge, in comparison to both the experiment and the

DSMC results. Using the Le temperature jump + the pressure jump condition (PC3)

gives a temperature profile nearly identical to the PC2, but also shows a closer match

with the DSMC results at the leading edge (the peak pressure being 21.3% over-

predicted w.r.t DSMC). In comparison with the experiment, both PC2 and PC3 give

better results for temperature far from the tip, while at the tip both over-predict the

temperature. Paradoxically, the standard model PC1 seems to give the best results

for pressure and temperature for this case.

However, for the important value of heat flux, Fig. 5.6(b), PC1 gives poor results,

while PC2 and PC3 give a very close match with DSMC. For the slip velocity and

friction heating rate, Fig. 5.6(a) and Fig. 5.6(c) respectively, the three models give

nearly identical results. No experimental results are available for these quantities for

this case as per the knowledge of the author. Overall, PC3 can be said to be as good

as PC2 in predicting this case.



114 5.9 Results and Discussion

+
++
+++

+
+
+
+
+
+

+

+
++++ +++++++++ ++ ++ +++ ++++ +++++ + + + ++ ++ ++ ++ ++ +

+

NonDimensional Distance, x/

S
u

rf
a

c
e

 g
a

s
 t

e
m

p
e

ra
tu

re
, 
T

(K
)

0 50 100 150 200 250
0

50

100

150

200

250

300

350

(Present Code)1

(Present Code)2

(Present Code)3

Experiment

DSMC+

(a) Surface gas temperature.

+
+

+

++++++++
++++++++++++ +++++ + + +++ ++++++ ++ + + +++++++++++++++++

++

Non-Dimensional Distance, x/

S
ur

fa
ce

 P
re

ss
ur

e,
 p

/p

0 50 100 150 200 250
0

1

2

3

4

5

(Present Code)-1
(Present Code)-2
(Present Code)-3
Experiment
DSMC+

(b) Surface pressure

Figure 5.3: Metcalf et al.’s case [160] Tw = 77K. Comparison of temperature and
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2—with the sliding friction using Eq. 5.8, 3—with the sliding friction and the pressure
jump BC using Eq. 5.8 and Eq. 5.12 respectively.
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Figure 5.5: Metcalf et al.’s case [160] Tw = 294K. Comparison of temperature and
pressure over the flat plate surface. 1 — without the sliding friction using Eq. 5.4,
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Figure 5.6: Metcalf et al.’s case [160] Tw = 294K. Slip velocity, wall heat flux and
shear work per unit area (measure of sliding friction) distribution over the flat plate
surface. 1 — without the sliding friction using Eq. 5.4, 2—with the sliding friction
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and Eq. 5.12 respectively.
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5.9.3 Case 3: Becker’s, M∞ = 12.7 and Tw = 292 K

For the third case of hypersonic flow over a flat plate [161], we consider Argon flow

with the free-stream Mach number of M∞ = 12.7 and temperature T∞ = 64.5 K. The

wall temperature is Tw = 292 K. The flow condition is detailed in Table 5.1. The

corresponding DSMC and experimental results are obtained from [152] and [161, 152]

respectively. The significance of this case is that the Mach number is high, the wall

temperature is high in comparison to the free-stream temperature and the fluid used

is mono-atomic. The bulk viscosity used in the definition of stress vector in the

Navier-Stokes equation is taken to be zero since the gas is mono-atomic [57]. The cal-

culated surface gas temperature and pressure are shown in Fig. 5.7(a) and Fig. 5.7(b)

respectively. We can see that the surface gas temperature using the Le temperature

jump boundary condition (PC2) comes closer to the DSMC results than the standard

model (PC1), especially at the leading edge. But, for the pressure, it clearly shows an

over-prediction (the peak pressure being nearly 270.6% over-predicted w.r.t DSMC)

at the leading edge, in comparison to both the experiment and the DSMC results.

Using the Le temperature jump + the pressure jump condition (PC3) corrects this

rise in the pressure with the results showing a closer match with the DSMC results at

the leading edge (the peak pressure being 28.5% over-predicted w.r.t DSMC). Model

PC3 also gives a closer match with the experimental result in comparison to PC1

and PC2. The results for the surface gas temperature are similar with both PC2

and PC3, i.e. the pressure jump condition does not alter the temperature prediction.

But unexpectedly, we find PC2 and PC3, although predicting the temperature at

the tip of the plate close to the DSMC, are clearly over-predicting the temperature

downstream (x/λ∞ ≥ 20) by a maximum of about 60%. As seen in first two cases, for

x/λ∞ ≥ 100, i.e. Kn ≤ 0.01, the DSMC and all the CFD results should have been

closer. Here, only the results of PC1 is only close to DSMC for the specified range.

Figure 5.8(a) and 5.8(b) show the slip velocity and heat flux at the wall. For slip

velocity, all the three CFD models give almost the same profile while PC1, neglecting

sliding friction, under-predicts the heat flux in comparison with PC2 and PC3. The

friction heating rate, Fig. 5.8(c) is almost identically predicted by all models, expect

at the tip where PC1 differs from PC2 and PC3.

We see in Case 3 that both jump conditions (PC2 and PC3) tend to give over-

prediction of temperature in comparison with the DSMC for the region of low Kn

over the flat plate while having a good agreement with the DSMC results in the
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high Kn regions. The reason for this probably stems from the fact that as the free-

stream Mach number is high giving rise to higher sliding friction resulting in higher

temperature prediction in this region. In the region of low Knudsen number (i.e. far

from the tip of the plate), in comparison to the previous two cases of lower Mach

number the value of the shear work per unit area (us · τw) is higher for this case at

around 4000 kgs−3 (see Fig. 5.8(c)) at x/λ∞ = 200 compared to the previous value

around 230 kgs−3. This indicates we may have to consider Knudsen number effect in

modeling sliding friction, i.e. the second term on the RHS of Eq. 5.8 and 5.14.

5.9.4 Convergence Study

To see the effect of using the Le temperature jump condition and the pressure jump

condition on the solution convergence we carry out a convergence analysis. All the

cases have shown similar convergence behavior for all the flow variables. Therefore,

we show here only the residual plot of pressure for the Case 1 for the three models,

i.e., PC1, PC2 and PC3. The Courant number is taken as 500 for all the cases (this is

acceptable for a false-transient computation of steady flow). The residual is calculated

as the root-mean-square value of the differences between the old flow solution and

the present flow solution over the entire flow-field, which is then normalized using the

maximum root mean square averaged residual of the first five iterations.

Figure 5.9 shows the normalized residual plot for the pressure for all the three

studies. We see that for all the three models it follows an almost monotonic decrease

pattern till they stall at the machine zero (∼ 10−12) in about 400 iterations. This

shows that the Le temperature jump boundary condition and the pressure jump

boundary condition do not affect the convergence rate of the computation.

5.9.5 Effect of ζ used for the pressure jump wall boundary

condition.

The quantity ζ is the ratio of the normal viscous stress to pressure in Eq. 5.10. It

is used in calculating the density and pressure at the wall and the corresponding

pressure jump of the fluid at the wall surface. As discussed earlier, Greenshields and

Reese have used ζ = 0 in their work. However, we have used a clipping for ζ such

that it always follow |ζ| ≤ 1 in Eq. 5.13. We have found that clipping ζ gives a stable

solution for the hypersonic flow over a flat plate. However, it is interesting to see the
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difference we get in the pressure prediction using the two models, i.e. ζ = 0 or clipped

ζ, because for other cases of rarefied high speed flows, such as flow over a cylinder,

assumed values in the range of −20 < ζ < −10 have been reported [53], which may

cause solution instability. For the three models studied we have found that only in

the Case 3, ζ values greater than 1 were observed, near the tip and very early in

solution. Figure 5.10 shows the effect of taking ζ = 0 and clipped ζ using Eq. 5.13 for

the three cases considered in this work, for the nonequilibrium boundary condition

PC3 (see Table 5.3). We see that for the first two cases, Fig. 5.10(a) and 5.10(b) of

M∞ = 6.1, there is little difference in the results for ζ = 0 and clipped ζ. But, for

the third case, Fig. 5.10(c) with M∞ = 12.7, we see there is a marked difference in

the solutions for ζ = 0 and clipped ζ, with later one giving a more accurate result in

comparison with the DSMC and experimental results. For the hypersonic flow over a

flat plate, our choice of clipped ζ seems more appropriate, as seen from these results.

There is no need to assume ζ = 0 to ensure stability as done by [53] at-least for the

type of cases considered in this chapter. However, we further examine whether using

clipped ζ or ζ = 0 gives more accurate and stable results in the subsequent chapters.

5.10 Closure

We have verified our numerical implementation of the Maxwell velocity slip, Smolu-

chowski and Le temperature jump condition with similar numerical implementations

in the literature. A comprehensive analysis of the Le temperature jump condition

has been carried out for three cases of hypersonic flow over a flat plate, and their

results are compared with experiments and DSMC, wherever available. It has been

found that the pressure is over-predicted in comparison with both the experiments

and DSMC when using the Le temperature jump condition. The use of a pressure

jump with the Le temperature jump condition is suggested as a possible remedy for

the pressure over-prediction. The inclusion of the pressure jump boundary condition

does not affect the prediction of other flow properties like the surface temperature,

slip velocity and heat flux. We have investigated the difference obtained in the param-

eter ζ, the ratio of normal viscous stress to pressure at the wall, being taken either as

zero or used with a clipping. We have found that the clipping done as per the criteria

described in this work gives stable and more accurate results for the hypersonic flow

over flat plate cases considered here. We will further examine the choice of ζ in the
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jump wall boundary condition for predicting the surface pressure. Comparison of
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respectively.) with the DSMC and experiment results.
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further chapters. It is also shown that the convergence is to machine zero and remains

unaffected by the non-equilibrium boundary condition used.

Also, we note that the temperature jump condition considering sliding friction

tends to over-predict the temperature in the region of low Kn over the flat plate in

comparison with the DSMC for the case of very high Mach number (∼ 12) flows. This

suggests we may have to consider a Knudsen number effect in modelling the sliding

friction part, i.e. the second term on the RHS of Eq. 5.8 and 5.14.

The most important finding of this chapter is to show that the pressure jump

boundary condition, which has been largely ignored, complements the Le temperature

jump condition by correcting the pressure prediction very significantly w.r.t. the

DSMC results without significantly changing the prediction of the other properties.

Also, we may have to reconsider the sliding friction concept in the light of more

fundamental considerations of gas-wall gas interactions. In the next chapter, we shall

extend the use of the Le temperature Jump and the pressure jump boundary condition

to the case of micro/nano flows, wherein the rarefaction is caused by the characteristic

length scale being of the order of the molecular mean free path. We will then further

investigate the application of these boundary conditions.





Chapter 6

Investigation of non-equilibrium

boundary conditions considering

sliding friction for micro/nano

flows

6.1 Overview

In the previous chapter, we used various non-equilibrium boundary conditions for

the case of hypersonic flow over a flat plate with different inlet conditions. It was

found that the Le temperature jump boundary condition should be complemented

with a pressure jump boundary condition at the wall. It was shown that an over-

prediction of pressure, especially at the leading edge of the flat plate, that is seen

when the Le temperature jump condition is used alone could be corrected by the

pressure jump condition. In this chapter we bring in the concept of sliding friction

for the various types of boundary conditions for nano/micro flows. We investigate

the proposed jump conditions for four cases: 1) a 90° bend microchannel pressure

driven flow, 2)a nanochannel backward facing step with a pressure driven flow, 3)

a nanoscale flat plate and 4) a NACA 0012 microairfoil. The results are compared

with the available DSMC results. Also, we demonstrate the capability of our low-

speed preconditioned density-based algorithm (Chapter 2) for rarefied gas flows. The

algorithm captured flows of even very low Mach number of 2.12 × 10−5. We now

observe that the improvement in the flow prediction on including the Le temperature

jump conditions is case-dependent. The use of the pressure jump condition along with
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Le temperature jump has been found to be helpful in improving the flow prediction

w.r.t. the DSMC results in some cases.

6.2 General Problem Setup

We study four different micro/nano flow test cases, which range from subsonic to

supersonic regimes with varying types of flow such as internal and external flow,

pressure-driven flow, flow with separation and reattachment, etc.. To solve the Navier-

Stokes equations at low speeds with a density-based solver we use the preconditioning

with Roe flux [9] (see Sec. 2.3.1.2). The time-stepping has been done implicitly using

LU-SGS (Sec. 2.4.2). The CFL number for all the cases is taken as 500. For each of

these cases, we use three different numerical models, labelled in Table 6.2, differing in

the boundary conditions used for the governing equations. The variable hard sphere

model (Eq. 2.10) is used for the viscosity computation, with the values of various

coefficients for different gases considered in this chapter being given in Table 6.1. It

can be noted that PC1 corresponds to the “Standard” model [59, 60, 58, 152], PC2 to

the Le temperature jump proposed in [62] and PC3 has the Le temperature jump and

the new pressure jump condition [53]. For PC1, the heat flux is computed using only

the Fourier law of heat conduction; while for PC2 and PC3, it is computed including

the sliding friction component Eq. 5.14. We evaluate if the use of the non-equilibrium

boundary conditions helps to improve the accuracy of the Navier-Stokes calculation.

6.3 Boundary and initial conditions

For the inlet and outlet, the characteristic boundary conditions based on Riemann

invariants are used [139, 8] (Sec. 2.5). At the wall, nonequilibrium boundary con-

ditions are applied (see Table 6.2). The values of σu = σT = 1 is used for all the

computations presented in this work. The uniform free-stream inflow condition is

used to set the initial conditions throughout the flow-field for the pseudo-transient

solution.



6.4 Results and Discussion 129

Table 6.1: Coefficients of transport properties of the different gases considered [92, 57].

Gas R (m2s−2K−1) γ ω̄ Tref (K) dref (m)
Argon 208.1 1.67 0.734 1000 3.595× 10−10

Nitrogen 296.8 1.40 0.7 290 4.110× 10−10

Air 287.0 1.40 0.77 273.0 4.19× 10−10

Table 6.2: Different studies performed based on the wall BC’s for velocity, tempera-
ture and pressure.

Label Velocity Temperature Pressure
PC1 Maxwell, Eq. 5.3 Smoluchowski, Eq. 5.4 Zero Normal Gradient
PC2 Maxwell, Eq. 5.3 Le temperature jump, Eq. 5.8 Zero Normal Gradient
PC3 Maxwell, Eq. 5.3 Le temperature jump, Eq. 5.8 Pressure Jump, Eq. 5.12

6.4 Results and Discussion

The four different cases considered are: 1) a 90° bend microchannel pressure driven

flow, 2) a nanochannel backward facing step with a pressure driven flow, 3) a nanoscale

flat plate and 4) a NACA 0012 Microairfoil. The results and a discussion of these

cases will be presented in this section.

6.4.1 Case 1: Pressure driven flow in a Microchannel with

90◦ bend

We consider here the case of a microchannel with a 90° bend, which is often en-

countered in MEMS gas flow. The schematic of the flow diagram is shown in the

Fig. 6.2(a). The gas used is Argon. Both legs of the channel have a length of

L = 7µm and width of w = 1µm. The pressure and temperature at the inlet are

taken as 2× 105 Pa and 300 K, respectively. At the outlet, the pressure is 66666 Pa,

while the temperature has a homogeneous Neumann condition. Based on the inlet

values the computed inlet mean free path is λ∞ = 3.58 × 10−8, using Eq. 5.2. The

velocity is also given a homogeneous Neumann condition at both inlet and outlet.

Non-equilibrium boundary conditions are imposed on the wall. The free-stream Kn

is 0.027. In the final solution, the Reynolds number at the inlet is 5.5 which is near

that of Stokes flow, a low Reynolds number flow. The mesh is chosen as hexahedral

with a total of 57600 cells, as taken in the reference study [156].

The grid chosen throughout in this chapter is based on the appropriate reference.

For the sake of completeness, we show here grid convergence for this case. A similar
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procedure is followed for other cases; but not reported here. Fig. 6.1 shows the grid

independence and the convergence study for the case of pressure driven microchannel

using PC1. Three meshes are considered: Mesh 1 with 14, 400 cells (225×30, 30×30

and 225× 30); Mesh 2 with 32, 500 cells (300× 50, 50× 50 and 300× 50) and Mesh

3 with 57, 600 cells (450 × 60, 60 × 60 and 450 × 60). Fig. 6.1(a) shows that for

Mesh 2 and Mesh 3 the results are almost grid independent. Also, all the grids show

convergence up-to machine zero (see Fig. 6.1(b)). Similar convergence rates were

observed with PC2 and PC3. Based on this, the grid chosen for the case of pressure

driven flow in a microchannel with 90° bend is Mesh 3.

The corresponding DSMC results are obtained from references [163, 164, 156].

The PC3 results were run with ζ = 0 in Eq. 5.10.

Figure 6.2(b) shows the Mach number contour (it is similar for all the three cases

PC1, PC2 and PC3) with velocity streamlines. The maximum Mach number achieved

by the flow is 0.313, which matches well the DSMC solution of 0.337 [164], and a

minimum Mach number of 2.12 × 10−5 which has been captured quite efficiently.

We can see that no flow separation was found at the corner, which is expected in

near-Stokes flow. A similar situation was observed by a reference study [163].

Figure 6.3(a) and 6.3(b) show the Mach number and normalized pressure along

the centerline of the channel. Pressure is normalized using the pressure specified at

the outlet (i.e. 66666 Pa), and the x-axis shows the distance along the lower wall of the

microchannel normalized with its length. The match with the DSMC [164] results

are good. All the three model give the same profile, with the pressure gradually

dropping from inlet to outlet and Mach number increasing with a dip at the bent.

At the bend, the compressibility effects caused by a reduction of the gas velocity in

the flow direction due to the sudden change of the geometry leads to a dip in Mach

number which causes a jump in the pressure value. In the literature, a similar trend

has been observed for the pressure and Mach number (expressed in terms of velocity)

for flow through a 90° bend microchannel using the lattice Boltzmann method [165]

and experimental results [166] for a different set of boundary conditions.

Fig. 6.4(a) and Fig. 6.4(b) shows the comparison of shear stress distribution and

the slip velocity profile at the lower wall of the bend obtained from the three cases,

with the DSMC results [156]. All the three boundary condition models nearly identical

results with an overall good match with the DSMC results, properly capturing of the

significant jump at the bend location. Figure 6.4(c) and 6.4(d) shows the computed
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shear work per unit area (wall shear stress × slip velocity) and the temperature using

the three models. We can see that with the use of Le temperature jump condition,

in PC2 and PC3, the temperature predicted is higher, especially in the second leg

of the microchannel. The reason being the value of friction heating rate is large

(2 × 105) near the outlet. For this case, we see the all the three models, PC1, PC2

and PC3 give the same profile for all the flow variables, except temperature. The

results for the temperature at the wall is not available from DSMC. But, considering

the studies done earlier [62, 69], we expect that the temperature profile predicted by

PC2 and PC3 will be closer to the DSMC results. Figure 6.5 shows the temperature

profile, computed using the three cases, along the channel centerline. We can observe

that the drop in temperature along the centerline is more compared with that along

the lower/right wall (Figure 6.4(d)). Gavasane et al. [167] in their recent study

of microchannels using DSMC has also obtained a similar pattern (refer Fig. 2(e)

of [167]) wherein they observe a larger drop in the temperature along the channel

centerline compared with that along the bottom wall for flow with inlet Kn = 0.0311

(here, our inlet Kn = 0.027).
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6.4.2 Case 2: Pressure driven flow over a backward facing

step in a Nanochannel

Another case we have chosen to study is the backward facing step, which is a typical

geometry utilized in nano-/micro devices [168]. The size of the channel is nanoscale,

and the objective of this case is to show how the three boundary condition set (Ta-

ble 6.2) affects the flow behaviour when the flow is characterized by separation and

reattachment, and change of flow cross-sectional area.

The schematic of the flow diagram is shown in Fig. 6.6(a). We have considered the

flow of Nitrogen with the inlet pressure of P = 31.077 MPa and temperature T∞ = 500

K. The wall temperature is given as Tw = 300 K. At the outlet, the pressure is 15.53

MPa, while the temperature is given a homogeneous Neumann condition. The velocity

is also given a homogeneous Neumann condition at both inlet and outlet. Based on

the freestream values, the computed free-stream mean free path is λ∞ = 3.48× 10−10

m, using Eq. 5.2. Non-equilibrium boundary conditions are imposed on the wall. The

mesh is chosen as hexahedral with a total of 20400 cells, as in the reference [156].

The free-stream Kn is 0.025. The length of the upper wall of the channel is taken

as L = 85.47 nm. The corresponding DSMC results are obtained from references

[168, 156]. The PC3 results were run choosing ζ = 0 in Eq. 5.10.

For all the three boundary condition (Table 6.2) we obtain nearly identical internal

flow, with the Mach number contour as shown in Fig. 6.6(b). The minimum Mach

number achieved is 0.0003092 which has been captured successfully by our low-speed

preconditioned density-based solver. The maximum Mach number obtained is 0.65,

subsonic flow.

Figure 6.7 shows the distribution of various flow properties along the surface of

the lower wall after step (wall-3) with PC1, PC2 and PC3. The x-coordinate is

normalized using the length of wall-3. The temperature increases in the recirculation

region at the beginning of wall-3 and then gradually decreases along the wall, following

an almost similar profile for all the computations, as seen in Fig. 6.7(a). The peak

temperatures are 302.90 K, 302.96 K and 302.98 K respectively for PC1, PC2 and

PC3, as compared to the DSMC results of 307 K. The small deviation in the results

for PC1, PC2 and PC3 shows that the term of sliding friction in the Le temperature

jump equation, Eq. 5.8, must have a negligible contribution. This also can be seen

from the plot of computed shear work per unit area (wall shear stress × slip velocity)

as shown in Fig. 6.7(d). The value of us · τw is in the range of 0−9×106 kg.s−3 which
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when multiplied with the mean-free-path (of order 10−10 m) gives the sliding friction

term in Eq. 5.8 of the order of 10−1. So, although the shear work per unit area is

very high, it fails to contribute significantly to the temperature calculation because

of the small length scales involved.
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step).

It is also observed that all the three sets of boundary conditions give near-identical

results for pressure (see Fig. 6.7(b)), with pressure being closer to the DSMC results

in the region far from the recirculation zone. The same holds for the slip velocity

(see Fig. 6.7(c)). The reattachment length calculated from PC1, PC2 and PC3 is

around 11.30 nm, whereas from the DSMC it is 17.9 nm. The heating gas molecules
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in the DSMC computation has more energy (and larger momentum) to jump over the

recirculating region. This results in larger separation regions [156]. Also, for theKn =

0.025 case considered, the effect of momentum (which causes separation) is larger

compared with the diffusion (which suppresses separation) due to the rarefaction

effect, thus flow separation is observed in this case [167]. This can be seen by the larger

magnitude of velocity for the DSMC results in the separation region (see Fig. 6.7(c)).

Overall, we may conclude that CFD does not do a very good job of predicting

flow properties in recirculating nano-flows in the slip flow regime, whatever model is

used.

6.4.3 Case 3: Nanoscale flat plate

Inlet

  L0.1L
Wall(Jump & slip 

boundary condition)

Symmetry Plane

(Inviscid Wall)

Outlet

Outlet

Shock Wave

Boundary Layer

Figure 6.8: Nanoscale flat plate problem (L=100 nm).

We now consider the case of the supersonic flow of Argon over a nano-scale flat

plate of length L=100 nm. The free stream flow conditions are P∞ = 4.14× 107 Pa,

T∞ = 300 K, M∞ = 4.38 and Kn∞ = 0.0013. The height of the flow domain is taken

as 75 nm for performing the computation. The schematic of the flow domain is shown

in Fig. 6.8. Based on the freestream values the computed freestream mean-free-path

is λ∞ = 1.97×10−10, using Eq. 5.2. We have considered a grid of 113×74 cells which
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is similar to the one considered in the reference [169] after a grid convergence study.

The grid spacing near the wall is taken as 0.01 nm (∼ 0.1λ∞), with an expansion

coefficient of 1.016. Bi-geometric hexahedral elements are used. The corresponding

DSMC results are obtained from references [169, 170].

Figure 6.9(a) and 6.9(b) shows the temperature and tangential velocity profile at

x = 80 nm from the plate tip. The results are in reasonable agreement with the

DSMC results [169]. The three boundary conditions gave nearly identical results. A

local extrema can be observed in both temperature and velocity at the distance of ∼
26 nm from the wall. This is due to the diffusive shock wave formed at the leading

edge of the flat plate. Figure 6.10 shows the shock formed which is diffusive due to

the rarefied conditions. Because of the high Mach number, the shock wave is close to

the plate surface and thus has its effect in the downstream of the flow even at x = 80

nm.

Figure 6.11 shows the distribution of various flow properties along the surface of

the plate. For temperature (see Fig. 6.11(a)), PC2 and PC3 shows a close match

with the DSMC results throughout the plate. But for pressure (see Fig. 6.11(b)),

we see that PC2 over-predicts pressure at the tip of the plate by 72% w.r.t. the

DSMC results, whereas PC3, i.e. the Le temperature jump + pressure jump boundary

condition corrects this anomaly by predicting a better match (10%) for pressure at

the start of the plate. However, the maximum error in pressure w.r.t. to the DSMC

results away from the tip of the plate is 15%, 12.66%, 21.1% respectively.

For the slip velocity (see Fig. 6.11(c)) the results are similar for all the three

cases and very close to the DSMC. Figure 6.11(d) shows the heat flux coefficient plot

over the plate surface. The heat flux used for calculation includes the sliding friction

component, i.e. Eq. 5.14, for PC2 and PC3. At the tip of the plate, PC2 and PC3

get a slightly closer match of Ch as compared to PC1, but significant differences exist

with the DSMC results.

Overall, PC2 and PC3 results are closer to the DSMC results than PC1, but not

by much.

6.4.4 Case 4: NACA 0012 Microairfoil

The rarefied gas flows around a micro NACA 0012 is an appropriate starting point for

studying the aerodynamic features of a micro vehicle [171]. The airfoil chord length,

c′ is taken as 4 cm and has been extensively studied previously by various researchers
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Figure 6.9: Flow profile at x = 80 nm from the plate tip.
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Figure 6.11: Variation of various flow properties along the surface of the flat plate.
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[172, 171, 173]. The NACA 0012 profile is obtained using the following expression

[174]:

y
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Figure 6.12: Schematic of flow domain.

where c is the chord length, c′ = 4 cm; x is the position along the chord (0 ≤ x ≤ c′),

y represents the airfoil profile at the given x. The flow domain is shown in Fig. 6.12.

The mesh used is adapted from previous studies [173, 62], with 600 cells on the

airfoil surface and a total of 106798 cells in the whole flow domain. The value of

L and H is taken as 6c and 3c respectively. The freestream condition is taken as

P∞ = 2.78443Pa, M∞ = 2.0, U∞ = 509.0 m/s, T∞ = 161 K, Tw = 290 K and

Kn∞ = 0.026. The working gas considered is air, with the flow around the airfoil

taking at angle of attack of 10°. Based on the freestream values the computed free-

stream mean free path is λ∞ = 1 × 10−3, using Eq. 5.2. The corresponding DSMC

results are obtained from references [173, 62].

This case was presented earlier by Le et al. [62] when they introduced the Le

temperature jump condition. They ran the case with zero gradients of pressure at

the wall, i.e. PC2. Here, we also run the case with pressure jump condition, i.e. PC3,

and compare the results for other quantities also, apart from temperature and heat

flux. The influence of three boundary conditions (Table 6.2) is studied. The PC3

results were run with choosing ζ = 0 in Eq. 5.10.

Figure 6.13, 6.14, 6.15 and 6.16 shows the comparison of temperature, surface

pressure coefficient, Cp, slip velocity and heat flux distribution along the lower and
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upper surface of the airfoil with the DSMC results. Figure 6.13(a) and 6.13(b) show

clearly that inclusion of sliding friction term in temperature jump equation, Eq. 5.8,

helps to improve the temperature prediction (PC2 and PC3) w.r.t. the DSMC results.

While on the lower surface PC2 and PC3 results are almost identical, at the upper

surface PC3 results are closer to the DSMC. The plot of Cp along the surface of airfoil

(see Fig. 6.14(a) and 6.14(b)) give almost the same result, close to DSMC, for all the

three cases.

Fig. 6.15(a) and 6.15(b) shows the plot of normalized slip velocity (the X-velocity

at the surface is normalized with freestream velocity U∞). For the lower surface, all

the three cases give almost identical results, but for the upper surface, PC3 is closer

to the DSMC results. Heat flux prediction shows that the inclusion of sliding friction

component in the heat flux calculation Eq. 5.14 improves the prediction w.r.t. the

DSMC results for both the upper and lower airfoil surfaces, as also reported by Le

[62].

6.5 Closure

In this chapter, we have investigated various cases of micro/nano flows ranging from

low speed to high speed using three different sets of boundary conditions respectively

labelled as PC1, PC2 and PC3 (Table 6.2). Some important findings of this chapter

are:

1. The inclusion of sliding friction while calculating the temperature jump at the

wall helps to improve the temperature prediction of the CFD code in comparison

with the DSMC results, which are considered most accurate in simulating non-

equilibrium gas flows.

2. The sliding friction component contribution depends on parameters such as slip

velocity at the wall and also on the mean-free path of the gas. For the case

of pressure-driven flow through the 90° bent microchannel and micro-airfoil,

we can see (Fig. 6.4(d), 6.13(a) and 6.13(b)) that the temperature computed

using PC2 and PC3 (wherein the Le temperature jump condition is used) had

marked differences to PC1 (i.e. standard temperature jump condition). But,

for the case of pressure-driven backward facing step nanochannel, the overall

contribution of the sliding friction component was small, as the mean free path

(λ∞) of gas was in the scale of Angstroms (∼ 10−10m). Thus, in this case, we
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Figure 6.13: Variation of temperature along the lower and upper wall of the airfoil.
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Figure 6.14: Variation of surface pressure coefficient along the lower and upper wall
of the airfoil.
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Figure 6.15: Variation of slip velocity distribution along the lower and upper wall of
the airfoil.
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did not observe any significant change in the temperature predictions of PC2

and PC3 in comparison with PC1 (Fig. 6.7(a)). In the case of the nano flat-

plate, although again λ∞ ∼ 10−10, the shear stress component and slip velocity

at the tip of the plate are very large, so the sliding friction caused a marked

improvement at the tip of the plate both for the temperature and Ch (Fig. 6.11).

Thus, the effect of the sliding friction component is dependent on the mean-

free-path of the gas, shear stress and the velocity of the flow. This shows that

improved prediction of the thermodynamic quantities is case-dependent. We

may also need to include other non-equilibrium effects in the CFD modelling to

properly capture the non-continuum phenomena.

3. We have also incorporated the pressure jump boundary condition, which is

generally ignored, and have found it to complement the Le temperature jump

boundary condition (PC3). It corrects the pressure, which when using the Le

temperature jump condition alone, tends to be over-predicted as seen in the

case of nano flat plate (Fig. 6.11(b)). In the case of the micro airfoil, it was

shown to improve the prediction of temperature and slip velocity on the upper

surface of the airfoil (Fig. 6.13 and 6.15). However, the PC2 (the Le temperature

jump) and PC3 (the Le temperature jump + pressure jump) show no marked

difference for the case of 90° bent microchannel and pressure-driven backward

facing step nanochannel.



Chapter 7

Effect of rarefaction in hypersonic

computation using two different

convective schemes - Roe and

modified SLAU2

7.1 Overview

Numerical computation of hypersonic flows over blunt bodies is challenging due to

the difficulty in robust and accurate wall heat flux prediction and proper capturing of

shock waves free from the “carbuncle” phenomenon. The SLAU2 convective scheme

was proposed to suppress the shock anomalies found in capturing strong shocks.

Still, for certain cases, it has been reported to lack accuracy. We now suggest a

modification to the SLAU2 scheme based on altering the definition of the interfacial

speed of sound used within the computations. Also, these convective schemes in the

authors’ knowledge, have not yet been tested for the rarefied flows which we have seen

in previous chapters. In this chapter, we also study how the shock anomalies found in

the continuum hypersonic flows behave with the degree of rarefaction. We perform the

numerical simulation of hypersonic viscous flow over a cylinder at Mach 8 and 16.34

at different Knudsen numbers. We carry out the study using the modified SLAU2 and

the classical Roe schemes. It is found that the modified SLAU2 captures the shock

free from the shock anomalies at all Kn, while the Roe scheme lacks robustness for

Kn . 10−3. The variation of different flow properties such as heat flux, wall shear

stress and the Mach number is investigated. The peak heating value was observed to
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decrease with the degree of rarefaction.

7.2 General Problem Setup

In this chapter, the convective term of Eq. 2.15 is discretized using two different

schemes – modified SLAU2 (to be discussed in Sec. 7.4) and the Roe (Sec. 2.3.1.1)

schemes. The Roe scheme is used with an entropy fix with tunable factor taken as

δ = 0.08 (Eq. 2.31). The Venkatakrishnan limiter [116] is used. The time-stepping has

been done implicitly using LU-SGS (Sec. 2.4.2). The CFL number for all the cases is

taken as 200. All the simulations in this chapter are done using a parallel code based

on the message passing interface (MPI) which has been developed for the present

in-house solver by Nived [175]. METIS is used for the domain decomposition. The

laminar perfect gas law is used throughout this work with the working gas taken as

Nitrogen (R = 296 m2s−2K−1 and γ = 1.4). All the computations in this chapter have

been performed without preconditioning. The reason for this is that preconditioned

Roe scheme (Sec. 2.3.1.2) is known to suffer from shock instabilities at high Mach

number [85]. We have observed the similar instabilities with the preconditioned Roe

in our recent work [176].

7.3 Boundary and initial conditions

For the inlet and outlet, the characteristic boundary conditions based on Riemann in-

variants are used [139, 8] (Sec. 2.5). At the wall, the Maxwell velocity slip, Eq. 5.3, and

Smoluchowski temperature jump, Eq. 5.4, boundary condition is applied. Pressure

is given a homogeneous Neumann condition at the wall. The values of σu = σT = 1

(Eqs. 5.3 and 5.4) is used for all the computations presented in this work. The uni-

form free-stream inflow condition is used to set the initial conditions throughout the

flow-field for the pseudo-transient solution.

7.4 Modified SLAU2

In the SLAU2 scheme, as discussed in Sec. 2.3.1.3, the dissipation term of the pressure

flux (third term in RHS of Eq. 2.40) is made proportional to the Mach number in

order to feed the strong shock with adequate dissipation. This was intended to allow
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Figure 7.2: Heat flux prediction using SLAU2 and M-SLAU2 for two Mach numbers.
The heat flux at the surface of wall is plotted over the whole half cylinder. We have,
however, shown the variation at the top and bottom of the cylinder together in order
to observe the presence of asymmetry, if present.
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for the proper capture of the shock. But as noted by Kitamura et al. (see Fig. 11 of

[12]) SLAU2 still showed a “wavy” pattern in the heating profile. We also observed

in the hypersonic flow over a cylinder1 (see Figure 7.1) discussed above, asymmetry

and lack of accuracy in the heating prediction for the case of Mach number of 8.0 and

16.34 in comparison with the experimental results of Holden [177], as can be seen from

the Figure 7.2. Kitamura et al. [12] have discussed the effect of various definitions of

the interfacial speed of sound (c1/2) given in the literature for the accurate capturing

of the normal shocks. They finally used the expression involving arithmetic average,

Eq. 2.41, which we rewrite here again as Eq. 7.1:

c1/2 =
cL + cR

2
(7.1)

Another definition of c1/2 which they had found to be robust for accurate capturing

of normal shocks (in the 1D and 1.5D steady normal shock tests [12, 78]) was the one

used by AUSM+-up scheme [178], given by Eq. 7.2:

c1/2 = min(c̃L, c̃R) , c̃L/R =
c∗2

max(c∗, |V ±n |)
, c∗2 =

2(γ − 1)

(γ + 1)
H (7.2)

However, this too gives the same issues of inaccurate heat flux prediction. We

have modified the definition of c1/2 given by Eq. 7.2 in the following manner:

c1/2 = max(c̃L, c̃R) , c̃L/R =
c∗2

min(c∗, |V ±n |)
, c∗2 =

2(γ − 1)

(γ + 1)
H (7.3)

Using Eq. 7.3 for c1/2 with the SLAU2 scheme explained in Sec. 2.3.1.3, which we

will now on refer to as the modified SLAU2 (M-SLAU2), we obtain a more accurate

and symmetric heating profile for the case of hypersonic flow over a cylinder. The

complete formulation of M-SLAU2 is also summarized in Appendix A. Figure 7.2

shows the heat flux prediction for the case of hypersonic flow over cylinder using

SLAU2 and M-SLAU2 for Ma∞ = 8.0 and Ma∞ = 16.34. It can be seen that

for Ma∞ = 8.0 (Fig. 7.2(a)), while SLAU2 has shown an asymmetry in the shock

prediction at the nose of the cylinder, it is nearly absent for M-SLAU2. For Ma∞ =

16.34 (Fig. 7.2(b)), SLAU2 has shown under-prediction in heating at the nose of the

cylinder while M-SLAU2 has shown a more accurate prediction in comparison with

the experimental data [177]. A reason for this is the Eq. 7.3 yields a larger value of

1The case is described in detail in the result and discussion section, Sec. 7.5.
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c1/2, and thus adds a larger amount of dissipation for capturing the shock, through

the RHS third term of Eq. 2.40. However, the M-SLAU2 still captures the boundary

layer accurately (see Fig. A.2), which is generally a problem for the more dissipative

convective schemes, like HLLE [179] as shown in the references (see Fig. 8 of [12]). In

Appendix A, we have shown that with the present modification the results are same

for the subsonic and transonic flows as obtained using the original SLAU2 scheme.

In order to avoid the code from “blowing up” for the case of low Mach numbers,

where the contravariant velocity (Vn) may go to zero, in Eq. 7.3 we add a small term

(= 10−30) in the denominator of the expression c̃L/R = c∗2

min(c∗,|V ±n |)
.

7.5 Results and Discussion

We perform the aeroheating computation using the 2D cylinder case considered by

Holden et al. [177] for their experimental study. Figure 7.1 shows the flow domain and

the mesh used for the computation. The cylinder radius is taken as 38.1 mm. At the

inlet, the freestream Mach number, pressure, temperature and Reynolds number per

unit length are taken as 8.0, 855 Pa, 125.07 K and 4.72×106 to match the experiment

inflow data. The wall temperature is taken as 294 K. A hexahedral mesh is used for

the computation with 10000 cells. The grid is clustered near the wall where the shock

occurs, with 76 nodes in the normal distance of 22 mm from the cylinder surface.

The stretching factor is taken as 1.2 near the wall in the direction normal to it.

In all the computation done here, the flow variables such as heat flux at the wall

are plotted over the whole half cylinder. We have, however, shown the variation

at the top and bottom of the cylinder together in order to observe the presence of

asymmetry, if present.

7.5.1 Grid Sensitivity study

A grid sensitivity study is done using four different grids (with previously described

input mesh) with different first grid spacing, which is an important determinant of

accuracy for hypersonic flow computations in the continuum regime. The objective

is to observe how the Roe and M-SLAU2 scheme behaves and to see if we can obtain

the grid which gives results free from shock instability and shock oscillations. The

first grid spacing is taken as 1) 1 × 10−5 m, 2) 1 × 10−6 m, 3) 5 × 10−7 m and 4)

2× 10−7 m, respectively. Grid spacing considered in grids 1,2 and 4 are the same as
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taken by Gao et al. [77]. Figure 7.3 shows the wall heat flux computed using the

Roe and M-SLAU2 scheme. We observe that the Roe scheme gives a solution which

is asymmetric and inaccurate for all the four grids, with the fourth grid being most

close to the experimental data. The M-SLAU2 scheme for the grid spacing of 2×10−7

m gives a solution which is symmetric over the cylinder and has the least solution

oscillations. Xiang et al. [180] have suggested the use of a grid Reynolds number2

of less than 10 in the heat flux simulation. The spacing of 2 × 10−7 m gives a grid

Reynolds number of 1 for the case considered with M∞ = 8.0. We have taken the

grid with the first grid spacing of 2 × 10−7 m for all the cases in this work. For all

the cases considered below the grid Reynolds number has always been ≤ 1.

Here, the superiority of the M-SLAU2 scheme is shown based on the use of current

input parameters. We further analyze on the 4th grid how with the rarefaction, two

scheme behaves. We check the similarity in the obtained solution from both the

schemes. The shock capturing capability without shock instabilities and oscillations

is analyzed, and the numerical behavior at a different Mach number is studied for

both the scheme.

7.5.2 Effect of Rarefaction

In this section, we carry out a parametric study wherein we vary the pressure which

in turn changes the Knudsen number. Thus, we carry out the various simulations

at different Kn. Also, we carry out the study at two different Mach numbers 8 and

16.34. The different cases considered are listed in Table 7.1. For case A1 and B1 the

heat flux results are compared with the experimental results [177]. The cases A5 and

B4 have Kn > 0.1 where the CFD computation with the slip boundary condition is

known to be inaccurate but are included to observe, at least qualitatively, the results

at such high Kn [81]. We have included a separate study as Appendix B wherein we

study case B using the Le temperature jump, Eq. 5.8 and the pressure jump condition,

Eq. 5.12.

7.5.2.1 Heat Flux

Figure 7.4 and 7.5 show the heat flux value plotted over the wall using the Roe and

M-SLAU2 schemes for Mach numbers of 8 (case A) and 16.34 (case B), respectively.

2Recell = ρ∞V∞∆l
µ∞



158 7.5 Results and Discussion

 ( )

Q
w
(1

0
5
 W

/m
2
)

0 20 40 60 80

2

4

6

8

10
10

5
 m

10
6
 m

5 10
7
 m

2 10
7
 m

Experiment

(a) Roe

 ( )

Q
w
(1

0
5
 W

/m
2
)

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10
5
 m

10
6
 m

5 10
7
 m

2 10
7
 m

Experiment

(b) M-SLAU2

Figure 7.3: Grid independence study using four meshes with different first grid point
spacing.
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Table 7.1: Different cases considered for the parametric study.

Cases M∞ T∞ (K) Tw(K) P∞ (Pa) λ∞ (m) Kn

A

1

8 125.07 294

801.5 2.51× 10−6 6.60× 10−5

2 80.15 2.51× 10−5 6.60× 10−4

3 8.015 2.51× 10−4 6.60× 10−3

4 0.8015 2.51× 10−3 6.60× 10−2

5 0.08015 2.51× 10−2 6.60× 10−1

B

1

16.34 52 294.4

82 6.15× 10−6 1.62× 10−4

2 8.2 6.13× 10−5 1.61× 10−3

3 0.82 6.13× 10−4 1.61× 10−2

4 0.082 6.13× 10−3 1.61× 10−1
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We observe that the heat flux value decreases with the increase in Knudsen number

due to an increase in the degree of rarefaction. However, while the M-SLAU2 scheme

shows a symmetric and no oscillatory behavior, the Roe scheme, especially at the

nose of the cylinder, shows asymmetry and oscillations in the heat flux prediction for

the case A1, Kn = 6.16E−5 and A2, Kn = 6.16E−4 (see Fig. 7.4(a)) and for the

case B1 Kn = 1.59E−4 (see Fig. 7.5(a)). By asymmetry, it means that the solution

over the cylinder should have symmetry, and the plot over the up and down wall

should be symmetric. It is observed from both the cases that for free-stream Kn of

the order 10−3 and higher, both the Roe and M-SLAU2 scheme shows a stable and

symmetric heat flux prediction. This Knudsen number belongs to the non-continuum

regime (Kn > 10−3). In this regime, both M-SLAU2 and Roe scheme gave the same

solution. However, at lower Kn they behave differently.

For the case A1 and B1 the results are also compared with the experimental data

[177]. It can be seen that at both the Mach numbers, M-SLAU2 give an accurate

match, while due to the shock instabilities and oscillations the Roe scheme fails to

give a good match, especially, at the nose of the cylinder. It is to be noted that, at

the higher Mach number (case A) the predicted heat flux is higher compared to the

case of lower Mach number (case B) for all the Knudsen numbers.

With the increase in Kn, the heat flux value decreases except where the shock

instabilities are higher (see Fig. 7.4(a)). In both case A and B, we observe that the

decrease in heat flux prediction with rarefaction is less from case 2 to 3, but it is large

from case 3 to 4. Thus, the heat flux decreases faster with increasing order of Kn.

In the case of the higher Mach number (case B), from case B2 to B3 the decrease is

almost negligible for angle / 60°. The reason being the shock is clearly detached and

thin for angle / 60° for the case B3 (see Fig. 7.9, Sec. 7.5.2.3). However, for the case,

B3 for angle ' 60°, the shock thickness begins to increase, and the shock tends to

diffuse and stick to the surface. Thus there is a decrease in the heat flux value when

compared to B2.

7.5.2.2 Wall Shear Stress

Figure 7.6 and 7.7 show the wall shear stress plot over the cylinder surface using the

Roe and M-SLAU2 schemes, for the case A and B respectively. It is observed again

that asymmetry and oscillations are found at Kn < 10−3 in the predicted solution

when using the Roe scheme. However, M-SLAU2 gives a smooth prediction for all
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Figure 7.4: Heat flux prediction at different Knudsen number for the case A (M∞ =
8.0).
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Figure 7.5: Heat flux prediction at different Knudsen number for the case B (M∞ =
16.34).
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the Kn. For M∞ = 8.0, the overall wall shear stress predicted is higher for low Kn.

Due to the increase in rarefaction (increasing Kn), the magnitude of the wall shear

stress over the cylinder reduces. For Kn > 10−3, both Roe and M-SLAU2 give the

same result.

For the case B2 (lower Kn, thus less rarefaction), the predicted wall shear stress

shows a higher value for τw for angle / 60° and a lower value for angle ' 60°, when

compared with the case B3 (higher Kn, thus more rarefaction). However, from B3 to

B4, there is an overall and significant decrease in wall shear stress, due to increased

rarefaction.

7.5.2.3 Contours of Mach number

Figure 7.8 and 7.9 show the Mach number contour, using Roe and M-SLAU2 scheme,

for the case A (M∞ = 8.0) and B (M∞ = 16.34), respectively. It can be seen that with

the increase in rarefaction, i.e. Kn, the shock standoff distance reduces and the shock

becomes attached to the surface of the cylinder. It is also noteworthy that the width

of the shock increases with rarefaction. In the case A1 and A2 the shock is clearly

detached and thin. However, in A3, at the nose region, the shock is detached, but the

shock begins to diffuse away from the nose, finally getting attached to the surface.

A similar pattern is observed in the case B, with B4 showing three phenomena –

the shock is detached at the nose, the shock width tends to increase away from the

nose, and the shock then gets attached to the surface. Thus, it is observed that with

increasing Kn the shock becomes attached to the surface of the cylinder – to the

degree that for the case A5 and B4, the shock almost diffuses completely at an angle

of 90°.

The shock thickness in the case B for higher Kn is thinner as compared to case

A. The hypersonic solution in these cases depends not only on the Knudsen number

but also on the Mach number. With the increasing Kn, the shock will become more

diffuse (thick) while with larger Mach number the shock becomes thin. For the same

reason, we found that there is a non-uniform effect of increasing Kn on wall heat flux

(Sec. 7.5.2.1) and wall shear stress (Sec. 7.5.2.2) for the case A and B.

For Kn & 10−3 (A3, A4, A5, B2, B3 and B4), both Roe and M-SLAU2 scheme

gives a smooth and same Mach number contours. However, for Kn . 10−3 (A1, A2

and B1), the Roe scheme shows shock instability and shock oscillations, especially

near the nose. The M-SLAU2 scheme, for both cases A and B, for all Kn is free from
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Figure 7.6: Wall Shear stress prediction at different Knudsen number for the case A
(M∞ = 8.0).
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Figure 7.7: Wall Shear stress prediction at different Knudsen number for the case B
(M∞ = 16.34).
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shock instability and oscillations.

3. P = 8.015 Pa
     Kn= 6.60e3

1. P = 801.5 Pa
     Kn= 6.60e5(a)

2. P = 80.15 Pa
     Kn= 6.60e4

4. P = 0.8015 Pa
     Kn= 6.60e2

5. P = 0.08015 Pa
     Kn= 6.60e1

(b)

Figure 7.8: Mach number line contour using (a) Roe and (b) M-SLAU2 scheme at
different Knudsen number for the case A (M∞ = 8.0).

7.5.2.4 Peak Heating on the Surface of the Cylinder

Table 7.2 shows the peak heating value on the surface of the cylinder computed using

the Roe and M-SLAU2 schemes for the cases A and B. For the cases A1 and B1 the

results are also compared with the available experimental results. For the case A,

the peak heating value computed using the Roe scheme is over-predicted by 105.34%,

while for the M-SLAU2 scheme it is over-predicted only by 0.52%. For the case, B,

the peak heating value is over-predicted by 77.99% with the Roe scheme and under-

predicted by 11.8% by M-SLAU2. In both cases, M-SLAU2 gave a closer match with

respect to the experimental data. The larger error with the Roe scheme is due to the

generation of shock instabilities at the nose as seen from Figures 7.4(a), 7.5(a), 7.8(a)

and 7.9(a). It is noted with the increase in Kn; the peak heating value decreases due

to the increase in rarefaction. Rarefaction effects decrease the amount of collision of

the gas molecules with the surface, which thus reduces the amount of surface heating

by the molecular collisions.
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(a)
1. P = 82 Pa
   Kn= 1.62e4

3. P = 0.82 Pa
   Kn= 1.61e2

4. P = 0.082 Pa
   Kn= 1.61e1

(b)

2. P = 8.2 Pa
   Kn= 1.61e3

Figure 7.9: Mach number line contour using (a) Roe and (b) M-SLAU2 scheme at
different Knudsen number for the case B (M∞ = 16.34).

Table 7.2: Peak heating computed using various cases considered. A1 and B1 exper-
imental results [177] is also tabulated.

Heat Flux (105 W/m2)
Case Roe M-SLAU2

A

1 (4.60e5 [177]) 9.44643 4.62406
2 2.21533 1.46182
3 1.09442 1.2600
4 0.47697 0.47696
5 0.02475 0.02473

B

1 (6.26e5 [177]) 11.142 5.51256
2 2.33321 2.29541
3 1.97081 1.99649
4 0.15010 0.15004
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It is to be noted again that at higher Kn both Roe and M-SLAU2 scheme perform

almost identically.

7.6 Closure

In this chapter, we have proposed a modification to the SLAU2 convective scheme

and have shown this to be more accurate in capturing strong shocks for the case of

hypersonic flow over the cylinder. We have then further compared the solutions for

viscous hypersonic flow over a cylinder using the M-SLAU2 and Roe schemes. A

parametric study is carried out of the effect of rarefaction on various flow properties

at the two different Mach numbers of 8.0 and 16.34. The following conclusions are

drawn from this work:

1. Modified SLAU2 has given a better prediction of shock strength just by alter-

ing the interfacial speed of sound to add more dissipation as compared to the

original SLAU2 scheme. And it also does not degrade the prediction at the sub-

sonic or transonic regime. It captures the boundary-layer as well as the original

SLAU2 scheme, which is generally a problem for highly dissipative convective

schemes. Also, in future we hope the modification suggested here will be ap-

plied to other AUSM schemes, to test how they behave with it against shock

anomalies.

2. Solutions of hypersonic flow over a cylinder are grid-sensitive.

3. The M-SLAU2 scheme provides a smooth solution free from shock instabilities

and shock oscillations.

4. In the continuum regime, the shock is thin which is captured adequately by the

M-SLAU2 scheme, but the Roe scheme fails to do so. However, with the increase

of rarefaction (Kn of the order of 10−3 and higher), the shock becomes diffusive

and is captured adequately by both the schemes without shock instability and

oscillations. This shows M-SLAU2 to yield solutions free from shock anomalies

in both the continuum and rarefied regimes.

5. Mach number contours show that at high Mach number the captured shock is

thinner at all Kn. It is demonstrated that the hypersonic solution does not only
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depend on the Kn but also on the Mach number. The observed decrease in wall

heat flux and wall shear stress with the increase in rarefaction is non-uniform.

6. That the non-equilibrium boundary conditions at the wall automatically tend

to the no-slip conditions in the continuum regimes is also demonstrated. The

results of the M-SLAU2 scheme for the wall heat flux (see Fig. 7.4(b) and 7.5(b))

for the case A1 and B1 are in good agreement with the available experimental

results.

7. The results show M-SLAU2 to be a more robust and general convective scheme

for hypersonic flows in the continuum and rarefied regimes.





Chapter 8

Conclusions and Future Work

8.1 Conclusions

A general purpose density based CFD solver for the applications of external aerody-

namics and micro/nano flows has been developed and used to carry out the studies

attempted in this thesis. The solver capability to handle all-speed flows has been

demonstrated. Various configurations of flows with complex geometry and bound-

ary conditions have been investigated. The solver uses a cell-centred finite volume

discretization method for unstructured grids. Several convective schemes have been

incorporated into the solver, such as Roe, preconditioned Roe and SLAU2. Precon-

ditioning done using Roe method helps to have an all-speed density-based algorithm.

An alternative to this is to use the SLAU2 scheme which provides an all-speed frame-

work without the use of preconditioning. Further, various turbulence models have

been incorporated into the solver following an unconditional positive convergent im-

plicit time integration procedure.

The near wall modeling for wall-bounded turbulent flows has been a challenge

for the researchers. In this work an automatic wall treatment for the one-equation

Spalart-Allmaras turbulence model, a low-Reynolds-number model, has been pro-

posed. This treatment allows an automatic switch between a low-Re formulation

and the wall function approach. The wall-treatment has been validated and veri-

fied through four different cases involving adiabatic and constant temperature wall

boundary conditions. The test cases considered have been computed on different grids

with the first grid point variously located in the sublayer layer region, in the buffer

region, and in the log region and have always yielded near-identical results that have

also matched well with benchmark reference and experimental data. The case of the



172 8.1 Conclusions

NACA0012 airfoil which is close to real-world simulations had y+ value going well

beyond the traditionally accepted values to be as high as 150. However, even here,

the results were good. This would help the researchers who use turbulence models

to compute complex flows in aerospace applications, as the AWT allows a near-wall

grid 10-30 times as coarse as that required in the standard SA model (without wall

function). Apart from this, the flexibility accruing from the freedom of not having to

place the first-grid point in a narrow range of y+ (which cannot be predicted apriori

during grid generation) will be very helpful to practitioners, who otherwise routinely

re-grid after computations to satisfy the earlier criteria. Finally, from the point of

view of turbulence research, which can be so piece-metal at times, it provides an

interesting outcome wherein a model developed for SST works without modification

for a completely different model like SA.

Further, the techniques required to solve the rarefied gas flow in the slip regime

has been incorporated into the solver. Various non-equilibrium boundary conditions

which replace the no-slip boundary conditions have been studied. A comprehensive

analysis of the recently proposed Le temperature jump condition, which takes into ac-

count the sliding friction has been performed using three cases of hypersonic flow over

a flat plate, and the results were compared with experiments and DSMC, wherever

available. An over-prediction of pressure in comparison with both the experiment

and DSMC results has been observed when using the Le temperature jump condition

above. The additional use of pressure jump condition, which has been largely ignored

in the literature, has been suggested as a possible remedy in this thesis. Further,

an investigation has been carried out for the use of these boundary conditions for

various cases of nano/micro flows. Therein it has been shown that the effect of the

sliding friction component on the improvement of the thermodynamic prediction is

case-dependent. It depends on the mean-free-path of the gas, shear stress and the

velocity of the flow. A need to incorporate other non-equilibrium effects such as vi-

brational and chemical non-equilibrium in the CFD modeling to properly capture the

non-continuum phenomena is apparent. Also, in the context of the Le temperature

jump condition, we may need to reconsider the sliding friction concept in the light

of more fundamental considerations of gas-wall gas interactions. Lastly, the effect of

rarefaction in hypersonic computation using the Roe and modified SLAU2 scheme has

been studied using the case of hypersonic flow over a cylinder. The modified SLAU2

scheme, which is proposed in this thesis, has been shown to be superior in comparison
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with the original SLAU2 scheme for accuracy and imperviousness to shock anoma-

lies. An effort is made to better understand the behaviour of shock instabilities and

oscillations with the degree of rarefaction. It has been shown that the solutions of

hypersonic flow are grid-sensitive. The M-SLAU2 scheme provided a smooth solution

free from shock instabilities and oscillations for all Kn. The shock structure in front

of the cylinder has also been studied. It has also been demonstrated that the hyper-

sonic solution does not only depend on the Kn but also on the Mach number. In

the overall sense, the results have shown M-SLAU2 scheme to be a robust and useful

convective scheme for hypersonic flows in the continuum and rarefied regimes.

8.2 Scope for Future Work

The conclusions drawn from the present work can help to extend the applicabil-

ity of the different methodologies presented for external aerothermodynamics and

nano/micro flows. Some recommendations for future investigations are mentioned

below:

(a) The scope of future work in an all-speed unstructured grid density-based grid is

enormous. The density-based algorithm is suited for compressible flow compu-

tations. Different modules such as combustion, multiphase can be implemented

in the main code. The present work has been limited to ideal gases only. Real

gas models need to be incorporated in the code.

(b) From the computing viewpoint, many aspects can be looked upon now as the

base solver is ready. Code parallelization using GPU [181], OpenMP, Intel

Xeon Phi architecture can be attempted [182]. The advanced techniques of

overset mesh [183] for simulating moving objects, adaptive mesh [184] refining

to improve the accuracy of shock capturing, can also be done.

(c) More compressible turbulent cases have to be simulated. The wall function at

present is based on the incompressible law of wall, which can be extended to

include the compressible law of wall [84]. With these, the code can be used to

explore the wide area of shock-boundary layer interaction [185].

(d) The automatic wall treatment presented in this work can be extended to newer

turbulence models, like the one-equation Wray-Agarwal model [186]. A clear

advantage of this model is that its recent version [187] is wall-distance free.
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(e) For the rarefied regime flows, in this thesis we have only considered thermal non-

equilibrium. However, at the higher temperatures which occur in hypersonic gas

flows, chemical and vibrational non-equilibrium [188, 189, 190] and ablation

[191] also have to be taken into account. The suitable models for these need to

be incorporated.

(f) The non-equilibrium boundary conditions used in this work show limitations

and case-dependent behavior. They need to be reconsidered from the view-

point of more fundamental gas-wall gas interactions [192].

(g) In the last chapter of this thesis, we have observed the challenges involved in

the computation of hypersonic flows in the continuum regime and have shown

M-SLAU2 convective scheme to be a possible solution. More blunt body test

cases with different grid-orientations have to be tested. [193, 84]. Also, an

effort can be made to improve the other convective schemes such as Roe and

preconditioned Roe for hypersonic gas flows.

(h) This thesis can be further extended into the field of hypersonic flow by including

more test cases. Also, comparison can be made of the proposed M-SLAU2

scheme with the other new schemes in the literature, like Toro-Vazquez method

(TVM) [194].



Appendix A

Modified SLAU2: Validation &

Verification

A.1 Formulation of M-SLAU2

The complete formulation of modified SLAU2 flux proposed in Sec. 7.4 is shown

below:

F1/2 =
ṁ+ |ṁ|

2
Ψ+ +

ṁ− |ṁ|
2

Ψ− + p̃N (A.1)

where,

Ψ = (1, u, v, w,H)T (A.2)

N = (0, nx, ny, nz, 0)T (A.3)

The mass flux is written as:

ṁ =
1

2

{
ρL(VnL + |V n|+) + ρR(VnR − |Vn|−)− χ

c1/2

∆p
}

(A.4)

where,

|V n| =
ρL|VnL|+ ρR|VnR|

ρL + ρR
(A.5)

where,

|V n|+ = (1− g)|V n|+ g|VnL|

|V n|− = (1− g)|V n|+ g|VnR|
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g = −max[min(ML, 0),−1] ·min[max(MR, 0), 1] ∈ [0, 1]

The pressure flux is written as:

p̃ =
pL + pR

2
+
f+
pL − f

−
pR

2
(pL − pR)

+

√
u2
L + v2

L + w2
L + u2

R + v2
R + w2

R

2
(f+
pL + f−pR − 1)

ρL + ρR
2

c1/2 (A.6)

where, the new interfacial speed of sound, for the M-SLAU2 scheme, is given as:

c1/2 = max(c̃L, c̃R) , c̃L/R =
c∗2

min(c∗, |V ±n |) + εs
, c∗2 =

2(γ − 1)

(γ + 1)
H (A.7)

where εs is a small term taken as 10−30 in order to avoid the denominator from taking

on zero values. The other terms are defined as:

χ = (1− M̂)2 (A.8)

M̂ = min
(

1.0,
1

c1/2

√
u2
L + v2

L + w2
L + u2

R + v2
R + w2

R

2

)
(A.9)

f±p =


1
2
(1± sign(M)), if |M | ≥ 1

1
4
(M ± 1)2(2∓M), otherwise

(A.10)

M =
Vn
c1/2

=
unx + vny + wnz

c1/2

(A.11)

A.2 Validation & Verification

In this part, we will show that the M-SLAU2 does not change the results with respect

to the original SLAU2, at low Mach numbers - subsonic and transonic, using two

cases: (i) laminar flow over a flat plate at Ma∞ = 0.2 and (ii) transonic flow over an

inviscid airfoil.



A.2 Validation & Verification 177

A.2.1 Laminar flow over a flat plate (Ma∞ = 0.2)

We consider the case of laminar flow over a flat plate with inlet Ma∞ = 0.2. The flow

domain with the mesh and boundary conditions used is shown in Fig. A.1. The flat

plate starts at x = 0 m and y = 0 m and is of length 0.3048 m. It is given a no-slip

condition. The free-stream pressure and temperature used are 97250 Pa and 297.619

K, respectively. Figure A.2 shows the comparison of computed velocity profile at

x = 0.25 m (corresponding to Rex = 1.059× 106), using SLAU2 and M-SLAU2 with

the Blasius solution [89]. M-SLAU2 has the same result as obtained using SLAU2.

Both matches completely with the Blasius analytical velocity profile for Mach 0.2.

This test case shows that the modified SLAU2 preserved the property of original

scheme to be applicable for low speed flows by allowing low dissipation at low speeds.
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Figure A.1: Flow domain for the case of laminar flow over flat plate.

A.2.2 Inviscid flow over airfoil with transonic free-steam con-

dition (Ma∞ = 0.8)

The next case considered is transonic inviscid flow over a NACA0012 airfoil with an

angle of attack of 1.25◦. The inlet Mach Number of 0.8 at 101325 Pa pressure and

273.15 K temperature is considered. The flow domain with the computational mesh

and boundary condition is shown in Fig. A.3.

Figure A.4 shows the computed surface pressure coefficient, Cp at the wall of the

airfoil using the SLAU2 and M-SLAU2 schemes. The results are verified with the

those obtained by Arias et al. [1]. M-SLAU2 gave the exact same result as obtained

using SLAU2. Both the scheme results match well with the reference result.
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Figure A.2: Plot for the velocity profile at Rex = 1.059× 106.
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Figure A.3: Computational domain and mesh for the case of inviscid flow over airfoil.
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Figure A.4: Pressure Coefficient along the wall: Comparison for M = 0.8 and α =
1.25◦ with the reference solution [1].





Appendix B

Hypersonic Flow over a cylinder:

Using Pressure and Le

Temperature Jump condition

In Chapter 7, we have carried out a parametric study for hypersonic flow over a

cylinder at two different Mach numbers using the Roe (Sec. 2.3.1.1) and M-SLAU2

(Sec. 7.4) schemes at different Kn. We had used the standard non-equilibrium bound-

ary condition - the first order Maxwell slip velocity, Eq. 5.3, and Smoluchowski tem-

perature jump, Eq. 5.4. It was found that the M-SLAU2 captured the shock free from

anomalies at all Kn.

In this part, we extend the study done in Chapter 7, using the other two non-

equilibrium boundary conditions which have been discussed in this thesis – the Le

temperature jump (Eq. 5.8) and the pressure jump condition (Eq. 5.12). The case

considered is the case B (M∞ = 16.34) described in Table 7.1. M-SLAU2 is used as

the convective scheme. Similar to the analysis we performed using three different non-

equilibrium boundary conditions (Table 6.2) in Chapter 5 and Chapter 6, we perform

the simulations for the case B here. It can be again noted that PC1 corresponds to the

“standard” model [59, 60, 58, 152], PC2 to the Le temperature jump proposed in [62]

and PC3 has the Le temperature jump and the new pressure jump condition [53]. For

PC1, the heat flux is computed using only the Fourier law of heat conduction; while

for PC2 and PC3, it is computed including the sliding friction component (Eq. 5.14).

For PC3 we have clipped ζ (Eq. 5.13) for the pressure jump boundary condition. The

CFL number used for the computation is 200.

Figure B.1 shows the plot for wall heat flux and surface temperature jump and
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Fig. B.2 shows the plot of pressure and slip velocity at the cylinder wall. Fig. B.1(a)

also compares the results with the experimental data [177] for the case B1, Kn =

1.59E − 4. We note that for the case B1, PC1 and PC2 gave the same result as is

expected. The reason being that at low Knudsen number, i.e. continuum regime the

slip velocity and temperature jump boundary condition tend to become the no-slip

and constant temperature jump condition. However, PC3 shows an unstable results

as the pressure jump does not tend to the zero-gradient condition, which it should for

the continuum regime of flow. The reason, we see, is that in the Eq. 5.12, re-written

here as Eq. B.1, there is no Knudsen number (or λ∞ term) effect included in the

equation. This indicates we may need to revisit the steps used for the derivation1 of

the Eq. B.1 (or Eq. 5.12). Thus, we have only plotted the PC3 results for the case of

Kn = 0.161, for which it gave a stable solution. The present computation indicates

that we may need to re-derive the pressure jump condition.

p =
pw(

1 + 2ζ + 2−σ
σ

4
5
√

2π
a · n

) (B.1)

As inclusion of Kn increases, PC2 clearly shows a higher prediction of temperature

and heat flux, which is due to the inclusion of the sliding friction in the temperature

jump and heat flux calculations. However, for the case of B4, heat flux, temperature

jump, pressure and slip velocity all have similar results using PC1, PC2 and PC3.

These results have to be examined further, and this hopefully will done in the future.

At present, we conclude, following the conclusion of Chapter 6, the use of the new

non-equilibrium boundary conditions are case-dependent.

1Patterson derived the pressure jump equation based on the conservation of normal momentum
between the incident and reflected molecules [157, 53].
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Figure B.1: Wall heat flux and temperature jump calculated for the case B (M∞ =
16.34) using three different boundary conditions. PC3 is not plotted for the case of
(a), (b) and (c) as it leads to unstable results.
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Figure B.2: Pressure and slip velocity at the wall calculated for the case B (M∞ =
16.34) using three different boundary conditions. PC3 is not plotted for the case of
(a), (b) and (c) as it leads to unstable results.
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