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Chapter 1

Introduction

Bose-Einstein condensation (BEC) is a quantum phenomenon in which the low-
est energy single-particle state of a quantum many-body system becomes, below a
certain temperature, macroscopically occupied. The occurrence of such a peculiar
behavior has been predicted in 1924 by Satyendra Nath Bose and Albert Einstein
in the study of the thermodynamic properties of a noninteracting gas of particles
obeying Bose statistics.

Although this behavior, at �rst, was thought to be a pathology of the ideal gas,
which would disappear as soon as an interatomic potential is taken into account,
the hypothesis that BEC could appear also in strongly interacting systems such as
quantum liquids was formulated by London in 1938, after the experimental discovery
of super�uidity in liquid helium. In the same year, Allen and Misener in Cambridge
[1] and Kapitza in Moscow [2] measured the resistance to the �ow of liquid 4He
clamped in narrow channels and subjected to a pressure drop. They found that,
below a characteristic temperature Tλ ' 2.17 K, 4He �ows so easily that it cannot be
described in terms of conventional viscosity: after this evidence, Kapitza introduced
for the �rst time the term �super�uidity� to refer to this anomalous behavior.

To describe this e�ect, Tisza proposed the so called �two-�uid� model: he sug-
gested that below Tλ liquid 4He could be described by a �uid in which a fraction of
the system, namely the super�uid component, behaves completely without friction,
while the rest of the liquid, de�ned the normal component, behaves qualitatively
as a normal liquid. To give an explanation of the Tisza's phenomenological model,
London pointed out that 4He atoms, having total spin S = 0, obey Bose statistics
and, thus, he associated the observed transition at Tλ to the occurrence of BEC,
suggesting that the super�uid component is constituted by the atoms occupying the
lowest energy single-particle state.

In opposition to London's conjecture, Landau proposed another explanation of
the super�uidity phenomenon introducing the notion of �quasiparticle�, that is an
excitation of the system from the ground state characterized by a de�nite energy
and momentum. Making use of this concept (and without recalling explicitly the
idea of BEC), he postulated that in the two-�uid model the super�uid component
represents the liquid which remains in its ground state, while the normal component
can be seen as a �uid of quasiparticles: at very low temperature, if the velocity of
the system is not su�ciently high to excite a quasiparticle, the system remains in
its ground state and is able to �ow without dissipation.

The most important work to solve the controversy between London's and Lan-
dau's hypothesis was made by Bogoliubov in 1947. He studied a Bose gas with
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weak repulsive interaction making the assumption that it would undergo BEC, and
showed that the low energy excitations for this system are collective modes with a
non-zero velocity. This means that, as a weak interaction is turned on in a Bose
system presenting BEC, the excited states can be described in terms of the �quasi-
particles� conjectured in the Landau's description of the super�uid phase.

Some years later, Penrose and Onsager proposed a generalization of the concept
of BEC applicable to interacting systems, thus also to liquid 4He. They considered
the eigenvalues of the one-body density matrix ρ1(r) in the limit of r going to
in�nity, indicating that these eigenvalues correspond to the occupation of the various
eigenstates of the whole liquid. BEC is present whenever one of these eigenvalues,
namely N0, is comparable with the total number N of atoms in the liquid. In
other words, BEC is present if the fraction n0 = N0/N , usually indicated as the
condensate fraction, is �nite in the thermodynamic limit.

Nowadays, there is a general consensus that super�uidity in a bulk liquid has to
be seen as a consequence of BEC. Even if the �rst London's conjecture of associating
the condensate fraction to the super�uid one has proven wrong (super�uid fraction,
that is the fraction of the liquid which does not respond to the movements of the
walls of its vessel, is almost 1 for liquid 4He at zero temperature, but the condensate
fraction is only about 8%), many evidences point out that super�uid e�ects in liquid
4He are accompanied by a non-zero condensate fraction.

However, the connection between super�uidity and BEC is still now a matter
of debate and study. The experimental evidences pointing out the existence of
a condensate in the super�uid phase of 4He are only indirect. The condensate
fraction n0 can be inferred from deep inelastic neutron scattering experiments, but
its measurement depends on the assumption that a condensate exists in the ground
state and also on the particular shape of the distribution function for the excited
states with non-zero momentum [3]. From the theoretical point of view, accurate
estimations of the one-body density matrix are accessible. In particular, microscopic
simulations based on realistic interatomic potentials represent a powerful method of
investigation of quantum �uids and provide values of n0 for liquid 4He at saturated
vapor pressure in nice agreement with experimental results [4, 5, 6, 7]. For these
reasons, the liquid phase of 4He is still now a topic of big interest in condensed matter
physics and important e�orts are required, both theoretically and experimentally, to
give a complete description of its BEC properties over all the range of temperatures
and pressures for which the super�uid phase is stable.

Nevertheless, the present understanding of super�uidity in condensed (i.e. non
gaseous) systems comes from the study of liquid helium, because no other condensed
Bose system is known to become super�uid below a certain temperature. To give a
deeper insight on super�uidity and on the occurrence of BEC in quantum liquids, it
is fundamental to investigate other systems than liquid helium. Among condensed
systems, the most plausible candidate for super�uidity is molecular para-hydrogen
(pH2) because its small mass should in principle enhance the zero-point e�ects up
to rather large temperatures, in comparison with other elements [8]. However, the
temperature at which BEC is expected to appear in pH2 is lower than the triple point
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and the super�uid transition is hindered by the appearance of the crystalline phase.
Several attempts to metastabilize liquid pH2 down to low temperature have been
made but none of them has proven to be successful in reaching the temperatures
estimated for the super�uid transition [9]. The interest in this topic is kept alive by
the evidences of some anomalies in small clusters of pH2 pointing out a super�uid
behavior [10]. An investigation of non crystalline states in pH2 at low temperature
is possible through microscopic simulations. These numerical studies are aimed to
understand whether pH2 can present BEC or not and, eventually, which are the
condition for BEC to appears, with particular interest in the estimation of the
transition temperature to a super�uid phase.

Another intriguing question that is far from a complete answer concerns the
interplay between super�uidity and crystallization. The possibility that atoms
can �ow without dissipation even inside a rigid crystalline structure, although
being counterintuitive, has been proposed more than forty years ago [11, 12, 13].
A similar behavior, which cannot occur in classical solids where atoms are well
localized around their lattice positions, is not in principle prohibited in quantum
solids where the atoms can be delocalized on distances comparable with the
interatomic separation and thus where the indistinguishability of the particles
plays a fundamental role. The best example of quantum solid can be found in the
crystalline phase of helium, which is stable only if the sample at low temperature is
subjected to an external pressure higher than 25 bar. The interest in the properties
of an eventual supersolid phase, that is a state of matter characterized at the same
time by super�uidity and crystalline order, has gained a huge interest in the last
years, after the experimental evidence of non classical rotational inertia e�ects
in solid 4He below temperatures of the order of 100 mK [14, 15]. However, even
if this behavior has been detected in other experiments, the data reported are
often controversial and their interpretation is a delicate issue. Many theoretical
models have been proposed so far for solid 4He, but none of them has been able to
reproduce all the experimental �ndings.

Performing a theoretical study of quantum �uids and solids, with the objective
of investigating their BEC and their super�uid properties, is not an easy task.
Perturbative approaches, often used in the study of many-body systems, reveal
themselves useless for this purpose because of the strong correlations between the
atoms arising from the interatomic interaction and from the quantum nature of
the system. Thus, microscopic simulations appear as one of the most powerful
theoretical tools to provide a reliable description of these phenomena. In particular,
Monte Carlo methods are very appropriate to deal with this topic, especially for
their generality and for their huge versatility which allow to apply them in a wide
set of many-body problems.

The development of Monte Carlo techniques aimed at the study of condensed
4He has a long history. McMillan in 1965 was the �rst in calculating the properties
of helium by means of Variational Monte Carlo [16], making use of the many-body
wave function suggested by Jastrow which considers only pair correlation. Later on,
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the variational results have been improved in more accurate computational methods,
in which it is possible to control the approximation and give, in principle, exact esti-
mation for the ground state properties of quantum systems. Among these methods,
we can mention the Green's-function Monte Carlo and the Di�usion Monte Carlo
[17].

Nowadays, it is becoming particularly relevant, in the simulation of quantum
�uids and solids, the Path Integral Monte Carlo method [18]. Within this approach,
it is possible to map the quantum system onto a classical model of interacting
polymers, which can be considered as the ring exchanges of bosons in imaginary
time, and thus to give easily a classical picture for super�uidity. Thanks to this
isomorphism, the quantum system can be simulated by means of conventional Monte
Carlo methods. The de�nition of the e�ective potential acting on the classical system
of polymers is completely speci�ed by the Hamiltonian and by the temperature of
the quantum system, resulting thus in an ab-initio approach able to furnish exact
estimations of all the relevant properties of helium, including the condensate and
super�uid fractions.

Contrarily to the other quantum Monte Carlo methods, which provide results
only for the ground state of the quantum system, PIMC is a �nite temperature
method, in which the system at the thermodynamic equilibrium is simulated con-
sidering a propagation in con�guration space for a �nite imaginary time. However,
the same formalism can be extended also to zero temperature calculations, in the
so called Path Integral Ground State method, which still presents the possibility of
providing exact results for the averages of the quantum observables in a completely
general way, where the correlations between atoms arise only by the de�nition of
the many-body Hamiltonian.

In conclusion, PIMC is able to bring several advantages in dealing with quantum
many-body problems: it provides an easy picture for super�uidity and BEC in many-
bosons system; it presents an intuitive way to take the approximations under control
and, thus, to give exact results for the averages of the physical observables, both at
zero and �nite temperature; it requires only the knowledge of the Hamiltonian of
the many-body system, with no need of specifying any importance sampling. These
features make undoubtedly PIMC the most powerful method in the study of BEC
properties of quantum �uids and solids.

1.1 Objectives and outline of the thesis

The main objective of this thesis is to study some of the most interesting issues
concerning the occurrence of Bose-Einstein condensation in quantum �uids and
solids by means of a computational approach based on Path Integral Monte Carlo
methods.

In order to accomplish these purposes, we have at �rst developed Path Integral
Monte Carlo codes, both at �nite and zero temperature, making use of the most
recent tools to improve the e�ciency and the reliability of these simulations. Among
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them, we have implemented in our code the high-order Chin factorization [19, 20],
which permits a very accurate approximation for the thermal density matrix in the
limit of low temperatures, and the worm algorithm [21, 7], which provides a very
e�cient sampling scheme for the quantum system in condition of high-degeneracy,
where the e�ect of the permutations between identical particles becomes signi�cant
even on a macroscopic level.

The outline of the thesis is the following:

2. In chapter 2, we present all the details of Path Integral Monte Carlo method,
in its original formulation at �nite temperature. After the introduction of the
basic notions of the Monte Carlo methodology and of the path integral formal-
ism, we describe the more advanced technique aimed to improve the sampling
scheme and the estimators implemented in the code for the computation of
the physical observables. Finally, we also show the results for some model
systems used to test the computational method.

3. Chapter 3 is devoted to the study of the feasibility of Path Integral Ground
State calculations with a high-order approximation for the imaginary time
propagator. After a previous discussion on the formalism of the methodology,
we present highly accurate calculations for the ground state energy and for
the most relevant properties of liquid 4He at its equilibrium density.
Part of this work has been published in:
R. Rota, J. Casulleras, F. Mazzanti and J. Boronat, �High-order time expan-
sion path integral ground state�, Physical Review E, 81, 016707 (2010).

4. In chapter 4, we present calculations of the one-body density matrix ρ1(r) in
liquid 4He over a wide range of densities. The unbiased calculation of ρ1 pro-
vided by PIMC methods allows us to obtain precise result for the condensate
fraction n0 and for the momentum distribution n(k), which present a good
agreement with the most recent experimental measurement.
Most of these results are presented also in:
R. Rota and J. Boronat, �Condensate fraction in liquid 4He at zero tempera-
ture�, Journal of Low Temperature Physics, on press.

5. Chapter 5 is the most signi�cant part of this thesis. It deals with the rel-
evant topic of supersolidity and its occurrence in solid 4He. We performed
simulations of di�erent con�gurations of solid 4He, such as the commensurate
crystal, the crystal presenting vacancies or the disordered amorphous con�gu-
ration. We compare the temperature behavior of the one-body density matrix
and of the super�uid fraction obtained numerically with the experimental re-
sults, in order to test whether these models are able to provide a reliable
description of the properties detected experimentally in the analysis of solid
4He samples. The results presented in this chapter are the content of di�erent
published or submitted papers:
R. Rota and J. Boronat, �Path Integral Monte Carlo Calculation of Momen-
tum Distribution in Solid 4He�, Journal of Low Temperature Physics, 162, 146
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(2011).
Y. Lutsyshyn, R. Rota and J. Boronat, �On the Stability of Small Vacancy
Clusters in Solid 4He�, Journal of Low Temperature Physics, 162, 455 (2011).
R. Rota and J. Boronat, �Microscopic approach to the bcc phase of solid 4He�,
Molecular Physics, on press (DOI: 10.1080/00268976.2011.620025)).
R. Rota and J. Boronat, �Onset temperature of Bose-Einstein condensation in
incommensurate solid 4He�, submitted to Physical Review Letters.

6. In chapter 6, we present a study of a metastable liquid phase of pH2, aimed
at investigating if this system may support super�uidity at low temperatures.
Although at low temperatures it is di�cult to frustrate the formation of the
crystal in microscopic simulations, we have been able to make metastable a
glass con�guration which presents a non-zero super�uid fraction at tempera-
tures below 1 K.

7. Chapter 7 comprises the main conclusions of this thesis and some ideas for a
further development of the studies presented in it.



Chapter 2

Path Integral Monte Carlo

This chapter is devoted to Path Integral Monte Carlo, that is the computational
method used to accomplish the objectives of the present thesis. We will describe at
�rst the general basis of Monte Carlo methods and how these can be implemented
within the path integral formalism. Later, we will present also more advanced
techniques, such as the high-order approximations for the thermal density matrix
and the worm algorithm. Finally, we will show results for some model systems used
to test the computational method.

2.1 The Monte Carlo methods

The term Monte Carlo is widely understood as any computational method which
makes use of stochastic sampling. In the last decades, the popularity of Monte Carlo
methods has increased enormously, thanks especially to their huge versatility, which
allows to use them in several applications, even of di�erent nature. For instance,
Monte Carlo methods are employed in the simulations of stochastic events, such as
the trend of �nancial stocks, or in solving non probabilistic problems, such as the
calculation of multidimensional integrals [22].

Monte Carlo methods are widely used in condensed matter physics, where the
systems studied are characterized by an extremely high number of degrees of freedom
and it is necessary to describe them within a statistical approach. In particular, for
every state µ of the physical system, we need to de�ne a statistical weight wµ,
which indicate the probability of �nding the system in that state (it follows that∑

µ wµ = 1). Therefore, the average of any physical observable O is given by the
sum

〈O〉 =
∑

µ

Oµwµ (2.1)

This sum, however, is performed over an in�nite number of states and can be solved
analytically only in few cases. A useful approximation in order to give a reliable
result for 〈O〉 is to consider just a �nite number of degrees of freedom of the system
and compute numerically the sum in Eq. 2.1. Nevertheless, even for systems made
up of a small number of particles, the number of possible states can be huge and
can make the computation extremely demanding.

Monte Carlo methods, instead, can provide more e�cient algorithms for the
computation of the properties of many-body systems simulating stochastically the
random �uctuation of the physical system. Let us take the example of a classical
system at a temperature T : the probability distribution of the states is given by the
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Boltzmann distribution wµ = Z−1e−βEµ , where β is the inverse of the temperature,
Eµ represents the energy for the state µ and Z =

∑
µ e−βEµ is the partition function.

If we are able to sample M states µi of the system according to a probability
distribution pµ, therefore, according to the central limit theorem, the variable

〈O〉M,pµ =

∑M
i=1 Oµip

−1
µi

e−βEµi∑M
i=1 p−1

µi e−βEµi

(2.2)

is a gaussian variable with mean value 〈O〉 de�ned in Eq. 2.1 and with standard
deviation proportional to 1/

√
M . This means that, increasing the number of sam-

pling points M , the variable 〈O〉M,pµ becomes a better and better approximation
for 〈O〉.

It is easy to understand that the choice of the probability distribution used in
the sampling pµ strongly a�ects the e�ciency of the calculation. Indeed, in the
sum in Eq. 2.1, only a small fraction of states µ of the system contributes, while
most of the states give a negligible contribution to 〈O〉. If in our simulation we
would be able to sample the states µi according to the Boltzmann distribution
pµ = Z−1e−βEµ , during the simulation the states which contribute most would
appear more frequently than others and, therefore, the estimation of 〈O〉 given by
Eq. 2.2 would converge more quickly to the expected value. The device of selecting
the sampled states according to a probability distribution which is similar to the
one of the simulated system is called importance sampling and is fundamental to
develop an e�cient Monte Carlo calculation.

2.1.1 The Metropolis Algorithm

A good choice of the importance sampling can considerably improve the e�ciency of
the calculation of 〈O〉, but we are still far from a complete solution of the problem.
In the previous discussion, we have taken as hypothesis the possibility of sampling
an arbitrary probability distribution p(x). The pseudo-random number generators
commonly used in computer applications are able to sample uniformly the real
numbers in the interval [0, 1) (see for instance Chapter 7 of Ref. [23]) and it is not
trivial to use them in order to sample any p(x).

The Metropolis algorithm [24] provides a simple and e�ective method to sample
an arbitrary probability distribution function, despite of its analytical complexity
or the dimensionality of the problem. This algorithm is based on the theory of
Markov chains and makes use, in order to sample a distribution probability p(x), of
the evolution of a stochastic process Π(x|y) which satis�es with p(x) the detailed
balance condition:

Π(x|y)p(y) = Π(y|x)p(x) . (2.3)

This only condition allows us a certain freedom in the choice of Π(x|y): in
particular, it is convenient to decompose the stochastic process as

Π(x|y) = T (x|y)A(x|y) ,
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where T (x|y) is a stochastic process that we can sample and A(x|y) indicates the
probability of accepting the move from the con�guration y to x sampled according
to T .

Generally, the choice of T is arbitrary, while A is de�ned from T in order to
satisfy Eq. 2.3. The main feature of the Metropolis algorithm is to �x A according
to the formula

A(x|y) = min
(

1;
T (y|x)p(x)
T (x|y)p(y)

)
. (2.4)

Commonly, T is chosen so that T (y|x) = T (x|y) (symmetric model): in this case,
we recover the simpler de�nition of A

A(x|y) = min
(

1;
p(x)
p(y)

)
. (2.5)

For practical purposes, the implementation of this algorithm consists of few steps:

• given a variable xi, i-th element of a sequence of random variables, we generate
a new variable x′ using the stochastic process T (x′|xi)

• we evaluate A(x′|xi) = α ≤ 1, according to the de�nition given in Eq. 2.4

• we accept the movement xi → x′ with probability α: this means that, gener-
ating a random number r ∈ [0, 1), if r < α, we accept the movement and we
put xi+1 = x′; otherwise, we reject the movement and we put xi+1 = xi

• We repeat the procedure to generate the following variables xi+2, xi+3, . . .

The Metropolis algorithm is able to sample any probability distribution in a
rather simple way, but nonetheless presents two weak points: at �rst, the sampling
is correct only asymptotically; secondly, two following variables in the sampled se-
quence are strongly correlated between each other.

The �rst problem can be avoided with an equilibration of the system, that is
discarding the �rst variables of the sequence, in order to use in the calculation of
the averages only the variables which we expect sampled according to the correct
probability distribution. However, there is no general method in order to establish
the number of steps to discard. Usually, we observe the disappearance of transient
regimes in the estimation of the variables computed, even though this method is
rather empirical and does not consider the possibility for the system to remain
stuck in eventual metastable states.

The second problem, i.e. the correlation between the sampled variables, a�ects
the estimation of the statistical error of the averages. An e�cient method for solving
this problem is called data blocking. It consists in collecting a sequence of M variables
in n blocks, each one made up of K = M/n elements. If we average the estimations
of the observable O on each of these blocks, we will obtain a set of n values Oj .
The average of these Oj is independent of n and it is still an estimation of 〈O〉.
Furthermore, if K is large enough, the values for Oj can be considered statistically
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independent and therefore the statistical error can be computed easily with the
formula

σO =

√√√√ 1
n(n − 1)

n∑
j=1

(Oj − 〈O〉)2 . (2.6)

A last trick we have to take into account, in order to make the Metropolis
algorithm work properly, concerns the choice of the stochastic process T (x|y). If T

proposes �big� updates which change notably the con�guration of the system, most of
these updates will be rejected since the new con�guration will land in a region of low
probability density: therefore the acceptance rate of these updates will be small and
the stochastic process Π will converge slowly to the desired probability distribution
p(x). On the other hand, if T allows just for �small� updates, the acceptance rate
will be higher but the algorithm will not be able to explore properly the region of
low probability density and the sampling may lose ergodicity. A good compromise
between these two opposite cases can be found in the choice of a stochastic process
T with an acceptance rate close to 50%.

2.2 The Path Integral Monte Carlo method

2.2.1 The Feynman's Path Integral formalism

The properties of a quantum system in thermal equilibrium are obtainable from the
thermal density matrix ρ̂ [25]. For a system with Hamiltonian Ĥ at temperature T ,
the thermal density matrix is written

ρ̂ =
e−βĤ

Z
, (2.7)

where β = (kBT )−1, with kB the Boltzmann's constant, and Z = Tr
(
e−βĤ

)
is the

partition function. Knowing the thermal density matrix, the expectation value of
an observable operator Ô (for sake of simplicity, we choose a diagonal observable
Ô) is given by

〈Ô〉 = Tr
(
ρ̂ Ô
)

=
∫

dR ρ(R,R;β) O(R) , (2.8)

where in the last equation we have written the thermal density matrix in the coor-
dinate representation ρ(R1,R2; β) = 〈R2|ρ̂|R1〉, being Ri = {r1,i, r2,i, . . . , rN,i} a
set of the coordinates of the N particles of the system.

The key aspect of the Path Integral formalism is to make use of the convolution
property of ρ

ρ(R1,R3; β1 + β2) =
∫

dR2 ρ(R1,R2; β1) ρ(R2,R3; β2) (2.9)

in order to rewrite the thermal density matrix as

ρ(R1,RM+1; β) =
∫

dR2 . . . dRMρ(R1,R2; ε)ρ(R2,R3; ε) . . . ρ(RM ,RM+1; ε)

(2.10)
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with ε = β/M . We should notice that the thermal density matrix ρ̂ is formally
equivalent to an evolution operator in imaginary time t = iβ. Then, we may read
Eq. 2.10 as an evolution in imaginary time from the initial con�guration R1 to
the �nal RM+1, rewritten through a series of intermediate steps R2, . . .RM which
de�ne a �path� in the space of the con�gurations. For a �nite value of M , we have
a discrete-time path. As the time increment ε is allowed to approach to zero, the
number of integrations becomes in�nite and the path becomes continuous. However,
we have to notice that Eq. 2.10 if exact for any value M ≥ 1.

2.2.2 Implementing Path Integral in Monte Carlo simulations

In the classical limit of high temperatures, it is possible to give an analytic approx-
imation for the thermal density matrix. Suppose we have a quantum system made
up of N particles of mass m interacting with a pair potential v(r). The Hamiltonian
of such a system can be split into two terms, Ĥ = K̂ + V̂ , being

K̂ = − ~2

2m

N∑
i=1

∇2
i (2.11)

the kinetic part and
V̂ =

∑
i<j

v(ri − rj) (2.12)

the potential part of the Hamiltonian (~ is the Planck's constant). If we want to
give an analytical expression for the thermal density matrix, we should be able to
estimate all the commutators between K̂ and V̂ , in virtue of the Baker-Campbell-
Hausdor� formula

e−ε(K̂+V̂ ) = e−εK̂e−εV̂ e−
ε2

2
[K̂,V̂ ]e−

ε3

6 (2[V̂ ,[K̂,V̂ ]+[K̂,[K̂,V̂ ]) . . . . (2.13)

Nonetheless, we can notice that these commutators appear in Eq. 2.13 at order
ε2 or higher. Therefore, in the limit of small imaginary time ε (or equivalently,
high temperatures), we can neglect them and recover the approximate form for the
thermal density matrix usually called primitive approximation:

ρPA(R1,R2; ε) =
1
Z

∫
dR′〈R2|e−εK̂ |R′〉 〈R′|e−εV̂ |R1〉 . (2.14)

The matrix elements of e−εK̂ and e−εV̂ can be easily determined in coordinate
representation. Since the potential energy operator V̂ is diagonal in the space of
coordinates, we get

〈Rj+1|e−εV̂ |Rj〉 = e−εV (Rj)δ(Rj+1 − Rj) , (2.15)

where we have de�ned V (Rj) =
∑
i1<i2

v(ri1,j −ri2,j), where i1 and i2 are used to refer

to the particle indexes. The kinetic energy propagator in the space of coordinates
can be exactly evaluated,

〈Rj+1|e−εK̂ |Rj〉 = (4πλε)−dN/2e−
(Rj+1−Rj)2

4λε , (2.16)
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where d is the dimensionality of the system, λ = ~2/(2m), and we use the de�nition
(Rj+1 − Rj)2 =

∑N
i=1(ri,j+1 − ri,j)2.

Once we have de�ned a high temperature approximation for ρ, we can obtain an
approximation for any T increasing the number M of convolution terms in Eq. 2.10.
The convergence to the exact value of the thermal density matrix is guaranteed by
the Trotter formula [26]:

e−β(K̂+V̂ ) = lim
M→∞

(
e−εK̂e−εV̂

)M
. (2.17)

Therefore, the expectation value of the observable Ô (Eq. 2.8) can be rewritten

〈Ô〉 =
∫

dR ρ(R,R; β) O(R) '
∫ M∏

j=1

dRj O(Rj) ρPA(Rj+1,Rj ; ε) , (2.18)

with ε = β/M and with the boundary condition RM+1 = R1 which comes the trace,
as de�ned in Eq. 2.8.

It is worth to make two considerations on these last results. At �rst, we have to
notice that the product p(R1, . . . ,RM ) =

∏M
i=1 ρPA(Ri+1,Ri; ε) is positive de�nite

and its integral over the whole space of con�gurations gives 1: thus, it can be thought
as a distribution probability. This makes the last integral of Eq. 2.18 suitable for
being computed with a Monte Carlo procedure: that is, sampling all the degrees of
freedom according to p(R1, . . . ,RM ) with the Metropolis algorithm and averaging
the value for the observables computed on the sampled con�guration, one is able
to estimate the quantum averages of relevant physical quantities in a rather simple
way [27]. Furthermore, it is worth pointing out that the last equality in Eq. 2.18 is
approximate for �nite M , but becomes exact in the limit M → ∞, in virtue of the
Trotter formula (Eq. 2.17). This means that, increasing the number M , we are able
to decrease the systematic error due to the approximation of the thermal density
matrix: at su�ciently large M , it will be lower than the unavoidable statistical error
associated to the Monte Carlo estimation and thus we could, in principle, recover
the exact value of the expectation value 〈Ô〉. For this reason, Path Integral Monte
Carlo is often referred as an exact method.

2.2.3 The classical isomorphism

The key aspect of Path Integral Monte Carlo (PIMC) method is to describe the
quantum N -body system by means of M di�erent con�gurations Rj of the same
system, whose sequence {R1, . . . ,RM} constitutes a path in imaginary time in the
space of con�gurations. This means that the quantum system made up of N atoms
can be made equivalent to a classical system of N × M particles: each of these
classical particles is usually called a bead.

The path integral expression Eq. 2.18, indeed, can be interpreted as a classical
con�guration integral, where the term

S(Rj+1,Rj ; ε) = − ln [ρ(Rj+1,Rj ; ε)] (2.19)
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Figure 2.1: Schematic representation of the classical polymers describing the quan-
tum atoms in the PIMC isomorphism: the numbered circles represent the beads;
the blue springs represent the kinetic action acting on following beads of the same
chain; the red dashed lines represent the potential action acting on beads with the
same index.

is analogous to a classical potential energy function divided by a �ctitious temper-
ature [25, 28]. The function S de�ned in Eq. 2.19 is called action and speci�es the
interaction between the beads in the classical analog of the quantum system. The
action depends on the choice of the analytical form used to approximate the thermal
density matrix, but usually can be split into kinetic and potential contributions.

The kinetic contribution to the action can be derived directly from Eq. 2.16.
In order to understand how this kinetic contribution is mapped onto the classical
PIMC analog, let us consider the example of a free particle. A bead rj of the free
particle is correlated through the kinetic propagator Eq. 2.16 (which in this case
represents exactly the thermal density matrix) only to the beads rj−1 and rj+1:
this means that the quantum atom can be mapped onto a classical chain of beads,
or polymer, where each constituent interacts only with two neighbors in the chain.
The condition rM+1 = r1 introduced in Eq. 2.18 indicates that the last bead is
connected to the �rst one and thus the chain is closed on itself. Being the kinetic
propagator a Gaussian, it follows that the kinetic action is a quadratic term and
therefore corresponds, in the classical analog, to a harmonic potential between the
two following beads.

When we consider a N -particle interacting quantum system, we should consider
also the potential contribution to the thermal density matrix: this introduce, in
the classical system of chains, an interaction between beads belonging to di�erent
chains. In the primitive approximation, the potential contribution is given by Eq.
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2.15 and the interacting potential between the classical beads is equal to the two-
body potential between the quantum atoms. Nonetheless, the peculiarity of this
interaction is that it acts only on beads with the same imaginary time index j (Fig.
2.1).

Summarizing, the PIMC method consists in mapping the �nite-temperature
quantum system onto a classical system made up of interacting closed ring polymers,
where every polymer is a necklace of beads connected by ideal springs. It is possible
to give a physical meaning to this PIMC isomorphism: we can think about the dif-
ferent beads of the classical polymer as a way to represent the delocalization of the
quantum particle due to its zero-point motion. In order to explain this observation,
we can consider how the temperature T of the quantum system a�ects the kinetic
action

SK =
MkBT

4λ
(Rj+1 − Rj)2 (2.20)

At high temperature, the strength of the quadratic term is high and thus the har-
monic potential between the di�erent beads is strong. This does not allow the beads
of a single chain to move far apart and the polymer is not spread over a big portion of
the space, indicating that the quantum particle is not allowed to delocalize. As the
temperature decreases, the strength of the springs between the beads decreases and
the classical polymer is allowed to spread and therefore to recover the delocalization
of the quantum particle.

These considerations make clear the fact that the number of beads M needed
to give a good description of the quantum system depends on the temperature. At
high temperature, since most of the beads will stay close to each other, the polymer
occupies a small volume and therefore there is no need to use a high number of beads
to describe the system. In the classical limit, where the zero-point motion of the
atom can be neglected, the polymer shrinks to a point and the atom can be easily
described by just M = 1 bead. On the contrary, at low temperature it is necessary
to use higher number of beads, in order to let the classical polymer delocalize as the
quantum atom does. To give a prediction on how the number of beads should scale
with the temperature of the quantum system, we have to realize that the imaginary
time step ε = β/M is �xed by requiring that the action is accurate enough. This
means that M should be proportional to β, or equivalently that M should scale as
the inverse of the temperature. This scaling law represents a weak point of the PIMC
method, since it means that, when approaching the interesting quantum regime at
very low temperature, the number of beads increases fast making simulations hard,
if not impossible, due to the very low e�ciency in the sampling of the long chains
involved. The only way to overcome this problem is to improve the approximation
scheme for the thermal density matrix, in order to work with larger values of ε.

2.3 High-order approximations for the action

So far, the only approximation scheme for the thermal density matrix we have
presented is the Primitive Approximation, Eq. 2.14. This is clearly the simplest
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way to approximate the thermal density matrix at high temperature. However,
ρPA(R1,R2; ε) presents the disadvantage of being accurate to order ε2, making
thus its convergence to the exact density matrix particularly slow as the number of
beads increases.

Primitive Approximation is accurate to study semiclassical systems, where the
quantum e�ects are relatively small. If we are interested in the study of highly
degenerate quantum system, like the ones presenting Bose-Einstein condensation,
it is important to develop more complex forms for the action that will give correct
results for much larger ε and will allow the use of fewer beads in the simulations.
Of course, a more accurate approximation scheme will increase the complexity of
the PIMC algorithm: it is therefore important to choose the approximation for the
action in such a way that it could be evaluated quickly on a computer, in a time
not too much slower than it takes to compute the pair potential.

In this section, we want to present high-order approximations obtained directly
from the exponential of the Hamiltonian, exp(−βĤ). A di�erent approach that
generates also very accurate actions for low temperature studies relies on the pair-
product approximation, in which the basic piece of the PIMC chain is the exact action
for the two isolated particles [29]. The pair-product action has been extensively used
in the study of super�uidity and it is especially accurate for hard-sphere-like systems
such as 4He [18]. However, its use for non radial interactions is much more di�cult
due to the complexity of the two-body density matrix.

2.3.1 The Takahashi-Imada approximation

In the development of high-order approximation for the thermal density matrix, a
good starting point could be the Baker-Campbell-Hausdor� formula, Eq. 2.13. How-
ever, as showed by Raedt and Raedt [30], the terms of the expansion of order ε2 or
higher are not well suited to calculate the properties of the physical system because
they lead to non-Hermitian approximations of the Hermitian operator exp(−βĤ).
Nonetheless, since we are interested just in the thermodynamic properties of the
quantum systems, there is no need to provide an approximation for the operator
exp(−βĤ), but just an approximation for its trace. This latter would be simpler
because, in developing it, we can take into account the property that the trace is
similarity-invariant, that is

Tr
(
e−βĤ

)
= Tr

(
Ŝ−1e−βĤ Ŝ

)
(2.21)

being Ŝ an invertible operator. Thus, with a proper choice of Ŝ, it would be possible,
in principle, to improve the primitive approximation for the partition function Z and
for any thermal average 〈Ô〉 up to an order greater than 2.

According to this result, a convenient form to approximate the thermal density
was developed by Takahashi-Imada [31, 32] and, later on, by Li and Broughton in
an independent work [33]. In this scheme, the imaginary-time evolution operator is
approximated as

e−εĤ ' e−εK̂e−εV̂ e−
ε3

24 [[V̂ ,K̂],V̂ ] (2.22)
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In comparison to the Primitive Approximation, the factorization in Eq. 2.22 presents
an additional term containing the double-commutator [[V̂ , K̂], V̂ ] which improves
the approximation for the trace up to ε4. The evaluation of this double commutator
is not particularly heavy, since the term[

[V̂ , K̂], V̂
]

=
~2

m
|∇V |2 (2.23)

depends only on the gradient of the potential and, generally, is not di�cult to
evaluate.

For practical purposes, a PIMC simulation with Takahashi-Imada approxima-
tion is equivalent to a simulation with the Primitive Approximation where, in the
potential contribution to the action, Eq. 2.15, we substitute V (R), that is the sum
over all the pairs of two-body interactive potential v(r), with the term

W (R) =
∑
i<j

v(rij) +
ε2

24
~2

m

N∑
i=1

∑
j 6=i

|∇iv(rij)|2 . (2.24)

Using this approximation in a simulation of liquid 4He, the number of beads needed
to reach the ε → 0 limit decreases by a factor 4. Balancing this gain with the extra
computational e�ort in calculating W (R) instead of V (R), we arrive at a relative
improvement of performance of a factor 1.4 [20].

2.3.2 Symplectic Expansions

Another approach aimed to better the Primitive Approximation can, in principle,
be provided by a symplectic factorization of the form

eε(K̂+V̂ ) =
n∏

i=1

e−tiεK̂e−viεV̂ . (2.25)

It makes sense to ask if a proper choice of the coe�cients {ti, vi} in Eq. 2.25
is able to cancel out the leading error term in the expansion at the right side of
equation, resulting thus in an improved approximation with respect to the primitive
one. It has to be noticed that all the parameters {ti, vi} must be positive (forward
propagation in imaginary time), in order to have, in the multidimensional integral
for the expectation value 〈Ô〉, Eq. 2.18, a normalizable function which can be
thought as a probability distribution and therefore can be sampled by Monte Carlo
methods.

Unfortunately, the Sheng-Suzuki theorem [34, 35] proves that it is impossible
to go beyond the second order in ε using the factorization in Eq. 2.25 with only
positive coe�cients. The better way to overcome this limitation is to introduce the
double commutator [[V̂ , K̂], V̂ ] at least in one term of the factorization in Eq. 2.25,
as proposed by Chin and Chen in Ref. [19]. In this work, authors worked out a
continuous family of gradient symplectic algorithms which proved to be very accu-
rate in the resolution of classical and quantum problems. Later on, Chin performed
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a complete analytical characterization of these fourth-order propagators, showing
that they are fully fourth-order and, thus, they improve the Takahashi-Imada ap-
proximation which is accurate to fourth order only for the trace [36].

2.3.3 The Chin approximation

Having seen that the incorporation of modi�ed potentials in the factorization for
the imaginary time evolution operator is able to make the approximation scheme
of fourth order in ε, it is worth to take a step back and modify the symplectic
decomposition of Eq. 2.25 introducing terms presenting the double commutator
[[V̂ , K̂], V̂ ] in the exponential. We may therefore ask if, in the new factorization

eε(K̂+V̂ ) =
n∏

i=1

e−tiεK̂e−viεV̂ e−wiε[[V̂ ,K̂],V̂ ] , (2.26)

it is possible to �nd some optimal values for the positive coe�cients {ti, vi, wi} which
make Eq. 2.26 an e�ective sixth-order approximation for the action.

This is the main aspect at the basis of the so called Chin Approximation, whose
factorization is given explicitly by

e−εĤ ' e−v1εŴa1e−t1εK̂e−v2εŴa2e−t1εK̂e−v1εŴa1e−2t0εK̂ , (2.27)

where
Ŵai = V̂ +

u0

vi
aiε

2
[
[V̂ , K̂], V̂

]
(2.28)

According to this scheme, the evolution operator is split into n = 3 smaller and
not equal imaginary time propagations, at which extremes one should evaluate the
Takahashi-Imada action, Eq. 2.24. The parameters in Eqs. 2.27 and 2.28 are not
all independent: imposing that the right side of the factorization in Eq. 2.27 is
accurate to ε4, it follows that the coe�cients must satisfy the following rules:

u0 =
1
12

[
1 − 1

1 − 2t0
+

1
6 (1 − 2t0)3

]
v1 =

1
6 (1 − 2t0)2

v2 = 1 − 2v1

a2 = 1 − 2a1

t1 =
1
2
− t0 . (2.29)

It follows that the only free parameters in this factorization are t0 and a1, which are
restricted to ful�ll the conditions

0 ≤ a1 ≤ 1 (2.30)

0 ≤ t0 ≤ 1
2

(
1 − 1√

3

)
. (2.31)
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Figure 2.2: Departure from the asymptotic energy E0 for di�erent values of t0 in a
PIMC calculation of the harmonic oscillator at temperature T = 0.2 (from top to
bottom, t0 =0.09, 0.10, 0.11, 0.12, 0.13, 0.14, and 0.15). The �gure is taken from
Ref. [20]

The accuracy of the Chin Approximation depends on the particular values of a1

and t0 that have to be optimized. The optimal values are those achieving an approx-
imate cancelation of the various high-order commutators in the leading fourth-order
error. These optimal values are, therefore, independent of the temperature and they
can be easily determined numerically carrying out simulations at high temperatures,
where the limit ε → 0 can be reached even with a small number of beads.

A deep analysis of the use of Chin Approximation in PIMC simulations and
on its optimization method has been carried out by Sakkos et al. in Ref. [20].
An instructive example is the one provided in the study of the one-dimensional
harmonic oscillator: in Fig. 2.2, we show their result for the energy E of the system
as a function of ε for di�erent values of t0 at �xed a1. It is easy to notice that for
some values of t0 the asymptotic exact value E0 is approached from above, while for
other values of t0, E0 is approached from below. In particular, since the departure
from the asymptotic value E0 varies monotonically with t0, there is an optimal
value of t0 for which it is possible to cancel out the leading error term and recover
an e�ective sixth-order approximation. This allows the use of large imaginary time
steps, representing huge improvement with respect to the previous approximations
for the action, as showed in Fig. 2.3.

Even though a similar sixth order behavior has been found using Chin approxi-
mation in the simulation of more complex systems such as a H2 drop or bulk liquid
4He, Casas in Ref. [37] showed that the fourth-order method obtained from the
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Figure 2.3: PIMC energy of a particle in a one-dimensional harmonic well at tem-
perature T = 0.2 as a function of ε: triangles, diamonds, squares, and circles stand
for Primitive approximation, Takahashi-Imada approximation, Chin approximation
with a1 = 0, and Chin approximation with a1 = 1/3, respectively. The �gure is
taken from Ref. [20]

factorization in Eq. 2.27 is of e�ective sixth order only for the harmonic oscillator
and not for a more general potential. In this work, Casas deduced the analytical
conditions for which the general factorization of Eq. 2.26 can be consider of sixth
order, comparing the expansion of the factorization in Eq. 2.26 with the expansion
of the evolution operator obtained with the Baker-Campbell-Hausdor� formula (Eq.
2.13). Only in the case of the harmonic oscillator, which has been studied also in a
previous work by Scuro and Chin [38], Casas has been able to write down an analyt-
ical expression between t0 and a1 in the factorization of Eq. 2.27 in order to recover
the e�ective sixth-order approximation. Nevertheless, the linear stability analysis of
this method, which is important in order to give an estimation of the maximum time
step ε that can be used in the simulation, shows that with a numerical optimization
of the parameters, it is possible to achieve a scheme whose linear stability interval
is very close to the optimal one, and thus a scheme whose performances are notably
high. An estimation of the e�ciency of the Chin approximation is given by Sakkos
et al.: in the simulation of liquid 4He, they have been able to develop an algorithm
whose e�ciency was eight times larger than the one making use of the primitive
approximation [20].

We can concluded that, even if Chin approximation has to be considered as a
strictly fourth-order approximation, it presents the performance of a sixth order
one, making possible the simulation of highly degenerate quantum systems at low
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temperature without exceeding computational e�orts.

2.4 The permutation sampling

The discussion performed in the previous sections highlights the most important fea-
tures of the PIMC method, but it is not complete. What we said up to now, indeed,
holds only for systems made up of distinguishable particles. Instead, when we want
to deal with quantum many-body systems at low temperature, it is fundamental to
take into account the quantum statistic of the particles.

All the states, and thus also the thermal density matrix, are either symmetric or
anti-symmetric with respect to a given permutation. A convenient way to recover
the right expression for ρ, when dealing with Bose or Fermi statistics, is to sum over
all the possible permutations of the particle labels in one of the two arguments

ρB
F

(R1,R2; β) =
1

N !

∑
P

(±1)P ρ(R1,PR2; β) , (2.32)

where P is one of the N ! permutations of the particle labels, P is the number of
transpositions of the permutation P and in the term (±1) we choose the sing +
or − if the system is made up, respectively, of bosons or fermions. With this new
de�nition of the thermal density matrix, the expectation value of any observable Ô

(Eq. 2.18) becomes

〈Ô〉B
F

=
1

N !

∑
P

∫ M∏
j=1

dRj O(Rj) (±1)P ρ(Rj+1,Rj ; ε) (2.33)

with the condition RM+1 = PR1.
An exact evaluation of the N ! addends in the sum in Eq. 2.33 becomes soon

unfeasible by increasing N . Fortunately, as in the case of distinguishable particles,
even in this expression we can recognize a probability distribution and therefore,
we can rearrange the Monte Carlo procedure in order to include the sum over the
permutations. If we consider Fermi particles, an additional sign would appear in
front of each term: the even permutations will contribute positively to 〈Ô〉, the
odd ones will contribute negatively. A Monte Carlo evaluation of Eq. 2.33 for a
fermionic system, would lead to a signal-to-noise ratio going to zero for small T

and large N . As a consequence of this sign problem, the path integral calculation
becomes unfeasible unless we introduce some systematic approximations. Similarly
to the Fixed-Node approximation [39], the restricted path integral Monte Carlo [40]
allows the estimation of the quantum properties of a fermionic system imposing
that the sampled paths are restricted to a region of the con�gurational space with
a positive trial density matrix, thereby avoiding the sign problem.

For systems of bosons, where all the terms in the sum of Eq. 2.33 are positive,
the evaluation of 〈Ô〉 is feasible, but not trivial. In order to understand how to
include the sum over permutations in the Monte Carlo procedure, it is important to
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notice that the symmetrization of the thermal density matrix changes the boundary
condition on the con�guration RM+1. The new condition RM+1 = PR1 (where
PR = {rp(1), rp(2), . . . , rp(N)}, p(i) being the label of the particle in permutation
with the i-th atom) indicates that the last bead of the i-th polymer is not necessarily
connected to the �rst bead of the same chain, but it is connected to the �rst bead
of the p(i)-th chain. This means that, when simulating bosons with PIMC, the
quantum N -body system is not mapped onto a classical system of N closed polymers
made up all of the same number of beads M , but it is possible to �nd out polymers
composed by L × M beads, which represent the permutation cycles between L

bosons. Therefore, in order to include the sampling of permutations, we have to
include movements which connect beads belonging to di�erent chains and allow the
formation of long polymers.

These movements are quite di�cult to implement since they involve simultaneous
update of the permutation table p(i) and of the con�guration Rj . A typical sampling
scheme to include permutations in Path Integral Monte Carlo simulations has been
developed by Ceperley, see Ref. [18]. According to this classical scheme, we choose
at �rst the L atoms which should take part to the permutation cycle, according
to a kinetic criterion. This choice has to pass a �rst acceptance/rejection test, in
order to satisfy the detailed balance principle. In case of acceptance of this new
permutation cycle, the movement follows with a reconstruction of the polymers, in
order to reconnect beads belonging the chains selected in the �rst step of the update.
This new con�guration is subject to a second acceptance/rejection test according to
the potential part of the action. If the update passes even this second test, we have
created a new con�guration presenting a permutation structure P di�erent from the
initial one.

The performance of this scheme is quite low and it is not able to provide a good
sampling of bosonic permutations, especially when the number of atoms increases.
The main problem found when using this algorithm is highlighted by Boninsegni
[41]: he showed that the acceptance rate of the �rst test, which de�nes the L

bosons which participate in the permutation, decreases notably with the number
L. In particular, he showed that permutations involving more than 6 particles are
extremely rare events, independently of the physical system considered or of the
algorithm parameters. This pathology strongly a�ects the simulation when we are
interested in the study of the Bose-Einstein condensation or the super�uid properties
of the system, since these quantum e�ects are correlated to the appearance of long
permutation cycles between the particles (see subsections 2.5.4 and 2.5.5 for better
explanations). From the practical point of view, this problem makes unfeasible the
estimation of the super�uid density ρs for large systems (N > 100) due to the large
computational cost required to obtain a change in ρs.

Furthermore, in the simulation of strongly interacting systems, such as for in-
stance super�uid 4He, this sampling scheme presents some problems even in dealing
with pair exchanges. In general, when the interatomic potential is strongly repulsive
at short distance, the possibility of sampling con�gurations presenting superposition
of the particles (i.e. beads of the same imaginary-time index at a distance smaller
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than the hard-core) strongly reduces the acceptance rate of the update. In the
scheme proposed in Ref. [18], the movements require to update the con�guration
of at least two di�erent polymers at the same time: this increases the possibility
of �nding con�gurations presenting superpositions of the atoms, which would be
rejected after the Metropolis test on the potential action.

At the end, due to these intrinsic pathologies, the sampling scheme described
above is not able to provide a fully ergodic random walk through permutation space.
A di�erent approach in the sampling of the bosonic permutations in PIMC simu-
lations is provided by the worm algorithm. It was developed for the �rst time by
Prokof'ev et al. in the context of interacting bosons on a lattice [42] and, later, it
has been extended to continuous-space systems by Boninsegni et al. [21, 7, 43]. A
deeper discussion on the path sampling method of the worm algorithm, including
a precise description of all the updates needed to perform its implementation, is
provided in appendix A. The worm algorithm works in an extended con�gurational
space, given by the union of the ensemble Z, formed by the usual ring-polymer
con�gurations, and the ensemble G, where all the polymers are closed except one,
which is left open and usually is referred as the worm.

This extension of the con�gurational space creates the additional di�culty of
implementing new updates in order to switch from the con�gurations in Z to ones
in G and vice versa. Nonetheless, including G-con�gurations in the sampling it is
much easier to perform permutations in presence of the worm, thanks to the swap
movement (Fig. 2.4). The basic idea of the swap movement is to rebuild a free
particle path between an open extremity of the worm and a bead belonging to a
di�erent polymer: in this way, it is possible to modify both the permutation table
p(i) and the con�guration of the system Rj by means of following updates which
do not su�er of low acceptance probability. The swap movement is indeed able to
overcome the di�culties found when using the previous scheme in the sampling of
permutations. At �rst, it does not require the de�nition of a L-particles exchange
cycle, but the de�nition of just a single partner which should permutate with the
worm. The long cyclic permutations needed to give a microscopic description of
the super�uid e�ects can be obtained after following repetitions of the swap up-
dates. Secondly, the swap movement is a single-particle update, in the sense that,
when proposing it, we have to redraw a portion of only one polymer: therefore, the
eventuality of the superposition of two atoms is highly reduced.

We have to notice that the probability distribution used to sample the con�g-
urations in the subset G is di�erent from the one appearing in 2.33 and therefore
these con�gurations cannot be used to compute the diagonal observables, such as
the energy or the super�uid density. However, the G-con�gurations can be used to
compute o�-diagonal observables, such as the one-body density matrix ρ1(r, r′) (see
Section 2.5.4).

In conclusion, the worm algorithm, thanks to its capability to sample the ex-
changes between bosons by means of single particle updates whose acceptance prob-
ability is comparable to that of the other updates in the sampling of the polymers,
generates an ergodic and detailed balance random walk through the permutation
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Figure 2.4: Comparison of the permutation movement in the conventional sampling
methods (left) and in the worm algorithm (right). If we work in a con�gurational
space where open polymers are not allowed (conventional PIMC), it is necessary to
update the con�guration of more than one particle to propose a permutation. If
we allow the presence of an open polymer in the sampled con�gurations, as in the
worm algorithm, it is possible to propose permutations through subsequent single-
particles updates (the link and the beads marked in red are the ones updated after
the movement).
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space. Thus, it allows for an e�cient description of the thermodynamic properties
connected to the bosonic statistics of the quantum systems, such as the super�uid-
ity e�ects or the o�-diagonal correlations, and importantly for system much greater
than the ones accessible to conventional PIMC simulations.

2.5 Computing the properties

Once the approximation for the action is chosen and the sampling is working, we
are ready to calculate expectation values. In this section, we discuss the technical
details of constructing estimators for various physical quantities.

2.5.1 Energy per particle

The energy per particle E/N is one of the most important quantities we want to get
out of a simulation. At �nite temperature, E/N can be derived from the partition
function Z with the formula

E

N
= − 1

NZ

dZ

dβ
. (2.34)

In the PIMC formalism, the partition function of a three-dimensional bosonic system
can be written

Z =
1

N !

∑
P

∫ M∏
j=1

dRj (4πλε)−3N/2 exp [−S(Rj+1,Rj ; ε)] , (2.35)

where we use the condition RM+1 = PR1 and, as in Eq. 2.16, the de�nition
λ = ~2/(2m). The action

S(Rj+1,Rj ; ε) =
1

4λε
(Rj+1 − Rj)2 + U(Rj+1,Rj ; ε) (2.36)

is the sum of a kinetic part (�rst term) and a potential part, which we indicate with
U and depends on the approximation used to factorize the thermal density matrix.

If we apply the de�nition of E/N , Eq. 2.34, directly to Z in Eq. 2.35, we recover
the so called thermodynamic estimator for the total energy:

ET

N
=

〈
3
2ε

− 1
MN

M∑
j=1

(Rj+1 − Rj)2

4λε2
+

1
MN

M∑
j=1

∂U(Rj+1,Rj ; ε)
∂ε

〉
, (2.37)

where brackets 〈. . .〉 indicate the average over the con�gurations R sampled in the
Monte Carlo simulation. The �rst term of the sum is M times the energy of a
classical ideal gas 3/(2β).

In a similar way, we can deduce an estimator for the kinetic energy per particle
starting from the de�nition

K

N
= − m

βZ

dZ

dm
. (2.38)
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Applying this last de�nition to Eq. 2.35, we get the thermodynamic estimator for
the kinetic energy

KT

N
=

〈
3
2ε

− 1
MN

M∑
j=1

(Rj+1 − Rj)2

4λε2
+

m

MNε

M∑
j=1

∂U(Rj+1,Rj ; ε)
∂m

〉
. (2.39)

The estimator for the potential energy can be obtained as the di�erence V/N =
E/N − K/N :

V

N
=

〈
1

MN

M∑
j=1

(
∂U(Rj+1,Rj ; ε)

∂ε
− m

ε

∂U(Rj+1,Rj ; ε)
∂m

)〉
. (2.40)

We can notice that, for the Primitive Approximation Eq. 2.14, the potential action
U does not depend on the mass of the particle. Therefore, in Eq. 2.37, we can easily
distinguish the kinetic energy, represented by the �rst two terms in the sum, and
the potential one, which reduces simply to the potential energy of the con�guration,
averaged over the bead index,

VPA

N
=

〈
1

MN

M∑
j=1

V (Rj)

〉
. (2.41)

For high-order approximations, the potential action U depends on the mass of
the particle and also the third term ∂U/∂ε gives a contribution to the kinetic en-
ergy. For instance, in the Takahashi-Imada approximation, the double commutator[
[V̂ , K̂], V̂

]
depends on the mass (see Eq. 2.23) and therefore the kinetic energy

estimator is written

KTIA

N
=

〈
3
2ε

− 1
MN

M∑
j=1

(Rj+1 − Rj)2

4λε2
+

1
MN

M∑
j=1

ε2

24
~2

m
|∇V (Rj)|2

〉
, (2.42)

while the potential energy estimator is

VTIA

N
=

〈
1

MN

M∑
j=1

V (Rj) +
1

MN

M∑
j=1

2
ε2

24
~2

m
|∇V (Rj)|2

〉
. (2.43)

The thermodynamic estimator, Eq. 2.37, is easily implementable in a PIMC
simulation, but its statistical error behaves poorly in the limit of small ε. Indeed,
as ε becomes small, the �rst and the second terms in Eq. 2.37 become large and, to
�nd out the energy, we have to estimate a small di�erence between two large terms.
To overcome this pathology, Herman et al. have introduced another estimator for
the energy per particle whose �uctuation does not increase as ε decreases [44]. This
new estimator is obtained integrating by parts over the path variables and is called
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virial estimator for the total energy [18]:

EV

N
=

〈
3
2β

− 1
N

M∑
j=1

(RM+j − Rj)(RM+j−1 − RM+j)
4λβ2

+

+
1

2βN

M∑
j=1

(Rj − RC
j )

∂

∂Rj
[U(Rj+1,Rj ; ε) + U(Rj ,Rj−1; ε)]

+
1

MN

M∑
j=1

∂U(Rj+1,Rj ; ε)
∂ε

〉
(2.44)

where we have de�ned RC
j =

∑M−1
l=1 (Rj+l + Rj−l)/2M .

The whole derivation of the virial estimator can be found in appendix B. Here,
we notice that in the formula 2.44 there are no terms getting large when the number
of beads M increases. This feature makes the statistical error quite independent of
M and thus the virial estimator is much more e�cient than the thermodynamic one
in the calculation of the energy.

2.5.2 Pair-correlation function

The pair correlation function g(r1, r2) is proportional to the probability of �nding
a particle in r2, when another particle is placed in r1. Using the Feynman's density
matrix formalism, one can de�ne the pair-distribution function at �nite temperature
as

g(r1, r2) =
V 2

Z

∫
ρ(R,R; β) dr3 . . . drN , (2.45)

with R = {r1, r2, . . . , rN}. For uniform systems, g does not depend on the choice of
r1, but only on the distance r = r2 − r1. Therefore, it is worth taking into account
the symmetry under particle exchange and de�ne the PIMC estimator for the pair
distribution function as

g(r) =
V

N2

〈
1
M

M∑
j=1

∑
i1 6=i2

δ (r − (ri1,j − ri2,j))

〉
. (2.46)

In this equation, we have also considered an average over the bead indexes since,
due to the symmetry over imaginary time indexes, all the con�guration Rj , with
1 ≤ j ≤ M , can be considered in the evaluation of g(r) to take advantage of larger
statistics.

Practically, the expectation value of the delta function appearing in Eq. 2.46,
can be calculated constructing a histogram of the frequencies of the relative distances
between all pairs of beads with the same imaginary time index. The column of this
histogram corresponding to the segment [r −∆r/2, r + ∆r/2] has to be normalized
dividing the number of occurrences by the volume of the associated spherical shell
4
3
π[(r +∆r/2)3 − (r−∆r/2)3]. In order to avoid systematical error, it is important

to take the width ∆r of the segments of the histogram small.
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However, we have to notice that the estimator of g(r) given in Eq. 2.46 works
only in the assumption of knowing exactly the thermal density matrix. A more
rigorous estimator for g(r) should be obtained as a functional derivative of the
free energy, so that thermodynamic identities will hold between estimators at any
imaginary time step ε, not only in the limit of ε → 0.

In the general case, the average value of an arbitrary observable Ô should be
given through the variation of potential

〈Ô〉 = − 1
β

1
Z(V )

dZ(V + λO)
dλ

∣∣∣∣
λ=0

, (2.47)

Z(V ) being the partition function for the system with potential energy operator
V̂ [31]. When using the primitive approximation, the estimator for g(r) discussed
above works properly since the estimation of the distance between the atom i1 and
the atom i2 is simply the distance, in periodic boundary conditions, of the beads ri1,j

and ri2,j with the same bead index j. On the contrary, this is not true when using
more complex approximation schemes, such as the Takahashi-Imada or the Chin
approximations. In this case, due to the presence of a corrective term depending
on temperature in the expression of the potential action, one should evaluate the
distance between the atom i1 and the atom i2 according to the formula

ri1,i2 =

√√√√√(ri1,j − ri2,j)2 +
ε2~2

6m
(∇i1V −∇i2V ) · (ri1,j − ri2,j)︸ ︷︷ ︸

∆i1,i2

(2.48)

The presence of the term ∆i1,i2 in Eq. 2.48 may a�ect the construction of the
histogram for the g(r) and, in principle, one should take care of this when performing
the PIMC estimation [45]. Nevertheless, it can be shown that the e�ect of ∆i1,i2

on the estimation of g(r) is really small: in a simulation of liquid helium in the
super�uid regime, we have noticed that the result for g(r) obtained neglecting the
term ∆i1,i2 di�ers from the correct one on the �fth signi�cative digit, that is an
irrelevant quantity if compared to the statistical error.

2.5.3 Static structure factor

Even though the pair distribution function gives a good description of the micro-
scopic structure of the many-body system, in many cases the information given by
g(r) is not enough to provide a complete characterization of the system. In these
cases, it is necessary to investigate the spatial order of the atoms in the reciprocal
space, using the static structure factor

S(q) =
1

NZ

∫
dR ρ(R,R;β)

(
N∑

i=1

e−iq·ri

)  N∑
j=1

eiq·rj

 . (2.49)

Since the numerical simulation is performed choosing a simulation box with
�nite size and periodic boundary conditions, the wave vector q can assume only a
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discrete number of values, according to the dimensions of the box. If we consider a
rectangular box whose dimension are Lx, Ly and Lz, then

q =
(

2π
nx

Lx
, 2π

ny

Ly
, 2π

nz

Lz

)
, (2.50)

where nx, ny and nz are integer numbers.
For practical purposes, the reciprocal space is explored with three cycles on the

indexes nx, ny and nz and, once q is �xed, S(q) is calculated with the formula

S(q) =
1

NM

〈∑
i1 6=i2

M∑
j=1

cos(q · ri1,j) cos(q · ri2,j) + sin(q · ri1,j) sin(q · ri2,j)

〉
.

(2.51)
As in the case of g(r), it is possible to take advantage on the symmetry over imagi-
nary time index and use all the con�gurations Rj , with 1 ≤ j ≤ M , in the evaluation
of the static structure factor.

2.5.4 One-body density matrix

The one-body density matrix (OBDM) ρ1(r, r′) is a fundamental quantity when
we are interested in the Bose-Einstein condensation (BEC) properties of a quantum
system, since it is the inverse Fourier transform of the momentum distribution n(k).
Indeed, in a strongly interacting system, a macroscopic occupation of the ground
state appears in n(k) as a delta-peak for k = 0 and a divergent behavior n(k) ∼ 1/k

when k → 0. Nevertheless, such a singular behavior is not easily detectable in
numerical simulations because of the �nite size e�ects (the lowest k value is k =
2π/L, L being the smallest dimension of the simulation box).

When using Quantum Monte Carlo methods, it is preferable to study the BEC
properties of a many-body system working in the coordinate space. The OBDM can
be written

ρ1(r1, r′1) =
V

Z

∫
dr2 . . . drN ρB(R,R′; β) , (2.52)

where ρB is the thermal density matrix for the Bose system (Eq. 2.32) and the
con�guration R = {r1, r2, . . . , rN} di�ers from R = {r′1, r2, . . . , rN} only for the
position of one of the N atoms.

When Bose-Einstein condensation is present in a quantum many-body system,
ρ1(r1, r′1) presents a non zero asymptotic value in the limit of large distances r =
r1−r′1, which indicates, in the space of momenta, the presence of a delta singularity
for k = 0 [11]. In particular, the condensate fraction n0, that is the fraction of
atoms inside the zero momentum state, is related to the OBDM by the formula

lim
|r1−r′1|→∞

ρ1(r1, r′1) = n0 . (2.53)

We can notice easily that ρ1 is an o�-diagonal observable, since the con�gura-
tions appearing as arguments of the thermal density matrix in Eq. 2.52 are di�erent,
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contrary to the de�nition of the thermal average of the diagonal observable in Eq.
2.8. This means that the OBDM cannot be calculated in the usual PIMC con�gu-
rational space made up of ring polymers.

If we expand Eq. 2.52 over a discrete path, we get an expression similar to
Eq. 2.33, but with a di�erent condition on the con�guration RM+1. In particular,
since the con�guration R and R′ in Eq. 2.52 di�ers only from the position of one
atom, the new condition on RM+1 is obtained removing the restriction, on just one
polymer, that it returns to the starting position of one of the N polymer. This
means that the PIMC calculation of o�-diagonal observables, like ρ1, is performed
mapping the quantum system on a classical system in which all polymers but one
are closed. We can therefore compute ρ1(r), being r = r1 − r′1, with the formula

ρ1(r) =
V

NZ
〈δ (r − (riT ,1 − riH ,M+1))〉 , (2.54)

where the brackets 〈. . .〉 refer to the average over the con�gurations presenting the
open polymer (often referred as o�-diagonal con�gurations) and riT ,1 and riH ,M+1

are the positions of the two extremities of the open polymer. In order to compute
the average of the delta function we have to build the histogram of the frequencies of
the distances between the points riT ,1 and riH ,M+1, dividing, at the end, the height
of every column by the volume of the corresponding spherical cell, in analogy of the
calculation of g(r) described in section 2.5.2.

Nevertheless, the calculation of the OBDM presents the di�erence, with respect
to the computation of g(r), that we cannot take advantage of the symmetry over
imaginary time and thus the estimator for ρ1(r) given in Eq. 2.54 su�ers of low
e�ciency, especially when the number of atoms increases. Indeed, in the o�-diagonal
con�gurations, one polymer has to be treated di�erently from the others and only
one distance out of the 3NM degrees of freedom contributes to the estimation.
The main consequence of this fact is that, for a given con�guration, the statistical
sample over which the estimator Eq. 2.54 is averaged is much smaller than the
one available for the pair correlation function, making thus di�cult to reduce the
variance of the OBDM computed during the simulation. A way to improve the
e�ciency of the estimator for ρ1 is to move, in the Metropolis sampling, the open
polymer more frequently than the other atoms. The atoms that are not in the
immediate neighborhood of the open chain, indeed, act as a sluggish background
and they do not a�ect strongly estimation of the OBDM.

Another di�culty of the OBDM estimator in Eq. 2.54 is the evaluation of the
normalization factor. In this factor, it appears the partition function Z, which is a
diagonal observable and therefore cannot be computed sampling o�-diagonal con-
�gurations. Nonetheless, the right normalization of the OBDM can be achieved
adjusting by hand the histogram computed with PIMC, in order to satisfy the con-
dition ρ1(0) = 1. However, this a posteriori normalization is not an easy procedure,
because of the small occurrences of the distances close to zero, and may introduce
systematic errors in the estimation of the condensate fraction n0. A modi�cation
of the algorithm which make this procedure easier is proposed by Ceperley in [18]:
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the idea is to add to the action an arti�cial potential acting between the extremities
of the open chain, which operates as an importance sampling, so that these two
points will spend roughly the same amount of time at short and large distances.
Nevertheless, the choice of the external potential is not trivial and its use does not
solve completely the di�culties which are intrinsic to this normalization procedure.

This problem of the normalization can be overcome using the worm algorithm.
Its capability to sample both diagonal and o�-diagonal con�gurations allows for
the calculation of the properly normalized OBDM (see appendix A) and therefore
to avoid the systematic errors that can be induced normalizing the histogram by
hand. The possibility of evaluating the normalization factor in Eq. 2.54 is a peculiar
feature of the worm algorithm and represents a notable improvement with respect
to previous PIMC sampling schemes.

We have also to notice that the main interest of the OBDM is the possibility
of estimating the condensate fraction n0 from its long range behavior, according to
Eq. 2.53. When a condensate is present in a quantum system there is a non-zero
probability of �nding the two extremities at large distances. If we do not consider
the permutations between particles, the size of the polymers is of the order of the
thermal wavelength and, therefore, the extremities of the open chain cannot move
much far away from each other: typically the distribution of the distances between
the extremities is a Gaussian and decays fast to zero at large r. On the contrary,
when we consider the possibility for the atoms to exchange, long polymers will
begin to appear in the sampled con�gurations and the two extremities can become
separated by distances larger than the thermal wavelength. It is therefore important
to highlight that to perform a good calculation of ρ1 and n0 a good sampling of the
permutations is required.

In practice, to compute n0 by means of PIMC methods, we construct the his-
togram of ρ1(r) and focus on its behavior at large r: if ρ1(r) presents a plateau for
a non-zero value at the maximum distances reachable with the microscopic simu-
lation, therefore the system presents BEC, n0 being the asymptotic limit of ρ1(r).
Thus, a good estimation of n0 requires also the use of a su�ciently large number of
particles, in order to appreciate the asymptotic behavior of the OBDM.

2.5.5 Super�uid density

The super�uid density in a quantum liquid is the fraction of the system which
does not respond to movements of the walls of its vessel [46]. To de�ne it, it is
worth considering a liquid inside a bucket with cylindrical symmetry and in thermal
equilibrium with the walls of its container. The e�ective moment of inertia of the
liquid is de�ned as the work done for an in�nitesimally small rotation rate,

I =
d2F

dω2

∣∣∣∣
ω=0

=
d〈L̂z〉
dω

∣∣∣∣
ω=0

(2.55)



2.5. Computing the properties 31

where F is the free energy, L̂z is the total angular momentum operator in the
direction of the axis of rotation (which we indicate as the z-axis)

L̂z = i~
N∑

i=1

∂

∂θi
(2.56)

and θi is the azimuthal angle of the i-th particle in cylindrical coordinates. The
classical momentum of inertia can be written

Ic =

〈
N∑

i=1

mi(r⊥i
)2
〉

, (2.57)

r⊥i
being the distance of the i-th atom from the rotation axis. The super�uid density

ρs is the density of the fraction of the system which does not respond classically to
the rotation and can be obtained knowing I and Ic as

ρs

ρ
= 1 − I

Ic
. (2.58)

The derivation of an estimator for the super�uid density which can be used in
PIMC calculation is not trivial. The main di�culty is that the de�nition of ρs,
Eq. 2.58, is obtained considering a rotation, and thus a motion of the system in
real time, and it is not straightforward to translate it in the path integral formalism,
based on imaginary time. To do that, it is necessary to switch to the reference frame
rotating with the bucket and, therefore, to consider the Hamiltonian of the liquid
as Ĥω = Ĥ − ωL̂z, Ĥ being the Hamiltonian of the liquid at rest. Starting from
this consideration, Pollock and Ceperley have deduced a path integral expression
for the e�ective momentum of inertia I [47]. With this result, they get to a PIMC
estimator for the super�uid density:

ρs

ρ
=

2m〈A2
z〉

βλIc
(2.59)

where we have de�ned the projected area as

A =
1
2

N∑
i=1

M∑
j=1

ri,j × ri,j+1 . (2.60)

and Az, its component along the z-axis, is the sum of the areas enclosed by all the
polymers projected on a plane perpendicular to the rotation axis. Notice that the
super�uid density is a diagonal observable and, thus, the average in Eq. 2.59 has
to be considered as an average over the closed chain con�gurations sampled in the
PIMC simulation.

For numerical simulations, it is important to generalize the estimator for the
super�uid fraction in systems with periodic boundary conditions (PBC), that are
more suitable than cylindric geometry. To do that, we consider a quantum liquid
enclosed between two cylindric surfaces of mean radius R and spacing d, with d � R.
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Figure 2.5: Schematic representation of systems presenting zero (left) and non-zero
(right) winding number. In the con�guration of the left picture, all the polymers
close on themselves without crossing the periodic boundaries of the simulation box
and none of them winds around any boundary of the box. Thus, summing the
relative distances between following beads over all the links, as in the de�nition of
W (Eq. 2.62), we obtain W = 0. In the con�guration of the right picture, there
is a polymer which winds around the boundary of the box in one direction. This
means that, summing the relative distances between following beads over all the
links, we obtain a winding number W which presents a coordinate di�erent from
zero, resulting in a con�guration presenting a non-zero super�uid fraction.

Since the super�uid density is proportional to the mean-squared area of the paths
sampled for the container at rest and projected on a plane perpendicular to the
rotation axis, in this case the only paths contributing to the super�uid density are
the ones winding the torus: the other paths, which do not make a complete circuit
around the cylinder, give a contribution to Az which is negligible at large R. If we
de�ne the winding number W as the �ux of paths winding around the torus times
the circumference of the torus, the projected area Az will be WR/2 and the classical
momentum of inertia is Ic = mNR2. Using this results in Eq. 2.59, we get

ρs

ρ
=

〈W 2〉
2λβN

. (2.61)

We have to remark that a torus, like the one we consider in the previous discus-
sion, is topologically equivalent to the usual periodic boundary conditions. There-
fore, the expression in Eq. 2.61 can be used in any system presenting PBC, providing
the generalization of the winding number

W =
N∑

i=1

M∑
j=1

ri,j+1 − ri,j . (2.62)

Indeed, the whole derivation of Eq. 2.61 could be performed directly in periodic
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space by calculating the response of a periodic system to a linear velocity of its walls,
replacing the angular momentum operator L̂ with the total momentum operator [47].

We have to notice that generally the winding number is a vector, since periodic
boundary conditions are usually applied in all three spatial directions, and that it
is "quantized" in units of the box length.

The appearance of nonzero winding paths in the sampled con�gurations is a
clear signal of the super�uidity of the simulated systems (Fig. 2.5). It is easy to
understand that macroscopic exchange between the atoms are necessary to have
paths with nonzero winding number. However, conventional PIMC methods for the
sampling of permutations cannot provide good results for the super�uid density in
large systems (N & 100). Indeed, to change the winding number, we need to modify
a path spanning the entire system along one direction. Such an update is expected
to involve at least a number of particles of the order of N1/3 and it is di�cult to
accept if we sample only diagonal con�gurations. The worm algorithm, instead,
circumvents this pathology working in an extended con�gurational space presenting
also o�-diagonal con�gurations. In this way, the extremities of the open chain can
easily propagate crossing the boundary of the simulation box by means of single
particle updates. This feature makes the worm algorithm much more e�cient in the
computation of W and therefore of the super�uid density.

2.6 Results for model systems

In this section we test the algorithms described so far. We focus on the sampling of
the permutations and on the improvement given by the worm algorithm in the study
of quantum many-body system. We have performed this test simulating di�erent
systems: the quantum harmonic oscillator, the ideal Bose gas and, �nally, bulk
liquid 4He.

2.6.1 Harmonic oscillator

In the �rst application, we compute the energy per particle of N particles in a
one-dimensional harmonic well, with Hamiltonian

Ĥ =
N∑

i=1

− ~2

2m

∂2

∂x2
i

+
1
2
mω2x2

i . (2.63)

This problem is a good test for a computational method, since it can be solved
analytically at any temperature and thus we have exact values for the energy with
which we can compare our numerical results. The exact solution for the system of
N distinguishable particles is [48]

E

N
=

~ω

2
coth

(
~ω

2kBT

)
, (2.64)
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T/T0 E/N exact E/N PIMC
Distinguishable particles

0.2 0.50678 0.50678(3)
0.4 0.58943 0.58944(4)
0.8 0.90155 0.90162(8)

Bosons
0.1 0.50001 0.50005(12)
0.2 0.50115 0.50114(12)
0.4 0.51748 0.51741(8)
0.8 0.61546 0.61545(6)

Table 2.1: Energy per particle in the system on N = 6 particles in a harmonic
potential as a function of the temperature. Numbers in parentheses are statistical
errors.

while for a system of N bosons is [31]

E

N
=

~ω

N

[
N∑

l=1

l

2
coth

(
l~ω

2kBT

)
− N(N − 1)

4

]
. (2.65)

This system can be easily implemented in a PIMC code. Nevertheless, despite its
simplicity, this problem is not a trivial test for our computational method. Indeed,
the possibility of sampling the variables and evaluating the estimators quickly allows
to give very precise results for the energy: it is possible to reduce the statistical error
down to fourth or the �fth signi�cative digit in reasonable computing time. If we are
able to get results with such a precision and in agreement with the exact values, we
have the guarantee that our sampling scheme is working properly. It is important
to notice that the choice of the approximation for the thermal density matrix plays
an important role in these calculations. The accuracy of the Chin approximation
makes possible to simulate the quantum system using few beads and thus to recover
precise results for the energy in an easier way with respect to other approximation
schemes.

In our PIMC simulation, we have considered a system made up of N = 6 par-
ticles at di�erent temperature, assuming ~ = ω = m = kB = 1. At �rst, we have
performed our calculation considering distinguishable particles. Secondly, we have
implemented the worm algorithm in our code, in order to perform the more demand-
ing simulation of a bosonic system. The results for both cases are shown in Table
2.1 and in Fig. 2.6. We note that the results obtained from PIMC are in excellent
agreement with the exact ones and we can conclude that worm algorithm is able
to perform a good sampling of the permutations, at least in this kind of weakly
interacting systems.
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Figure 2.6: Energy per particle in the system on N = 6 particles in a harmonic
potential as a function of the temperature: the lines are the theoretical expectation
(blue dashed for distinguishable particles, red dot-dashed for bosons), the symbols
are the PIMC results (blue squares for distinguishable particles, red diamonds for
bosons) Statistical error are below symbol size.

2.6.2 Ideal gas

Another important feature of the worm algorithm is its capability to compute the
properly normalized one-body density matrix ρ1(r). To test this feature, we have
calculated ρ1(r) for a three-dimensional ideal Bose gas.

As in the previous case of the harmonic oscillator, also the problem of the ideal
Bose gas can be treated analytically and we can derive exact results which we can
compare with the ones obtained from the simulation. Quantum statistical mechanics
tell us that a three-dimensional ideal system of bosons undergoes Bose-Einstein
condensation below the critical temperature

Tc =
2π~2

mkB

(
ρ

ζ(3/2)

)2/3

(2.66)

where ζ(y) is the zeta Riemann function (ζ(3/2) = 2.612) [48]. Below Tc, the
condensate fraction is

n0 = 1 −
(

T

Tc

)3/2

(2.67)

and the one-body density matrix is given by the sum of the condensate fraction and
the inverse Fourier transform of the Bose distribution function:

ρ1(r) = n0 +
1

(2π)3ρ

∫
dk

eik·r

eβ(~2k2/(2m)) − 1
. (2.68)
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Figure 2.7: One-body density matrix for the ideal Bose gas at temperature T =
0.5Tc, being Tc the Bose-Einstein condensation transition temperature (Eq. 2.66).
The red squares and the blue diamonds represent the PIMC result respectively for
the system of N = 256 and N = 512 particles and the black dashed line represent
the exact result (Eq. 2.68). Statistical errors of the PIMC result, if not shown are
below symbol size.



2.6. Results for model systems 37

To compute the OBDM for the ideal Bose gas, we have simulated N atoms
completely free to move inside a cubic box, whose dimensions are �xed according
to the density ρ of the gas, with periodic boundary conditions. We have performed
simulations for di�erent values of the number of particles N and of the temperature
T : in Fig. 2.7 we show the result for ρ1(r) in the two largest system studied
(N = 256 and N = 512) at temperature T = 0.5Tc (Tc is the critical temperature
of the gas, Eq. 2.66). Even if the simulated systems are not big enough to see the
plateau of the OBDM and therefore to give an estimation of the condensate fraction,
we can see that our result is in good agreement with the one expected theoretically.
In particular, we notice that, at short distances, ρ1(r) is close to 1, satisfying the
normalization condition on the OBDM. The deviation of the numerical results from
the analytical curve of ρ1(r) at large r, which is large for the smaller system of
N = 256 atoms, can be attributed to �nite size e�ects.

It is important to remark that in this case of non-interacting system, the action is
merely kinetic and, thus, exactly known (Eq. 2.16). Therefore, the only di�culty in
the simulation of the ideal gas is given by the sampling of the bosonic permutations.
The good agreement between the PIMC result and the exact one given in Eq. 2.68
indicates that the worm algorithm is able to describe properly the exchange between
the identical particles.

2.6.3 Liquid 4He

As a last test, we have studied the performance of the method in a fully many-body
calculation, as it is liquid 4He. This is a stringent test for a computational technique,
since in bulk 4He at low temperature, the correlations between the atoms arise from
both the strong interatomic potential and the quantum nature of the system. To
perform this simulation, we have considered a system of N = 64 atoms interacting
with the HFD-B(HE) Aziz potential [49] inside a cubic box, at di�erent temperatures
and at the equilibrium density measured experimentally at each temperature [50].

The �rst quantity we compute is the total energy per particle E/N : in Fig. 2.8,
we show our PIMC results for E/N and we compare them with the experimental
measurement by Crawford [51]. We can see that the PIMC results for the energy as
a function of the temperature present the same behavior as the experimental data,
even if our numerical values for E/N are slightly lower than Crawford's measure-
ments, in an amount of ∼ 0.20 K. A similar discrepancy has been obtained also in
a previous calculation [4] and can be attributable to the particular Aziz potential
used in the present simulation. The disagreement between the PIMC and the exper-
imental result increases close to the super�uid transition temperature Tλ = 2.17 K,
since the computer simulation, because of �nite size e�ects, is not able to reproduce
accurately the kink in E(T ) at Tλ.

To investigate the microscopic structure of the simulated system we have com-
puted the two-body radial distribution function g(r). Our result of g(r) at the
temperature T = 1.2 K and density ρ = 0.02184 Å−3 is shown in Fig. 2.9 and is in
excellent agreement with experimental data [52].
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Figure 2.8: Energy per particle in the system of N = 64 4He atoms at the SVP
density as a function of the temperature: the red squares are the PIMC results (sta-
tistical error are below symbol size) and the straight black line is the experimental
measurement taken from Ref. [51].

In order to check if the worm algorithm can provide a good sampling of the
permutations even in strongly interacting systems, it is important to calculate the
properties strictly connected with the quantum nature of the system, such as the
condensate or the super�uid fraction. At �rst, we have computed the one-body
density matrix ρ1(r): we have performed this calculation in a system larger than
the ones used in previous simulations, made up of N = 128 atoms, in order to
see more clearly the long range behavior of ρ1(r). The result for a system at the
temperature T = 1.2 K and density ρ = 0.02184 Å−3 is shown in Fig. 2.10: we can
easily see that, at large r, ρ1(r) does not vanish, but presents a plateau at a non
zero value indicating the presence of Bose-Einstein condensation in the system. The
estimated condensate fraction is n0 = 0.072 ± 0.002.

Finally, we have also studied the dependence of the super�uid fraction ρs/ρ as
a function of the temperature. Our results, both for the system of 64 and 128 4He
atoms, are shown in Fig. 2.11 and compared to the experimental measurements
[53]. At very low temperature (T < 2 K), our data are in good agreement with
experimental ones, even though they present a quite large statistical error. Indeed, it
is hard to estimate accurately the super�uid fraction by means of the mean-squared
winding number because changes in W involve global moves of the paths and do
not occur with high frequency during the Metropolis sampling of the coordinates.

Close to Tλ, the discrepancies between PIMC and experimental data increase.
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Figure 2.9: Two-body radial distribution function for liquid 4He. The red straight
line is the result obtained in PIMC simulation at temperature T = 1.2 K and
density ρ = 0.02184 Å−3; the black dashed line is the experimental measurement at
the equilibrium density at T = 1 K, taken from Ref. [52]

Figure 2.10: One-body density matrix for liquid 4He at temperature T = 1.2 K and
density ρ = 0.02184 Å−3.
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Figure 2.11: Super�uid density for liquid 4He at the equilibrium density as a function
of the temperature: the straight black line is the experimental measurement taken
from Ref. [53]; symbols are the results obtained from PIMC simulation (blue squares
and red diamonds are respectively the result obtained in the simulation of N = 64
and N = 128 4He atoms).
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For the system of 64 atoms, we see that ρs decays to zero at high T in a smoother
way in comparison with the experimental behavior. This e�ect is due to the �nite
size of the simulation box: it can be partially corrected considering larger systems, as
we can see from the PIMC result of the simulation of the system made up of 128 4He
atoms. To extrapolate the value of the super�uid density in the thermodynamic limit
from the PIMC data, and thus to estimate the critical temperature for the super�uid
transition, it would be necessary to perform simulations of larger systems, which
are quite demanding from the computational point of view, and then to carry out
a �nite-size scaling analysis [54]. Nevertheless, the possibility of reproducing quite
well the behavior of the super�uid density in a system of 128 4He atoms represents
a big improvement in the sampling of permutations with respect to conventional
techniques. Indeed, as pointed out by Ceperley in Ref. [18], without the worm
algorithm it is possible to calculate the super�uid fraction of many-body system
only in small systems containing no more than 100 particles.

In conclusion, this last test has shown that, by means of the PIMC method with
the worm algorithm, it is possible to reproduce the main static properties of bulk
liquid 4He. We can therefore assume that our method is able to give a complete
and accurate description of quantum systems, even in case of high degeneracy and
strong interaction between the atoms.





Chapter 3

Zero temperature calculations:

the Path Integral Ground State

method

In this chapter, we present an extension of the Path Integral Monte Carlo method to
the simulation of quantum systems at zero temperature, usually called Path Integral

Ground State (PIGS) method. After a short introduction of the subject recalling
the formalism of the method, we examine the possibility of improving the quality
of the ground state wave function with the choice of a good approximation for the
propagator in imaginary time. The e�ciency of the method makes possible to obtain
completely model independent results with a very small number of beads. Finally, we
discuss also the improvement in the sampling scheme given by the implementation
of the worm algorithm in these simulations.

3.1 Variational Monte Carlo and Path Integral Ground

State methods

The Monte Carlo methods, that we brie�y discussed in Sec. 2.1 showing the exam-
ple of their application in the study of classical systems at �nite temperature, are
suitable also to compute the properties of quantum systems at zero temperature.
The ground state average of an observable Ô

〈Ψ0|Ô|Ψ0〉 =
∫

dRO(R)Ψ2
0(R)∫

dRΨ2
0(R)

. (3.1)

can be calculated sampling the coordinates of the quantum system according to the
probability distribution Ψ2

0(R)/
∫

dRΨ2
0(R). However, with respect to the Monte

Carlo simulation of a classical system, the quantum case presents the additional
di�culty that the ground state wave function is generally unknown and, to de�ne
the probability distribution used for the sampling of the coordinates, it is necessary
to approximate Ψ0(R) with a trial wave function ΨT (R).

The trial wave function must respect the postulates of quantum mechanics. In
particular, it is necessary that ΨT (R) respects the correct symmetry under the
exchange of the particle labels: ΨT has to be symmetric when studying bosons and
antisymmetric when studying fermions. Nonetheless, its choice can be made with a
certain arbitrariness. To judge among a set of proposed forms of ΨT which is best,
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we make use of the variational principle. This states that the ground state is the
one which minimizes the energy functional

E[Ψ] = 〈Ψ|Ĥ|Ψ〉 ≥ E0 : (3.2)

therefore, the better ΨT approximates Ψ0, the lower is the value

ET =
∫

dREL(R)Ψ2
T (R)∫

dRΨ2
T (R)

, (3.3)

where the quantity

EL(R) =
ĤΨT (R)
ΨT (R)

, (3.4)

Ĥ being the Hamiltonian of the system, is called the local energy. The strategy
generally followed in numerical simulation is therefore to construct a physically mo-
tivated wave function involving some free parameters and optimize these searching
for the minimum of ET .

The approach based on the use of Monte Carlo methods to perform numerically
the calculation of ET and the optimization of ΨT is referred to as Variational Monte

Carlo (VMC). This method is easily implementable and it can provide approximated
results with a little computational e�ort. However, its e�ciency and its reliability
depend strongly on the particular ansatz for the trial wave function. Furthermore,
the results obtained with this method are a�ected by a systematic error which is
di�cult to quantify, especially the result for the total energy since, in accordance to
the variational principle, ET can be considered only an upper bound for the ground
state energy [17].

It is therefore desirable to develop methods able to improve the quality of the
trial wave function and thus to recover more reliable results for the ground state
averages of the quantum system. An e�ective approach to accomplish this objective
can be found in the solution of the Schrödinger equation in imaginary time τ = it:

− ∂

∂τ
Ψ(R; τ) = ĤΨ(R; τ) (3.5)

Using the trial wave function to describe the initial condition Ψ(R; 0) = ΨT (R),
the solution for Ψ at any imaginary time τ is

Ψ(R; τ) = e−τĤΨT (R) =
∞∑

n=0

CnΨn(R)e−τEn (3.6)

where we indicate with Ψn the eigenstate of the Hamiltonian with eigenvalue En

and we de�ne Cn = 〈Ψn|ΨT 〉.
For su�ciently large τ , only the eigenfunction with the lowest eigenvalue con-

tributes to the sum in Eq. 3.6: this means that, if the trial wave function is not
orthogonal to the ground state, Ψ0(R) can be written, except for a normalization
factor, as

Ψ0(R) = lim
τ→∞

Ψ(R; τ) = lim
τ→∞

∫
dR′ G(R,R′; τ)ΨT (R′) , (3.7)
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where G(R,R′; τ) = 〈R|e−τĤ |R′〉. Eq. 3.7 tells us that the propagator G(R,R′; τ)
for a su�ciently large imaginary time can be used to project a trial initial state onto
the ground state. This result is at the basis of the formulation of many numerical
methods known as projection techniques: among them, it is worth to mention the
Green's Function Monte Carlo [17], Di�usion Monte Carlo [17] and Reptation Monte
Carlo [55].

It is easy to notice that the imaginary time propagator G in Eq. 3.7 is equivalent
to a thermal density matrix for a quantum system at temperature T = 1/(kBτ).
This means that we can write a very accurate approximation for the ground state
wave function by means of the Path Integral formalism we have previously used to
describe the properties of the quantum system at �nite temperature. This approach
is commonly known as the Path Integral Ground State (PIGS) method [56, 57, 58]
and provides a technique to systematically improve a trial wave function which
eventually drives the system into the ground state.

More precisely, the PIGS approach works constructing the propagator for the
total imaginary time τ as a convolution of M propagators on a smaller time ε =
τ/M , for which it is possible to give a reliable approximation for G:

G(RM ,R0; τ) =
∫ M−1∏

j=0

dRj G(Rj+1,Rj ; ε) . (3.8)

Making use of the convolution property, we can rewrite Eq. 3.7 as

Ψ0(R) = lim
M→∞

∫ M−1∏
j=0

dRj G(Rj+1,Rj ; ε)ΨT (R0) . (3.9)

Thus, if we �x a �nite value for the integer M , we obtain an analytical form for the
ground state wave function that can be used to perform numerical simulations,

ΨPIGS(RM ) =
∫ M−1∏

j=0

dRj G(Rj+1,Rj ; ε)ΨT (R0) . (3.10)

At �rst sight, it seems that PIGS method is not so di�erent from other variational
methods: at the end, we have de�ned an ansatz ΨPIGS(R) to approximate the
ground state wave function and we use it to sample the coordinates and to compute
the expectation values of the observables (indeed, in its �rst formulation PIGS was
called Variational Path Integral method [18]). Nevertheless, the important novelty
of the PIGS method with respect to VMC is the possibility to control the systematic
error by means of the parameter M , which represents the number of convolution
terms used in the approximation. Increasing M , we provide a better and better
approximation for Ψ0(R) and the expectation value for the energy becomes smaller
than the value ET obtained with Eq. 3.3. At su�ciently large M , the value for the
estimated energy will be independent on M , indicating that the systematic error
due to the choice of ΨT (R) has lowered below the statistical uncertainties and the
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result can be considered an exact estimation of the ground state energy E0; for this
reason PIGS is referred to as an exact method.

Once we have determined the value of M for which ΨPIGS(R) can provide a
good description of the ground state, all the relevant properties of the quantum
averages of the observables can be calculated with the formula

〈Ψ0|Ô|Ψ0〉 =
∫

dRM O(RM )Ψ2
PIGS(RM )∫

dRM Ψ2
PIGS(RM )

=

∫ ∏2M
j=1 dRj O(RM )ΨT (R2M )G(Rj ,Rj−1; ε)ΨT (R0)∫ ∏2M

j=1 dRj ΨT (R2M )G(Rj ,Rj−1; ε)ΨT (R0)
(3.11)

This integral can be computed via a Monte Carlo procedure, sampling the proba-
bility distribution

p(R0, . . . ,R2M ) =

∏2M
j=1 ΨT (R2M )G(Rj ,Rj−1; ε)ΨT (R0)∫ ∏2M

j=1 dRj ΨT (R2M )G(Rj ,Rj−1; ε))ΨT (R0)
, (3.12)

This probability distribution can be seen as the Boltzmann distribution of a classical
system of polymers, each one composed by 2 × M + 1 beads. Therefore, in close
analogy with PIMC simulations at �nite temperature, we can map the quantum N -
particle system onto a classical system of N polymers, whose interaction is speci�ed
in the form used to approximate the propagator G(Rj ,Rj−1; ε). Being G formally
equivalent to a thermal density matrix, the probability distribution used in PIGS
simulation, Eq. 3.12, is very similar to the one used in PIMC: thus the sampling
scheme used for calculations at �nite temperature can be easily extended to the zero
temperature formalism.

The main discrepancy with respect to the calculation at �nite temperature is
that, in this case, we do not have to impose the periodic boundary conditions in
imaginary time required by taking the trace of the propagator. For this reason, the
quantum system is not isomorphous to a classical system of ring polymers but to a
classical system of open polymers. On the con�gurations of the extreme points of
these polymers, namely R0 and R2M , in addition to the interaction speci�ed by the
propagator G, we must also evaluate a special weight which depends on the choice
of the trial wave function ΨT .

Another di�erence between PIMC and PIGS concerns the parameter ε. If in
PIMC it is related to the temperature of the system, in PIGS it has no physical
meaning and has to be considered as a variational parameter which has to be opti-
mized, following the typical variational scheme of the minimization of the energy.

Notice that the conditions of indistinguishability of the quantum particles are
accomplished in the PIGS method with a proper choice of the trial wave function and
of the approximated form for the propagator. Thus, if ΨT (R) is symmetric and the
propagator is the one in Eq. 2.14 which is symmetric, there is no need of sampling
the permutations between identical particles and single-polymers movements are
su�cient to provide an ergodic sampling and a reliable calculation of the ground
state averages.
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Finally, it is important to make a remark in the choice of the trial wave function
ΨT in the PIGS method. It has been found that the PIGS results are independent of
ΨT and that they converge to the exact results even when the trial state contains no
correlation at all (ΨT = 1) [59, 60]. The only in�uence of ΨT is on the convergence
rate, since a judicious choice of ΨT would require a lower number M of beads to
describe the ground state of the system. This result represents an improvement with
respect to other projector Quantum Monte Carlo methods, such as Green Function
or Di�usion Monte Carlo, where the trial wave function plays an important role in
the importance sampling of the coordinates.

3.2 Estimators for the local energy

A remarkable feature of the PIGS method is the possibility it o�ers to evaluate
the exact properties of the quantum system computing directly the pure estimator
〈Ψ0|Ô|Ψ0〉. In many Quantum Monte Carlo techniques, only the mixed estimator
〈ΨT |Ô|Ψ0〉 are easily accessible, while the pure estimators are obtained through a
forward walking algorithm [61].

In the PIGS method we can calculate, according to Eq. 3.11, the pure estimator
of any observable Ô evaluating directly O(RM ), that is evaluating the observable
on the con�guration of the beads exactly at the center of the open polymers. The
de�nition of the estimators O(RM ) is straightforward for the observables which
are diagonal in the space of coordinates, such as the potential energy or the pair
distribution function. Instead, it is more involved in the case of observables which
depend on the coordinates of the system in two di�erent imaginary time: among
them, it is important to mention the local energy EL(RM ), Eq. 3.4, whose average
provides the ground state energy of the system and has to be used in the study of
the convergence of ΨPIGS(RM ), Eq. 3.10, to Ψ0(RM ) as the number of beads M

increases. The de�nition of EL(RM ) directly from the evaluation of ĤΨPIGS can
be hard because the de�nition of ĤΨPIGS would require the computation of the
�rst and of the second derivatives of G(RM ,RM−1; ε), resulting in a formula for
EL(RM ) which in many cases is di�cult to implement.

In order to overcome this problem, there are many ways which can be followed.
The most common strategy is to evaluate the ground state energy using the mixed
estimator 〈Ψ0|Ĥ |ΨT 〉. Indeed, we can easily demonstrate that, within the PIGS ap-
proach, the mixed estimator for any observable Ô commuting with the Hamiltonian
is exact:

〈Ψ0|Ô|Ψ0〉 = lim
τ→∞

〈ΨT |e−τĤÔe−τĤ |ΨT 〉 = lim
τ→∞

〈ΨT |e−2τĤÔ|ΨT 〉 = 〈Ψ0|Ô|ΨT 〉 ,

(3.13)
where in the second equality we have made use of the commutativity of the ob-
servable Ô with Ĥ, and thus with e−τĤ , to move Ô and to apply it directly to
|ΨT 〉. This result tells us that the estimator for the local energy can be obtained
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computing ĤΨT (R) instead of ĤΨPIGS(R), in order to recover the simpler form

EL(R) = − ~2

2m

∇2ΨT (R)
ΨT (R)

+ V (R) . (3.14)

This estimator is able to provide reliable and precise results for the expectation
values of the ground state energy, but requires the knowledge of a reasonable ap-
proximation of the ground state wave function. Indeed, if ΨT is not su�ciently
accurate to describe the ground state, the local energy estimator given in Eq. 3.14
su�ers the drawback of a large variance.

Therefore, it is very important to develop other estimators for the local energy
which can be used in the general case of systems whose ground state wave function
is poorly known. An alternative estimator can be obtained from the identity

lim
τ→∞

∂

∂τ
ln〈ΨT |e−τĤ |ΨT 〉 = lim

τ→∞

〈ΨT |e−τĤĤ|ΨT 〉
〈ΨT |e−τĤ |ΨT 〉

= 〈Ψ0|Ĥ|Ψ0〉 . (3.15)

According to this equation, we can deduce the local energy estimator evaluating the
derivative of the propagator G(R2M ,R0; τ) with respect to the imaginary time τ ,
in the same way as we have deduced the energy estimator in PIMC simulations at
�nite temperature (Sec. 2.5.1). Following this approach, we will get an estimator
which does not depend only on the con�guration RM of the mid points of the PIGS
polymers, but also on all the con�gurations {R0, . . . ,R2M} representing the whole
propagation in the imaginary time τ . More precisely, we get

EL(R0, . . . ,R2M ) =
3N

2τ
+

(R2M − R0)(R2M−1 − R2M )
4λετ

+

+
1
τ

2M−1∑
l=1

(Rl − R0)
∂

∂Rl
(U(Rl+1,Rl; ε) + U(Rl,Rl−1; ε))

+
1

2M

2M∑
l=1

∂U(Rl,Rl−1; ε)
∂ε

. (3.16)

Notice that this equation for EL is equivalent to the virial estimator for the energy
at �nite temperature, obtained after the rede�nition of the harmonic terms propor-
tional to (Rj − Rj−1)2 coming from the derivation of the gaussians in the kinetic
contribution to the imaginary time propagator, as shown in appendix B.

The estimator in Eq. 3.16 can be more robust than the one in Eq. 3.14 since
it is totally independent of the choice of the trial wave function and can be used in
a large number of cases. However, it presents a higher variance in comparison with
EL of Eq. 3.14. Furthermore, Eq. 3.16 is exact only in the limit of τ → ∞ and
cannot be used for variational calculations.

In the general case of a not accurate trial wave function and of a number of
beads M out of convergence, the only approach to get an estimator for the local
energy is to compute it directly from the de�nition of ΨPIGS . It is possible to
write the imaginary time propagator in forms which are easily derivable and allow
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for an easy de�nition of the local energy estimator. In particular, if we de�ne the
imaginary time propagator G(Rj ,Rj−1; ε) in a symmetrized form where we put the
kinetic contribution at the extremities and we evaluate the potential action in an
inner con�guration R′

j , as in

G(Rj ,R′
j ,Rj−1; ε) =

1
(4πλε)3N/2

e−
(Rj−R′

j)2

4λε e−εW (R′
j)e−

(R′
j−Rj−1)2

4λε , (3.17)

the calculation of ∇2ΨPIGS(RM ) is simpler since, if we substitute Eq. 3.17 in
Eq. 3.10, the con�guration RM appears in the expression of ΨPIGS(RM ) only
as argument of a gaussian term, making thus ΨPIGS easily derivable. With this
assumption, we get the following estimator for the local energy:

EL(RM ,R′
M ,RM−1) =

3
2ε

− 1
4λε2

(RM − RM−1)2 + V (R′
M ) . (3.18)

In practice, to use this estimator we have to focus on a central link of the
PIGS polymer: the kinetic energy is computed from the square distances
of the extremities of the link considered, while the potential energy is com-
puted on a con�guration R′

M sampled according the distribution pL(R′
M ) =

ρF (RM ,R′
M ; ε/2)ρF (R′

M ,RM−1; ε/2), where ρF is the kinetic energy propagator,
Eq. 2.16. The term pL(R′

M ) can be easily rewritten as a gaussian centered in
(RM + RM−1)/2 and with standard deviation σ =

√
~2ε/m, so that the con�gura-

tion R′
M is not di�cult to sample.

The main advantage of the estimator for the local energy written in Eq. 3.18
is its easy implementation and its complete generality. However, it su�ers from a
large variance and needs long simulation runs in order to lower the statistical error
in the estimation of the ground state average of the Hamiltonian. For this reason,
we use this estimator especially in variational calculations performed with a limited
number M of beads (typically M = 1) for which the sampling is not exceedingly
demanding from the computational point of view.

In our simulations, we have implemented all the three estimators for the local
energy we have discussed in the present section. According to the characteristics of
every simulation, we have chosen which of is the optimal option. However, when
more than one estimator is usable, we compute all of them and verify that they
provide compatible results, in order to make ourselves sure of the reliability of the
simulation.

3.3 Variational calculations

In previous sections, we have de�ned the PIGS method as exact in the sense that the
systematic error can be controlled and lowered below the statistical one studying the
convergence of the mean value of the energy as the number M of beads increases.
However, the nature of this method is variational and, in principle, we can use the
path integral formalism also to create a variational ansatz for the many-body wave
function using a small number of beads out of convergence, typically using M = 1.
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A well known example in this class of variational wave functions is the so called
Shadow Wave Function (SWF)[62, 63]:

ΨSWF (R) = Ψr(R)
∫

dSΘ(R,S)Ψs(S) (3.19)

The term Θ(R,S) = exp(−C
∑N

i=1 |ri − si|2) is a gaussian kernel which provides
a coupling between the real coordinates of the system R = {r1, . . . , rN} and the
auxiliary coordinates S = {s1, . . . , sN} which, being integrated out, do not appear
as explicit variables of the ΨSWF and are referred as shadow variables (C is a
variational parameter). The function Ψr(R) and Ψs(S) are Jastrow type wave
functions

Ψr(R) =
∏
i<j

e−
1
2
u(rij) and Ψs(S) =

∏
i<j

e−
1
2
u(sij) , (3.20)

where the two-body correlations are described with a McMillan pseudopotential
u(r) = (b/r)5 (with b a variational parameter). The functional form in Eq. 3.20 is
often used in the simulation of condensed matter systems since it is able to account
for the two-body correlations at short range coming from the hardcore interatomic
potential in a simple way. The SWF is able to improve the variational results
obtained with a normal Jastrow wave function since, with the shadow variables,
it introduces implicit correlations between more than two bodies, which play an
important role in strongly interacting quantum systems.

It is easy to realize that the shadow wave function in Eq. 3.19 can be interpreted
as a PIGS wave function, Eq. 3.10, with M = 1. Indeed, the function Ψs depends
only on variables which are �nally integrated and plays the same role as the trial
wave function ΨT in Eq. 3.10. Furthermore, the gaussian kernel Θ(R,S) is similar
to the kinetic contribution to the imaginary time propagator G(R,S; ε) and thus
the product Ψr(R)Θ(R,S) can be regarded as an approximation for G(R,S; ε).

Nevertheless, this approximation is too simple and therefore it makes sense to
ask if the results given by VMC with the SWF can be improved considering a better
ansatz when the initial state is projected making use of a more accurate approxima-
tion for G. To accomplish this purpose, we have constructed a new shadowlike wave
function making use of the Chin approximation for the imaginary time propagator
[20]

e−εĤ ' e−v1ε Ŵ1e−t1ε K̂e−v2ε Ŵ2e−2t0ε K̂e−v2ε Ŵ2e−t1ε K̂e−v1ε Ŵ1 , (3.21)

with Ŵi = V̂ +u0/(3vi)ε2 [V̂ , [T̂ , V̂ ]], and where the various factorization coe�cients
are all dependent on the single free parameter t0 (Eqs. 2.29), obtaining thus the
following ansatz for the variational wave function:

ΨSC(R) =
∫

dS1dS2dS3 e−v1εW1(R)e
− (R−S1)2

4λt1ε e−v2εW2(S1)e
− (S1−S2)2

8λt0ε ×

×e−v2εW2(S2)e
− (S2−S3)2

4λt1ε e−v1εW (S3) ΨT (S3) . (3.22)
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Figure 3.1: Variational energy obtained using the wave function ΨSC (Eq. 3.22) as
a function of the free parameter t0, with ε = 0.06K−1. The dashed line is obtained
�tting our results with a quadratic function. The dotted line corresponds to the
value t0 = 0.082 obtained from the optimization at �nite temperature.

In order to test the accuracy of the variational ansatz in Eq. 3.22, we have used
it in the calculation of the energy of liquid 4He at the equilibrium density. We have
performed thus a simulation of N = 64 4He atoms interacting via the Aziz potential
[49] at the density ρ = 0.02186Å−3. As initial trial wave function, we make use of a
Jastrow form based on the McMillan model, ΨT (S) =

∏
i<j exp(−0.5(b/sij)5), that

is the same trial wave function used in the �rst de�nition of the SWF, Eq. 3.19.

The �rst task for making our approximation for the ground state as accurate as
possible is to optimize the variational parameters. We start from the optimization
of the parameter t0 used for the factorization of the evolution operator. Fig. 3.1
shows the results for the total energy of the system as a function of t0 with a �xed
ε = 0.06K−1. This value for ε is quite large if we consider that, in the PIMC
simulations, the convergence of the Chin approximation to the exact imaginary
time propagator is typically reached for ε ≤ 0.0125K−1. However, at higher ε, the
dependence of E/N on t0 is stronger and this makes the optimization procedure
easier. This e�ect has been shown also in the optimization procedure at a �xed
�nite temperature: in this case, the energy as a function of t0 has an oscillating
behavior which is more marked for a smaller number of beads, that is a higher value
of the imaginary time step ε [20]. From Fig. 3.1, we can notice that the optimal
parameter for t0 is close to the value t0 = 0.082 obtained at �nite temperature: this
supports the hypothesis for which the optimal values for the Chin approximation



52 Chapter 3. Zero temperature calculations: the PIGS method

ε [K−1] E/N [K]
Jastrow-McMillan Constant

0.03 -7.14(9) -6.49(12)
0.045 -7.15(8) -6.88(8)
0.06 -7.10(5) -6.91(6)
0.075 -6.77(5)
0.09 -6.44(4)

Table 3.1: Variational energy obtained using the wave function ΨSC (Eq. 3.22) as
a function of the total imaginary time ε of the projection for di�erent choice of the
trial wave function ΨT . Figures in parentheses are the statistical errors.

depends uniquely on the Hamiltonian [37].
Having optimized the Chin parameter t0, in Eq. 3.22 it remains another free

parameter, ε, which is the total imaginary time of the propagation from the trial
state ΨT (S) to the �nal wave function ΨSC(R). The optimization of this parameter
represents the search for a compromise between a large ε value suitable for a large
suppression of the excited components present in ΨT (S), and a small one suitable for
a proper behavior of the short-time approximation for the action. The dependence
of the variational energy on the parameter ε is shown in Table 3.1. We can see that,
in the case of a trial wave function of the Jastrow type, the result on the variational
energy does not depend strongly on ε. Furthermore, we notice that the minimum
energy obtained is E/N = (−7.15±0.08) K: this result is only 0.17 K (two standard
deviations) higher than the value E0 = −7.32 K obtained with the PIGS method
for a su�ciently large number of beads (see next section). It is very accurate if we
consider that it has been obtained following a variational approach.

Equally impressive is the result obtained choosing a constant trial wave function
ΨT = 1 in Eq. 3.22. The choice of this trial wave function, which is the ground state
of an ideal Bose gas, represents an interesting variational calculation since, in this
way, we get a completely general wave function where no more information than
the Hamiltonian and the quantum statistics are used as input of the simulation.
The results of the variational energy for di�erent ε with this new choice of ΨT

are also shown in Table 3.1: in particular, we have obtained a minimum energy
E/N = (−6.91±0.06) K. This result indicates that the use of a good approximation
for the propagator provides by itself an impressive enhancement of the quality of
the ground state wave function and makes possible to de�ne a completely model
independent ansatz which is able, in principle, to give accurate variational results
even for systems whose ground state properties are poorly known or even unknown.

3.4 Exact simulations of liquid 4He

The natural continuation of our study of liquid 4He at zero temperature is to in-
crease the number M of convolution terms in ΨPIGS in order to reach the asymp-



3.4. Exact simulations of liquid 4He 53

totic regime and �nally obtain the ground state energy. In Fig. 3.2, we show
the convergence of E/N at large imaginary time, both for the Jastrow ΨT (R0) =∏

i<j exp(−0.5(b/r0ij )
5) and for the constant trial wave function ΨT (R0) = 1. As

the total imaginary time of the projection τ increases, the total energy per particle
E/N decreases indicating an improvement in the calculated variational energy. At
large τ , the result for E/N converges to the value E/N = −7.32 K, that can be
considered our estimation of the ground state energy E0 of liquid 4He at its equi-
librium density. We can also notice that the result for E/N is independent of the
choice of the trial wave function ΨT : this choice a�ects only the rate of conver-
gence of the variational results to the exact one, since a trial wave function which is
able to describe accurately the ground state does not need a large time τ to reach
the asymptotic regime. In particular, to project a Jastrow wave function onto the
ground state we need an imaginary time τ = 0.1K−1, while the constant wave func-
tion reaches the convergence at τ = 0.1875K−1. Having chosen an imaginary time
step ε = 0.0125K−1 for which we can be sure of the accuracy of the propagator
G(Rj ,Rj−1; ε), this means that we get the exact value of the energy with M = 8
and M = 15 beads respectively for the Jastrow and for the constant wave function.
The number of beads can be reduced considering a larger ε: in this case the ap-
proximation for the propagator is worst and the total imaginary time τ to achieve
convergence may be larger. For instance, in a PIGS simulation with the choice of the
McMillan form for ΨT and ε = 0.045K−1, we get the convergence at τ = 0.18K−1,
which means M = 4 beads. Anyway, we have to remark that in both cases we are
able to recover the exact result for the energy with a very small number of beads.

Once we have found the number of beads M needed to provide a good description
of the ground state with ΨPIGS , Eq. 3.10, we can calculate unbiased estimations of
other operators Ô by evaluating them in the con�guration RM at the center of the
chain. As an example, we plot in Fig. 3.3 the radial distribution function g(r). We
can notice that our results are independent of the choice of the trial wave function
ΨT and are in excellent agreement with experimental data.

Another relevant quantity that can be computed exactly with the PIGS method
is the one-body density matrix ρ1(r), whose asymptotic limit is the condensate
fraction. Knowing the ground state wave function of a quantum many-body system
Ψ0(R), the one-body density matrix (OBDM) can be written as

ρ1(r1, r′1) =
∫

dr2...drNΨ∗
0(R)Ψ0(R′)∫

dr1...drN |Ψ0(R)|2
, (3.23)

where the con�guration R = {r1, r2, ..., rN} di�ers from R′ = {r′1, r2, ..., rN} only
by the position of one of the N atoms. In the PIGS approach, the expectation value
of non-diagonal observables, like ρ1, is computed mapping the quantum system
in the same classical system of polymers discussed in Sec. 3.1, but cutting one
of these polymers in the mid point. Building the histogram of the frequencies
of the distances between the cut extremities of the two half polymers, one can
compute the numerator in Eq. (3.23). The calculation of the normalization factor
at the denominator is not strictly necessary since the histogram can be normalized
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Figure 3.2: Total energy per particle E/N of liquid 4He at the equilibrium density
as a function of the total projection time τ obtained from PIGS simulation by pro-
jecting a trial Jastrow (red squares) and constant wave function (black diamonds).
The straight blue line represents the asymptotic value for the ground state energy
E/N = −7.32 K.
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Figure 3.3: Two-body radial distribution g(r) of liquid 4He at zero temperature and
density ρ = 0.02186Å−3. The black solid and the red dashed lines correspond to the
PIGS results at density ρ = 0.02186Å−3 with di�erent choice of ΨT , respectively
ΨT = 1 and ΨT of the Jastrow form. The dashed line represents the experimental
data from Ref. [52]
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Figure 3.4: One-body density matrix ρ1(r) of liquid 4He at zero temperature and
density ρ = 0.02186Å−3. The black solid and the red dashed lines correspond to
the PIGS results at density ρ = 0.02186Å−3 with di�erent choice of ΨT , ΨT = 1
and ΨT of Jastrow form respectively.

imposing the condition ρ1(0) = 1. However, as in the case at �nite temperature,
this a posteriori normalization procedure is not easy, because of few occurrences of
the distances close to zero, and may introduce systematic errors in the estimation of
the condensate fraction n0. To avoid this problem and to recover automatically the
normalization condition of the OBDM, we have extended the worm algorithm also
in the zero temperature PIGS method, implementing updates which allow to switch
from diagonal (all polymers with the same length) to o�-diagonal (one polymer
cut in two separate halves) con�gurations and vice versa. The results for ρ1(r)
obtained with the choice of two di�erent ΨT are shown in Fig 3.4: these results are
statistically indistinguishable and predict a condensate fraction n0 = 0.080± 0.002,
in nice agreement with a recent PIMC estimation at T = 1 K (n0 = 0.081 ± 0.002)
[7].

The capability of the PIGS wave function ΨPIGS (Eq. 3.10) to describe the
ground state with a completely general ansatz, where all the relevant correlations
between the particles arise directly from the Hamiltonian, suggests us the possibility
to use the same wave function to describe both the liquid and the solid phase of 4He.
From the experimental observation at temperatures close to absolute zero, we know
that 4He at saturated vapor pressure is in the liquid phase, but it solidi�es when
an external pressure above 25 bar is applied to the sample. It would be interesting
to understand if the function ΨPIGS could discriminate, according to the density of
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Figure 3.5: The static structure factor S(k) resulting from PIGS simulations of 180
4He atoms at di�erent densities with an ideal-gas trial wave function ΨT = 1.

the system, which is the equilibrium con�guration between the crystalline and the
liquid phase. A similar behavior has been found for the shadow wave function (Eq.
3.19) and represents a relevant property since it allows us to describe the crystalline
phase without the de�nition of a set of a priori equilibrium positions for the atoms
[62, 63].

In order to perform this study, we have carried out PIGS simulations with the
choice ΨT = 1 of N = 180 4He atoms at di�erent densities starting from the initial
con�guration of a commensurate hcp lattice. Our purpose is to investigate, for each
density, if the crystalline phase remains stable during the whole simulation or if the
system relaxes to a liquid con�guration. To do that, we have computed the static
structure factor S(k), since the presence of Bragg peaks in S(k) is a clear evidence
of the solid order of the system. The results of this study are shown in Fig. 3.5: we
notice that a peak in S(k) is present at the highest densities, but disappears below
the density ρ = 0.028Å−3. This value is reasonably close to the experimental value
for the melting density ρm = 0.02862Å−3.

In conclusion, we have calculated with the PIGS method all the relevant prop-
erties of liquid 4He at zero temperature, showing a good agreement between numer-
ical and experimental results. Thanks to its capability to give accurate information
about the physical system without any a priori knowledge of the ground state, the
method is completely general and the same wave function can be used for simulat-
ing both the liquid and solid phases. These features make PIGS a really powerful
method in the study of quantum �uids and solids at zero temperature.
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3.5 Worm algorithm and Swap update in Path Integral

Ground State

As we commented in Sec. 3.1, in the PIGS method the correct symmetry of the
quantum many-body system can be obtained with a proper choice of the trial wave
function and of the approximation for the imaginary time propagator, so that there
is no need to perform a direct sampling of the permutations as in the case of PIMC
at �nite temperature.

The implementation of the worm algorithm, nevertheless, can be very useful
in PIGS simulation because it provides an easy way to normalize automatically
the OBDM ρ1(r) and thus to recover an unbiased estimation for the condensate
fraction. The normalization factor of ρ1(r), indeed, can be estimated from the
ratio between the number of diagonal and o�-diagonal con�gurations sampled in
the simulation (see appendix A.3). To calculate this ratio it is obviously necessary
to extend the con�gurational space in order to include both diagonal and o�-diagonal
con�gurations, but there is no need to implement updates sampling the exchanges
between bosons, like the Swap update.

However, the Swap update, if implemented in the sampling of the o�-diagonal
con�gurations, would be able to perform a large displacement of the extremities
of the two half polymers in a single movement and could in principle in�uence
the calculation of the OBDM. There is thus a certain interest in understanding
how the implementation of updates proposing permutations between di�erent PIGS
polymers could a�ect the estimation of ρ1(r).

To perform this study we have simulated, with the PIGS method using a con-
stant trial wave function ΨT = 1, the same system of N = 64 4He atoms inside a
cubic box at the equilibrium density of the liquid phase (ρ = 0.02186Å−3) following
two di�erent sampling schemes: we have implemented the Swap update in the �rst
simulation but not in the second. The results for the OBDM are shown in Fig. 3.6.
We can notice that the results for the di�erent sampling scheme are statistically
indistinguishable over the all range of r and lead to compatible results for the con-
densate fraction: n0 = 0.079± 0.002 for the case with Swap and n0 = 0.082± 0.002
for the case without Swap. This indicates that, at least in the simulation of the liquid
phase, it is possible to provide an accurate sampling of the coordinates even without
the Swap update. However, its implementation does not a�ect the simulation and
there is no reason to remove it from the sampling scheme.

Nevertheless, we have to remark that the simulation of liquid 4He may be not
signi�cant for the study of the in�uence of Swap in the computation of ρ1(r). Indeed,
when the density of the system is not high, the PIGS open polymers can move with
a certain facility, even if the sampling scheme include only updates which displace
them on distances lower than the interatomic separation. It follows that it is not
di�cult for the half polymers to separate on distances comparable to the length of
the simulation box and to recover in this way the correct behavior of ρ1(r) at large
r.
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Figure 3.6: The one-body density matrix ρ1(r) for liquid 4He at its equilibrium
density ρ = 0.02188Å−3 and at zero temperature, computed with PIGS method
following two di�erent sampling schemes, one including Swap updates and the other
not.

Figure 3.7: The one-body density matrix ρ1(r) for solid 4He at density ρ =
0.02186Å−3 and at zero temperature, computed with PIGS method following two
di�erent sampling schemes, one including Swap updates and the other not.
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For this reason, it is worth performing the same study of the in�uence of the Swap
update even for denser and more ordered systems, like solid 4He, where the sampling
of the coordinates is more di�cult. We have carried out the calculation of the OBDM
for a system made of N = 180 4He atoms disposed according to a commensurate hcp
lattice in a quasi-cubic box following the same sampling schemes used previously,
one performing Swap updates and the other not. The results of these simulations
are showed in Fig. 3.7. We can notice that, in the range of small r, the two sampling
schemes provide comparable results for ρ1(r) but they present a clear discrepancy
at large r: the curve obtained without Swap presents a gaussian behavior, while the
OBDM obtained with Swap shows an oscillating exponential decay at large r. The
gaussian behavior is typical of classical crystals but it is not a feature of solid 4He, as
showed by some anharmonicity e�ects observed in the experimental measurement
of the momentum distribution [64]; instead, the exponential behavior of ρ1(r) at
large r found in the simulation presenting the Swap updates is in agreement with
previous PIGS simulations [65] and with PIMC simulations at �nite temperature
[66]. To recover a similar behavior without implementing Swap, it is necessary to
introduce an arti�cial potential between the cut extremities of the half polymers
which should help them to move apart form each other. However, this potential is
totally arbitrary and a bad choice may cause a loss of the ergodicity of the sampling,
especially with respect to the balance with diagonal and o�-diagonal con�guration
necessary to estimate the normalization factor of ρ1(r).

We can therefore conclude that, even if the worm algorithm is not strictly nec-
essary in a PIGS simulation, unlike the case of PIMC at �nite temperature where
it is indispensable for the sampling of permutations, its implementation allows for
sizeable improvements in the calculation of o�-diagonal observables such as the
one-body density matrix ρ1(r). In fact, it is able to provide not only a way to
automatically normalize ρ1, but it allows also a better sampling of the coordinates,
especially in the simulation of solid systems where the atoms scarcely di�use.
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In this chapter, we present results of the one-body density matrix ρ1(r) and the
condensate fraction n0 of liquid 4He calculated at zero temperature by means of the
Path Integral Ground State Monte Carlo method. This technique provides unbiased
estimations of ρ1(r), from which we can obtain precise results for the condensate
fraction n0 and the kinetic energy K of the system. The dependence of n0 with
the pressure shows an excellent agreement of our results with recent experimental
measurements. Above the melting pressure, overpressurized liquid 4He shows a small
condensate fraction that has dropped to 0.8% at the highest pressure of p = 87 bar.

4.1 Introduction

Several microscopic theories point out that the phenomenon of super�uidity in liq-
uid 4He has to be seen as a consequence of Bose-Einstein condensation (BEC)[67].
Having total spin S = 0, 4He atoms behave like bosons and, below the critical
temperature Tλ = 2.17K, they can occupy macroscopically the same single-particle
state. Nevertheless, the strong interaction between 4He atoms does not allow all of
them to occupy the lowest energy state and, even at zero temperature, only a small
fraction n0 = N0/N of the N particles is in the condensate.

Experimental estimates of n0 can be obtained from the dynamic structure factor,
S(q, ω), measured by inelastic neutron scattering at high energy and momentum
transfer. These measurements have a long history [3, 68, 69]: in the 80s, the �rst
experiments gave estimates for n0 slightly above 10%, but they were a�ected by a
poor instrumental resolution and by some di�culties in describing the �nal states
e�ects of the scattering experiment. Recently, with the advances in the experimental
technology and in the method of analysis of the scattering data, Glyde et al. [70]
have been able to give improved estimations of n0 at very low temperature. At
saturated vapor pressure (SVP), they found n0 = (7.25 ± 0.75)% [70], and more
recently they have measured the dependence of n0 with pressure p [71].

Because of the strong correlations between 4He atoms, the calculation of the
one-body density matrix in super�uid 4He cannot be obtained analytically via a
perturbative approach. It is necessary the use of microscopic simulations to provide
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accurate estimations of the condensate fraction. In particular, the Path Integral
Monte Carlo (PIMC) method has been widely used in the study of 4He at �nite
temperature, thanks to its capability of furnishing in principle exact numerical es-
timates of physical observables relying only on the Hamiltonian of the system [18].
The �rst calculations of n0 with this method date back to 1987 [72], but most recent
simulations based on an improved sampling algorithm provide very accurate results
for ρ1(r), showing a condensate fraction n0 = 0.081±0.002 at temperature T = 1K
[7]. At zero temperature, ground-state projection techniques are widely used in the
study of BEC properties of 4He. Di�usion Monte Carlo technique, for instance, has
provided estimations of n0 in liquid 4He on a wide range of pressures [4, 5, 73].
This method, however, su�ers from the choice of a variational ansatz necessary for
the importance sampling whose in�uence on ρ1(r) cannot be completely removed.
Reptation Quantum Monte Carlo (RQMC) has also been used for this purpose [6],
but the calculated value of n0 at SVP lies somewhat below the recent PIMC value
[7] at T = 1 K noted above.

Motivated by recent accurate experimental data on n0(p), our aim is to perform
new calculations of ρ1(r) and of n0 in liquid 4He using completely model-independent
techniques based on path integral formalism. Using a good sampling scheme in our
Monte Carlo simulations, we are able to provide very precise calculations of the
one-body density matrix at di�erent densities. We �t our numerical data for ρ1(r)
with the model used in previous experimental works [70], highlighting the merits
and the faults of this model, and �nally we give our estimations for the condensate
fraction at zero temperature when changing the pressure of the liquid, showing an
excellent agreement with experimental data [71].

The chapter is organized as follows: section 4.2 is devoted to the analysis of the
�t currently used in experimental measurements of ρ1(r); in section 4.3 we present
the calculation of the momentum distribution at di�erent �nite temperatures; in
section 4.4 we show how the condensate fraction n0 changes as a function of the
pressure p of the liquid.

4.2 Analysis of the �t for the one-body density matrix

To compute ρ1(r) in liquid 4He at zero temperature, we have carried out di�erent
simulations using a cubic box with periodic boundary conditions containing N = 128
atoms interacting through the Aziz pair potential [49]. At �rst, we study the system
at the equilibrium density ρ = 0.02186 Å−3: our result for ρ1(r) is shown in Fig.
4.1. We have checked that our results starting with ΨT = 1 or with a Jastrow-
McMillan wave function are statistically indistinguishable. In order to check how
the �nite size of the box a�ects our results, we have performed a simulation of
the same system in a larger box containing N = 256 4He atoms. In Fig. 4.1, we
have compared ρ1(r) obtained in this last simulation with the one estimated using a
smaller number of particles: we can see that, up to the distances reachable with the
smaller system, these two results agree within the statistical error. Furthermore, the
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Figure 4.1: One-body density matrix ρ1(r) at the equilibrium density ρ = 0.02186
Å−3. The symbols represents the result of the PIGS simulations for the system
containing N = 128 (green circles) and N = 256 (blue squares) 4He atoms. The
red line is the curve obtained �tting these data with Eq. 4.1 with optimal values:
kc = 1.369 ± 0.020 Å−1, α2 = 0.794 ± 0.005 Å−2, α4 = 0.355 ± 0.050 Å−4, α6 =
0.680 ± 0.080 Å−6, and n0 = 0.0801 ± 0.0022. The inset shows the same data for r

between 3 Å and 11 Å on an expanded scale.

two functions reach the same plateau at the largest available distances, indicating
that the asymptotic regime for ρ1(r) is already achieved using N = 128 4He atoms.

To �t our data we use the model proposed by Glyde in Ref. [3] that has been
used in the analysis of experimental data [70],

ρ1(r) = n0[1 + f(r)] + Aρ∗1(r) . (4.1)

The function f(r) represents the coupling between the condensate and the non-zero
momentum states. In momentum space, one can express f(k) in terms of the phonon
response function [3],

f(k) =
[

mc

2~(2π)3ρ
1
k

coth
(

c~k

2kBT

)]
e−k2/(2k2

c ) , (4.2)

with c the speed of sound. Since we work in the coordinate space, we are interested
in its 3D Fourier transform f(r), which at zero temperature can be written as

f(r) =
mc

~(2π)2ρ

√
2kc

r
D

(
kcr√

2

)
, (4.3)

where D(x) = e−x2 ∫ x
0 dtet2 is the Dawson function. To describe the contribution to

ρ1 from the states above the condensate, which we denote by ρ∗1, we use the cumulant
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expansion of the intermediate scattering function, that is the Fourier Transform of
the longitudinal momentum distribution [3],

ρ∗1(r) = exp
[
−α2r

2

2!
+

α4r
4

4!
− α6r

6

6!

]
. (4.4)

The constant A appearing in Eq. 4.1 is �xed by the normalization condition ρ1(0) =
1. Therefore, the model we used has �ve parameters: n0, kc, α2, α4 and α6. It has
to be noticed that, unlike what is done in the treatment of the experimental data,
where kc is chosen as a cut-o� parameter to make the term f(k) vanish out of the
phonon region, we have considered kc as a free parameter of the �t.

The best �t we get using the model of Eq. 4.1 is shown in Fig. 4.1. This model
is able to reproduce the behavior of ρ1(r) for short distances and in the asymptotic
regime, but cannot describe well the numerical data in the range of intermediate
r. Indeed, for distances above 3 Å, ρ1(r) obtained with PIGS presents oscillations
which are damped at larger r, as observed also in previous theoretical calculations
[6, 7]. This non monotonic behavior, which can be attributed to coordination shell
oscillations [7], is di�cult to describe within the model of Eq. 4.1.

Nevertheless, despite of these di�culties in describing the oscillations of the
ρ1(r) obtained with PIGS, the �t we gave using the model of Eq. 4.1 contains
important information about the ground state of liquid 4He. First of all, from the
long range behavior, we can obtain the value of the condensate fraction n0. From
our analysis, we get n0 = 0.0801 ± 0.0022, in complete agreement with the value
n0 = 0.081± 0.002 obtained by Boninsegni et al. [7] in a path integral Monte Carlo
simulation at temperature T = 1 K, and in good agreement with the experimental
result n0 = 0.0725 ± 0.0075 [70]. Furthermore, from the behavior of ρ1(r) at short
distances, we can obtain an estimation of the kinetic energy per particle K/N . In
particular, the term α2 appearing in Eq. 4.4 is the second moment of the struck atom
wave vector projected along the direction of the incoming neutron [3] and is related
to the kinetic energy per particle by the formula K/N = 3(~2/2m)α2. Using the
value α2 = (0.794± 0.005) Å−2 obtained in our �t, we get K/N = (14.43± 0.09)K
which has to be compared with the value obtained in the PIGS simulation, K/N =
(14.37 ± 0.03)K.

In Fig. 4.2, we show results of n(k) obtained performing a numerical Fourier
transform of ρ1(r) and we compare it with the Fourier transform of Eq. 4.1,

n(k) = n0δ(k) + n0f(k) + An∗(k) . (4.5)

The PIGS data are plotted from kmin = 2π/L ' 0.4 Å−1 , L being the length
of the simulation box, and are not able to reproduce the 1/k behavior of n(k) at
low k because of �nite size e�ects; for k > kmin the e�ect of f(k) vanishes and
n(k) = n∗(k). We notice that the disagreement between the two curves is larger
in the region between k ' 1 Å−1 and k ' 2.5 Å−1. In this range, indeed, n(k)
obtained with the PIGS method presents a change of curvature, not seen in n(k)
obtained from the �t.
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Figure 4.2: The momentum distribution n(k) at equilibrium density ρ = 0.02186
Å−3: the black circles represents the numerical result obtained from the PIGS sim-
ulation, the red line represents the FT of the �t for ρ1(r) obtained according to Eq.
(4.1).

This discrepancy can be explained considering the coupling between the con-
densate and the states out of it. The term f(k), de�ned in Eq. 4.2, is obtained
considering only pure density excitations in the system and, therefore, is valid only
in the limit of small momenta [3]. At higher k, one should consider even the con-
tributions due to the coupling of the condensate to the excited states out of the
phonon region. However, little is known about these contributions and it is di�cult
to include them in a more complete form for f(k) in order to give a more reliable
model for the momentum distribution.

Our results for n(k) are compared with recent experimental measurements at
T = 0.06 K of the momentum distribution n∗(k) for states above the condensate in
Fig. 4.3. Even in this case, we can notice a good agreement between the two curves,
except for the intermediate range of k, where our results include contributions arising
from the coupling between the condensate and excited states. From the comparison
between the two curves, we can deduce that this coupling contributes in depleting
the states at higher k. In the same �gure, in addition to n(k) at the saturated vapor
pressure, we also show n(k) for a higher pressure, close to the freezing transition. We
can see that the e�ect of the pressure in the momentum distribution is to decrease
the occupancy of the low-momenta states and to make smoother the shoulder at
k ' 2 Å−1.
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Figure 4.3: The momentum distribution, plotted as kn(k), in liquid 4He at two
di�erent pressures: black circles and red squares are the PIGS results for n(k),
respectively, at saturated vapor pressure (ρ = 0.02186 Å−3) and at a pressure close
to the freezing, p ' 24 bar (ρ = 0.02539 Å−3). The black and the red dashed
lines represent the experimental results for the momentum distribution above the
condensate n∗(k) at the same pressures [71].
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4.3 Momentum distribution at �nite temperature

In Figs. 4.2 and 4.3, we have seen that the momentum distribution at zero tempera-
ture computed with the PIGS method presents a change of curvature for k close to 2
Å−1. A similar behavior in n(k) has been obtained also from calculations performed
within the scheme of hypernetted-chain equations using a variational wave function
containing two-body (Jastrow) and three-body correlations [74].

To understand this behavior, we suggest the possibility of a coupling between the
condensate and the excited states. In super�uid helium, there are two characteristic
elementary excitations: the phonon in the region of low k and the roton at a higher
momentum k ' 2Å−1 [3]. In the momentum distribution n(k) in Eq. 4.5, the
coupling between the condensate and the phonons is taken into account by the term
f(k), but there is not a term describing the coupling between the condensate and
the roton. We are led to think that the lack of this term can be at the origin
of the di�erence between our result and the experimental one for the distribution
n∗(k) since the discrepancy appears clearly in the range of k corresponding to the
excitation of the roton.

An easy way to check this hypothesis is to study the behavior of the momentum
distribution at �nite temperature, both in the super�uid and in the normal phase.
If we see that the kink in n(k) is present only in the super�uid region and disappears
for temperature T > Tλ for which there is not a Bose-Einstein condensate inside
the liquid, the conjecture that the particular behavior of n(k) is associated to a
coupling between the condensate and the roton is plausible. With this objective,
we have calculated the momentum distribution of liquid 4He simulating N = 128
4He atoms inside a cubic box at di�erent temperatures and at constant density
ρ = 0.02186Å−3, that is the equilibrium density for liquid 4He at zero temperature.
The results of these simulations are shown in Fig. 4.4. We can clearly see that the
kink is pronounced for the lowest temperatures T = 0 K and T = 1.2 K, it becomes
smoother at T = 2.0 K and disappears at the temperature T = 3.2 K, for which
the liquid 4He is normal. A similar behavior is shown also in the same study at
the higher density ρ = 0.02359Å−3: the only di�erence from the previous case at
lower density is that the kink has already disappeared at the temperature T = 2.0
K, since the temperature of the super�uid transition decreases with the density and
for ρ = 0.02359Å−3 and T = 2.0 K the liquid 4He is in the normal phase.

Therefore, this study seems to con�rm our prediction that the appearance of
a change of curvature in the momentum distribution close to k ' 2Å−1 is related
to the presence of the condensate in the system. Thus, we think that a model for
n(k) better than the one of Eq. 4.5 should be provided including in the theory the
possibility for the condensate to couple with the roton excitation.

4.4 Pressure dependence of the condensate fraction

Finally, we report our results for the condensate fraction n0 over a wide range of
densities, including also densities in the negative pressure region and in the regime of
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Figure 4.4: The momentum distribution, plotted as kn(k), in liquid 4He at the
density ρ = 0.02186Å−3 at di�erent temperatures.

Figure 4.5: The momentum distribution, plotted as kn(k), in liquid 4He at the
density ρ = 0.02359Å−3 at di�erent temperatures.
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ρ [Å−3] p [bar] n0 K/N [K]
0.01964 -6.23 0.1157(19) 12.01(3)
0.02186 -0.04 0.0801(22) 14.37(3)
0.02264 3.29 0.0635(16) 15.35(3)
0.02341 7.36 0.0514(16) 16.28(3)
0.02401 11.07 0.0436(11) 17.02(4)
0.02479 16.71 0.0350(7) 18.08(4)
0.02539 21.76 0.0333(8) 18.82(5)
0.02623 29.98 0.0278(8) 19.99(4)
0.02701 38.95 0.0208(6) 21.08(5)
0.02785 50.23 0.0155(6) 22.24(4)
0.02869 63.37 0.0115(4) 23.65(4)
0.02940 76.28 0.0093(4) 24.83(5)
0.02994 87.06 0.0083(4) 25.61(6)

Table 4.1: Condensate fraction n0 and kinetic energy per particle K/N as a function
of the liquid density ρ. Numbers in parenthesis are statistical errors. The estimation
of the pressure is obtained from the equation of state of liquid 4He given in Ref.
[73].

the overpressurized metastable �uid. In this range of high densities, we have been
able to frustrate the formation of the crystal by starting the simulation from an
equilibrated disordered con�guration. The metastability of this phase is checked
by monitoring how the total energy per particle E/N changes along the simu-
lation. As the calculation goes on, we notice that E/N reaches a plateau for a
value above the corresponding value of E/N computed in a perfect crystal at the
same density. For instance, at density ρ = 0.02940 Å−3 we get in our simulation
E/N = (−5.48± 0.03)K. If we perform a PIGS simulation at the same density and
with the same choice for the initial trial wave function (in both cases, we choose in
Eq. 3.10 ΨT = 1) but starting the computation from a hcp crystalline con�gura-
tion, we get E/N = (−5.95± 0.02)K. The disagreement of the two results for E/N

indicates that, in PIGS simulations, initial conditions for the atomic con�guration
in�uence the evolution of the system: in particular, a sensible choice of the initial
conditions speed up the convergence of the system to the real equilibrium state. In
the simulation of 4He at high densities, if we use a disordered con�guration as the
initial one, the system evolves towards the equilibrium crystalline phase, but, since
crystallization is slow compared with the usual time of PIGS simulations, we see
that the overpressurized liquid phase is metastable for a number of Monte Carlo
steps su�ciently large to give good statistics for the ground state averages of the
physical observables. If the density is increased even more (p > 90 bars), one starts
to observe the formation of crystallites and the stabilization of the liquid becomes
more di�cult.

Another evidence of the metastability of the liquid con�guration in our simula-
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Figure 4.6: The condensate fraction n0 in liquid 4He at zero temperature as a func-
tion of pressure p in the region of stability of liquid phase. Our PIGS results (black
squares) are compared with the experimental ones (red diamonds) [71] and previous
theoretical calculations, obtained with Di�usion Monte Carlo (green up triangles)
[4], Di�usion Euler Monte Carlo (violet left triangles) [5], Reptation QuantumMonte
Carlo (blue circle) [6] and PIMC at T = 1 K [7]. The dashed line represents the
curve obtained �tting our results with the equation n0 = A + B/(p − p0).

tions can be given computing the static structure factor S(k). In all the calculations
performed, we notice the absence of Bragg peaks in S(k), which indicates clearly
that the system does not present crystalline order.

Our results for n0 at di�erent p are contained in Table 4.1, together with our
estimates for the kinetic energy K/N . It is interesting to notice that the condensate
fraction of the overpressurized liquid is �nite also for densities above the melting
(ρ ≥ 0.02862 Å−3). This evidence supports our hypothesis that the system has
reached a metastable non-crystalline phase, since recent PIGS simulations show
that, in commensurate hcp 4He crystals, the one-body density matrix decays expo-
nentially to zero at large distances and therefore BEC is not present [65, 75]. In
particular, we obtain that in the overpressurized �uid at the melting density the con-
densate fraction is n0 ' 1.2%. This result, even though cannot provide any deeper
understanding concerning the quest of supersolidity in 4He [65], can be thought as
an upper limit for the condensate fraction in solid 4He at melting. It is also interest-
ing to notice that, even at the freezing pressure, the condensate fraction is already
quite small, n0 = 2.9%.

In Fig. 4.6, we plot our results for n0 as a function of p on the range of pressures
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where the liquid phase is stable. Our results follow well an inverse proportionality
law n0(p) = A + B/(p− p0), with p and p0 measured in bar: the best �t we got has
parameters A = −0.0068 ± 0.0012, B = 1.56 ± 0.10, p0 = −19.0 ± 0.9 bar. In Fig.
4.6, we also compare our estimates for n0 with the experimental ones [71] and with
the ones obtained in previous numerical simulations [4, 5, 6, 7]. It is easy to notice
that our results provide an excellent description of the experimental dependence of
the condensate fraction as a function of pressure in all the range of stability of the
liquid phase of 4He, improving previous calculations which focus especially on the
equilibrium density and do not explore in detail the physically interesting pressure
range where the experimental data can be measured. Notice that the experimental
value of n0 at zero pressure reported in the more recent experiment [71] is slightly
smaller (7.01± 0.75%), but still statistically compatible within the error bars, than
the previous one by the same team [70].





Chapter 5

The supersolid phase of 4He

This chapter is devoted to the study of solid 4He and to its eventual supersolid phase.
The supersolid state of matter, that is a phase where crystalline order coexists with
super�uidity, was predicted many decades ago, but only in the last years it has been
possible to �nd experimental evidences suggesting the existence of this phase in solid
4He. In this work, we perform PIMC simulations of condensed 4He at densities at
which the solid phase is stable in real samples, according to di�erent microscopic
con�gurations of the atoms: perfect hcp crystal, crystals with vacancies, amorphous
solid and perfect bcc crystal. The main objective is to investigate which of these
models provides results in better agreement with experimental ones. We notice a
phase transition to a super�uid phase only if the crystal is not commensurate and
that the estimated onset temperature of BEC is comparable, in crystal with a low
vacancy concentration, with the temperature at which supersolidity e�ects appears
in the experiments.

5.1 Introduction

The debate about the supersolid state of matter has gained a great interest among
the scienti�c community after the �rst observation, made by Kim and Chan in
2004, of non classical rotational inertia (NCRI) in torsional oscillators containing
solid helium [14, 15]. Measuring the resonant period of the oscillator, Kim and
Chan showed an anomalous drop of the rotational inertia of the sample when the
temperature is lowered below a certain critical value and explained this behavior
as the appearance of a super�uidity e�ect in the solid sample. Although several
experiments have con�rmed the appearance of a phase transition in solid 4He at
temperatures Tc ∼ 60−100mK [76, 77], we are still far from a complete description
of this phenomenon, because of controversial experimental results. For instance,
the values of the super�uid density ρs/ρ reported so far can vary more than one
order of magnitude, according to experimental conditions such as the way in which
the crystal is prepared, its subsequent annealing or the 3He concentration [78, 79,
80]. These discrepancies suggest that the quality of the solid sample plays a very
important role in these experiments and make fundamental a study of crystalline
defects in quantum crystals.

The �rst theoretical speculations about the supersolid phase date back almost
forty years. Penrose and Onsager, in 1956 stated that BEC cannot appear in crystals
where the atoms are strongly localized around lattice positions [11]. However, this
statement was never considered as a de�nitive answer to the question of supersolid-
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ity, since the model discussed does not take into account the delocalization of the
atoms which may in principle be large in quantum crystals. Andreev and Lifshitz,
some years later, suggested that a possible supersolid behavior can be explained
assuming the presence, in the ground state of quantum crystals, of delocalized va-
cancies which may undergo Bose-Einstein condensation (BEC) at low temperature
[12]. Another relevant speculation was made by Chester in 1970. He conjectured
that, since the crystalline phase comes from a spontaneous breaking of the trans-
lational symmetry, it is possible to describe the solid phase with the same wave
function used to describe the liquid, which is known to support BEC [13].

Nevertheless, all these early works were based on simpli�ed models, so that it was
not possible to draw speci�c predictions for solid 4He. More recently, microscopic
methods have been extensively used to provide a reliable description of the supersolid
state, but, so far, they have not been able to reproduce all the experimental �ndings.
Path integral Monte Carlo (PIMC) simulations have shown that a commensurate
perfect crystal does not exhibit super�uidity [81, 66, 65], but a non-zero condensate
fraction has been observed in crystals presenting defects, such as vacancies [82] or
grain boundaries [83], and in simulations of an amorphous state of the solid [84].
Nevertheless, these simulations are not able to provide results in complete agreement
with the experimental ones and therefore does not bring to a de�nitive answer of
the supersolidity problem.

The possibility for solid 4He to present vacancies in its ground state seems to
be hindered by the energetic cost of these defects. According to several Quantum
Monte Carlo results, the vacancy formation energy is estimated to be of the order
of 10 K [85, 86, 87, 88, 89], in agreement with experimental measurements [90].
Nevertheless, the high delocalization of the vacancies in solid 4He at temperatures
close to zero prevents an interpretation of these defects in terms of a classical theory
involving an activation energy and a con�gurational entropy for their creation [91,
92, 93]. Furthermore, experimental data cannot rule out the possibility of a zero-
point vacancy concentration below 0.4% [94].

It has also to be noticed that formation energy considerations do not exclude
the possibility of vacancies introduced through the experimental conditions, for ex-
ample during the crystal growth. The spatial correlation between vacancies has
been calculated in order to understand if a gas of defects can be metastable in solid
4He. The results show an attractive correlation between vacancies at short distance,
but they cannot conclude if they form bound states and aggregate in large clusters,
which eventually would phase separate [86, 95, 96, 97].

The observation by Beamish and collaborators [98] of an increase of the shear
modulus of hcp 4He at nearly the same onset temperature for NCRI has lead to
think that, at least in a partial way, the NCRI signal can be attributed to the
change in the elastic properties. This evidence has led Beamish et al. to suppose
that the anomalous behaviors, both the one in the rotational inertia and the on
in the elastic properties, are due to a dislocation network which below Tc becomes
pinned by 3He impurities and thus immobile. This hypothesis, however, cannot
explain the reason why the mass decoupling seen in torsional oscillator experiment is
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independent of the geometry of the con�nement. Indeed, an interconnected network
of dislocations is not likely to appear in porous media like vycor, where, on the
contrary, the period drop of the torsional oscillator is as evident as in the bulk
systems. Furthermore, recent experiments have shown that the period of torsional
oscillator is not susceptible to the elastic module change, supporting the theory that
not all the NCRI e�ects in solid 4He can be interpreted uniquely on plasticity terms
[99, 100].

On the other hand, there are still some evidences indicating that the excitations
controlling the torsional oscillator motions are generated by thermal and mechanical
stimulation, showing thus an interplay not only between the rotational and shear
dynamics of solid 4He, but also a connection with the relaxational dynamics of the
sample [101]. Relying on these results, Balatsky and collaborators claim that NCRI
e�ects are to be attributed to the presence of non-equilibrium states inside of the
solid sample at very low temperature. In a previous work, the same group have
shown that the dynamics of the sample is much slower at temperatures below the
temperature Tc at which appears the period drop in torsional oscillator experiments
[102]. According to them, Tc does not have to be interpreted as the temperature of
transition to a super�uid state, but as the temperature at which amorphous states
become metastable in the solid. Glassy con�gurations for 4He has been studied
theoretically with PIMC method by Boninsegni et al. [84]: they show that these
amorphous states support BEC at low temperature but they do not provide any
information about the temperature dependence neither of the condensate fraction
nor of the super�uid one.

Although the main focus of the recent research activity has been hcp 4He, which
is the stable phase at very low temperatures, Eyal et al. [103] have reported recently
torsional oscillator experiments on bcc 4He at temperatures between 1.3 and 1.9 K
that show similar phenomena to those measured in the hcp phase below 100 mK.
This is a surprising result since, even if the disorder of the sample is eventually
large, the temperatures of this experiment are one order of magnitude larger than
in hcp. This is not the only relevant result related to the bcc phase that emerged in
the last years. Some time ago, Markovich et al. [104] reported neutron-scattering
measurements of phonons in bcc 4He and found an unexpected �opticlike" mode
along the [110] direction. This new mode has been theoretically interpreted by Gov
[105] in terms of correlated dipolar interactions.

The boundaries of the bcc phase of 4He were �rst determined by Vignos and
Fairbank [106] in 1961 after analyzing their measurements of the velocity of longi-
tudinal sound. The existence of this phase was con�rmed after x-ray scattering by
Schuch and Mills [107]. Later on, Grilly and Mills [108] measured the volume change
along the hcp-bcc coexistence line and Edwards and Pandorf [109] performed accu-
rate measurements of the heat capacity. Updated accounts of the thermodynamic
properties of bcc 4He can be found in Refs. [110, 111]. In Fig. 5.1, the P -T phase
diagram in the region of interest is plotted. As one can see, the stability of the bcc
solid is only ∼ 0.04 K wide at �xed pressure and it represents an intermediate phase
between the hcp solid and the super�uid in the range of temperatures T ' 1.5-1.75
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Figure 5.1: Pressure-temperature phase diagram in the stable region of the bcc
phase of solid 4He. The squares correspond to the thermodynamic points studied
in the present work.

K.
From the theoretical point of view, even if quantum Monte Carlo (QMC) meth-

ods have been widely applied in the past to the study of solid 4He, most of the
work is devoted to the hcp phase and the results on the bcc phase are scarce and
concentrated to the limit of zero temperature. [85, 112, 113]. To our knowledge,
the only existing work in the bcc stable P -T region shown in Fig. 5.1 was done
by Ceperley [114] with the main goal of estimating the momentum distribution and
kinetic energies after some neutron scattering experiments [115].

In this chapter we want to provide a deeper insight in the study of solid 4He,
both in the hcp and bcc phases, and of its eventual supersolidity, performing PIMC
calculations of condensed 4He at densities for which the solid phase is stable in real
samples. We study di�erent models for the solid, making use of di�erent microscopic
con�gurations, and we provide results for their main physical properties, focusing
especially in the temperature dependence of the one-body density matrix ρ1(r). We
compare the obtained results with the experimental data, in order to understand if
any of models proposed is suitable to describe the anomalies shown by real samples
in the experiments. In Sec. 5.2, we provide results for a perfect hcp 4He crystal,
comparing the results for the momentum distribution n(k) with the data obtained
experimentally with deep inelastic neutron scattering. In Sec. 5.3, we study the
model of a crystal presenting vacancies, showing qualitatively the delocalization of
the point defects when the temperature decreases and studying the dependence of
the onset temperature of BEC with the vacancy concentration Xv. In Sec. 5.4, we
present preliminary results obtained in the study of amorphous con�gurations at
high densities, showing the appearance of BEC at temperature higher than the one
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at which NCRI e�ects appears in the experiments. In Sec. 5.5, we present a PIMC
study of the bcc phase at three temperatures and densities corresponding to the
experimental points shown in Fig. 5.1 and compare them with the corresponding
hcp ones along the coexistence line.

5.2 Perfect hcp crystal

We have carried out PIMC simulations of hcp 4He using a perfect lattice in a sim-
ulation box containing N = 180 atoms interacting with an Aziz pair potential [49].
At �rst, we perform calculations for a solid at a density ρ = 0.0294Å−3, at three
di�erent temperatures. The results for ρ1(r) and n(k) are shown in Figure 5.2. We
can see that, at large r, ρ1(r) decays exponentially, indicating that this system does
not present ODLRO. We can also see that there is not a dependence of the momen-
tum distribution with the temperature, in agreement with previous results by Clark
and Ceperley [66].

In order to compare our results to the ones obtained by neutron scattering ex-
periments, we compute the Compton pro�le of the longitudinal momentum distri-
bution J(y), which is n(k) projected along the direction of the momentum Q of
the incoming neutron and it is of easier experimental access than n(k). In the Im-
pulse Approximation, which describes well the inelastic neutron scattering at high
momentum transfer, J(y) and n(k) are related by the formula [3]

J(y) =
∫

dkn(k) δ(y − kQ) = 2π

∫ ∞

|y|
dk k n(k) , (5.1)

with kQ = k · Q
|Q| .

In Figure 5.3, we compare the results for the longitudinal momentum distribution
obtained from our n(k) at zero temperature with the �t obtained from experimental
measurement by Diallo et al. for the same quantity in solid 4He at molar volume
Vm = 20.01 cm3/mol (ρ = 0.0301Å−3) and a temperature T = 80 nK [116]. We can
see that our result are in a good agreement with the experimental ones.

In Figure 5.3, we have also plotted the J(y) obtained by Ceperley in a PIMC
simulation for a bcc crystal at a density close to the melting ρ = 0.0288Å−3 and at a
temperature T = 1.67K [114]. The di�erence between our momentum distribution
and the one computed by Ceperley has to be attributed to the larger density of
the crystal we are simulating, and indicates that a larger coordination between the
atoms in the solid cause a depletion of the low momentum states.

This behavior is con�rmed when simulating a crystal at higher densities. Figure
5.4 shows ρ1(r) and n(k) in a crystal at the density ρ = 0.0335Å−3. For this
density, the solid phase is stable over a larger range of temperature, making us able
to simulate the system at temperatures up to T = 3 K. Comparing the results
for the two di�erent densities, we see that, when ρ increases, the one-body density
matrix decays faster to zero and that the occupation of the low momentum states
is appreciably decreased. It is also interesting to notice that ρ1(r) and n(k) are
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Figure 5.2: The one-body density matrix ρ1(r) (up) and the momentum distribution
n(k) (down) for a commensurate hcp crystal at density ρ = 0.0294Å−3 and at dif-
ferent temperatures: T = 0 K (circles), T = 1K (squares) and T = 2 K (diamonds).
Statistical errors are below symbol size.
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Figure 5.3: The longitudinal momentum distribution J(y): our results at T = 0 K
and ρ = 0.0294Å−3 (circles) are compared with the �t obtained by Diallo et al.

[116] from neutron scattering experiment at T = 80 nK and ρ = 0.0301Å−3 (solid
line) and with the PIMC results of Ceperley [114] for a bcc solid at T = 1.67K and
ρ = 0.0288Å−3 (triangles).

nearly independent of T even for temperatures larger than Tλ, that is the super�uid
transition temperature in the liquid phase.

It is important to notice that at both densities, the shape of n(k) di�ers signi�-
cantly from the classical Gaussian Maxwell-Boltzmann distribution. This feature is
clearly shown in Figure 5.5, where we plot, on a logarithmic scale, n(k) as a func-
tion of k2. From this graph, it is easy to see the di�erences between the momentum
distributions we obtained from PIMC and the straight line which represent a Gaus-
sian distribution. We also notice that these di�erences are smaller in the system at
ρ = 0.0335Å−3, indicating that solid helium becomes more classic when the density
increases.

In Fig. 5.6, we plot a two-dimensional projection of the quantum particles
(represented by the polymers in PIMC) lying in a basal plane of the hcp lattice
at two di�erent temperatures, in order to give a more qualitative description of
the results obtained in this study of the perfect hcp 4He crystal. Looking at the
two pictures, we can understand that the atoms are delocalized, because of their
zero-point motion, on distances comparable with the lattice constant and that this
delocalization is larger at low temperature. However, even at low temperature the
superpositions and the exchanges between di�erent polymers, i.e. between di�erent
quantum atoms, are rare events. This statement can be supported by the fact
that the acceptance rate of the Swap update, that is the update performing the
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Figure 5.4: The one-body density matrix ρ1(r) (up) and the momentum distribution
n(k) (down) for a commensurate hcp crystal at density ρ = 0.0335Å−3 and at
di�erent temperatures: T = 0 K (circles), T = 1K (squares), T = 2 K (diamonds)
and T = 3 K (triangles). The dashed lines represent the same quantities computed
for hcp crystal at T = 1 K and ρ = 0.0294Å−3
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Figure 5.5: The momentum distribution n(k) as a function of k2 at T = 1K and
densities ρ = 0.0294Å−3 (solid line) and ρ = 0.0335Å−3 (dashed line). The dotted
line represent a Gaussian n(k) and it is used to guide the eye.

bosonic permutations, is rather low (less than 1% at every temperature). This means
that the probability for atoms to permutate is not zero, allowing the appearance of
anharmonicity e�ects in the crystal, but it is not high enough to permit the creation
of long permutation cycles which are necessary to the emergence of macroscopic
e�ects such as BEC or super�uidity.

5.3 Crystal with vacancies

In order to calculate ρ1(r) in a crystal with vacancy concentration Xv = 1/180, we
have carried out simulations of N = 179 4He atoms, interacting through an accurate
Aziz pair potential [49], in an almost cubic simulation box matching the periodicity
of an hcp lattice made up of Ns = 180 sites at a density ρ = 0.0294 Å−3. We apply
periodic boundary conditions to the simulation box in order to simulate the in�nite
dimensions of the bulk system. In Fig. 5.7, we show the results for ρ1(r) at di�erent
temperatures and we compare them with the zero temperature estimations of ρ1

for the same system and for a perfect hcp crystal, obtained with the Path Integral
Ground State method. We notice that, at temperatures T ≥ 0.75 K, ρ1(r) computed
in an incommensurate crystal, even though is not compatible with ρ1 for the perfect
crystal, presents a similar exponential decay at large r. At lower temperatures, the
decay of ρ1(r) is smoother and, for temperatures T ≤ T0 = 0.2 K, ρ1 presents a
non-zero asymptote at large r, which indicates the presence of BEC in the system.
This T0 can be considered a �rst estimate of the onset temperature of supersolidity
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Figure 5.6: Two dimensional projection of basal planes of a perfect hcp crystal
at T = 1 K (up) and at T = 0.25K (down), represented according the PIMC
isomorphism of classical polymers. The coordinates of the polymers are expressed
in σ units, with 1σ = 2.556Å.
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Figure 5.7: The one-body density matrix ρ1(r) for an hcp crystal with vacancy
concentration Xv = 1/180 at density ρ = 0.0294 Å−3 at di�erent temperatures:
T = 1 K (red triangles down), T = 0.75K (blue triangles up), T = 0.5K (green dia-
monds), T = 0.25K (yellow squares) and T = 0.2K (purple circles). The dotted and
dashed lines represent ρ1(r) at zero temperature respectively for the commensurate
(Xv = 0) and incommensurate crystal (Xv = 1/180) at the same density.

in the simulated system. An analysis of the �nite size e�ects would be needed
to get a more precise estimation of the critical temperature of the supersolidity
transition. Nevertheless, the simulation of bigger systems with exactly the same
vacancy concentration requires a huge computational e�ort that would make the
calculations impracticable.

In order to give a more qualitative description of the appearance of BEC in
incommensurate 4He solids, we visualize typical con�gurations of the system during
the simulation. In Fig. 5.8, we plot two-dimensional projections of the positions of
the quantum particles (represented by polymers in PIMC) lying in a basal plane of
the incommensurate hcp crystal at di�erent temperature. At T = 1 K, 4He atoms
tend to stay localized around their equilibrium positions. Also the vacancies are
localized and can be easily detected inside the lattice. This explains the fact that,
at that temperature, the presence of vacancies does not a�ect noticeably the overall
behavior of ρ1 which, for the incommensurate crystal, is similar to the one of the
perfect crystal. Also the acceptance rate of the Swap update (slightly lower than
1%) is very close to the value obtained in the simulation of the perfect crystal. At
T = 0.5 K, the e�ects of the delocalization of the 4He atoms can be seen with the
appearance of some polymers which are spread on two di�erent lattice points. In
the space con�gurations at this temperature, the acceptance rate of the exchange
between the polymers is higher than in the con�gurations at larger temperature
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Figure 5.8: Two-dimensional projection of a typical basal plane of the incommen-
surate hcp crystal at di�erent temperatures, represented according to the PIMC
isomorphism of the classical polymers. At T = 1 K (higher panel), the vacancy is
localized and indicated by the red circle. At T = 0.5 K (middle panel), the vacancy
begins to delocalize: the red ellipse indicate a quantum particle delocalized over
two di�erent lattice sites. At T = 0.2 K (lower panel), the vacancy is completely
delocalized and cannot be easily detected. The coordinates of the polymers are
expressed in σ units, with 1σ = 2.556Å
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Figure 5.9: Two-dimensional projection of two consecutive basal planes of the in-
commensurate hcp crystal at T = 0.15 K. The di�erent colors distinguish the two
di�erent planes. The thick solid line represent a long permutation cycle between
the 4He atoms presenting a non-zero winding number.

(the acceptance rate of the Swap update has an average value of about 1.5 %),
but it is still too low to allow the appearance of long permutation cycles, which
are necessary to see BEC. At T = 0.2 K, the large zero-point motion of the 4He
atoms makes the vacancy delocalized and undetectable inside the crystal, which
looks like a commensurate system. Since the number of lattice sites is di�erent
from the number of particles, this means that di�erent polymers may superpose
over the same lattice site: this occurrence strongly enhances the possibility for the
atoms to permutate (we see, in most of the simulations, an acceptance rate for the
Swap update higher than 2.5%) and allows the creation of long permutation cycles
which close on periodic boundary conditions. The appearance of con�gurations
presenting a non zero winding number, as the one shown in Fig. 5.9, indicates
that the simulated crystals below T0 = 0.2 K support super�uidity. However, it is
not possible to give a reliable estimation for the super�uid density ρs/ρ in these
systems, since the smallest value for ρs/ρ computable with the winding number
estimator is of the order of 1%, that is of the same order of the value expected from
the experimental measurements.

In order to study how the vacancy concentration in quantum solids a�ect the
onset temperature of BEC, we have computed the one-body density matrix also for
fcc 4He crystals with Xv = 1/108 and Xv = 1/256: the results are shown, respec-
tively in Fig. 5.10 and in Fig. 5.11. In Table 5.1, we show the onset temperature
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Figure 5.10: The one-body density matrix ρ1(r) for a fcc crystal with vacancy
concentration Xv = 1/108 at density ρ = 0.0294 Å−3 at di�erent temperatures:
T = 1.5K (yellow dot-dashed line), T = 1K (blue long dashed line), T = 0.6K
(green dashed line), T = 0.5 K (red solid line) and T = 0.25K (black dotted line).

Xv T0 (K) n0

1/108 0.5 ± 0.1 (1.81±0.14)10−3

1/180 0.20 ± 0.05 (9.0 ± 0.8)10−4

1/256 0.15 ± 0.05 (7.2 ± 0.8)10−4

Table 5.1: The onset temperature of BEC T0 and the condensate fraction n0 at low
temperature as a function of the vacancy concentration Xv

of BEC T0 and the condensate fraction n0 at low temperature obtained with PIMC
in the three crystals we have studied. We notice that, for the lowest Xv, we get
T0 = 0.15 ± 0.05 K, which is close to the temperatures at which supersolidity has
been experimentally observed.

In Fig. 5.12, we plot our results for T0 as a function of Xv. Our results for T0

do not follow the law T0 ∼ X
2/3
v , obtained from a description of solid 4He in terms

of a rare�ed Gross-Pitaevskii super�uid gas of vacancies, as proposed by Anderson
in Ref. [93]. This seems to suggest that, at least in the range of Xv we have been
able to study, the correlations between vacancies have an important e�ect on T0

and the system cannot be described within a mean-�eld approach. Nonetheless,
our qualitative description of 4He crystals supports the hypothesis [93] according
to which it is not reasonable to regard vacancies in quantum solids as strictly local
entities.
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Figure 5.11: The one-body density matrix ρ1(r) for a fcc crystal with vacancy
concentration Xv = 1/256 at density ρ = 0.0294 Å−3 at di�erent temperatures:
T = 0.25K (blue diamonds), T = 0.15K (red squares), T = 0.125K (black circles).
Error bars, if not showed, are below symbol size.

Figure 5.12: The onset temperature T0 of BEC in incommensurate solid 4He as a
function of the vacancy concentration Xv: the blue squares represent the results
obtained with the PIMC method; the red line is a �t to the data with a power law
T0 = AXB

v ; the grey band indicates the temperature at which the NCRI appears
experimentally.
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In an attempt to estimate which should be the vacancy concentration in 4He
crystals needed to have BEC appearing at the temperature Tc measured experimen-
tally for the supersolid transition, we have plotted in Fig. 5.12 a power function
trying to �t the PIMC results. According to this empirical law, 4He crystals with
a vacancy concentration Xv ∼ 2 − 3 × 10−3 would have an onset temperature T0

in agreement with the experimental values Tc. This result for Xv is in good agree-
ment with the equilibrium vacancy concentration in solid 4He at zero temperature
obtained variationally with the shadow wave function [96].

5.4 Amorphous solid

To simulate amorphous solid 4He, we have carried out simulations of disordered
con�gurations at densities higher than the melting one ρm = 0.02862Å−3. Such a
simulation requires a particular equilibration of the system. At �rst, having �xed
the number of particles N and the temperature T of the microscopic system that we
want to study, we perform a simulation of N 4He atoms at the temperature T and
at the equilibrium density of the liquid phase ρeq = 0.02186Å−3. When this system
at the density ρeq has equilibrated, we rescale the dimensions of the simulation box
and all the coordinates of the �nal con�guration, in order to recover a con�guration
at the correct density ρ: this rescaled con�guration, which has the features of the
overpressurized liquid, can be used as a starting point of the simulation of the
amorphous solid.

At this point, we can start the simulation of the disordered phase at density
ρ > ρm. If we study the trend of the properties of the microscopic system as the
simulation goes on, we see that this con�guration remains stable for several Monte
Carlo steps, but at a certain point, the system �nds out a con�guration which is
more energetically favorable than the initial one. This event is particularly clear
if we focus on the trend of the potential energy per particle V/N . In Fig. 5.13,
we show how V/N changes as a function of the number of Monte Carlo steps in
a simulation of N = 140 4He atoms at the density ρ = 0.0294Å−3 and at the
temperature T = 0.8K. We can see that in the �rst part of the simulation the value
of the potential energy per particle oscillates around a certain value close to −29 K,
but this trend changes clearly after about 16000 Monte Carlo steps. In the second
part of the simulation, the mean value of the V/N is approximately 1 K smaller
than the mean value in the �rst part of the simulation: this drop indicates that, as
the simulation goes on, the system is driven to a con�guration which has a lower
energy than the overpressurized liquid and which, therefore, is more stable.

To better understand the microscopic features of this metastable phase, we cal-
culate the static structure factor S(q) in the second part of the simulation and we
compare it with S(q) obtained in the �rst part: the results are shown in Fig. 5.14.
We can notice that, in the �rst part of the simulation, S(q) is very similar to the
one of a liquid, presenting only a broad peak at q ' 2Å−1. In the second part of the
simulation, we notice the appearance in S(q) of two sharper peaks at the same q in
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Figure 5.13: Mean values of the potential energy per particle V/N computed for
consecutive steps during a typical PIMC simulation of an amorphous solid made up
of N = 140 4He at temperature T = 0.8 K.

which the liquid structure factor presents the maxima. This indicates the formation,
inside the microscopic system, of crystallites with di�erent orientation. However, we
have no evidence of high peaks at large q and therefore the system lacks of the long
range coordination typical of crystalline solids. We can conclude that we obtained
in our simulation a metastable glassy con�guration.

In order to investigate the BEC properties of amorphous 4He solid, we have com-
puted the one-body density matrix ρ1(r) for the con�guration obtained equilibrating
the microscopic system as described above at the density ρ = 0.0294Å−3 for several
temperatures. The results of this calculation are showed in Fig. 5.15. We can see
the system presents a �nite condensate fraction at the temperature T = 0.8K: our
estimation of n0 for the glass at this temperature is n0 = (1.4± 0.3)× 10−3, that is
of the same order of magnitude of the condensate fraction obtained in crystal with a
non-zero vacancy concentration at zero temperature (see section 5.3). However, we
can notice that in amorphous solid at T = 0.8K, the appearance of con�gurations
with a non zero winding number is more frequent than in the simulation of crystal
presenting vacancies and we can give more easily an estimation of the super�uid
fraction: from our PIMC simulation, we get at T = 0.8K, ρs = 0.044 ± 0.012.

Our results for the glassy phase cannot be easily compared with experimental
results, since it has been shown that amorphous states are particularly unstable
in real samples at temperatures higher than 100 mK [102]. However, to have a
better insight about the features of the glassy phase, it would be interesting to
estimate the super�uid fraction of amorphous solid 4He at temperatures lower than
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Figure 5.14: The static structure factor S(q) computed in the PIMC equilibration
of an amorphous solid made up of N = 140 4He atoms at temperature T = 0.8 K.
The red dashed line corresponds to the calculation of S(q) in the �rst part of the
equilibration, in which the system presents the con�guration of an overpressurized
liquid. The black solid line corresponds to the calculation of S(q) in the second part
of the equilibration, in which the system presents the con�guration of an amorphous
solid.
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Figure 5.15: The one-body density matrix ρ1(r) for amorphous solid 4He at density
ρ = 0.0294 Å−3 at di�erent temperatures: T = 1.5K (black triangles), T = 1.25K
(red diamonds), T = 1 K (green squares) and T = 0.8K (blue circles). Error bars
are below symbol size.

the one we have managed to study here, in order to see if, as the temperature of
the system decreases, ρs remains of the order of some percent, as measured in most
of experiments, or if it increases, up to the point that the glass presents a larger
super�uid fraction close to the absolute zero.

5.5 Crystal at the hcp-bcc coexistence line

To study the hcp-bcc coexistence line, we have carried out simulations in the three
experimental thermodynamic points shown in Fig. 5.1. Explicitly, in the P -T phase
diagram the coordinates of these points are A= (1.5, 26.419), B= (1.6, 27.572),
and C= (1.7, 29.029) in units of bar and Kelvin for the pressure and temperature,
respectively. The corresponding densities are taken from the experimental data
contained in Refs. [110, 111]: (ρhcpA = 0.028834, ρbccA = 0.028571), (ρhcpB = 0.028954,
ρbccB = 0.028679), and (ρhcpC = 0.029080, ρbccC = 0.028805), all in units of Å−3.

In the Hamiltonian of the system the potential part is built as a sum of pair-wise
interatomic potentials, V̂ =

∑N
i<j V (rij), with V (r) of Aziz type [49]. Simulations

are performed using periodic boundary conditions with a number of atoms per simu-
lation cell of N = 180 (hcp) and N = 128 (bcc); tail corrections to the energy due to
the use of a �nite number of particles are estimated by running simulations with dif-
ferent N values and extrapolating its linear behavior in 1/N to the thermodynamic
limit 1/N → 0 [117].
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A (T = 1.5 K) B (T = 1.6 K) C (T = 1.7 K)

bcc hcp bcc hcp bcc hcp

E
N expt.(K) -5.95 -5.93 -5.91
E
N PIMC(K) -6.166(7) -6.058(7) -6.137(8) -6.025(7) -6.091(9) -5.984(6)

V
N (K) -30.103(3) -30.448(3) -30.230(3) -30.605(3) -30.372(3) -30.752(2)
K
N (K) 23.936(5) 24.391(7) 24.093(5) 24.580(5) 24.281(7) 24.768(5)

Table 5.2: PIMC results of the total (E/N) and partial energies (V/N , K/N)
for the three thermodynamic points in the hcp-bcc coexistence line here analyzed.
Experimental values of the bcc energies, reported in the �rst row, are taken from
Ref. [110]. Figures in parenthesis stand for the statistical errors.

PIMC results for the total energy per particle in the three mentioned thermody-
namic points are reported in Table 5.2. The di�erence between the energies of the
two lattices in the coexistence line is small but, in the three cases, the bcc energies
are larger than the hcp ones (in absolute values). This di�erence is mainly due
to the slightly smaller density in the bcc side with respect to the hcp one, with a
smaller e�ect of the lattice type (at the same density). On the other hand, PIMC
energies lie below the available experimental energies of the bcc solid in an amount
∼ 0.20 K, a feature already observed in liquid 4He and attributable to the particular
Aziz potential used in the present simulations [4].

In Table 5.2, we also have included the partial energies per particle. The results
for the kinetic energy per particle K/N are the most relevant because it is possible
to measure them using deep inelastic neutron scattering. As it is well known, if
the momentum of the incoming neutron is high enough the impulse approximation
holds and the atomic momentum distribution n(k) is attainable, and from it the
kinetic energy. Blasdell et al. [115] reported experimental results of K/N for both
solid lattices: at T = 1.07 K and hcp K/N = 23.6 K, and at T = 1.72 K and bcc
K/N = 23.7 K (the densities of both phases were the same). If just the classical
estimation 3/2kBT is considered for an isothermical comparison, one can see that the
kinetic energy of the bcc crystal is signi�cantly smaller. PIMC results by Ceperley
[114] also agree with this trend (in this case the comparison is made between fcc
and bcc lattices). Our present results allow for a best comparison since they are
obtained following the coexistence line. As one can see in Table 1, there is a nearly
constant decrease of ∼ 0.5 K when going from the hcp point to the bcc one and our
results are in overall agreement with the experimental determinations of Blasdell et
al. [115]. The thermal e�ects in the kinetic energy for any of the two lattices are
dominated by the classical term 3/2kBT that gives a di�erence of 0.15 K from one
point to the next one.

We have also calculated some structural properties of the bcc phase to better
characterize it and to identify speci�c signatures of this lattice symmetry. One of
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Figure 5.16: Density pro�le µ(r) of 4He atoms around the lattice sites for the two
lattices at T = 1.5 K.

the most relevant in the microscopic study of any solid phase is the density pro�le
µ(r), de�ned as the probability of �nding a particle in the interval (r, r+dr) around
any of the lattice points of the crystal. Results of µ(r) at the thermodynamic point
A and for the two coexistence lattices are shown in Fig. 5.16. As expected, the
density pro�le of the bcc crystal is a bit wider than the hcp one, with a decrease of
localization as it corresponds to its slightly more open structure. From the density
pro�le it is possible to calculate the mean squared displacement around a site,

〈u2〉 = 4π

∫ ∞

0
dr r4µ(r) , (5.2)

and from it to estimate the Lindemann ratio,

γ =

√
〈u2〉
a

, (5.3)

a being the nearest-neighbor distance in the perfect crystalline lattice. We have
obtained γhcp = 0.26 and γbcc = 0.28, in agreement with experimental data [3]. The
Lindemann ratio is a good measure of the zero-point motion and thus the larger
value of γ for the bcc lattice points to an enhancement of its quantum nature.

In Fig. 5.17, we show results of the two-body radial distribution function for
both lattices in the coexistence at T = 1.5 K. One can see the usual oscillations
due to the periodic spatial order and only a tiny di�erence between both lattices.
The height of the main peak of the bcc g(r) is slightly smaller than the hcp one
but this is more an e�ect of its smaller density than a consequence of the lattice
symmetry. The di�erence in the spatial order induced by the lattice is more clear
in reciprocal space. Results for the static structure factor S(q) at both sides of the
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Figure 5.17: Two-body radial distribution function for the hcp and bcc phases of
solid 4He at T = 1.5 K.

Figure 5.18: Static structure factor for the hcp and bcc phases of solid 4He at
T = 1.5 K.
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Figure 5.19: One-body density matrix for the hcp and bcc phases of solid 4He at
T = 1.5 K.

coexistence line at T = 1.5 K are shown in Fig. 5.18. Several Bragg peaks are clearly
identi�ed; they are located at the expected points for each type of lattice. As it is
well known from solid state physics, the determination of the static structure factor
is the best way for identifying the particular lattice of the crystal and, indeed, the
x-ray measures by Schuch and Mills [107] were the de�nite prove of the existence of
a stability region for bcc 4He.

Much of our present interest in the bcc phase of solid 4He lies on the unexpected
results found by Eyal et al. [103] which point to disorder-induced mobility, that man-
ifests in the torsional oscillator experiments as the typical mass decoupling observed
in hcp at very low temperatures (T < 200 mK). This could open the possibility of
a supersolid scenario at higher temperatures. Any signature of supersolidity would
appear in o�-diagonal properties of the system, like the one-body density matrix
ρ1(r). In Fig. 5.19, we show results for ρ1(r) at T = 1.5 K calculated for the two
lattices. The shape of the two results is very similar and coincides with previous
estimations: a fast decay up to ∼ 4 Å, a small increase near the position of the
�rst neighbor, and �nally a kind of exponential decay to zero. The most relevant
feature of these results is the absence of o�-diagonal long-range order. Therefore,
neither the perfect hcp crystal nor the perfect bcc one show signals of supersolidity
according to our PIMC results.





Chapter 6

Super�uidity of bulk pH2 at low

temperature

Molecular para-hydrogen (pH2) has been proposed theoretically as a possible candi-
date for super�uidity, but experimentally the eventual super�uid transition is hin-
dered by the crystallization of the pH2 system. In this work, we study a metastable
non crystalline phase in bulk pH2 by means of the Path Integral Monte Carlo method
in order to investigate at which temperature this system can support super�uidity.
Choosing accurately a �quantum liquid� initial con�guration and using a non com-
mensurate simulation box, we have been able to frustrate the formation of the
crystal in the simulated system and to calculate the temperature dependence of the
one-body density matrix and of the super�uid fraction, showing a transition to a
super�uid phase at temperatures around 1 K.

6.1 Introduction

The search for elements exhibiting super�uid properties, in addition to helium iso-
topes, is a fundamental issue in the study of the phenomenon of super�uidity and
has been a matter of continuous study in the scienti�c community for many decades.

Ginzburg and Sobyanin, in 1972, speculated that any Bose liquid should be
super�uid below a certain temperature Tλ, unless it solidi�es at temperature Tf

higher than Tλ [8]. To give a �rst estimation of Tλ, they used the theory for the
ideal Bose gas, obtaining

Tλ = 3.31
~2

g2/3mkB
ρ2/3 , (6.1)

where m is the atomic mass, g is the spin degeneracy, kB is the Boltzmann constant
and ρ is the density of the system. Ginzburg and Sobyanin proposed molecular para-
hydrogen (pH2) as a plausible candidate for super�uidity: being a spinless boson
(with g = 1) with a small mass, pH2 should undergo a super�uid transition at a
relatively high temperature (according to Eq. 6.1, Tλ ' 6 K).

However, we can easily realize that the estimation of Tλ given by Eq. 6.1 is
unsatisfactory in case of dense liquids because it cannot account for the observed
dependence of Tλ with the density: in liquid 4He, indeed, Tλ does not increase as
ρ2/3 but it slightly decreases when the sample is compressed. In order to provide
a more reasonable estimation of Tλ, Apenko proposed a phenomenological criterion
for the super�uid transition, similar to the Lindemann criterion for crystal melting
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[118]. In this way, he has been able to take into account the quantum decoherence
e�ects due to the strong interatomic potential and to relate the critical temperature
for super�uidity with the mean kinetic energy per particle above the transition. For
pH2, he obtained that Tλ should vary between 1.1 K and 2.1 K, depending on the
density of the system.

The main obstacle for the experimental observation of super�uidity of pH2 is
due to the freezing of the sample, which occurs at temperature Tf = 13.8 K, higher
than the estimated Tλ. Several studies about crystal nucleation in pH2 have been
performed in order to understand if the liquid can enter a supercooled phase, i.e.,
a metastable phase in which the liquid is cooled below its freezing temperature
without forming a crystal. In Ref. [119], Maris et al. calculated the rate Γ(T )
of homogeneous nucleation of the solid phase from the liquid as a function of the
temperature T , showing a maximum of Γ around T = 7 K and a rapid decrease
at lower temperature. This suggests that, if it would be possible to supercool the
liquid through the range where Γ is large, one in principle might be able to reach a
low-temperature region where the liquid is essentially stable.

However, recent experiments have indicated that, even at T ∼ 9 K, the rate
of crystal growth is so high that the liquid phase freezes quickly into a metastable
polymorph crystal [9].

Even though several supercooling techniques have been proposed so far to create
a metastable liquid phase in bulk pH2 [120, 121, 122], none of them has proven to be
successful and no direct evidence of super�uidity has been detected. Anyway, the
interest in this topic is kept alive by some results pointing, at least indirectly, to a
super�uid behavior of pH2 coming from spectroscopic studies of doped small clusters.
In 2000, Grebenev et al. analyzed the rotational spectra of a linear carbonyl sul�de
(OCS) surrounded by 14 to 16 pH2 molecules absorbed in a larger helium droplet
which �xes the temperature of the cluster [10]. In the pure 4He droplet (T = 0.38 K),
the measured spectra shows a peak indicating the excitation of angular momentum
around the OCS axis. When the small pH2 cluster is put inside a colder 4He/3He
droplet (T = 0.15 K), the peak disappears: this indicates that the OCS molecule is
able to rotate freely inside the hydrogen cluster, indicating thus the possibility for
super�uidity e�ects to occur in pH2.

These results have been con�rmed in a later experiment on small pH2 clusters
doped with carbon dioxide [123]. From a precise analysis of the rotational spectra,
it has been possible to measure the e�ective momentum of inertia of these small
systems, and thus of their super�uid fraction ρs, providing a clear evidence of su-
per�uidity in clusters made up of N ≤ 18 pH2 molecules. However, authors do not
answer the question whether or not larger cluster will exhibit the same behavior.

In spite of the relevance of these results, they are not able to provide a de�ni-
tive answer in the debate of a possible super�uid transition in pH2. Indeed, it is
questionable to speak about super�uidity when dealing with systems composed of
few particles: in these very small systems, all the molecules reside essentially on the
surface and their interaction with the impurity can, in principle, a�ect the experi-
mental results. Larger pure clusters are more suitable to describe the bulk phase:
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Kuyanov-Prozument and Vilesov have been able to stabilize the liquid phase in clus-
ters with an average size of N ≈ 104 pH2 molecules down to the temperature T = 2
K, but they do not see any evidence of super�uidity e�ects in the studied clusters
[124].

From the theoretical point of view, the interaction between pH2 molecules at
low temperature can be well described by a radial potential, thanks to the spherical
symmetry of its rotational ground state [125]. This feature makes feasible an ab-

initio study aimed to detect a possible super�uid phase in pH2 at low temperature.
The PIMC method has been widely used to perform �nite temperature simulations
of pH2 �lms [126, 127] and small clusters, both doped with impurities [128, 129, 130]
and pure ones [131, 132, 133, 134, 135]: all these simulations show the possibility for
pH2 to become super�uid below a certain temperature and seem to point out also to
a dependence of the super�uid fraction on the dimensions of the system, indicating
that it goes to zero for large enough systems. Nevertheless, it is not clear to which
extent these conclusions can be generalized to systems of in�nite size.

The aim of the present chapter is to provide a microscopic description of a
non crystalline phase in bulk pH2 at �nite temperature. Such a microscopic study
by means of the PIMC method is not easy since the deep attractive well in the
intermolecular potential of pH2 makes rather hard the sampling of the coordinates
and makes necessary the use of a very accurate sampling scheme in order to perform
a reliable simulation of the system. To overcome these sampling issues, we have used
the Chin factorization to approximate the thermal density matrix [20] and the worm
algorithm for sampling the bosonic permutations [7]: with these improvements we
have been able, for the �rst time, to simulate microscopic system with almost 100
pH2 molecules and with periodic boundary conditions at very low temperatures.
Our main purpose is to estimate the temperature Tλ of the super�uid transition, in
order to improve the result given by Apenko using a phenomenological description
[118]. In this chapter, we will discuss at �rst the techniques we use to stabilize, inside
the simulation box, a non crystalline con�guration for pH2 at low temperature (Sec.
6.2). Later on, we will focus our attention on the super�uid properties, studying the
temperature dependence of both the super�uid fraction and the one-body density
matrix (Sec. 6.3).

6.2 Equilibration of the amorphous phase

The �rst di�culty we have to deal with when investigating computationally a dis-
ordered phase of pH2 at low temperature is to provide a good equilibration of the
system. The PIMC method, indeed, is aimed at studying the thermodynamic prop-
erties of quantum systems at thermal equilibrium. On the contrary, our purpose
here is to study a con�guration di�erent from the one of minimum free energy,
which for pH2 at low temperature is the crystalline one.

In order to do that, it is fundamental to take care in the choice of the dimen-
sions of the simulation box and of the number of particles, which must not be
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commensurate with any crystalline lattice. Also, it is important to choose a good
initial con�guration which evolves, as the Monte Carlo simulation goes on, towards
a non crystalline phase which remains metastable for a number of Monte Carlo steps
large enough to get a good statistics of the relevant quantities of the system. In
this equilibration process, special attention must be paid also to the thermalization
of the polymers used within PIMC formalism to describe classically the quantum
molecules. A bad choice of initial conditions, indeed, may cause the evolution of
the system towards a con�guration where the classical polymers are not allowed
to spread and thus are not able to describe properly the zero-point motion of the
molecules. This eventuality may represent a serious problem in our simulation, since
we are mainly interested in the investigation of the super�uid properties of the pH2

system.
To check whether an equilibration scheme is e�cient or not, it is important

to monitor how the numerical estimations of the physical quantities change with
the number of Monte Carlo steps. If we see that, as the simulation goes on, the
computed variables do not show any evident trend but they �uctuate around a
certain value, we can conclude that the system has reached the metastability. To
check if this eventual metastable phase is crystalline or not, we can calculate the
static structure factor S(q) and observe if it presents the Bragg peaks typical of a
crystalline con�guration.

The simplest disordered con�guration we can try for equilibrating the pH2 sys-
tem is the one of a classical gas, where all the polymers are concentrated in a point
and their position is chosen randomly inside the box: this is the typical initial con-
dition used in the PIMC simulation of quantum liquids at equilibrium. Anyway, we
can easily realize that, in the present case, such a con�guration does not provide
a good equilibration. At �rst, a completely random disposition of the atoms may
present many superpositions, i.e. many pairs of particles at a distance lower than
the hard-core of the interatomic potential, which make the con�guration particularly
unstable. Furthermore, since the polymers in the �rst steps are concentrated in a
point, they can move quite easily and the system will relax to a non liquid con�gu-
ration, structured at least on the short range, before the polymers have thermalized
in a proper way.

A clever way to generate a better initial con�guration is to equilibrate the pH2

system with the Di�usion Monte Carlo (DMC) method. An exhaustive descrip-
tion of DMC method can be found in Ref. [17]. Brie�y, DMC is an established
technique which has produced excellent results for a wide range of properties of
quantum systems at zero temperature. It is capable of �nding the ground state
of bosonic systems solving the time-dependent Schrödinger equation in imaginary
time. Although it can be considered an �exact� method, since it is able to make
the systematic errors arbitrarily small, for practical purposes DMC needs the choice
of a trial wave function describing accurately the real ground state of the quantum
system to provide an e�cient importance sampling. If the trial wave function di�ers
from the ground state, the importance sampling of DMC can introduce correlations
which can stabilize an o�-equilibrium con�guration in the simulation. Therefore,
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DMC can be used for our purpose of equilibrating a non-crystalline phase for pH2

at low temperature.
Using this feature of the DMC method, we propose an equilibration process

which consists of two steps. In the �rst part, we perform a DMC simulation us-
ing, for the importance sampling of the coordinates, a Jastrow trial wave function
ΨT =

∏
i<j f(rij). This wave function is a product of two-body correlation factors

and does not present any localization term, allowing thus for a good description of
the liquid phase. Once the DMC simulation has equilibrated the liquid state, we
construct the initial con�guration for our PIMC simulation from the �nal DMC one.
More precisely, we construct the PIMC con�guration concentrating all the bead for
each polymer in the coordinates of a walker obtained at the end of the DMC sim-
ulation. With respect to the classical gas equilibration scheme presented above,
this procedure allows us to get a more �liquid� disposition of the molecules inside
the box, where the pairs of neighbors will �nd themselves at distances of the order
of the minimum of the interatomic potential and their superpositions become less
probable. In this way, since the initial con�guration is close to a local minimum of
the many-body Hamiltonian, the global moves of the polymers should not displace
them largely from the starting point and, in principle, the movements of the beads
inside a single polymer should be able to allow for a good thermalization of the
whole system before the system relaxes to a crystalline phase.

To test this equilibration scheme, we have performed a simulation of N = 100
pH2 molecules interacting through the Silvera-Goldman potential [136], inside a
cubic box at the density ρ = 0.0234Å−3. This density is the equilibrium density of
the liquid phase at zero temperature as obtained in a DMC simulation [137]. For a
preliminary test, we choose to perform the PIMC simulation at the temperature T =
10 K, that is an intermediate temperature below the freezing temperature, where
the liquid phase should be unstable, but above the estimated super�uid transition
temperature, in order to make the simulation easier. In Fig. 6.1 we plot how
the total energy per particle changes during the PIMC simulation (black symbols).
We can easily see that, during the simulation, the energy is oscillating around two
di�erent values (it is clear especially if we focus the part of the simulation between
the Monte Carlo blocks 60 and 120). This trend indicates that this equilibration
scheme may introduce some instabilities in the system and suggests us to follow a
di�erent way in order to metastabilize the liquid phase.

In particular, a weak point of the previous equilibration scheme is the starting
of the PIMC simulation from a classical point con�guration. It would be better, in
order to get a better thermalization of the polymers, to begin the PIMC simulation
from a con�guration where the polymers are not concentrated in a point. To do that,
we have followed a di�erent equilibration process which consists in two parts. In
the �rst part, we perform the simulation of a �ctitious system of quantum particles
with the mass equal to that of pH2 molecule, but interacting between each other
through the Aziz potential, which describe the interaction between 4He atoms [49].
Contrary to the Silvera-Goldman potential, the Aziz potential does not present
a so deep attractive well and is not able to induce, at su�ciently low densities,
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Figure 6.1: Mean values of the energy per particle E/N computed for consecutive
blocks during a typical PIMC simulation of pH2 at temperature T = 10 K. The black
+ symbols represent the simulation started from a liquid con�guration equilibrated
with Di�usion Monte Carlo. The red × symbols represent the simulation started
from a liquid con�guration obtained in a �ctitious PIMC simulation of pH2 molecules
interacting with Aziz potential.
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Figure 6.2: Static structure factor S(k) of the metastable phase of bulk pH2 at
T = 10 K obtained with PIMC (red straight line). Our result is compared with
the static structure factor for liquid pH2 at zero temperature obtained with DMC
(black dashed line)

a crystalline phase. Therefore, the new idea for equilibrating the pH2 system is to
perform such a �ctitious PIMC simulation starting from a classical gas con�guration
(point polymers put randomly inside the simulation box): in this �ctitious PIMC
simulation, thanks to the weaker interatomic potential, it is possible to create easily a
�quantum liquid� con�guration, where, in addition to the spatial correlations typical
of the liquid phase, are taken into account also quantum e�ects due the zero-point
motion of the quantum particles. Later, we use exactly the �nal con�guration of
this �ctitious system to start the real simulation of the pH2 system.

To test this new equilibration procedure, we repeat the previous simulation of
N = 100 pH2 molecules at the same density ρ = 0.0234Å−3 and temperature T = 10
K: the results for the total energy per particle E/N as a function of the number of
Monte Carlo blocks is plotted in Fig 6.1 (red symbols) and compared with the same
quantity obtained following the previous equilibration scheme. In this case, E/N

oscillates during the whole simulation around the same mean value 〈E/N〉 ' −78 K

indicating that the system has reached a metastable con�guration. In Fig. 6.2, we
have plotted the static structure factor S(k) of the metastable phase and compared
it with the same quantity computed for the liquid phase with DMC. We can easily
see that the curve obtained at T = 10 K presents the �rst peak at the same k as
the S(k) of the liquid and follows more or less the same behavior up to the second
maximum which is at k ' 4Å−1. Even though the PIMC calculation gives a peak



104 Chapter 6. Super�uidity of bulk pH2 at low temperature

Figure 6.3: Mean values of the potential energy per particle V/N computed for
consecutive steps during a typical PIMC simulation of N = 90 pH2 at temperature
T = 2 K (black + symbols). The evolution of the potential energy during the
simulation is compared with the mean value of the potential energy of a liquid
(red dashed line) and of a crystalline (blue dot-dashed line) phase, obtained at zero
temperature from a DMC simulation of the same system.

which is higher and narrower than the peak obtained with DMC and indicates that
the PIMC con�gurations are slightly more structured than the DMC ones, we can
safely conclude that our equilibration scheme is able to create a metastable liquid
phase, at least in the range of intermediate temperature below the freezing point Tf

and above the expected super�uid transition Tλ.

Nevertheless, since our main purpose is to localize the super�uid transition of
this non crystalline phase, it is worth to test this equilibration scheme even at
temperatures which are closer to the expected Tλ. For this reason we have performed
the simulation of N = 90 pH2 molecules at same density ρ = 0.0234Å−3 but at a
lower temperature, T = 2 K. In Fig. 6.3 we show how the potential energy per
particle V/N varies as the PIMC simulation follows. We choose to focus on the
potential energy, rather than in total energy, since in this range of low temperature
V/N is not strongly dependent on T and we can therefore compare it with the results
for V/N at zero temperature obtained with DMC. From the analysis of the results,
we can easily see that, after some Monte Carlo steps, the results of V/N reaches
a plateau, indicating that the system has relaxed to a metastable con�guration.
However, this plateau appears at a value of the potential energy considerably lower
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than the one obtained in DMC simulation of the liquid phase, indicating that the
metastable regime we reach presents features which cannot be considered those of a
liquid phase. We have performed also a DMC simulation of N = 108 pH2 molecules
disposed according to a fcc lattice in order to understand if the metastable phase
obtained in the PIMC simulation can be considered crystalline. In Fig. 6.3 we have
shown the result for the potential energy per particle in the solid phase as obtained
in the DMC calculation: we can realize that this result is not compatible with the
value of V/N reached in the PIMC simulation after the equilibration, indicating
that in the PIMC simulation we have reached a phase which cannot be considered
crystalline.

To support this hypothesis, we have computed the static structure factor S(k)
for the system at T = 2 K after the equilibration, when the mean value of the energy
is stable. The result is shown in Fig. 6.4, in comparison with the static structure
factor for the liquid and crystalline con�gurations at zero temperature obtained with
DMC. As we can see, the S(k) obtained in the PIMC simulation presents narrow
maxima in the range of small k and is quite di�erent from the typical S(k) of a
liquid phase. However, these maxima tend to disappear at higher k and their height
is much lower than the height of the Bragg peaks appearing in the S(k) of a crystal.
This indicates that the system simulated with PIMC has relaxed to a glassy phase,
which is structured at short range but lacks of the long-range coordination typical
of the crystalline structures.

6.3 Search for the super�uid transition

With a clever choice of the initial con�guration we have been able to frustrate the
formation of the crystal, making a glassy phase metastable at temperatures close
to those expected for the super�uid transition. Even if a glassy con�guration can
make the di�usion of the particles harder, the lack of long range coordination makes
possible the appearance of o�-diagonal long range order and it is worth to study the
super�uid properties of this phase.

To do that, we have studied the temperature dependence of the one-body density
matrix ρ1(r) and of the super�uid fraction. The �rst simulation has been performed
at the temperature T = 2 K, using N = 90 pH2 molecules interacting via the Silvera-
Goldman potential inside a cubic box at the density ρ = 0.0234Å−3. The result for
the OBDM obtained in this simulation is shown in Fig. 6.5: at T = 2 K, we can
clearly see an exponential decay of ρ1(r) at large r, indicating that Bose-Einstein
condensation is not present in the system, resulting thus in a non-super�uid phase.
In this simulation, indeed, we have noticed that the swap update has a very low
acceptance rate and does not allow the formation of long-permutation cycles with a
non-zero winding number. Nevertheless, we can think that the low acceptance of the
swap update is a consequence of the di�culties in the sampling of the coordinates due
to the strength of the intermolecular potential. We may therefore suspect that the
system remains stuck in a con�guration without permutation because of sampling
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Figure 6.4: Static structure factor S(k) of the metastable phase of bulk pH2 at T = 2
K obtained with PIMC (black straight line). Top �gure: comparison of the PIMC
result with the static structure factor for liquid pH2 at zero temperature obtained
with DMC (red dashed line). Bottom �gure: comparison of the PIMC result with the
static structure factor for crystalline pH2 (fcc lattice) at zero temperature obtained
with DMC (blue dashed line).
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Figure 6.5: The one-body density matrix ρ1(r) for the glass pH2 at density ρ =
0.0234Å−3 and at di�erent temperatures: T = 0.7K (blue circles), T = 1.0K (red
squares), T = 1.5K (green diamonds) and T = 2.0K (yellow triangles). Statistical
errors, if not displayed, are below symbol size.

issues. To make sure about our result, we have performed another simulation of
the same system but starting from an initial con�guration presenting a non-zero
winding number. To create this initial con�guration, we have allowed particles to
permute even in the �ctitious simulation used to equilibrate the system. When we
start the PIMC simulation of pH2 from the permutated con�guration, we see that
the percentage of particles involved in bosonic exchanges tends to decrease and,
at the end of the equilibration, the system has relaxed to a phase presenting zero
winding number. This last result con�rms our conclusion that the pH2 glass we
simulate is not super�uid at T = 2 K.

In Fig. 6.5 we have shown, together with the result at T = 2 K, also the
OBDM obtained from the simulations at other di�erent temperatures. At each
of the temperatures studied, we have performed simulations starting both from
a permutated and a non permutated con�guration, observing that, once that the
system has been equilibrated, the results for ρ1(r) does not depend on the initial
con�guration. From the comparison of the curves at di�erent temperatures, we can
easily see a change of the behavior of ρ1 at large r as the temperature decreases: this
indicates that, at temperature close to T = 1 K, the system presents a transition to a
super�uid phase presenting o�-diagonal long range order. The condensate fraction
at low temperature is n0 ∼ 3 × 10−4. The evidence of a super�uid transition



108 Chapter 6. Super�uidity of bulk pH2 at low temperature

T [K] ρs/ρ

0.7 1.15 ± 0.14
1.0 0.53 ± 0.08
1.2 0.

1.5 0.

2.0 0.

Table 6.1: Super�uid density of the metastable glassy phase of pH2 at density
ρ = 0.0234Å−3 as a function of the temperature

is supported also by the results of the dependence of the super�uid fraction as a
function of the temperature, which is indicated in Table 6.1. Notice that, at T = 0.7
K the mean value of the super�uid fraction is higher than one: this is a numerical
e�ect due to the fact that the winding number estimator has no upper bound.
However, we have to notice that the statistical error on this estimation is quite
large and the result is compatible with ρs/ρ = 1. Therefore, this result has to be
interpreted as an evidence of the fact that, at T = 0.7 K, the system is completely
super�uid.

In order to give a more precise estimation of the super�uid transition temper-
ature Tλ, it would be necessary to perform a pertinent �nite size-scaling study.
However, the di�culties of sampling the coordinates of the pH2 system make the
simulation of system made up of more than 100 molecules quite hard. Neverthe-
less, considering the appearance of a non-zero winding number only at temperature
below 1 K and the fact that at 0.7 K the system is completely super�uid, we can
localize the super�uid transition close to Tλ ∼ 1K.

This estimation is somehow lower than the estimation given by the phenomeno-
logical theory of Apenko [118] for which, at the density ρ = 0.0234Å−3 studied in
our simulations, the temperature for the transition is estimated Tλ ∼ 1.7K. The
reason of the discrepancy can be twofold. At �rst, we can attribute this di�erence
to some lacks in the phenomenological theory, which may not be able to describe all
the correlations arising between the molecules. Secondly, it is legitimate to doubt
if the system studied according the two di�erent approaches presents the same fea-
ture. Apenko in his work claims that the phenomenological theory applies to dense
quantum liquid, while in the PIMC simulation we show that the system is more sim-
ilar to an amorphous solid than to a liquid. We can therefore think that the lower
PIMC estimate for Tλ is due to the fact the more structured con�guration enhances
the decoherence e�ects and lower the temperature at which quantum e�ects become
important.

It is also interesting to notice that our estimation for Tλ is quite close to the
temperatures at which, according to PIMC simulations, super�uid e�ects should ap-
pear in small pH2 clusters [131, 132]. These calculations, indeed, show that clusters
made of N ≤ 20 pH2 molecules exhibit a non-zero super�uid fraction below T ∼ 2
K. This transition temperature depends on the dimension of the cluster, decreasing
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when the number of molecules increases. However, it is di�cult to make hypothesis
on the super�uid behavior of large enough pH2 systems from the simulation of small
clusters, because the calculated super�uid fraction ρs is signi�cantly depressed when
the number of molecules becomes N ≥ 30. This unexpected behavior of ρs with N

has been explained relating the changes in the super�uid properties to structural
changes that make the molecules dispose according to a solidlike con�guration when
the dimension of the cluster becomes large. In our simulation of bulk pH2, we have
been able to overcome this problem with a good equilibration of the system and we
have shown that pH2 at low temperature may support a super�uid behavior also in
systems with in�nite dimensions.





Chapter 7

Conclusions and Outlook

In this thesis, we have performed numerical simulations of some of the most rele-
vant quantum �uids and solids by means of the Path Integral Monte Carlo method
(PIMC). PIMC is a very powerful method in the study of quantum many-body sys-
tems thanks to its capability of providing exact results setting the Hamiltonian as
the only input of the simulation. We have developed an e�cient code, implementing
the most recent and most e�ective tools, such as the high-order Chin factorization
for the thermal density matrix [19, 20] and the worm algorithm [7], in order to ob-
tain in the simulation a reliable description of the properties shown by the system
in the experiments. To test the code, we have applied it to the study of liquid 4He,
for which a large amount of experimental data is available. We have seen that, both
at �nite and zero temperature, the numerical results are in good agreement with
the experimental measurements. Finally, we have applied the same methodology to
the study of other very interesting physical systems, like the solid phase of 4He or
molecular parahydrogen at very low temperature.

Next on, we report the main conclusions reported in this thesis.

7.1 One-body density matrix, momentum distribution

and condensate fraction of liquid 4He

Motivated by recent accurate experimental data on the condensate fraction n0 as a
function of the pressure p in liquid 4He at temperatures very close to absolute zero
[71], in chapter 4, we have computed the one-body density matrix of liquid 4He at
di�erent densities by means of the PIGS Monte Carlo method. Our calculations
provide an improvement with respect to other ground state projection techniques
used in the past, since the PIGS method allows us to remove completely the in�uence
of any input trial wave function. Thanks to this feature of the PIGS method, we have
been able to perform calculations of ρ1(r) and n0 in liquid 4He at zero temperature
relying only on the Hamiltonian and on the symmetry properties of the system.

Although it is not easy to give an analytic model to �t the data for ρ1(r),
because of the di�culty of describing the coupling between the condensate and the
excited states in strongly correlated quantum systems such as 4He, it is possible
to extrapolate very precise estimates of the condensate fraction and of the kinetic
energy of the system even from a simpli�ed model for ρ1.

At the equilibrium density of liquid 4He, we have recovered the value of n0

obtained with the unbiased PIMC method at temperature T = 1K [7]. Simulating
the system at several densities, the dependence of n0 with pressure p obtained from
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the calculation agrees nicely with the recent experimental measurements of Ref.
[71].

7.2 Supersolid phase of 4He

In chapter 5, we have investigated the behavior of solid 4He performing several sim-
ulations of condensed helium at high densities, with the atoms organized according
to di�erent microscopic con�gurations, such as perfect hcp crystals, crystals with
vacancies and amorphous solids. The main objective was to �nd a model able to ap-
proach theoretically the properties measured experimentally in solid 4He, especially
in reference to the recent observation of a non classical rotational inertia (NCRI) in
torsional oscillator experiment at low temperature [14, 15].

Concerning the perfect crystal, our results can reproduce the experimental data
on the momentum distribution n(k) obtained in neutron scattering experiments
[116] and indicates that solid 4He is highly anharmonic, even though its behavior
approaches the classical one at high densities. Our results show that a prefect
crystal does not present super�uidity e�ects at any temperature: this behavior is
in agreement with previous numerical results [66, 65] and indicates that the model
of a perfect crystal is not suitable for describing the NCRI e�ects observed in the
torsional oscillator experiments.

On the other hand, our results shows super�uidity e�ects in the simulation of
crystal presenting defects, such as vacancies. In this case, we show that the one-
body density matrix ρ1(r) depends on the temperature and that, for su�ciently low
temperatures, the system supports Bose-Einstein condensation. We have seen that
the onset temperature T0 of BEC in 4He crystals presenting vacancies, calculated
using the PIMC method, is comparable with the experimental measurements of
the supersolid transition temperature when the concentration of vacancies is small
enough (Xv ∼ 2 − 3 × 10−3). Furthermore, PIMC simulations show clearly that
when this onset temperature is reached the vacancies become completely delocalized
objects, as hypothesized in the past [91, 93] and never microscopically observed so
far.

In our work, we have also performed a microscopic study of amorphous con�g-
urations in solid 4He at densities where the crystalline phase is stable. Our results
shows that the glass at a density ρ = 0.0294Å−3 becomes super�uid at temperature
T0 = 0.8K (this phase has been referred as superglass [84]). This T0 is a temperature
higher than the ones at which NCRI appears experimentally. However, a comparison
of our results with experimental ones is quite di�cult since the amorphous states
are shown to be particularly unstable in real samples above 100 mK [102].

Our work on the solid phase of 4He can be followed studying the temperature
dependence of the super�uid fraction with the temperature for crystals presenting
other kinds of defects, like stacking faults or partial dislocations. It would be worth
also an analysis of the e�ects of 3He atoms in the microscopic systems simulated
with PIMC, since the presence of 3He impurities in real samples seems to a�ect sig-
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ni�cantly the experimental measurement. In particular, it would be very interesting
to study if a 3He atom in a crystal with vacancies can modify the onset temperature
of BEC.

In chapter 5, we have also performed a microscopic study of the coexistence
hcp-bcc line in solid 4He. Our goal has been to get an accurate view of the possible
di�erences between both lattices along the measured coexistence line. Apart from
the intrinsic interest on the study of the bcc phase, which has been scarcely studied
in the past, we were stimulated by the recent activity of Polturak and collaborators
[103] who have shown intriguing results using the torsional oscillator technique.
Our results show a small in�uence of the lattice type when crossing the coexistence
line. The internal energies are similar and the di�erences between both crystals are
more attributable to the slight di�erence in density than to the particular crystal
symmetry. Also the radial distribution functions show only very tiny di�erences.
What is more signi�cant is the drop in the kinetic energy from the hcp phase to
the bcc one, that we have estimated to be 0.5 K, and that is in overall agreement
with experimental �ndings [115]. The less compact structure of the bcc solid is
also observed in the results obtained for the density pro�les and the Lindemann
ratios. Finally, we have calculated the one-body density matrix in both sides of the
coexistence line without observing any relevant di�erence between them and, more
importantly, without obtaining o�-diagonal long-range order which allowed us to
conclude that a perfect bcc crystal, at the temperatures where this phase is stable,
is not a supersolid.

Further work is needed to determine if the introduction of point defects (va-
cancies) in the bcc crystal could induce supersolidity at these apparently too high
temperatures.

7.3 Super�uidity in bulk pH2 at low temperature

In chapter 6, we have simulated bulk pH2 at low temperatures, with the purpose of
investigating if any condensed system other than helium may support super�uidity.
The main di�culties we found in our simulation has been the stabilization of a liq-
uid con�guration. Contrarily to what happens in the simulation of bulk 4He, where
a overpressurized liquid phase can be made metastable quite easily with a proper
choice of the initial con�guration and of the dimensions of the simulation box, in
pH2 systems at the temperatures estimated for an eventual super�uid transition,
the liquid phase presents a high energetic cost that makes it unstable even in short
simulation runs. A liquid con�guration, indeed, relaxes rather quickly to a glassy
phase presenting a more structured con�guration at short range but lacking of the
long-range structure typical of crystalline systems. These results seem to re�ect
the di�culty of the experimental techniques to supercool liquid pH2 at very low
temperatures [9]. However, we have to remark that PIMC relies on the evolution
of the system in imaginary time and cannot describe the real dynamics of the sys-
tem observed in the experiment, so that our numerical results cannot provide any
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information about the possibility to supercool a liquid phase in pH2 or about the
existence of a metastability limit, that is a temperature below which crystallization
becomes unavoidable.

Nevertheless, computing the one-body density matrix and the super�uid fraction
of the glassy phase, we have been able to see clearly a change of the properties
of the system, indicating a possible super�uid transition around Tλ ∼ 1K. This
temperature is far from the minimum temperatures at which the liquid phase can
be supercooled experimentally (in the most recent works, it has not been possible to
avoid crystallization below T ' 9 K [9]). However, our result con�rms the hypothesis
that pH2, i.e. a Bose liquid other than helium, shows BEC e�ects at su�ciently low
temperature.

It is important to notice some aspects which can be taken into account in a future
development of this study. At �rst, it would be interesting to study the dependence
of the estimated Tλ with the density of the pH2 system. The phenomenological
theory by Apenko predicts that Tλ can vary of about from Tλ ∼ 2.1 K to Tλ ∼ 1.1
K when the density change from ρ ' 0.022Å−3 to ρ ' 0.026Å−3 [118] (a similar
change in density in liquid 4He will lead to a change in Tλ of about 0.3 K). Some
other PIMC calculations could be worth in order to investigate this apparently
strong dependence of the transition temperature with the density in pH2 systems.
Another relevant aspect of molecular hydrogen is the possibility of studying the
e�ect of the mass on the super�uid properties of the system, comparing the results
for para-hydrogen with the ones for ortho-deuterium (oD2). This di�erent isotopic
form, indeed, presents a mass which is twice the mass of pH2, but the intermolecular
potential for the two species is nearly the same. To this purposes, PIMC simulation
of bulk oD2 would be particularly intriguing.

7.4 Future perspectives

Even though in this thesis we have been able to achieve most of the objectives we
proposed at the beginning of the work, there are still some aspects that require
further work.

Apart from the natural continuation in the study of the di�erent physical systems
analyzed, that we presented in the previous sections of this chapter, we want to focus
here to some possible improvement of the PIMC code implemented during this work
of thesis.

The main disadvantage in the use of PIMC is the computational e�ort needed
to carry out the simulations, which is particularly onerous with respect to other
Quantum Monte Carlo methods. In particular, the computation of the one-body
density matrix and of the super�uid fraction are heavy because of the low e�ciency
of the PIMC estimator for these quantities. It is therefore very important to de-
velop well optimized codes which could reduce as much as possible the time needed
for the computation. In our work, we could only develop an optimized serial code,
neglecting, for lack of time, the implementation of a parallel version of the program.



7.4. Future perspectives 115

Nonetheless, PIMC simulations are really suitable to be performed on parallel ma-
chines, both on distributed memory and on shared memory machines.

The simplest parallelization approach consists in a redistribution of the Monte
Carlo steps on several nodes, in order to perform more independent simulations at
the same time, whose results will be averaged at the end of the calculation. This
approach can be easily implemented on parallel distributed memory machines, in
which every processor has its own local memory and exchanging values of variables
between the nodes involves explicit communication over the network. When devel-
oping a code on this particular class of parallel machines, it is important to make
the number of communications between the nodes as little as possible, since the
interchange of data between the nodes can reduce the performance of the parallel
code, especially because of synchronization issues. Nevertheless, this limitation of
the distributed memory machines does not involve many problems in the paral-
lelization of the PIMC code. In this case, indeed, the communication between the
nodes will be limited only at the beginning of the simulation, when the master node
send the input data to all the processors, and at the end, when it receives from
the di�erent processors the output data. Furthermore, since all the nodes perform
independent simulations whose execution time is very similar, the processors can be
easily synchronized.

This approach is the one typically adopted to implement PIMC codes in the �rst
parallel machines, using the Message Passing Interface (MPI) libraries. Nevertheless,
in the last years, a new class of parallel computers has been developed and has
achieved a certain success: the shared memory parallel machine. In these computers,
multiple processors can operate independently sharing the same memory resources,
so that changes in a memory location performed by one of the processors are visible
to all the others. In this type of computers, thanks to the presence of a shared
memory, the communication between the nodes is much easier than in distributed
memory machines, making e�cient also parallelization schemes which require a big
interchange of data among the processors. For instance, in the case of PIMC, we
can think to parallelize the calculation of the potential action in the sampling of
the coordinates, which is the heaviest part of the simulation, redistributing di�erent
beads on di�erent nodes. This approach is very e�ective if all the processors have
easy access to the memory area where are stored the coordinates of the beads and
can be implemented without di�culties making use of the most recent OpenMP
libraries.

It is important to notice that the two approaches presented in this section can
be implemented in the same code, since the part which has to be parallelized in the
two schemes has a di�erent extension. In the �rst approach, we want to parallelize
the biggest cycle of the simulation, which is called just once and comprises a big
amount of instruction. In the second approach, instead, we mean to parallelize
an inner cycle of small extension but whose execution is onerous since it is called a
huge amount of times during a typical run. Therefore, PIMC is particularly suitable
for a parallelization according to a hybrid MPI/OpenMP scheme, which makes use
both of MPI and OpenMP libraries and allows to achieve really high performances
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especially in modern clusters made up of multicore processors.
Considering the high computational e�ort needed to perform a PIMC simulation

(for instance, to calculate the one-body density matrix in a crystal containing 180
4He atoms at a �xed temperature and density, we typically average the results of
at least 10 simulation, each of these will last about 80 hours), it is really worth
to continue our work on the code, developing an e�cient parallel algorithm which
would allow to reduce considerably the time needed for the calculations.



Appendix A

The Worm Algorithm

In this appendix, we provide a detailed description of the worm algorithm (WA). In
its �rst implementation within the PIMC formalism, discussed in Refs. [21, 7], WA
performs the simulation of the quantum many-body system working in the grand
canonical ensemble [43]. Here, we describe a di�erent version, which is the one we
used for all our simulations, and works in the canonical ensemble: the di�erences
from the grand canonical algorithm are that the number of particles N , instead of
the chemical potential µ, is �xed as input parameter and that the number of links
(with the term link we refer to the ordered pair of two following beads in the same
polymer), instead of being variable during the simulation, is kept constant and equal
to N × M , M being the number of beads.

A.1 Main features of the algorithm

The fundamental aspect of WA, which crucially distinguishes it from conventional
PIMC, is that it operates in an extended con�gurational space. This new space can
be divided into two sectors: the Z-sector, which is nothing but the full con�gura-
tional space of classical ring polymers used in conventional PIMC, and the G-sector,
which is formed by con�gurations where all the polymers are closed except one which
is left open and is referred as the worm.

During the PIMC simulation, the system has to be able to �uctuate randomly
from Z to G-sector and vice versa: however, at the moment of evaluating the prop-
erties of the system, not all the con�gurations contribute to the evaluation of all
the quantities. In particular, con�gurations in Z-sector can provide estimations for
the diagonal observables, such as the energy, the pair distribution function or the
super�uid density: for this reason, Z-con�gurations are usually referred as diago-
nal con�gurations. On the other hand, the con�gurations in the G-sector can be
used only in the evaluation of o�-diagonal observables, such as the one-body density
matrix, and are therefore called o�-diagonal con�gurations.

As in all Path Integral calculation, each con�guration X = {R1, . . . ,RM ,RM+1}
has to be considered as an evolution of Rj in imaginary time, being Rj =
{r1,j , . . . , rN,j} a set of the spatial coordinates of all the N particles of the quantum
system.

In the Z-sector, we impose the condition RM+1 = PR1, P being one of the N !
permutations of the particle index: thus, a diagonal con�guration XZ is de�ned by
a 3×N×M matrix indicating the coordinates ri,j of all the beads of all the particles
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(i, with 1 ≤ i ≤ N , is the particle index and j, with 1 ≤ j ≤ M , is the bead index)
and by the table p(i) indicating the permutation P.

The probability distribution for the con�guration XZ is

pZ(XZ) =
1
Z

M∏
j=1

ρF (Rj+1,Rj ; ε)e−U(Rj+1,Rj ;ε) , (A.1)

where

ρF (Rj+1,Rj ; ε) =
1

(4πλε)3N/2
e−

PN
i=1

(ri;j+1−ri;j)2

4λε (A.2)

is the free propagator in the imaginary time ε from the con�guration Rj to Rj+1.
The function U(Rj+1,Rj ; ε) is the potential action and incorporates correlations
arising from the interactions among particles. In most of the approximation schemes,
the evaluation of U reduces to the evaluation of an e�ective potential W (Rj ; ε) be-
tween the particles (for instance, in the Primitive approximation W (R; ε) = V (R)).
In these cases, it is preferable to use a symmetrized form for the potential action

U(Rj+1,Rj ; ε) =
ε

2
[W (Rj+1; ε) + W (Rj ; ε)] (A.3)

However, it is easy to notice that each con�guration Rj appears twice in Eq. A.1
(both in U(Rj ,Rj−1; ε) and in U(Rj+1,Rj ; ε)), even for the case j = 1 because of
the condition RM+1 = PR1. This means that, being

M∏
j=1

e−U(Rj+1,Rj ;ε) =
M∏

j=1

e−εW (Rj ;ε) , (A.4)

the use of a symmetrized or non symmetrized form for the potential action is in the
Z-sector formally equivalent.

The normalization factor in Eq. A.1 is

Z =
∑
P

∫
dR1 . . . dRM

M∏
j=1

ρF (Rj+1,Rj ; ε)e−U(Rj+1,Rj ;ε) (A.5)

and can be considered an approximation of the partition function of the quantum
system.

In the G-sector, where there is a polymer which is not closed on itself, the condi-
tion RM+1 = PR1 holds for all the particles but one, namely the particle iW . Since
riW ,M+1 6= rp(iW ),1, an o�-diagonal con�guration XG presents an additional point
riW ,M+1 (usually referred as the head of the worm) with respect to any diagonal
con�guration XZ : therefore, to specify XG we need a 3 × (N × M + 1) matrix of
coordinates and the permutation table p(i).

The probability distribution for the o�-diagonal con�gurations is formally equiv-
alent to that of the diagonal one, Eq. A.1,

pG(X) =
1

ZG

M∏
j=1

ρF (Rj+1,Rj ; ε)e−U(Rj+1,Rj ;ε) , (A.6)



A.2. Path sampling methods 119

apart from the obvious di�erence is the normalization factor

ZG =
∑
P

∫
dR1 . . . dRMdriW ,M+1

M∏
j=1

ρF (Rj+1,Rj ; ε)e−U(Rj+1,Rj ;ε) (A.7)

It is worth to notice that, since the condition RM+1 = PR1 does not hold for
all the particles, Eq. A.4 does not hold. This observation obliges us to take care
in the choice of the potential action U , which has to be in a symmetrized form. In
practice, if the potential action can be written as in Eq. A.3, we have to put a factor
1/2 when computing the e�ective potential W for the bead j = 1, which is the one
corresponding to the open extremities riW ,M+1 and rp(iW ),1 of the worm:

M∏
j=1

e−U(Rj+1,Rj ;ε) =
M∏

j=2

e−εW (Rj ;ε) × e−
ε
2
(W (R1;ε)+W (R′

1;ε)) , (A.8)

with R1 = {r1,1, . . . , rp(iW ),1 . . . , rN,1} and R′
1 = {r1,1, . . . , riW ,M+1 . . . , rN,1}.

Formally, the con�gurational space of the WA corresponds to an ensemble with
a generalized partition function

ZW = Z + CZG . (A.9)

The parameter C > 0 is a dimensionless quantity which remains constant during
the whole simulation. Its e�ect is to control the relative statistics of the Z and
G-sector, a�ecting only the e�ciency of the simulation. If we indicate with NZ and
NG respectively the number of diagonal and o�-diagonal con�gurations sampled in
the simulation (with Ntot = NZ + NG), one will have

NZ

Ntot
=

Z

ZW
(A.10)

and
NG

Ntot
=

CZG

ZW
. (A.11)

It follows that
NG

NZ
=

CZG

Z
: (A.12)

from the last equation, it is clear that the higher the parameter C the more frequently
the system will be found in an o�-diagonal con�guration. It is worth to notice that
Eq. A.12 can provide a good test on the sampling: if the ratio NG/NZ is not
proportional to C, at least in the range where NG/NZ ∼ 1, the sampling cannot
allow for an equilibrated switching from Z to G-sector and vice versa.

A.2 Path sampling methods

In this section, we propose a set of local updates in order to sample the WA con�g-
urational space by means of the Metropolis algorithm, described in Sec. 2.1.1. We
can divide these updates in three groups:



120 Appendix A. The Worm Algorithm

• Updates that can be performed both in Z and in G-sector (Translate and
Staging). In the simulation of systems where it is possible to avoid safely the
permutations between the particles, these two updates by themselves are able
to produce an ergodic sampling of the coordinates.

• Updates switching from Z to G-sector and vice versa (Open and Close). These
two updates form a complementary pair [138], that is a pair of updates that
are essential one to each other in order to satisfy the detailed balance condition
(see also the note at the end of this section).

• Updates sampling the G-sector (Movehead, Movetail and Swap). Among these
updates, Swap assumes a particular interest since it is the responsible for the
sampling of the bosonic permutations

Hereinafter, we describe one by one the updates we have implemented in our
code.

• Translate: this update translates a whole polymer as a rigid body. We select
at random a particle i1 and we construct the list of all the particle i1, i2, . . . , inp

belonging to the same permutation cycle of i1. We select a displacement vector
∆r = {∆x, ∆y, ∆z}, sampling its three coordinates uniformly between 0 and a
maximum displacement ∆rmax �xed as input. Then we perform the movement
ri,j → r′i,j = ri,j + ∆r to all the beads of all the polymers in the list obtained
previously. The movement is accepted with probability

PTranslate = min

1; exp

 M∑
j=1

U(Rj+1,Rj ; ε) − U(R′
j+1,R

′
j ; ε)

 , (A.13)

with Rj = {r1,j , . . . , r1,N} and R′
j = {r′1,j , . . . , r

′
1,N}. Notice that the kinetic

action does not appear in the probability of accepting the update since the
movement, translating rigidly the whole polymer, does not change the relative
distances between the following beads. The parameter ∆rmax is chosen in
order to have an acceptance rate for the update close to 50%. A schematic
representation of the update is shown in Fig. A.1.

• Staging: this update redraw a segment of a polymer included between two
beads which are kept �xed. We select at random the index ip of the particle we
propose to move and the index j0 of the �rst �xed bead. Then, the second �xed
bead has index j0+ l, being l ≤ M an integer number given in input. Knowing
the coordinates rip,j0 and rip,j0+l, we sample a new path r′ip,j0+1, . . . , r

′
ip,j0+l−1

according to distribution

j0+l∏
j=j0

√
m

2π~2ε
exp

(
− m

2~2ε
(r′ip,j+1 − r′ip,j)

2
)

, (A.14)

with r′ip,j0
= rip,j0 and r′ip,j0+l = rip,j0+l. A sampling of the coordinates

according to this probability distribution is not easy since all the points we
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Figure A.1: Schematic representation of the Translation update. On the left, we
show the initial con�guration of a one-dimensional system of three quantum parti-
cles, plotting on the x axis the coordinate of the bead and on the y axis the bead
index. On the right we show the con�guration after the update: the dashed lines
represent the previous con�guration and the blue lines and symbols highlights the
position of the beads moved in the update.

have to sample are coupled with each other via an e�ective harmonic potential.
However, it is possible to rewrite the product in Eq. A.14 as

j0+l−1∏
j=j0

√
m

2π~2ε
exp

(
− m

2~2ε
(r′j+1 − r′j)

2
)

=

=
√

m

2π~2lε
exp

(
− m

2~2lε
(rj0+l − rj0)

2
)
×

×
l−2∏
j=0

√
mj

2π~2lε
exp

(
− mj

2~2lε
(r′ip,j0+j+1 − r∗j0+j+1)

2
)

, (A.15)

with

mj = m
l − j

l − j − 1
(A.16)

and

r∗j0+j+1 =
rip,j0+l + r′j0+j(l − j − 1)

l − j
. (A.17)

The rede�nition of the probability distribution A.14 as in Eq. A.15 is at the
basis of the so called staging algorithm. This algorithm allow us to avoid
the di�culties due to the sampling of coupled harmonic terms and provide
easily a sampling of a given segment in a polymer according to a product of
independent gaussians [139]. For practical purposes, it consists in a series of
following steps in which the new coordinates of r′ip,j , with j0 < j < j0 + l, are
sampled according to a normal distribution centered in a point r∗ip,j depending
on the point sampled in the previous step and with standard deviation di�erent
at every step. When we reconstruct the segment of the polymer according the
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Figure A.2: Schematic representation of the Staging update. On the left, we show
the initial con�guration of a one-dimensional system of three quantum particles,
plotting on the x axis the coordinate of the bead and on the y axis the bead index.
On the right we show the con�guration after the update: the dashed lines represent
the previous con�guration and the blue lines and symbols highlights the position of
the beads moved in the update.

staging algorithm, the kinetic part of the distribution pZ(XZ) or pG(XG) is
exactly sampled, and therefore in the acceptance probability for the update
we have to consider only the potential part:

Pstaging = min

1; exp

j0+l−1∑
j=j0+1

U(Rj+1,Rj ; ε) − U(R′
j+1,R

′
j ; ε)

 . (A.18)

Notice that, if j0 + l > M , we use the cyclicity of the closed polymer and
de�ne rip,j0+l = rp(ip),j0+l−M . The same consideration has to be done for
every sampled point rip,j with j > M . However, if we are in the G-sector
and we want to reconstruct a segment of the worm (ip = iW ), the previous
observation does not old since the open polymer has no cyclicity. In the case
of having simultaneously ip = iW and j0 + l > M , we simply reject the move
before performing any reconstruction.
The parameter l is chosen in order to have an acceptance rate for the update
between 30% and 50%. A schematic representation of the update is shown in
Fig. A.2.

• Open: this update open a closed polymer, allowing the con�guration to switch
from the Z to the G-sector. Thus, it can be performed only if the system is
in the Z-sector. We select randomly a particle index ip and an integer l, with
1 ≤ l ≤ lmax, which represents the length, in number of beads, of the segment
of the polymer we reconstruct in the update. The parameter lmax < M is
chosen as input and has to be equal to the value lmax used in the Close update.
We sample a point r′ip,M+1 according to a single particle free propagator on
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Figure A.3: Schematic representation of the Open update. On the left, we show
the initial con�guration of a one-dimensional system of three quantum particles,
plotting on the x axis the coordinate of the bead and on the y axis the bead index.
On the right we show the con�guration after the update: the dashed lines represent
the previous con�guration and the blue lines and symbols highlights the position of
the beads moved in the update.

imaginary time lε staring on the point rip,M−l+1:

ρFsp(r′ip,M+1, rip,M−l+1; lε) =
√

m

2π~2lε
exp

[
− m

2~2lε
(r′ip,M+1 − rip,M−l+1)2

]
.

(A.19)
This point r′ip,M+1 represent the proposal for the new head of the worm.
Once we have sampled r′ip,M+1, we reconstruct with the staging algorithm a
free particle path between the �rst �xed point rip,M−l+1 and the new head
r′ip,M+1. At this point, we accept the update with probability

Popen = min

1;
C exp

[∑M
j=M−l+1 U(Rj+1,Rj ; ε) − U(R′

j+1,R
′
j ; ε)

]
ρFsp(r′ip,M+1, rip,M−l+1; lε)

 ,

(A.20)
where C > 0 is the dimensionless constant we introduce in Eq. A.9. If the
update is accepted, the new con�guration is in the G-sector: the particle
index of the worm is iW = ip and we need to update the coordinate of the
head riW ,M+1. If the update is rejected, the system stays in the Z-sector and
there is no need to specify the additional coordinate of the head of the worm.
A schematic representation of the update is shown in Fig. A.3.

• Close: this update close an open polymer, allowing the con�guration to switch
from the G to the Z-sector. Thus, it can be performed only if the system is
in the G-sector. We select randomly an integer l, with 1 ≤ l ≤ lmax which
represents the length, in number of beads, of the segment of the polymer we
reconstruct in this update. The parameter lmax < M is chosen as input and
has to be equal to the same parameter lmax used for the Open update. The
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Figure A.4: Schematic representation of the Close update. On the left, we show
the initial con�guration of a one-dimensional system of three quantum particles,
plotting on the x axis the coordinate of the bead and on the y axis the bead index.
On the right we show the con�guration after the update: the dashed lines represent
the previous con�guration and the blue lines and symbols highlights the position of
the beads moved in the update.e

update consists in a reconstruction with the staging algorithm of the segment
of the worm between the �xed point riW ,M−l+1 and the tail of the worm
rp(iW ),1. Once we have generated the new free particle path, we accept the
update with probability

Pclose = min

1;
1
C

exp

 M∑
j=M−l+1

U(Rj+1,Rj ; ε) − U(R′
j+1,R

′
j ; ε)

×

×ρFsp(rp(iW ),1, riW ,M−l+1; lε)
}

, (A.21)

where C > 0 is the dimensionless constant appearing in Eq. A.9. If the
update is accepted, the head of the worm is connected to the tail: thus the
worm becomes a closed polymer and disappears, making the con�guration of
the system diagonal.
From the de�nition of the acceptance probability Popen (Eq. A.20) and Pclose

(Eq. A.21), respectively of the Open and of the Close updates, it is clear how
the parameter C controls the relative frequencies of the Z and of the G-sector,
as we already said in Sec. A.1. A larger C increase the probability of accepting
the update Open and decreases the probability of accepting the update Close,
making the system spending more time in the G than in Z-sector. Even if
the results are independent of C for su�ciently long simulations, it might
be important to control the relative frequency of diagonal and o�-diagonal
con�gurations with the parameter C in order to improve the e�ciency of the
sampling.
A schematic representation of the update is shown in Fig. A.4.
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Figure A.5: Schematic representation of the Movehead update. On the left, we show
the initial con�guration of a one-dimensional system of three quantum particles,
plotting on the x axis the coordinate of the bead and on the y axis the bead index.
On the right we show the con�guration after the update: the dashed lines represent
the previous con�guration and the blue lines and symbols highlights the position of
the beads moved in the update.

• Movehead and Movetail: this updates move the beads close to the extrem-
ities of the worm and can be performed only when the system in the G-sector
(here we describe just one of the two, that is Movehead: the update Movetail
if formally equivalent). We select randomly an integer l, with 1 ≤ l ≤ lmax

which represents the length, in number of beads, of the segment of the poly-
mer we reconstruct in this update. The parameter lmax < M is chosen as
input in order to optimize the sampling e�ciency. We sample a point r′ip,M+1

according to a single particle free propagator on imaginary time lε staring on
the point rip,M−l+1:

ρFsp(r′iW ,M+1, riW ,M−l+1; lε) =√
m

2π~2lε
exp

[
− m

2~2lε
(r′iW ,M+1 − riW ,M−l+1)2

]
. (A.22)

This point r′iW ,M+1 represent the proposal for the new head of the worm.
Once we have sampled r′iW ,M+1, we reconstruct with the staging algorithm
a free particle path from the �rst �xed point riW ,M−l+1 and the new head
r′iW ,M+1. At this point, we accept the update with probability

Pmove = min

1; exp

 M+1∑
j=M−l+1

U(Rj+1,Rj ; ε) − U(R′
j+1,R

′
j ; ε)

 .

(A.23)
A schematic representation of the update is shown in Fig. A.5.

• Swap: this update performs the permutations between the identical particles
connecting beads belonging to di�erent polymers. It requires the presence of
the worm and therefore can be performed only in o�-diagonal con�gurations.
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We select randomly an integer l, with 1 ≤ l ≤ lmax which represents the
length, in number of beads, of the segment of the polymer we reconstruct in
this update. The parameter lmax < M is chosen as input in order to optimize
the sampling e�ciency.
For every particle ia, we compute the quantities

Πp(ia) = ρFsp(ria,l+1, riW ,M+1; lε) =

=
√

m

2π~2lε
exp

[
− m

2~2lε
(ria, l+1 − riW ,M+1)2

]
(A.24)

and

ΣW =
N∑

ia=1

Πp(ia) (A.25)

Among all the particles, we select a particle iK with probability Πp(iK)/ΣW .
The particle iK represents the partner of the worm in the exchange process and
the main idea of the update is to construct a free particle path from the head
of the worm riW ,M+1 and the bead riK ,l+1 belonging to the partner polymer
iK . Nevertheless, before proceeding in the reconstruction, we have to perform
two tests on the particle iK .
At �rst, it is important that iK 6= p(iW ), otherwise the reconstruction of the
path between riW ,M+1 and riK ,l+1 would lead to a situation where the worm
would close on itself and therefore the con�guration would change from an
o�-diagonal to a diagonal one. Such a movement is forbidden since the Swap
update has to work only in the G-sector. Therefore, immediately after the
random choice of the particle iK we perform the �rst test: if iK = p(iW ) the
update is rejected. Otherwise, we can proceed.
The second test has to be performed in order to ensure the detailed balance.
Indeed the probability of choosing iK as a partner of the exchange when the
worm is iW is not equal to the probability of choosing iW as a partner of the
exchange when the worm is iK . Indeed, if in the �rst case the normalization
factor of the probability table is ΣW given in Eq. A.25, while in the second
case the normalization factor of the probability table is

ΣK =
N∑

ia=1

ρFsp(ria,l+1, riK ,1; lε) . (A.26)

Therefore, to assure the detailed balance it is necessary to perform a second
test: we accept the choice of iK with probability

Pswap1 = min
{

1;
ΣW

ΣK

}
. (A.27)

If this test give a negative result, the whole update is rejected and the system
is left in its initial con�guration.
If the choice of the partner iK has been accepted in the �rst two tests, we
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Figure A.6: Schematic representation of the Swap update. On the left, we show
the initial con�guration of a one-dimensional system of three quantum particles,
plotting on the x axis the coordinate of the bead and on the y axis the bead index.
On the right we show the con�guration after the update: the dashed lines represent
the previous con�guration and the blue lines and symbols highlights the position of
the beads moved in the update.

can proceed and reconstruct the free particle path {riK ,2 . . . , riK ,l} between
riW ,M+1 and riK ,l+1 by means of the staging algorithm and �nally evaluate
the change in the potential action as to perform the last test on the new
con�guration

Pswap2 = min

1; exp

 l+1∑
j=1

U(Rj+1,Rj ; ε) − U(R′
j+1,R

′
j ; ε)

 . (A.28)

If the update is accepted, the �nal con�guration is still o�-diagonal but
presents some di�erent characteristics from the initial one. At �rst, the new
con�guration the head of the worm is no more in position riW ,M+1 but has
moved to the new position rik,1. Secondly, the swap update modify the per-
mutation table: indeed, if we de�ne iA and iT in order to have before the
swap p(iW ) = iT and p(iA) = iK , when the update is accepted we will have
p(iA) = iT and p(iW ) = iK .
As a �nal consideration, it is worth to notice that swap is a single particle
update, in the sense that it redraws a segment of a single polymer. Although,
sequences of swap updates can form cyclic permutations of macroscopic size
and perform an ergodic and detailed balanced random walk in the space of
permutations. A schematic representation of the update is shown in Fig. A.6

The updates we just described can be combined with a certain freedom in order
to provide a suitable sampling scheme, according to the simulated system. In our
simulation, the typical scheme of a given Monte Carlo step is the one presented in
the following box, according to the formalism of Fortran programming language.
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if (mod(iMCstep,nfreqCM).eq.0) then

do ia = 1,Natoms

CALL TRANSLATE(ia)

enddo

endif

do irep = 1,Nrepstag

do ia = 1,Natoms

CALL STAGING(ia)

enddo

enddo

iupdate = INT(random()*2)

if (iupdate.eq.0) then

if (iw.eq.0) then

CALL OPEN

endif

else

if (iw.ne.0) then

CALL CLOSE

endif

endif

if (iW.ne.0) then

do irep = 1,Nrepo�diag

CALL MOVEHEAD

CALL MOVETAIL

CALL SWAP

enddo

endif

if (iW.eq.0) then

CALL compute_diagonal

else

CALL compute_o�diagonal

endif

In the sampling of the coordinates, we can distinguish three parts, according to
the three groups in which we divided the updates at the beginning of the section.
In the �rst part of the sampling, we perform the Translate and the Staging updates.
In a single step we propose a Translate and a Staging movement for every particle
of the system, as indicated by the cycle on the parameter ia which change from 1 to
the total number of particles Natoms.

The Translate update, which is the most onerous from the computational point
of view, is not performed at every Monte Carlo step, but only once in every nfreqCM
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steps. In our simulations, the parameter nfreqCM varies between 20 and 100. The
suitable value for nfreqCM is chosen according the details of the simulation. In the
simulation of a liquid phase, where it is important to take into account the di�usion
of the particles, and of systems with a small number of particles (N < 100), for which
the computational cost of the Translate update is not too onerous, it is preferable
to perform the Translate movement with a higher frequency and therefore choosing
a small nfreqCM. On the contrary, in the simulation of crystalline states with a high
number of atoms, it is better to choose a higher value for nfreqCM.

On the contrary, it is preferable to perform the Staging update more than once at
every Monte Carlo steps, especially when simulating systems at a low temperature.
Indeed, the length ls in number of beads of the portion of the chain rebuilt at every
Staging update is limited (in a typical PIMC simulation with the Chin approxima-
tion for the thermal density matrix, it is not possible to perform a good sampling
choosing ls larger than 10). Therefore, if the polymer is made up of a big number
of beads (M > 50), the fraction of the polymers which is modi�ed at every step
can be small. To overcome this problem, it is good to perform the Staging update
Nrepstag times at every step: typically we vary Nrepstag from 1, in the simulations
at high temperature, to 12, in the simulation at low temperature.

In the second part of the sampling, we propose a movement to switch the con�g-
uration from Z to G-sector or vice versa, calling the updates Open or Close. These
two updates form a complementary pair. According to the theory of random walks
in spaces with di�erent dimensionality, such as the Z and the G-sector in the WA, a
detailed balanced sampling can be provided only by means of coupled updates which
are called with the same probability and without a predetermined order [138]. In
order to accomplish this requirement, it is important, at every MC step, to select
at random which of the two updates, Open or Close, has to be proposed, regard-
less of the con�guration of the system at the moment of the random choice. If the
update selected cannot be performed since the con�guration is not in the correct
sector (that is if we choose to apply Close to a diagonal con�guration or Open to
an o�-diagonal one), we simply reject the move and leave the system in its initial
con�guration.

In our scheme, we choose which update has to be proposed using the integer
iupdate, which is a random variable which can assume the value 0 or 1. We propose
the Open update if iupdate is equal to 0 and the system is in a diagonal con�guration
(if the system is in the Z-sector, the parameter iW which indicates the particle index
of the worm is 0). We propose the Close update if iupdate is equal to 1 and the
system is in an o�-diagonal con�guration. Notice that our sampling scheme does
not perform any update if iupdate is equal to 0 the system is in an o�-diagonal
con�guration or if iupdate is equal to 1 the system is in a diagonal con�guration.

In the third part of the sampling, we perform the updates Movehead, Movetail
and Swap. Notice that these update can be performed only if the system is in an
o�-diagonal con�guration. Therefore, before proposing any movement, we have to
control the parameter iW to discriminate if the con�guration is in the Z or in the
G-sector. It can be useful, especially in system where the Swap update has a small
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acceptance rate, to perform these updates Nrepo�diag times at every Monte Carlo
step. Our typical choice of Nrepo�diag is 20.

Once the sampling of the coordinates is accomplished, in the last part of the
Monte Carlo step, we estimate the physical observables. Notice that, before cal-
culating any quantity, it is necessary to perform the control on the parameter iW
to discriminate if the system is in the Z or in the G-sector: in the �rst case, we
calculate the diagonal observables (energy, pair distribution function, static struc-
ture factor and super�uid density), in the second case we calculate the o�-diagonal
observables (one-body density matrix).

A.3 Normalization of the one-body density matrix

The one-body density matrix

ρ1(r) =
1

ρZ

∫
dXG δ(r − |riW ,M+1 − rp(iW ),1|)

M∏
j=1

ρF (Rj+1,Rj ; ε)e−U(Rj+1,Rj ;ε) ,

(A.29)
where dXG = dR1 . . . dRMdriW ,M+1 and ρ is the density of the system, is a funda-
mental quantity since from its asymptotic behavior it is possible to get an estimation
of the condensate fraction n0. From its de�nition, it is easy to realize that it satis�es
the normalization condition ρ1(0) = 1.

In subsec. 2.5.4 we discussed the PIMC estimator for ρ1(r), seeing that, to
evaluate ρ1(r) for a �xed r, it is necessary to evaluate the number N(r) of o�-
diagonal con�gurations in which the two extremities of the worm are separated by
a distance rHT = |riW ,M+1 − rp(iW ),1|, with r − ∆r/2 < rHT < r + ∆r/2, ∆r being
a small distance �xed as input of the simulation.

For a number NG of o�-diagonal con�gurations su�ciently large to get a good
statistic, we can write

N(r)
NGVsh(r)

=
∫

dXG δ(r − rHT ) pG(XG) . (A.30)

with pG(XG) de�ned in Eq. A.6 and Vsh(r) = 4π[(r + ∆r/2)3 − (r −∆r/2)3]/3 the
volume of the spherical shell corresponding to the possible values of rHT at the �xed
r. Comparing the integral in Eq. A.29 with Eq. A.30, we can easily realize that

ρ1(r) =
1

ρZ

N(r)ZG

NGVsh(r)
(A.31)

The WA, being able to sample both diagonal and o�-diagonal con�guration, is able
to give an estimation of the ratio ZG/Z, as we saw in Eq. A.12. This important
feature makes possible the computation of an automatically normalized one-body
density matrix, by means of the formula

ρ1(r) =
1

ρCNZVsh(r)
N(r) . (A.32)



Appendix B

The virial estimator of the energy

In this appendix, we provide the whole derivation of the virial estimator of the
energy per particle. Here, we consider the general case of arbitrary actions, periodic
boundary conditions and particle exchange. The formalism and the de�nitions used
in this appendix are the same as in Chap 2.

Let us recall the de�nition of the thermal density matrix with L links

ρ(Rj+L,Rj ; Lε) =
∫ L−1∏

k=1

dRj+k ρ(Rj+k,Rj+k−1; ε) =

=
∫ L−1∏

k=1

dRj+k
1

(4πλε)3N/2
exp (−S(Rj+k,Rj+k−1; ε)) ,

(B.1)

where the total action

S(Rj+1,Rj ; ε) =
1

4λε
(Rj+1 − Rj)2 + U(Rj+1,Rj ; ε) (B.2)

is split into two terms: a kinetic contribution, which is independent on the ap-
proximation scheme, and a potential term U(Rj+1,Rj ; ε) which depends on the
approximation used in the simulation.

From the de�nition of the partition function

Z =
∫

dR ρ(R,R; β) =
∫ M∏

j=1

dRj
1

(4πλε)3N/2
exp (−S(Rj+1,Rj ; ε)) , (B.3)

we recover the thermodynamic estimator of the total energy

ET

N
= − 1

NZ

∂Z

∂β
=

=

〈
3M

2β
− M

4λβ2N

M∑
j=1

(Rj+1 − Rj)2 +
1
M

M∑
j=1

∂U(Rj+1,Rj ; ε)
∂ε

〉
(B.4)

The main problem with this estimator is that it behaves poorly at large M .
Indeed, when M increases, the �rst two terms of the sum increase and we have to
evaluate a small di�erence between two large quantities, reducing thus the e�ciency
of this estimator. We need therefore to rewrite the whole expression in order to
eliminate the highly �uctuating terms.
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Let us consider the quantity

E1;L+1 = − 1
ρ(RL+1,R1; Lε)

∂ρ(R1,RL+1; Lε)
∂ε

=

=
1

ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL ρ(RL+1,RL; ε) . . . ρ(R2,R1; ε) ×

×

[
3NL

2ε
− 1

4λε2

L∑
l=1

(Rl+1 − Rl)2 +
L∑

l=1

∂U(Rl+1,Rl; ε)
∂ε

]
, (B.5)

with 1 ≤ L ≤ M : an estimator of the total energy of the system can be recovered
integrating E1;L+1/L over the coordinates R1 and RL+1.

To rewrite the expression of E1;L+1, we make use of the following quantity:

G = − 1
ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL

1
ε

L∑
l=2

(Rl − R1)
∂

∂Rl
e−

PL
j=1 S(Rj+1,Rj ;ε) .

(B.6)
The integral in the de�nition of G can be computed in two ways: computing

directly the derivative appearing inside the integral or integrating by parts.
Let us consider the �rst way and compute

∂

∂Rl
e−

PL
j=1 S(Rj+1,Rj ;ε) = exp

−
L∑

j=1

S(Rj+1,Rj ; ε)

×

×
[

1
2λε

(Rl − Rl+1) +
∂U(Rl+1,Rl; ε)

∂Rl
+

+
1

2λε
(Rl − Rl−1) +

∂U(Rl,Rl−1; ε)
∂Rl

]
. (B.7)

It follows that

G =
1

ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL e−

PL
j=1 S(Rj+1,Rj ;ε) ×

×
L∑

l=2

(Rl − R1)
[

1
2λε2

[(Rl − Rl+1) + (Rl − Rl−1)] +
∂γl

∂Rl

]
, (B.8)

where we have use the de�nition γl = (U(Rl+1,Rl; ε) + U(Rl,Rl−1; ε))/ε.
Let us now consider the term

α =
L∑

l=2

(Rl − R1)[(Rl − Rl+1) + (Rl − Rl−1)] . (B.9)

Expanding the terms in the sum, we have

α = (R2 − R1)[(R2 − R1) + (R2 − R3)] +

+(R3 − R1)[(R3 − R2) + (R3 − R4)] +

+ . . . + (RL − R1)[(RL − RL−1) + (RL − RL+1)] . (B.10)



133

If we collect all the terms multiplied by R1, we have

α = −R1[(R2 − R1) +������(R2 − R3) +������(R3 − R2) +������(R3 − R4) +

+ . . . +((((((((RL − RL−1) + (RL − RL+1)] +

+R2(R2 − R1) + R2(R2 − R3) +

+R3(R3 − R2) + R3(R3 − R4) +

+ . . . + RL(RL − RL−1) + RL(RL − RL+1) =

= (R2 − R1)2 + (R3 − R2)2 + . . . + (RL − RL−1)2 +

+(RL − R1)(RL − RL+1) . (B.11)

If we add and subtract RL+1 in the last term in the sum, we get

α = (R2 − R1)2 + (R3 − R2)2 + . . . + (RL − RL−1)2 +

+(RL − RL+1 + RL+1 − R1)(RL − RL+1) =

= (R2 − R1)2 + . . . + (RL − RL−1)2 + (RL+1 − RL)2 +

+(RL+1 − R1)(RL − RL+1) =

=
L∑

l=1

(Rl+1 − Rl)2 + (RL+1 − R1)(RL − RL+1) . (B.12)

Putting the result for α in the expression for G, Eq. B.8, we get:

G =
1

ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL e−

PL
j=1 S(Rj+1,Rj ;ε) ×

×

[
1

2λε2

L∑
l=1

(Rl+1 − Rl)2 +
1

2λε2
(RL+1 − R1)(RL − RL+1)+

+
L∑

l=1

(Rl − R1)
∂γl

∂Rl

]
. (B.13)

Let us now consider the second way to compute G, that is integrating by parts
the integral in Eq. B.6. Considered that the surface term vanishes provided that
ελ � V 2/3 (that is true for su�ciently small time step), we obtain

G =
1

ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL

1
ε

L∑
l=2

∂(Rl − R1)
∂Rl︸ ︷︷ ︸
3N

e−
PL

j=1 S(Rj+1,Rj ;ε)

=
3N(L − 1)

ε((((((((
ρ(RL+1,R1; Lε)(((((((((((((((((∫

dR2 . . . dRL e−
PL

j=1 S(Rj+1,Rj ;ε)

=
3N(L − 1)

ε
. (B.14)
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Equalizing the two results for G, Eq. B.13 and Eq. B.14,

3N(L − 1)
ε

=
1

ρ(RL+1,R1; Lε)

∫
dR2 . . . dRLe−

PL
j=1 S(Rj+1,Rj ;ε) ×

×

[
1

2λε2

L∑
l=1

(Rl+1 − Rl)2 +
1

2λε2
(RL+1 − R1)(RL − RL+1)+

+
L∑

l=1

(Rl − R1)
∂γl

∂Rl

]
. (B.15)

From the last equation, it is better to separate the term

1
ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL e−

PL
j=1 S(Rj+1,Rj ;ε) 1

2λε2

L∑
l=1

(Rl+1 − Rl)2 =

=
3N(L − 1)

ε
− 1

ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL e−

PL
j=1 S(Rj+1,Rj ;ε) ×

×

[
1

2λε2
(RL+1 − R1)(RL − RL+1) +

L∑
l=1

(Rl − R1)
∂γl

∂Rl

]
. (B.16)

Indeed, this term, a part for a multiplicative factor, appears also in the de�nition
of E1;L+1, Eq. B.5:

1
ρ(RL+1,R1; Lε)

∫
dR2 . . . dRL e−

PL
j=1 S(Rj+1,Rj ;ε) 1

4λε2

L∑
l=1

(Rl+1 − Rl)2 =

= −E1;L+1 +
3NL

2ε
+

1
ρ(RL+1,R1;Lε)

∫
dR2 . . . dRL e−

PL
j=1 S(Rj+1,Rj ;ε) ×

×
L∑

l=1

∂U(Rl+1,Rl; ε)
∂ε

. (B.17)

Multiplying Eq. B.16 by 1/2 and equalizing it to B.17, we get

3N(�L − 1)
2ε

− 1
ρ(RL+1,R1; Lε)

∫
dR2 . . . dRLe−

PL
j=1 S(Rj+1,Rj ;ε) ×

×

[
1

4λε2
(RL+1 − R1)(RL − RL+1) +

1
2

L∑
l=1

(Rl − R1)
∂γl

∂Rl

]
=

= −E1;L+1 +
�

�
�3NL

2ε
+

1
ρ(RL+1,R1; Lε)

∫
dR2 . . . dRLe−

PL
j=1 S(Rj+1,Rj ;ε) ×

×
L∑

l=1

∂U(Rl+1,Rl; ε)
∂ε

, (B.18)
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that is

E1;L+1 =
3N

2ε
+

1
ρ(RL+1,R1; Lε)

∫
dR2 . . . dRLe−

PL
j=1 S(Rj+1,Rj ;ε) ×

×

[
(RL+1 − R1)(RL − RL+1)

4λε2
+

L∑
l=1

(
∂U(Rl+1,Rl; ε)

∂ε
+ (Rl − R1)

∂γl

∂Rl

)]
.

(B.19)

We have thus deduced a new estimator for the total energy per particle:

EL

N
=

1
NL

∫
dR1dRL+1 E1;L+1 =

=

〈
3

2Lε
+

(RL+1 − R1)(RL − RL+1)
4λε2LN

+
1

NL

L∑
l=1

∂U(Rl+1,Rl; ε)
∂ε

+

+
1

NLε

L∑
l=1

(Rl − R1)
∂

∂Rl
(U(Rl+1,Rl; ε) + U(Rl,Rl−1; ε))

〉
. (B.20)

We have to emphasize here the importance of introducing a reference con�g-
uration in the de�nition of G. Eq. B.6 (in our case we chose R1) to obtain the
correct expression. A derivation without this reference con�guration will lead to an
expression which is ill de�ned with periodic boundary conditions or permutations.
However the choice of this reference con�guration, as well as the direction in imag-
inary time, is totally arbitrary; it is worth to average the result over the reference
con�guration and over the direction of time:

EL

N
=

〈
3

2Lε
+

1
MLN

M∑
j=1

(RL+j − Rj)(RL+j−1 − RL+j)
4λε2

+

+
1

2Nβ

M∑
j=1

(Rj − RC
j )

∂

∂Rj
(U(Rj+1,Rj ; ε) + U(Rj ,Rj−1; ε)) +

+
M∑

j=1

∂U(Rj+1,Rj ; ε)
∂ε

〉
. (B.21)

where RC
j = 1

2L

∑L−1
l=0 (Rj+l + Rj−l)

The last formula represent an estimator for the energy for any value of L, with
1 ≤ L ≤ M . For L = 1, indeed, we recover exactly the thermodynamic estimator,
Eq. B.4. Nevertheless, increasing the number L, we reduce the �uctuations of the
�rst two terms in the sum and, thus, the statistical error. The maximum value for L

is equal to the number of beads M : putting L = M in Eq. B.21 is the conventional
choice, being the one which allow for the minimum statistical error.



136 Appendix B. The virial estimator of the energy

We can, at this point, de�ne the virial estimator for the total energy:

EV

N
=

〈
3
2β

+
1

4λNβ2

M∑
j=1

(RM+j − Rj)(RM+j−1 − RM+j)+

+
1

2Nβ

M∑
j=1

(Rj − RC
j )

∂

∂Rj
(U(Rj+1,Rj ; ε) + U(Rj ,Rj−1; ε)) +

+
M∑

j=1

∂U(Rj+1,Rj ; ε)
∂ε

〉
. (B.22)

Let us conclude this appendix giving some interesting observations. Notice that
the �rst term in Eq. B.22 represent the energy per particle of a classical ideal gas.
Furthermore, if no particle exchanges are present in the system, the second term
drops out, being Rj+M = Rj . For these reasons, the virial estimator is very e�ective
at computing quantum corrections to a nearly classical system. Another important
thing to notice is that in the computation of the distances in Rj+M − Rj one has
to follow a continuous path. Periodic boundary conditions must be applied between
subsequent slices only: Rj+M − Rj might therefore be larger than the size of the
simulation box. For a detailed comparison between the di�erent estimators of the
total energy, we refer the readers to Ref. [18]
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