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també agrair a l’Ingo Fischer, en Claudio Mirasso, en Konstantin i en Xavier la seva
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m’introdüıssin en el fabulós món de la complexitat, gràcies. Si d’alguna cosa m’ha
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Chapter 1

An overview of semiconductor

Edge-Emitting Lasers (EEL)

1.1 General description

A laser is a device that emits spatially and temporally coherent light. The term

“laser” is an acronym for “Light Amplification by Stimulated Emission of Radia-

tion”. The invention of the laser can be dated to 1958 with the theoretical work

by Schawlow & Townes (1958). The process to achieve laser light has three main

ingredients: pumping, amplification via stimulated emission and cavity confinement.

The pumping process consists in an external energy source that raises a certain elec-

tronic, atomic, or molecular state into a higher-energy (“excited”) quantum state.

As Einstein predicted in 1917 (see e.g. Hawkes & Latimer (1995)), the light can

interact with matter by either absorbing or emitting photons. The emission can be

spontaneous or stimulated. Stimulated emission is a process by which an incident

wave interacts with a particle lying at some excited state and consists in the emission

of a photon identical to one photon of the incident wave. Note that “identical” here

means same direction of propagation, frequency and phase as the incident photon.
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Stimulated emission takes place when the number of particles in one excited state

exceeds the number of particles in some lower-energy state (i.e. when population

inversion is achieved). When the population inversion is achieved and the gain due

to stimulated emission is larger than the absorption, the light is amplified. Finally,

when such an optical amplifier is placed inside a resonant optical cavity, one ob-

tains a laser. The role of the cavity is important for two aspects, first, the cavity

creates a preferred direction for the light propagation parallel to the optical axis of

the cavity, and second, the cavity makes the amplification more efficient, due to the

fact that a photon can crosses many times the gain medium. The cavity also selects

the frequencies of radiation that will be sustained. These frequencies are known as

cavity modes.

Lasers can be characterized by three physical quantities: the optical field, the

polarization of the material and the population inversion. As Haken (1975) showed,

lasers are nonlinear systems and can display chaotic behavior on their output power,

due to the fact that the above mentioned physical quantities correspond to three

coupled nonlinear degrees of freedom. Arecchi et al. (1984) analyzed the role of the

relaxation times of the three variables and categorized the lasers in three classes: A,

B and C. Class C lasers have to be described by the full set of laser variables and

so, they can exhibit intrinsic chaotic behavior. Class B lasers can be fully described

only taking into account the field and the population inversion, and class A lasers

are described only by the field. Therefore class A and B lasers cannot display chaotic

dynamics unless we introduce external perturbations (Weiss & Vilaseca, 1991) (more

details will be presented in Sec. 1.3 and Ch. 2).

From now on we will focus on semiconductor lasers. This type of laser can be

classified as class-B lasers. Semiconductor Edge-Emitting Lasers (EEL) are the

original and still very widely used form of semiconductor lasers. In contrast to other

types of lasers, these are very efficient, have very simple power supply requirements

and they are physically very small. As it is shown in Fig. 1.1, semiconductor lasers

consist in a pn-junction inside an optical resonator, operating in forward bias (a
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positive voltage is applied to the p-side layer with respect to the n-side) that produces

two kinds of charge carriers (electrons and holes). Electrons are injected from the

n-doped region to the p-doped region and holes move in the opposite direction. This

effect results in a region, called active layer, where holes and electrons can recombine

and thereby emit a photon by spontaneous emission, which is necessary to initiate

the stimulated emission, i.e laser light. The polished end faces of the pn-junction act

as a cavity that is designed to resonate at the frequency corresponding to the energy

gap of the semiconductor, amplifying the photons that propagate inside the cavity.

In order to achieve lasing in a preferred direction, longitudinal faces are accurately

cut, while side faces in all other directions, are roughened to avoid emission. The

cavity length is around a few hundred micrometers, which is sufficient to reach a

high gain. Lasing takes place only when the amplification is higher than the losses

inside the cavity. Due to the high gain of the semiconductor laser material, lasing

occurs even if the end facets (edges) are not coated and there is only the Fresnel

reflection of the semiconductor/air interfaces. The reflectivity of the facets is given

by R = (nm−na)
2

(nm+na)
2 , where nm and na are the refracting indices of the semiconductor

material and air, respectively. For typical values of semiconductor refractive index,

around 70% of the light escapes from the laser cavity.

Figure 1.1: Simple scheme of edge-emmiting semiconductor laser. Note that lasing occurs

in the plane of the junction. From Simcik (1995).
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1.2 Types of EELs

In this section we discuss the most common types of edge-emitting semiconductor

lasers. We can classify EELs in two groups, depending on their internal structure.

1.2.1 Homostructure lasers

This type of laser is the simplest one and, as we have discussed in Sec. 1.1, consists

of a single pn-junction operated in forward bias. Because the materials in each side

of the junction are made by doping the same semiconductor material, such lasers are

termed homostructures. Experimental investigations published simultaneously by

Nathan et al. (1962) in IBM, Hall et al. (1962) in General Electric, and Quist et al.

(1962) from MIT Lincoln Laboratories, showed laser amplification in GaAs diodes.

These lasers do not exhibit any form of carrier confinement. The lack of confinement

for a homostructure implies that the carriers are neither confined nor concentrated

but are spread by diffusion. This fact leads to the homostructure lasers having an

active region with a low concentration of excess carriers. Lasing takes place in the

plane of the junction and the optical field is usually plane polarized, with the electric

field vector lying in the plane of the junction. Due to the fact that carriers injected

into the active layer diffuse away from the junction, the threshold current is very high

at room temperature. Another drawback of this type of structures is the absence of

any waveguiding mechanism. Therefore, it is hard to control the transversal mode

characteristics. It is worth to note that this type of laser is technologically obsolete

nowadays.

1.2.2 Heterostructure lasers

The high threshold currents for the simple pn-junction lasers described above moti-

vated the development of new internal structures. Alferov et al. (1970) and Hayashi
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et al. (1970) started to develop heterojunction structures in order to reduce the elec-

tron diffusion and thereby reduce the threshold current at room temperature. This

new type of laser consist of an active region sandwiched between two layers that have

a larger bandgap and also a smaller refractive index. This difference in the bandgap

confines the electrons and holes to the active layer and prevent electrons to difusse

freely due to the presence of a potential barrier. Moreover, the difference in the re-

fractive index creates a waveguide which confines the light within the active region

(Liu, 2005). There are several types of heterostructures, the two basic ones being

the single heterostructure (SH) and the double-heterostructure (DH), depending on

whether the active region is surrounded by one or two cladding layers of higher

bandgap. In Fig. 1.2 we show the differences between homo and hetero-junction

diode lasers in terms of the internal structure and energy bands.

The waveguide effect and the carrier confinement in the double heterostructure

geometry are much more effective than in the single one. The reason is that in the SH

there is no significant refracting index and energy gap difference between p-doped

and n-doped semiconductor material while in DH the energy gap and refracting

index difference between semiconductor material is enhanced.

The active layer in a DH is typically between 100−300 nm. When the active layer

of a DH is thin enough (< 50 nm), the structure becomes a quantum well (QW).

The current in a double-heterojunction semiconductor laser (for example PpN) is

primarily carried by the electrons injected from the wide-gap N to the narrow-gap

p layer (Liu, 2005). A possible real implementation for the double heterostructure

junction, in terms of the chosen semiconductor materials, could be AlGaAs for the

N and P layers and GaAs for the p layer. Note that we use capital letters to refer

to higher energy gaps and lowercase to lower energy gaps. For these materials, the

corresponding gap energies are Eg,N = Eg,P = 2 GeV, Eg,p = 1.4 GeV and the

difference between refracting indices ∆n = 5%.
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Figure 1.2: Internal structure and energy band diagram for homostructrure (upper panel)

and double heterostructure (lower panel) semiconductor lasers. Homostructure lasers con-

sist in a pn-junction obtained by doping the same semiconductor material. Double het-

erostructure consist in a PpN -junction composed by an active region (p-type) sandwiched

between two layers that have a larger band-gap (P and N -type).

1.2.3 Gain and index guided lasers

The lasers described in the previous sections can emit anywhere within the junction

plane, thereby multiple transverse modes in the emission profile can be observed.

This problem can be solved, and also lower threshold currents achieved, if some kind

of lateral confinement in the current and/or photons is introduced in the junction

plane. There are two main techniques used to achieve lateral confinement, which

are known as gain-guiding and index-guiding (Liu, 2005; Hawkes & Latimer, 1995),

which we describe in what follows.
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Gain-guiding structures

The gain-guiding geometry is based on injecting the current within a narrow stripe

(∼ µm) and therefore a striation of concentrated carriers in the active layer is formed

along the longitudinal direction of the laser. As it is shown in Fig. 1.3, no additional

lateral structure is incorporated in the device. In a semiconductor, an increase in

carrier concentration is generally accompanied by a decrease in refractive index,

and hence an undesirable antiguidance effect appears and tends to spread the light

laterally instead of confining it. In this type of laser this effect is counteracted by

the optical gain that is concentrated along the stripe. The width of a gain-guiding

device varies between 10 and 200 µm. A wide stripe allows a large current to be

injected leading to a high-power device. A gain-guided laser tends to oscillate in

multiple transverse modes, making it difficult to focus or collimate. This kind of

laser finds important applications in areas where high-power and high conversion

efficiency are needed, but coherence and collimation are not so important.

P-type 

N-type 

Active region 

Metal contact 

n-substrate 

p-type Active region 

Metal contact 

Insulation 
Figure 1.3: Internal lateral struc-

ture for a gain-guided semiconduc-

tor laser.

Index-guiding structures

For an effective lateral optical confinement, an index-guided structure has to be

used. By introducing a lateral index profile around the active area, along the stripe

where current is injected, a lateral waveguide is formed. In Fig. 1.4 we show the

internal lateral structure for index-guided lasers. In this type of laser antiguidance
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effect is not important, because the refracting index steps that form the waveguide

are larger than the small changes in the refractive index caused by the carriers

injected in the active region. The bandgap steps, associated with the refracting

index steps, create energy barriers for the carriers, thereby a high concentration of

carriers can be injected and confined inside the active region. For single transverse

mode lasers, the width of the stripe is around 1−2µm. For index-guiding lasers, the

threshold current and the output beam characteristics are improved with respect to

gain-guided devices.

p 

Active region 

Metal contact 

n-substrate 

Metal contact 

Insulation 
p 

n n 

n 

p 
Active layer 

Figure 1.4: Internal lateral struc-

ture for an index-guided semicon-

ductor laser. Lateral confinement of

the optical field is achieved by sur-

rounding the active area with semi-

conductor materials with lower re-

fractive index.

1.2.4 Types of EEL cavities

So far we have classified the lasers depending on their internal structure. On the

other hand, it is common to classify the lasers according to the type of the cavity.

There are three main types of cavities for EELs lasers:

Fabry-Perot cavity lasers

A Fabry-Perot resonant cavity for an EEL simply consists in two cleaved end facets.

Since a semiconductor material has a high refracting index (n ∼ 3), a cleaved facet

in air has a reflectivity typically in the range of 25% − 35%. Lasers with a Fabry-

Perot cavity emit equally from both ends. In order to increase the output power,

10
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one of the facets can be coated with a total-reflection coating, so the total laser

output is emitted only from the uncoated end facet. This kind of lasers typically

emit in multiple longitudinal modes with mode spacing equal to:

∆νL =
c

2ngL
, (1.1)

where ng = n + ω
dn

dω
is the group refracting index that depends on the emitting

frequency (see Sec. 1.3). L and c are the laser cavity length and the speed of light,

respectively.

Distributed Bragg Reflector (DBR) lasers

A DBR laser basically uses one or two frequency-selective Bragg reflectors, such as

gratings parallel to the junction plane as end mirrors, as it is shown in Fig. 1.5(left).

Figure 1.5(right) shows an electron micrograph of the Bragg reflector. Choosing the

grating period Λ, a DBR can be designed to have a peak reflectivity at a desired

Bragg frequency. The frequency bandwidth for a high reflectivity DBR device is

approximately (Hawkes & Latimer, 1995):

∆νDBR � |κ|c
πng,β

, (1.2)

where ng,β is the effective group refracting index of the mode field at the Bragg

frequency and κ is the wave vector of the incident field. Though a DBR laser cavity

has multiple longitudinal modes (as a Fabry-Perot cavity), the DBR mirrors are

much more frequency selective. Therefore, if the DBR bandwidth ∆νDBR is made

sufficiently narrow, this type of laser will oscillate with a single longitudinal mode at

a frequency close to the Bragg frequency. Figure 1.6 shows the mechanism to select

a single longitudinal mode in a DBR device. First, as usual in any semiconductor

laser, a set of cavity modes are selected by the optical gain curve (red) and then, a

single mode is selected by using the Bragg reflectivity curve (green).

11
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P-type 

N-type 

Active region 

Metal contact 

n-substrate 

QW Active  
region 

IDBR IPhase IBias 

Figure 1.5: Schematic representation of the structure of an asymmetric-cladding DBR

laser diode (left panel). External diffraction gratings serve as mirrors in a DBR lasers.

Cross section of a first-order distributed Bragg reflector grating (right panel), from

Ferdinand-Braun-Institut (2011).

Cavity 

modes 

Optical Gain 

Curve Bragg reflectivity Curve 

Figure 1.6: Mechanism to select a single longitudinal mode in a DBR device.

Distributed Feedback lasers (DFB)

A DFB laser replaces the back mirror with a grating along the cavity axis. An

scheme of a DFB laser is depicted in Fig. 1.7. Because the grating runs along the

whole length of the active region, where optical gain takes play, it does not behave

as a passive reflector. The grating acts as a frequency selector due to the fact that it

reflects a narrow band of optical frequencies, producing a single longitudinal lasing

mode. For a periodicity of the grating equal to Λ there will be strong reflections for

12
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the set of wavelengths equal to:

λm =
2Λn

m
, (1.3)

where n is the refracting index and m the mode number. For m = 1, the wavelength

separation between Bragg resonances is much larger than the Fabry-Perot mode sep-

aration, and consequently a single mode operation is achieved. Traditionally, DFBs

are antireflection coated on one side of the cavity and coated for high reflectivity on

the other side.

P-type 

N-type 

Active region 

Metal contact 

n-substrate 

QW Active 

region 

Metal contact 

Figure 1.7: Internal lateral struc-

ture for a DFB semiconductor laser.

The black curve corresponds to the

grating used to select one single

mode.

1.3 Rate equations for a solitary semiconductor

laser

In this section we want to present the rate equations for a semiconductor laser that

will allow us to understand the basic laser dynamics. As we have discussed in Sec.

1.1, semiconductor lasers can be classified as Class B lasers, due to the fact that

the polarization relaxation time (Tp < 0.1 ps) is orders of magnitude smaller that

the other relaxation times (photon lifetime Tph > 1 ps and the carrier population

inversion Tn > 1 ps). Therefore, the polarization can be adiabatically eliminated

and the laser can be fully described by using the electric field and the population

inversion, which in the case of these kind of lasers are the carriers.
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Under these assumptions, the rate equations that describe the dynamics of a

semiconductor laser and govern the electric field and the carrier density number are

(see Appendix A for a complete derivation):

dE(t)

dt
=

(1 + iα)

2

�
G(N, |E|2)− γ

�
E(t) +

�
2βNζ(t), (1.4)

dN

dt
= C − γeN −G(N, |E|2) |E|2 , (1.5)

where E is the slowly-varying complex field amplitude and N is the carrier density.

G is the nonlinear optical gain that includes a saturation coefficient �:

G
�
N, |E|2

�
=

gNN

1 + �|E|2 . (1.6)

Other internal parameters of the laser are the linewidth enhancement factor α, and

the injection current parameter C, normalized such that the threshold of the solitary

laser is at C = 1. The term ζ(t) is a Gaussian white noise of zero mean and intensity

unity with noise strength β.

A detailed derivation of the above mentioned rate equations is presented in Ap-

pendix A.

1.4 EEL characteristics

In this section, we discuss important lasing characteristics of edge emitting lasers,

such as the power response of the emitted light versus pump current, and the optical

spectrum characteristics for the different types of EELs that have been used in this

Thesis.

1.4.1 Ligth-current characteristics

One of the most important characteristics of a semiconductor laser is the amount of

light that it emits for a given injected current. As it was discussed before, a diode

14
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laser converts electrical energy into optical output. The response of the laser can

be depicted in a light-current curve (Fig. 1.8). With these curves one can derive

the efficiency of the diode laser and also the threshold current (Herstens, 2005).

As it is depicted in Fig. 1.8, when the pump current is increased, the laser first

shows spontaneous emission and the output power grows very slowly (in the Figure

it appears as a flat line). At a given value of the pumping (i.e Ith), the laser stars

to emit stimulated light and the laser power increases linearly with the injection

current.
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Figure 1.8: Schematic behavior of the power laser for different injection current values.

Ith is the threshold current that marks the border between spontaneous and stimulated

emission. Experimentally obtained at room temperature by using an InGaAsP Fabry-

Perot semiconuctor laser (Mitsubishi ML925B45F).

The light-current curve depends on the temperature of the laser diode, leading to

a dependence between threshold current and temperature. The relation between Ith

and T has the following expression (Herstens, 2005):

Ith = Ic exp

�
T

T0

�
, (1.7)

where Ic is a constant and T0 is the characteristic temperature of the device (typically

between 60 and 150K). In Fig. 1.9, we show diferent light-current curves for different
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values of the temperature. Note that, as given by Eq. 1.7, the threshold of the laser

is strongly affected by the laser’s temperature.
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Figure 1.9: Light-current characteristics for an AlGaInP Fabry-Perot semiconductor laser

(Sharp GH06510B2A) operating at different temperatures.

1.4.2 Optical spectrum characteristics

Another important characteristic of laser diodes is the optical spectrum. The optical

spectrum also changes when the pump current is varied. At low pump currents the

spectrum is multimode, but for sufficiently high pump currents, corresponding to

high optical powers, the lasing operation becomes monomode, as can be seen in

Fig. 1.10 (left and right panels respectively).

In this Thesis, we have employed three different types of semiconductor lasers.

If we focus on the wavelength of the lasers, we can group them into two groups:

infrared and visible lasers. In Fig. 1.11 we show the typical optical spectra of the

lasers employed. In this figure we can see one laser (upper panel) operating at

nominal wavelength λ ∼ 650 nm (i.e visible) and two lasers (central and lower

panels) operating at nominal wavelength λ ∼ 1550 nm (i.e infrared). If we focus
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Figure 1.10: Optical spectrum below and well above threshold for a pigtailed Fabry-

Perot semiconductor laser (Mitsubishi ML925B45F) composed by InGaAsP semiconductor

material.

on the shape of the optical spectra, one can classify the lasers as monomode and

multimode. The first two panels show a multimode behavior and the lower has only

a single mode. Finally, one can classify the lasers according to the cavity type. The

lasers in the upper and central panels of Fig. 1.11 have a Fabry-Perot cavity and

the one in the lower panel has a DBR cavity. Note that the two Fabry-Perot lasers

exhibit multimode behavior.

Another important characteristic of the optical spectrum of a semiconductor laser

are the variations of the central wavelength with temperature. In Fig. 1.12 we show

the optical spectrum as function of the temperature for the three lasers discussed

above. A temperature variation of a laser causes a refractive index change of the

semiconductor material that implies a shift of the cavity modes. Another conse-

quence of a change in temperature is a shift of the maximum gain of the laser

material, which produces a change of the emission wavelength. This fact can be

understood due to that an increase of the temperature results in a reduction of

the band-gap, resulting in a shift of the gain towards longer wavelength. Since

the change of the wavelength of the cavity modes and the change of the center

wavelength of the optical gain are not synchronous, multimode emission and mode

17



Chapter 1: An overview of semiconductor Edge-Emitting Lasers (EEL)

1540 1542 1544 1546 1548 1550
0

1

2

3

Wavelength (nm)

P
o

w
e

r 
(a

rb
. 

u
.)

P
o
w

e
r 

[A
rb

. 
u
n
it
s
] 

Wavelength (nm) 

652.5 653.5 654.5 655.5 656.5
0

4

8

12

16

Wavelength (nm)

P
o

w
e

r 
(a

rb
. 

u
.)

P
o
w

e
r 

[A
rb

. 
u
n
it
s
] 

Wavelength (nm) 

1540.5 1541.5 1542.5 1543.5
0

0.05

0.1

0.15

0.2

P
o
w

e
r 

[A
rb

. 
u
n
it
s
] 

Wavelength (nm) 

Figure 1.11: Optical spectra for the three kind of lasers used in this Thesis. The up-

per panel corresponds to a AlGaInP Fabry-Perot laser emitting at ∼ 650 nm (Sharp

GH06510B2A), the middle panel corresponds to InGaAsP Fabry-Perot laser emitting at

∼ 1550 nm (Mitsubishi ML925B45F), and the bottom panel InGaAsP DBR laser emitting

at ∼ 1550 nm (Eblana ye1149).
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hopping (see Fig. 1.12, upper and central panels) often occur. In the case of the

DBR laser (lower panel), a similar increase of the wavelength with temperature is

observed, but all the power is concentrated in a single mode, thus no mode-hopping

occurs.
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Figure 1.12: Optical spectrum behavior as a function of temperature for the three lasers

used in this thesis. The panels correspond to the three lasers presented in Fig. 1.11. The

data from bottom panel is courtesy of K. Hicke (IFISC).
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As it can be seen in Fig. 1.12 (upper and central panel) the central wavelength of

the semiconductor laser jumps between discrete wavelength values (mode hopping).

Under some circumstances these mode hops can occur in an erratic manner, with the

laser switching back and forth rapidly between wavelengths. During mode hopping,

the lasers output intensity fluctuates slightly, resulting in an increase in relative

intensity noise (mode partition noise). This mode hopping can occur even when the

laser temperature and current are tightly controlled. As has been shown above, the

laser cavity can support many different wavelengths. In laser diodes, these modes are

separated by 0.2-1.0 nm. It is the wavelength of the peak of the gain profile relative to

the mode wavelengths that determines which mode lases. The mode nearest the gain

peak will lase; however, if the gain peak is between two modes, then the modes will

compete for gain. Spontaneous emission will tip the balance first in favor of one mode

and then the other, thereby causing mode hopping. If a multimode emission occurs,

the different optical modes can be considered as amplified spontaneous emission

noise. In Fig. 1.12 (central panel), we show that mode hopping noise occurs for low

temperatures and at a certain temperature the laser stabilizes at a specific mode.
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Dynamics of single semiconductor

lasers

Edge-emitting semiconductor lasers are very sensitive to external perturbations, such

as optical feedback and/or pump current modulation, and due to that, they easily

show unstable behavior. The reason for this high sensitivity can be explained by

the fact that semiconductor lasers have high gain, low cavity mirror reflectivities,

and weakly damped relaxation oscillations. Moreover, the α-parameter is a very

important factor in the emergence of instabilities (Dente et al., 1988; Masoller,

1997a), as discussed in Appendix A. Optical feedback effects in semiconductor lasers

have been extensively investigated in the past three decades (Fischer et al., 1996;

Vaschenko et al., 1998; Ohtsubo, 2002). They are relevant, not only for practical

applications in which the laser is subjected to feedback from an external reflector,

but also they are very interesting from a nonlinear dynamics point of view, as optical

feedback can induce a rich variety of dynamical regimes, including multi-stability,

excitability and high-dimensional chaos.
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2.1 Optical feedback

A chaotic oscillator consists in a system that shows irregular behavior although

this does not mean complete unpredictability. More specifically, a chaotic system is

deterministic, that means, if we know with infinite accuracy the state of the system

at a certain time t = 0, the dynamics at time t > 0 is determined uniquely. But

since it is not possible to know the variables of the system with infinite accuracy

and due to the fact that a chaotic system is very sensitive to initial conditions, we

cannot predict the state of the system for long times.

Optical feedback in semiconductor lasers arises from the re-injection of part of the

laser’s own emitted radiation, through a mirror placed in front of its output facet, as

schematically depicted in Fig. 2.1. As mentioned in Sec. 1.1, semiconductor lasers

can be classified as Class-B lasers and therefore, they cannot show chaotic dynamics

by themselves. However, when an external perturbation is applied, such as optical

feedback, the degrees of freedom of the dynamical system increase and so, the laser

can exhibit chaotic behavior. In practice and due to the fact that a photon needs a

finite time to travel around the external cavity, the optical feedback is delayed. The

delay dramatically increases the number of degrees of freedom and consequently the

observed chaos is high-dimensional.

As mentioned above, Fig. 2.1 depicts the schematic setup for a semiconductor

laser with optical feedback. The light emitted from the laser is reflected by an

external mirror at a distance Lext from the front edge of the laser, and fed back into

the laser cavity after a delay time (τ). The external mirror is an ordinary mirror

located within the coherence length of the laser field.

2.1.1 Rate equations for a semiconductor with feedback

In this section we are going to describe the rate equations for a semiconductor laser

subject to optical feedback. To find those equations we are going to proceed as in
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rext r2 r1 

Figure 2.1: Scheme of the experimental setup of a semiconductor laser subject to an

optical feedback. r1 and r2 are the reflectivities at the end-facets of the laser and rext is

the reflectivity of the external mirror M . L and Lext are the lengths of the laser cavity

and external cavity, respectively. τcav is the time inverted by a photon to turn around the

laser cavity, and τ is the time of flight of a photon around the external cavity.

the case of a solitary semiconductor laser described in Appendix A. Based on the

theoretical work by Lang & Kobayashi (1980), the inclusion of an external mirror in

front of a Fabry-Perot laser is nothing more than the addition of a delayed term to

the standard laser field equation (Eq. 1.4). Then, the rate equation for the complex

field E(t) can be written as follows:

dE(t)

dt
=

(1 + iα)

2

�
G(N, |E|2)− γ

�
E(t) +

+κfE(t− τ) exp[−iω0τ ] +
�
2βNζ(t), (2.1)

where κf is the feedback strength, τ = 2L
c
the round-trip of the light in the external

cavity and ω0 the the free-running optical frequency of the laser. The second term

in the right-hand side is the feedback term. The feedback strength can be derived

by assuming that only one reflection in the external cavity has significance (i.e. the

reflectivity of the external mirror is weak). We will also assume that the reflectivities

for the front and back facets of the laser are the same (i.e r1 = r2 = r). These

assumptions imply some limitations on the applicability of the Lang-Kobayashi (LK)
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model, due to the fact that the dynamics of a semiconductor laser subject to strong

feedback can not be explained with these simplified model. Under these assumptions

the feedback strength is:

κf =
1− r

2

τcav

rext

r
, (2.2)

where τcav is the time of flight of the light inside the laser cavity. It is worth to

note that even for weak external reflectivities (rext ∼ 10%), the laser can easily

show unstable oscillations. In practice, we can quantify the feedback strength by

measuring the intensity threshold reduction as:

∆Ith

Ith
=

Ith − I
f

th

Ith
, (2.3)

where Ith and I
f

th
are the threshold currents for the solitary and laser with feed-

back respectively. I
f

th
has been estimated by measuring the intersection between

the extrapolated spontaneous and stimulated emission lines, as we have done with

the solitary laser (Sec. 1.4.1). In Fig. 2.2, we show the light-current curve for a

semiconductor laser when the optical feedback is switched on and off. Note that the

feedback implies a reduction on the lasing threshold.

The rate equation for the carrier density N(t) can be described by the same

equation as in the case of a solitary laser (Eq. 1.5) if we assume that the carrier

density is not affected by the optical feedback. Therefore, the rate equations for the

complex field and the carrier density obey the following expressions:

dE(t)

dt
=

(1 + iα)

2

�
G(N, |E|2)− γ

�
E(t) +

+κfE(t− τ) exp[−iω0τ ] +
�
2βNζ(t), (2.4)

dN

dt
= C − γeN −G(N, |E|2) |E|2 . (2.5)

Stationary lasing conditions can be obtained by imposing the electric field, E(t),

to be constant. As the electric field is complex, we will represent it in terms of

its intensity P (t) = |E|2 and its phase, φ(t). Assuming steady-state conditions,
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Figure 2.2: Schematic behavior of the laser power for increasing injection currents. The

green line corresponds to the light-current curve for the solitary laser and the red line to

the light-current curve for a laser with feedback.

P (t) = Ps, N(t) = Ns and φs(t) = (ωs − ωth)t, one finds the following stationary

solutions (Sano, 1994):

Ps =
C − γeNs

gN(Ns −Nth)
, (2.6)

Ns = Nth −
2κf

gN
cos(ωsτ), (2.7)

∆ωτ = (ωs − ωth)τ = κfτ

√
1 + α2 sin(ωsτ + arctan(α)). (2.8)

By looking the evolution of the laser dynamics in the phase space defined by

(ωτ,N − Nth), we obtain an ellipse that contains the steady-sate solutions. The

ellipse has the following expression:

�
(ωs − ωth)τ +

αgNτ

2
(Ns −Nth)

�2
+
�
gNτ

2
(Ns −Nth)

�2
= κ

2
f
. (2.9)

In Fig. 2.3 we show the steady-state solutions in the (ωτ,N − Nth) space. The

solutions, which appear in pairs, can be classified depending on their stability. By

doing a linear stability analysis of the solutions, it is possible to distinguish between
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Figure 2.3: Steady-state solutions in the (ωτ,N −Nth) space for α = 3.0, τ = 2.0 ns and

κf = 0.02 ps−1. Note that solutions over the lower branch correspond to external cavity

modes (green circles) and the solutions over the upper branch are saddle instabilities (red

triangles). Filled square corresponds to the MGM and empty square to the stable emission

without feedback.

stable and unstable solutions (Sano, 1994). The solutions lying on the upper branch

of the ellipse (red triangles in the figure) are always unstable saddle-node solutions

(called antimodes), due to the destructive interference between the field inside the

laser and the feedback field. Solutions on the lower branch are either stable or

unstable via a Hopf bifurcation. These solutions are called compound cavity modes.

In this figure, we also show the maximum gain mode (MGM), that is located at the

lower left corner of the ellipse. The MGM is always stable and corresponds to the

regime of operation where the carrier density is minimum and the output power is

maximum. The empty square, in the middle of the ellipse, corresponds to the stable

solitary laser emission.

2.1.2 Regimes of optical feedback

There are multiple parameters to characterize, when studying the instabilities due

to an external feedback. In this section, we will focus on the external feedback
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strength (Tkach & Chraplyvy, 1986; Ohtsubo, 2002). Depending on the fraction of

light being fed back into the laser, several effects can be observed. If the feedback

is very small (less than 0.01%), the linewidth of the laser may become narrow for

an adequate relative phase between the emitted and re-injected light. If we increase

slightly the amount of feedback (< 0.1%), external modes start to play a role and

give rise to mode hopping among the internal and external cavity modes. For a

yet higher amount of feedback ∼ 0.1%, mode hopping is suppressed and the laser

oscillates with a very narrow linewidth. In the opposite limit of strong feedback

(> 10%), external cavity takes over and the laser behaves as if it had a single cavity,

resulting in the laser oscillating once more with a single narrow longitudinal mode.

So far, we have enumerated the different effects for the extreme values of the

feedback level, but in this Thesis we are mainly interested in moderate feedback

effects. When the feedback fraction is around 1% the relaxation oscillations become

undamped and the laser exhibits chaotic behavior. In this regime, the laser linewidth

becomes broader.

The reason for our interest in the moderate feedback regime is that it is possi-

ble to observe a rich variety of dynamical regimes. From a technological point of

view, it is also very interesting to understand how the system behaves under these

conditions, since there are several applications in which the optical feedback plays

an important role, such as DVD devices, velocimeters, etc... This regime can be

described by the Lang-Kobayashi equations (Eq. 2.4 and 2.5). A possible classifica-

tion for the different chaotic behaviors has been reported by Besnard et al. (1993)

and Heil et al. (1998, 1999b). They distinguish between three main behaviors, de-

pending on the pump current: stationary regime, low-frequency fluctuation regime

(LFF) and coherence collapse regime (CC). It is worth to note that it is possible to

observe coexistence between those regimes at the interfaces between their regions of

existence in parameter space. In Fig. 2.4 Heil et al. (1999b) map the dynamics of

a semiconductor laser subject to optical feedback in the parameter space formed by

the injection current and the feedback strength.
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Figure 2.4: The possible dynamical regimes of a semiconductor laser subject to optical

feedback in feedback κf -current Ip space are depicted. The LFF regime is depicted in light

gray. The dark-gray region corresponds to the region of coexistence of the stable emission

and the LFF state. The unshaded region delimited by the dashed line corresponds to the

continuous transition between the LFF regime and the fully developed CC regime. From

Heil et al. (1999b).

The Low-Frequency Fluctuation regime

A well-known feedback-induced instability is the regime of Low-Frequency Fluctu-

ations (LFFs), which occurs for moderate feedback and near the lasing threshold.

The LFFs consist in sudden power dropouts arising at irregular times, followed by

gradual, stepwise recoveries, as can be seen in Fig. 2.5(red line). The power dropouts

are known to be actually a slow modulation (typically in range of ns to µs) of fast

picosecond pulses (Fischer et al., 1996), as depicted in Fig. 2.5(a) (black line). In

practice, and due to the relatively small bandwidth of the detectors, we are only

able to show the slower dynamics of the system, which for most of the results pre-

sented in this Thesis will be enough. A characteristic feature of LFFs is that, as the
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laser bias current increases, the average time interval between consecutive dropouts

decreases, and the dropouts become increasingly frequent and begin to merge (Heil

et al., 1998). In Fig. 2.5(b), we show mean Inter-spike Interval �T � as a function of

the injection current.
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Figure 2.5: (a) Experimentally obtained LFF time series. Black line represents the fast

dynamics and the red line the filtered output known as LFF’s. (b) Average time interval

between consecutive dropouts as a function of the pump current.

Two different explanations were initially proposed for the LFF phenomenon. In

the first, the dropouts were stochastic events caused by spontaneous emission fluctu-

ations (Henry & Kazarinov, 1986). In the second, the LFFs were considered to be an

instance of chaotic dynamics (Mork et al., 1992), which was substantiated soon af-

terwards by Sano (1994), through an analysis of the LFF trajectories in phase space

and their interaction with the many (unstable) fixed points of the delay-differential

equation model that represents the dynamics of the system. A more detailed ex-

perimental and numerical investigation of the system revealed (Hohl et al., 1995;

Lam et al., 2003) that both deterministic and stochastic mechanisms are necessary

to explain the existence of LFFs, with noise being more important close the lasing

threshold and chaos prevailing far from threshold. The chaotic itinerancy around

external modes can be visualized in phase space by numerical calculations (Sano,

1994). In Fig. 2.6(a) the laser oscillates around the neighborhood of the MGM.
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When the system is close enough to a anti-mode, a collision between the trajec-

tory and the anti-mode can take place (more specifically, the state of the laser is

trapped at one of the antimodes). As a result, the carrier density grows rapidly

to the threshold of the solitary laser but keeping constant its phase. This rapid

increase of the carriers induces a sudden increase of the phase towards the solitary

laser behavior is achieved. The process related above is the power drop-out in the

LFF’s regime. After that, the laser trajectory begins to recover towards the MGM,

becoming trapped around successive external cavity modes on its way, until reach-

ing the neighborhood of the MGM. Around every cavity mode, the laser make a

few cycles, describing chaotic oscillations. The power dropout and the subsequent

recovery process repeat again and again irregularly in time. As a result, LFFs are

observed in the laser output oscillations as it is depicted in Fig. 2.6(b) and (d).

We now examine how this process changes when the pump current is varied.

It is well known that the inter-dropout intervals decrease in duration when the

pump current is increased (see Fig. 2.5(b)). By inspecting the trajectory in the

(ωτ,N − Nth) space, one can see that when the pump current is increased, the

amplitude of the chaotic itinerancy around the external cavity modes becomes larger,

and thus it takes a shorter and shorter time to go through more external cavity

modes and then collide with an “anti-mode” (as depicted in Fig. 2.6(c)). Lam

et al. (2003) did the same study but they used the spontaneous emission noise as

a parameter. They showed the same behavior in the phase space when the noise

intensity was reduced. Therefore, and as mentioned above, we can conclude that for

low pump currents, the noise plays an important role and the drop-outs are basically

driven by noise, but for higher pump currents, the chaotic itineracy itself can lead

to deterministic collisions with antimodes, making the trajectory less sensitive to

noise. In Ch. 6 and 7 we have systematically studied the degree of stochasticity

on the time between dropouts for a laser with feedback as a function of the pump

current.
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Figure 2.6: Numerically obtained chaotic itineracies around the external cavity modes (a),

(c) and (e) and the corresponding LFF time series (b), (d) and (f) for three different values

of the injection current. (a) and (b) correspond to 1.01 × Ith, (c) and (d) correspond to

1.05 × Ith, (e) and (f) correspond to 1.80 × Ith. Note the first two values of the pump

current lead to the LFF regime and the last one to the CC regime.

The Coherence Collapse regime

By increasing more and more the injection current, the system enters into a regime

called Coherence Collapse (CC), where the relaxation oscillations get excited due

to feedback, and the spectral linewidth is increased up to ∼ 25 GHz. A signature

of this regime is that the trajectory is completely disordered and only the fast

time scales of the system are retained (Mulet & Mirasso, 1999), as can be seen in

Fig. 2.6(f). By inspecting the trajectory in phase space, the sudden dropouts in the

output power merge, and only fully developed chaos can be observed. In the CC
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regime we still have the stationary solutions of the ellipse, but now the trajectory

is governed by a new chaotic attractor, instead of the modes and anti-modes of

the ellipse (Fig. 2.6(e)). This regime has been identified as a high-dimensional

chaotic dynamics (Ohtsubo, 2002; Masoller, 1997b). The high dimensionality comes

from the delay time associated with optical feedback, is due to the finite flight

time of the light in the external cavity. The CC regime has been studied in the

past employing well-known techniques such as those based on Poincare Sections,

Lyapunov exponents and fractal dimensions (Masoller, 1997b; Mork et al., 1992;

Ahlers et al., 1998).

2.2 Pump current modulation

So far, we have discussed how a semiconductor laser behaves when its own light is

re-injected. In this section, we study the power emission behavior when the laser is

subject to a current modulation (see Fig. 2.7). As mentioned in Sec. 2.1, we need

at least an extra degree of freedom to induce chaos in a semiconductor laser. The

easiest way to introduce more degrees of freedom by using the injection current is

to modulate it periodically with a frequency ωmod.

In this case, the term C in Eq. 2.5 has to be replaced by CDC +Cmod, where CDC

is a constant pump current and Cmod = C0 cos(ωmod t). Therefore, the equations for

the electric field and the carriers have the following form:

dE(t)

dt
=

(1 + iα)

2

�
G(N, |E|2)− γ

�
E(t) +

�
2βNζ(t),

dN

dt
= CDC + C0 cos(ωmod t)− γeN −G(N, |E|2) |E|2 . (2.10)

A detailed analysis of these equations, as as the one performed by Sacher et al.

(1992), points out that for frequencies ωmod ∼ ωRO (ωRO is the relaxation oscillation

frequency), a period doubling can be observed. If the modulation frequency is fur-

ther increased, a period doubling route to chaos takes place (Lee et al., 1985). On
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!!!!SL 

L, !cav 

r2 r1 

IDC Imod 

Figure 2.7: Scheme of the experimental setup of a semiconductor laser subject to external

pump modulation. r1 and r2 are the reflectivities at the end facets of the laser cavity. L

is the length of the laser cavity and τcav is the internal round-trip time.

the other hand, if the modulation frequency (ωmod) is equal or a rational fraction

(ωmod
ωcav

= p/q) of the internal round-trip frequency (ωcav =
2π
τcav

), quasiperiodicity and

frequency locking (a detailed explanation of locking phenomena is given in Chap-

ter 3) can arise. In this situation, the system is characterized by two time scales

corresponding to the modulation frequency and the internal round-trip frequency.

When both frequencies are exactly the same or have a rational ratio, the trajectory

in the phase space lies in a closed curve on a two-dimensional torus (i.e. periodic out-

put) and short optical pulses are generated (active mode locking) (Fig. 2.8(a)). On

the other hand, when the ratio between the frequencies is irrational, the trajectory

lies in a never-closing curve (i.e quasiperiodic output) (Fig. 2.8(b)).
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Figure 2.8: (a) Frequency-locked output of

the laser cavity with the modulation fre-

quency. The frequency ratio is chosen to

be rational and equal to ωmod
ωcav

= 2/5. Un-

der these conditions, the laser shows a peri-

odic pulsed activity. (b) Quasi-periodic out-

put when the frequency ratio is chosen to be

irrational and set to the golden-mean value

σg = 0.61803. From Sacher et al. (1992).

2.3 Pump current modulation and optical feed-

back

Finally, we will consider the situation in which the semiconductor laser is subject to

a delayed feedback and modulation of its pump current (Fig. 2.9). An early study of

a semiconductor laser with feedback subject to an external modulation was made by

Takiguchi et al. (1998), where they introduced a sinusoidal signal in order to entrain

the dropouts. Similar situations were considered by Sukow & Gauthier (2000) and

Buldú et al. (2003).

This setup has been used in the past to show that semiconductor lasers with feed-

back exhibit excitability properties (Giudici et al., 1997). In order to prove that a

system is excitable, three conditions (at least) must to be satisfied: first, the exis-

tence of a threshold above which an excitation can occur; second, the form and size

of the response must be invariant to any change in the magnitude of the perturba-

tion and third, a refractory time must exist. In Giudici et al. (1997) and Sukow &

Gauthier (2000), a perturbation in the pump current applied in the laser with feed-
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Figure 2.9: Scheme of the experimental setup of a semiconductor laser subject to an

external pump modulation and optical feedback.

back was seen to generate power dropouts that were independent of the modulation

properties. Heil et al. (1999b) and Mulet & Mirasso (1999) revealed the existence of

a refractory time during which the next dropout cannot occur. Marino et al. (2002)

and Buldú et al. (2002) showed that when the system is driven by a weak periodic

signal, a certain amount of noise can help the system to follow the frequency of this

signal. This resonance-like behavior is known as stochastic resonance (SR). Fur-

thermore, it was also shown that this system can exhibit coherence resonance (CR),

when the system is modulated by noise instead of a sinusoidal signal (Giacomelli

et al., 2000; Buldú et al., 2001). When an external noise is introduced in the pump

current of the laser with feedback, an increase of regularity in the dropout events

occurs for an optimal noise level (i.e. CR takes place).

As mentioned above, in this Thesis we study the degree of stochasticity of the

time between dropouts by using different statistical techniques. We also show that

a laser with feedback subject to a constant pumping signal (DC signal) can exhibit

non zero correlations for sufficiently high pumping amplitudes. In Ch. 5 we study

the response of an excitable laser subject to a random dichotomous modulation on

its pump current in order to shed light into the emergence of these correlations.
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Chapter 3

Dynamics of coupled

semiconductor lasers

3.1 Synchronization

Synchronization phenomena are present in many fields such as physics (Bennett

et al., 2002; Feng et al., 2010), life science (Strogatz & Stewart, 1993) and many

others. Synchronization can be observed in systems as diverse as pendulum clocks,

firing neurons, fireflies, social networks, etc... Synchronization has been investi-

gated since the earliest days of modern physics. Christian Huygens was one of the

first physicists that approached the study of synchronization. Huygens, in collab-

oration with Alexander Bruce, constructed maritime pendulum clocks in order to

guarantee timing with sufficient accuracy to determine longitude reliably during a

sea travel. During their investigation they realized that when he suspended two

pendulum clocks in the same wooden beam, each pendulum swung at exactly the

same frequency, and 180o out of phase with respect to one another. Finally, Huygens

could not solve the longitude problem (due to so slight and almost insensible motion

was able to cause an alteration in their periodic oscillations), but synchronization
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observations have served to inspire the study of sympathetic rhythms of interacting

nonlinear oscillators in many areas of science.

The origin of the word synchronization comes from the greek root σψν (syn) that

means same and κρονος (kronos) that means time. In direct translation,“synchronous”,

means “occurring at the same time”. A modern definition of synchronization could

be an “adjustment of rhythms of oscillating objects, due to their weak interaction”

as appears in PhD Thesis of Vicente (2006).

3.1.1 Phase and frequency locking

In this Section, we analyze the conditions leading to frequency and phase locking

between two coupled nonlinear oscillators. As we will show in Sect. 3.1.3, synchro-

nization can be achieved between two oscillators even when they are not identical.

For simplicity, we will focus on an harmonically driven quasilinear oscillator and

finally, we will generalize the argumentation to two coupled semiconductor lasers.

As usual a quasilinear oscillator is represented by the expression, x(t) = A sin(φ(t)),

with φ(t) = ω0t + φ0. In order to study the effects of the coupling and detuning

on synchronization, it is useful to work on a reference frame that rotates with the

frequency of one of the nonlinear oscillators (Pikovsky et al., 2001). Note that

an observer lying in the rotating reference frame sees an harmonic oscillator (i.e.

x(t) = A sin(ωt+φ0)) as a resting phase point. In a phasor representation, sustained

harmonic oscillations correspond to a fixed point with the polar coordinates A and

φ0 = φ(t) − ωt in this new reference frame. Similarly we define the forcing by

F (t) = � cos(φe(t)), with φe(t) = ωt+φe,0. As shown in Fig. 3.1(a), an harmonically

driven quasilinear oscillator, with a forcing strength � → 0 and a given detuning

∆ω = ω0−ω, corresponds to a rotation of the phase point with angular velocity ∆ω

in the rotating frame (here we choose the rotating frame to have the frequency ω of

the forcing). This phase dynamics can also be represented by means of a particle

sliding with constant velocity along a tilted potential plane, as shown in Fig. 3.1(c).
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In the particular case of zero-detuning the phase remains at some arbitrary point

on the cycle with no angular velocity (Fig. 3.1(b)).
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Figure 3.1: In the reference frame rotating with ω, the limit cycle oscillation corresponds

to a rotating point that depends on the detuning ω0 −ω (a) and to a fix point in the case

of zero detuning (b). The position of the point is characterized by the phase difference

φ−φe. Panel (c) shows a particle falling down a tilted plane with constant velocity, which

illustrates the phase dynamics in the rotating frame. φ is the phase of the oscillator and

φe is the phase of the forcing. Based on Pikovsky et al. (2001).

We now apply a non-zero force (i.e. � �= 0). The force defined above is represented,

in the rotating frame, by a constant vector of length � acting at some phase φ0. The

angle φ0 depends on the initial phase of the force φe,0, and for quasilinear oscillators

φ
0 = φe(t) − φ(t) = φe,0 + π/2 (Pikovsky et al., 2001). Under weakly forcing,

the oscillator amplitude A is invariant respect to the non-forced scenario but the

phase is influenced by the forcing. A weak force in resonance (∆ω = 0) with the

autonomous oscillator creates two equilibrium points, one stable and one unstable

on the cycle. The effect of the force depends on the phase difference. When the

force acts in the radial direction, it cannot shift the phase along the circle (points 1

and 2 in Fig. 3.2(a)), but when the force is tangent to the circle then the phase shift

is maximal (points 3 and 4 in Fig. 3.2(a)). If we move away from point 1, the phase

shift due to the force pushes us towards to this point, which makes it a stable point.

On the other hand, point 2 is an unstable point, since the effect of the force in its
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neighborhood propels the phase point away from it. Therefore, the external force

creates an stable equilibrium position at point 1 (phase locking) and an unstable

equilibrium position at point 2.
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Figure 3.2: (a) A weak external force cannot influence the amplitude of the limit cycle

but can shift the phase of the oscillator. The external force creates a stable equilibrium

point when acting in the radial direction only. (b) In the presence of a small detuning the

phase point rotates due to the detuned external force. The phase point is stopped by the

force and a stable phase shift ∆φ is maintained. The external force creates a minimum in

the tilted phase potential. Based on Pikovsky et al. (2001).

Finally we can merge the effects of the detuning and forcing to show the complete

forced oscillator scenario. As shown in Figure 3.2(b), the effect of the force coun-

teracts the detuning. While the force pushes the phase point to the minimum of

the potential, the detuning rotates the phase with angular velocity equal to ω− ω0.

That means, for a particular value of the phase shift (φ0+∆φ, where φ0 is the phase

shift corresponding to the forcing and ∆φ is the the angle where the phase point

is stopped due to the combined effect of the detuning and the forcing), the force

balances the rotation and the phase point stops. It is worth to note that for a large
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Figure 3.3: (a) Frequency difference vs forcing frequency curve for a given interaction

strength. Ω − ω represents the frequency difference between the forced and the unforced

system. (b) Arnold tongue for a forced periodic oscillator. Based on Pikovsky et al. (2001).

detuning, it could be possible to never find a force capable of stopping the rotation.

Once we have examined the effects of detuning and forcing on the synchronization,

we are able to define the phenomena of the frequency locking and phase locking.

Frequency locking

Imagine an oscillatory system with frequency ω0 forced by an external oscillator with

frequency ω, which exhibit a mismatch between their natural frequencies (i.e with a

detuning ∆ω = ω0 − ω). For sufficiently small detuning the external force entrains

the oscillator, therefore, the frequency of the forced oscillator Ω becomes equal to the

frequency of the forcing ω. On the other hand, a weak coupling strength can only

induce small changes in the frequency of the oscillators, and hence, there should

be a critical detuning beyond which the frequency matching cannot be possible.

The conjugation of these two efects leads to the appearance of a plateau in the

∆Ω = Ω − ω vs ω curve, for a given force amplitude (�), as shown in Fig. 3.3(a).

The identity of the frequencies that holds within a finite range of the detuning is

the hallmark of synchronization and is often called frequency locking. For each
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value of the forcing amplitude we can find a region where the frequency locking is

achieved, and thus we can determine a region in the (ω, �) plane where the force and

the oscillator are synchronized (Fig. 3.3(b)). This region is called synchronization

region or Arnold tongue.

Phase locking

As we have shown, when an oscillator is not locked in frequency with the forcing,

the phase difference increases with time. Therefore, in the synchronous state there

exists a constant (or bounded) phase shift between the phases of the oscillator and

the force:

φ(t)− φe(t) = φ
0 +∆φ = constant. (3.1)

It is worth to note that the phase difference ∆φ is zero (or π) only at zero detuning.

For non-zero detuning the phase difference is not exactly zero as we have seen in

Fig. 3.2.

As mentioned above, usually in the synchronous state, the phase and the frequency

remain locked, but recent investigations (Thévenin et al., 2011) have shown the

existence of a synchronization region beyond the Arnold tongue boundary, where it

is possible to observe frequency locking without phase locking. In this region the

phase dynamics remains bounded (i.e. −π < ∆φ < π) but not constant, while

the average frequencies are locked. This phenomenon can be observed in sufficient

complex systems, such as Class-B lasers. The intermediate regime between phase

locking and phase shift is called phase entrainment regime (Chakraborty & Rand,

1988).

3.1.2 Synchronization of two oscillators

In this section, we are going to extrapolate the ideas presented in the previous

section to two coupled oscillators instead of a single forced oscillator. Generally,
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the interaction between two systems can be non-symmetrical, and so the action of

one of the coupling directions can be stronger than the other. In this case, we can

recover the results for the case of an external forced oscillator, showed above. As we

have seen, in this scheme, the frequency of the driven oscillator is entrained by the

forcing, but when the coupling strength of both oscillators is similar (bidirectional

coupling), the frequencies of both systems changes in a non-trivial manner. We

can denote the frequencies of the isolated systems as ω1 and ω2 with, ω1 < ω2

without loss of generality, and the frequencies of the coupled systems as Ω1 and Ω2.

The locking frequency typically lies in between of the two autonomous frequencies

(i.e. ω1 < Ω < ω2 with Ω1 = Ω2 = Ω). The coupling between identical systems

leads, in general, to a phase-attractive or phase-repulsive synchronization. The shift

between phases is determined by the coupling strength and the detuning. One of the

simplest mathematical models that describes the dynamics of the phase difference

between two weakly coupled oscillators, with constant amplitude, is given by the

Adler equation (Adler, 1946):

d∆φ

dt
= ∆f ± κ sin(∆φ), (3.2)

where κ and ∆f are the coupling strength and detuning, respectively. Using the

same argument as for the case of an externally forced oscillator (see Fig. 3.2), the

detuning makes the phase difference not exactly zero or even non-stationary. The

loss of synchronization can be understood as a disappearance of the local minima

in the tilted potential (Fig. 3.2). In Fig. 3.4 we show the phase difference dynamics

for different values of the detuning between the oscillators and keeping constant

the coupling strength (κ = 1.00 t
−1
steps, with tsteps being the integration time step

used to compute the phase difference dynamics). In Fig. 3.4(a) we set the detuning

∆f = 0.00 t
−1
steps (the system lies in the very center of the Arnold tongue) and the

phase difference remains equal to zero. In Fig. 3.4(b) we set ∆f = κ = 1.00 t
−1
steps

and the phase grows asymptotically to π/2. In this situation the system lies on the

border of the Arnold tongue but the phase is still locked. In Fig. 3.4(c) we slightly
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increase the detuning, ∆f = 1.01 t
−1
steps, and the dynamics of the phase difference is

intermittent, which means that the system exhibits rapid phase jumps followed by

epochs of synchronous behavior. In this case the system lies out of the Arnold tongue

but very close to its border. With further increases in detuning, ∆f = 10.00 t
−1
steps,

the duration of the epochs of synchronous behavior becomes smaller, and eventually

the growth of the phase difference becomes almost uniform (Fig. 3.4(d)).
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Figure 3.4: Phase difference for different values of the detuning and a constant coupling

strength, κ = 1.00 t
−1
steps. (a) ∆f = 0.00 t

−1
steps, (b) ∆f = 1.00 t

−1
steps, (c) ∆f = 1.01 t

−1
steps

and (d) ∆f = 10.00 t
−1
steps.

3.1.2.1 Synchronization of chaotic oscillators

So far, we have pointed out how periodic oscillators can synchronize due to either

an external force or the presence of another oscillator. Next we will focus on chaotic

oscillators, since the results presented throughout the Thesis deal with these type of

systems (i.e. a semiconductor lasers in the presence of either an external modulation

or an optical feedback behaves chaotically in time for a wide range of parameters, as
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presented in Ch. 2). Due to the irregularity of chaotic oscillators, it is not possible

to define the phase and frequency as in the case of periodic oscillations, but one

can define the instantaneous frequency of the chaotic system by using the Poincaré

approach or the Hilbert approach. The Poincaré approach consists in constructing a

Poincaré map and determine the times between successive crossings of the Poincaré

surface. Each interval between crossing times can be considered as the instantaneous

period of the oscillation, and therefore the inverse is the instantaneous frequency.

We can estimate the mean frequency as follows:

�ω� = 2πN/∆T, (3.3)

where N is an integer that counts how many times the Poincaré surface has been

crossed in a given ∆T .

From the Hilbert approach, we can obtain the instantaneous phase of any real

signal s(t) from the discrete-time analytic signal (Gabor, 1946):

ψ(t) = s(t) + is̃(t) = A(t)eiφ(t), (3.4)

with φ(t) and A(t) being the Hilbert phase and Hilbert amplitude of the signal,

respectively. The imaginary part of the analytic signal is the Hilbert transform

s̃(t) = π
−1
P.V.

� +∞
−∞

s(τ)
t−τ

dτ . Note that the phase φ(t) describes changes in the field

envelope. From the Hilbert phase one can deriving the frequency with a simple time

derivative.

3.1.3 Kinds of synchronization

The first investigations of synchronization phenomena were mainly focused on pe-

riodic systems, while recently the search for synchronization has turned to chaotic

systems. Early experimental evidences on chaos synchronization were performed by

Afraimovich et al. (1986) and Pecora & Carroll (1990) in chaotic circuits. When

two or more chaotic elements are coupled, many interesting kinds of synchronization
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can be found, including complete or identical synchronization, generalized synchro-

nization, phase and lag synchronization, and intermittent lag synchronization. We

will now describe these different kinds of synchronization.

3.1.3.1 Complete synchronization

Complete synchronization is the simplest form of synchronization, and consists in a

perfect matching of the trajectories between two or more identical chaotic systems

in time. In Fig. 3.5(a) we show the experimental time traces for two bidirectionally

coupled lasers with cross-feedback (acting as a passive rely) exhibiting complete

synchronization. As depicted in Fig. 3.5(b), the correlation plot between the two

laser outputs shows a substantial linear correlation between the two laser outputs.
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Figure 3.5: (a) Time traces for two mutually coupled semiconductor lasers (see Ch. 10

below) exhibiting complete synchronization. (b) Correlation plot between the two outputs.

This kind of synchronization can be observed in systems, which the coupling time

is assumed to be zero (or much smaller than the system dynamics time scale) or

systems which have a finite coupling time but show isochronal behavior. This later

case is often called zero-lag synchronization.
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3.1.3.2 Generalized synchronization

When the oscillators are not identical they cannot synchronize identically. Under

certain conditions, however, they can synchronize in a generalized way if there exists

a transformation f : X −→ Y that relates the trajectories of the attractor in X

space into the trajectories of the attractor in the Y space, with X and Y denoting

the phase spaces of two oscillators. In that case:

y(t) = f(x(t)), (3.5)

where x(t) and y(t) are the the state variables of the two oscillators. Note that

complete synchronization is a particular case of generalized synchronization (for

f(x(t)) = x(t)). As one can expect from Eq. (3.5), non-trivial relations between

coupled signals can appear. In order to measure the degree of synchronization

between coupled systems, the auxiliary system method has been suggested for de-

tecting generalized synchronization (Abarbanel et al., 1996). This method is used

when two systems are coupled unidirectionally (i.e. drive-response system). The

method consists in applying the same driving to two identical systems (or to the

same system but in different experiments), known as replicas. If the replicas show

linear correlations, the driving and the response are synchronized in generalized

manner.

Figure 3.6(a) shows the time traces for the driving and the two replicas for a

laser-diode-pumped Nd:YAG microchip laser (Uchida et al., 2003). In that paper

they used the same laser as a driver and replicas. They stored a waveform and then

re-injected into the system by using an arbitrary waveform generator. The driving

and response systems did not exhibit correlations between them (Fig. 3.6(b)), but

linear correlations appear between the replicas (Fig. 3.6(c)), indicating that the two

instances of the chaotic oscillator are synchronized in a generalized manner.
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( 

Figure 3.6: (a) Temporal waveforms of experimentally measured total intensity of the

drive (Nd:YAG microchip laser with optoelectronic feedback) and two response systems.

(b) Correlation plot between the drive and response outputs. (c) Correlation plot between

the two response outputs. From Uchida et al. (2003)

3.1.3.3 Phase synchronization

Two chaotic systems are phase-synchronized when locking between the phases is

achieved, regardless of the correlation between the amplitudes. Figure 3.7(a) shows

the time traces for two diffusely coupled Rössler systems. For the parameters used

in this simulation, the systems are phase locked (i.e. phase synchronization) but

the Hilbert amplitudes are uncorrelated, as can be seen in Fig. 3.7(b). Note that in

order to determine the phase and the amplitude of an arbitrary signal, we have used

the general approach based on discrete-time analytic signal (Gabor, 1946) described

in Sec.3.1.2.1.

3.1.3.4 Lag synchronization

Lag synchronization is a type of generalized synchronization with the particularity

that trajectories of the attractor in X space are related with those Y space after a
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Figure 3.7: Adapted from (Rosenblum et al., 1996). (a) Temporal series of numerically

obtained output signal for two coupled Rössler systems. (b) Correlation plot for the two

Hilbert amplitudes showing an uncorrelated behavior.

lag time τ :

y(t) = f(x(t− τ)), (3.6)

where τ is the time needed by the first system to interact with the second one. The

particular case f(x) = x can be called identical lag synchronization.

Figure 3.8(a) shows the output intensity for two bidirectionally coupled lasers

displaying lag synchronization. Note that one of the lasers leads the dynamics and

the other laser follows with a certain delay τ . In Fig. 3.8(b) we show a histogram for

the difference between corresponding dropout times. A peak appears at the delay

time of ∼ 25ns.

An interesting feature of this type of synchronization is the fact that, depending

on the delays of the coupled system, the system can show zero lag synchronization

(Englert et al., 2010) (there is coincidence without delay between the signals of

the systems) and even anticipated (in a drive-response system, the response system

leads the dynamics) (Masoller, 2001). This phenomenon can also occur intermit-

tently, that means, the systems are most of the time verifying the condition for lag

synchronization, but once in a while, they desynchronize.
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Figure 3.8: (a) Experimental output intensities and the corresponding histogram of the

time between synchronized dropouts (b), for two bidirectionally coupled lasers.

3.2 Synchronization in coupled semiconductor lasers

As mentioned in Ch. 2, semiconductor lasers can exhibit chaotic behavior under the

presence of external perturbations. We have also shown in Sec. 3.1.2.1 that chaotic

systems can synchronize. Therefore, a characteristic of semiconductor lasers that

makes them highly attractive for dynamical system studies, is the natural manner

in which they can be coupled to one another, forming networks of interacting dy-

namical elements. Coupling can be accomplished optoelectronically, by modulating

the pump current of a laser with the electrical signal of a photodetector that mea-

sures the light emitted by another laser (Larger et al., 1998; Kim et al., 2005; Illing

et al., 2011), or more simply in a purely optical manner, by injection (coherent or

incoherent) of a laser’s output light into another (Mirasso et al., 1996; Sivaprakasam

& Shore, 1999; Fischer et al., 2000). Given the fast temporal scales (on the order of

picoseconds) with which semiconductor lasers operate, the time taken by the cou-

pling signals to travel between the lasers (typically larger than nanoseconds) cannot

be usually ignored, and thus interacting lasers become instances of delay-coupled

dynamical systems (Schuster & Wagner, 1989). Within that context, two unidirec-

tionally coupled lasers in which the light emitted by one laser is injected into the

other, readily synchronize their dynamics with a time lag equal to the coupling delay
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time, in such a way that the emitting laser leads over the receiver (Takiguchi et al.,

1999)

For more than a decade semiconductor lasers have been used as model system

for chaos synchronization. We now present an overview of chaos synchronization

phenomena between coupled semiconductor lasers in different coupling setups.

3.2.1 Unidirectional injection in a semiconductor lasers

One of the most typical coupling architectures between two semiconductor lasers

is unidirectional injection. It consists in optically injecting the output field of one

laser into the other one. In this architecture, the driving laser acts usually as a

transmitter of the dynamics and the other laser is the receiver and uniquely follows

the emitter with a certain time delay. This corresponds to what is known as a

leader-laggard behavior, in which the emitter laser leads the dynamics a time equal

to the coupling time between the two lasers.

In what follows we are going to discuss the most common coupling architectures

in unidirectionally coupled lasers.

3.2.1.1 Types of configurations

The most common coupling architectures in unidirectionally coupled lasers are the

open loop and closed loop configurations. In the open loop configuration (Fig. 3.9(a)),

only the emitter (i.e. driving) laser has optical feedback. On the other hand, on the

closed loop configuration both lasers have their own feedback (Fig. 3.9(b)). In the

open loop configuration, depending on the relation between time delays and coupling

and feedback strengths, different synchronization phenomena can be observed.

Figure 3.10 shows an overview of different synchronization regimes that can be

seen between two unidirectionally coupled lasers, in terms of the cross-correlation

function (see Appendix B) between the time series of the light emitted by the two
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Figure 3.9: Unidirectionally coupled lasers in an open loop (a) and closed loop configu-

ration (b). SL: semiconductor lasers, BS: beam splitters M: mirrors. τ12 is the coupling

time between SL1 and SL2 and τi is the feedback time for each SL.

lasers. As shown in that panel (a) of that figure, when the time delays corresponding

to the feedback (τ1) and the coupling (τ12), and also the feedback (κ1) and coupling

(κ12) strengths are chosen to be the same, identical synchronization is observed (i.e.

I2(t) = I1(t)). On the other hand, as shown in Fig. 3.10(b), when the delay times

are different, τ1 �= τ12 and κ12 > κ1, the outputs show a leader-laggard behavior (i.e.

I2(t) = aI1(t − τ12)). Note that in this case, there is no perfect matching between

the outputs of the two lasers, due to the fact that the re-injected power in both

lasers (coming from itself in the case of the emitter, and from the other laser in the

case of the receiver) is not the same. From an experimental point of view, this is

the easiest configuration to achieve synchronization, due to the fact that it is not

necessary to chose all the parameters to be carefully matched between emitter and

receiver.

Finally, when the coupling strengths coincide but the delay time does not, an-

ticipated or retarded synchronization takes place (i.e. I2(t) = I1(t − ∆τ) with

∆τ = τ12− τ1). The synchronization will be anticipated or retarded synchronization

52



Chapter 3: Dynamics of coupled semiconductor lasers

!!" !!# !$ !% & % $ !# !"
!&'#

&

&'#

&'%

&'"

&'$

!

!'#

()*+,-./+0123

4
56
2
2
!
7
6
55
/
8)
,-
6
1
+9
:
1
7
,-
6
1

!!" !!# !$ !% & % $ !# !"
!&'#

&

&'#

&'%

&'"

&'$

!

!'#

()*+,-./+0123

4
56
2
2
!
7
6
55
/
8)
,-
6
1
+9
:
1
7
,-
6
1

!!" !# !$ !% !& " & % $ # !"
!"'&

"

"'&

"'%

"'$

"'#

!

!'&

()*+,-./+0123

4
56
2
2
!
7
6
55
/
8)
,-
6
1
+9
:
1
7
,-
6
1

!!" !# !$ !% !& " & % $ # !"
!"'&

"

"'&

"'%

"'$

"'#

!

!'&

()*+,-./+0123

4
56
2
2
!
7
6
55
/
8)
,-
6
1
+9
:
1
7
,-
6
1

(a) (b) 

(c) (d) 

!"=0# !"="12#

!"= "12- "1< 0# !"= "12- "1>0#

Figure 3.10: Cross-correlation function for different relations between delay times and

coupling strengths, for an open loop configuration. (a) identical synchronization appears

for k1 = k12 and τ1 = τ12. (b) Lag synchronization at ∆τ = τ12 is achieved when κ12 > κ1.

When coupling strengths are equal (κ12 = κ1) but the delay times are different, retarded

(c) and anticipated (d) synchronization appear with ∆τ = τ12 − τ1. Red dashed line

indicates the maximum of the cross correlation.

depending on the sign of ∆τ . In Fig. 3.10(c,d), we show retarded and anticipated

synchronization respectively. In Ch. 9 we will discuss how two systems in an open

loop configuration synchronize under the presence of two coupling paths.

Figure 3.11 shows the parameter region in which synchronization exists, as com-

puted by Murakami & Ohtsubo (2002), in terms of the synchronization error (σ =
�|IT−IR|�

�IR� , where IT and IR are the normalized intensities of the transmitter and re-

ceiver lasers), as a function of the injection rate Rinj (representing the percentage

of the transmitter’s output intensity injected into the receiver laser cavity) and the
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Figure 3.11: Phase diagram of a semiconductor laser receiving the injection from another,

chaotic semiconductor laser subject to optical feedback, as a function of detuning and

injection strength. The quality of the synchronization is represented by using gray scale

with synchronization error, encoded in grey scale. From Murakami & Ohtsubo (2002)

detuning, ∆f = ω

2π . In this figure the boundaries, denoted by the outer solid lines,

represent the injection-locking area (region where the lasers are locked in frequency

when coupled) for two unidirectionally coupled lasers when the emitter laser oper-

ates at the continuous wave regime (i.e. in absence of optical feedback). In this case,

the locking area, is composed by two main synchronization regions corresponding to

stable and unstable synchronization. The lack of symmetry within the locking area

is a consequence of the carrier changes induced by the α parameter (van Tartwijk &

Agrawal, 1998). In the unstable region different dynamical regimes can be induced in

the receiver laser depending on the injection current: periodicy, quasiperiodicy and

chaos (Wieczorek et al., 2002). In the stable region different kinds of synchroniza-

tion are observed. When optical feedback is present, identical lag synchronization

is achieved for zero detuning and for small injection rates, when the coupling and

feedback delay times are chosen to be equal. For large enough injection rate, ampli-
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fication is observed even for detunings clearly different from zero (asymmetrically

between negative and positive detunings). The amplification area is a region where

the receiver output is non-linearly amplified. In this region the receiver output is

larger than that of the emitter laser.

In the closed loop configuration (Fig. 3.9(b)), both lasers have their own optical

feedback, with delays τ1 and τ2 respectively. This fact makes the system more

symmetric, but on the other hand this configuration is more sensitive to parameter

mismatch, and a careful tuning of the feedback parameter in the receiver (κ2) is

needed. In this configuration the relation between the delay times, on the one

hand, and the coupling and feedback strengths, on the other, determine the time

lag between the synchronized outputs, as in the open loop configuration. In the

more symmetric configuration, i.e. when the injected light in the two lasers is the

same, (which happens when the condition κ1 = κ2+κc is satisfied), zero-lag identical

synchronization solution emerges. Note that this solution is equivalent to the open

loop configuration for κ2 = 0. Anticipated and retarded synchronization can also

be observed for appropriate parameters.

3.2.1.2 Modeling chaotic synchronization between unidirectionally cou-

pled lasers

In order to perform numerical simulations of the open and closed loop configurations,

we use a generalized version of the Lang-Kobayashi that reads (Mirasso et al., 2002;

Gonzalez et al., 2007):

dE1

dt
=

1 + iα

2
(G1 − γ1)E1(t) + κ1e

−iω1τ1E1(t− τ1) +
�
2βN1ξ1(t), (3.7)

dE2

dt
=

1 + iα

2
(G2 − γ2)E2(t) + κ2e

−iω2τ2E2(t− τ2)

+κ12e
i(∆ωt−ω2τ12)E1(t− τ12) +

�
2βN2ξ2(t), (3.8)

dNi

dt
= Cb − γeNth −Gi|Ei(t)|2, (3.9)
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where subindex i = 1, 2 denotes lasers SL1 and SL2 respectively. E1,2(t) is the

electric field and, N1,2 is the carrier number, and ω1,2 are the free-running optical

frequencies of the two lasers. ∆ω = ω1−ω2 is the detuning between lasers. The first

terms in the right-hand side of Eq. (3.7) and Eq. (3.8) are related with stimulated

emission. The linewidth enhancement factor α is assumed to be the same for both

lasers, γ1,2 is the inverse photon lifetime, and G1,2 = g1,2(N1,2 − N
0
1,2) is the gain

(assumed linear), where N0
1,2 denotes the carrier number at transparency and g1,2 is

the differential gain (gain saturation is neglected because the lasers operate close to

threshold).

The second term in the right hand side of Eq. (3.7) and Eq. (3.8) is the feedback

term, described by τ1,2 (feedback delay time) and κ1,2 (feedback coupling strength).

The feedback term in Eq. (3.8) is zero for the open loop configuration. The last

term in Eq. (3.7) corresponds to the spontaneous emission noise, represented by a

Gaussian white noise of zero mean, with spontaneous emission rate β. The third

term in the Eq. (3.8) is the coupling term described by τ12 (injection delay time)

and κ12 (injection coupling strength). This coupling term only appears on the field

equation for the second laser in order to assure a unidirectional coupling.

3.2.2 Bidirectional injection

When two lasers mutually interact, we say that they are bidirectionally coupled.

Synchronization phenomena in mutually (or bidirectionally) coupled semiconductor

lasers has also been widely studied. Due to the reciprocal interactions between

lasers, it is possible to induce chaotic behavior also in absence of feedback (Heil

et al., 2001). In this section we are going to discuss the synchronization phenomena

exhibited by two bidirectionally coupled lasers.
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3.2.2.1 Types of configurations

For two bidirectionally coupled lasers, two kind of configurations can be devised. The

difference between them lies on the presence or absence of feedback on the lasers. In

the case of absence of feedback, the chaotic dynamics of the lasers is only induced

by the mutual interaction. From now we will refer to this coupling architecture as

face-to-face configuration. In Fig. 3.12(a) schematic setup of a face-to-face coupling

configuration is depicted. For this coupling architecture lag-synchronization can be

observed with a time lag between both signals equal to τc.

SL1 SL2 

M1 M2 

BS BS !c 

!1" !2"

SL1 SL2 
!c 

(a) 

(b) 

Figure 3.12: Bidirectionally coupled lasers face to face without (a) and with feedbacks (b).

SL: semiconductor lasers, BS: beam splitters M: mirrors. τc is the coupling time between

SL’s and τi is the feedback time for each SL.

In Fig. 3.13(a) we show the cross-correlation function when the coupling strength

between lasers is the same (κ12 = κ21 = κc) and also the optical frequencies are equal

(ω1 = ω2). As Heil et al. (2001) showed, the optical frequencies plays an important

role in order to establish which laser leads the dynamics. So, if the lasers have the

same optical frequencies, a spontaneous symmetry-breaking leads into a switching

of the role of leader between both lasers (Heil et al., 2001; Tiana-Alsina et al.,

2009). On the other hand, when one of the lasers is detuned respect to the other

one (∆ω = ω2 − ω1), the laser with higher frequency takes the role of the leader.
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Figures 3.13(c,d) show the cross-correlation function for a positive and negative

detuning, respectively. It is worth to note that, in the face-to-face configuration,

the zero-lag solution exists but it is unstable. In Ch. 8 we quantify the level of

stochasticity in the dynamics of two mutually coupled semiconductor lasers. More

specifically, we analyze the switching dynamics of the leader-laggard regime.

When the lasers have their own feedback (Fig. 3.12(b)), the zero-lag solution sta-

bilizes, as depicted in Fig. 3.13(b), when the coupling and the feedback delay times

are chosen to be the same. When the delay times are not equal, lag synchronization

is observed at ∆τ = τc − τ1,2. In Ch. 10 we analyze the stability of the zero-lag

solution under different parameter variations, such us pump current and detuning,

when the delay times are equal.

3.2.2.2 Modeling chaos synchronization between bidirectionally coupled

lasers

As in Sec. 3.2.1.2, we use a generalized version of the Lang-Kobayashi equations, in

order to simulate the behavior of two bidirectionally coupled semiconductor lasers

with and without feedback. In this case the equations read:

dE1

dt
=

1 + iα

2
(G1 − γ1)E1(t) + κ1e

−iω1τ1E1(t− τ1)

+ κ2,1e
i(∆ωt−ω2τc)E2(t− τc) +

�
2βN1ξ1(t), (3.10)

dE2

dt
=

1 + iα

2
(G2 − γ2)E2(t) + κ2e

−iω2τ2E2(t− τ2)

+ κ1,2e
i(∆ωt−ω1τc)E1(t− τc) +

�
2βN2ξ2(t), (3.11)

dNi

dt
= Cb − γeNth −Gi|Ei(t)|2. (3.12)

The model is the same as in the previous sections, but now the injection term

appears in both field equations, in order to describe mutually coupling between

lasers. Note that the feedback terms are set to zero on the face-to-face configuration

(i.e. κ1 = κ2 = 0).
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Figure 3.13: Cross-correlation function for two bidirectionally coupled lasers. (a) leader-

laggard switching in the case of face to face configuration with ∆ω = 0. (b) the zero-lag

solution is stabilized when the feedback terms are different from zero. Panels (c) and (d)

show that one of lasers can be induced to lead the dynamics by introducing a detuning

different from zero. The red dashed line indicates the maximum of the cross correlation.

In this section we have discussed about synchronization and their consequences.

We have also studied the possibility to synchronize chaotic oscillators under differ-

ent coupling architectures. In the next Chapter we are going to present different

statistical techniques that will allow us to characterize the degree of complexity of

a chaotic system.
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Chapter 4

Stochasticity and complexity in

dynamical systems

As discussed in previous Chapters, nonlinear systems can show chaotic motion, and

so a very irregular and complex behavior lying between complete order (i.e. peri-

odic behavior) and complete disorder (i.e. stochastic behavior). Due to the fact

that chaotic motion is characterized by complex non-periodic time traces with a

broadband Fourier spectrum, it is not trivial to distinguish a chaotic signal from

a stochastic signal. Therefore a natural question that arises is: is an irregularly-

behaving system chaotic or stochastic? In principle, if we are able to determine the

maximum Lyapunov exponent (λ) or the Kolmogorov-Sinai entropy per unit time

(hKS) of a data sequence, we would know, with certainty, whether the sequence is

generated by a deterministic law (in which case λ, hKS < ∞) or by a stochastic law

(in which case λ, hKS → ∞). Due to the finite resolution and noise contamination

of the experimental data, this methodology usually is not able to give conclusive

results. Depending on the degrees of freedom of the system, different quantifiers has

been used in order to distinguish chaos from noise. For detecting low-dimensional

chaos, metric entropy and Lyapunov exponents can be used. Grassberger & Procac-
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cia (1983) proposed a method for the evaluation of the correlation dimension based

on the assumption that any chaotic system displays a finite fractal dimension, in

opposition with a stochastic system that should display an infinite fractal dimen-

sion. A generalization of this method was proposed by Kantz & Olbrich (2000)

and Cencini et al. (2000), who presented a way to classify the behavior of the time

series as stochastic or deterministic for a given scale � in the phase space, and time

resolution τ according to the dependence of the entropy, h(�, τ) on � and τ , and

the redundancy r(�) on �. The redundancy measures the amount of uncertainty on

future observations which can be removed by the knowledge of the past (Cencini

et al., 2000). For long enough time series and for a given time scale τ , if the entropy,

h(�) saturates we can consider the system to be deterministic. On the other hand,

if the redundancy of the system is constant, for a given length scale �, the system

behaves stochastically.

Another way to quantify the degree of stochasticity of a given time trace is based

on the concept of information theory. For stochastic processes, Shannon’s entropy

is a very useful technique to measure the degree of unpredictability. An information

measure can be viewed as a quantity that depends on the probability that a certain

event occurs (the more improbable the event is, the more information we gain from

its occurrence). Therefore, firstly we need a probability distribution associated with

the time series. The determination of the most adequate probability distribution

is crucial to reveal all the relevant physical details. In what follows we give a brief

description of the information theory quantifiers used in this Thesis.

4.1 Entropy and statistical complexity

As mentioned above, completely ordered or disordered systems display opposite be-

haviors in terms of the Shannon entropy (i.e. S = 0 and S = log(n) respectively,

where n is the number of possible outcomes). Nevertheless, at a given level of ran-
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domness, away from these extremes, systems with different probability distributions

can have the same entropy, thus the entropy measures do not quantify how the pat-

terns are structured in a given process (Feldman & Crutchfield, 1998). This fact

leads to the need of using other methods in order to quantify the degree of structure

present in a process. The methods that have been proposed as general structural

measures are often referred as statistical complexity measures. Measures of com-

plexity can be useful tools for understanding neural computation (Young & Schuff,

2008), analyzing patterns in medical signals (Rosso et al., 2003), etc...

In Fig. 4.1 we show satellite images of three different cities, which exemplify the

different degrees of order that a system can show. In Fig. 4.1(a) we depict l’Eixample

of Barcelona, which is a very good example of ordered urban development. On the

opposite limit, in Fig. 4.1(c) we show the case of Mexico DF, which exemplifies a

pure random structure. In between there are several cities with an intermediate

degree of order (complex): Figure 4.1(b) shows Terrassa as an example of a complex

city.

H=0     Q=1 0<H<1     0<Q<1 H=1     Q=0 

Figure 4.1: Three different examples of cities that have different disorder degree. (a) High

order (Barcelona), (b) intermediate mix between order and disorder (Terrassa), and (c)

high randomness (Mexico DF).

With the tools presented in the paragraph above we can qualitatively measure

the degree of disorder, but if we want to quantitatively measure the complexity
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of a system we have to use a suitable quantifier. We now present the complexity

measure used during this Thesis, which we call MPR complexity, after the authors

who originally introduced it (Martin et al., 2006). This measure is defined as:

C[P ] = H[P ] ·Q[P ], (4.1)

where H[P ] is the normalized Shannon’s entropy and Q[P ] quantifies the disequi-

librium at a given probability distribution P .

We can define a complex system as a system consisting of many different and

connected parts. The complexity of a system must reach a maximum between

the limits of perfect order and perfect disorder. The evaluation of the complexity

provides additional insight into the details of the system, such as the correlational

structure between the components of the physical process under study. Contrary to

the entropy, the complexity is zero for both random and periodic processes and takes

positive values in between of these extreme cases. In Fig. 4.2 we show the evolution

of three statistical quantifiers frequently used to calculate the statistical complexity

as a function of the amount of order of the system. The red line is the normalized

Shannon’s entropy, which increases monotonically with the disorder of the system.

On the other hand, the green line depicts the Jensen-Kullback divergence, which

measures the degree of disequilibrium of the system, decreasing monotonically when

the disorder increases. Finally, the blue line is the statistical complexity defined as

the product of the two previous quantities, which shows a maximum for intermediate

values of the system disorder.

In our case we define the entropy as follows:

H[P ] = S[P ]/Smax, (4.2)

where S[P ] = −
�

N

i=1 pi log pi and Smax = logN (corresponding to the case in which

all the patterns have the same probability), with N = D! being the total number of

vectors over which P is computed and pi the probability of appearance of a certain
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Figure 4.2: Schematic representation of the behavior of the Entropy (H), the Jensen-

Kullback divergence (Q) and the statistical complexity (C) as a function of the order of

the system.

pattern π in the order sequence of a set of time-consecutive values of the system’s

state variables.

In our case, the patterns have been determined by dividing the signal {s(ti) =

{si}, i = 1 . . .M} into M −D overlapping vectors of dimension D. Then, the value

of si in a given vector is replaced by a number from 0 to D− 1, in accordance with

the relative length of si in the ordered sequence (0 corresponding to the smaller

si and D − 1 to the bigger si in each vector, as it is shown in Fig. 4.3 for the

particular value of D = 3). This is the so-called Bandt and Pompe approach (BP)

(Bandt & Pompe, 2002), which can be applied to any type of time series (periodic,

chaotic and stochastic) with a weak assumption of stationarity (the probability of a

certain pattern should not depend on time). The probability distribution P = p(π)

is defined as follows:

p(π) =
�(i|i ≤ M −D; (si+1, ..., si+D) has type π)

M −D + 1
(4.3)

Since the number of different vectors of dimension D is equal to D!, to have a good
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012 021 102 201 120 210 

Figure 4.3: Possible ordinal patterns π for D = 3. The number of ordinal patterns is

N = D!.

statistics one must have a large enough number of measures, such that M−D � D!.

The other term in Eq. (4.1) is Q[P ] = Q0JS[P, Pe], which quantifies the disequi-

librium and is calculated from the symmetric form JS[P, Pe] of the Kullback-Leiber

relative entropy K[P |Pe] (Kullback & Leibler, 1951).

JS[P, Pe] = (K[P |Pe] +K[Pe|P ])/2)

= S[(P + Pe)/2]− S[P ]/2− S[Pe]/2, (4.4)

Pe is the equilibrium distribution (pi,e = 1/N ∀ i) andQ0 is a normalization constant,

Q0 = −2

��
N + 1

N

�
ln(N + 1)− 2 ln(2N) + lnN

�−1

, (4.5)

The statistical complexity defined above is nothing more than the product between

the Shannon entropy and the Jensen-Shannon divergence, but it is worth to note

that the complexity is a nontrivial function of the entropy, because it depends on

two different probabilities distributions.

To understand how the complexity behaves under different time traces, we cal-

culate the MPR statistical complexity for three different probability distributions:

uniform, normal and Dirac distribution. In Fig. 4.4 we show the case of a process
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with uniform distribution on the unit interval [0, 1]. By calculating the patterns

using the BP method, one finds that the probability density function (PDF) for the

possible patterns is also an uniform distribution, where all the D-dimensional pat-

terns have the same probability (pi ∼ 1/D! as can be seen in Fig. 4.4(b)). Note that

as mentioned above, when all the patterns have the same probability, the entropy

S = Smax, and thus H[P ] ∼ 1 and Q[P ] ∼ 0. Therefore the complexity associated

with a uniformly distributed process is C[P ] ∼ 0.
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Figure 4.4: (a) PDF for a uniformly distributed process between 0 and 1. (b) PDF for

the possible ordinal patterns with an embedding dimension D = 6. The dashed red line

indicates the equilibrium probability.
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Figure 4.5: (a) PDF for a normal distribution with mean, µ = 0, and variance σ2 = 1. (b)

PDF for the possible ordinal patterns with an embedding dimension D = 6. The dashed

red line indicates the equilibrium probability.

In Fig. 4.5 we show a process that follows a normal distribution with mean µ = 0

and variance σ2 = 1. As in the previous example, the PDF for the possible patterns
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follows a uniform distribution and so, the complexity is C[P ] ∼ 0. At this point

it is worth to note that the value of the entropy depends on how we calculate the

probabilities. For the Gaussian process one can use directly the probability of the

distribution, P (x) = 1√
2πσ

e
(x−µ)2

σ2 , instead of the pattern probability, and then the

Shannon’s entropy is H[P ] = 1
2 ln(2πσ)+

1
2 , instead of H[P ] = 1 (obtained with the

BP method). This, however, does not modify the qualitative conclusion that can be

extracted from the statistical complexity measure.

Finally, we analyze a Dirac distribution, δ(x− µ), with µ = 0.5. In this case only

one pattern is possible, and thus H[P ] ∼ 0 and Q[P ] ∼ 1. Therefore the complexity

associated with a Dirac distributed process is C[P ] ∼ 0, as in the previous cases.

On the other hand, the complexity is non-zero, when the probability distribution

is neither uniform nor unimodal, as we will seen in Ch. 7 for the case of a laser with

feedback. In this Chapter we have analyzed the behavior of the complexity for the

time between dropouts at different pump currents.

4.2 Forbidden ordinal patterns

Another strategy that can be used to distinguish between chaotic and noisy time

series is the method of the forbidden sequences. As shown by Amigó et al. (2006,

2007, 2008) for an one-dimensional map, not all possible ordinal patterns can be

observed in the time series, i.e. there are forbidden patterns. For instance, for a

deterministic logistic map xk+1 = 4xk(1− xk), the pattern of embedding dimension

D = 3, xk+s < xk+1 < xk, never appears (Amigó et al., 2007) and so, this pattern is

forbidden.

On the other hand, in time series generated by uncorrelated stochastic processes,

for instance every ordinal patterns has the same probability of appearance. There-

fore, if the time series is long enough, all the patterns will exist. Consequently, the

existence of forbidden patterns in a long enough time series is an indication of its
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deterministic character. If the probability distribution of the stochastic process is

not uniform (i.e. correlated stochastic process), it is possible to observe forbidden

patterns if the time series is not long enough. If the time series is sufficiently long,

the patterns with low probability of appearance will eventually appear. In this case

we should call these non-observed patterns as missing patterns instead of forbidden

patterns.

For a real time series, we have always an stochastic component that can contam-

inate the data, so real data may exhibit false forbidden patterns due to their finite

and noisy character. Amigó et al. (2007) proposed a test that uses these missing

ordinal patterns to distinguish chaos from noise on finite time series contaminated

with white noise. The technique consists in three steps: a) Compute the number of

forbidden patterns in a series of adequate length (the length of the time series, M ,

has to fulfill that M >> D! + D − 1 ). b) Generate a surrogate of the sequence,

i.e., change the order of its elements in a random way. c) Proceed as in step a) with

the randomized sequence. If the obtained forbidden patterns are the same, then

the sequence is not deterministic at all (or the noise is high enough to mask the

deterministic behavior), but if the distributions of forbidden patterns are different,

one can conclude that the raw data is deterministic. In Fig. 4.6 we show an experi-

mental example corresponding to the leader-laggard dynamics of two bidirectionally

coupled semiconductor lasers (see Ch. 8 for more details), where it is possible to ob-

serve the evolution of the number of forbidden patterns as a function of the length

of the time series. In this figure, we are comparing the evolution of an experimental

time series with the surrogated time series. Due to the stochastic component of the

experimental data, the number of forbidden patterns tends to zero but with much

slower velocity than the surrogated data.

Figure 4.7(a), shows the evolution of the forbidden patterns for the logistic map, as

a function of the uniform noise amplitude, ηmax, for a fixed series length, N = 6000

and embedding dimension D = 6. In this figure one can see how the number of

forbidden patterns decreases when the noise amplitude is increased. This figure
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Figure 4.6: Evolution of the number of forbidden patterns with embedding dimension

D = 8. The experimental time series is depicted in black and the surrogated in red.

(a) 

(b) (c) 

D = 6 

Figure 4.7: (a) Number of forbidden patterns as a function of the noise amplitude. Return

map for noisy time series from logistic map with ηmax = 0.25 (b) and ηmax = 0.5 (c). From

Amigó et al. (2007)

also gives information on how far we are from a chaotic deterministic process. In

Fig. 4.7(b,c) we show the return map for two noise levels of the logistic map. For
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an intermediate amount of noise (Fig. 4.7(b)) it is still possible to observe the de-

terministic dynamics but for a high enough noise level (Fig. 4.7(c)) does not allow

to observe the underlying deterministic dynamics. However, even in this case one

can realize that the number of forbidden patterns is slightly higher than zero (cor-

responding to the purely random case) as it is shown in Fig. 4.7(a).

In Ch. 8 we have applied the ideas presented above in order to quantify the level

of stochasticity in the leadder-laggard dynamics of two mutually coupled semicon-

ductor lasers.
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Chapter 5

Temporal correlations induced by

intrinsic rate switching in a

semiconductor laser with feedback

The behavior of certain natural and technological systems often takes the form of

sequences of discrete events (point processes), whose statistical properties can be

controlled both by the internal dynamics of the system and by the environmental

conditions to which the system is subjected. Correlations in the time intervals be-

tween subsequent events (named inter-spike intervals, ISIs, in what follows) arise

in certain circumstances and can be functionally relevant. This is the case, for

instance, of sensory neurons, in which ISI correlations are known to increase infor-

mation transfer (Chacron et al., 2001) by reducing low-frequency noise (Chacron

et al., 2004). A natural question is then, what is the simplest mechanism leading to

ISI correlations?

In this Chapter we show experimentally that a semiconductor laser with feedback

operating in the low-frequency fluctuation regime (which as discussed in Ch. 2 can

be interpreted as an excitable dynamics, similar in some ways to that of a neuron)
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exhibits in a natural manner ISI correlations. This behavior is attributed to the

intrinsically complex firing behavior displayed by the laser for certain pump cur-

rents. In order to verify this conclusion we introduce an external modulation of the

dropout rate (mimicking the intrinsic complex dynamics) by means of a dichotomous

modulation of pump current. Our results show experimentally that dichotomous

modulation of the laser’s pumping leads to controlled correlations in the sequence

of inter-spike intervals.

5.1 Experimental setup

Our experimental system consists in a diode laser subject to optical feedback through

an external mirror presented in Sec. 2.1. As shown in that section, due to the

action of the delayed feedback, the laser exhibits (provided the feedback strength

is moderate and the pumping is close to threshold) an irregular series of power

dropouts that can be interpreted as excitable pulses (Giudici et al., 1997; Mulet &

Mirasso, 1999). In order to modulate the pumping we use a 100 kHz Bias T. The

schematic experimental setup is depicted in Fig. 5.1.

!!!!"#!

# 

# 

$% 

& 

'" 

Figure 5.1: Scheme of the experimental setup of a semiconductor laser subject to an

optical feedback and driven by a dichotomous noise. SL semiconductor laser; M mirror;

PD photodetector; BS beam splitter; L lenses.

The laser used in our experiment is an AlGaInP Fabry-Perot semiconductor laser,
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operating at a nominal wavelength around 650 nm. The laser intensity is captured

by a high-speed fiber photodetector with 2 GHz bandwidth. The signal is then

amplified, using a 2-GHz high-speed electronic amplifier, and sent to an oscilloscope

with 1 GHz bandwidth.

Due to the finite bandwidth of our detection system we are only able to show the

slow dynamics of the system, which is nevertheless enough for our study. Fig. 5.2(a)

shows the dynamics of the laser in response to a constant DC input in its pumping.

The feedback strength and the pump current level are chosen such that the laser

operates in the above-mentioned LFF regime.
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Figure 5.2: (a) Laser output for a constant pump current (lower panel, V = 110 mV)

and detected spikes (upper panel). (b) Weight vector �w used for used spike/no spike

classification.

Spike detection

For the general purpose of this study it turns out that spike detection by simple

threshold crossing is insufficient; here we use a pattern classification algorithm to

detect power dropouts. To this end, we have gone through the time series with

a sliding window of 400 ns, yielding a n = 201-dimensional vector �x with a time

discretization interval ∆t = 2 ns. The vector �x has been rescaled and shifted such

that the minimum and the maximum of the elements with 0 and 1, respectively. We
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used a perceptron to decide whether �x has a spike around its center. Specifically, if

�w · �x > θ, were �w is a real-valued weight vector and θ is a threshold, a spike at the

center element was considered to occur, and the sliding window was shifted forward

by a refractory time τref = 14 ns. If on the other hand �w · �x < θ, the pattern was

classified as “no spike” and the time window was shifted by ∆t. The weight vector

�w and the threshold θ have been determined using the perceptron learning rule on a

training set (�xµ
, σ

µ) of 169 “spike” (σµ = 1) and 127 “no spike” (σµ = 0) examples.

The resulting weight vector is shown Fig. 5.2(b) In order to prevent false positives in

the noise floor, additional criteria have been adopted by the perceptron to accept a

spike: we required that (i) (1/n)
�

i
xi > 0.6, (ii) the skewness of xi be smaller than

−0.8 and (iii) the local standard deviation (averaged over 10 points surrounding the

suspected spike) must be larger than 0.2.

5.2 Serial correlation (SCC) at constant pumping

Once the spikes are detected, one could ask for how the power dropouts are organized

in time. To that end, we define the k-th time interval between consecutive dropouts

as Ik, and calculate the correlation between intervals separated by n dropouts as

ρn ≡ �Ik+nIk� − �Ik+n��Ik�
�I2

k
� − �Ik�2

. (5.1)

By definition ρ0 = 1, while ρ1 measures the level of correlation between neighboring

intervals. For a Poisson process, for instance, intervals are independent of each other

and ρn = 0 for n > 0.

As depicted in Fig. 5.3(a), the sequence of power dropouts (our “spikes” in what

follows) are uncorrelated up to the critical pumping Vp = 50 mV, beyond which the

intervals between spikes appear to be significantly correlated. Serial correlation at

constant pumping becomes maximum at Vp = 100 mV, and for sufficiently high DC

signals (i.e near CC but still in LFF’s regime) the correlations start to decrease until

reaching zero again for a value of the DC signal equal to ∼ 200 mV.
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In order to investigate the origin of these correlations, we compared the joint ISI

density P (Ti, Ti+1) of the return map, i.e. of adjacent ISIs, with the joint density

Pr(Ti, Ti+1) ≡ P (Ti)P (Ti+1) associated to a renewal process (i.e. each interval is

independent from the other) with ISI density P (Ti) (Engel et al., 2008). Fig. 5.3(b)

shows the difference δP (Ti, Ti+1) = P (Ti, Ti+1) − Pr(Ti, Ti+1) between both joint

densities. The positive correlations seen at DC signals about 110 mV (Fig. 5.3(b))

are clearly due to an excess of short-short interval pairs (Ti, Ti+1) compared to the

renewal assumption, which is apparent from the significantly positive spot in the

lower left corner. The short-short events are mainly related with the appearance

of fast firing activity in the temporal series of the laser. The combination of fast

and slow firing states suggests the presence of slowly changing processes for certain

constant DC signal.
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Figure 5.3: (a) Correlation coefficient of adjacent intervals ρ1 for different levels of the

pump current. (b) Correlation map δP (Ti, Ti+1) of the DC data for V = 110 mV; solid

lines indicate the mean interval.

5.3 Two-state theory of laser dropouts

In the previous sections we have seen that the time intervals between consecutive

dropouts exhibited by semiconductor lasers with optical feedback can display, for
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large enough values of the pump current, statistical correlations. We have also

pointed out that data suggests an intrinsic slow modulation of the rate at which

the power dropouts occur. We now describe briefly a theoretical analysis of a gen-

eral two-state model that links theses two observations, showing that spontaneous

switchings between two firing-rate regimes in a generic excitable medium gives rise

to correlations in the corresponding inter-spike interval series.

We consider a discrete kinetic model in which the system switches randomly be-

tween two different states with distinct firing statistics (Fig. 5.4(a)). Mathematically,

the model takes the form of a telegraph noise S(t) that switches stochastically be-

tween two renewal processes: an active state S = 1 with high firing rate k1 and

coefficient of variation CV 1, and a quasi-quiescent state S = 2 with low firing rate

k2 and coefficient of variation CV 2. The waiting times in each state are taken to be

exponentially distributed with switching rate λ (Fig. 5.4(b)). We ignore here the

transition region between S = 1 and S = 2 in which an interval can belong to both

states.

Since firing within each of the two states is a renewal process, the only source of

correlation between inter-event intervals is the dichotomous switching between the

two states S = 1 and S = 2. The expression for the correlation coefficient involves

two averages: one with respect to the renewal process for a fixed realization of the

dichotomous process, and another one with respect to the state of the dichotomous

process itself. The resulting correlation coefficient for n ≥ 1 is (Schwalger & Lindner,

2011)

ρn =
exp

�
−
�
λ̂1 +

λ̂2
γ

�
n

�

1 + γλ̂1+λ̂2

(1−γ)2λ̂1λ̂2

�
γλ̂2C

2
V 1 + λ̂1C

2
V 2

� , (5.2)

with γ = k2/k1, λ̂1 = λ1/k1, λ̂2 = λ2/k1.
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Figure 5.4: (a) Schematic representation of a system with two states being subject to firing

with rate kj . (b) The two states (1 and 2) switch dichotomically from one to the other

at a rate λ. The symbol n denotes the event number, and In the n-th ISI. The panels

on the right represent the real situations that the schemes represent in the case of a laser

with feedback, with the upper plot showing the pump current of the laser for the case of

external dichotomous driving, and the lower plot representing a time series of dropouts

(events).

5.4 Comparison between experiments and theory

To test whether the serial correlations of the laser dropouts can be indeed associated

to two alternating renewal processes, we estimated the parameters of the two-state

model from the experimental sequence of ISIs. To this end, we labeled each interval

in the experimental time series as “fast” or “slow” firing state. This was decided

based on whether the ISI was smaller or larger than a certain threshold. The thresh-

old was chosen as the largest interval Ti in the correlation map, Fig. 5.3(a), that

significantly contributes to the prominent positive spot that gives rise to positive

serial correlations. For the analysis of the DC data, an interval was considered as
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belonging to the fast state if it was smaller than T = 35 ns. From the labeled ISI

sequence one can determine the mean number, mean length and variance of inter-

vals within a fast firing (slow firing) epoch [i.e. a subsequence of ISIs that are all

smaller (larger) than θ] yielding values for k1/2, λ1/2 and CV,1/2. The distribution of

the number of ISIs in the slow firing state was approximately exponential. Further

inspection of the correlations with fast/slow firing states reveals that the renewal

assumption is approximately obeyed in the slow firing state state (ρ1,slow ≈ 0.03)

but violated for the fast firing state (ρ1,fast ≈ 0.1).
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Figure 5.5: SCC as a function of the lag k for the DC data with V = 100 mV (a),

V = 110 mV (b), and V = 120 mV (c). Symbols represent the experimental data, and the

solid line the theoretical fit (Eq. (5.2)). The vertical error-bars are calculated as in Cox &

Lewis (1966).

In Fig. 5.5 we show ρn for three different DC pumping inputs. We observe that

the system shows small but non-negligible first-order (and second-order) serial cor-

relations. The solid lines represent the theoretical results given in Eq. (5.2), using

the values determined from the analysis of the dropout series described above. Al-

though the assumptions of our two-level theory are probably not completely obeyed,

we observe a reasonable agreement, indicating that the main source for the correla-

tions of the total sequence is an intrinsic switching between two states with different

firing statistics.
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5.5 Externally controlled state switching

In order to test our interim conclusions that it is the switching between two states

with different excitation rate what generates ISI correlations in a semiconductor laser

with feedback, we now apply an external dichotomous modulation to the system,

which we can control experimentally at will. Dichotomous noise has previously

been found to lead to non-trivial correlations of residence times in bistable systems

(Lindner & Schwalger, 2007; Schwalger & Lindner, 2008). Here we consider that

the input signal of our excitable laser switches between two values (V1 and V2)

with (symmetric) rate λ (Fig. 5.6(a)), and has an exponential correlation function

�η(t)η(t�)� = σ
2 exp[−2λ|t− t

�|], corresponding to a correlation time 1
2λ as depicted

in Fig. 5.6(b). As shown in the inset of that plot, the exponential decay of the

modulation is consistent with the analytical correlation of the dichotomous noise.

The length of the time series used to calculate the autocorrelation was 1 ms. It is
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Figure 5.6: (a) Time trace for a dichotomous noise modulation with λ = 100 kHz. (b)

Autocorrelation function of the noise. The inset shows a zoom of the autocorrelation with

the time axis in logarithmic scale.
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well known that the pumping of a semiconductor laser with feedback decreases the

mean time between consecutive power dropouts, i.e. it increases the mean firing

rate of the excitable system. Due to the dependence of the firing rate with respect

to DC input, the dichotomous driving leads to switching between two firing rates,

as shown in Fig. 5.7(a). The bottom trace in the figure depicts the response of

the laser to the dichotomous signal represented in the top trace, for a particular

switching rate λ and specific pumping levels. Figure 5.7(b) compares the serial

correlation coefficient at Vp = 100 mV for different lags with the theory described

above. The correlation exhibits an exponential decay with a good agreement with

the theoretical predictions given by Eq. (5.2). Note that, as in experiments, we have

taken λ = 100 kHz.

Figure 5.8 plots the first-order correlation coefficient ρ1 versus the ratio of the

firing rates, k2/k1, corresponding to the two pumping levels of the dichotomous

modulation. The firing rates are estimated as the average of the inverse time inter-

vals between consecutive dropouts, from time traces of the laser’s output intensity

when subject to constant DC that correspond to each of the two levels of the di-

chotomous modulation. In this experiment, we have kept one of the pumping levels

of the dichotomous modulation constant, and vary continuously the other one. The

correlation shows a minimum (different from zero) when the firing rates are equal

(i.e. in the DC case), and increases when k2 becomes smaller and larger than k1.

Interestingly, for k2 < k1 the first-order correlation exhibits a non-monotonic behav-

ior with respect to the firing-rate ratio, first growing as k2 departs (towards smaller

values) from k1, reaching a maximum and decaying again for very small k2 (for

which most ISI’s belong to a single firing state, which is renewal). This behavior

is qualitatively reproduced by the theoretical expression given in Eq. 5.2, shown by

the solid line in Fig. 5.8, which we remark has no free parameter and in this case

has been applied to the external switching, instead of the internal one considered at

the beginning of the Chapter.
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Figure 5.7: (a) Dichotomous noise modulation of the pumping (top, λ = 100 kHz) leads

to a modulation of the dropout rates (bottom, V1 = 100 mV, V2 = 0 mV). (b) Correlation

coefficient ρk measured from the extracted interval sequence (symbols, same parameter as

in (a)) and two-state theory (solid line), where the parameters were determined from the

unperturbed system. The vertical error-bars are calculated as in Cox & Lewis (1966).

5.6 Conclusions

In summary, we have shown experimentally that the power dropouts exhibited by

a semiconductor laser with optical feedback display in certain conditions, correla-

tions between inter-event intervals, and have proposed a discrete kinetic model that

explains the mechanism of appearance of those correlations as resulting from the in-

trinsic switching of the system between two states with different firing rates. In order

to test this conclusion we have applied an external random dichotomous modulation

to the pumping of the excitable laser, and have observed that this external modu-

lation also generates correlations in the time intervals between successive dropouts.

The correlations under the dichotomous modulation exhibit a characteristic pattern
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Figure 5.8: SCC at lag one as a function of the ratio of the rates γ = k2/k1 (dots). k1

was held constant corresponding to V1 = 100 mV, whereas k2 was varied by varying the

level V2. The two-state theory (based on the measured rates and Cv’s of the respective

unperturbed processes) is depicted by the solid line. The vertical error-bars are calculated

as in Cox & Lewis (1966).

as a function of the ratio between firing rates of the two levels of the modulation,

which agrees with analytical results obtained in the discrete kinetic model. These

results shed light on the minimal requirements to generate correlations in spike time

series, showing in particular that no specific mechanisms intrinsic to the spiking sys-

tem are necessary. This conclusion should be relevant to all spiking systems where

ISI correlations are important, such as neuronal systems.

Once we have understood the intrinsic mechanism responsible to induce corre-

lations in a ISI sequence one could ask how the dropouts are ordered within the

temporal series. In the following two Chapters we calculate the probability of ap-

pearance of patterns (a sequence of ISI) as well as the probabilities of transitions

between consecutive ordinal patterns and also the complexity of the ISI time series

by using tools from information theory.
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Chapter 6

Language structure of a

semiconductor laser with feedback

In the previous Chapter we studied the first-order correlations that arise from the

inter-dropout time series. We saw that correlations arise due to variations in the

dropout rate across time, and were able to reproduce these correlations in a con-

trolled way by applying an external current modulation. Our goal in this chapter

is to shed light into the higher-order structural characteristics of the distribution of

time between dropouts.

As shown in the previous Chapter, the specific subthreshold dynamics of an ex-

citable system (such as a semiconductor laser with feedback) determines the corre-

lation statistics of the pulse trains that it generates (Chacron et al., 2004). In turn,

these correlations affect the functionality of the system, by regulating for instance its

information encoding capabilities (Chacron et al., 2001; Avila-Akerberg & Chacron,

2011). It is thus important to establish the temporal organization of the spiking

activity displayed by excitable systems. In this chapter we present a method to

characterize this temporal organization based on symbolic analysis of the series of

inter-dropout time intervals.
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Much effort has been devoted to understand and characterize the excitable na-

ture of the intensity power dropouts exhibited by semiconductor laser with optical

feedback. In particular, an issue that has attracted much attention is the relative

influence of the stochastic and deterministic nonlinear processes that are responsi-

ble for the dropouts. Several authors have investigated the characteristics of the

LFFs in terms of the statistics of both the intensity fluctuations (Sukow et al., 1999;

Hales et al., 2000; Torcini et al., 2006) and the time intervals between consecutive

dropouts (in particular their probability distribution function) (Hohl et al., 1995;

Mulet & Mirasso, 1999; Yacomotti et al., 1999; Martinez Avila et al., 2004; Hong &

Shore, 2005b,a).

In this Chapter, we calculate the probabilities of transitions between consecutive

ordinal patterns (Jalan et al., 2006). As discussed in Ch. 4, the ordinal pattern

methodology is based on defining patterns (or “words”) in a time-series that result

from ordering relations in sets of consecutive values of the series. In other words,

we analyze the “language” of the LFFs by detecting consecutive words that appear

with high relative frequency, similar to the sequences of words “it is” and “they are”,

which are quite common in the English language. This analysis, in turn, provides

us with the opportunity of performing a detailed comparison between experiments

and theory.

Our results show that close to coherence collapse (but still in the LFF regime)

not all the transition probabilities are equally probable; there are a few of them

significantly more probable than the rest, which we consider to be a signature of

deterministic triggering mechanisms. On the contrary, closer to threshold all the

transition probabilities are similar, which suggests that in this region the LFFs

are mainly triggered by noise. This result is coherent with previous reports in the

literature, both for single lasers with optical feedback (Hales et al., 2000; Lam et al.,

2003) and for coupled lasers, as we will show in Ch. 8.

We compare the experimental results with model predictions. Several models have
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been proposed in the literature to explain the LFF dynamics (Eguia et al., 1998;

Viktorov & Mandel, 2000; Huyet et al., 2000; Prasad et al., 2001). A well known

model is the Lang-Kobayashi (LK) model, introduced in Sec. 2.1. As discussed in

that Section, the LK model has been shown to successfully describe many features of

the LFFs (Mork et al., 1992; Heil et al., 1999b; Sukow et al., 1999; Buldú et al., 2006;

Torcini et al., 2006). A phenomenological model, proposed by Eguia, Mindlin and

Giudici (Eguia et al., 1998) (in the following referred to as EMG model), consisting

of a set of ordinary differential equations, has also been shown to explain many

features of the LFFs (Yacomotti et al., 1999; Mendez et al., 2001, 2002).

In this Chapter we compare the predictions of these two models and find that the

experimental observations are in good agreement with simulations of the LK model;

in particular the word that is significantly more probable in the LK simulations is

the same as in the experiments. On the other hand, the agreement with simulations

of the EMG model is only qualitative, as in simulations of this model the most

significant word is not the same as in the experiments. Thus, we show that the

ordinal pattern method can also be used to distinguish among theoretical models.

6.1 Symbolic analysis of low-frequency fluctua-

tions

The experimental system used in this chapter consists in a laser diode subject to

optical feedback from an external cavity. The laser used in the experiment is an

AlGaInP Fabry-Perot semiconductor laser (Sharp GHO6510B2A) operating at a

nominal wavelength λn= 650 nm. The temperature and pump current of the laser

are controlled with an accuracy of ±0.01 oC and ± 0.01 mA. For a temperature

T = 18.30 oC, the threshold current of the solitary laser is Ith=29.39 mA. The

round-trip time in the external cavity is 2.5 ns. The laser intensity is detected by

a high-speed fiber photodetector with a bandwidth of 2 GHz (DET01CFC), whose
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signal is amplified using a 2-GHz high-speed amplifier (Femto) and sent to a 1-

GHz oscilloscope (Agilent DS06104A). Due to the relatively low bandwidth of the

detection system, we are only able to measure the slow feedback-induced dynamics

(i.e., the LFF power dropouts) and not the fast picosecond pulses.

The laser output was measured for increasing bias current, which leads to an

increase in the frequency of the power dropouts. The dropouts start to merge

for large enough pump current, thus leading to the qualitatively different dynamical

behavior of coherence collapse (see Sec.2.1.2). In Ch. 7 we characterize this transition

in terms of complexity measures applied to the time-series of inter-dropout intervals

(IDIs). The results showed that the normalized Shannon entropy was close to 1 all

the way up to a critical pump current, which we will refer to as Ic, Ic � 33 mA,

after which it leveled off rapidly at a value smaller than 1.

In order to further characterize these variations in the dynamical behavior of

the LFFs, we transform the time series of IDIs, {∆T0,∆T1,∆T2, . . . } into a series

of words or “ordinal patterns” (OPs), {s1, s2, . . . }. As discussed in Ch. 4 a first

step is to divide a time series {x(t), t = 1 . . .M}, into M − D overlapping vectors

of dimension D. Then, each element of a vector is replaced by a number from 0

to D − 1, in accordance with the relative strength of the element in the ordered

sequence (0 corresponding to the shortest and D − 1 to the longest value in each

vector). Each vector has then associated an “ordinal pattern” composed by D

symbols. For example, with D = 3, the IDI sequence {∆T0,∆T1,∆T2} = {5, 1, 10}
gives the ordinal pattern (1 0 2), as ∆T1 < ∆T0 < ∆T2.

The number of different ordinal patterns of dimension D is D!. By counting the

number of times a pattern si appears in the sequence {s1, s2, . . . } one can compute

the probability distribution function (PDF) of the ordinal patterns. Since the num-

ber of possible ordinal patterns is D!, to have a good statistics one must have a long

enough time series, such that (M −D) � D!.

In the following we consider various pattern lengths, specifically D = 2, 3, and
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4 and compute the PDFs of the D! possible patterns, and the D! × D! transition

probabilities (TPs) between these patterns (Jalan et al., 2006). The TPs quantify

the frequency in which a certain pattern in the time series transforms into another

one, and constitute a novel way to yield insight into time-correlations present in the

laser dynamics.

The ordinal patterns can be labeled, without loss of generality, by means of a

scalar, α = 1, . . . , D!, with increasing values according to their degree of increase

between consecutive IDIs. For instance:

• In the case D = 2, the order relation ∆Tm ≥ ∆Tm+1 for the m-th and (m+1)-

th IDIs of the series (‘10’ in the notation of BP) corresponds to α = 1, while

α = 2 denotes the pattern ∆Tm < ∆Tm+1 (‘01’ in the BP notation), see

Fig. 6.1;

• In the case D = 3, α = 1 represents the ‘210’ pattern (∆Tm ≥ ∆Tm+1 ≥
∆Tm+2), α = 2 stands for the ‘201’ pattern (∆Tm ≥ ∆Tm+2 > ∆Tm+1), and

so on.

Using this notation, the TPs can be expressed as P (α → β), where α and β can

take any value of the set {1, . . . , D!}, and

P (α → β) =

�
L

t=1 n(st = α, st+1 = β)
�

L

t=1 n(st = α)
, (6.1)

where n is a count of the number of times of occurrence in the series of OPs,

{s1, s2, . . . sL}, of length L.

Only non-overlapping words are considered in what follows. Hence for M IDIs,

the number of patterns generated is L = �(M − D)/D� + 1, where �x� denotes

the largest integer less than or equal to x. Under these conditions, for surrogated

data all TPs are expected to be equal to 1/D!, corresponding to a Markov process

between word pairs. In order to have good statistics the number of OPs must be
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much larger than the number of possible transitions, i.e. (M−D)/D � D!×D!. In

the following section the analysis is done with time-series of M � 104 IDIs, which

results in sequences of about 3300 (5000) words of D = 3 (D = 2).

6.2 Experimental results

A typical example of the word transitions discussed above is displayed in Fig. 6.1,

where two instances of the transition from the word α = 2 (‘01’) to the word

β = 1 (‘10’) can be seen. In the experimental time series, Fig. 6.1, this is a typical

situation: when the pump current is greater than the critical pump current, Ic � 33

mA, the transition from word α = 2 to word β = 1 is over-represented in the laser

language (for comparison, Fig. 6.7 displays numerical results that will be discussed

in Sec. 6.3). This can be clearly seen in Fig. 6.2, which plots the PDFs of the

two words (top panels) and the probabilities of the four transitions between them

(bottom panels). The figure compares the results obtained from analyzing both the

experimental time series (left panels) and the surrogated time series (right panels).
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Figure 6.1: Experimental time series of the laser intensity for an injection current I = 34

mA. The circles indicate the times used to calculate the inter-dropout intervals, and a few

words and transitions are indicated as examples.

Figure 6.2(a) reveals that, for D = 2 the two words (‘01’ and ‘10’) are equally
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Figure 6.2: Probability distributions (a,b) of the two possible words for D = 2 (α = 1

in black and α = 2 in red), and the four possible transition probabilities (c,d) between

consecutive words (colors corresponds to the transitioned word) vs the laser injection

current. Captions (a, c) display results for the experimental time series and (b, d) for

the surrogated data. The dashed horizontal gray lines indicate the equally distributed

probabilities that are expected for random series.

represented in the experimental time series up to the critical current value Ic �
33 mA, beyond which one of the words (‘10’, α = 1) becomes over-represented at

the expense of the other (‘01’, α = 2). This behavior is related to the changes in

the statistical complexity that will be discussed in Ch. 7 below, at the same pump

current.

We note that this behavior is robust and does not depend on where on the IDI

series the word encoding begins. This contrasts with the case of a regular periodic

series: for a repetitive set of words α = 2 (‘01’), for instance, a shift of one position

in the IDI series would transform all the words into α = 1 (‘10’). The fact that this

does not happen in our case highlights the irregular character of our series, in spite of
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which a clear over-representation of a word emerges for large enough pump current.

Note that in Fig. 6.2(a) the two PDFs level off shortly after Ic. This phenomenology

is conspicuously absent for the surrogated series (Fig. 6.2(b)).

Concurrently with the changes exhibited by the word PDFs as the pump current

increases, a similar behavior occurs for the transition probabilities. In particular,

starting again at Ic = 33 mA the transition from α = 2 to β = 1 becomes clearly

over-represented, in this case at the expense of the 2 → 2 transition, as shown in

Fig. 6.2(c). Transitions departing from α = 1 are left unchanged throughout all

pump levels. Once again, the phenomenon is, as expected, absent in the surrogated

series (Fig. 6.2(d)).

The results presented above for D = 2 (two-letter words) are also seen for three-

letter words, D = 3. For instance, regarding the relative frequencies of the 6 words

that exist for D = 3, once more all words are equally probable for low enough

pump currents (Fig. 6.3(a)). However, for currents above the critical, value one of

the words (α = 1, namely ‘210’) becomes over-represented, at the expense mainly of

α = 2 (‘201’), which becomes less frequent than the average, also in comparison with

the surrogate (Fig. 6.3(b)). In general, the results reveal a large heterogeneity in the

relative frequencies of the different words for I > Ic, with several words departing

from the equi-distribution value, either above or below it, and in different amounts.

The most frequent word, α = 1, appears to be also the most transitioned to, as

shown in Fig. 6.4. Correspondingly, the least frequent word, α = 2, is also the one

less transitioned to. Therefore, decreasing patterns seem to be the predominant ones

when the pump current is above the critical value. These conclusions also hold for

words of four letters, where ‘3210’ appears to be the most recurrent pattern beyond

Ic (however, the differences among the probabilities of the different words are less

pronounced, results not shown).

In order to make more evident the heterogeneity of the word PDFs and TPs

reported above, in Fig. 6.5 we compare, for D = 3 the PDFs of the 6 possible
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Figure 6.3: Probability distributions of the 6 words with D = 3 vs. the pump current,

for both the experimental (a) and the surrogated (b) time series. The different words are

represented in grayscale, with black corresponding to α = 1, and lighter grays to increasing

α up to 6.
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Figure 6.4: Transition probabilities vs. pump current for the 36 possible transitions be-

tween consecutive words with D = 3. The plots are organized according to the starting

word, with the final word represented in grayscale, following the criterion of Fig. 6.3. Re-

sults for the experimental series are shown in (a), and for the surrogate series are shown

in (b).

words (left panels) and the 36 TPs (right panels) for two different injection currents:

below the critical current value Ic (top panels) and above the critical current value

Ic (bottom panels). In all the panels, the black bars correspond to the experimental

series, and the red ones, to the surrogated series.
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One can notice that in the panel corresponding to I > Ic the word distribution

shows a behavior clearly different from that of the surrogate data (panel c), while

these differences disappear when the pump current is smaller than Ic (panel a). The

TPs are more heterogeneous above the critical current, in comparison with surrogate

data (panel d), than below the critical current (panel b).
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Figure 6.5: Histograms of the occurrences of words of D = 3 (a, c) and consecutive

transitions (b, d) at a pump current below the critical value, I = 32 mA (a, b) and

above the critical value, I = 34 mA (c, d). The number of transition are labeled from

α = 1 → β = 1 (γ = 1) to α = 6 → β = 6 (γ = 36). Black bars correspond to the

experimental series, and the red ones to the surrogated series.

So far we have analyzed transitions probabilities between consecutive words, but

there could be higher-order correlations in the word transitions. An inspection of

panels (a) and (c) of Fig. 6.2 reveals that, for I > Ic, differences for the TPs are

higher than for the PDFs. For instance, for I = 34 mA, the under- and over-

represented TPs are close to 0.4 and 0.6, respectively, whereas the PDFs are close

to 0.45 and 0.55. In other words, the TPs exhibit asymmetries larger than the words

PDFs.
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In order to see how long-lasting these high-order correlations are, we performed

a statistical analysis of the transitions between non-consecutive words. Figure 6.6

shows, for a fixed laser current, the probabilities of transitions between increasingly

distant patterns,

Pτlag
(α → β) =

�
L

t=1 n(st = α, st+τlag
= β)

�
L

t=1 n(st = α)
, (6.2)

where n is a count of the number of times of occurrence in a series.

Figure 6.6 shows that as transitions between more “distant” words are considered,

i.e., as τlag increases, word correlations are lost and the TPs end up exhibiting the

statistical nature of the word appearances in the IDI series, as revealed by the PDFs.

In other words, the deterministic signature arising for injection currents larger than

Ic is lost when transitions between non-consecutive patterns distant more than 2

IDIs are considered.
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Figure 6.6: Transition probabilities between words ofD = 2 separated by τlag (see Eq. 6.2),

for an injection current above the critical value, I = 34 mA. Right column: experimental

data; left column: surrogate data. Circles correspond to α = 1 and squares to α = 2.

Colors stand for the transitioned pattern: black is β = 1 and red is β = 2.

We conclude this section by remarking that these observations are robust against

experimental parameter variations such as time delay and feedback strength. We

performed experiments with different semiconductor lasers and setup arrangements,

and observed the same results. Specifically, the words ‘10’ for D = 2 and ‘210’
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for D = 3 are over-represented in the LFF dynamics for current values close to

coherence collapse.

We interpret these observations as due to the topology of the phase-space of the

laser dynamics, that is such that, when the dropouts are very frequent, if a dropout

occurs before the laser is fully recovered from the previous one, it performs an

excursion in phase space that is shorter than the previous one, so that the following

inter-dropout interval will be shorter than the previous one.

6.3 Comparison with theoretical models

In order to test whether the above reported observations are particular to the specific

experimental conditions used for the generation of the time series, we now turn

to numerical modeling. We compare the observations with the predictions of two

models: the Lang-Kobayashi model (Sec. 2.1.1) and EMGmodel (Eguia et al., 1998).

6.3.1 The LK model

First we compare the experimental results with the Lang-Kobayashi model presented

in Sec. 2.1.1. Figure 6.7 shows the simulated time series obtained with the LK

model. This figure already suggests that α = 1 is a frequent word, and that the

inter-word transition going from α = 2 to β = 1 is also frequent, in good agreement

with the experimental results. In order to verify this observation, we now perform

systematic numerical simulations to quantify the corresponding PDFs and TPs with

good statistics.

Table 6.1 lists the parameter values used in the numerical simulations described

below. For these parameters we have (except when the injection current is close to

the threshold) a large number of power-dropouts before the LFFs die away (Zamora-

Munt et al., 2010a; Torcini et al., 2006). This allows to compute the word PDFs
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Figure 6.7: Simulated intensity from the LK model with a pump current parameter µ =

1.08. The circles indicate the times used to calculate the inter-dropout intervals, and a few

words and transitions are indicated as examples. The parameters used in the numerical

simulations are given in Table 6.1.

with good statistics. When the pump current parameter is close to threshold, the

transient LFF dynamics is short and there are not enough dropouts to compute the

word statistics reliably. To overcome this problem we simulated several stochastic

trajectories, with both different noise realizations in the rate equations and different

stochastic initial conditions, which were chosen with the optical field at the noise

level, E(t) = ξ(t), 0 ≤ t ≤ τ , and N(0) = 0.

The PDFs of the words resulting from these IDI series, and the corresponding TPs,

are shown for increasing pump currents in Fig. 6.8. The results show a qualitative

agreement with Fig 6.2: as the pump current increases, the frequency of the word

α = 1 (‘10’) grows, and the transition from α = 2 to β = 1 (i.e. from ‘01’ to ‘10’)

becomes more probable.

The results for D = 3 (Fig. 6.9) show the same qualitative agreement with the

experiments as forD = 2. In particular, forD = 3 the word α = 1 (‘210’) is the most

probable to occur and to be transitioned to. The agreement also holds for the least

likely word (α = 2, i.e. ‘201’), as can be seen in Fig. 6.9(a). We note that for both

D = 2 and D = 3, the agreement between theory and experiments is remarkable,

99



Chapter 6: Language structure of a semiconductor laser ...

1.02 1.04 1.06 1.08 1.1
0.45

0.5

0.55
PD

Fs

µ

(a)

1.02 1.04 1.06 1.08 1.1
0.45

0.5

0.55

PD
Fs

µ

(b)

0.4

0.5

0.6

P(
1 

 
)

(c)

1.02 1.04 1.06 1.08 1.1
0.4

0.5

0.6

P(
2 

 
)

µ

0.4

0.5

0.6

P(
1 

 
)

(d)

1.02 1.04 1.06 1.08 1.1
0.4

0.5

0.6
P(

2 
 

)

µ

Figure 6.8: Results of simulations of the LK model. Words with D = 2 are considered.

(a,b) PDFs of the two possible words vs. the pump current parameter, computed from the

numerical time series (a) and their surrogates (b). Panels (c,d) depict the corresponding

TPs between consecutive words, again for the numerical series (c) and the surrogated (d).

The color coding is as in Fig. 6.2.

as the preferred word and transition are the same here as in the experimental time

series. This result is relevant because it demonstrates that the behavior is a general

feature of semiconductor lasers with optical feedback, and not of the specific device

and/or conditions of this experiment.
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Table 6.1: Laser parameters of the numerical model in the LFF regime

Symbol Parameter Value

µ pump current of LD1 1.02 · · · 1.1 · µth

τ feedback time delay 3 ns

κf feedback strength 60 ns−1

γe inverse carrier lifetime 1 ns−1

γ inverse photon lifetime 0.3 ps−1

α linewidth enhancement factor 4

� saturation coefficient 0.01

β noise intensity 1 · 10−4 ns−1
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Figure 6.9: Results of simulations of the LK model, considering words with D = 3. PDFs

of the six possible words vs. the pump current, computed from the numerically generated

time series (a) and the corresponding TPs between consecutive words (b). The color

coding is as in Fig. 6.3.
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6.3.2 The EMG model

The rate equations of the phenomenological, low-dimensional model proposed by

Eguia et al. are (Eguia et al., 1998):

dx

dt
= y +

�
2βξ(t) (6.3)

dy

dt
= x− y − x

3 + xy + �1 + �2x
2 (6.4)

where �1 and �2 are control parameters, β is the noise strength and ξ(t) is a Gaussian

white noise.

The model exhibits excitability for appropriate parameters (Méndez et al., 2005).

In the excitable regime the model has three fixed points: a stable focus (node), a

saddle point and an unstable focus (repeller). An initial condition close to the node,

in the presence of noise, may result in a trajectory that crosses the stable manifold

of the saddle and relaxes back after a long excursion in phase space. These pulses

can be associated to the dropouts of the laser intensity in the LFF dynamics. The

noise term makes the LFF’s sustained in time. A typical time-series displaying such

noise-induced pulses was presented in Fig.6.10.
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Figure 6.10: Simulated time trace from the EMG model with β = 0.1, �1 = 0.26, and

�2 = 0.44. The circles indicate the times used to calculate the inter-dropout intervals.

Few words are indicated as examples.

We computed the PDFs of the ordinal patterns and the corresponding TPs, for
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parameters within the excitable region, when the amount of noise is varied. The

results are presented in Figs. 6.11 (PDFs) and 6.12 (TPs) for the original and for

the surrogated data. First, one can observe that for low noise strength all words are

equally probable (as in the experiments and LK simulations) while for an intermedi-

ate amount of noise the word ‘012’ (α = 6) shows a higher probability of appearance,

which does not occur neither in the experiments nor in the LK simulations. For even

higher noise strength not only the word ‘012’ is over-represented, but also the word

‘210’ is over-represented, which also does not fully agree with the experiments and

the LK simulations, where only the word ‘210’ is over-represented.
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Figure 6.11: Results of simulations of the EMG model, considering words with D = 3.

The PDFs of the six possible words are plotted vs. the noise strength (in arbitrary units):

(a) original data, (b) surrogated data. The color coding is as in Fig. 6.3 except the word

‘012’ (α = 6), which now is represented, for clarity, with a black line and unfilled squares.

Parameters are those of the bottom plot of Fig. 6.1.

Therefore, we can conclude that, while the EMG model captures many features

of the LFFs, the subtle time-correlations among a few consecutive dropouts is not

fully represented. This can be due to the low-dimensionality of the EMG model.

The laser with optical feedback is a time-delayed system and in that sense the LK

model, which has a delayed term, is more likely to represent the high-dimensional

phase space of the experimental system.
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Since in the EMG model the parameter �1 has been associated with the laser

bias current (Yacomotti et al., 1999), we also studied the effect of varying this

parameter and did not find an improvement in the agreement with the experimental

observations (results not shown). Perhaps in this model, to effectively simulate

the variation of the laser current, one needs to simultaneously vary both �1 and β;

however, this is an interesting study that is beyond of the scope of the present work

and that is left for future work.

Our results also point at the fact that the ordinal pattern methodology can be

a powerful tool for determining subtle differences among various numerical models,

that cannot be uncovered by other methods that do not take into account the time-

ordering of the sequence of dropout events, such as the study of the inter-spike time

distributions.

0.1

0.2

P(
1 

 
)

(a)

0.1

0.2

P(
2 

 
)

0.1

0.2

P(
3 

 
)

0.1

0.2

P(
4 

 
)

1000.1

0.2

P(
5 

 
)

1000.1

0.2

P(
6 

 
)

0.1

0.2

P(
1 

 
)

(b)

0.1

0.2

P(
2 

 
)

0.1

0.2

P(
3 

 
)

0.1

0.2

P(
4 

 
)

1000.1

0.2

P(
5 

 
)

1000.1

0.2

P(
6 

 
)

Figure 6.12: Transition probabilities vs. the noise strength (in arbitrary units) for simula-

tions of the EMG model. The 36 possible transitions between consecutive non-overlapping

words with D = 3 are shown. The plots are organized and colored according to the same

criteria used in Fig. 6.4. Results of the original time series are shown in (a), and of the

surrogate series, in (b). Parameters are those of the bottom plot of Fig. 6.1.
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6.4 Conclusions

We have characterized experimentally and numerically the language organization of

a semiconductor laser with optical feedback, operating in an excitable regime. This

regime allows us to represent the laser dynamics in terms of a “language” of words,

which represent the ordinal relations within sets of consecutive inter-event intervals.

Our results show that at low pump currents all words occur with the same fre-

quency and the same probability to be transitioned to, thus we can interpret that

the dropouts are uncorrelated and memory effects play no role, and consequently

that the dropouts are mainly driven by noise. As the injection current increases

the dropouts become more frequent and time correlations between them appear.

These correlations imply that there is some memory in the system, so that certain

words and transitions become more frequent than others. We conjecture that this

behavior is a signature of determinism in the system for sufficiently large pump

currents. This result agrees with previous investigations of the same experimental

situation via complexity measures (Tiana-Alsina et al., 2010), but goes beyond that

analysis, since the distribution of transition probabilities between words quantifies

a higher-order organization of the language.

We have also shown that the words lose their correlations when we increase the

distance between transitioning words, at which point the TPs match the probability

of the word appearance.

We also performed a critical comparison of the observations with the predictions

of two models: the Lang-Kobayashi (Ch. 2) model and EMG model (Eguia et al.,

1998). The LK model is time-delayed model (and thus, its phase space is infinite

dimensional) while the EMGmodel is a low-dimensional one. We found that, in spite

of the fact that both models successfully predict the probability distribution of the

inter-dropout intervals, their predictions differ regarding the probability distribution

of the ordinal patterns and the transition probabilities.
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In the LK model the preferred word and transition coincide with the experimen-

tal time series, which confirms the generic nature of the experimental observations,

independent of the semiconductor laser device and/or the parameters. In the EMG

model the agreement is not as good, as not only the word ‘210’ is over-represented

(in good agreement with observations), but also the word ‘012’ is over-represented,

which is not observed experimentally. Therefore, our results also show that the or-

dinal pattern methodology can be a powerful tool for determining subtle differences

among excitable models, that can not be uncovered by methods that do not take

into account the time-ordering of the sequence of excitable pulses.

In the following Chapter we will use the patterns probabilities computed by using

the Bandt and Pompe method in order to characterize the dynamics of the system

by means of information-theory measures, such as the Shannon entropy and the

MPR-statistical complexity (Martin et al., 2006). In particular, we investigate the

gradual change in the dynamics that takes place during the transition from LFFs

to coherence collapse when the laser bias current increases.
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Chapter 7

Quantifying the statistical

complexity in a semiconductor

laser with optical feedback

In the previous Chapter, we quantified linear correlations and transition proba-

bilities in a semiconductor laser with feedback, using a method based on ordinal

patterns, by which the relative length and ordering of consecutive inter-dropout

intervals (i.e. the time intervals between consecutive intensity dropouts) are ana-

lyzed, disregarding the precise timing of the dropouts and the absolute durations

of the inter-dropout intervals. In this Chapter we extend the characterization of

the dynamics of that system by using two nonlinear quantifiers, namely Shannons

entropy and MPR statistical complexity measure. We show that this methodol-

ogy is suitable for quantifying subtle characteristics of the LFFs, and in particular

the transition to fully developed chaos that takes place when the laser’s pump cur-

rent is increased. Many studies of optical feedback effects exist, but no systematic

quantification of the level of statistical complexity exhibited by these systems, in

particular in the regime of chaotic dynamics, exists so far. Our method shows that
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the statistical complexity of the laser does not increase continuously with the pump

current, but levels off before reaching the coherence collapse regime. This behavior

coincides with that of the first- and second-order correlations of the inter-dropout

intervals, suggesting that it is these correlations, and not the chaotic behavior, that

determine the level of complexity of the laser’s dynamics. These results hold for two

different dynamical regimes, namely sustained LFFs and coexistence between LFFs

and steady-state emission.

As we have shown in Ch. 2, a characteristic feature of LFFs is that, as the laser bias

current increases, the average time interval between consecutive dropouts decreases,

and the dropouts become increasingly frequent and begin to merge (Heil et al.,

1998). Thus, there is a gradual transition through which the output power becomes

increasingly irregular with increasing bias current. For large enough bias current no

dropouts are observed, but rather a completely irregular intensity time trace arises,

a regime which has been termed fully developed coherence collapse (see Ch. 2 for

an introduction).

Another characteristic of the LFF regime is that, in a wide region of parameters,

it co-exists with stable emission, with the relative durations of the stable emission

state and the LFF state depending on the bias current, the feedback strength, and

the phase-amplitude coupling factor (α−factor) (Heil et al., 1998, 1999a; Heil, 2000;

Hong & Shore, 2005a). The coexistence of LFFs and stable emission has raised the

issue of whether the LFFs are a transient dynamics which turns into a sustained

one due to the presence of noise. Several studies have focused on characterizing

deterministic chaotic features of the dropouts (Martinez Avila et al., 2004; Ray

et al., 2006), as well as stochastic properties (Hohl et al., 1995). It has been shown

(Davidchack et al., 2000b,a; Torcini et al., 2006; Zamora-Munt et al., 2010a) that

the α−factor strongly influences the operation regime of the laser. For small α, the

LFFs are transient for all levels of optical feedback, after which the laser settles

into a stable operation mode; for intermediate values of α, the regime of sustained

LFFs alternates with “windows” of transient LFFs; for large α, the laser operates
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in sustained LFFs (Davidchack et al., 2000b,a).

In spite of the vast amount of research done on the LFF instability, the statis-

tical complexity of this dynamical regime has, to the best of our knowledge, not

been investigated so far. Here we address this issue from the perspective of infor-

mation theory, which allows us to quantify the complexity of the LFF regime as it

approaches fully developed coherence collapse, for increasing intensity of the laser’s

pump current.

Most systems in nature are neither completely ordered nor completely disordered,

but something in between (see Ch. 4 for an introduction). Within the framework of

information theory, the statistical complexity of a system is zero in the extreme situ-

ations of complete knowledge (or “perfect order”) and total ignorance (or “complete

randomness”). Both are simple situations, as one is fully predictable, and the other

one has a simple statistical description. In order to capture the diversity and the

rich spectrum of unpredictability occurring between these two extreme situations,

many statistical complexity measures have been proposed in the literature (Lem-

pel & Ziv, Jan 1976; Grassberger, 1986; Crutchfield & Young, 1989; Wackerbauer

et al., 1994; Pincus, 1995; Lopez-Ruiz et al., 1995; Palus, 1996; Bandt & Pompe,

2002; Martin et al., 2006; Ke & Tong, 2008). These are useful tools for analyzing

high-dimensional dynamics presenting underlying, hidden, or unobserved states that

might organize the system’s behavior. Statistical complexity measures are particu-

larly useful when there is no prior knowledge of the hidden dynamics. They have

been used, for instance, to characterize spatio-temporal patterns (Kaspar & Schus-

ter, 1987), distinguish noise from chaos (Rosso et al., 2007), and identify a transition

from a healthy to a diseased state in the brain (Young et al., 2005).

The LFF power dropouts, being a slow modulation of fast high-dimensional pulses,

are a potentially interesting dynamical regime to be analyzed with complexity tools.

Here, following Martin et al. (2006) and Rosso et al. (2007), and as discussed in Ch. 4,

we employ the MPR statistical complexity measure C[P ], defined as a functional of
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the probability distribution function P that characterizes the state of the system.

C[P ] is the product of the “disequilibrium”, Q[P ], which measures the distance to

the equilibrium state, and the normalized Shannon entropy, H[P ]. Defined in this

way, C[P ] can be expected to display a maximum somewhere in between H = 0

(complete order) and H = 1 (complete disorder).

A crucial step for obtaining meaningful results is to define a probability distribu-

tion P that fully characterizes the system, i.e. that captures the organization of the

hidden fast dynamics underlying the LFF dropouts. While one could just define P

in terms of the distribution of either intensity fluctuations or inter-dropout intervals,

this would result in neglecting time correlations that may exist between consecutive

dropouts. In this Chapter we use the probability distributions, that takes into ac-

count the time ordering of the dropouts, obtained in the previous Chapter (Ch. 6)

and presented in Rubido et al. (2011) . Even though the BP method ignores the pre-

cise timing of the dropouts and the absolute duration of the inter-dropout intervals,

it reveals, as we show below, interesting new features in the transition from LFFs to

fully developed coherence collapse (such as enhanced complexity accompanied by a

decrease of the entropy).

7.1 Experiments

The experimental system consists of an AlGaInP Fabry-Perot semiconductor laser

(Sharp GH06510B2A) with a nominal wavelength λn = 650 nm, subject to optical

feedback from an external mirror. Details of the experimental setup can be found

in Ch. 6 (Sec. 6.1).

Power dropouts for three different values of the pump current are shown in Fig. 7.1,

whose panel (a) represents the output intensity corresponding to a dynamical be-

havior where there is coexistence between stable emission and LFFs. As described

in Ch. 2 above, within the coexistence region the duration of the LFF intervals
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increases with the pump current and the feedback strength. In Fig. 7.1(b) the in-

jection current is high enough to be outside of the coexistence region, and the laser

intensity displays sustained LFFs. Due to the increment of the injection current, the

time between consecutive dropouts is shorter. Finally, in Fig. 7.1(c), the injection

current is high and the laser operates close to coherence collapse, characterized by

highly irregular oscillations of the light intensity.

Figure 7.1: Time traces for three different values of the pump current corresponding

to three different dynamical regimes: (a) coexistence of LFFs and stable emission, (b)

sustained LFFs and (c) transition to coherence collapse. Ia = 31.20 mA, Ib = 32.40 mA

and Ic = 35.00 mA. The horizontal scale is the same in the three panels.

Time series with more than 104 dropouts were recorded for various values of the

pump current. For low pump currents the dropouts are infrequent and very long time

series had to be recorded; thus, a small sampling rate was used in the digital acqui-

sition system. For high pump currents the dropouts are more frequent, and shorter

time series were recorded with a larger sampling rate. The sampling rates used in

the experiments ranged from 250 megasamples/second to 1 gigasample/second.
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Figure 7.2: Mean value of the inter-dropout interval as a function of the pump current

for two different experimental measurements that differ in the alignment of the external

mirror, and thus in the optical feedback strength. For one data set (referred to in the text

as set I and indicated with circles) the mean inter-dropout interval is longer than for the

other data set (set II, squares). This occurs in all the range of variation of the injection

current, except at the lowest current values in set II.

7.2 Statistical characterization of the time series

Figure 7.2 displays the mean time between consecutive dropouts, �T �, as a function

of the pump current, for two experimental realizations that differ in the alignment

of the external mirror. This results in different couplings between the intra-cavity

field and the re-injected field. The two couplings are distinct enough to lead to

two different dynamical regimes (sustained LFFs –set I–, and dynamic alternation

of LFFs and stable emission –set II–), but similar enough to have a comparable

threshold reduction due to the feedback (around 7%). As can be seen in Fig. 7.2,

in the two sets of experimental measurements the mean time between consecutive

dropouts decreases with the injection current, as mentioned previously. We have

adjusted the experimental conditions to be as similar as possible to each other, with
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the goal of analyzing data that were different only in their dynamical behavior.
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Figure 7.3: (a) Normalized standard deviation of the inter-dropout intervals (IDIs) as a

function of the injection current, for two different experimental realizations. (b) First-

and second-order IDI correlation coefficients as a function of the injection current, again

for two different experimental realizations. Circles correspond to set I and squares to set

II.

In the next section we analyze via ordinal patterns the time-series measured un-

der these different conditions and contrast their complexity measures. But before

computing the complexity of the time series, we first characterize them statistically.

Figure 7.3(a) displays the normalized standard deviation of the inter-dropout inter-

val (or coefficient of variation), Cv = σ/�T �. Note that a decrease of Cv indicates

enhanced regularity of the dropouts. Close to the solitary threshold (in the range

from 30 to 32 mA) the increase of the injection current results in a decrease of Cv

and the system becomes more regular. At an intermediate value of the pump cur-

rent a minimum of Cv is reached, beyond which the dropouts become increasingly

irregular, approaching coherence collapse, as the pump current increases further.

As described by Martinez Avila et al. (2004), the pump current affects the fast

dynamics, i.e. the picosecond intensity pulses, differently than it affects the slow-

modulation, i.e. the power dropouts. The fast pulses play the role of an effective
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noise, and thus the variation of the injection current results in a variation of the

amplitude of the effective noise. Within that context, the existence of a minimum in

the coefficient of variation for an intermediate pump current can be likened with the

enhanced regularity of dropouts that arises for an optimal noise level in coherence

resonance (Giacomelli et al., 2000; Buldú et al., 2001, 2004).

In Fig. 7.3(a) it can also be noticed that for one set of experimental measures

Cv presents large fluctuations at low current values, while for the other set these

oscillations are absent. As explained previously, the two sets of observations differ

on the alignment of external mirror, and thus in the feedback strength. The large

variations of Cv in data set II are due to the occurrence of a regime of coexistence

of LFFs and stable emission, which is absent in the other data set. This behavior

induces an error on Cv. Another statistical property of the data is the correlation

of time intervals between consecutive dropouts (inter-dropout intervals, IDI). The

n-th order correlation coefficient between IDIs is defined as:

ρn =
�Ik+nIk� − �Ik+n��Ik�

�I2
k
� − �Ik�2

, (7.1)

where {Ik} is an ordered sequence of IDIs. Figure 7.3(b) shows the dependence

of the first- and second-order IDI correlation coefficients on the pump current. A

transition from a Markov to a non-Markov process is observed at a value of the pump

around 32.5 mA, above which the correlations become non-zero (the second-order

correlation being smaller than the first-order one). In what follows we will evaluate

and compare the statistical complexity of both data sets.

7.3 Quantifying the statistical complexity

We begin by transforming the sequence of consecutive inter-dropouts intervals {Ti, i =

1 . . .M} into a set of D-dimensional “ordinal patterns”, as described in Ch. 4. Since

the number of different vectors of dimension D is equal to D!, to have a good statis-

tics one must have a large enough number of vectors, such that M −D � D!.
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The last step is to compute the normalized Shannon entropy, H[P ], and the MPR

statistical complexity, C[P ] (see Chap. 4) above.

Figure 7.4 displays H and C for the the experimental data set where the feedback

level is such that no coexistence is observed at low pump currents (set I); Figure 7.5

displays H and C for the other data set (set II), for which there is coexistence

between LFFs and stable emission at low pump currents. Results are presented

for various values of the length of the ordinal patterns, D (embedding dimension).

Since the experimental data series have about M = 15000 dropouts (set I) and

M = 10000 dropouts (set II), in order to have a good statistics we limit ourselves to

D ≤ 5. We also display the results of analyzing the corresponding surrogate data,

which consistently shows H ∼ 1 and C ∼ 0.
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Figure 7.4: (a) Normalized Shannon entropy and (b) statistical complexity measure vs.

the laser injection current, for various values of the length of the ordinal patterns, D

(embedding dimension). M = 15000. The data set is “set I”, for which there is no coex-

istence of LFFs and stable emission at low injection currents. Empty symbols represent

the surrogate data for the filled symbols with the corresponding shape.

It can be observed that in both data sets, a region of enhanced statistical com-

plexity, accompanied by a decrease of the normalized entropy, occurs at high enough
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Figure 7.5: (a) Normalized Shannon entropy and (b) statistical complexity measure vs.

the laser injection current, for various values of the length of the ordinal patterns, D

(embedding dimension). The data set is “set II”, for which there is coexistence of LFFs

and stable emission at low injection currents. M = 10000. Empty symbols represent the

surrogate data for the filled symbols with the corresponding shape.

pump currents, i.e. around the transition between “regular” LFFs (where Cv is mini-

mum, see Fig. 7.3) and highly irregular LFFs (approaching coherence collapse). The

increase in the value of the complexity reveals that the distribution of ordinal vectors

has a certain structure, in spite of the fact that the dynamics is highly stochastic

(note that the normalized entropy is close to 1; however, it decreases in the region

of increased complexity). For low injection currents, the coexistence of LFF and

stable emission is not detected, as C ≈ 0 and H ≈ 1 for both data sets. However,

we remark that for the second data set, large oscillations of the normalized standard

deviation are seen for low current in Fig. 7.3. This reveals a drawback of the BP

methodology, which is due to the fact that the absolute length of the inter-dropout

intervals is not considered, but only the relative order is taken into account.

It can be noticed that the analysis with the entropy and complexity measures

agrees very well with that of the first- and second-order correlations, in clearly

displaying two qualitatively different regimes: one memory-less occurring at low in-
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Figure 7.6: (a) Normalized Shannon entropy and (b) statistical complexity measure vs.

the laser injection current, for various values of the length of the time series, with D = 5.

Note than C and H converge with increasing M . The data set used in this figure is set I.

jection currents; and the other occurring at higher current values, for which there

are memory effects revealed by time correlations. The second-order correlation co-

efficient is smaller than the first-order one, while an opposite effect is seen with the

complexity measure C, which grows continuously as the ordinal pattern dimension

D increases. This lack of convergence with respect to D can be interpreted as due

to the finite size of the time series. To check this hypothesis, we display in Fig. 7.6

results of the analysis for fixed D and various values of the length of the time series.

The figure shows that both C and H converge with increasing M . In other words,

we speculate that if we could record experimentally a long enough time series, such

that we could use larger D values with good statistics, convergence would be seen

with increasing D, i.e., there would be an optimal D revealing the finite length of

the memory of the system.

While we present here results only for two data sets, we have done extensive

analysis of various experimental realizations and found that the results are robust,

in the sense that characterizing the system in terms of the distribution of ordinal
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patterns captures enhanced complexity during the transition to coherence collapse;

however, the enhanced regularity (i.e. the minimum of the indicator Cv) and the

regime of LFF-stable emission coexistence, are not detected.

7.4 Conclusions

We interpret the results in the following terms: at low injection currents the dropouts

are infrequent, there are long time intervals between consecutive dropouts, and

therefore, the dropouts are statistically independent one of another: there are no

memory effects and no patterns or correlations arise in the sequence of consecutive

dropouts. For larger injection currents the dropouts are more frequent and there is

some memory in the system, i.e. there are time-correlations revealed by C �= 0 and

H �= 1. We believe that these correlations might arise because of the finite recovery

time: the time when the next dropout occurs will depend on whether the laser fully

recovered from the previous dropout or not.

Our results show that the normalized Shannon entropy and the MPR statistical

complexity measures are suitable tools for quantifying subtle characteristics of the

LFF dropouts, and in particular, the transition to fully developed coherence collapse

as the laser bias current increases. However, the coexistence of LFF and stable

emission at low bias currents, and the phenomenon of coherence resonance, for

which the normalized deviation of the inter-dropout intervals displays a minimum

at a certain bias current (Giacomelli et al., 2000; Buldú et al., 2001, 2004), are not

detected.

118



Chapter 8

Quantifying the stochasticity in

the dynamics of two mutually

coupled semiconductor lasers

When two semiconductor lasers are coupled to one another via mutual injection

of their emitted light fields and have sufficiently similar frequencies, they exhibit

chaotic dynamics, which furthermore is synchronized between the two lasers. How-

ever, since the coupling is subject to delay, synchronization must occur with a lag,

and since the system is basically symmetrical, no laser can be the sole leader of the

dynamics. In those conditions, a regime of lag synchronization in which the leader

and laggard roles alternate between the lasers emerges (Heil et al., 2001). In this

Chapter we ask the question of what is the level of stochasticity of the switching

between the leader and laggard roles, as a function of the injection current of the

lasers. We analyze this switching dynamics in terms of the distribution of forbidden

patterns of the alternace time series. The results reveal that the system operates

in a stochastic regime, with the level of stochasticity decreasing as the lasers are

pumped further away from their lasing threshold. This behaviour is similar to that
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exhibited by a single semiconductor laser subject to external optical feedback, as its

dynamics shifts from the regime of low-frequency fluctuations to coherence collapse.

We use an approach recently introduced by Amigó et al. (2006) and described in

Ch. 4, consisting in analyzing the set of all order patterns of a time series (defined

as order sequencies of sub-sets of elements of the time series). A random series of

infinite length contains all possible order patterns with probability one, whereas in a

chaotic time series certain order sequences will never occur due the structure of the

phase space in which they evolve. Identifying such forbidden patterns in a time series

will thus tell us if the series is stochastic or deterministic. This technique has been

used to characterize the level (or lack of) stochasticity in logistic maps (Amigó et al.,

2006), shift systems (Amigó et al., 2008), and financial time series (Zunino et al.,

2009). Here we report on what is, as far as we know, the first application of this

method to experimentally generated time series. In our case, as shown below, the

leader-laggard dynamics provides us with a natural way of generating a symbolic

time series and thus no order patterns must be extracted from the experimental

measurements. Furthermore, due to the high-dimensionality of the dynamics of

semiconductor lasers subject to delayed optical injection (Ahlers et al., 1998), the

number of forbidden sequences eventually drops to zero for sufficiently long time

series, and hence we quantify the level of stochasticity in terms of how fast the

number of forbidden patterns decays with length. Our results show that, similarly

to the case of a single semiconductor laser subject to optical feedback, the dynamics

is more stochastic the closer the lasers are to their emission threshold.

8.1 Experimental setup

Figure 8.1 shows a schematic diagram of the setup used in the experiments reported

below. Two semiconductor lasers (Mitsubishi ML925B45F) distant 6 meters from

each other are bidirectionally coupled via an optical fiber. Coupling is achieved
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by means of an optical coupler with 50/50 coupling ratio (10202A-50-FC). The

lasers operate at a nominal wavelength λn= 1550 nm and nominal power of 6 mW.

The temperature and pump current of the lasers are controlled with an accuracy

of 0.01 oC and 0.01 mA, respectively, and are adjusted such that their optical fre-

quencies when isolated are as similar as possible to each other. For temperatures

TLD1 = 10.97 oC and TLD2 = 20.75 oC, the threshold currents of the solitary lasers

are, respectively, I th
LD1 = 11.10 mA and I

th

LD2 = 11.63 mA. The laser intensities are

captured by high-speed fiber photodetectors with 2 GHz bandwidth (DET01CFC).

The received signals are amplified, using a 2 GHz Femto high-speed amplifier, and

sent to a 1-GHz oscilloscope (Agilent DS06104A). Note that due to the limited band-

width of the detectors we are only able to monitor the slow dynamics of the system,

which is enough for our study.

Figure 8.1: Experimental setup. Two semiconductor lasers (LD1 and LD2) inject their

emitted light into each other via an optical fiber. PD1 and PD2 are photodetectors.

This setup allows us to control the leader-laggard dynamics of the system. In

particular, the relative wavelengths of the lasers in isolation determine which laser

leads the dynamics. The wavelengths can be tuned by adjusting the lasers’ pump

currents. As mentioned in Ch. 3, the laser detuned to higher energies always takes

the leader role. However, as we now show, for a large range of parameters, the

detuning can be made small enough so that no clear leader exists.
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8.2 Experimental results

For the experimental conditions given above, the two otherwise stable semiconductor

lasers start pulsing in the form of synchronized power dropouts. The dropouts do

not occur simultaneously, but are separated a time ∼ 30 ns, corresponding that

the time taken by light to travel between the two lasers. When the pump currents

of the lasers are adequately fine-tuned, the frequency detuning between them is

approximately zero and the leading role of the dynamics alternated between the two

lasers, as explained above and shown in Fig. 8.2.

2000 3000 4000 5000 6000

0

1

2

Time (ns)

In
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

1 10 0

Figure 8.2: Experimental output intensities of the two coupled lasers. Laser LD1 is shown

in the top trace and laser LD2 in the bottom trace. The pump current of LD1 is 13.38 mA

and that of LD2 is 12.25 mA. The time trace of LD1 has been shifted upwards for clarity.

The circles indicate the times at which the dropouts occur. Vertical lines are added at the

dropout locations to allow comparison between the dropout times of the two lasers. The

numbers at the bottom of the vertical lines indicate the binary value associated with the

ordering of the dropouts between the two lasers.

Figure 8.2 portrays a sample pair of simultaneously measured time traces, with

the dropouts of each laser identified by the time instant at which the intensity drops

below a certain threshold, chosen in order to optimize the detection of the dropouts,

while being consistent between the two lasers. In the particular sample shown in

the figure, laser LD1 (top trace) leads the dynamics in the first and fourth dropouts,
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while laser LD2 (bottom trace) is the leader for the second and third dropouts. A

statistical analysis of the data indicates that the leader and laggard roles switch

irregularly in time.

In order to quantify how the leader and laggard roles are distributed between

the two lasers, we measured the time interval between each pair of synchronized

dropouts. Figure 8.3 shows histograms of the inter-dropout intervals for different

values of the pump currents of laser LD2, having fixed the value of LD1’s pump

current. The figure shows that as laser LD2 is pumped at smaller current levels, the
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Figure 8.3: Histogram of time interval between dropouts for two coupled lasers for varying

pumping of laser LD1. (a) ILD1 = 13.84 mA, (b) ILD1 = 13.38 mA, and (c) ILD1 =

12.38 mA. The pump current for LD2 is ILD2 = 12.25 mA in all three cases.
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leader role shifts from LD2 (plot a) to LD1 (plot b). These situations correspond

to the corresponding leading laser having a larger frequency. For an intermediate

value of LD2’s pump current (plot c) the frequencies of the two lasers can be made

to coincide. In that case, the leader role is equally distributed among the two lasers.

Our goal is to determine the level of stochasticity of the irregular leader-laggard

alternating dynamics shown in Figs. 8.2 and 8.3(c). To that end, we use the tech-

nique of forbidden patterns, described in Ch. 4. In its original implementation this

technique used ordinal patterns in order to convert a continuous into a discrete time

series (Zunino et al., 2009). In our case, however, there is a natural way of converting

the analog character of the laser intensities into a discrete time series. The method

is illustrated in Fig. 8.2. Simply put, we assign one of two binary values to each

pair of synchronized dropouts, depending on which laser drops in intensity first. If

the dropout of LD1 occurs earlier than the one of LD2, we assign a “1”, and in the

opposite case we assign a “0”. In that way, we convert the two analog time series

corresponding to the laser outputs, to a single binary time series for which we can

characterize the statistics of patterns of a certain bit length. By way of example, and

additionally as a way of quantifying the leader-laggard transition partially shown

in Fig. 8.3, we show in Fig. 8.4 the number of forbidden patterns of length equal

to 8 bits versus the pump current of LD1, keeping LD2’s pump current constant.

The calculation is made by scanning the binarized time series with an 8-bit-long

box, and moving one bit at every step. Once all occurring patterns are identified,

we compare the list of those patterns with the list of all possible patterns, which

equals 256 for a box of length 8. Those patterns out of the 256 that do not appear

a single time are labeled as forbidden. For a long enough time series, the absence

of forbidden patterns indicates the stochastic character of the dynamics. Figure 8.4

shows the expected result that when one of the laser leads the dynamics, most of the

time series consists of either 0’s or 1’s, and thus a large number of 8-bit forbidden

patterns exists, the number being close to 256. On the other hand, in the situation

of a perfect leader-laggard alternance, the number of forbidden patterns decreases
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rather sharply to 0, even when the length of the time series is finite. Incidentally,

the range of pump current values for which the time series is stochastic is rather

large, on the order of several tenths of mA.
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Figure 8.4: Number of forbidden patterns of length equal to 8 bits for increasing pump

current of laser LD1. The pump current of LD2 is fixed to ILD2 = 12.25 mA.

In the remainder of the Chapter we concentrate in the situation in which the

leader and laggard roles are equally distributed among the two lasers (Fig. 8.3(c)).

The fact that the number of forbidden patterns is zero in that case, as shown in

the preceding figure, does not necessarily mean that the time series is stochastic,

since semiconductor lasers with delay are known to be highly dimensional chaotic

systems (Ch. 2). Chaotic systems should exhibit a non-zero number of forbidden

patterns (Ch. 4), but if the chaotic attractor is high-dimensional and the pattern

length is too small, they would not appear distinguishable from a stochastic time

series. Increasing the pattern length is usually unfeasible, since it would require to

increase the length of the measured time series unrealistically (Amigó et al., 2007).

It is known, for instance, that in diode lasers with optical feedback stochasticity

is important near threshold (Hohl et al., 1995; Lam et al., 2003), while deterministic
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(i.e. chaotic) mechanisms play a relevant role farther away from threshold (Fischer

et al., 1996). Given the similarities between the dynamics of a semiconductor laser

with optical feedback and two mutually coupled semiconductor lasers, we can expect

a similar trend to occur in the latter system. In order to see whether systematic

differences between the level of stochasticity exist in our system as we approach the

lasing threshold, we plot in Fig. 8.5 the number of forbidden patterns vs. the total

series length for three different values of the pump current of LD2, while chosing the

pump current of LD1 such that the leader/laggard alternance is split 50/50 among

the two lasers in each case. The first feature shown in this figure is that as the
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Figure 8.5: Number of forbidden patterns for increasing length of the time series, and for

three different values of the pump current of LD2, as noted in the legend. The LD1 pump

currents in each case are 12.62 mA (black), 13.38 mA (red) and 12.76 mA (green).

length of the time series being analyzed increases, the number of forbidden pat-

terns decreases in all cases, since it becomes easier to detect rare patterns (Amigó

et al., 2007). The rate at which the number of forbidden patterns decreases to zero

is however different for different pump strengths: for smaller pump currents, i.e.

closer to threshold (black line in Fig. 8.5) the decay to zero is very fast, indicating
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that the process is strongly stochastic. As the pump current increases the decay

becomes clearly slower, which indicates that the level of stochasticity in the dy-

namics monotonically decreases as LD2 is pumped further away from its threshold.

Thus, these experimental results confirm the expectations that in mutually coupled

semiconductor lasers, similar to the case of single semiconductor lasers with optical

feedback, the dynamics is more stochastic closer to threshold, while farther away

from threshold noise plays a lesser role.

8.3 Numerical simulations

In the previous experimental study the pump current of laser LD1 had to be tuned

for each value of LD2’s pump current so that 50/50 leader-laggard alternance was

maintained as LD2 was pumped increasing farther away from its threshold. It

could then be argued that the joint lasing threshold of the system was not being

increased monotonically in Fig. 8.5. In order to confirm that indeed the stochasticity

of the dynamics increases gradually as we approach threshold, we now perform

numerical simulations of an ideal version of the system studied experimentally above.

To that end, we use the generalized version of the Lang-Kobayashi model for two

bidirectionally coupled semiconductor lasers, described in Ch. 3.

Table 8.1 lists the parameter values used in the numerical simulations described

below. For these parameters, the coupled-laser system operates in the LFF regime.

We performed extensive numerical simulations of the model described above, in

the case where the two lasers exhibit synchronous power dropouts. Since the model

assumes no frequency detuning, the simulations produce naturally complete alter-

nance between the leader and laggard roles for the two lasers. Under those condi-

tions, we studied how the number of forbidden patterns varies as the pump currents

of both lasers increases further away from threshold. The results are summarized in

Fig. 8.6. As in the experimental results reported above, here the number of forbid-
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Table 8.1: Laser parameters of the numerical model in the LFF regime

Symbol Parameter Value

I
p

1,2 pump current of LD1,2 1.02 · · · 1.07 · Ith
τ1,2 coupling time path 1 3.4 ns

τ2,1 coupling time path 2 3.4 ns

κi,j Coupling strength 30 ns−1

γe inverse carrier lifetime 6.89 · 10−4 ps−1

γ inverse photon lifetime 0.480 ps−1

N0 carrier number at transparency 1.25 · 108

Nth carrier number at threshold 1.634 · 108

g gain parameter 1.25 · 10−8 ps−1

α linewidth enhancement factor 3.5

β noise intensity 1 · 10−15 ps−1

den sequences decays to zero slower the farther away the system is from threshold,

indicating that the level of stochasticity is larger close to threshold and smaller away

from it.

In order to quantify the trend exhibited in Fig. 8.6, we show in Fig. 8.7 how the

area under the curves shown in the former figure depend on the injection current,

for three different values of the noise intensity, which can be controlled at will in the

numerical model. As we have shown in Fig. 8.6, when the injection current increases

the area under the curve increases, reflecting the monotonic decrease in stochasticity

of the coupled-laser system. Interestingly, while increasing the noise intensity the

area under the curve decreases in general, as could be expected, the decrease is more

important far from threshold. This indicates that close to threshold the dynamics

is mostly dominated by noise and not by deterministic effects, and thus an increase

in the noise level does not influence strongly the statistics of the forbidden patterns.
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Figure 8.6: Number of forbidden sequences in front of series length and number of surro-

gated forbidden sequences for different values of the pumping current
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Figure 8.7: Area under the curve of the forbidden patterns of Fig. 8.6. Black line corre-

sponds to a noise intensity of 1 · 10−15 ps−1, red line corresponds to a noise intensity of

1 · 10−13 ps−1, and green line corresponds to a noise intensity of 1 · 10−11 ps−1.
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8.4 Conclusions

It is important to determine if the resulting dynamics of a complex system is de-

terministic or stochastic (for instance, in order to establish whether it is possible to

control it). Here we have used a recently proposed method to quantify the level of

stochasticity of a time series, based in computing the number of forbidden patterns

exhibited by the time series, to address this issue in mutually coupled semiconduc-

tor lasers. Both the experimental and numerical results presented here show that

the leader-laggard dynamics exhibited by this system is stochastic close to the laser

threshold, while the stochasticity is reduced monotonically as the system is pumped

further away from threshold. No forbidden patterns are observed for large enough

time series in any case, indicating that the deterministic components of the dynamics

far from threshold have a high dimensionality.
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Chapter 9

Dual-lag synchronization due to

path-delay interference

Coupled semiconductor lasers such as the ones studied in this Thesis can be used as

model systems to study the behavior of networks of nonlinear dynamical elements.

Three-laser systems, for instance, have been shown experimentally to undergo a

route to synchronization via clustering (Gonzalez et al., 2007), while theoretical

studies have addressed the collective behavior of higher numbers of coupled lasers

(D’Huys et al., 2008; Zamora-Munt et al., 2010b). The tendency is to move towards

larger systems that can be used as experimental models of complex networks of

dynamical elements (Boccaletti et al., 2006). An outstanding issue in complex net-

works is how information is transmitted between pairs of nodes. Usually, multiple

paths exist connecting a given pair of nodes, and thus (if the speed of the coupling

signals cannot be neglected) multiple coupling delays are involved in the communi-

cation between them. In those conditions, it is not clear what type of synchronized

dynamics we should expect: will one of the two coupling delays dominate and lead to

a consistent lag between the lasers? If so, under what conditions will that happen?

And what will be the dynamics when none of the two delays is dominant? Will the
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synchronization lag alternate irregularly between the two delays, similarly to the lag

alternance found between two mutually coupled lasers? (Heil et al., 2001; Gonzalez

et al., 2007)

In order to address these questions, we have studied experimentally a minimal

model system consisting of two optically coupled semiconductor lasers connected

unidirectionally via two distinct paths, with different coupling delays. The emitter

laser is led to operate in the chaotic low-frequency-fluctuation regime, due to op-

tical feedback. This chaotic dynamics is transmitted simultaneously down the two

coupling paths towards the other laser, which operates in a continuous-wave regime

when uncoupled from the emitter laser. Injection from the emitter leads to chaotic

dynamics in the receiver, synchronized with that of the emitter with a lag that de-

pends on the coupling conditions. When one of the two coupling paths prevails upon

the other, in terms of the relative amount of light traveling through them, the delay

time associated to the prevailing path dominates, becoming the synchronization lag

between the dynamics of emitter and receiver. On the other hand, when no path

dominates over the other, a state of dual-lag synchronization emerges in which the

two coupling delays coexist in the synchronized dynamics of the two lasers.

Our experimental setup allows us to systematically investigate these regime of

dual-lag synchronization as a function of the relative coupling strength. Numeri-

cal simulations of a delay-differential model further allows us to examine the phe-

nomenon in a wide parameter regime and interpret its existence. Finally, the influ-

ence of this lag coexistence on the ability of the system to transmit information is

examined both experimentally and numerically.

9.1 Experimental setup

A schematic diagram of the experimental setup is shown in Fig. 9.1. Two semicon-

ductor lasers (Mitsubishi ML925B45F) with a nominal wavelength λn = 1550 nm
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are coupled unidirectionally, with LD1 being the emitter and LD2 the receiver.

The temperature and pump current of the lasers are controlled with an accuracy of

0.01oC and 0.01 mA, respectively, and are adjusted such that the optical frequen-

cies of LD1 (with its feedback; see below) and LD2 (with injection) are as similar

as possible to each other. For temperatures TLD1 = 19.91oC and TLD2 = 19.99oC,

the threshold currents of the solitary lasers are, respectively, I th
LD1 = 11.10 mA and

I
th

LD2 = 11.63 mA.

!"#$
!"%$

Feedback 

loop 

isolator 

Path 1 

Path 2 
PD1 

PD2 

Figure 9.1: Experimental setup of two semiconductor lasers coupled unidirectionally via two

paths of different lengths. LD1 is the emitter laser and receives optical feedback via a closed

loop. LD2 is the receiver laser. PD1 and PD2 are photodetectors, and the optical isolator ensures

unidirectionality. The grey segments represent optical couplers, black lines denote optical fibers

and yellow lines free-space propagation of light.

The laser LD1 is subject to delayed feedback from the closed loop shown at the

left side of Fig. 9.1, whose length (10 m) provides for a feedback time of 55 ns. The

output of this laser is injected, in a unidirectional coupling configuration, with LD2

via two different paths with two distinct delays, with τ1 = 65 ns for path 1 and

τ2 = 97 ns for path 2, corresponding to fiber lengths of 12 m and 18 m, respectively.

In order to control the relative influence of the couplings we introduce variable

optical attenuators in the two paths. The reduction of the threshold current of laser

LD1 due to its feedback is 4.2%. The reduction of the threshold current of laser LD2

due to the injection through path 2 is 0.89%, and the one due to injection through
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path 1 ranges from 1.86% to 0.05%. The laser intensities are captured by high-speed

fiber photodetectors with a bandwidth of 2 GHz (DET01CFC). The electrical signals

received are amplified, using 2 GHz high-speed amplifiers (Femto), and sent to a 1-

GHz-bandwidth oscilloscope (Agilent DS06104A) and a power spectrum analyzer

(Anritsu MS2651B). Due to the relatively small bandwidth of the detectors, we are

only able to show the slower dynamics of the system, which is enough for our study.

9.2 Experimental results

Due to the delayed feedback mentioned above, the laser LD1 oscillates chaotically in

a regime of low-frequency fluctuations as seen repeatedly in this Thesis and explained

in Ch. 2. This chaotic behavior is injected into LD2 via the two different paths, as

described in the previous section. In those conditions, synchronization between

the two lasers can be achieved when one or both paths are switched on, provided

the transmission strength is large enough. In order to characterize the quality of

synchronization between emitter and receiver, and to determine which coupling

delay time (if any) dominates the synchronized dynamics, we calculate the cross-

correlation function between the (filtered) time series of the light detected by the

two photodiodes:

C(∆t) =
�[I1(t)− �I1�][I2(t+∆t)− �I2�]��
�[I1(t)− �I1�]2��[I2(t)− �I2�]2�

. (9.1)

The left plots in Fig. 9.2 show the cross-correlation function between the two laser

outputs for varying levels of coupling in the two paths. Figure 9.2(a) corresponds to

the case where path 2 is blocked; accordingly, the highest cross-correlation peak oc-

curs at τ1, which means that laser LD1 leads LD2 with a lag equal to τ1. In plots (b)

to (e) the path 2 is open with a relatively low attenuation, while the attenuation of

path 1 is progressively increased, until that path is completely blocked in Fig. 9.2(e).

Correspondingly, a peak in the cross-correlation function at τ2 (which is the flight
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time along path 2) appears and eventually dominates in the cross-correlation func-

tion. For an intermediate value of the attenuation (10 dB, Fig. 9.2(c)) the two

paths are approximately equivalent and the cross-correlation function exhibits two

coexisting global maxima at τ1 and τ2, separated by a shallow valley whose small

relative depth is a consequence of the filter- ing of the time series, as we can verify

from simulations of the theoretical model described below. In this regime, no single

coupling delay dominates over the other, but they both coexist in the synchronized

dynamics of the system. Note that the value of the cross-correlation at this two time

lags is on the order of 0.75, corresponding to a significant level of synchronization (in

the two single-path limits –plots (a) and (e)– the cross-correlation scarcely reaches

0.80).
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Figure 9.2: Experimental cross-correlation function between LD1 and LD2 (left column)

and corresponding time traces of the output intensities (right column) for different values

of coupling in the two paths. In panels (a,f) only path 1 is switched on, while in panels

(e,j) only path 2 is activated. The attenuation of path 2 is constant and equal to 5 dB in

panels (b-e) and (g-j), while the attenuation of path 1 is 5 dB in panels (a,f) and (b,g),

10 dB in panels (c,h), and 15 dB in panels (d,i).

In order to establish the nature of the lag-coexistence scenario revealed in Fig. 9.2(c)
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(in particular, to determine if this regime corresponds to a lag alternance similar

to that occurring in two mutually-coupled lasers (Heil et al., 2001)), we plot in the

right panels of Fig. 9.2 the time series of the two laser intensities. When only one

of the paths is switched on (Fig. 9.2(a,f) and (e,j)), the dropouts exhibit the usual

single-lag synchronization dynamics, in which LD2 follows LD1 with a lag τ1 or τ2

depending on which one is the dominating path. This behavior, with a clear delay

of τ1 or τ2 in the dropouts of LD2 after those of LD1, even when the two paths

are open, provided that one path dominates over the other (Fig. 9.2(b,g) and (d,i)).

On the other hand, in the transition between the τ1- and τ2-dominated regimes,

during which the two lags coexist in the cross-correlation function (Fig. 9.2(c)), the

dropouts of LD2 are qualitatively different. In principle one could expect that in

this lag-coexistence regime, a fraction of the LD2 dropouts would follow LD1 with

a delay τ1, and the rest would follow LD1 with delay τ2. This, however, is not what

happens, as shown in the time series plotted in Fig. 9.2(g,h). In this figure the

dropout of LD2 (red line) consists of a first fall in intensity that follows LD1 with

a delay τ1, after which the intensity of LD2 remains approximately constant for a

short instant, until finally there is a second fall in intensity that follows the original

LD1 dropout with a delay τ2. This behavior is consistent for all LD2 dropouts.

Thus, although the cross-correlation function is here similar to the case of two bidi-

rectionally coupled lasers, which also has two peaks, this does not imply that the

dynamical behavior is the same. In the case of bidirectional coupling, the two peaks

in the cross-correlation imply a (random) alternance in time between the leader and

laggard role of the dynamics, and not a modification of the shape of the dropouts,

as happens in the dual-lag synchronization regime occurring in this case.

9.3 Numerical simulations

In order to verify the nature of the dual-lag synchronization regime described above,

it would be helpful to increase the difference in the two coupling paths, which should
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increase the duration of the plateau between the two falls in the intensity of LD2

that we interpret to be occurring during the LD2 dropouts, and which would give

rise to the lag-coexistence observed in the cross-correlation function. However, tech-

nical reasons prevented to vary in a systematic manner the delay times, since laser

coupling was made by optical fibers, and we would need to have a sufficiently large

number of fibers of increasing length. In order to circumvent this requirement, we

resorted to numerical simulations of the system, which is known to be accurately

described by the Lang-Kobayashi model for moderate feedback strengths and single-

mode operation (conditions which approximately hold in our experiment). The gen-

eralized Lang-Kobayashi model that we use is the one described in Sec. 3.2.1 but, the

coupling term in Eq. (3.8), has been modified in order to include both coupling delay

times τj and coupling strengths κj, for the two paths j = 1, 2. So, the differential

equation for the electric field of the receiver laser reads as:

dE2

dt
= 1+iα

2 (G2 − γ2)E2(t) +
�

j
κje

i(∆ωt−ωjτj)E1(t− τj) +
√
2βN2ξ2(t) (9.2)

The parameters used in the numerical simulations are given in Table 9.1. For

these parameters the emitter laser operates in the LFF regime. Here we consider a

detuning ∆ω = ω1 − ω2 = 15.89 GHz between the lasers. Figure 9.3(a-e) shows the

numerically computed cross-correlation functions between the filtered time series of

the lasers, and Fig. 9.3(f-j) reproduce the corresponding time traces. In order to

simulate the experimental filter (due to the relatively small bandwidth of our exper-

imental setup) we filter the output intensities with a fourth-order Butterworth filter

with a cutoff frequency of 100 MHz. The numerical results displayed in the figure

qualitatively reproduce the experimental results. In particular, the simulations show

that in the dual-lag synchronization regime (Fig. 9.3(c,h)), the LD2 dropouts con-

sist of two intensity falls occurring at times τ1 and τ2 after the corresponding LD1

dropout, separated by a plateau. Numerical simulations also allow us to examine

the dynamics at an arbitrary temporal resolution. In the absence of filtering, the

cross-correlation function exhibits more clearly defined peaks, but the dual-lag syn-
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Table 9.1: Laser parameters of the numerical model

Symbol Parameter Value

I
p

1,2 pump current of LD1,2 1.01 · Ith
τ1 coupling time path 1 65 ns

τ2 coupling time path 2 97 ns

τf feedback time 55 ns

γe Inverse carrier lifetime 6.89 · 10−4 ns−1

γ Inverse photon lifetime 0.480 ps−1

N0 carrier number at transparency 1.25 · 108

Nth carrier number at threshold 1.634 · 108

g gain parameter 1.25 · 10−8 ps−1

α linewidth enhancement factor 4.0

β spontaneous emission rate 1 · 10−15 ps−1

chronization behavior is not evident in the unfiltered time series (results not shown).

In order to verify that the plateau in the LD2 dropout shown in Fig. 9.3(h) is not

an artifact, we increased substantially in the numerical model the difference between

the two coupling delays. The result of this test is displayed in Fig. 9.4, which shows

the time traces of a pair of corresponding dropouts for two different values of τ2:

165 ns in plot (a), and 265 ns in plot (b), while τ1 = 65 ns in the two cases. Note

that when we increase the coupling time of path 2, the plateau of the LD2 dropout

increases correspondingly. Thus these simulations show clearly that the dual-lag

dynamics is due to combined dropouts in LD2, consisting of two falls at the two lag

times separated by a plateau.
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Figure 9.3: Numerical cross -orrelation function between LD1 and LD2 (left column) and

the corresponding output intensities (right column) for different values of the coupling

strengths: (a,f) κ1 = 0 ns−1, κ2 = 40 ns−1 (a,f), (b,g) κ1 = 20 ns−1, κ2 = 40 ns−1, (c,h)

κ1 = 40 ns−1, κ2 = 40 ns−1, (d,i) κ1 = 60 ns−1, κ2 = 40 ns−1, and (e,j) κ1 = 40 ns−1,

κ2 = 0 ns−1 (e,j). The feedback strength is fixed at κf = 60 ns−1. Other parameters are

given in Table 9.1.

9.4 Chaotic communications

Many studies have addressed the transmission of information between two chaotic

lasers coupled unidirectionally via a single path. In this section we want to study

the viability of chaotic communications when the coupling between the lasers is

done via two different paths, in the light of the dual-lag synchronization scenario

described above. First we ask if the experimental setup presented in Fig. 9.1 above

is able to filter a periodic signal introduced in the emitter laser, even in the case of

dual-lag dynamics. This filtering mechanism is called chaos-pass filtering (Fischer

et al., 2000; Murakami & Shore, 2005). As shown in Fig. 9.5, when a periodic

modulation of frequency 1.20 MHz is applied to the pump current of the emitter

laser, the receiver laser filters out the modulation, and no corresponding peak in the
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Figure 9.4: Numerical output intensities for different coupling times in path 2. The delay

time is 165 ns in (a), and is 265 ns in (b). The coupling parameters are κ1 = κ2 = 40 ns−1,

and κf = 30 ns−1. The other parameters are given in Table 9.1.

power spectrum of the laggard laser can be observed. Note that this experimental

result is obtained in the dual-lag regime (i.e. both paths are equally synchronized).
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Figure 9.5: Spectral response of the receiver laser (b) to a modulation introduced in the

emitter laser (a), in the case where both delays dominate equally the dynamics (dual-lag

synchronization).

Once we have seen that chaos-pass filtering is possible between two semiconductor
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lasers unidirectionally coupled through two lag times, we now ask for the viability of

recovering a message for the different setup configurations (i.e only one path or both

switched on). Figure 9.6 displays numerical results that evaluate the effectiveness

of the message recovery for different values of ∆κ

κ
= κ2−κ1

κ2
, when a non-periodic

signal (specifically, a return-to-zero bit train) is introduced in the pump current of

laser LD1. The message is introduced with an amplitude equal to 2.5% of the pump

current, and is decoded by subtracting the light emitted by the two lasers, taking

into account the delay between the signals. The subtracted signal is filtered with

a fourth-order Butterworth low-pass filter. In order to quantify the effectiveness of

the recovered message we calculate the success rate between the input and output

message, as the fraction of bits that are successfully recovered by LD2. In order to

compute this quantity, the output message is binarized by defining a threshold, such

that when the recovered message is larger than this threshold we assign a ‘1’ and

when it is smaller we assign a ‘0’. The left panel of Fig. 9.6 displays the success rate

for varying values of the coupling asymmetry between the two paths, ∆κ

κ
, and for

three different values of the difference between coupling delays. The maximum value

of the success rate occurs for sufficiently large coupling strength asymmetry, which

corresponds to a situation in which standard single-lag synchronization occurs, and

the choice of time shift to be applied in the message recovery is simple. As we

approach the dual-lag regime, on the other had, the success rate diminishes sharply.

Thus, even though the receiver laser exhibits good chaos-pass filtering capabilities in

the case of dual-lag synchronization, the coexistence of two lags in this case prevents

the system from recovering the message. The time traces corresponding to three

specific values of the coupling strength asymmetry (the two single-lag extremes and

the dual-lag case) are shown in the right panels of Fig. 9.6. As expected, when the

difference between the coupling delay times diminishes the success rate increases,

because the interference effects degrading message recovery diminish.
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Figure 9.6: Left: Numerically computed success rate versus coupling asymmetry for three

values of the difference between coupling delay times: 75 ns (squares), 65 ns (circles), and

55 ns (triangles). Right: input message (red) and recovered message (black) for three

values of ∆κ

κ
, marked with arrows in the left plot (for the case of the squares in the left

panel). For the recovery, the time series in the receiver laser is shifted a time lag that

corresponds to the delay of the path with strongest coupling. Parameters are those given

in Table 9.1, plus κ2 = 40 ns
−1.

9.5 Conclusions

We have examined the synchronized dynamics of two semiconductor lasers coupled

unidirectionally via two different paths. The emitter laser operates in an intrinsically

chaotic regime in the form of irregularly occurring power dropouts (low-frequency

fluctuation regime), which generates chaotic behavior in the receiver. Our exper-

imental results have revealed a transition a regime in which the synchronized dy-

namics is dominated by path 1, and another one dominated by path 2. In the

transition region where both synchronization takes place via the two paths, two lags

corresponding to the two coupling delays coexist, as shown by the cross-correlation

function. Our experiments and numerical simulations have shown that this dual-lag
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synchronization regime does not consist in an alternance between the two lags, as

happens usually in mutually coupled semiconductor lasers (Heil et al., 2001; Gonza-

lez et al., 2007), but in a dynamics through which the power dropouts of laser LD2

are formed by two falls in the laser intensity, occurring after the two coupling lags,

separated by a plateau. This dynamical regimes does not prevent the receiver laser

from performing chaos-pass filtering of an input modulation in the emitter laser’s

output, but does prevent a successful recovery of the message.
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Chapter 10

Zero-lag synchronization and

bubbling in bidirectionally coupled

lasers

We have seen in Ch. 8 that when two identical semiconductor lasers are bidirection-

ally coupled over a finite distance, the time delay associated with the coupling leads

to spontaneous symmetry breaking, and synchronization of the output intensities of

leader-laggard type can occur (Heil et al., 2001). It has also been shown that using

a relay in the middle of the optical path between both lasers can result in stable

zero-lag (isochronous) synchronization of the laser intensities. This relay can be an

active one like a third laser, so that the coupling scheme consists of three lasers cou-

pled along a line where the central laser acts as the relay (Fischer et al., 2006; Peil

et al., 2007; Landsman & Schwartz, 2007), or a passive one like a semitransparent

mirror (Vicente et al., 2007). However, even with an overally stable isochronous

synchronization of two identical lasers, intermittent events of desynchronization can

still occur. These events are induced by system intrinsic noise and by parameter

mismatches, and have been called bubbling (Ashwin et al., 1994; Sauer & Kaiser,
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1998). The bubbling events can be attributed to transversely unstable periodic or-

bits embedded in the attractor located in the overall stable synchronization manifold

(Venkataramani et al., 1996; Nagai & Lai, 1997; Flunkert et al., 2009). The local

instability forces the system’s trajectory to temporarily leave the synchronization

manifold until resynchronization occurs. In this Chapter we want to connect the

overall synchronization quality to the occurance of intermittent desynchronization

events with a quantitative experimental approach.

10.1 Experimental setup

In order to obtain zero-lag synchronization behavior we employed the scheme de-

picted in Fig. 10.1.
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Figure 10.1: Schematic experimental setup. PC: polarization controller, PD: fast pho-

todetector, OC: optical coupler, OI: optical isolator.

The fiber-based setup consists of two similar Eblana discrete mode semiconductor

lasers operating at a nominal wavelength of approximately λ = 1540 nm, coupled

symmetrically via a relay fiber loop. This loop accounts for symmetric feedback

and coupling, respectively, and in that way functions as a semitransparent mirror.
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Due to the 50/50 optical coupler used to combine both laser outputs in the loop,

we have identical feedback and coupling strengths. It has been shown (Jiang et al.,

2010; Hicke et al., 2011), that asymmetries in coupling strengths can lead to a sig-

nificant decrease in overall synchronization quality. Therefore, our highly symmetric

setup provides near-optimal conditions for our investigation of the synchronization

dynamics. In addition, the overall symmetry of our setup leads to equal delay times

for feedback and coupling, respectively. By autocorrelation analysis the delay time

in our setup was determined to be τ = 73 ns (see Fig. 10.2). We introduced polar-

ization controllers (PC) in both laser lines to adjust the polarization for coherent

feedback and therefore optimum coupling. Inside the coupling and feedback loop

we placed an optical isolator in order to assure a single propagation direction in the

loop and avoid interference effects.
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Figure 10.2: (a) Output intensity of the two lasers exhibiting isochronal synchronization

at Ip = 12mA (for which the laser operates in the LFF regime) and (b) cross-correlation

between output laser intensities showing a maximum for lag equal to zero.

The spectral characteristics of both lasers were adjusted by temperature varia-
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tion in order to assure zero spectral detuning, i.e. maximum overlap of the optical

spectra. As mentioned in Ch. 1 the laser wavelength changes when the tempera-

ture is varied. It is also well known that when the pump current is increased the

laser wavelength also increases. In Fig. 10.3 we show the contour plot of the wave-

length behavior under pump current and temperature variation for the lasers used

in the experiments, in order to point out the strong control we have over the laser

wavelength.
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Figure 10.3: Contour plot of the wavelength behavior under pump current and temperature

variation for the two lasers used in the experiments.

In order to show how we have achieved zero detuning between the lasers, at a given

pump current, we depict the wavelength evolution under temperature variation for

the two lasers (see Fig. 10.4). Note that for every wavelength one can find a pair of

temperatures (one for each laser) where the the zero detuning condition is achieved.

The laser temperatures and pump currents were controlled by a Thorlabs PRO8000
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Figure 10.4: Wavelength vs temperature behavior for the two lasers used in the experi-

ments.

diode laser controller with an accuracy of ∆T = ±0.01 C and ∆Ip = ±0.01 mA. We

measured the laser outputs by using fast Miteq Dr-125G-A photodetectors (PD) with

13 GHz bandwidth. The intensity output timetraces were recorded using a LeCroy

WaveMaster 816Zi oscilloscope with a sampling rate of 40GS/s. With a time res-

olution that high we can resolve very fast dynamics on a picosecond-timescale and

observe and distinguish very short intervals of synchronization or unsychronized be-

havior with unprecedented detail. We analyze the synchronization behavior of the

coupled lasers for a pump current range of Ip = 12 − 17 mA which, for our setup

and parameters corresponds to Ip ≈ 1.0 − 1.5Isol,thr, where Isol,thr is the solitary

lasing threshold. This current range leads for our operational parameter to two dif-

ferent dynamical regimes: Low Frequency Fluctuations (LFF) (Sec. 2.1.2) and full

Coherence Collapse (CC) (see also Sec. 2.1.2). It is well-known that the dynamical

properties of those two regimes are much different. Here, we investigate the different

synchronization dynamics in these two regimes.
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10.2 Zero-lag synchronization and bubbling

With our setup we were able to achieve high-quality zero-lag synchronization. Figure

10.5(a) depicts a typical experimental timetrace of both lasers, showing isochronously

synchronized intensity dynamics in a fast time scale. The otherwise near-perfectly

synchronized time series exhibit one distinct short desynchronization event (which

we identify as a bubbling event below), also clearly visible in the intensity difference

(Fig. 10.5(b)).
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Figure 10.5: (a) Experimental time series of synchronized fast intensity dynamics of the

two coupled lasers operating in the coherence collapse regime. The time series exhibit

one short desynchronization event and fast resychronization. (b) shows the corresponding

timetrace of the normalized intensity difference (synchronization error) of both lasers.

One can quantify the degree of synchronization between two time series by using

the cross-correlation function:

C(∆t) =
�[I1(t)− �I1�] [I2(t+∆t)− �I2�]���

[I1(t)− �I1�]2
� �

[I2(t)− �I2�]2
� (10.1)

where �.� means averaging over time. Another possibility is to calculate the normal-

ized synchronization error (i.e. intensity difference). To further account for the fast

dynamical fluctuations we integrate and normalize the synchronization error over

shifting windows of one delay time τ . An accessible measure is then the mean value
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of this integrated normalized intensity difference χ =
�

1
τ

�
τ

|I1−I2|
�I1+I2�

�
.

10.2.1 The role of detuning

We are now interested in the effect of the detuning on the synchronization quality.

Understanding how the robustness of the synchronization is affected by parameter

mismatches is important in order to improve the synchronization quality of real

implemented setups. In Fig. 10.6 we show the behavior of the cross-correlation

coefficient at zero lag (blue dots) and at the lags corresponding to the delay coupling

time (red and green dots), as a function of the relative detuning between lasers. We

observe a region where the synchronization is achieved (correlation values going up

to 0.8) surrounded by a region where synchronization quality is clearly low. The

region with high correlation coefficient, marked by the vertical dashed lines (black),

is the so-called locking region and has a width of around of 20 GHz.

Figure 10.6: Cross-correlation coefficient at zero lag (blue dots) and at lags corresponding

to the delay coupling time (red and green dots) as a function of the relative detuning

between lasers. The locking region is denoted by the dashed line.
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10.2.2 The role of pump current

In order to focus only on the effect of pump current on the synchronization quality,

we have kept the detuning at zero. Figure 10.7 depicts the cross-correlation at

zero lag (black circles) and the mean of the integrated synchronization error (blue

diamonds) versus the applied pump current. We notice almost linear characteristics

of both quantities, which behave of course in an inverse manner. We now want to

find the mechanism responsible for the overall decline of synchronization. Therefore

we analyze the fast timescale synchronization dynamics and connect the occurrence

of high-frequent short desynchronization events with the decrease in synchronization

quality.

11 12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

Pump current (mA)

 

 

mean integrated synchronization error

maximum cross correlation

SCC fraction above C
thr

Figure 10.7: Cross-correlation at zero lag C(0) (black circles), fraction of the sliding-

cross-correlation above the correlation-threshold of Cthr = 0.5 (red squares) and mean

integrated synchronization error χ (blue diamonds), respectively, versus the applied pump

current.

We qualify a time interval as desynchronized by considering the momentary syn-

chronization error, as well as by calculating a sliding-window cross-correlation (SLCC)

as local synchronization measures. For that we choose a windowsize of 1 ns and a

stepsize of 0.1 ns, to be able to distinguish short-term events, calculate the standard

cross-correlation function for this window, and move the window by one step. As a
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result we obtain a time trace of (local) cross-correlation values. A significant drop

of the sliding cross-correlation means that a desychronization event has occurred.

We will follow three different approaches: First, we investigate the time series

of the output intensities and the corresponding sliding cross-correlation, and draw

conclusions about general features of the synchronization dynamics in the LFF and

coherence collapse regime, respectively. Second, we compare the distribution func-

tion of the sliding cross-correlation for each input current value and make statements

about the changes in synchronization and desynchronization behavior induced by

an increase in the pump current. Further, we analyze the evolution of the fraction

of synchronized dynamics in respect to the total length of the SLCC time series. For

that we have to introduce a correlation threshold Cthr for the cross-correlation. For

sliding cross-correlation values below this threshold we do not consider the time-

window as an interval of synchronized behavior. Third, we take an event-based ap-

proach and identify bubbling by local SLCC value using two additional thresholds:

since the stepsize for the SLCC has to be small to achieve a sufficient resolution of

short events, ultrashort dips may occur in this function. To filter those fluctuations

out we have to introduce a threshold for a minimum duration of the bubbling events

∆Tthr that has to be more or less arbitrary. A third threshold necessary for the

analysis of our time series is a connectivity threshold IEIthr which is the maximum

length for the inter-event interval to consider two isolated desychronization events

as part of a single longer one. These processing parameters lead us to statistical

data for bubbling duration and inter-event intervals.

We start by studying the time traces of the laser intensities, together with the

corresponding sliding cross-correlation. We are interested in the characteristics of

desynchronization in the LFF as well as in the CC regime. Therefore we look into

the dips in the SLCC time series. We find several significant features of those

events in the two different dynamical regimes: as can be seen in Fig. 10.8, the

desynchronization events in the LFF regime coincide with intensity dropouts at the

end of each LFF-cycle. This has been shown numerically before (Flunkert et al.,
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Figure 10.8: LFF dynamics and sliding cross-correlation (SLCC) as local synchronization

measure. The LFF dropouts (a) and the dips in sliding cross-correlation coincide (c).

(b) shows a magnification of the dynamics at one dropout point and (d) depicts the

corresponding τ -length SLCC dip that is associated with a bubbling event. The intensity

time series of one laser was shifted vertically for better visibility.

2009). It has been found that often dropouts take place first in one laser but not

the other so that the intensity traces desynchronize (Fig. 10.8(b)). Because of the

coupling delay τ the dropouts of both lasers then occur with a relative time shift of

τ after which the lasers resynchronize (Heil et al., 2001). It is shown in Fig. 10.8(d)

that the length of the desychronization events in the LFF case usually corresponds

to the delay time τ . It is also apparent that in the LFF regime the desynchronization

events always coincide with intensity dropouts but not every dropout is accompanied

by a desynchronization event (see Fig. 10.8(a,c)). In between the desynchronization

events (i.e. in synchronized behavior) the synchronization level is very high, going

beyond 0.95 in our experiments.

In the case of the Coherence Collapse regime, which we attain experimentally

by increasing the pump current above the LFF-resulting range, the synchronization

dynamics are much different due to the fact that the overall dynamics also differ

much from LFF behavior. The dynamics only take place on a fast timescale, i.e.
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Figure 10.9: Laser dynamics in the coherence collapse (a) and the corresponding sliding

cross-correlation (SLCC) time series (c). The SLCC shows distinct dips that correspond

to local desynchronization. The upper level of the correlation time series exhibits a value

higher than 0.90. The intensity time series of one laser was shifted vertically for better

visibility.

there is no larger timescale like the one associated with the LFFs (see Fig. 10.9).

We observe high-frequency short desynchronization events with a duration of the

order of 1 ns. The intervals of synchronized behavior exhibit a high correlation

coefficient in this case too, exceeding 0.90. The short stepsize for the sliding cross-

correlation allows us to resolve the fast synchronization dynamics with good accuracy

(Fig. 10.9(c,d)).

On the average, increasing the pump current leads to more desynchronization

events, which in turn then of course decrease the overall cross-correlation. In the

coherence collapse the bubbling events become shorter on average but also more

frequent. However, in the whole pump current range we investigated, the local

correlation coefficient (SLCC value) for synchronized time intervals does not change

much with increasing current.

We now analyze the distribution of the sliding cross-correlation. Fig. 10.10 shows

the normalized distribution of the SLCC for six pump current values. We notice that
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Figure 10.10: Probability distributions of the sliding cross-correlation for 6 different pump

currents. Note the semi-logarithmic scale i the y-axis.

the distributions broaden significantly with increasing current. However, even in the

coherence collapse the timetraces still show a significant fraction of synchronization

which is represented by the predominant peaks at high correlation values. For the

two curves associated with the LFF regime we can see broad peaks at −0.15 and

0.0, respectively, that correspond to the negative SLCC values, associated with the

power dropouts that are characteristic of the LFF regime (Fig. 10.8(c)). We deduce

that the overall correlation (circles in Fig. 10.7) decreases with increasing pump cur-

rent due to an increase in the number of bubbling events. That means that intervals

of high level synchronization still occur, but are more often interrupted by a desy-

chronization event. A global decrease in synchronization would shift the peaks in

Fig. 10.10 towards lower correlation values for increasing current, and can therefore

be dismissed as a reason for the decrease in the maximum of the cross-correlation

functions. The above is underlined by the fact that the fraction of timetraces that

exhibit synchronized dynamics decreases with the pump current in Fig. 10.7. As

synchronization threshold for the SLCC we choose Cthr = 0.5. Although that value

is somewhat arbitrary, a higher threshold value only changes the slope of the curve

slightly, but the overall monotony persists. We chose a low correlation threshold to

make sure that we only capture real desynchronization events in the LFF regime. In
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the coherence collapse the SLCC usually dips below 0.5 at an event (see Fig. 10.9).

Using the methodology described above for the event-based approach we now scan

the SLCC timetraces for bubbling events by choosing the three necessary thresholds.

We want to quantitatively characterize the bubbling events in terms of duration and

inter-event interval length (IEI) and obtain a dependence of these characteristics on

the pump current. In Fig. 10.11 the corresponding histograms for Ip = 15− 17 mA

are shown for threshold values of ∆Tthr = 0.5 ns, Cthr = 0.5 and IEIthr = 0.5 ns. For

input currents Ip = 12 mA and Ip = 13 mA (which result in LFF dynamics) only

7 and 20, respectively, events are captured. As mentioned above, these are usually

relatively long (τ length) events which are isolated, i.e. the IEI is of the order of

microseconds. Therefore, we present only histogram data of bubbling events for the

CC cases.
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Figure 10.11: Histograms for bubbling duration (a-c) and for inter-event interval length (d-

f) for pump currents I = 15−17 mA. The thresholds used for this analysis are ∆Tthr = 0.5

ns, Cthr = 0.5 and IEIthr = 0.5 ns. Note the logarithmic scale for the histogram counts.

As can be seen in Fig. 10.11, the distribution of the IEI scales towards more
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frequent bubbling (or shorter inter-event intervals) with increasing current, which

of course means a significant increase in the number of bubbling events. Relatively

isolated events become more and more rare with increasing Ip. The distribution

of bubbling duration is not affected much, apart from the fact that for increasing

current, less of the longer events are present. It has to be mentioned that the seeming

predominance of a bubbling duration of 1 ns (see e.g. Fig. 10.11(c)) is a numerical

artifact because of choosing a windowsize of 1 ns for the computation of the SLCC.

The question remains what happens for larger pump currents. It is justifiable to

conjecture that once we reach the computational limit of our SLCC (duration thresh-

old Tthr and windowsize) and all captured events have a length of around 1 ns and an

IEI of the connectivity threshold IEIthr, the output time series are ”saturated” with

desychronization events. Beyond this hypothetical limit, the local correlation will

decrease globally, as no time intervals of highly synchronized dynamics will persist.

10.3 Conclusions

We have experimentally achieved high-quality zero-lag synchronization of two fiber-

coupled semiconductor lasers, with correlation coefficients higher than 0.95. We have

shown general differences in synchronization dynamics between the LFF and the CC.

Due to the high-definition measurement equipment that we have used (during a stay

in the laboratory of Prof. Ingo Fischer at IFISC, Palma de Mallorca), we have been

able to analyze the time-depending synchronization with high resolution using a

sliding cross-correlation scheme, and identify distinct desychronization events which

are attributed to the bubbling phenomenon. We have analyzed the role of the

detuning on the synchronization quality. We have observed that it is possible to

achieve a high synchronization quality for a wide range of frequency mismatch. We

have also related the decrease in the overall correlation between the time series

of the intensity dynamics of the lasers as the laser pump current increases with
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a corresponding increase in the frequency of the bubbling events. Furthermore,

we have shown that with increasing current, only the events with shorter duration

persist.
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Chapter 11

Conclusions and future work

In this Thesis we have presented experimental and numerical results that can be

divided into two main groups: study of the chaotic dynamics of a semiconductor

laser with feedback and study the synchronization of semiconductor lasers under

different coupling architectures.

11.1 On the chaotic dynamics of a semiconductor

laser with feedback

Semiconductor lasers with optical feedback have been profusely studied during the

last two decades as models of nonlinear dynamical systems. We have been inter-

ested in this Thesis on quantifying the levels of stochasticity and complexity of

these dynamical systems. Accordingly, in Part II of this Thesis we have presented

experimental evidence that a semiconductor laser with feedback can behave as a

stochastic or as a deterministic (complex) system depending on the control param-

eters. In particular, we have observed that at low pump currents, the dropouts are

basically induced by noise and they are statistically independent one of the other.

On the other hand, when the pump current of the laser is sufficiently high, the
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system starts to show correlations between the dropouts. We have shown that a

two-state kinetic model explains the mechanism of appearance of those correlations.

We have also observed correlations in the time series of power dropouts, reflected

in the fact that some particular patterns for the sequence of consecutive dropouts

(and the transitions between them) exhibit a probability of appearance higher than

others, in contrast with a fully stochastic process. We can conclude that the appear-

ance of these more probable patterns is a signature of an underlying deterministic

behavior. We have compared the experimental observations with two different nu-

merical models: the delay-differential Lang-Kobayashi (LK) model and an effective

model based on coupled differential equations (EMG model) (Eguia et al., 1998).

In the LK model, the statistics of patterns and their transitions is the same as in

the experiments, but in the EMG model we found significant differences with the

experiments.

We have also computed the entropy and the statistical complexity of the sequence

of time between dropouts, which are suitable tools for quantifying structural char-

acteristics of the LFF dropouts. The statistical complexity exhibited two distinct

behaviors: one memory-less occurring at low injection currents; and the other oc-

curring at higher current values, for which there are memory effects revealed by time

correlations.

The results presented in this part of the Thesis address the debate involving the

different explanations proposed for the LFF phenomenon. We observed experimen-

tally, via novel statistical and complexity measures, that depending on the pump

current the dropouts can be understood as an stochastic or deterministic nonlinear

process.
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11.2 On the synchronization of coupled semicon-

ductor lasers

Semiconductor lasers are routinely used in the field of chaos synchronization. In

Part III of this Thesis we have reported new synchronization phenomena between

coupled semiconductor lasers under various coupling architectures. We have ex-

plored three coupling schemes: face-to-face configuration, open loop configuration

and bidirectional coupling via a passive relay.

In the face-to-face configuration we have studied the switching dynamics of the

leader-laggard role. We used a method capable of quantifying the level of stochas-

ticity of a time series, based in computing the number of forbidden patterns that it

exhibits. We observed that close to threshold, the system is totally stochastic. The

stochasticity is reduced monotonically as the system is pumped further away from

threshold. Numerical simulations of a generalized Lang-Kobayashi model were in

complete agreement with the experimental observations.

In the open loop configuration, we have examined the synchronized dynamics of

two semiconductor lasers coupled unidirectionally via two different paths. Under

this configuration we were able to observe a synchronized behavior dominated by

one of the paths. When the coupling strengths of both paths were comparable,

no single coupling delay dominated over the other, but rather they coexisted in

the synchronized dynamics of the system. We have observed experimentally and

numerically that the dual-lag synchronization does not consist in an alternance

between the two lag times, but every dropout of the receiver laser is formed by

two drops in the laser intensity, occurring after the two coupling lags, separated by

a plateau. Under this coupling architecture, we have numerically shown that this

configuration does prevent a successful recovery of the message when both paths are

comparable in strength.

In the case of bidirectional coupling via a passive relay, we have observed exper-
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imentally with high time resolution that zero-lag synchronization can be achieved.

We have shown general differences in synchronization dynamics between the regimes

of low-frequency fluctuations (LFF) and coherence collapse (CC). We have been able

to analyze in time the synchronization quality with high resolution using a sliding

cross-correlation scheme, and identified distinct desychronization events which are

attributed to the bubbling phenomenon. We have also analyzed the synchronization

quality when the lasers were detuned.

11.3 Perspectives for future work

As a result of the work performed in this Thesis, several questions have arisen.

Next we enumerate some of the questions that could be addressed as a natural

continuation of this Thesis.

With respect to the chaotic dynamics of a laser with feedback:

• Dynamical characterization of modal networks in semiconductor lasers with

and without feedback. Most of the theoretical studies of dynamical phenomena

in semiconductor lasers assume monomode lasing, but usually the commercial

lasers emit in several longitudinal modes. It could be interesting to characterize

the multimode behavior of the lasers in terms of a set of coupled nonlinear

oscillators. With this study we should be able to understand the mode hopping

dynamics present in most of the multimode EEL, and the effect of the feedback

over the longitudinal mode dynamics.

• Detailed experimental study of the statistical properties of the transient LFF

dynamics based on the theoretical work done by Zamora-Munt et al. (2010a).

With this study we could apply the symbolic methodology in order to distin-

guish if the underlying transient dynamics is stochastic or deterministic.

• A consistent response of a system under repeated complex waveform drive
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signal is an important consideration in systems as diverse as lasers and neu-

ronal networks. One could ask if a laser with feedback operating in a region

of parameters where it shows chaotic transient dynamics, is consistent under

a given drive signal.

With respect to synchronization dynamics for coupled lasers:

• Generalize the study of dual-lag synchronization to networks of lasers with

more than two elements. In that case a given pair of lasers might be connected

by more than two paths, which would enhance the effects of path interference

reported in this Thesis.

• In Ch. 10 we have studied how the system desynchronizes via bubbling for

different pump current values. It could be interesting to do a similar study for

different values of the detuning between the lasers. It would be also interesting

to extend the study presented in this Chapter to information propagation

through complex networks, in which pairs of nodes are commonly coupled via

multiple paths of different lengths, and thus with different coupling delays.

• Study the zero-lag synchronization and the way in which the lasers desynchro-

nize with an active relay (i.e. a third laser) instead of passive rely (i.e mirror),

as in Ch. 10.
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Appendix A

Derivation of the rate equations

for a semiconductor laser

In this appendix we derive, following Petermann (1988), the rate equations for semi-

conductor lasers that are crucial to understand the basic laser dynamics in the pres-

ence of feedback and couplings. We will model a double heterostructure Fabry-Perot

laser, but the rate equations derived below can describe any type of laser with a

narrow stripe edge-emitting structure. For simplicity, we assume single longitudinal

mode emission. According to Fig. A.1, the light inside the laser can be described

by two electric fields corresponding to the forward (Ef ) and backward (Eb) propa-

gation. The optical field, assumed homogeneous in the plane perpendicular to the

optical axes z, is given by

E(z, t) = E(z) exp[iωt], (A.1)

where the space-dependent amplitudes of the forward and backward fields are:

Ef (z) = E0f exp[−ikz +
1

2
(g − αabs)z], (A.2)

Eb(z) = E0b exp[−ik(L− z) +
1

2
(g − αabs)(L− z)], (A.3)
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z=0 z=L 

Eb(z) 

Ef(z) 
r1 r2 

Figure A.1: Schematic representation of a semiconductor laser cavity and the correspond-

ing traveling waves. The facets are located at z = 0 and z = L. The reflectivities of the

cleaved facets are denoted by ri and Ef (z) and Eb(z) are the forward and backward fields

that propagate inside the cavity.

where g is the gain in the laser medium, αabs is the total loss due to absorption

and scattering in the laser medium and k = nω

c
is the wavevector, with n, c, and ω

being the refracting index, the speed of light in vacuum and the optical frequency,

respectively. From the boundary conditions at the facets Ef (0) = r1Eb(0) and

Eb(L) = r2Ef (L) we find that the laser oscillation condition is the following:

r1r2 exp[−2ikL+ (g − αabs)L] = 1. (A.4)

The modulus of Eq. (A.4) yields a condition for the gain g. The gain at laser

threshold gth corresponds to the region parameters where gain balances the losses:

gth = αabs +
1

L
ln

� 1

r1r2

�
, (A.5)

Note that the term corresponding to the reflectivities represents the losses at the

end facets (αm). On the other hand the phase of Eq. (A.4) yields a condition for
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the wavevector k (i.e. for the lasing frequency ω):

kL = mπ,

ωm = m
πc

nL
, (A.6)

being m an integer and ωm the corresponding mode frequency. Note that n is the

effective refracting index for the lasing mode. We can obtain the mode separation

by:

dω =
δω

δm
dm+

δω

δn
dn,

=
πc

L
dm− mπc

n2L
dn, (A.7)

Taking into account that dm = 1 and the group refracting index ng = n+ ω
dn

dω
, the

mode separation has the following form:

∆ω =
πc

ngL
=⇒ ∆ν =

c

2Lng

, (A.8)

Before deriving the rate equations it would be interesting to introduce the definition

for roundtrip gain and its corresponding time. The roundtrip gain is defined as

follows:

G = r1r2 exp[−2ikL+ (g − αabs)L] = G1G2, (A.9)

where G1 is the frequency-independent term and G2 the frequency-dependent term.

On the other hand, the time inverted by one photon to go once around the cavity

is given by the inverse of the mode spacing (Eq. (A.8)):

τcav =
2ngL

c
. (A.10)

In order to find an expression for G1 and G2 one first has to expand the wave vector

k in a Taylor series around the laser threshold (i.e. around ωth and Nth):

k =
ω

c
n =

�
kth +

δk

δN

���
th

(N −Nth) +
δk

δω

���
th

(ω − ωth)
�

=
ωth

c

�
nth +

δn

δN
(N −Nth) +

ng

ωth

(ω − ωth)
�
, (A.11)
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note that to expand the wave vector we have assumed that the refractory index

depends on the optical frequency and the carrier density. Once the wave vector

is expanded, and after inserting Eq. (A.11) into Eq. (A.9) we are able to split the

round trip gain into the frequency-independent term:

G1 = r1r2 exp[(g − αabs)L] exp[−iφG], (A.12)

φG = 2ωL
c

δn

δN
(N −Nth), (A.13)

and the frequency-dependent term:

G2 = exp

�
− 2iωthL

c

�
nth +

ng

ωth

(ω − ωth)
��

,

= exp[−i(ω − ωth)τcav], (A.14)

In order to obtain Eq. (A.14) we have used the fact that the first term of the

exponential is a multiple of 2π, and the second term can also be simplified by using

Eq. (A.8).

So far we have found an expression for the round trip gain. This gain is applied

on each round trip to the light that travels inside the cavity. The complex time-

dependent electric field inside the cavity has the general form:

ε(t) = E(t)ei(ωtht), (A.15)

where E(t) is the slowly varying envelope of the electric field propagating in the

positive direction inside the Fabry-Perot cavity, and the field oscillates essentially

at ωth. If we apply the expression of the gain into the traveling wave:

ε(t) = Gεf (t) = GEf (t)e
i(ωtht) = G1e

−τcav
d
dtEf (t). (A.16)

The e
−τcav

d
dt term produces a time shift of τcav in the electric field:

Gεf (t) = G1Ef (t− τcav). (A.17)

This final expression allows us to consider the effect of the material gain only over

the slowly varying envelope of the field. After a round trip the amplitude of the
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field for the traveling wave in the positive direction (Ef ) has to coincide with the

value of the field in the previous roundtrip, accomplishing the boundary condition

of the cavity. As the boundary condition of the cavity is satisfied, we can ignore the

subindex for the forward traveling wave.

E(t) = G1E(t− τcav). (A.18)

The amplitude variations can be considered small over a round trip, so that it is

possible to do Taylor expansion up to first order:

E(t− τcav) � E(t)− τcav
dE(t)

dt
, (A.19)

and introducing Eq. (A.18) in the above expression:

dE(t)

dt
=

1

τcav

�
1− 1

G1

�
E(t). (A.20)

Expanding the exponential expression of the round trip gain 1/G1 around unity

results on:
dE(t)

dt
=

(1 + iα)

2
[G− γ]E(t), (A.21)

where α = Re[χ]
Im[χ] is the linewidth enhancement factor, a parameter that plays an im-

portant role in establishing the linewidth of the laser oscillation. The α parameter

is almost zero for most of lasers but has a positive value (usually between 1 and 7)

for semiconductor lasers, plays an important role in both the spectral characteristics

and the dynamics of semiconductor lasers, specially when subject to external per-

turbations. The parameter γ is the inverse of the photon lifetime, and G is the gain.

This expression of the gain has to be completed, to take into account that the gain

depends nonlinearly, in general, on the population inversion and the optical power

(P = |E|2). The total gain of the semiconductor laser can be linearized around the

threshold value (gth), taking into account its variations with the carrier density:

g(N) = gth +
���
∂g

∂N

���
Nth

(N −Nth), (A.22)
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where Nth is the carrier density at threshold.

At transparency the loss in the laser medium balances the gain. The gain must

exceed this value for laser oscillations. Taking into account the density at trans-

parency, we can define the gain at threshold as an expansion around transparency:

gth �
���
∂g

∂N

���
N0

(Nth −N0) (A.23)

where N0 is the carrier density at transparency.

With that, the gain per unit time can be defined as:

G(N) = vgg(N) = gN(N −N0) (A.24)

with vg =
c

n
, and

gN = vg
∂g

∂N
�N0 � vg

∂g

∂N
�Nth

(A.25)

is the differential gain.

This linear dependence is not accomplished for high optical powers, due to spatial

hole burning and carrier heating effects. Spatial hole burning accounts for the fact

that the optical field is not constant in all the active region (the standing wave

inside the cavity forms an interference pattern), and the recombination is higher

where the optical field is maximum. If the carrier diffusion is not sufficiently fast

to supply these zones with more carriers, this effect will lead to a saturation of

the gain coefficient. This can lead to emission in various frequencies, because the

lasing mode experiences stronger gain saturation than the non-lasing modes. The

other contribution to the saturation of the gain is given by carrier heating effects.

They arise when the electrons of the conduction band are excited to higher energies.

This fact hinders the recombination with the holes of the valence band, leading a

saturation of the gain. The saturation coefficient accounts for both processes, and

the nonlinear gain is described as:

G(N, |E|2) = gN(N −N0)

1 + s |E|2
(A.26)
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which accounts for the dependency of the gain with the carrier density and the

amplitude of the field. In this expression, gN is the differential gain, N0 is the

carrier density at transparency, s is the saturation coefficient, and |E|2 is the power
output of the field, i.e. the number of photons inside the cavity.

The dependence of the gain on the population inversion forces us to derive an

equation for the carrier density, to have a complete description of the dynamics of

the semiconductor laser. We start with the assumption of charge neutrality in the

material, and use several approximations in order to arrive to a governing equation

for the carrier density:

• We neglect carrier diffusion, because these lasers have a very small dimension

of the active layer compared to the diffusion length.

• We consider that the carrier decrease due to recombination processes (sponta-

neous emission and non-radiative recombinations), and stimulated emission.

• We do not consider inhomogeneities in the carrier density, due to the fast

carrier diffusion.

With these assumptions and taking into account that the generation of the electron-

hole pairs is due to pumping, being I the pump current and e the elementary charge,

the equation for the population inversion is:

dN

dt
= C − γeN −G(N, |E|2) |E|2 , (A.27)

where C is the normalized pumping current C = I

e
and γe is the inverse lifetime of

the carriers.

A realistic model of a semiconductor laser has to include a noise term describing

the spontaneous emission processes that initiates lasing emission. To that end we

add an additional term in the field equation containing a complex Gaussian noise

with zero mean and delta correlated in time. This term is proportional to the pop-

ulation inversion also to account for the quantity of spontaneous emitted photons.
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Summarizing, the rate equations that describe the dynamics of a semiconductor

laser and govern the electric field and the carrier density number are:

dE(t)

dt
=

(1 + iα)

2

�
G(N, |E|2)− γ

�
E(t) +

�
2βNζ(t), (A.28)

dN

dt
= C − γeN −G(N, |E|2) |E|2 , (A.29)

where β is the noise strength.

It is also possible to express these equations in terms of the photon number and

its phase, instead of the slowly varying field. Taking into account that the equations

are normalized such as: E(t) =
�
P (t)eiφ(t), where P (t) = |E(t)|2 is the photon

number, and φ the phase of the field, the rate equations can be expressed as:

dP (t)

dt
= [G(N,P )− γ]P (t), (A.30)

dφ(t)

dt
=

α

2
[G(N,P )− γ] , (A.31)

dN

dt
= C − γeN −G(N,P )P, (A.32)

where the nonlinear gain is now given by:

G(N,P ) =
gN(N −N0)

1 + sP
. (A.33)

In spite of being described by three rate equations, this system cannot show chaos,

due to the fact that the phase variable does not affect the other two.

The steady state solutions of this reformulated system of equations are obtained

setting each equation to zero. With this we obtain a solution for the number of

photons, the difference of the optical frequency respect to the stationary value, and

the density of carriers. There are two situations to take into account:

• Below threshold: the emission of photons is zero, the density of carriers in-

creases linearly with the pumping current (Ns = C/γe), and there exists a

difference between the stationary frequency (ωs) and the instantaneous fre-

quency of emission (ω).
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• Above threshold: the emission of photons is proportional to the distance of

the pump current from its threshold value. Carrier density is clamped to its

threshold value, and the instantaneous frequency is clamped to the stationary

value (∆ω = 0).

Through the study of the linear stability of these solutions, it is possible to see

that the solutions above threshold follow an oscillatory approach to equilibrium in

response to small perturbations. This defines the relaxation oscillations (RO), which

are common in any class-B lasers (Weiss & Vilaseca, 1991). This system of equations

represents a two-dimensional system, which allows only to periodic solutions and not

chaotic behavior. The laser oscillation occurs when the population inversion exceeds

the value corresponding to the pumping threshold.

The relaxation oscillations can be explained if we introduce a step input through

the pumping current. The carrier density reaches the threshold and emits light. The

population inversion decreases due to light emission, and as consequence the output

power decreases until the population inversion recovers. This produces oscillations

between the field and the carrier density, that are the relaxation oscillations, which

are reproduced only at the first instants after the turn-on of the laser, and are

rapidly damped. They characterize the speed of reaction of the laser to external

modulations of the pumping. The relaxation oscillation frequency sets the upper

limit of the dynamics, and goes from 1 to 10 GHz typically. The enhancement of

the relaxation oscillations in semiconductor lasers through external perturbations

as optical feedback or optical injection causes strong instabilities, as we have seen

in this Thesis. The damping rate of this oscillations, in turn, affects the response

characteristics of the dynamics to these perturbations.
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Appendix B

Statistical tools

B.1 Correlations

The correlation is a quantity that gives the degree of similarity between two or more

variables. More specifically, the correlation coefficient points out how the variables

are linearly associated. During this Thesis we have used this quantity in order to

establish how a signal changes in time and whether the process repeats itself (auto-

correlation), and also in order to quantify the degree of synchronization between

two signals (cross-correlation).

B.1.1 Auto-correlation

As mentioned above the auto-correlation (correlation between a signal and itself)

allows us to know how fast a signal changes in time (i.e. the memory of the sys-

tem) and also the periodicity of the signal. For that one has to compute the auto-

correlation for all the possible lag times (auto-correlation function). The normalized

auto-correlation function of time-dependent signal s(t) reads as follows:
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Γauto(∆t) =
�(s(t)− µ)(s(t+∆t)− µ))�

σ2
(B.1)

where ∆t is the lag time, µ is the mean value of the signal, and σ
2 its variance. Due

to the fact that we are comparing the signal with itself the auto-correlation function

is symmetric with respect to zero. Note that a high value of the auto-correlation

function (∼ 1) at a certain lag time (∆t), means a high similarity between the

signal and itself at this particular value of ∆t. On the contrary, at the time lags at

which the signal does not repeat, the correlation takes values around zero. There is

another possibility, arising when the signal and its shifted version are in anti-phase:

in this case the auto-correlation function at the corresponding lag time is negative

(∼ −1). In order to illustrate the characteristics of the auto-correlation function we

compute it for two different kinds of signals: stochastic (Fig. B.1(a)) and periodic

(Fig. B.2(a)). Figure B.1(b) shows the auto-correlation function of an Ornstein-

Uhlenbeck process, which is a prototype of a noisy relaxation process. We can see

that the correlation exponentially decays to zero. The decay time can be related

with the memory of the system.
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Figure B.1: (a) Time series for an Ornstein-Uhlenbeck process and the corresponding

auto-correlation function (b).

On the other hand, when we analyze a periodic signal the auto-correlation function
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is also periodic (Fig. B.2(b)). In this case the signal and its shifted version are equal

every period, and so the correlation Γauto(∆t = 2πn) = 1. For a lag time ∆t = π the

signal and itself are in anti-phase and the correlation is Γauto(∆t = (2n−1)π) = −1.
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Figure B.2: (a) Time series for a periodic process and the corresponding auto-correlation

function (b).

In this Thesis we have worked with chaotic signals from a semiconductor laser

with feedback (Fig. B.3(a)). The behavior of the correlation in this type of signals

integrates the phenomena previously described, with the signal quickly losing coher-

ence but also showing some periodicity. As can be seen in Fig. B.3(b), the delay time

induces quasi-periodicity with a period equal to τf . In each peak there is a decay of

the correlation, followed by small oscillations around zero related with the relaxation

oscillations. After a few relaxation periods the system loses the coherence. Due to

the quasi-periodicity the system recovers part of the coherence in every multiple of

the delay time, but after a few peaks the coherence is lost again. As can be seen

in Fig. B.3(c), the auto-correlation function is modulated at large time scales, and

when the laser is in the LFF regime the mean time between dropouts can be seen

(secondary peak located at ∼ 100 ns).
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Figure B.3: (a) Numerical time series for a laser with feedback and the corresponding

auto-correlation function for short (b) and large (c) time scales.

B.1.2 Cross-correlation

In order to compare two signals (s1(t) and s2(t)) and know how similar they are,

one can use the cross-correlation function, which has the following expression:

Γcross(∆t) =
�(s1(t)− µ1)(s2(t+∆t)− µ2))�

σs1σs2

, (B.2)

where ∆t is the lag time, µi is the mean value of the signal si, and σ
2
i
is the variance

of the signals. It is worth to note that Γcross(∆t) is also normalized via the product of

the variances, but it is not symmetric as in the case of the auto-correlation function.

When both signals are similar the maximum correlation appears at zero lag, but

if one signal is delayed with respect to the other, the maximum of the correlation
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appears at the delay time. Therefore, the cross-correlation function allows us to

quantify the degree of synchronization between two outputs, but also the delay

between them. Depending on the sign of lag time where the highest peak appears

one can establish which of the two coupled systems leads the dynamics. The fall-off

of the envelope depends on the robustness of the synchronization. If the cross-

correlation peaks decrease very fast, the time series are correlated only during a few

roundtrips of the light, and thus the signals are weakly correlated after a small time.
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Figure B.4: (a) Experimental time series for two bidirectionally coupled lasers with feed-

back and the corresponding cross-correlation function (b).

The cross-correlation function is a very powerful tool to measure the degree of

synchronization between coupled lasers. Figure B.4(a) plots the time series for

two bidirectionally coupled lasers with feedback and in Fig. B.4(b) we show the

corresponding cross-correlation function for two bidirectionally coupled lasers with

feedback which exhibit zero-lag synchronization. The higher peak is at ∆t = 0, and

the separation between peaks shows the coupling and the feedback delay, which have

the same value (i.e. τc = τf = 73 ns, see Ch. 10). Furthermore the slow decrease of

the envelope means that the synchronization is very robust.
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B.1.3 Sliding cross-correlation

As we have discussed above the cross-correlation tells us how similar two signals are

over the whole duration of the time series. If one is interested in how the correlation

varies itself in time, the sliding cross-correlation can be a useful technique. In order

to calculate it, we have to divide the time signals into sliding windows of a size

such that the correlation can be considered stationary. Once the cross-correlation is

computed in each time window, we obtain correlations at different time values. It

is worth to note that with this technique we are able to observe desynchronization

events that cannot be observed with the time-averaged cross-correlation, but on the

other hand we lose all information related to lag times.

! "#$ $ %#$ &! &"#$ &$ &%#$
!&$

!&!

!$

!

$

&!

'()*+,µ-.

/
0
1)
2
3(4
*
5
+0
6
78
6
7+
(9
7*
9
-
(7
:

! "#$ $ %#$ &! &"#$ &$ &%#$
!!#$

!

!#$

&

'()*+,µ-.

/
0(1
(2
3
+4
56
-
-
!
4
6
55
*
07
8(
6
2

(a) (b) 

Figure B.5: (a) Experimental time series for two bidirectionally coupled lasers with feed-

back and the corresponding sliding cross-correlation function (b) for ∆t = 0.

In Fig. B.5 we show the time series (a) and the sliding cross-correlation (b) function

for two bidirectionally coupled lasers with feedback, operating at the LFF regime.

In the figure we can observe desynchronization events related with the correlation

drops, that would not be observed with the cross-correlation function (see Ch. 10).
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Heil, T., Fischer, I., & Elsäßer, W. (1999a). Influence of amplitude-phase coupling

on the dynamics of semiconductor lasers subject to optical feedback. Physical

Review A, 60 (1).

194



Bibliography
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