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THESIS ABSTRACT 
 
Douglas Howard Banning  
 
Master of Science 
 
Department of Chemistry 
 
March 2019 
 

Title: Fresh Approach for High-Throughput Studies of Ion-Selective Materials Using 

Reusable ChemFET Platform 

 
Aqueous anions play an important role in our world, and the ability to continuously 

measure them provides both environmental and health benefits. Chemically-sensitive field 

effect transistors (ChemFETs) are becoming increasingly popular in the field of aqueous 

measurement due to their relatively low-cost capability for real-time, continuous sensing. 

Receptor molecules or mixtures displaying affinity for a particular ion can also be utilized 

in a ChemFET gate membrane. Receptors can be incorporated into the gate oxide 

membrane and the entire ChemFET can utilized in an aqueous environment, thus utilizing 

hydrophobic receptors in an aqueous anion-sensing application. 

Demonstrating the ability to reuse the sensors validates an important characteristic 

for ChemFET-based research. Additionally, numerous other receptor molecules are 

evaluated against an array of common anions. Selectivity coefficients are compared to the 

Hofmeister Series. Additional membranes are evaluated for suitability for incorporation of 

receptors on the ChemFET gate oxide surface. This thesis includes previously unpublished 

co-authored material. 
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CHAPTER I. INTRODUCTION 

Introduction. Aqueous anions play an important role in our world. In an agricultural 

application, nitrates and phosphates are important plant nutrients. However, 

overapplication of some of these nutrients can be harmful to the environment. 

Overfertilization can lead to excess nitrates and phosphates in groundwater and other 

associated ecosystems. For example, overabundance of nutrients in lakes and rivers can 

cause problems like eutrophication and algal blooms. Water contamination by other 

anions like perchlorates can cause medical issues with the local populace.1 The ability to 

measure anion concentration is vitally important in our world, especially in areas 

increasingly rife with pollution and runoff.  

Much work has been done at the 

University of Oregon in the field of anion 

sensing, developing supramolecular “hosts” 

which house anionic “guests”.  The 

collaboration between the Darren W. Johnson 

research group and Mike Haley research group 

has developed an arylethynyl bisurea anion 

receptor scaffold which has been shown to act 

as a host for nitrate and phosphate guests (see 

Figure 1).2 The modular approach to synthesizing this scaffold facilitates modification of 

three main functional areas: the “core,” the “elbows,” and the “shoes.” The varying 

functionality at these three points can tune the strength of the local hydrogen bond donors 

and/or acceptors to better bind to a targeted anion of interest. The binding of host to guest 

X’’R R’’

NH HN

HNNHO O

R’’’ R’’’

R’

Anion

Figure 1. UO Receptor Scaffold. Arylethynyl bisurea 
receptor scaffold. R’ and X are in the "core," R’’ is 
termed "elbow," R’’’ is termed "shoe.” Depicted 
with anion in the binding pocket. The binding 
pocket is comprised of five hydrogen-bond 
donors/acceptors; the four urea N-H hydrogen-bond 
donors, and X can represent an addition N-H or C-H 
hydrogen bond donor, or an N hydrogen bond 
acceptor. 
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in some cases can produce either on-to-off or off-to-on fluorescence.3 Given the water 

insolubility of the receptor molecule, binding studies must be conducted in less polar 

solvents such as DMSO and chloroform.2,3 

One of the difficulties with implementing this particular receptor scaffold in an 

aqueous anion sensing capacity is due to the practical insolubility of the receptor in 

water.  However, non-water-soluble receptors are often suitable for use in the chemically 

selective materials (usually polymers) used in ion-selective electrodes (ISEs) and 

chemically-sensitive field effect transistors (ChemFETs).  

ChemFETs. ChemFETs are becoming increasingly popular in the field of potentiometric 

sensing due to their relatively low-cost capability for real-time, continuous sensing. 

ChemFETs are a subset of ion-sensitive field effect transistors, or ISFETs An ISFET is a 

transistor where the 

characteristics of the 

gate circuit are 

dependent on any 

ions present between 

the gate electrode 

and the gate oxide 

(see Figure 2). A 

ChemFET 

introduces a barrier on the gate oxide that imparts some level of selectivity, where only 

specific ions in the electrolyte or analyte solution affect the gate circuit. ChemFETs 

utilize a semi-permeable membrane applied to the gate electrode surface, containing a 

Figure 2. ChemFET Diagram. A concentration gradient between the analyte in the 
electrolyte solution and the membrane on the gate oxide creates a potential. This 
potential changes the characteristics of the source-gate circuit, which is measurable. 
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receptor with selective affinity to an analyte of interest. The affinity of the target analyte 

of interest to the receptors embedded in the gate membrane creates a concentration 

gradient between the membrane and the solution being analyzed. The imbalance of 

charged species creates a chemical potential between the sample and the gate oxide, 

changing the characteristics of the gate circuit. This effect on the gate circuit imparted by 

the sample is measurable and relates to analyte concentration in the sample.4  

Figures of Merit. There are three major figures of merit that are of significance to 

ChemFET measurements; detection limit, sensitivity, and selectivity.  

Sensitivity and Detection Limit. The sensitivity and detection limit of the sensor are 

Sensitivity 

Figure 3. Sensitivity and Detection Limit. The slope of the measurement indicates the sensitivity of the 
method. The detection limit shows the point at which the analyte is no longer detectable over the 
background. 
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measured by the curve generated by FET response as a function of concentration. The 

detection limit represents the lowest concentration of the target analyte that can be 

measured above the background noise of the system. Sensitivity is measured by the slope 

of ChemFET response (commonly reported in volts or millivolts) as a function of analyte 

concentration. Greater sensitivity translates to a smaller change in concentration 

producing a measurable change in response, or correspondingly a larger response for a 

given change in concentration. Slope is generally reported in units of millivolts (or volts) 

per order of magnitude change in concentration, termed “decade” (see Figure 3). The 

steeper the slope, the larger the electronic response to a given change of concentration 

and therefore the greater the sensitivity of the sensor to concentration of analyte. 

Generally, our devices show positive signal response to anions. In other words, the gate 

voltage increases as anion concentration increases, resulting in a positive slope in the 

reading. The opposite response is usually observed for cations. For example, for our 

ammonium-selective devices, signal decreases as cation concentration is increased, 

resulting in a negative slope in the reading. 

Selectivity. Selectivity represents the ability of the sensor to measure the concentration of 

the desired target analyte in the presence of interfering ions. Selectivity can be measured 

using either the Separate Solution Method (SSM) or the Fixed Interferent (FI) method. 

Both SSM and FI characterizations report a series of selectivity coefficients for various 

competing ions, which are a quantitative depiction of the sensitivity of the method to 

distinguish between the target analyte and the single interferent.  

The SSM method entails running the sensor through a solution of the target 

analyte A (with no interferent B), and then run again in a solution of interferent B (with 
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no analyte A). Both responses are then combined to report a coefficient describing how 

sensitive the method is to a particular interferent in relation to the target analyte.  

The FI method involves measuring a series of solutions that combine a varying 

target analyte concentration and fixed interferent concentration. The selectivity 

coefficient is calculated from the point where the flat interferent line intersects the target 

analyte line (see Figure 4).  

The FI method produces selectivity coefficients that are considered more reliable, 

as the method involves measurements taken with both the primary and interfering ions in 

the same solution.  

Shift in Y-Intercept. The y-intercept can vary sensor to sensor; testing has demonstrated 

that it does not affect the sensitivity. There is no useful information contained in the y-
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Figure 4. Fixed Interferent Characterization. The response at lower concentrations of analyte is clearly dominated 
by interferent. The selectivity coefficient is calculated from the bend in the curve where the response changes 
from interferent to analyte. 
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intercept of the measurement; any differences come from manufacturing tolerances as 

well as slight variances in the summed junction potentials of each solid-liquid interface. 

These junction potentials vary with interface surface area and shape.5 This allows for  

responses to be normalized to a response value for easier graphical comparison. 

Applications. A significant application of ChemFETs is in the area of real-time ion 

sensing. Receptor molecules or mixtures with affinity for particular anions can be 

integrated within a membrane on top of the gate oxide to provide selectivity for ionic 

analytes. Since the ChemFET works by converting molecular recognition to a measurable 

signal, one advantage to ChemFET sensors is that no visual indicator is necessary as is 

common in many other guest-host evaluations (such as off-to-on or on-to-off 

fluorescence).3 This is particularly useful when dealing with applications where optical 

indicators cannot be distinguished, such as in turbid samples. The continuous response of 

ChemFET-based sensing allows for real-time information to be collected on the analyte 

of interest. Embedding the receptor in the membrane on the gate allows the use of non-

water-soluble receptors to be applied in aqueous ion sensing applications without having 

to connect these receptors to the material via covalent bonds. Other research groups 

working with ChemFETs use various membranes for controlling the chemical 

interactions on the gate oxide surface such as polysiloxane and polyacrylamide.7,8 We 

drop cast the NBR membrane with embedded receptor and additives directly on the gate 

oxide.  
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  Drop Casting. The ChemFETs are coated via drop casting (see Figure 5). The DWJ lab 

has developed a modular drop casting method allowing for easy drop-in replacement of 

individual components for easy change of components. There are four categories of drop 

cast stock solutions, each containing one component of the overall membrane and all are 

in the same solvent. The first drop cast stock solution contains the receptor molecule or 

cocktail. The second drop cast stock solution contains the membrane (sometimes with 

plasticizer). The third stock solution is for any ionic additive (often TOAN) being 

introduced to modify the membrane character. The fourth stock solution is a test aliquot 

dedicated for testing any other components (such as secondary receptors or ionic 

additives), and is 

often left blank (just 

solvent). A sensor 

drop cast solution is 

created by 

measuring equal 

aliquots from one 

each of the four 

stock solution 

categories. This modular approach facilitates high-throughput testing. When, for instance, 

testing new membranes, existing receptor and additive stock solutions can still be used. 

The only new solutions that are needed are those containing new components under 

evaluation. Reducing the number of measurements here reduces probability of error as 

well as eases overall workload in the lab.   

Figure 5. Drop Casting. The four-part solution contains receptor, any ionic 
additives, membrane and any plasticizer, and a test aliquot. 

Polymer
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Off-the-shelf ISE receptor mixtures displaying ion affinity can also be utilized in 

a ChemFET gate membrane. One benefit of using off-the-shelf receptors is that it 

removes a variable when attempting to characterize ChemFETs for a particular use-case. 

We used off-the-shelf Sigma Aldrich (SA) nitrate and ammonium receptor cocktails 

designed for ISEs for our initial ChemFET characterization, which removed an unknown 

that would have otherwise been present by utilizing experimental receptor systems.  We 

used these off-the-shelf systems to develop and validate a recyclable and high-throughput 

platform for testing different polymer membrane receptor formulations. The portion of 

chapter II directly relating to recyclability was included in previously unpublished co-

authored material. 
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CHAPTER II. RECYCLABILITY 

 

Portions of this chapter were co-authored by Sean A. Fontenot, Darren W. Johnson, Julia 

M. Fehr, and Ian S. Torrence from the Department of Chemistry, University of Oregon, 

and Jordan R. Kusiek, Andreas M. Wenzel, and Calden N. Carroll from SupraSensor 

Technologies. Sean Fontenot provided writing and editorial assistance. Julia Fehr and Ian 

Torrence performed some of the lab experiments. Doug Banning prepared the chapter, 

contributed to each section, provided most of the material, performed literature research 

and analysis, and compiled material from the other authors. Excerpts from this chapter 

will be submitted to ACS Sensors under the title “Demonstrating the Recyclability of 

ChemFETs and use as a Total Nitrogen Sensor.” 

 

Introduction. Off-the-shelf ISE receptor mixtures displaying analyte affinity can also be 

utilized in the gate oxide membrane of a ChemFET. The receptor mixtures embedded in 

the polymer membrane make the membrane selective for an analyte. One benefit of using 

off-the-shelf receptors is that it removes a variable when attempting to characterize 

ChemFETs for a particular use-case. Use of Sigma Aldrich (SA) nitrate and ammonium 

receptor cocktails allowed for initial ChemFET characterization by removing an 

unknown factor that would have otherwise been present by utilizing DWJ lab-developed 

receptors. Full characterization of the ChemFET setup using known and proven receptor 

systems allowed additional factors to be explored without potential confounding by 

untested or experimental receptor systems.  Recyclability was the factor of interest in this 

study. Recyclability of ChemFETs is the ability to strip the selective membrane from the 
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gate oxide, reapply a different selective coating, and observe the device change 

characteristics. We picked out off-the-shelf ChemFETs, polymers, deposition method and 

used an off-the-shelf nitrate receptor cocktail designed for ISEs along with another 

literature-derived formulation for an ammonium ChemFET and developed and validated 

a recyclable and high-throughput platform for testing different polymer membrane 

formulations. 

ChemFET Overview. ChemFETs are attractive as ion-sensing devices due to their low 

cost, low power consumption, and capability for continuous measurement. Like ISEs, 

ChemFETs rely on ion-selective materials, usually polymers, to regulate the interfacial 

potential between the analyte sample solution and the gate oxide (or the filling solution in 

the case of ISEs).  

Ideally, an ion-selective material can be applied such that this interfacial potential 

is dependent only on the activity of a target analyte. This potential can then be measured 

and taken as a signal corresponding to activity of the target analyte. Many excellent 

articles further describe the functional principles of ChemFETs.4,7,11,12 In practice, the 

interfacial potential between the sample environment and gate oxide of the ChemFET is 

convoluted with several other interfacial potentials and perfect selectivity of a material 

for one target analyte is not often achievable.5 The variance in the interfacial potentials 

affects the response voltage, which translates to varying y-intercepts when graphing 

different ChemFET responses. In order to deconvolute the potential generated by 

interactions with the target analyte from other changes in measured potential, the 

ChemFET devices must be evaluated in terms of three key figures of merit: sensitivity, 

detection limit, and selectivity.  
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The sensitivity of the ChemFET is defined by the slope obtained when the signal 

is plotted vs the logarithm of the activity of the target analyte. Ideal sensitivity, the 

maximum sensitivity achievable by potentiometric devices, is described by the Nernst 

equation expressed as 59 mV per decade.  

The detection limit represents the lowest amount of analyte distinguishable from 

the background noise of the system, and is calculated from the bottom of the sensitivity 

slope. 

 Selectivity describes the ability of the sensor to distinguish the target analyte, A, 

from specific interfering species, B. Selectivities are represented by selectivity 

coefficients which are generally expressed as 𝐾",$
%&'as defined by the Nikolsky-Eisenman 

equation (Figure 6).6 Small values of K indicate a 

greater selectivity for the target analyte, A. Large 

values of K indicate a greater selectivity for the 

interferent, B. Selectivity coefficients are best 

determined by the fixed interference (FI) method.  

One way to prepare an ion-selective material is to incorporate molecules having 

ion-selective functionality into a polymer membrane which is then applied to the gate 

oxide. In this way, the ChemFET converts molecular recognition events in the polymer 

membrane to a measurable signal.  It is important to note that the interactions between the 

polymer membrane and target analyte must be reversible.  

When being used to screen potential ion receptors and their corresponding ion-

selective materials, there is a significant advantage in the ability to “recycle” the 

ChemFET substrate. In terms of both cost and preparation effort, the ChemFET substrate 

Figure 6. Nikolsky-Eisenman Equation.  A is 
analyte, B is interferent. 𝑲𝑨,𝑩

𝒑𝒐𝒕is the 
potentiometric selectivity coefficient for 
interferent B with respect to the analyte A, 
aA is activity of A, aB is activity of B, ZA is 
charge of A, and ZB is charge of B. 

𝐾",$
%&'= ."

./0//2
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is generally the most expensive component of the device. Therefore, the cost of research 

and development may be reduced if substrates are reusable over tests involving several 

different configurations and material formulations. Cost and labor savings combine to 

enable higher throughput screening of devices. There is a further experimental advantage 

of insuring that a device’s behavior be strictly tied to the polymer/material formulations. 

Additionally, there is an urgent need to utilize real-time sensors to detect both the 

nitrate and ammonium concentration of soil in agricultural applications, a measurement 

termed “total-N” content of the soil.15 Therefore, we demonstrate this process in the 

context of developing sensors for total-N measurement. 

EXPERIMENTAL SECTION 

Reagents. The receptor membranes were composed high molecular weight polyvinyl 

chloride (PVC) (SA product 81387) with 35% by weight nitrophenyl octyl ether (NPOE) 

(Fluka product 73732) acting as plasticizer. For nitrate detection the SA nitrate ionophore 

cocktail A (SA product 72549) was used. For ammonium detection the SA ammonium 

receptor (SA product 09877) was used along with potassium tetrakis (4-chlorophenyl) 

borate (SA product 60591). The solvent used was anisole (Fluka product 10530). All 

reagents were used without purification unless otherwise noted.  All analytes were 

analytical grade purchased from TCI Chemicals and Sigma Aldrich. 

Setup. FET substrates were purchased from WinsenseTM. The experimental setup 

consisted of driver circuit, up to four ChemFETs, a single Ag/AgCl reference electrode, 

and a data acquisition unit.   

Driver Circuit. The driver circuit uses an instrumentation amplifier to drive the source to 

drain voltage (VDS) of the ChemFET at 617.5 mV and the drain current at 99.6 µA. The 
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circuit keeps the external reference electrode at ground while the voltage between source 

and ground (VGS) is changed in order to maintain the above current and voltages. VGS is 

taken as the measurement signal. The entire circuit is doubled to allow an array of two 

sensors to operate with the same reference electrode (the same ground). Several sets of 

these circuits may be run simultaneously, all using the same reference electrode.  

The analog output of the driver circuit was recorded using an NI-DAQ 6009 data 

acquisition unit connected to a WindowsTM computer and operated by a custom 

LabViewTM program. The signal was is recorded at a rate of 1 kHz. Each measurement 

was taken as the average of the signal over the last second of the 5-minute measurement.  

ChemFETs. ChemFETs were purchased from WinsenseTM having been wirebonded to 

small printed circuit boards and having their source and drain electrically accessible 

through small vias. Wires were soldered to these vias to allow remote connection to the 

source and drain and then the exposed connections were coated with Loctite marine 

epoxy. Then, polymer membranes were drop cast onto the ChemFET surface. During all 

drop cast processes, fourteen 1.6 µL drops of the drop-cast solution were applied to the 

ChemFET surface spaced 15 minutes apart to allow for the solvent to evaporate. 

Following the drop-cast the sensors were placed in an oven at 80° overnight to facilitate 

complete evaporation of any remaining solvent. 

Formulation A, when cast onto the ChemFET surface, yields a nitrate selective 

ChemFET. The drop cast solution was prepared by dissolving 0.0261g SA nitrate 

ionophore cocktail A, 325 mg PVC, and 175 mg NPOE plasticizer in 20 mL anisole.   

Formulation B, yields a PVC membrane containing only PVC and NPOE. This 

was prepared with 325 mg PVC, and 175 mg NPOE plasticizer in 20 mL anisole.   
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Formulation C, used for ammonium ChemFETs was prepared similarly to A. 2.8 

mg nonactin, 26.5 mg potassium tetrakis (4-chlorophenyl) borate, 435 mg PVC and 236 

mg NPOE were dissolved in 20 mL in anisole.  

To recycle the ChemFETs, the sensors were soaked in ethanol for 5 minutes and 

the PVC coatings were removed by careful wiping with a Kimwipe. Bare ChemFETs 

were soaked 30% H2O2 for 30 minutes then rinsed with deionized (DI) water followed by 

ethanol, and then dried. Following drying, fresh membranes could be cast onto the 

ChemFETs. 

Device Testing. Each test involved a set of four identical ChemFETs and triplicate runs 

in which the first and last runs were performed from high to low concentrations while the 

second run was always performed from low to high. Measurement times were 5 minutes 

and all sensors and reference electrodes were rinsed with DI water between 

measurements. Before each test, ChemFETs and reference electrodes were 

preconditioned by soaking solutions having the highest target analyte solution for the 

series for 30 minutes prior to each run. Following preconditioning, the sensors were 

rinsed in DI water. 

 

RESULTS AND DISCUSSION 

Nitrate Sensitivity and Selectivity. When formulation A is applied to the gate oxide, the 

gate voltage is dependent on nitrate activity and increases with nitrate activity. The 

average detection limit for the set of four sensors was found to be 3.1 mM in when 

measuring sodium nitrate in DI water (Figure 7). From the same experiment, the average 

sensitivity was found to be 40 mV/decade. When the polymer membrane from 
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formulation A was replaced by formulation B, which contained only PVC and plasticizer, 

most of the sensitivity to nitrate was removed except at higher concentration. At higher 

concentrations, we observed that the dependence on sodium nitrate was such that the gate 

voltage decreased as activity increased. After removing these membranes and replacing 

with fresh membranes form formulation A, the original nitrate-sensitive behavior was 

restored. For these twice-recycled devices, the average sensitivity and selectivity were 

found to be 3.6 mM and 44 mV/decade respectively, acceptably close to those of the 

original set of devices. Since eliminating the SA nitrate ionophore cocktail from the 

membrane formulation effectively removed sensitivity to nitrate, the response to nitrate 
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Figure 7. Sensor Response vs Nitrate Activity. Blue indicates fresh ChemFETs with SA nitrate selective receptor 
embedded in the gate oxide membrane. Red indicates the first recycling event of nitrate selective membrane 
removed and replaced with a blank polymer membrane. Grey indicates the second recycling event, returning the 
nitrate selective membrane and restoring nitrate response. Davies activities were calculated from the 
concentrations of each solution.  
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may be attributed to the SA nitrate ionophore cocktail and not to the polymer or 

plasticizer.   

Selectivity coefficients in Figure 8 were determined for common anions using the 

FI method. Ranking the potential interferents in terms of their interfering ability reveals a 

Hofmeister-like trend that holds across all devices referenced in Figure 7.  The challenge 
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Figure 8. Selectivity Coefficients. Graph of selectivity coefficients 𝑲𝑨,𝑩
𝒑𝒐𝒕, where A is NO3- and B is the interferent. 

The selectivity coefficient of NO3- is 0.0 by definition. 
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for those seeking 

to improve selectivity is 

not only to lower 

selectivity coefficients 

but to alter the 

selectivity profile of the 

material to such an 

extent that it rearranges 

this Hofmeister-like 

ranking such that, for 

example, nitrate 

switches places with 

perchlorate. The 

comparison of selectivity 

coefficients is presented 

in comparison to the 

Hofmeister series in 

Figure 9.16  

 

Ammonium Sensitivity and Selectivity. When formulation C is applied to the gate 

oxide, the gate voltage is dependent on ammonium activity and decreases ammonium 

activity increases. Average detection limit and sensitivity were found to be 4.5 mM 

and -37 mV/decade respectively. Ammonium ChemFETs could be recycled via the same 

Figure 9. Selectivity Coefficients compared to Hofmeister Series. The 
selectivity coefficients calculated are ordered and compared to the 
Hofmeister series. Of particular interest are HPO42- and F- that increased in 
sensitivity from what would otherwise be expected per the Hofmeister 
ranking. 
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process described above. Eliminating potassium tetrakis (4-chlorophenyl) borate and the 

ammonium ionophore, nonactin, from the material limited the ChemFET sensitivity to 

ammonium. Therefore, we conclude that the nonactin and potassium tetrakis (4-

chlorophenyl) borate are responsible for the bulk of the ammonium sensitivity and that 

the polymer and plasticizer contribute little in in this regard. 

Dihydrogen Phosphate Interference. Typically, the interfering ability of an ion is 

independent of its activity. In other words, a fixed interferent experiment should yield the 

same selectivity coefficient regardless of the activity chosen for the interferent. In 

practice, a concentration must be such that interference is observed at sufficiently high 

target/analyte concentrations that it can be clearly distinguished from the detection limit 

of the target (nitrate, in this case). However, we observe significantly higher H2PO4- 

interference at low concentrations (0.5mM) than higher concentrations (1M). Thus, we 

report two different selectivity coefficients in Figure 8. At concentrations near the 

solubility limit of H2PO4-, approximately 2M, we observe no interference, so a maximum 

selectivity coefficient was calculated based on the detection limit. Previous studies 

involving H2PO4- suggested some complicating factor resulting in a negative slope of 

response (in mV) as a function of concentration, in stark contrast to all other evaluated 

anions which produced a positive slope. We theorized dimerization may be the cause. The 

inverse slope suggested highest concentration of the unbound anion at lower overall 

H2PO4- concentration. Work by Ceretta and Berglund indicated primarily free H2PO4- at 

concentrations below 0.05M, and primarily oligomers present above 0.05M.10 This is an 

entropic effect where higher extent of dimerization is observed at higher concentrations 



 

19 

(and thus fewer unbound species), and a lower extent of dimerization is observed at lower 

concentrations (and thus more unbound species).  

To gain a better understanding of the role of H2PO4- as an interferent, we further 

investigated the behavior of ChemFETs in H2PO4- alone (Figure 10). We hypothesize that 

only the unbound H2PO4- species acts as an interferent and therefore, H2PO4- might 

demonstrate more interference at lower concentrations. If the ChemFET is only reporting 

the concentration of free or unbound H2PO4-, the negative slopes may be easily explained 

since the concentration of unbound H2PO4- is theoretically highest at the lowest overall 

H2PO4- concentration, and lowest at the highest overall H2PO4- concentration. There are 

numerous examples in Chapter III of sensors demonstrating a negative slope in response 

680

700

720

740

760

780

800

820

0.00001 0.0001 0.001 0.01 0.1

Re
sp

on
se

 (m
V)

H2PO4
- Concentration (M)

Lowest concentration unbound H2PO4
-

Highest total concentration H2PO4
-

Higher concentration unbound H2PO4
-

Lower total concentration H2PO4
-

Figure 10. Evidence of H2PO4- Dimerization? This graph depicts a run of ChemFETs with SA nitrate receptor in H2PO4- 
with no interferents. We observe an inverse trend for H2PO4- than we do for most other ions evaluated. We 
theorized that this effect was due to more unbound species at lower overall concentration, and fewer unbound 
species at higher concentration. If the ChemFET measures only unbound H2PO4-, the speciation hypothesis would 
explain the inverse slope. 
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to increasing H2PO4- concentration, where nearly all other evaluated anions demonstrate a 

positive response.  

To help support the hypothesis that H2PO4- was the interferent species and H2PO4- 

dimerization was the complicating factor, we needed to measure the pH of all phosphate 

interferent NO3- solutions to see if they fell within the range where phosphate exists in 

the H2PO4- species. We consulted a speciation diagram and compared pH of the entire 

range of H2PO4- interferent in NO3- solutions we evaluated to ensure the phosphate was in 

the H2PO4- state in all cases. The solutions measured were the low and high NO3- 

solutions at the low H2PO4- fixed level (0.5mM H2PO4-), and the low and high NO3- 

solutions at the high H2PO4- fixed level (1M H2PO4-). The entire pH range of solutions 

tested was 4.03 to 5.64. Figure 11 indicates that all solutions measured contained 

phosphate in the H2PO4- state. 

Figure 11. Phosphate Speciation Diagram. Measured pH of the H2PO4- interferent NO3- solutions ranged 
from 4.03 to 5.64 (indicated by blue lines). The speciation diagram demonstrates everything within this pH 
range exists as predominantly the H2PO4- species. Image retrieved from http://ixora.pro/phosphoric-acid-
dissociation. 
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Total-N Sensing. In the course of addressing the challenge of total-N measurement, we 

evaluated whether NO3- and NH4+ sensors may be operated simultaneously and thus 

allow for an accurate total-N measurement from a single experiment.15 Figure 12 shows 

results of the NO3- and NH4+ sensors run separately.  
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Figure 12. Total-N Separate Runs. The NO3- ChemFETs were tested for response to NH4NO3, with a positive 
response observed.  The NH4+ ChemFETs were then tested for response to NH4NO3, with a negative response 
observed. 
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Figure 13 shows results of the NO3- and NH4+ sensors run simultaneously. 

We observe that operating both sets of sensors in parallel has no negative impact on the 

performance of either set of sensors. Therefore, the simultaneous (NO3- and NH4+) 

sensors device configuration can be applied to total-N measurement. 

Conclusions. Nitrate and ammonium sensors were prepared based on accessible 

components/chemicals and were shown to have selectivity profiles similar to similar 

systems previously-reported.  

We have demonstrated a platform that is reusable. Additionally, we have shown that our 

system can operate several ChemFETs simultaneously. We suspect this is not a unique 

advantage although it is rarely utilized for total-N measurement.  
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CHAPTER III. CHEMFET DATA 

Introduction. The receptor scaffold used in the majority of these studies was 

characterized in binding characterization 

studies by the anion sensing collaboration 

between DWJ and Haley research groups 

(Figure 14).2 We chose several receptors with 

the same scaffold which were found to have 

an affinity for anions of interest (often NO3- or 

HPO42-) and incorporated those receptors into 

polymer membranes. The polymer membrane 

we began with was nitrile butadiene rubber (NBR) (Figure 15).  

We found it necessary to add tetraoctylammonium nitrate (TOAN) to the polymer 

membrane in order to achieve responsive sensors. In similar work involving anion-

selective ChemFETs, Reinhoudt and others found TOAN 

necessary to add immobile counterions to the membrane.6 This is 

generally believed to facilitate anion mobility into the material.6 

The composition of the membrane was 94.5 weight % NBR, 5 wt. 

% ionic additive TOAN, and 0.5 wt. % receptor. Any variation 

will be noted respective to this default composition; for example, 1/10 TOAN represents 

0.5 wt. % TOAN in the membrane.  
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Figure 15. Nitrile 
Butadiene Rubber. NBR 
used as the gate oxide 
membrane. 

Figure 14. Initial Receptor Scaffold. Pyridinium 
core, t-butyl elbows, and nitro shoes. Additional 
scaffolds with modified functionality were 
evaluated.  
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Comparison of Receptor Performance. The following charts depict performance and 

observations of varying receptors, with detection limits and sensitivities reported where 

applicable. 

Core: Pyridinium  Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 2.8 
H2PO4-: 3.2 

NO3-: 49 
H2PO4-: -38 
 Shoes: Nitro 

ChemFETs were coated with NBR membrane containing TOAN and receptor. The 

receptor used had a pyridinium core, t-butyl elbows and nitro shoes. The ChemFETs 

were tested for response to NO3- and H2PO4-. In these experiments we observed a positive 

response to NO3- and a negative response to H2PO4- (Figure 16). 
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Figure 16. NBR, Pyridinium Core, Nitro Shoes. 
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Core: Pyridine  Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 2.9 
 

NO3-: 47 
 

Shoes: Nitro 

ChemFETs were coated with NBR membrane containing TOAN and receptor. The 

receptor used had a pyridine core, t-butyl elbows and nitro shoes. The ChemFETs were 

tested for response to NO3-. In these experiments we observed a positive response to NO3-

(Figure 17). 
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Core Protonation State. We hypothesized that if there was aqueous anion mobility 

through the polymer membrane, the protonation state of the pyridine and pyridinium 

cores would likely change with pH of the aqueous solution the sensor was submerged in. 

Additionally, a receptor with positive charge could potentially provide more cationic 

nature to the membrane, facilitating anion mobility in a similar manner to the ionic 

additive TOAN. The polymer formulations containing pyridine core receptors were used 

with the intent to evaluate any difference between pyridine and pyridinium core 

receptors; all other functional groups being the same (t-butyl elbows and nitro shoes). An 

examination of both structures indicate substantially different behavior should be 

expected if the protonation states remained distinct. The pyridinium core receptor 

contained five hydrogen-bonding donors in the pocket (pyridinium N-H, and all four urea 

N-H), while the pyridine core receptor contained only four hydrogen-bonding donors (the 

4 urea N-H) and one hydrogen bonding acceptor (the pyridine N lone electron pair). Of 

note is that, while the exact pKa of pyridine and pyridinium core scaffolds are not known, 

evaluations of similar scaffolds suggest a more acidic proton than pyridinium with a pKa 

less than 5.14 The nitrate series was measured to have pH ranging from ~6.6-7.3 

depending on concentration. This would suggest if the aqueous environment influenced 

the protonation state of the receptors, both pyridine and pyridinium cores would 

equilibrate to the pyridine form.  
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ChemFETs containing pyridine receptors and ChemFETs containing pyridinium 

receptors were tested for response to NO3-. Both displayed a virtually identical positive 

responses (Figure 18).  
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Core: Pyridine  Detection Limits 
(mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 2.9 
HPO42-: 0.50 
H2PO4-: 2.4 

NO3-: 47 
HPO42-: 24 
H2PO4-: -31 
 

Shoes: Methoxy 

ChemFETs were coated with NBR membrane containing TOAN and receptor. The 

receptor used had a pyridine core, t-butyl elbows and methoxy shoes. The ChemFETs 

were tested for response to NO3-, HPO42-, and H2PO4-. In these experiments we observed 

a positive response to NO3- and HPO42-, and a negative response to H2PO4- (Figure 19) 
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Core: Bipyridine  Detection Limits 
(mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 3.0 
HPO42-: 0.41 
H2PO4-: 2.5 
HSO4-: 2.2 

NO3-: 50 
HPO42-: 33 
H2PO4-: -17 
HSO4-: 44 
 

Shoes: Methoxy 

ChemFETs were coated with NBR membrane containing TOAN and receptor. The 

receptor used had a bipyridine core, t-butyl elbows and methoxy shoes. The ChemFETs 

were tested for response to NO3-, HPO42-, H2PO4-, and HSO4-. In these experiments we 

observed a positive response to NO3-, HPO42- and HSO4-, and a negative response to 

H2PO4- (Figure 20). The use of a bipyridine core represented one of the most extensive 

changes to the UO receptor motif. Instead of the standard pyridine core, a bipyridine core 

facilitated a larger binding pocket in order accommodate larger anions or twist the 
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scaffold around to create a 2:1 (guest:host) binding ratio of two anions bound per 

receptor.  

 

Core: N/A  Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

N/A 

Elbows: N/A NO3-: 2.7 
HPO42-: 0.91 
H2PO4-: 2.1 

NO3-: 46 
HPO42-: 30 
H2PO4-: -25 
 

Shoes: N/A 

Control ChemFETs were coated with NBR membrane containing TOAN but no receptor. 

The ChemFETs were tested for response to NO3-, HPO42-, and H2PO4-. In these 

experiments we observed a positive response to NO3- and HPO42-, and a negative 

response to H2PO4-. (Figure 21). 
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pH Sensitivity. One practical concern to utilizing ChemFETs is potential pH sensitivity. 

Reinhoudt discussed applying a polyHEMA layer directly on the gate oxide to eliminate 

this pH sensitivity.9 Our effort involved applying polyHEMA below the NBR. 650 µl 3-

(trimethoxysilyl)propyl methacrylate (MTPS) were added to a 50 ml round bottom flask 

along with 25 ml toluene along with 300 µl DI water. The flask was fitted with a 

condenser. Three ChemFETs were fixed to a copper wire and suspended in the reaction 

solution. The ChemFETs were first cleaned by soaking in 30% H2O2 for 20 minutes and 

then washed with DI water followed by ethanol. The flask was heated to 100°C and held 

there for 4 hours. The ChemFETs were then removed, washed with ethyl acetate then 

sonicated in ethyl acetate for 3 minutes. They were then rinsed once more with ethyl 

acetate and allowed to air dry.  

The polyHEMA layer was then applied to the ChemFETs. First, 0.4g 2,2-

dimethoxy-2-acetophenone (DMPA) was dissolved in 9.6g 2-hydroxyethyl methacrylate 

(HEMA). Approximately 2 µl of this solution was placed on each ChemFET surface. 

These ChemFETs placed under N2 atmosphere for 15 minutes. They were then cured by 

UV exposure for 5 minutes. The ChemFETs were then rinsed with ethyl acetate and then 

sonicated in ethyl acetate for 5 minutes. Lastly the ChemFETs were sonicated in ethanol 

for 5 minutes and then allowed to dry.  

After the polyHEMA application the ChemFETs were coated with an NBR 

membrane containing TOAN and receptor, and run in comparison to control ChemFETs 

(identical in makeup, without the polyHEMA layer). 
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The receptor used had a pyridinium core, t-butyl elbows and nitro shoes. The ChemFETs 

were tested for response to NO3- and to changes in pH. In these experiments we observed 

a positive response to both NO3- and pH. Results showed that the polyHEMA layer 

reduced NO3- sensitivity (Figure 22). The polyHEMA layer also made the ChemFETs 

nearly impossible to recycle.  
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ChemFETs with both NBR and NBR with polyHEMA underlayer demonstrated pH 

sensitivity. We observed a slope of 25 testing ChemFETs with NBR only, and a slope of 

10 testing ChemFETs with NBR and polyHEMA. Results showed that the polyHEMA 

layer reduced pH sensitivity as intended (Figure 23).  
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Two different HPO42- receptors from Valerie Pierre’s lab at the University of Minnesota 

were evaluated. Four ChemFETs were 

coated with NBR membrane containing 

TREN.IAM receptor, and four 

ChemFETs were coated NBR 

membrane containing TREN.MAM 

receptor.13 The ChemFETs were tested 

for response to HPO42-. In these experiments we observed no significant response to 

HPO42- (Figure 25). 
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35 

 

Polyvinyl Chloride Membranes. We wanted an alternative gate 

oxide membrane to NBR. Other groups have observed that 

certain polymers actually affected the response to different 

analytes/targets. Therefore, we wanted another polymer system 

in our toolkit. High molecular weight PVC (Figure 26) was obtained from Sigma Aldrich, 

and utilizing a readily-available plasticizer referenced in literature, ortho-nitrophenyl 

octyl ether (NPOE) (Figure 27). There was no definitive guidance in literature about 

optimal plasticizer amount so a screening approach was used to qualitatively evaluate 

PVC with 65 wt. % plasticizer, 50 wt. % plasticizer, 

and 35 wt. % plasticizer, respectively. For example, a 

50% plasticizer membrane containing both receptor 

and ionic additive would be still be 94.5% membrane 

(47.25 wt. % PVC and 47.25 wt. % NPOE), 0.5 wt. % receptor and 5 wt. % TOAN. For 

simplicity, the membranes are referred to as PVC 65-NPOE, PVC 50-NPOE, and PVC 

35-NPOE. 

By observation, the PVC 65-NPOE did not demonstrate suitable durability, and in 

fact fell off after the first week of evaluation. Four replicate samples confirmed this 

result. Further evaluations were conducted of PVC 50-NPOE and PVC 35-NPOE for 

sensor membrane suitability. Both performed satisfactorily over the first 10 runs, 

although PVC 50-NPOE eventually delaminated from the FET surface. Of note, the PVC 

65-NPOE stock drop cast solution in anisole required no heating to dissolve, whereas the 

PVC 50-NPOE and PVC 35-NPOE drop cast solutions required heating to 80°C and 

Cl n

Figure 24. Polyvinyl 
Chloride (PVC). 

O
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Figure 27. ortho-Nitrophenyl Octyl 
Ether (NPOE). 
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stirring for 1 hour in order to dissolve. The easy removal of PVC 50-NPOE prompted an 

evaluation of PVC 35-NPOE, which showed the most satisfactory performance. 

pH Testing. The PVC/plasticizer membrane was also tested in a pH series to determine 

the pH sensitivity of the PVC membrane compared to the NBR membrane. Both 

ChemFETs with NBR and ChemFETs with NBR and polyHEMA underlayer 

demonstrated pH sensitivity, as described earlier in the chapter. We observed a slope of 

25 testing ChemFETs with NBR, and a slope of 31 testing ChemFETs with PVC 

(Figure 28).  
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 ChemFETs were coated with PVC 65-NPOE membrane containing TOAN and receptor. 

The receptor used had a pyridine core, t-butyl elbows and methoxy shoes. The 

ChemFETs were tested for response to NO3-, HPO42-, H2PO4-, and HSO4-. In these 

experiments we observed a positive response to NO3-, HPO42- and HSO4-, and a negative 

response to H2PO4- (Figure 29). 
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H2PO4-: 0.78 
HSO4-: 30 

NO3-: 54 
HPO42-: 13 
H2PO4-: -15 
HSO4-: 33 

Shoes: Methoxy 
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Figure 26. PVC 65-NPOE, Pyridine Core, Methoxy Shoes. 
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Core: Pyridinium  Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 3.0 
HPO42-: 3.3 
H2PO4-: 1.3 
HSO4-: 2.1 

NO3-: 41 
HPO42-: 14 
H2PO4-: -4.0 
HSO4-: 53 

Shoes: Nitro 

 ChemFETs were coated with PVC 65-NPOE membrane containing TOAN and receptor. 

The receptor used had a pyridinium core, t-butyl elbows and nitro shoes. The ChemFETs 

were tested for response to NO3-, HPO42-, H2PO4-, and HSO4-. In these experiments we 

observed a positive response to NO3-, HPO42- and HSO4-, and a negative response to 

H2PO4- (Figure 30). 
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Figure 30. PVC 65-NPOE, Pyridinium Core, Nitro Shoes. 
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Core: Pyridinium  Detection Limits 
(mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 3.0 
HPO42-: 1.3 
H2PO4-: 1.5 
HSO4-: 1.0 

NO3-: 24 
HPO42-: 13 
H2PO4-: -18 
HSO4-: -11 

Shoes: Nitro 

ChemFETs were coated with PVC 65-NPOE membrane containing 1/10 the standard 

amount of TOAN (0.5 wt % instead of 5 wt %) and receptor. The receptor used had a 

pyridinium core, t-butyl elbows and nitro shoes. The ChemFETs were tested for response 

to NO3-, HPO42-, H2PO4-, and HSO4- in direct comparison to the previous experiment.  

In these experiments we observed a positive response to NO3-, HPO42- and HSO4-, and a 

negative response to H2PO4- (Figure 31). The shallower slopes of the responses indicated 

the effect of reducing TOAN by one order of magnitude. 
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Figure 31. PVC 65-NPOE, Pyridinium Core, Nitro Shoes, 1/10 TOAN. 
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Core: N/A  Detection Limits 
(mM): 

Sensitivity 
(mV/decade): 

N/A 

Elbows: N/A NO3-: 0.40 
HPO42-: 0.10 
H2PO4-: 0.40 
HSO4-: 2.5 

NO3-: 30 
HPO42-: 5 
H2PO4-: -16 
HSO4-: 38 

Shoes: N/A 

 ChemFETs were coated with PVC 65-NPOE membrane containing TOAN only. The 

ChemFETs were tested for response to NO3-, HPO42-, H2PO4-, and HSO4-. In these 

experiments we observed a positive response to NO3-, HPO42- and HSO4-, and a negative 

response to H2PO4- (Figure 32). 

Slightly shallower slopes indicate little effect by removing receptor and incorporating 

TOAN-only in the membrane.  
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Figure 32. PVC 65-NPOE, TOAN, No Receptor. 
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Core: Pyridinium  Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: N/A 
 

NO3-: 2.0 
 

Shoes: Nitro 

ChemFETs were coated with PVC 50-NPOE membrane containing receptor only. The 

ChemFETs were tested for response to NO3-. In these experiments we observed no 

response to NO3-, validating the need to incorporate TOAN in order to make working 

sensors (Figure 33). 
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Figure 33. PVC 50-NPOE, Pyridinium Core, Nitro Shoes, No TOAN. 
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Core: Bipyridine  Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 3.5 
HPO42-: 1.5 
H2PO4-: 0.1 
HSO4-: 1.6 

NO3-: 36 
HPO42-: -7.0 
H2PO4-: -6.5 
HSO4-: 43 

Shoes: Methoxy 

ChemFETs were coated with PVC 50-NPOE membrane containing TOAN and receptor. 

The receptor used had a bypyridine core, t-butyl elbows and methoxy shoes. The 

ChemFETs were tested for response to NO3-, HPO42-, H2PO4-, and HSO4-. In these 

experiments we observed a positive response to NO3- and HSO4-, and a negative response 

to HPO42- and H2PO4- (Figure 34). 
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Figure 34. PVC 50-NPOE, Bipyridine Core, Methoxy Shoes. 
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Core: N-confused 
N-oxide 

 Detection 
Limits (mM): 

Sensitivity 
(mV/decade): 

 

Elbows: t-butyl NO3-: 3.1 
HPO42-: 6.3 
H2PO4-: 0.30 
HSO4-: 0.90 

NO3-: 35 
HPO42-: 30 
H2PO4-: -45 
HSO4-: 43 

Shoes: CF3 

ChemFETs were coated with PVC 50-NPOE membrane containing TOAN and receptor. 

The receptor used had an N-confused N-oxide pyridinium core (the term “N-confused” 

refers to a receptor with the pyridinium N outside the binding pocket), t-butyl elbows and 

CF3 shoes. The ChemFETs were tested for response to NO3-, HPO42-, H2PO4-, and HSO4-. 

In these experiments we observed a positive response to NO3-, HPO42- and HSO4-, and a 

negative response to H2PO4- (Figure 35). 
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Figure 35. PVC 50-NPOE, N-Confused N-Oxide Core, CF3 Shoes. 
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Halogen-Bonding Receptors. The halogen bonding receptor represented another large 

structural departure from the standard UO receptor scaffold. The entire bisurea and shoe 

pendant portions of the standard scaffold was replaced on each side by an iodine acting as 

a halogen bond donor (Figure 36). 

The halogen bonding receptor with 

sulfone elbows had suspected 

affinity to Cl- and H2PO4- anions. Of 

particular interest of the halogen bonding receptors was the N-methylation of the 

pyridinium nitrogen, resulting in a permanently charged receptor (the term “permanent” 

being used to separate N-methylation from a protonated pyridinium core; where the latter 

loses the charge with pH of the aqueous solution, and the former does not).  

Functional group differences in the halogen bonding receptor necessitated a 

departure from anisole as the solvent, as the halogen bonding receptor would not dissolve 

(even after application of heat, sonication, and stirring over 48 hrs). Acetonitrile, DMSO, 

acetone, ethanol, toluene, and THF were all evaluated. The criteria were that the new 

solvent must dissolve the receptor, PVC, and NPOE plasticizer. THF was the only 

solvent that successfully dissolved all three components. Initial studies were conducted 

on glass slides ensuring THF was a suitable drop cast medium. These simple studies 

comprised of drop casting five drops at 15-minute intervals, and observing the physical 

properties of the membrane that formed. After the qualitative observations that the THF 

drop cast solutions produced a suitable membrane, and that the THF evaporated within 

just a few minutes (compared to the 10+ minutes for anisole), THF was deemed an 

acceptable drop cast solvent and membranes were prepared via drop cast from THF. 

N

MeO2S SO2Me

II
Figure 36. Halogen-Bonding Receptor. 
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To evaluate the performance of the halogen bonding receptor as a replacement for both 

receptor and ionic additive, a drop cast solution was made with only the halogen bonding 

receptor (no TOAN), and PVC 35-NPOE membrane. This was then compared with 

control blanks, which were also drop casted from THF. Results in Cl- were very 

promising, with a positive slope observed for ChemFETs with receptor, in contrast to 

ChemFETs without (Figure 37). However, the response at the highest concentration 

seemed to be anomalously high, producing a slope between the top two points higher 

than the theoretical maximum of 59 mV/decade described by the Nernst equation.12 
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Figure 37. Halogen-Bonding Receptor in Chloride. 
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Results are reported for the raw data, as well as the data if the top point was removed as 

anomalous. 

Comparison of halogen-bonding receptor with blank ChemFETs (PVC and plasticizer 

only – no receptor or TOAN), shows a significant difference between the halogen 

bonding receptor-embedded sensors and the blank control sensors.  

The same set of halogen-bonding and blank sensors were tested for response to NO3-. In 

these experiments we observed a positive response to NO3- from ChemFETs with 

receptor (Figure 38). 

Sensor results in CL- and NO3- provided an early indication that the permanently charged 

halogen-bonding receptors worked in the absence of any ionic additives. To date this was 
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Figure 38. Halogen-Bonding Receptor in Nitrate. 
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the first successful ChemFET the DWJ lab had made without the use of TOAN or 

another ionic additive. The successful performance of this lends credence to further 

investigation of charged receptors.  

Longevity and Storage. An evaluation of storage condition and effect on ChemFETs 

was evaluated. Initially FETs were stored in 0.5M analyte solutions based on 

recommendations from literature, but we had concerns that in our particular setup this 

was negatively impacting longevity.7 This was not observed to be a problem with sensors 

stored in NO3-, but sensors stored in H2PO4- were being destroyed by the phosphate. 

Storing the sensors dry was an initial approach to addressing this problem, but one of the 

key factors we took into consideration for wet vs dry storage was equilibration time. A 

major concern was that if the sensors were stored dry, they would take an inordinate 
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Figure 39. Equilibration Curves for Wet ChemFET Storage. Readings were taken every 60 seconds for the entire 5-
minute period of a run. The four curves represent readings from each of four sensors. 
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amount of time to reach equilibrium. Figure 39 plots equilibration curves for NO3- 

storage, demonstrating how quickly the sensors reached their equilibrium reading.  

We then conducted an evaluation of dry storage of FETs in order to determine if the 

sensors were able to come to equilibrium in a reasonable amount of time. Figure 40 

demonstrated that sensors under dry storage still came to equilibrium time in well under 5 

minutes (which was the standard length of each ChemFET run data point). The 

evaluation included a 30-minute soak in 0.2M NO3- prior to the test runs.  

The success of the dry storage evaluation made dry storage of ChemFETs standard. Prior 

to any evaluation dry-storage ChemFETs were soaked for 30 minutes in the highest 

concentration solution that would be tested, prior to any test runs. Of note is that the 

ChemFET setup changed between wet and dry storage evaluations; the wet storage 

system recorded a response every 60 seconds out to the end of the five-minute run, while 
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Figure 40. Equilibration Curves for Dry ChemFET Storage. Readings were taken every second for the entire 5-
minute period of a run. The four curves represent readings from each of four sensors. 
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the dry storage system recorded a response every second for the entirety of the five-

minute run. This explains the difference in appearance of the two equilibration graphs, 

however, the important detail remains clear and that is that the ChemFETs reached 

equilibrium response well within the five-minute sensing run time. 
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CHAPTER IV: CONCLUSION AND FUTURE DIRECTION 

Conclusion. ChemFETs can be successfully utilized to incorporate guest-host interaction 

to measure analyte concentration. We picked out off-the-shelf ChemFETs, polymers, 

deposition method and used an off-the-shelf nitrate receptor cocktail designed for ISEs 

along with another literature-derived formulation for an ammonium-sensing ChemFET 

and developed and validated a recyclable and high-throughput platform for testing 

different polymer membrane formulations. This was demonstrated to successfully 

measure total-N concentration with promising agricultural applications. Ordered 

selectivity coefficients were compared to the Hofmeister Series. 

Several arylethynyl bisurea scaffold receptors were characterized by the ChemFET 

platform for affinity to a variety of common anions. A new gate oxide membrane was 

developed and successfully evaluated on ChemFETs. We evaluated the effect of the ionic 

additive TOAN, and demonstrated that uncharged receptors require ionic additive in 

order to function. The protonation state of pyridine and pyridinium cores was evaluated, 

and appeared to have identical performance suggesting the protonation state of pyridine 

and pyridinium cores change with solution pH. We evaluated a means of eliminating pH 

sensitivity using a polyHEMA layer between the gate oxide and analyte-sensitive 

membrane, and observed reduction in pH sensitivity as well as drawbacks of the method. 

An evaluation of charged receptors demonstrated a successful ChemFET device without 

any TOAN for the first time in the DWJ lab.  
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Future Direction. 

Design of Experiments. Tremendous potential exists for incorporating statistical analysis 

into ChemFET research. Design of experiments (DOE) utilizes statistical analysis and 

response surface design to analyze numerous system inputs for optimization. Numerous 

system conditions are input as independent variables, and then the results are analyzed in 

order to determine the relative influence of each. The computer modeling of the DOE 

program then produces an optimal design based on the desired dependent variable 

outcomes.  

Plasticizer. The simplest application of DOE for ChemFETs would be to optimize the 

amount of NPOE plasticizer used in the PVC membrane. This would entail a simple 1-

factor design with amount of plasticizer as the independent variable and several options 

for the dependent variable. One option for the dependent variable is to use sensitivity or 

slope, where maximizing slope is the optimization criteria. Another option is to use 

equilibration time, with shorter time being most optimal. Adhesion could also be used as 

it is an important factor relating to plasticizer amount, although this would potentially be 

a difficult factor to measure. Longevity (e.g. “remains adhered for 10 consecutive runs” 

or remains adhered for 3 months”) could potentially be used. Plasticizer amount has 

previously been shown to greatly impact longevity of the membrane on the FET surface, 

with 65% weight percent plasticizer not adhering long enough for a single run.  

Receptor and Ionic Additive. A slightly more involved DOE analysis could use 

amounts of receptor and ionic additive (e.g. TOAN) as the independent variables. 

Maximizing sensitivity/slope as the dependent variable seems to be the most obvious 
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application for optimization, although the same data could be used to maximize such 

factors as equilibration time or selectivity.  

Structural DOE. Structural optimization of receptors would be the most involved 

application of DOE, and would be quite synthesis-heavy. For independent variables, 

structural DOE would involve assigning numerical values to factors such as number of 

hydrogen bond donors and acceptors, cavity size, bite angle, and strengths of hydrogen-

bond donors and acceptors. DOE could potentially output optimal designs, with a strong 

caveat that DOE is not chemical software and may in fact recommend receptor molecule 

designs not structurally or chemically possible. For this optimization FET-based 

measurements such as sensitivity or selectivity could be used as dependent variables. 

Additionally, factors such as binding constant, fluorescence, or others could be used as 

the dependent variable(s) depending on the goal of the study.  However, structural DOE 

could also provide information on past experiments. Structural information could be 

entered on receptor molecules previously synthesized and characterized, results such as 

binding constants could be used to provide the DOE software input as to their 

performance, and then the software could then mathematically make a determination of 

the significance of each factor.  

Charged Receptors. Positively-charged receptors certainly merit further investigation 

for anion sensing. Although this was briefly attempted when comparing pyridine and 

pyridinium-core receptors, the pKa of the pyridinium was thought to render both the same 

protonation state when submerged in similar pH solutions. Therefore, further 

investigation into more permanently charged receptors seems to be in order. Receptors 

with a positive charge unaffected by pH would theoretically act in a similar manner to the 
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ionic additive TOAN, which was previously demonstrated to provide a suitable response 

even when it was the only component in the gate oxide membrane.  

The first charged receptor meriting further investigation is the N-methyl-core 

variant of the classic UO receptor. Extensive studies have been conducted on the binding 

and fluorescence of this receptor with varying functionality in the “core,” “elbow,” and 

“shoe” locations on the scaffold. The additional functionality of the N-methylated variant 

represents a promising area of further research.  

Numerous other UO receptor scaffolds with varying core, elbow, and shoe 

functionality have been synthesized by the DWJ and Haley labs anion sensing 

collaboration. Further studies are warranted, including evaluation in ChemFETs as well 

as providing additional functionality for a DOE evaluation.  

Soil Evaluation. To evaluate more realistic usage of ChemFETs in agricultural 

applications, a total-N study could be conducted on soil samples containing known 

amounts of nitrates and ammonium, comparing ChemFET readings to the known 

amounts present in the control sample. This would provide a more realistic evaluation of 

ChemFETs in an agricultural application. 
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APPENDIX: CHAPTER II FIXED INTERFERENCE DATA 
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Figure 41. Bromide 0.01M Fixed Interference. 
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Figure 27. Sulfate 0.5M Fixed Interference. 
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Figure 28. Hydrogen Phosphate 1mM Fixed Interference. 
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Figure 29. Perchlorate 0.01mM Fixed Interference. 
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Figure 30. Chloride 1.5M Fixed Interference. 
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Figure 31. Iodide 0.1mM Fixed Interference. 



 

57 

 

 

 

 

0.700

0.750

0.800

0.850

0.900

0.950

1.000

1.050

-6.1 -5.1 -4.1 -3.1 -2.1 -1.1 -0.1

N
or

m
al

ize
d 

re
sp

on
se

 (V
)

Log (NO3
- activity)

H2PO4
- 0.5mM FI Overall Average 

Figure 32. Dihydrogen Phosphate 0.5mM Fixed Interference. 
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Figure 33. Dihydrogen Phosphate 1M Fixed Interference. 
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Figure 34. Fluoride 0.4M Fixed Interference. 
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