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ABSTRACT
We introduce a new flexible distribution to deal with variables on
the unit interval based on a transformation of the sinh–arcsinh dis-
tribution, which accommodates different degrees of skewness and
kurtosis and becomes an interesting alternative to model this type
of data. We also include this new distribution into the generalised
additive models for location, scale and shape (GAMLSS) framework
in order to develop and fit its regression model. For different param-
eter settings, some simulations are performed to investigate the
behaviour of the estimators. The potentiality of the new regression
model is illustrated by means of a real dataset related to the points
rate of football teams at the end of a championship from the four
most important leagues in the world: Barclays Premier League (Eng-
land), Bundesliga (Germany), Serie A (Italy) and BBVA league (Spain)
during three seasons (2011–2012, 2012–2013 and 2013–2014).
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1. Introduction

During the past few years, statistics had been widely incorporated to sports in order
to develop better strategies, increase any individual performance using specific training
methods for each athlete or improve some fitness aspects. Even though there is a high
use of statistical results in sports, football generally uses only basic information such as
descriptive analyses. In the past decades, several works were developed in order to predict
championship results or evaluate team quality such as [15] who used a Poisson regression
model to explain the number of goals from football team using data from The English Pre-
mier League (1995–1996 Season). Brillinger [3] considered a trinomial model to estimate
the win, draw and loss probabilities of any particular team of the 2006 Brazilian Cham-
pionship. Karlis and Ntzoufras [14] proposed a Bayesian approach for predicting match
outcomes for fitting the goal difference (away and home) of a football team for the English
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Premier League (2006–2007 Season). More recently, Louzada et al. [16] introduced a Pois-
son distribution for the number of goals scored by a football team in a match using a
linear regression model to predict the quality of a team using data from the English Pre-
mier League (2008–2009 Season) and theUEFA (Union of European Football Association)
Champions League (2008–2009; 2009–2010), Cerqueira et al. [5] used causal models in
order to evaluate team quality on European football teams and Schauberger et al. [24] pro-
posed an extension of the Bradley–Terry model in order to identify the on-field variables
that are connected to the sportive success or failure of single matches in the German Bun-
desliga. However, we can note that those works do not consider the points rate (the ratio
of points scored to the maximum points possible in a championship) of a football team in
league as response variable on the unit interval (0, 1). Moreover, the points rate plays an
important role in sports, mainly in football, because it summarises all information related
to the possible outcomes (win, draw or loss) of a team in a football match. So, in this sense,
we consider the points rate of the football teams at the end of a championship from the
four most important leagues in the world: English Premier League (England), Bundesliga
(Germany), Serie A (Italy) and BBVA league (Spain), during three seasons ( 2011–2014).

In several areas of research such as engineering, reliability, life testing experiments,
finance, econometrics and also in sports, various types of data are modelled by finite range
distributions. Since the interval used is the standard unit interval (0, 1), the data can be
interpreted as rates or proportions.

The beta distribution is one of the most important models to account for a response
variable which produces results in the range (0, 1). This distribution has been used exten-
sively in theoretical and applied statistics for over a century and it can be fitted practically
to any data representing a phenomenon in almost any field of application [17]. For more
details about applications of the beta distribution, see [4,12].

Although the beta distribution is the main family of continuous distributions on unit
interval bounded support, since it has only two parameters, this distribution and its regres-
sion model [10] may present a lack of flexibility when modelling both skewness and
kurtosis. In this sense, we present a new very flexible model to deal with variables between
zero and one based on a transformation of the sinh–arcsinh distribution (SHASHo) [13]
which has four parameters and is able to model different degrees of skewness and kurtosis,
thus it may be a really interesting alternative to model this type of data. In order to model
the points rate of all football teams from the four above cited leagues as a function of other
variables, we used the generalised additivemodels for location, scale and shape (GAMLSS)
[22]. GAMLSS is a very general class of univariate regression models in which all param-
eters of a distribution (that does not necessarily belong to the exponential family) can be
modelled as parametric and/or additive nonparametric smooth functions of explanatory
variables. Using this approach, we can note which variables affect more the points rate
obtained by a football team at the end of a league.

This paper has two main aims. First to introduce a new distribution called the log-
itSHASHo distribution into the GAMLSS framework in order to provide a very flexible
regression model for situations where the response variable is considered as rates and pro-
portions, i.e. on the support (0,1). Second to study the variables which may potentially
affect a football team in a championship using this new sophisticated method based on the
GAMLSS framework, and not just consider football as a simple illustrative example. This
data was already introduced in a short conference paper by the authors [18], but here we



JOURNAL OF APPLIED STATISTICS 3

develop the model with some simulation studies and provide a thorough analysis of the
data. Please note that form causal conclusions cannot be made as this is an observational
study.

This paper is organised as follows. Section 2 summarises the GAMLSS framework,
showing procedures to obtain the finalmodel, i.e. GAMLSS estimation processes and selec-
tion of the response variable distribution and explanatory variables, present the newmodel
based on the SHASHo distribution and also present someMonte Carlo simulations for the
proposed model. In Section 3, we consider a discussion regarding the full data set, show-
ing some descriptive statistics and presenting the results of some fitted models based on
the GAMLSS methodology including our new model. A detailed discussion regarding the
results is presented in Section 4. Finally, Section 5 ends the paper with some concluding
remarks.

2. GAMLSS framework

GAMLSS is a very flexible class of semi-parametric regression models which involves a
distribution, that does not necessarily belong to the exponential family, for the response
variable andmay involve parametric and/or non-parametric smoothing terms whenmod-
elling any or all of the parameters of the distribution as functions of a set of explanatory
variables [22]. This methodology is already implemented in the gamlss package [26] in
R [20] that includes several continuous and discrete distributions with up to four param-
eters (conveniently denoted by µ,σ , ν and τ ), including a few highly skewed and kurtotic
ones. This framework is being widely used inmany different fields, such as economics [23],
natural sciences [30] and medical field [21], among others.

Mathematically, a GAMLSS model assumes that independent observations Yi have
probability (density) function fY(yi|θ) conditional on θ = (µ, σ , ν, τ )⊤ a vector of four
distribution parameters. The GAMLSS model is defined as

gk(θk) = ηk = Xkβ k +
Jk∑

j=1
hjk(xjk), (1)

for k=1, 2, 3, 4, where gk(·) is a known monotonic link function (usually determined
by the range of parameters) relating the distribution parameter θk to the predictor ηk, Xk
is a known design matrix, β ⊤

k = (β1k, . . . ,βJ′kk
) is a parameter vector of length J′k, hjk is

a smooth non-parametric function of an explanatory variable xjk. If
∑Jk

j=1 hjk(xjk) = 0,
Equation (1) reduces to the GAMLSS parametric model.

2.1. The logitSHASHo distribution

As presented in [11], any distribution on the range −∞ < Z < ∞ can be transformed to
a restrictive range 0<Y <1 using an inverse logit transformation, i.e.

Y = 1
1 + exp (−Z)

. (2)

Based on the skew student t (SST) [9] distribution, Hossain et al. [11] presented the log-
itSST distribution, i.e. the inverse logit transformation of the skew student t distribution,
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as a competitive and alternative model to the beta distribution. In this paper, we propose
a new very flexible distribution to model a response variable (e.g. points rate) on the unit
interval (0, 1), with four parameters, using the transformation given in (2).

If−∞ < Z < ∞ follows a sinh–arcsinh distribution [13], denoted by Z ∼SHASHo(µ,
σ , ν, τ ), with probability density function (pdf) given by

fZ(z|µ, σ , ν, τ ) = τ c
σ
√
2π

exp
(
−r2/2

)

(
1 + w2

)1/2 ,

where c = cosh (τ arcsinh(w) − ν), r = sinh (τ arcsinh(w) − ν) and w = (z − µ)/σ , for
−∞ < z < ∞,−∞ < µ < ∞, σ > 0,−∞ < ν < ∞ and τ > 0, then Y = 1/(1 + e−Z)

follows a logit sinh–arcsinh distribution, denoted by Y ∼logitSHASHo(µ, σ , ν, τ ) for
0<Y <1. The pdf and cumulative distribution function (cdf) of the logitSHASHo
distribution are given by

f (y|µ, σ , ν, τ ) = τ c⋆

σ
√
2π (y − y2)

exp
(
−r⋆2/2

)

(
1 + w⋆2

)1/2

and

F(y;µ, σ , ν, τ ) = )(r⋆), (3)

respectively, where c⋆ = cosh (τarcsinh(w⋆) − ν), r⋆ = sinh (τ arcsinh(w⋆) − ν), w⋆ =
(− log(1/y − 1) − µ)/σ and )(.) denotes the cdf of the standard normal distribution.

In this parametrisation, µ and σ are the location and scale parameters, respectively, ν
is a skewness parameter (skewness increases with increasing ν) where ν > 0 and ν < 0
present positive and negative skewness respectively, and τ is a parameter related to the
tails of the distribution where the distribution presents heavier and lighter tails than the
normal distribution if τ < 1 and τ > 1, respectively.

The GAMLSS parametric model based on the logitSHASHo distribution, i.e. Y ∼
logitSHASHo(µ, σ , ν, τ ), can be expressed as

g1(µ) = η1 = X1β 1,

g2(σ ) = η2 = X2β 2,

g3(ν) = η3 = X3β 3,

g4(τ ) = η4 = X4β 4, (4)

in which we use, in the next sections, the identity link function for g1 and g3, and the loga-
rithmic link function for g2 and g4. These link functions were chosen since in the GAMLSS
framework they are usually determined by the range of the parameters of the response
variable distribution [7,27,29].
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2.2. Estimation

The total log-likelihood function for the GAMLSS parametric model (4) under the
assumption that observations of the response variable are independent is given by

l =
n∑

i=1
log fY(yi|µ, σ , ν, τ ). (5)

Within GAMLSS, we maximise the log-likelihood function (5) in order to obtain the esti-
mates for β k in (4). Three different options, based on an iteratively reweighted (penalised)
least squares algorithm, are available in gamlss package to do this task: (i) CG algorithm,
which is a generalisation of the algorithm proposed by [6]; (ii) RS algorithm proposed by
[22] and (iii) a combination of bothmethods denoted bymixed ingamlss.CG algorithm
jointly updates all parameters of the response variable distribution since it uses all cross
derivatives in its estimation process. RS algorithm maximises the likelihood over each of
the parameters in turn, cycling until convergence and should be preferred in most cases,
since it is computationally more stable than the first algorithm. The mixed procedure
should be taken into account in cases where distributions with highly correlated parame-
ters are used. Further information about those methods is given in [22] and complete flow
charts of the algorithms’ mechanism are provided in [27].

2.3. Selecting the distribution

The first step to fit a GAMLSS model to a data set is to choose an appropriate distri-
bution for the response variable. Basically, this is achieved in two different stages: fitting
and diagnostic. During the fitting stage, we fit and compare different fitted models using a
generalised Akaike information criterion (GAIC), given by GAIC(k) = −2 × l̂ + k × df ,
where l̂ is the fitted log-likelihood function, df are the effective degrees of freedom of the
fitted model and k if a penalty for each degree of freedom in the model [29]. More com-
mon measures of goodness of fit are the Akaike information criterion (AIC) [1] and the
Schwarz Bayesian criterion (SBC) [25], which are special cases of the GAIC when k=2
and k = log n, respectively.

The diagnostic stage is based on the normalised (randomised) quantile residuals [8].
Themain advantage of this type of residual is that, whatever the distribution of the response
variable their true values ri, i = 1, . . . , n, always have a standard normal distribution given
the assumption that themodel is correct.Mathematically, the normalised quantile residuals
are given by r̂i = )−1(ûi), where )−1 is the qf of a standard normal variable and û =
FY(y|θ̂) is the fitted cdf. Given those residuals, we provide the residuals diagnostic plots,
such as the normal probability plot with envelope [2].

Another alternative available in gamlss is the worm plots [28]. Worm plots are
detrended normalQ–Q residual plots that allow the detection of inadequacies in themodel
globally or within a specific range of an explanatory variable. Basically, if a vertical shift, a
slope, a quadratic or a cubic shape is observed, itmay indicatemisfits in themean, variance,
skewness and excess kurtosis of the residuals, respectively. Further details can be obtained
in [27].
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2.4. Selecting the explanatory variables

Some approaches are available in gamlss package [26] in order to select which variables
are statistically significant to the model. Here, we used the function StepGAICAll.A
that is basically a set of forward and backward procedures and is described in [19,27] as
follows.

(1) Fix σ , ν and τ , and perform a forward GAIC selection procedure to select an
appropriate model for µ.

(2) Fix ν and τ , and perform a forward GAIC selection procedure to select an appropriate
model for σ , given the model for µ in (1).

(3) Fix τ and perform a forward GAIC selection procedure to select an appropriate model
for ν, given the models for µ and σ obtained in (1) and (2), respectively.

(4) Perform a forward GAIC selection procedure to select an appropriate model for τ ,
given the models for µ, σ and ν obtained in (1), (2) and (3), respectively.

(5) Given the models for µ, σ and τ obtained in (1), (2) and (4), respectively, perform a
backward GAIC selection procedure to select an appropriate model for ν.

(6) Given the models for µ, ν and τ obtained in (1), (5) and (4), respectively, perform a
backward GAIC selection procedure to select an appropriate model for σ .

(7) Given the models for σ , ν and τ obtained in (6), (5) and (4), respectively, perform a
backward GAIC selection procedure to select an appropriate model for µ.

The resulting model may contain different explanatory variables for each of the param-
etersµ, σ , ν and τ . Please note that as in most model selection procedures, the order of the
steps can affect the final chosen model. In GAMLSS, we start by choosing a model for µ

because this is usually related to the location (and usually related to the first moment), and
we do not want to select a complicated model for σ (which may be related to the second
moment) and for the remaining two parameters (which may be related to the third and
fourth moments) as a substitute for the µ model.

2.5. Simulation study

In this section, we conduct two Monte Carlo simulation studies. The objective of the first
study is to assess the finite sample behaviour of the maximum likelihood estimates (MLEs)
of the parameters for different sample sizes n and parameter settings. In the second study,
suggested by a reviewer, we investigate the behaviour of the selecting explanatory variables
method presented in Section 2.4.

We simulate logitSHASHo random variables using the quantile function (qf), which is
obtained by inverting the cdf F(y) = u using (4) to give y = F−1(u) = Q(u). The qf of
Y ∼logitSHASHo(µ, σ , ν, τ ) is given by

y = Q(u) =
(
exp

{
−σ sinh

[
ν

τ
+ 1

τ
arcsinh

(
)−1(u)

)]
− µ

}
+ 1

)−1
, (6)

where )−1(·) denotes the qf of a standard normal distribution. Equation (6) is used to
simulate random variables by fixingµ, σ , ν, τ and setting u as an uniform random variable
on the (0, 1) interval.
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Table 1. The biases, MSEs and PVC based on 1000 simulations of the logitSHASHo GAMLSS for sample
size n= 50, 100 and 300.

n= 50 n= 100 n= 300

Parameters Bias MSE PVC Bias MSE PVC Bias MSE PVC

β01 0.147 0.207 0.89 0.079 0.095 0.92 0.019 0.018 0.93
β11 0.255 0.515 0.91 0.109 0.238 0.94 0.035 0.074 0.94
β02 0.046 0.522 0.95 0.007 0.154 0.95 0.016 0.049 0.95
β12 0.169 0.953 0.95 0.131 0.339 0.95 0.084 0.099 0.95
β03 0.182 0.216 0.96 0.086 0.066 0.97 0.017 0.008 0.96
β13 0.161 0.454 0.94 0.055 0.198 0.94 0.018 0.057 0.93
β04 0.125 0.111 0.94 0.063 0.038 0.96 0.022 0.010 0.95
β14 0.133 0.222 0.94 0.079 0.100 0.95 0.046 0.032 0.94

• First study – asymptotic and convergence

Here, we consider the logitSHASHo GAMLSS model by modelling the parameters
using the explanatory variable xi, namely µi = β01 + β11xi, σi = exp(β02 + β12xi), νi =
β03 + β13xi and τi = exp(β04 + β14xi). The sample sizes are generated by taking n=50,
100 and n=300. The response variable values, denoted by y1, . . . , yn, are generated from
the logitSHASHo distribution using the qf (6), in which the β parameters were fixed and
the values of the explanatory variable xi were generated randomly from a binomial (n, 0.5)
distribution. For each scenario, all results are obtained from 1000Monte Carlo replications
and the simulations are carried out using the R programming language. For each replica-
tion, a random sample of size n is drawn from the logitSHASHo GAMLSS (4) and the RS
algorithm is used for maximising the total log-likelihood function (5).

For the GAMLSS model, the true parameter values used in the data-generating
processes are µi = −1 + 1xi, σi = exp[log(0.5) + log(2)xi], νi = 0.5 + 0.3xi and τi =
exp[log(0.5) + log(2)xi]. With these parameter settings, we are assuming that Y|xi = 0 ∼
logitSHASHo(−1, 0.5, 0.5, 0.5) and Y|xi = 1 ∼logitSHASHo(0, 1, 0.8, 1). For each fit, the
biases, mean squared errors (MSEs) and the parameter value coverage (PVC) at 95% level
of confidence are calculated and the results are reported in Table 1.

In Figure 1, the estimated and generated densities of the logitSHASHoGAMLSS are pre-
sented using the average estimates (AE) of the β parameters, for x = 0 and 1 and for sample
sizes n=50, 100 and 300. The results of the Monte Carlo study in Table 1 indicate that the
MSEs of the MLEs of the parameters decay toward zero as the sample size increases, as
expected. As n increases, the AEs of the parameters tend to be closer to the true parameter.
Finally, the PVC is substantially high even for small sample values.

• Second study – Validation of the variable selection method

The purpose of this study is to investigate the behaviour of the variable selectionmethod
described in Section 2.4, i.e. when the regression model is not specified, being necessary
to identify which explanatory variables will compose it. Here we consider the follow-
ing regression structure for the four parameters of the logitSHASHo distribution: µ =
β01 + β11x1 + β21x3, σ = exp[β02 + β12x2], ν = β03 + β13x4 and τ = exp[β04], where
the true parameter values of the logitSHASHoGAMLSSmodel used in the data-generating
processes areµ = −0.3 + 0.6x1 + 0.2x3, σ = exp[log(0.1) + log(1.5)x2], ν = 0.2 − 0.6x4
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Figure 1. The logitSHASHo density for the true β parameter values and at the average estimates of the
β ’s for (a) n= 50, (b) n= 100 and (c) n= 300, for x= 0 (–) and x= 1 (- -).

Figure 2. The correct/incorrect specification percentages of the explanatory variables selected by the
StepGAICAll.Amethod for (a) n= 100 and (b) n= 200.

and τ = exp[log(0.5)], and the explanatory variables were generated based on the follow-
ing distributions: x1 ∼Binomial(n, 0.5), x2 ∼Binomial(n, 0.5), x3 ∼U(1, 10) and x4 ∼
U(0, 1).

The sample sizes are generated by taking n=100 and n=200 and, for each scenario,
all results are obtained from 1000 Monte Carlo replications. For each replication, the
StepGAICAll.Amethod is applied to select the model parameters, then, for each repli-
cation the estimates are noted and, at the end of all replications, the correct/incorrect
specification percentage of each parameter is calculated. Figure 2 displays the percentage
of correct/incorrect variables selected for each model parameters. We may conclude that
the StepGAICAll.A method is able to correctly identify the explanatory variables for
all parameters of the logitSHASHo distribution, since as we can see in Figure 2 in almost
100% of the replications an explanatory variable that should be considered in a parame-
ter, in fact was selected by the procedure. Furthermore, explanatory variables that should
have not been selected by the described method were considered in a very few number of
replications (in the worst case, the variable x2 was selected for τ only 18.8% for n=100).

3. Data analysis

In this section, we introduce the data set used in this paper.We also present some results by
fitting and comparing different distributions on support (0,1) using the GAMLSS frame-
work in order to find the best model to explain the response variable, points rate, using the
available explanatory variables.
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3.1. Data set description

In a football game, external interferences, such as referee mistakes or the absence of one of
the best players, can interfere dramatically in the final results, especially in championships
organised in the format of cups, inwhich losing a gamemeans for a team, the elimination of
the championship. In order tominimise these problems, we used data from leagues instead
of cups, since in leagues all football teams play against each other twice and so this type of
external interferences can be reduced.

We collected all information from the four most important football leagues which are
affiliated to the UEFA. The leagues were Barclays Premier League from England, Bun-
desliga from Germany, Serie A from Italy and BBVA league from Spain, and there was
considered three different seasons (2011–2012, 2012–2013 and 2013–2014). The data set
comprised the following variables the response variable points rate using the explanatory
variables: league, season, goals for, goals against, goals difference, yellow and red cards,
position, classification to UEFA league, relegation, shots, shots on goal, clean sheets, off-
sides, fouls, fouled (received fouls), tackles, interception, possession, dribble, shot concede
and pass accuracy. This data set is available for consulting at http://www.whoscored.com.

For all the studied leagues, the game structure remains the same, i.e. in all leagues the
football teams play against each other twice (home and away game). However in the Bun-
desliga, there are only 18 teams, while the other leagues are composed by 20, for this reason
the total number of games are different, 34 and 38, respectively, and therefore the resulting
number of observations is n=234. Another difference among these leagues is the way that
the teams who will be playing at the UEFA Leagues (Champions and Europe) are selected.
The same occurs with the number of relegations. To avoid any problems with the differ-
ent amount of games for each league, we used all information (explanatory variables) per
game. Also we standardised the variables yellow and red cards to avoid problems related
to scale.

3.2. Marginal analysis

As described in Section 2.3, the first step to fit a GAMLSS model is to select a suitable
distribution for the response variable. Here, in addition to the logitSHASHo and logitSST
distributions, we consider some interesting distributions with support on the unit interval
such as the logit-normal (logitNO) and the generalised beta distributions. Their density
functions are given respectively by

fY(y|µ, σ ) = 1
y (1 − y) σ

√
2π

exp

{

− 1
2σ 2

[
log

(
y

1 − y

)
− log

(
µ

1 − µ

)]2}

,

where 0< y<1, 0 < µ < 1 and σ > 0 and

fY(y|µ, σ , ν, τ ) = τ νβ yτ α−1(1 − yτ )β−1

B(α,β)
[
ν + (1 − ν) yτ

](α+β)
,

where 0< y<1, α = µ (1 − σ 2)/σ 2 and β = (1 − µ) (1 − σ 2)/σ 2, and α > 0, β > 0.
Figure 3(a) shows a box plot of the points rate and Figure 3(b) displays the histogram
of the points rate and the density functions of the fitted logitSHASHo, logitSST, logitNO,
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Figure 3. (a) Box plot and (b) distribution of the response variable points rate.

Table 2. Descriptive statistics for the response variable points rate.

Mean Median SD Skewness Kurtosis Minimum Maximum

0.4587 0.4165 0.1523 0.8230 3.2200 0.1930 0.8950

beta and generalised beta distributions that are suitable options since we can see that the
response variable is slightly positively skewed on support (0, 1). Table 2 confirms this state-
ment (skewness=0.8230) and also displays values of themean,median, standard deviation
(SD), kurtosis, minimum and maximum values. We shall highlight here that there is a
slightly difference between the beta GAMLSS model and the beta regression model pro-
posed by [10], i.e. for the GAMLSS parameterisation Var(Y) = σ 2µ(1 − µ) and in [10]’s
parameterisation Var(Y) = (1 + φ)−1µ(1 − µ) where φ > 0 is a precision parameter.

3.3. Modelling of distribution parameters

Figure 4 displays scatter plots of the response variable against some of the available explana-
tory variables, which are used to select additive terms that will compose the regression
model to explain the points rate. We can clearly see, in the first column of Figure 4, that
the explanatory variables shots on goal per game (ShG.Pg), clean sheet (ClSh) and shots
per game (Sh.Pg) have a positive linear relationship with points rate (correlations equal to
0.82, 0.70 and 0.71, respectively). On the other hand, shots conceded per game (Sh.con.Pg)
has a negative linear relationship with the response variable (correlation equals to −0.68).
Since these explanatory variables present high correlations, we can conclude that, prob-
ably, they will be considered in the best final models, modelling some of the parameters
(mainly µ) as linear functions. Finally, it seems that the number of yellow cards (YC) does
not have a strong linear relationship with total points (correlation equals to −0.26 ). How-
ever, this explanatory variable presents a great variability in points rate, indicating that we
may need to consider it in order to model parameters related to the scale and/or skewness
and kurtosis of the response variable. Please note that, in order to keep a clear scatter plot,
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Figure 4. Scatter plots and correlation coefficient between response and some explanatory variables.

Table 3. Statistics from the fitted models.

Model Parameters df GD AIC SBC

logitSHASHo 4 10 −656.28 −636.27 −601.72
Beta 2 7 −645.19 −631.59 −600.50
logitSST 4 8 −646.19 −628.19 −597.09
logitNO 2 9 −644.72 −626.72 −595.62
Generalised beta 4 9 −642.48 −624.48 −593.38

the variables displayed here are the ones which were selected to compose the best fitted
model presented further on this section (please check the supplementary file to see the
other relationships).

Here, we applied the steps described in Section 2.4 to select the explanatory variables
using each of the five distributions named in Section 3.2. Table 3 displays the number of
distribution parameters, the total effective degrees of freedomused in themodel, the values
of the global deviance (GD), AIC and SBC for each model, which were used to compare
the fitted models.

Table 3 indicates that the best fitted model according to both the AIC and SBC criteria
is the one based on the logitSHASHo distribution (−636.27 and −601.72, respectively).
As we highlighted in Section 1, the beta regression model is not very flexible when we
need to model skewness and kurtosis, thus despite the close values from especially the
SBC criterion when we compare it to the model based on the logitSHASHo distribution,
the residual analysis of this model indicates some problems that will be discussed further
in Section 3.4.

The best model from the logitSHASHo distribution under the GAMLSS parametric
framework (4) and its estimates and standard errors (in in parentheses) are listed in Table 4.

3.4. Model checking

Figure 5 displays the normalised quantile residuals from the chosen logitSHASHo model.
Panels (a) and (b) show the residuals against fitted values of µ against an index, respec-
tively. The kernel density estimate of the residuals can be seen in Panel (c), whereas Panel
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Table 4. Estimates of the coefficients associated with each covari-
ate considered in the response variable distribution parameters and
their respectively standard errors (in parentheses).

Variable µ log σ ν log τ

Intercept −0.19 (0.02) −1.96 (0.20) 0.07 (0.06) −0.39 (0.11)
ShG.Pg 0.49 (0.04) 0.13 (0.06) – –
ClSh 0.29 (0.02) – – –
Sh.Pg −0.13 (0.04) – – –
Sh.con.Pg −0.05 (0.02) – – –
YC – – −0.12 (0.04) –

Figure 5. The residuals from the logitSHASHo model: (a) against fitted values; (b) against index; (c)
kernel density estimate; and (d) simulated envelope.

(d) presents a simulated envelope [2], where all dotted points are within the greyish bands.
We may observe in these plots that the normalised quantile residuals seem to follow
approximately a normal distribution indicating a suitable fitted model.

In addition, we display in Figure 6 worm plots obtained from the best fitted models
based on every distribution considered in this paper. We can see that the models based on
the logitSHASHo and logitSST distributions do not present any trend (vertical shift, slope,
quadratic or cubic shape), thus it fitted really well the skewness and kurtosis present in
the response variable. As for the other models based on the beta, logitNO and generalised
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Figure 6. Worm plots of the (a) logitSHASHo; (b) beta; (c) logitSST; (d) logitNO and (e) generalised beta
GAMLSS models.

beta distributions, we can clearly see that the normalised quantile residuals present a cubic
shape, indicating a problem with their kurtosis. Hence, based on Figure 6 and on AIC and
SBC measures presented in Table 3, we can conclude that the logitSHASHo model is the
most suitable model among the five used in this paper to explain the current data.

4. Discussion

The results obtained through the logitSHASHo fitted model given in Table 4 show that
shots on goal (ShG.Pg) and clean sheet (ClSh) are positively associated with the location
parameterµ in the points rate distribution. This relationship can be explained using simple
game facts: a team that avoids conceding goals (clean sheet) and creates real chances of
scoring (shots on goal) has more chance to be successful. The explanatory variable shots
per game (Sh.Pg), surprisingly, has a negative effect on the location parameter µ, even
though it presents a high positive correlation with points rate (Figure 4). Statistically, this
can be explained by using the value of the partial correlation between shots per game and
points rate given shots on goal, which is negative (−0.11). In practice, we may say that just
arbitrarily shooting has a negative effect, since inmany cases a football team trying to score
from anywhere in the pitch, without presenting any real risk for the opposite team is less
likely to score. The last covariate used to modelµ is shots conceded (Sh.con.Pg) which has
a negative effect on it, since it increases the chances to concede goals and consequently to
lose the match.

A fact that should be highlighted is the absence of some explanatory variables to explain
the location parameter, specifically, possession (please check the supplementary file in
order to see this relationship in the provided scatter plot), leagues and season. For season,
we note that the football teams for those leagues have a points rate average that does not



14 L. R. NAKAMURA ET AL.

tend to change from season to another. However, possession and leagues are quite interest-
ing andmay bemore difficult to be accepted. Generally, football experts and commentators
claim that some leagues are more competitive than others, but the results obtained in this
paper may indicate that this may be too subjective and not be completely right, since the
effect of league is not significant in the model. Regarding possession, we can try to explain
its absence with different strategies during the game, i.e. only keeping the ball may not
be sufficient for having a good points rate, once in some situations a team can play very
defensively and try to score in counter attacks (this may indicate that both strategies can
be equally efficient).

The value of the scale parameter σ increases according to the number of shots on goal
per game (ShG.Pg) by the football teams and yellow cards (YC) has a negative linear effect
on the skewness parameter ν. Finally, the kurtosis parameter τ is a constant smaller than
one (≈ 0.68), i.e. the final model from the logitSHASHo distribution presents heavy tails.
These characteristics indicate why the normalised residuals obtained from the beta regres-
sionmodel (Figure 6b) did not behavewell, since it is not capable tomodel different degrees
of skewness and kurtosis.

5. Concluding remarks

In this paper, we proposed the logit sinh–arcsinh distribution (logitSHASHo) defined on
the unit interval (0, 1) which admits high degrees of skewness and kurtosis. Also, it is
very versatile and it can be used to analyse different types of data sets. Based on the logit-
SHASHo distribution, we proposed a logitSHASHo regression model using the flexibility
of the GAMLSS framework. The new regression model can be used as an alternative to the
beta regression model to fit heavy-tailed response variables on the unit interval (0, 1). The
distribution parameters are modelled as parametric linear and/or additive non-parametric
smoothing functions of explanatory variables. Furthermore, we performed some simula-
tion studies for the new regression model under different sample sizes and we tested the
performance of the explanatory variable selectionmethod through theStepGAICAll.A
function available in the gamlss package. We also discussed model checking analysis
using the normalised quantile residuals in the new regression model fitted to a real data.
An application related to the points rate of the football teams data set demonstrated that
it can be used quite effectively to provide better fits than other regression models in the
literature.
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