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Centile Estimation for a Proportion Response

Variable

Abu Hossain, a Robert Rigby, a ∗ Mikis Stasinopoulos a and Marco Enea b

This paper introduces two general models for computing centiles when the response variable Y can take values

between zero and one, inclusive of zero or one. The models developed are more flexible alternatives to the beta

inflated distribution. The first proposed model employs a flexible four parameter logit skew student t (logitSST)

distribution to model the response variable Y on the unit interval (0,1), excluding 0 and 1. This model is then

extended to the inflated logitSST distribution for Y on the unit interval, including 0 or 1. The second model

developed in this paper is a generalized Tobit model for Y on the unit interval, including 0 or 1. An application

of the new models to real data shows that they can provide superior fits.

Copyright c⃝ 0000 John Wiley & Sons, Ltd.

Keywords: Beta inflated distribution, Centile Estimation, GAMLSS, generalised Tobit model, LMS, logit

skew student t distribution.

1. Introduction

The purpose of this paper is to provide flexible modelling approaches for centile curve estimation for a continuous

proportion response variable measured on the interval from zero to one, i.e. intervals (0, 1), [0, 1), (0, 1] or [0, 1], where

the square bracket indicates that the end point is included, while the curve bracket indicates that the end point is excluded.

In this paper we will focus on a response variable Y on (0, 1]. Extensions are available for Y on [0, 1) and [0, 1].

Specifically in this paper we develop two new innovations for modelling a proportion response variable Y on the interval

(0, 1] including 1. The first is the development of a model employing a logit skew Student t (logitSST) distribution inflated

at 1. The second innovation is the introduction of a generalised Tobit model [based on a flexible distribution on (0,∞),

censored above 1], which allows modelling on the interval (0, 1]. The inflated logitSST and generalised Tobit models can

also be extended to model a proportion response variable on the intervals [0, 1) or [0, 1]. The models are fitted to a lung

function response variable using the gamlss package version 4.3− 2 in R, [1] based on the GAMLSS model, [2].

Various alternative methods are used in the literature to model a proportion response variable, for example ordinary

least squares (OLS) regression using a transformed response variable, e.g using the arcsine square root transformation,

i.e. sin−1(
√
Y ), or the logit transformation, i.e. log [Y/(1− Y )]. However OLS regression for modelling a proportion

response variable has been questioned because of the potential mismatch of its underlying assumptions even after data

transformation [3]. Warton and Hui [4] argued that the logit transformation worked better than the arcsine transformation
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when analysing proportion data. Aitchinson [5] also proposed a logit transformation to a normal distribution to

model compositional data in the form of proportions. The transformed normal distribution model also suffers from an

interpretation problem, since the expected value of Y is not a simple transformation of the expected value of the logit

transformed response.

Given its relatively flexible nature, the beta distribution has been used widely in the statistical literature to model

proportion data. For example Trenkler [6], Kieschnick and McCullough [7] and Ferrari and Cribari-Neto [8] have shown

the practical implementation of the beta distribution in their work. The beta distribution is a family of continuous

distributions defined on the open interval (0, 1) not including 0 or 1. The probability density function (pdf ) fY (y) of

the beta distribution was originally parameterised by two positive shape parameters α and β, i.e. fY (y) = yα−1(1−
y)β−1/B(α,β) for 0 < y < 1, where B(α,β) is the beta function. The pdf of the beta distribution has different shapes:

unimodal (α > 1,β > 1), uniantimodal or U shaped (α < 1,β < 1), increasing (α > 1,β ≤ 1), decreasing (α ≤ 1,β > 1)

or constant (α = β = 1) depending on the values of α and β relative to 1.

However the beta distribution is limited to modelling data on the open interval (0, 1), not including 0 or 1. To model data

with a significant number of zeros and/or ones a mixed continuous-discrete distribution could be used. Kieschnick and

McCullough [7], Hoff [9], Cook et al. [10] and Ospina and Ferrari [11] presented empirical examples of implementation

of the beta inflated model as a mixed continuous-discrete distribution to model proportion data on the intervals [0, 1),

(0, 1] or [0, 1]. The beta inflated distribution comprises a beta distribution on (0, 1) together with the point probabilities at

0 and/or 1. Galvis et al. [12] use a Bayesian approach to augment probabilities of zeroes and ones with the beta density

for modelling proportion data. Hoff [9] compares four different approaches for modelling (0, 1] data, i.e Tobit regression,

OLS regression, the Papke-Wooldbridge (PW) model and the unit inflated beta model. Hoff’s results suggest that the beta

model performed worse than the other models. Ospina and Ferrari [11] conclude that the complexity of interpretation of

parameters and the assumed normality of the latent variable do not allow the Tobit model to be as flexible as the beta

inflated distribution to model a response variable on the unit interval [0, 1] . However Ospina and Ferrari [11] do not claim

that the beta inflated model always provides a better fit than the Tobit model.

The rest of the paper proceeds as follows. Section 2 describes the statistical methodology implemented in this paper.

In particular, subsection 2.1 includes a brief description of centile estimation using the LMS method and its extensions.

Subsection 2.2 provides a general model for centile estimation, while subsections 2.3 and 2.4 provide the logit skew

Student t (logitSST ) and inflated logitSST distributions, appropriate for centile estimation for a response variable Y on

the intervals (0, 1) and (0, 1], respectively. Subsection 2.5 describes the generalised Tobit model for Y on (0, 1]. Section 3

applies the methodologies proposed in section 2 to the lung function data. Conclusions are given in Section 4.

2. Statistical methodology

2.1. LMS centile estimation method and extensions

The estimation of different centiles of a response variable at each level of one (or more) explanatory variables, is a major

statistical problem in many applied human sciences, for example the WHO growth curves [13, 14]. A statistical approach

widely used for creating growth centile references for individuals from a population is the λ, µ and σ (LMS) method of

Cole and Green [15] and its extensions in [16, 17]. Note that subsequently we will use the notation ν rather than λ to refer

to the third parameter of the model.

The main assumption of the LMS method [15] is that the response variable Y > 0 is defined by a transformation

Z =

⎧

⎨

⎩

1

σν

[

(Y
µ
)ν − 1

]

if ν ̸= 0

1

σ
log

(

Y
µ

)

if ν = 0
(1)
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where Z is assumed to have truncated standard normal distribution. The truncated part comes from the fact that since

Y > 0, Z has to satisfy the condition −1/σν < Z < ∞ if ν > 0 and −∞ < Z < −1/σν if ν < 0. The LMS method uses

the power transformation (Y/µ)ν to correct for skewness. The resulting distribution for Y (called the Box-Cox, Cole

and Green, BCCG, distribution within the gamlss package [18] in R [19]) has three parameters, approximate median

µ, approximate coefficient of variation σ and skewness parameter ν (where ν < 1 and ν > 1 correspond to positive and

negative skewness, respectively).

However the BCCG distribution does not handle kurtosis. For modelling kurtosis Rigby and Stasinopoulos [16, 17]

extended the BCCG distribution by introducing the four parameter BCPE and BCT distributions. For the BCPE

distribution the transformed random variable Z in (1) follows a truncated power exponential distribution, while for the

BCT distribution Z follows a truncated t distribution.

2.2. General model for centile estimation

Let us assume that Y is the response variable, V is the explanatory variable and θ = (θ1, θ2, · · ·, θp) is a vector of p

distribution parameters, then a general model for creating centiles for Y conditional on the value v of V is:

Y ∼ D(θ)

gk(θk) = hk(x) k = 1, . . . .p

x = vξ (2)

where D is the assumed distribution, gk and hk are link and smooth functions respectively for k = 1, 2, ...., p and ξ is

a power parameter applied to v to accommodate rapid growth of Y for low or high values of v. Here D represents any

distribution. Letting D represent the BCCG, BCPE and BCT distributions gives respectively the LMS, LMSP and LMST

methods of centile estimation, see [15], [16] and [17] respectively. For example, the LMST method is given by

Y ∼ BCT (µ,σ, ν, τ)

g1(µ) = h1(x)

g2(σ) = h2(x)

g3(ν) = h3(x)

g4(τ) = h4(x)

x = vξ.

(3)

The default link functions for the BCT distribution in gamlss package are g1(µ) = µ (identity link), g2(σ) = log σ,

g3(ν) = ν and g4(τ) = log τ . [In the gamlss package, the notation BCCGo, BCTo and BCPEo refers to the BCCG,

BCT and BCPE distributions respectively, except that the default link function for µ is g1(µ) = log µ.] The BCCG,

BCPE and BCT distributions are suitable for modelling a response variable Y > 0. However they may not provide adequate

models for Y on the unit interval (0, 1). Also they do not allow the value Y = 0. Next we investigate different distributions

D appropriate for a response variable on (0, 1) and (0, 1]. Extensions to response variable on [0, 1) and [0, 1] are available.

2.3. Logit skew student t distribution (logitSST)

The idea of the proposed model is to replace the beta distribution on (0,1) with any distribution on range (−∞,∞)

transformed to range (0, 1). Any distribution on range −∞ < Z < ∞ can be transformed to a restrictive range 0 < Y < 1

by using an inverse logit transformation Y = 1/(1 + e−Z).
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The reason for the proposed model is that the beta distribution is often inadequate especially with large data for

modelling a proportion response variable in real data sets. The inverse logit transformation of the skew student t (SST )

distribution, called the logitSST distribution, is introduced here to provide an improved model on the interval (0, 1). Note

that if Z ∼ SST (µ,σ, ν, τ) for −∞ < Z < ∞, then Y = 1/(1 + e−Z) ∼ logitSST (µ,σ, ν, τ) for 0 < Y < 1 . Details of

the skew student t (SST ) distribution are given in [20], reparameterized from [21] . The logitSST distribution is created

using the gamlss function gen.Family(), which allows any gamlss distribution with range (−∞,∞), (e.g. SST),

to be transformed to a new gamlss distribution, (e.g. logitSST), with range (0, 1).

2.4. LogitSST distribution inflated at 1

The logitSST distribution inflated at 1 is a mixture of two components: a discrete value 1 with probability p1 and a

logitSST (µ,σ, ν, τ) distribution on the unit interval (0, 1) with probability (1− p1). The resulting probability (density)

function for Y ∼ Inf.logitSST (µ,σ, ν, τ, p1) is given by

fY (y|µ,σ, ν, τ, p1) =

{

p1 if y = 1

(1− p1)fW (y|µ,σ, ν, τ) if 0 < y < 1
(4)

for 0 < y ≤ 1, where W ∼ logitSST (µ,σ, ν, τ) has a logitSST distribution, where −∞ < µ < ∞ , σ > 0, ν > 0, τ > 0

and 0 < p1 < 1, given by (4), subsequently called the inflated logitSST distribution. The default link functions relate the

parameters (µ,σ, ν, τ, p1) to smooth functions of x, i.e.

µ = h1(x)

log σ = h2(x)

log ν = h3(x)

log τ = h4(x)

log

(

p1
1− p1

)

= h5(x).

The inflated logitSST distribution defined by (4) can be fitted by fitting two models: a logitSST (µ,σ, ν, τ) distribution

model for 0 < Y < 1, together with a binary model for recoded variable Y1 given by

Y1 =

{

0 if 0 < Y < 1

1 if Y = 1

i.e.

p(Y1 = y1) =

{

(1− p1) if y1 = 0

p1 if y1 = 1.

Alternatively the inflated logitSST distribution (4) can be fitted using the new package in R called gamlss.inf.

2.5. Generalised Tobit model

The original Tobit model of a response variable Y on [0, 1] assumes that the response follows a normal distribution

censored below 0 and above 1, [22].

Here we assume the response variable Y is recorded on (0, 1]. The generalised Tobit model on (0,1] requires data

censoring above 1 of a flexible model response variable distribution on (0,∞) for its positive probability at 1. Censoring
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refers to the transformation of observations outside the limiting interval to the border value, [9]. Here the values of Y in

the model distribution above 1 are transformed to 1.

Let Y1 ∼ D(µ,σ, ν, τ) be a flexible uncensored distribution on (0,∞). Let Y ∼ Drc(µ,σ, ν, τ) be the right censored

distribution on (0, 1], i,e censored above 1. Then

Y =

{

Y1 if 0 < Y1 ≤ 1

1 if Y1 ≥ 1.

Hence the probability (density) function of Y is given by

fY (y) =

{

fY1
(y) if 0 < y < 1

P (Y1 ≥ 1) if y = 1
(5)

for 0 < y ≤ 1. In principle D can be any distribution on (0,∞). In the analysis in section 3 we use the three parameter

BCCGo distribution for D with its default link functions.

3. Data Analysis

3.1. Fitting Models

In this paper we modelled 3164 male observations of lung function data previously analysed by Stanojevic et al. [23]. Data

quality were assured and there were very few errors in the data since all data had been previously used in publications.

The response variable is Y = FEV1/FV C and the explanatory variable is x = log(height). Response variable Y is a

ratio of forced expiratory variable in 1 second (FEV1) to forced vital capacity (FV C). Spirometric lung function Y is an

established index for diagnosing airway obstruction, [24].

Centile curves for Y against x are achieved by using five methods: LMS (BCCGo), BEINF1 (beta inflated at 1), the

original Tobit model and two new methods proposed in this paper, the Inf.logitSST (logitSST inflated at 1) model and

the generalised Tobit model (BCCGorc, i.e, BCCGo right censored at 1). The methods were applied using the gamlss

package version 4.3− 2 in R, [1]. For the inflated logitSST model a new package was developed called gamlss.inf.

The smoothing method P-splines, [25], was used for fitting each smooth function hk(x) in each of the 5 models. The

P-splines method is a combination of B-splines regression and quadratic penalties imposed on the estimated coefficients.

The degrees of freedom used for smoothing was estimated locally using a local generalised Akaike Information Criterion,

[26], with penalty k = 6 for each degree of freedom in the smooth function.

The penalty k = 6 was chosen as a compromise between a low value of k (eg. k = 2 for the Akaike Information

Criterion, AIC) which can lead to overfitting resulting in erratic fitted centile curves, and a high value of k (eg.

k = log(n) = 8.06 for the Schwartz Bayesian criterion, SBC) which can lead to underfitting resulting in biased centile

curves, leading to significant Z and Q residual test statistics. The R commands used in the analysis are available from the

authors.

Table 1 summarises the values of the global Deviance, degrees of freedom (df), Akaike information criteron (AIC),

Schwartz Bayesian criteron (SBC) and Generalised AIC (GAIC) with penalty k = 6, for four fitted models. The LMS

(BCCGo) model could not be included in the comparison in Table 1 because it does not have a point probability at Y = 1.

From Table 1, the inflated logitSST model is best as judged by AIC (as it has the lowest value), while the generalised

Tobit model is best as judged by SBC. Using criterion GAIC with k = 6, the inflated logitSST and generalised Tobit

models are almost equally good. The BEINF1 and standard Tobit models perform much worse.
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3.2. Centile estimation

Figure 1 shows centile curves constructed using four different fitted models: LMS (BCCGo), BEINF1, inflated

logitSST and generalised Tobit (BCCGo, right censored at 1). The fitted (2, 10, 25, 50, 75, 90, 98)% centile curves show

that LMS model constructed less smooth curves than the other models. Table 2 shows the sample percentages below each

centile curve for the fitted models against the nominal percentiles. Among the four models given, the inflated logitSST

model generally performs best. The beta inflated model performs much worse than the other models because its sample

percentages below each centile curve are far from the nominal centile percentages.
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4.6 4.8 5.0 5.2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 height

FE
V1

/F
VC

(d) Gen. Tobit

Figure 1. Centile curves for model a) LMS b) BEINF1 c) Inflated logitSST d) Generalised Tobit
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3.3. Model checking using residual based diagnostics

The residuals used in GAMLSS are normalized (randomised) quantile residuals, [27], or z-scores. In this paper two

residual based diagnostic tools, the worm plot and Z and Q statistics, are used to check the adequacy of each model.

3.3.1. Worm Plots van Buuren and Fredriks [28] introduced the worm plot, which consists of de-trended Q-Q residual

plots. The explanatory variable is split into (non-overlapping) intervals (with equal numbers of observations) and a

detrended Q-Q plot of the residuals is obtained for residuals in each interval. The shape of the worm plot indicates

how the observed response variable distribution differs from assumed underlying model distribution within each interval

of the explanatory variable. In this spirometry data example we need to check whether the model fits well within different

intervals of height. In Figure 2 worm plots of the LMS and BEINF1 models are shown in 9 intervals of height with equal
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Figure 2. Twin worm plot for LMS (dark points) and BEINF1 (light points) models.

number of observations. The 9 height intervals are given in Figure 4 and corespond to the 9 worm plots from the bottom

left plot to the top right plot in rows in Figures 2 and 3. For an adequate model, 95% of the points in each plot should lie

between the elliptical 95% pointwise confidence band curves. For interpretation of the worm plot see [28] and [1]. The

shapes of the worm plots can indicate the type of model failure, see [16]. The worm plots in Figure 2 show that the LMS

and beta inflated (BEINF1) models fit badly in most height intervals.

The worm plots of the two proposed models, the inflated logitSST and generalised Tobit models are shown in Figure

3. Based on the worm plots the proposed inflated lositSST and generalised Tobit models fit well to the data, since

approximately 95% of the points of the worm plots lie between the two elliptic 95% pointwise confidence band curves.

3.3.2. Z and Q statistics Another residual based diagnostic tool, Z and Q statistics, is used in this paper. Z and Q statistics

are useful to test the normality of the residuals. If the model is correct the true residuals have a standard normal distribution.

The Zgj statistics for j = 1, 2, 3, 4 test whether the mean, variance, skewness and excess kurtosis of the residuals are 0, 1, 0

Statist. Med. 0000, 00 1–12 Copyright c⃝ 0000 John Wiley & Sons, Ltd. www.sim.org 7
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Figure 3. Twin worm plot for Inf logitSST (dark points) and Gen.Tobit (light points) models.

and 0 respectively within each explanatory variable interval group g = 1, 2, 3.....G, [29]. The test statistics for skewness

and kurtosis are given by D’Agostino et al. [30].

Royston and Wright [29] also computed Q-statistics by

Qj =
G
∑

g=1

Z2
gj . (6)

The test statistics Q1, Q2, Q3 and Q4 provide global test statistics, combining all G groups, that the mean, variance,

skewness and excess kurtosis of the residuals are correct (i.e, 0, 1, 0 and 0 respectively), see [29] and [16]. The value

of squared Zgj helps to identify which height group is causing the Qj statistic to be significant. If the model is correct

Zgj should be approximately normally distributed. Hence a rough guide for the Zgj value to be significant is Zgj > 2 or

Zgj < −2 indicating that the model may be inadequate within the corresponding height interval.

Figure 4 shows the visual display of the Zgj statistics for g = 1, 2, 3....9 and j = 1, 2, 3, 4 for each of four models. The

corresponding intervals of height for the 9 groups are given on the left of each plot. The larger the circles, the larger the

value of |Zgj |. A square within the circle indicates that |Zgj | > 2 indicating a misfit of the model to the response variable

within the coresponding interval of height.

Hence Figure 4 shows the presence of many misfits in the LMS and beta inflated models. Five misfits were found in

the inflated logitSST model and four in the generalised Tobit model. Analysis of the residuals using Z statistics is also

consistent with the diagnostic tools used earlier in this paper.

It can be concluded that the inflated logitSST and generalised Tobit models perform well compared to other models

and provide powerful tools to model proportion data.
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Figure 4. Z statistics for a) LMS b) BEINF1 c) Inflated logitSST d) Generalised Tobit

4. Conclusion

This paper proposed the inflated logit skew student t (i.e. inflated logitSST ) distribution and a generalised Tobit model as

mixed continuous-discrete distributions to model a response variable recorded on the unit interval (0,1], including 1. The

main purpose of this paper is to offer two models for centile estimation as viable alternatives to the LMS and beta inflated

models. The paper focuses on a response variable recorded on the interval (0, 1]. Extension to the interval [0,1) can be

achieved simply by analysing (1− Y ) instead of Y . Extension to the interval [0, 1] may be obtained by inflating a flexible

distribution on (0, 1), e.g. the logitSST distribution, at both 0 and 1, or by censoring a flexible distribution on (−∞,∞),

e.g. the SST distribution, below 0 and above 1 for the generalised Tobit model.

An empirical application to real data has been presented modelling a lung function response variable on the interval

(0, 1]. This paper uses the Akaike information Criterion (AIC), [31] and Schwartz Bayesian Criterion (SBC), [32] to

compare the relative performance of the models. The model with lowest AIC or SBC is ranked as best model. Worm plots

and Z statistics were used to the check the adequacy of each of the models. The LMS, beta inflated and Tobit models were

clearly inadequate at fitting the response variable, while the inflated logitSST and generalised Tobit (i.e, BCCGo right
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censored at 1) models provided adequate fits. From the empirical example it can be concluded that the inflated logitSST

and generalised Tobit models can provide better fits than the LMS, beta inflated and Tobit models and can be more flexible

for modelling proportion data.
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Table 1. Comparison of Fitted Models

Method Deviance df AIC SBC GAIC (k=6)

BEINF1 -6180.9 6.0 -6168.9 -6132.5 -6144.9
Inf. logitSST -6390.7 14.3 -6362.1 -6275.5 -6304.9

GenTobit -6362.2 9.0 -6344.2 -6289.6 -6308.8
Tobit -6272.6 7.0 -6258.6 -6215.9 -6230.4

Table 2. Comparison of fitted centile percentages

Nominal Centile % LMS BEINF1 Inf. logitSST GenTobit

2 1.74 1.33 1.93 2.02
10 9.96 8.31 10.02 9.26
25 27.12 25.16 24.59 24.62
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