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Abstract

Over the last decade, users’ storage demands have been growing exponentially year
over year. Besides demanding more storage capacity and more data reliability, today
users also demand the possibility to access their data from any location and from any
device. These new needs encourage users to move their personal data (e.g., E-mails,
documents, pictures, etc.) to online storage services such as Gmail, Facebook, Flickr
or Dropbox. Unfortunately, these online storage services are built upon expensive
large datacenters that only a few big enterprises can afford.

To reduce the costs of these large datacenters, a new wave of online storage ser-
vices has recently emerged integrating storage resources from different small dat-
acenters, or even integrating user storage resources into the provider’s storage in-
frastructure. However, the storage resources that compose these new storage infras-
tructures are highly heterogeneous, which poses a challenging problem to storage
systems designers: How to design reliable and efficient distributed storage systems over
heterogeneous storage infrastructures?

This thesis provides an analysis of the main problems that arise when one aims
to answer this question. Besides that, this thesis provides different tools to optimize
the design of heterogeneous distributed storage systems. The contribution of this
thesis is threefold:

First, we provide a novel framework to analyze the effects that data redundancy
has on the storage and communication costs of distributed storage systems. Given
a generic redundancy scheme, the presented framework can predict the average
storage costs and the average communication costs of a storage system deployed
over a specific storage infrastructure.

Second, we analyze the impacts that data redundancy has on data availability and
retrieval times. For a given redundancy and a heterogeneous storage infrastructure,
we provide a set of algorithms that allow to determine the expected data availability
and expected retrieval times.

Third, we design different data assignment policies for different storage scenar-
ios. We differentiate between scenarios where the entire storage infrastructure is
managed by the same organization, and scenarios where different parties contribute
their storage resources. The aims of our assignment policies are: (i) to minimize
the required redundancy, (ii) to guarantee fairness among all parties, and (iii) to
encourage different parties to contribute their local storage resources to the system.
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Resum

Durant la última dècada, la demanda d’emmagatzematge de dades ha anat creixent
exponencialment any rere any. Apart de demanar més capacitat d’emmagatzematge,
el usuaris actualment també demanen poder accedir a les seves dades des de qual-
sevol lloc i des de qualsevol dispositiu. Degut a aquests nous requeriments, els
usuaris estan actualment movent les seves dades personals (correus electrònics, doc-
uments, fotografies, etc.) cap a serveis d’emmagatzematge en línia com ara Gmail,
Facebook, Flickr o Dropbox. Malauradament, aquests serveis d’emmagatzematge
en línia estan sostinguts per unes grans infraestructures informàtiques que poques
empreses poden finançar.

Per tal de reduir el costs d’aquestes grans infraestructures informàtiques, ha sor-
git una nova onada de serveis d’emmagatzematge en línia que obtenen grans in-
fraestructures d’emmagatzematge a base d’integrar els recursos petits centres de
dades, o fins i tot a base d’integrar els recursos d’emmagatzematge del usuaris
finals. No obstant això, els recursos que formen aquestes noves infraestructures
d’emmagatzematge són molt heterogenis, cosa que planteja un repte per al dis-
senyadors d’aquests sistemes: Com es poden dissenyar sistemes d’emmagatzematge en
línia, fiables i eficients, quan la infraestructura emprada és tan heterogènia?

Aquesta tesis presenta un estudi dels principals problemes que sorgeixen quan
un vol respondre a aquesta pregunta. A més proporciona diferents eines per tal
d’optimitzar el disseny de sistemes d’emmagatzematge distribuïts i heterogenis. Les
principals contribucions són:

Primer, creem un marc d’anàlisis per estudiar els efectes de la redundància de
dades en el cost dels sistemes d’emmagatzematge distribuïts. Donat un esquema
de redundància específic, el marc d’anàlisis presentat permet predir el cost mitjà
d’emmagatzematge i el cost mitjà de comunicació d’un sistema d’emmagatzematge
implementat sobre qualsevol infraestructura informàtica distribuïda.

Segon, analitzem els impactes que la redundància de dades té en la disponibilitat
de les dades, i en els temps de recuperació. Donada una redundància, i donat un sis-
tema d’emmagatzematge heterogeni, creem un grup d’algorismes per a determinar
la disponibilitat de les dades esperada, i els temps de recuperació esperats.

Tercer, dissenyem diferents polítiques d’assignació de dades per a diferents sis-
temes d’emmagatzematge. Diferenciem entre aquells escenaris on la totalitat de
la infraestructura està administrada per una sola organització, i els escenaris on
diferents parts auto administrades contribueixen els seus recursos. Els objectius
de les nostres polítiques d’assignació de dades són: (i) minimitzar la redundància
necessària, (ii) garantir la equitat entre totes les parts que participen al sistema, i (iii)
incentivar a les parts perquè contribueixin els seus recursos al sistema.
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When we had no computers, we had no pro-
gramming problem either. When we had a
few computers, we had a mild programming
problem. Confronted with machines a mil-
lion times as powerful, we are faced with a
gigantic programming problem.
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2 Motivation

1.1 Motivation

The overall world-wide storage demands are growing at an exponential rate. Ac-
cording to a market research report by IDC1, the storage capacity shipped by the
5 top storage vendors grows around 30% year over year. IDC predicted that the
amount of data stored in the world will reach 1.8 zettabytes2 by 2011, 10 times the
amount of data that was stored in 2006. It means that by 2011 every man, woman
and child on the globe will each consume over 260 gigabytes of data. Storing these
ever growing amount of data in a reliable way is still a challenging task for storage
system designers.

Besides demanding more storage capacity, nowadays users also want to access
their data from any device, from any location, and they want the possibility to share
their data with family and friends in a straightforward manner. Because of these
needs, users are currently moving their personal data (e.g., E-mails, documents,
pictures, etc.) to online services (or cloud services) such as Gmail, Facebook, Flickr
or Dropbox. These online storage services allow users to share and access their data
from anywhere. In addition, storing data in such services guarantees more data
reliability than keeping data stored in local storage devices. However, the rapid
popularization of these online services posed a challenge for storage designers: (i)
they should design storage systems capable of sustaining an ever-growing storage
demand, (ii) and they should provide efficient world-wide distribution of the stored
content.

To meet these two challenges, in the last decade online storage services have been
built upon large, well-provisioned and well-managed datacenters. These datacenters
use distributed storage systems like Google file-system [37], or Dynamo [42], that
provide high data reliability, high scalability, and good access performance. How-
ever, these large datacenters are very expensive in terms of management, energy
consumption or hardware maintenance. These high costs restrict the possibility of
owning one of these large datacenters to a few big enterprises. Due to this, a new
wave of online services has recently emerged trying to provide online storage ser-
vices at a lower cost. Basically, we distinguish between three different kinds of these
new solutions:

(i) Peer-to-Peer (P2P) Storage Systems. The main idea of these storage services is
to aggregate spare disk resources from end-users to build a large collaborative
distributed storage system. For example Wuala [75] is a P2P storage service
that allows users to share part of their hard drives to obtain a reliable and
online storage capacity.

(ii) Volunteer Storage Systems. Nowadays, the BOINC project [11] allows users to

1http://www.idc.com/getdoc.jsp?containerId=prUS22236010
2A zettabyte (ZB) is equal to 1 billion terabytes (TB) or 1012 gigabytes (GB).
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Chapter 1. Introduction 3

altruistically give their unused CPU cycles to research projects like
SETI@Home [78] or Folding@Home [77]. Chandra and Weissman [19] devised
the idea of letting users also contribute their unused storage resources to satisfy
the storage requirements of these research projects. A similar approach was ad-
vocated by the developers of Open Cirrus [16] to aggregate unused resources
from different small and heterogeneous datacenters.

(iii) User-Assisted Storage Systems. Due to the increasing user storage demands,
some online storage providers allow users to contribute their spare local stor-
age resources, or their network attached storage (NAS) devices to reduce the
price of the online storage service. As an example, Ctera [76] sells NAS de-
vices where users can store their data locally and the company guarantees
that the data is reliably stored and accessible from anywhere in the globe.
Similarly, Cleversafe [21] sells large storage racks for small and medium busi-
nesses (SMBs). In this case, Cleversafe distributes the stored data among all
the shipped storage devices.

Compared to large datacenters, the common property between all these new on-
line storage services is that they are built upon highly heterogeneous, less-provisioned
and less-managed storage infrastructures. Actually, according to Vaquero et al. [74],
this heterogeneity will be one of the major challenges for online services and cloud
computing. Surprisingly, the storage mechanisms used in these heterogeneous in-
frastructures are still basically the same that the ones used in large data centers.
Although these existing mechanisms are able to provide the required data reliabil-
ity, ignoring the underlying heterogeneities leads to significant efficiency losses, and
to waste more resources than what is necessary. The aim of this thesis is to analyze
how distributed storage systems can be designed and optimized with such hetero-
geneity in mind in order to improve the efficiency of heterogeneous storage systems
and to reduce its costs.

1.2 Quality of the Storage Service (QoSS)

Before analyzing the costs and efficiency of a distributed storage system we need to
define what is the quality that a user expects from the storage service.

In a distributed storage system, data is not stored in a single device but is spread to
several storage nodes. Typically, a distributed storage system is composed of thou-
sands of these storage nodes distributed among different geographical locations.
It means that parts of the same data can be physically stored in various nodes in
multiple locations. In these distributed environments the main threats against data
reliability are the transient failures of storage nodes (temporal node unavailabili-
ties), and the permanent failures of storage nodes. Despite the existence of these
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threats, users expect three main properties from the online storage service, namely
data availability, data durability, and short retrieval times. These three properties
constitute the quality of the storage service (QoSS) perceived by the user:

• Data Availability. The data inserted in a distributed storage system should be
always available, even if part of the storage nodes are temporally offline.

• Data Durability. Besides guaranteeing that data is always available, distributed
storage systems must also guarantee that once data has been inserted in the
system it is never lost. Since storage nodes can fail, the system must guarantee
that the parts of data lost due to permanent node failures are repaired in short
without affecting the normal behavior of the system.

• Short Retrieval Times. When a user wants to access a stored object it has to
contact to one or several storage nodes and download some amount of data
from them. Users expect the time required to download all this data to be as
short as possible. There are some factors that can alter these retrieval times
such as the location of the user with respect to storage nodes, the bandwidth
and network congestion, and the temporal unavailabilities of some storage
nodes.

To guarantee that the previous three properties are never compromised, distributed
storage systems use two main tools, namely data redundancy and data maintenance
processes:

• Data Redundancy Schemes. Data redundancy consists of storing multiple
copies of the same data in different storage nodes. These multiple copies are
intended to guarantee data availability as well as short retrieval times. One
the one hand, data redundancy ensures that if some copies of the stored data
are unavailable, the remaining copies should be enough to retrieve the original
data. One the other hand, placing copies of the same data in different locations
ensures that users can access near copies and reduce retrieval times.

Although data replication is the simplest redundancy scheme, other redun-
dancy schemes based on erasure codes can reduce the storage and communi-
cation costs compared to replication. In general terms an erasure code splits
a data object into k blocks and encode them into n redundant blocks, n ≥ k.
These redundant blocks are such that any k out of the n blocks are sufficient
to reconstruct the original data.

• Data Maintenance Process. To guarantee data durability the storage system
should repair the redundancy lost when a storage node fails. The data main-
tenance process is the responsible to monitor storage nodes and the integrity
of their stored data. Once a failure is detected, the process should reconstruct
the lost blocks and store them again.
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The objective of this thesis:

Although in Chapter 2 we will give a more detailed discussion of data mainte-
nance processes, the main focus of this thesis is data redundancy schemes and its op-
timization for heterogeneous distributed storage systems. The node heterogeneities
that we focus on are the individual node transient failures —different online node
availabilities— rather than other heterogeneities such as bandwidth, storage capac-
ity or locality.

1.3 Challenges in Heterogeneous Distributed Storage
Systems

As we already described, existing heterogeneous distributed storage systems are still
using redundancy schemes that were not originally designed with heterogeneity in
mind. In this section, we discuss the challenges that arise when redundancy schemes
consider the underlying node heterogeneities.

Challenge 1: A better understanding of data redundancy costs.

In any storage system the introduction of data redundancy increases the stor-
age and communication costs of the system: (i) the space required to store
each data object is stretched, and (ii) additional communication bandwidth
is required to repair lost data. Several studies have demonstrated that erasure
codes schemes such as Reed-Solomon codes [60] or LDPC [58] allow to achieve
significant storage savings as compared to simple replication [26, 54, 62, 79].
Moreover, recent advances in network coding have led to the design of new
erasure code schemes [27, 57] that allow to reduce both, the storage and com-
munication costs, as compared to replication.

However, one of the main drawbacks of these new erasure codes is the com-
plexity of predicting their storage and communication costs. As an example,
although some experimental systems have proposed the use of erasure codes in
large datacenters [34,35,83], most of the large datacenters are still using simple
replication [15, 37]. Unfortunately the complexity of understanding the costs
of erasure codes grows when the underlying storage infrastructures are less
reliable and more heterogeneous. In order to design redundancy schemes for
these less-reliable and heterogeneous systems, a better understanding of the
storage and communication costs of existing redundancy schemes is required.
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6 Challenges in Heterogeneous Distributed Storage Systems

Challenge 2: Modeling the relationship between data redundancy, data availability and
retrieval times.

Most of the existing distributed storage systems are designed to provide a high
data availability —close to 100%—, and the shortest retrieval times possible.
Although this classical policy guarantees a high QoSS, it does not allow users
to cut the cost of the storage service by reducing their QoSS expectations.
There are some online storage services like Amazon S3 [10] that offer different
data durabilities for their service (high and low durabilities), however, these
solutions are still far to provide the user with a flexible way to choose their own
QoSS. For example, in data backup applications where data is occasionally
read, users would benefit from tolerating long data access times if it could
significantly reduce the cost of the storage service.

The simplest way to provide flexible QoSS is to allow users to arbitrarily reduce
the amount of redundancy used. However, although less redundancy means
less storage and communication costs, reducing redundancy also reduces data
availability and lengthens retrieval and repair times —i.e., retrieval processes
need to wait when data is temporally unavailable. If redundancy is reduced
too much, these longer retrieval times can cause data to be destroyed faster
than data maintenance processes can repair, which can be catastrophic. To
offer flexible QoSS it is then very important to understand the relation between
data redundancy, data availability and retrieval times.

Challenge 3: Optimizing data assignment in heterogeneous storage systems.

The data assignment problem aims to answer the following question: Which is
the best way to store an amount of data to a set of heterogeneous storage nodes so that
the required redundancy is minimized, and data availability maximized?

The answer to this question can change depending on where you ask. For
example, in a distributed storage system where all storage nodes belong to
the same organization, the storage designer would expect a data assignment
policy that minimizes the overall redundancy of the storage system. However,
in a P2P storage system users would expect a data assignment policy that
minimizes their own storage costs. When possible, in P2P storage systems,
users would even try to selfishly store data to the most stable nodes, which
can lead to a tragedy of the commons situation.

Due to the differences between these two types of storage scenarios, it is im-
portant to have data assignment policies able that minimize global and as well
as individual storage costs.
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1.4 Contributions of This Thesis

In this thesis, we present an analytical framework that allows to design and op-
timize redundancy schemes for heterogeneous distributed storage systems. Our
framework can be directly used by storage designers that aim to minimize the re-
dundancy required to achieve different QoSS. As we will see in Chapter 5, our
framework allows to minimize redundancy from a global point of view, as is the
case of organizational storage systems, as well as from a local point of view, as in
P2P storage systems where users act selfishly to reduce their own costs.

The design of our analytical framework is modular. It consists of three main
modules, which are the following:

Module 1: A model to predict the average costs of redundancy schemes.

The introduction of redundancy in a distributed storage system increases its
storage costs and its communication costs. We use a generic redundancy
scheme —i.e., Regenerating Codes [27]— to model the average storage and
communication costs for any underlying storage infrastructure. The contribu-
tions in this field are the following:

(i) We develop the first complete cost model for Regenerating Codes. Since
Regenerating Codes are a generic redundancy scheme able to model a
wide range of redundancy schemes such as replication or maximum-
distance separable (MDS) codes —Reed-Solomon codes—, our cost model
allows to determine the optimality boundaries of a great variety of redun-
dancy schemes.

(ii) There are some situations where data objects should be stored entirely,
without using erasure codes. For example, (i) in old systems using repli-
cation that cannot migrate their whole infrastructure, (ii) in user-assisted
storage systems combining replication in the datacenter and coding tech-
niques in user nodes, or (iii) when whole copies of data objects are used
to guarantee efficient retrievals. In these situations hybrid redundancy
schemes combining replication and erasure codes can minimize the costs
of simple replication schemes [41,81]. We extend our cost model to deter-
mine the scenarios where is worthwhile to use these hybrid redundancy
schemes instead of simple replication.

(iii) We evaluate through simulation the effects of different redundancy scheme
configurations on the scalability of the storage system. We show that
some theoretically-optimal schemes cannot guarantee data reliability in
realistic storage environments.
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Module 2: On the relationship between data redundancy, data availability and retrieval
times.

Determining the expected data availability and retrieval times in heteroge-
neous storage systems is a difficult task. In this thesis we provide a set of
algorithms and mathematical expressions to measure them, or in some cases,
obtain good estimators of their values. In this module we make the following
contributions:

(i) An algorithm to measure data availability precisely in heterogeneous stor-
age systems. Since the cost of this algorithm becomes computationally
infeasible when the number of storage nodes grows, we also propose two
additional algorithms to approximate data availability for large systems.

(ii) A recursive stochastic process to model object retrieval times. This stochas-
tic process measures, step by step, the time needed to retrieve all the data
blocks required to reconstruct or repair a data object. Due to the complex-
ity of obtaining a general solution for this stochastic process, we make
some assumptions on the node failure model to solve it for the expected
retrieval time.

(iii) In the same line, we present an alternative method to obtain a closed-
form expression of the retrieval time distribution based on some similar
assumptions on the node failure model.

Module 3: Data assignment policies for heterogeneous storage systems.

We design different data assignment policies for different storage scenarios.
We differentiate between scenarios where all storage nodes are managed by
the same organization, and P2P scenarios where each storage node acts as an
independent and rational actor. In the last case, we also differentiate between
P2P storage systems where users can select the set of nodes used to store their
data and systems where the set of storage nodes is given by a third-part entity.
These are the main contributions:

(i) When all storage nodes are managed by the same organization, we infer
an optimal assignment policy that assigns to each node an amount of data
proportionally to its online availability. This proportional assignment pol-
icy minimizes the redundancy that each storage process needs to achieve
its desired QoSS. Besides that, we also show that this assignment policy
also minimizes the overall storage capacity of the storage system.

(ii) In P2P storage systems where users compete to minimize their own costs,
allowing users to select their own storage partners leads to gradient net-
works where nodes are grouped with nodes of similar online availability.
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These gradient networks guarantee low costs for high stable users and
provide incentives to unstable users to improve their online availability.
However, we show that this node selection policy is suboptimal from the
point of view of the overall storage resources consumed.

(iii) To reduce these large amounts of consumed resources, in P2P storage
systems we propose an incentive mechanism based on asymmetric data
exchanges between users that allows to reduce the overall redundancy re-
quired in the system. Besides reducing the overall costs, we also demon-
strate that these asymmetric exchanges reduce the storage costs of each
individual node.

1.5 Thesis Organization

In the following, we provide a short summary of the rest of the chapters of this
thesis:

Chapter 2. Distributed Storage Systems: Model, Definitions & Background

We provide a discussion of the existing background in distributed storage sys-
tems and we present the analytical framework that we will use in the rest of
the thesis.

Chapter 3. A Comparative Study of Redundancy Costs

In this chapter we analyze the costs of different redundancy schemes and
derive a set of rules to determine which redundancy scheme minimizes the
storage and the communication costs for a given system configuration. Addi-
tionally, we use simulations to show that some of these theoretically-optimal
schemes may not be viable in realistic storage settings. In these cases, we iden-
tify which are the trade-offs between the storage and communication over-
heads of the redundancy scheme and the obtained data availability/durability.

Chapter 4. Relationship between Redundancy, Availability & Retrieval Times

We present an analytical framework to measure data availabilities and retrieval
times in heterogeneous distributed storage systems. For data availability we
provide algorithms to measure data availability and approximate it for large
storage systems. For retrieval times we provide measurements of the expected
retrieval times and an approximation of the retrieval time distribution.
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10 Thesis Organization

Chapter 5. Data Assignment Policies

In this chapter we analyze how to assign data to storage nodes in order to min-
imize the redundancy required to achieve a certain QoSS. We analyze different
assignment policies depending on whether the storage systems is optimized
globally or locally.

Chapter 6. Conclusions

This chapter presents the conclusions that ensue from this work and a variety
of possible future research lines.
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12 Background

2.1 Background

In this section we aim to introduce distributed storage systems and their importance
in the design of today’s Internet applications. Besides that, we provide a basic back-
ground of the distributed storage systems that exhibited for the first time most of
the problems that inspired the research done in this thesis.

2.1.1 Local Storage Systems

Computer systems need mechanisms to store data and programs persistently. Hard
disk drives were the first dedicated hardware designed to provide data persistence
to computers and were introduced for the first time in 19561 for an IBM accounting
computer. This was 10 years after the announce of the first general-purpose elec-
tronic computer: ENIAC. Since then, we can no longer imagine a computer without
some kind of hard disk drive. Nowadays every desktop or laptop computer, and
even tablets and smart-phones, come with some persistent storage device.

However, these local hard disk drives suffer from a major problem: data is stored
locally, and as a such, it is very prone to fatal data losses caused by hardware er-
rors or user misuses. The traditional solution used to protect data against these
failures was to replicate the stored content to external and cheap storage units like
magnetic tapes, or more recently, in optical devices. Unfortunately, the management
of these external backup solutions was cumbersome for both, enterprise users and
domestic users, and it presented poor scalability and read/write performance. Due
to the cumbersome management of these external backup solutions, domestic users
were reluctant to backup their data and preferred to face the risk of losing their
data instead of having to deal with tedious backup solutions. However, enterprise
users that could not face the risk of losing their data, adopted other more expensive
solutions like RAID2 disk configurations.

RAID storage is a technology that aggregates various hard disk drives to provide
increased storage functions and reliability through redundancy. The main advan-
tages of RAID storage configurations are their flexibility and automatic manage-
ment: in a RAID configuration faulty disks can be replaced without losing data and
without reconfiguring the system, and capacity can be increased by attaching new
drives into the configuration. However, the scalability of RAID systems was (and
still is) limited, allowing only configurations of a few hard disk drives. This scalabil-
ity limitation was the reason that lead to the design of distributed storage systems, that
emerged as the alternative to reliably scale storage solutions to today’s ever-growing
storage demands.

1http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
2RAID is an acronym for Redundant Array of Independent Disks.
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2.1.2 Distributed Storage Systems

Basically, distributed storage systems aggregate storage resources from different
computers or different dedicated storage devices to build a large storage service,
more reliable, scalable and efficient than local storage solutions. Distributed stor-
age systems are widely used today behind most of the online storage services that
sustain services like Facebook, Gmail or Flickr, among others. Although there are
different kinds of distributed storage systems, we can generally define a distributed
storage system as follows:

Definition 1 (Distributed Sorage System). A distributed storage system is a distributed
computer system composed of multiple autonomous storage nodes that communicate
through a computer network. The aim of a distributed storage system is to integrate all
theses storage nodes into a single and uniform data storage service that applications and
users can access through a communication network.

A storage node can be similarly defined as:

Definition 2 (Storage Node). A storage node is a network element that unites one or more
physical storage devices to provide a simple block storage service. Such term can include
different elements such as desktops and laptop computers, network attached storage (NAS)
devices, set-top boxes (STB) or storage components from datacenters.

Due to its decentralized nature, distributed storage systems have to solve some
challenging problems that local storage solutions did not have:

(i) Detect Node Failures. A node failure occurs when the data stored in a node be-
comes unavailable, either because the node suffered a temporal disconnection
—e.g., a power outage or a network isolation— or because a hardware error
caused a permanent loss of the data stored in the node. Distributed storage
systems need to detect these failures and guarantee that they do not disrupt
the normal operation of the system.

(ii) Introduce Data Redundancy. In order to guarantee that stored data is available
even when some storage nodes are temporarily unavailable, distributed stor-
age systems need to store data redundantly and spread it over several storage
nodes. Although applying local redundancy in each individual node, as RAID
does, allows to protect data against single disk failures, it does not protect data
against temporal power outages or temporal network disconnections.

(iii) Data Maintenance. When a node suffers a permanent failure, the data stored
in the failed node should be repaired and reassigned into another node. Dis-
tributed storage systems have to provide data maintenance processes able to
repair failed nodes before any stored object is irreversibly lost.
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(iv) Data Placement Strategies. Distributed storage systems need to distribute data
among all storage nodes trying to maintain the system load-balanced and avoid
bottlenecks when users access popular content.

(v) Bandwidth Restrictions. Distributed storage systems also need to consider
that node’s bandwidth is finite. The whole storage system should be designed
with this restriction in mind to guarantee that the traffic used by maintenance
processes, and the traffic caused by in/out data operations, is balanced among
all the storage nodes.

(vi) Parallel Access. Distributed storage systems may also allow different applica-
tions or users to read and write to the same data object simultaneously. This
requirement is specially important when the storage system is used by parallel
computers performing high-performance computing (HPC).

2.1.3 Existing Systems

The first distributed storage systems meeting the previous 6 challenges were the
distributed file systems designed to operate in large data centers. Google FS [37],
Hadoop FS [15] or IBM’s GPFS [65] are clear examples of them. Basically, the storage
infrastructure behind these distributed storage systems is composed of a few master
nodes and thousands of storage nodes. While storage nodes hold raw chunks of data,
master nodes contain the metadata of these raw chunks, and act as a directory ser-
vice for the file-system. Data redundancy is usually introduced by storing 3 replicas
of each object, and maintenance processes repair lost data as soon as a failure is de-
tected. Recently, some experimental works have pointed out that erasure codes can
present significant storage savings compared to this 3-way replication scheme, and
provided experimental implementations that demonstrate their efficiency in these
environments [34, 35, 83]. However, distributed storage designers are still slow in
adopting these advanced coding schemes in their systems. In our opinion, one
reason for this reluctance is that coding schemes present too many configuration
trade-offs that make it difficult to determine the optimal configuration for a given
storage infrastructure.

The distributed file systems used in datacenters succeeded in providing an effi-
cient and reliable storage service to the users of online services. However, as we in-
troduced in Chapter 1, these distributed file systems require large, well-provisioned
and well-managed datacenters, that are expensive infrastructures that only big en-
terprises can currently afford. To reduce the costs of these large datacenters, a
new wave of online storage services has recently emerged integrating storage re-
sources from different datacenters, or even integrating user storage resources into
the provider’s storage infrastructure:
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• In the first category we can find OpenNebula [55] that is an open toolkit for
managing heterogeneous distributed data center infrastructures. Or Open Cir-
rus [16] that is a cloud testbed for the research community that federates het-
erogeneous distributed data centers to offer global services, such as sign-on,
monitoring and storage.

• In the second category we find those systems integrating users’ resources with
providers’ resources; we refer to them as user-assisted storage systems. For
example, Ctera [76] and Cleversafe [21] are online storage providers that sell
network attached storage (NAS) devices that users or small and medium en-
terprises (SMEs) install in their offices. The data stored in these NAS devices
is replicated to datacenters and immediately accessible through an online ser-
vice. Cleversafe even uses erasure codes as its redundancy scheme to optimize
the utilization of the contributed storage resources, spreading stored data to
several NAS devices, owned by different customers.

However, since the storage service from these storage systems is not free for the
user —even in user-assisted systems, users need to acquire dedicated hardware or
even pay a fee to use the service—, some distributed storage systems proposed to
aggregate idle storage resources from end-users’ desktops and laptops to build a
collaborative (and free) online storage service. We refer to these storage systems
as peer-to-peer (P2P) storage systems. However, these P2P storage systems need
to face another challenging problem, they need to design a reliable storage service
over an unstable storage infrastructure: user’s resources are not as stable and as
available as the dedicated storage resources used in datacenters or in user-assisted
storage services. In the recent years many researchers have proposed interesting P2P
storage solutions. We discuss the most important ones:

• OceanStore [48] was one of the first works to design a prototype of a P2P
storage system. Basically, nodes in OceanStore are organized in a distributed
hash table (DHT) overlay, called Tapestry [84]. When an object is inserted in the
system it receives an unique ID and the object is sent to the node responsible
for this ID. The responsible node for this ID stores one replica of the object and
sends erasure encoded blocks to other nodes in the same DHT. Data repairs
are performed when node failures are detected. OceanStore produced a large
number of contributions in the field of P2P storage systems, the interested
reader can refer to the PhD dissertation by Weatherspoon [80]

• PAST [29] is as a large-scale persistent storage system for immutable data built
on top of a Pastry DHT [63]. PAST achieves data availability by simple object
replication, and ensures durability by forcing each storage block to send heart-
beat messages to a node responsible to monitor data availability. However,
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PAST puts emphasis on guaranteeing load balancing among all participant
nodes by storing replicas to nodes situated across the DHT’s key-space.

• Farsite [9] is a distributed file system designed by Microsoft with the aim to
integrate idle storage resources of their desktop PCs within the company. Data
availability is guaranteed by replication although erasure codes are mentioned
by the authors as a possible alternative.

• pStore [12] it is a distributed file system that focuses on data backup. It pro-
vides version control algorithms to allow incremental backups. Data availabil-
ity is achieved by chunk replication and the system does not provides implicit
maintenance processes.

• Pastiche [22] and Samsara [23] are two key components of a distributed stor-
age system designed by Landon Cox. The complete design of this storage
system is described in Cox’s PhD dissertation [24]. Pastiche is a simple peer-to-
peer backup system that uses chunk replication to guarantee high data avail-
ability. Pastiche also applies data deduplication, detecting overlaps of data
between different users and reducing the overall disk requirements. Samsara,
on the other hand, is a data assignment algorithm that guarantees fairness
assignments between nodes. In Samsara, when a node stores others’ data, it
receives storage claims that can be immediately used to store data reciprocally,
or the node can trade these claims to store data in other nodes.

• Glacier [41] is a hybrid storage system that combines replication and erasure
codes to provide a P2P backup system. It uses a primary storage layer that
holds full replicas of each stored object and serves them to processes and
users aiming to access the content. The secondary storage layer holds en-
coded blocks of the data stored in the primary layer to increase availability at
a lower cost. With this 2-layer infrastructure, Glacier can guarantee efficient
access to stored data and low storage overheads. Besides, it reduces repair
communication because lost encoded fragments can be directly repaired from
whole object replicas.

• Wuala [75] is a P2P storage system that incentives users to share their local
storage resources by providing them an online capacity proportional to the
amount of resources their contribute, and proportional to the time they are
online every day. The authors of Wuala claim to use erasure codes to store data
redundancy in the system. We want to note that in order to provide storage
resources to those users that do not contribute resources, Wuala introduces
high stable nodes with high storage capacity. Due to these additional and non-
P2P nodes, it is not clear whether Wuala should be classified as a user-assisted
storage system or a P2P storage system.
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2.1.4 Heterogeneous Distributed Storage Systems

The common property of this new wave of distributed storage systems (P2P storage
systems, user-assisted storage systems and federated datacenters) is that all of them
are built upon heterogeneous storage infrastructures composed of different types of
storage resources. However, somewhat surprisingly, none of the distributed storage
systems that we mentioned was originally designed to exploit the heterogeneities in
their underlying storage infrastructures. For example, existing distributed storage
solutions have considered homogeneous settings, where all nodes are treated equal
regarding their online/offline behavior. Although this model is appropriate for large
and homogeneous datacenters, one can intuitively see that it can lead to efficiency
losses when systems integrate disparate storage resources.

In this thesis, we analyze how distributed redundancy schemes can be optimally
deployed over heterogeneous storage infrastructures. Specifically, we are interested
in infrastructures where nodes present different online availabilities. In a nutshell,
we analyze how to optimize data redundancy to obtain a flexible QoSS, or how to
incentive users in P2P storage systems to contribute their resources while guaran-
teeing fairness among all users contributing resources.

2.2 The Model

In this section we present a generic model of a heterogeneous distributed storage
system. Formally, we represent a distributed storage system as a set N , where
each element of this set, i, represents a storage node. This set of nodes and their
failure model constitute the underlying storage infrastructure of the distributed
storage system. However, besides this storage infrastructure, there are other com-
ponents involved in any distributed storage system, like data redundancy schemes,
data maintenance algorithms, data consistency managers, or security and privacy
policies. However in this thesis we only focus on redundancy schemes and main-
tenance algorithms that are the components that ensure the QoSS properties of our
interest: (i) data availability, (ii) data durability and (iii) retrieval times.

Section 2.2.1 describes the node failure model: how storage nodes connect and
disconnect from the system; and how they finally fail. Section 2.2.2 describes the
redundancy model required to compensate node failures.

2.2.1 The Failure Model

Storage nodes can suffer two different kind of failures: transient failures and per-
manent failures. Transient failures are temporal disconnections of storage nodes
from the communication network. This temporal disconnections can be caused by
network errors, power outages, or as it happens in P2P storage systems, because the
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Online DeadOffline

Figure 2.1: Transitions between different storage node states.

user turned off his storage node temporarily. During transient node failures stored
data is not lost, it only becomes temporarily unavailable. The data is then reinte-
grated back when the node rejoins the system. Permanent failures, on the other
hand, are complete node failures where stored data becomes unrecoverable. Even if
a permanent failed node can fix the problem and rejoin the system, the stored data
is never reintegrated back into the system.

Due to these transient and permanent failures, we can model the behavior of a
storage node as an alternating process between 3 different states, namely online,
offline and dead. In Figure 2.1 we depict the possible transitions between these 3
states. Once a node joins the system, it starts in the online state. During its lifetime
in the system, the node can jump back and forth between online and offline states.
Finally, at the end of their lifetime, storage nodes move to the dead state. If a dead
node can manage to fix its problem and rejoins the system, it will contain no data
and will be modeled as a new joining node.

Despite the online/offline behavior of nodes, we assume that nodes’ lifetimes —
i.e., the time that each node remains in the system— follows a random distribution L.
If we model a distributed storage system as a G/G/∞ queue, where customers wait-
ing in the queue represent alive (online and offline) storage nodes, and we assume
that the average number of alive nodes is N, we can use Little’s Law to represent the
node failure rate as E [L] /N. In this thesis we assume that the storage system works
in steady state. It means that we assume that the number of storage nodes in the sys-
tem remains constant and equal to the average number of nodes, |N | = N. It also
means that after a node permanently leaves the system, a new node immediately
joins the system with no data stored in it.

Finally, assuming that a storage node joined the system at t = 0, we can formally
describe the transition between states as the stochastic process Xi = {Xi

t}L≥t≥0,
∀i ∈ N , defined as follows:

Xi
t =

1 node i is online at time t;

0 otherwise.

Session durations and residual lifetimes

To characterize the online/offline pattern of each storage node we use the distri-
bution of the sojourn times at states 0 and 1 of the process Xi, namely Si

0 and Si
1
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respectively. Each of these distributions correspond to the amount of time that peer
i spends in offline and online states. Furthermore, the residual session times —time
from any instant t to the next state change of Xi— follow the distribution Ji

0 for state
0 and the distribution Ji

1 for state 1:

Ji
0 = min{h ≥ 0|Xi

t+h = 1, Xi
t = 0}, ∀i ∈ N (2.1)

Ji
1 = min{h ≥ 0|Xi

t+h = 0, Xi
t = 1}, ∀i ∈ N (2.2)

The cumulative distribution functions of these two distributions are [82]:

Pr[Ji
0 < t] =

1
E[S0]

∫ t

0
(1− Pr[Si

0 < u])du (2.3)

Pr[Ji
1 < t] =

1
E[S1]

∫ t

0
(1− Pr[Si

1 < u])du. (2.4)

Mean online node availability

Let E
[
Si

0
]

and E
[
Si

1
]

represent the mean offline and online session durations. Then,
using this notation we can measure the mean online node availability, ai, as fol-
lows [82]:

ai =
E
[
Si

1
]

E
[
Si

0
]
+ E

[
Si

1
] , (2.5)

which represents the probability to find online the node i at any instant of time.
We assume that after monitoring each node for a long period of time, we can

obtain a good estimate of the mean node availability, ai. It is beyond the scope of
this thesis to discuss how these estimates are measured. One possible solution is to
use a centralized entity which continuously monitors nodes and serve the computed
estimators to processes needing this information.

2.2.2 The Data Redundancy Model

As we introduced in Chapter 1, to guarantee a certain QoSS, distributed storage
systems need to store data with some redundancy. It means that before storing each
data object, these objects are redundantly stretched, and then split and dispersed
to different storage nodes. For example, one simple solution for that is to store
multiple replicas of the same data to different storage nodes. However, erasure cod-
ing techniques can present higher communication and storage savings compared
to simple replication. In this section we introduce Regenerating Codes, a generic
erasure coding scheme that can achieve different trade-offs between communication
and storage costs, and can even model simple replication and Maximum Distance
Separable (MDS) codes like the classic Reed-Solomon codes [60]. Finally, we in-
troduce the necessary tools to model data assignment policies —i.e., the way how
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redundant data is dispersed to storage nodes.

Regenerating Codes

As we defined in Chapter 1, erasure code schemes encode original data objects into
n storage blocks such that any k out of these n blocks are sufficient to reconstruct
the original data (k ≤ n). However, classical erasure codes such as Reed-Solomon
codes suffer from an important problem: they require lots of network traffic to repair
the data lost on permanently failed nodes. The cause of this high network traffic is
that regenerating one of the n stored blocks requires downloading an amount of
information equal to the original data —i.e., downloading k blocks and reconstruct-
ing the original data. In order to reduce this repair traffic, a new family of erasure
codes based on network coding techniques, called Regenerating Codes [27], allow
to repair lost blocks with less network traffic. Basically, Regenerating Codes [27] al-
low to achieve arbitrary trade-off points between communication costs and storage
costs. Besides that, Regenerating Codes also are interesting because they allow to
model replication and Maximum Distance Separable (MDS) codes as particular Re-
generating Codes instances. Due to this flexibility, in this thesis we will assume that
our generic distributed storage system uses a Regenerating Code scheme, which al-
lows us to model a wide range of redundancy schemes, including simple replication
schemes and classical Reed-Solomon schemes —the classical example of MDS codes.

To formally define Regenerating Codes we denote byM the size of a data object
that has to be stored in the system. Regenerating Codes split every data object into
small data fragments and encode them to generate n different storage blocks, each
of size α. Considering these coding process, we can define the redundancy ratio
used to store each object, r, as follows:

Definition 3 (Data Redundancy). In Regenerating Codes, data redundancy (or the stretch
factor) is the ratio between the amount of storage required to store one object and its original
size. It is measured as r = nα/M.

Regenerating Codes allow to reconstruct the original file by downloading any k
out of the n storage blocks (k ≤ n). We refer to k as the reconstruction degree. When
a storage node leaves the system, or when a permanent failure occurs, a new node
can repair the lost block by downloading d repair blocks of size β bytes, from any
of the remaining n− 1 alive ones (k ≤ d ≤ n− 1). We refer to d as the repair degree.
The total amount of data received by the repairing node, γ, γ = dβ, is called the
repair bandwidth. In Figure 2.2 we depict the basic operations of an object retrieval
and block repair. The labels at the edges indicate the amount of data transmitted
between nodes during each of these operations.

Dimakis et al. [27] gave the conditions that the set of parameters (n, k, d, α, γ = dβ)

must satisfy to construct a valid Regenerating Code. Basically, once the subset of
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Figure 2.2: Scheme for the repair and retrieve operations of Regenerating Codes.

parameters: (n, k, d) is fixed, Dimakis et al. obtained an analytical expression for the
relationship between the values of α and γ. This α–γ relationship presents a trade-
off curve: the larger α, the smaller γ, and vice-versa. It means that it is impossible
to simultaneously minimize both, communication costs and storage costs. Since the
maximum storage capacity of the system can be constrained either by bandwidth
bottlenecks or disk storage bottlenecks, there are two extreme (α, γ)-points of this
trade-off curve that are of special interest w.r.t. maximizing the storage capacity. The
first is the point where the storage block size, α, per node is minimized, which is
referred to as Minimum Storage Regenerating (MSR) code. The second is the point
where the repair bandwidth, γ, is minimized, which is referred to as Minimum
Bandwidth Regenerating (MBR) code. According to [28], the storage block size (α)
and the repair bandwidth (γ) for MSR and MBR codes are:

(αMSR, γMSR) =

(
M
k

,
M
k

d
d− k + 1

)
(2.6)

(αMBR, γMBR) =

(
M
k

2d
2d− k + 1

,
M
k

2d
2d− k + 1

)
(2.7)

Finally, there are two particular MSR configurations of special interest for us:

• Maximum-distance separable (MDS) codes: In MSR codes, when d = k, we obtain
βMSR = αMSR and the Regenerating Code behaves exactly like a traditional
MDS codes such as a Reed Solomon codes [60]. In this case, the repair band-
width, γMDS [k = d], is identical to the size of the original file,M:

γMDS [k = d] = d βMSR = k αMSR = k
M
k

=M.
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• File replication: In MSR codes, when k = d = 1, the code becomes a simple
replication scheme where the n storage nodes each store a complete copy of
the original file. For k = d = 1, the storage block size, αMSR [k = d = 1], and
the repair bandwidth, γMSR [k = d = 1], are equal to the size of the original
file, αMSR [k = d = 1] = γMSR [k = d = 1] =M.

Data Assignment Function

After applying a Regenerating Code scheme to an object of size M, the storage
systems has n storage blocks of size α to store in the system. In this section we
provide a basic framework to model different strategies used to insert these n blocks
in the system.

Let assume that the n nodes are stored within a subset of storage nodes S , S ⊆ N .
A possible solution to obtain this subset S would be to ask a centralized directory
service for a list of nodes with free storage capacity, or some other random and
decentralized node selection algorithm. Once the subset of storage nodes, S , is
obtained, the storage process needs to determine how to assign the n blocks to the
nodes in S . For example, when there are more blocks that nodes, n > |S|, the
storage process has to decide to which nodes store more blocks. On the contrary,
when there are less blocks than nodes, n < |S|, the storage process has to decide
which nodes will not store any block. To model all the possible block assignment
policies, we define the data assignment function as follows:

Definition 4 (Data Assignment Function). The data assignment function, g(i, n, S),
represents the number of blocks assigned to each node i, i ∈ S . A valid assignment function
must satisfy the following two conditions:

• It must assign exactly all the n storage blocks:

n = ∑
i∈S

g(i, n, S).

• And it must only consider nodes online availabilities:

g(i, n, S) = g(j, n, S) ⇔ ai = aj; ∀i, j ∈ S .

This assignment function allows us to model practical storage configurations where
redundant data is distributed unevenly among the set S of storage nodes. This prop-
erty is interesting because it allows to use our framework to model the distributed
storage allocation problem presented by Leong et al. in [49], simply stated as: Which
is the best way to store an amount of redundant data to a set of storage nodes so that the
required redundancy is minimized, and data availability maximized?.
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Among all the possible assignment functions we want to highlight the simplest
one; used by most distributed storage systems [35,48]. We call it the unitary assign-
ment function:

Definition 5 (Unitary Assignment Function). When |S| = n, the unitary assignment
function stores one block to each storage node:

g(i, n, S) = 1; ∀i ∈ S .

This unitary assignment function is also referred in the literature as the symmetric
and maximal spreading assignment function as it distributes data symmetrically
among all the selected nodes. Leong et al. [51] demonstrated that for homogeneous
storage systems —i.e., ai = aj; ∀i, j ∈ S—, and for large n values, this unitary
assignment function is the optimal assignment function. In Chapter 5 we provide
an extended discussion about other assignment functions for heterogeneous storage
systems.

2.3 Definitions

In this section we provide the formal definitions of data availability (Section 2.3.1),
retrieval times (Section 2.3.2) and data durability (Section 2.3.3).

2.3.1 Data Availability

We can informally define data availability as follows:

Definition 6 (Data Availability). Data availability is the probability of detecting online
k out of the n redundant blocks that Regenerating Codes need to reconstruct a stored data
object.

In the rest of this section we will provide a generic formal definition of data
availability for heterogeneous distributed storage systems. This definition is novel
in the sense that it is the first data availability definition for heterogeneous storage
systems.

Let S be the set of nodes used to store a data object. We denote then by At and
Ut the two subsets of S containing respectively the available and unavailable nodes
(or online and offline nodes) at time t. It is easy to see that at any time t, these two
subsets constitute a partition of S : S = At ∪ Ut; ∀t ≥ 0. Using the set of available
nodes, At, we can define the number of online storage blocks at any instant of time
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using the stochastic process G = {Gt}t≥0, defined as follows:

Gt = ∑
i∈At

g(i, n, S). (2.8)

Using Definition 6 we can define data availability, D, as the probability to detect
at least k storage blocks online:

D(k, n, g, S) = Pr [Gt ≥ k] ; ∀t ≥ 0. (2.9)

This data availability value depends on: (i) the data assignment function, (ii) the
set of storage nodes chosen, S , and (iii) the Regenerating Code parameters k and n.

Let us assume that storage systems aim to obtain a targeted data availability, δ.
Then, we can use Definition 3 to define the redundancy R required to achieve this
data availability, δ, as:

R(k, S , δ) =
min {n : D(k, n, g, S) ≥ δ, n ≥ k} × α

M . (2.10)

In this thesis we will use the function R instead of r to refer to the redundancy
required to achieve a certain data availability.

To obtain a closed-form expression for D(k, n, g, S) we analyze the system in its
steady state, neglecting the time subindex of At and Gt, and referring to the set of
available nodes and to the number of online blocks simply as A and G, respectively.

Let the power set of S , 2S , denote the set of all possible combinations of online
nodes. Then, the current number of online nodes, A, is a subset of this power set:
A ⊂ 2S . Let also QA be the event that the combination of online nodes A occurs.
Assuming that storage nodes have uncorrelated online availabilities, we have that:

Pr[QA] = ∏
i∈A

ai ∏
i∈S\A

(1− ai). (2.11)

Using this formulation, we can rewrite equation (2.9) as a sum of the conditioned
probabilities:

D(k, n, g, S) = Pr [G ≥ k] = ∑
A∈2S

Pr [G ≥ k|QA] . (2.12)

Additionally, let Lk, Lk ⊂ 2S , be the subset containing those combinations of
available nodes which together store at least k different redundant blocks:

Lk =

{
A : A ∈ 2S , ∑

i∈A
g(i, n, S) ≥ k

}
. (2.13)
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Using this expression we have that:

Pr [G ≥ k|QA] =

Pr [QA] , if A ∈ Lk,

0, otherwise.
(2.14)

and then, using equations (2.14) and (2.11), we can rewrite eq. 2.12 as follows,

D(k, n, g, S) = ∑
A∈Lk

Pr [QA] = ∑
A∈Lk

∏
i∈A

ai ∏
i∈S\A

(1− ai)

 , (2.15)

which is the implementation of D for a generic heterogeneous distributed storage
system. It can be easily implemented once we obtain the superset 2N using one of
the algorithms to enumerate combinations that Knuth presented in the 3rd volume
of his monograph [47]. Unfortunately, these algorithms have a computational com-
plexity proportional to O(2n), which makes unfeasible to compute D(k, n, g, S) for
large sets of storage nodes.

2.3.2 Retrieval Time

In distributed storage systems we define a retrieval process as an algorithm that ap-
plications and users execute in order to retrieve a stored object, or part of a stored
object. In Regenerating Codes, we can define a retrieval process as a process that
aims to retrieve a subset of the n stored blocks. For example, in Regenerating Codes
the reconstruction process and the repair process are both retrieval processes aim-
ing to download k and d stored blocks respectively. Using the notion of a retrieval
process we can define the retrieval time distribution as follows:

Definition 7 (Retrieval Time Distribution). The retrieval time distribution, T(`, ϕ, n),
is the random variate describing the time required to download ` blocks of size ϕ bytes out of
the total n storage blocks.

From this definition we can distinguish two specific retrieval time distributions:

• Reconstruction Time Distribution: Time that the reconstruction process of
Regenerating Codes needs to retrieve the k blocks required to reconstruct the
original stored object. We can model the reconstruction time distribution as
T(k, α, n).

• Repair Time Distribution: Time that the repair process of Regenerating Codes
needs to retrieve the d blocks required to repair a stored block. We can model
the reconstruction time distribution as T(d, β, n).
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Let ω ↑ and ω ↓ respectively be the upload and the download bandwidth of each
storage node. Note that since this thesis only considers heterogeneities on online
node availabilities, we assume that all nodes have the same upload and download
bandwidth. Additionally, to model storage systems with asymmetric bandwidth,
ω ↑≤ ω ↓, we assume that retrieval processes can download up to p blocks in
parallel. The number of parallel block downloads is constrained to:

ω↓
ω↑ ≥ p > 0.

For the sake of simplicity, since ω ↑≤ ω ↓, we assume that the time required to
download ` blocks is either constrained by the upload bandwidth, ω ↑, or by the
online/offline behavior of nodes. It means that we neglect the network congestion
effects or other network inefficiencies. Under these assumptions, the minimum time
required to download ` blocks, τ(`), is then given by:

τ(`) =
ϕ

ω↓ ×
⌈
`

p

⌉
. (2.16)

Finally it follows that the retrieval time distribution, T(`, ϕ, n), must satisfy the
following condition: Pr[T(`, ϕ, n) < τ(`)] = 0.

2.3.3 Data Durability

As we did for data availability, we can informally define data durability as follows:

Definition 8 (Data Durability). Data durability is the probability of losing a data object
after being stored for some time t.

To formally define data durability we need to model the evolution of the total
number of stored blocks for each data object. Similarly as we defined the number of
online storage blocks, Gt, in eq. (2.8), we define the overall number of blocks stored
for any object Xt, as follows:

Xt = ∑
i∈St

g(i, n, St), (2.17)

where St is the set of storage nodes used to store a data object at time t.
Ideally, the number of stored blocks should always be equal to n, Xt = n, ∀t ≥ 0,

which is the targeted number of storage blocks required to guarantee certain data
availability. However, since the storage system loses blocks when nodes fail, the
value of Xt can fluctuate over time. This fluctuation is mainly caused by the long
times required to detect and repair block losses. Although some fluctuation of Xt is
inevitable, to guarantee that the stored data is never lost, the storage system needs
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to guarantee that the number of stored blocks is always kept over k, Xt ≥ k, which
is the number of blocks that Regenerating Codes need to reconstruct stored objects.
Considering this, we can define data durability as the probability of having at least k
blocks stored in the system:

data durability = Pr [Xt ≥ k] ; ∀t ≥ 0.

To maintain data durability values close to one, storage systems need to guarantee
that data is repaired faster than it is lost. For example, when the unitary assignment
function is used, the block failure ratio is given by E [L] /|S| [32] —i.e., this comes
from Little’s Law applied to the number of stored blocks. Using this block failure
rate we can state that in general terms (and for the unitary assignment function)
data durability is subjected to the following condition:

E [T(d, β, n)] ≤ E [L]
|N | ,

where T(d, β, n) is the repair time distribution.
Finally, it is important to note that data durability can be maintained independently

of data availability [73]. Although some times data availability can be lost, Gt < k,
data durability can be still guaranteed, Xt ≥ k. It is because Xt accounts for the
all blocks stored in S , which includes both, online and offline nodes, At and Ut

respectively.
To conclude this chapter, in Table 2.1 we summarize all the symbols that we will

use throughout this thesis.
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General Properties:
N Set with all storage nodes.
N Average number of nodes in the system. In the steady state we

have N = |N |.
Xi

t Online status of node i, i ∈ N , at time t.
Si

0, Si
1 Distributions of the offline and online session durations of node

i.
Ji
0, Ji

1 Distributions of the residual offline/online durations of node i.
ai Node’s i online availability.

ω↑, ω↓ Node’s upload and download bandwidth.

Redundancy Properties:
M Size of the data object.
S Set of nodes used to store a data object.
r Redundancy ratio.
n Number of storage blocks.
α Size of a storage block.
β Size of a repair block.
k Reconstruction degree.
d Repair degree.

γ = dβ Repair bandwidth.
g(i, n, S) Data assignment function.

Reliability Properties:
Xt Number of currently stored blocks at time t.
Gt Number of online blocks at time t.

D(k, n, g, S) Data availability function.
δ Targeted data availability.

R(k, S , δ) Data redundancy function.
T(`, ϕ, n) Generic retrieval time distribution.
T(k, α, n) Reconstruction time distribution.
T(d, β, n) Repair time distribution.

Table 2.1: Symbols used.
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Chapter 3
A Comparative Study of

Redundancy Costs

Summary

Data redundancy introduces storage and communication overheads, which can either re-
duce the overall storage capacity of the system or increase its costs. In this chapter we
analyze the costs of different redundancy schemes configurations and derive a set of rules to
determine which redundancy scheme minimizes the storage and the communication costs for
a given underlying storage infrastructure. Additionally, we use simulations to show that
some theoretically-optimal schemes may not be viable in a realistic setting where nodes can
go off-line and repairs may be delayed.

A paper with the results of this chapter appeared in [1] and has been submitted for review to
the ACM Transactions on Storage (TOS).
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3.1 Introduction

As we already introduced in previous chapters, distributed storage infrastructures
require the use of some data redundancy to achieve high data availability and guar-
antee short retrieval times. Unfortunately, the use of redundancy increases the costs
of the storage system in a twofold way:

(i) Storage costs: Redundancy increases the amount of disk required to store each
data object, which reduces the overall capacity of the storage system and in-
creases the costs associated with the use of extra disk resources. For example,
in data centers where the energy cost associated with the storage sub-system
represents about 40% of the energy consumption of all the IT components [39],
minimizing storage costs can significantly reduce the per-byte cost of the stor-
age system.

(ii) Communication costs: Since each data object is spread to several nodes, more
redundancy usually entails dispersing data to more nodes, and then, to in-
crease the probability of losing parts of an object if a storage node fails. Con-
sequently, more redundancy means more block repairs, and then, more com-
munication required by data maintenance processes. In systems where nodes
fail with high probability, or in systems with low cross-system bandwidth, this
high amount of communication can significantly constrain the maximum stor-
age capacity of a storage system [13].

To mitigate these storage and communication costs, different redundancy schemes
have been proposed. Redundancy schemes based on simple erasure codes, like
Reed-Solomon codes [60] or LDPC [58], can achieve significant storage savings as
compared to simple replication schemes [27, 54, 62, 79]. Moreover, recent advances
in network coding have lead to the design of Regenerating Codes [27] that, com-
pared to replication or previous erasure codes, allow to reduce both storage and
communication costs.

However, due to the great variety of underlaying storage infrastructures and dif-
ferent application needs, optimizing these redundancy schemes for every different
storage infrastructure is cumbersome. For example, some papers proposed erasure
code schemes for datacenter file-systems [34, 35, 83], however distributed storage
designers are still slow in adapting these advanced coding schemes in their sys-
tems [15, 37]. In our opinion, one reason for this reluctance is that coding schemes
present too many configuration trade-offs that make it difficult to determine the
optimal configuration for a given underlying storage infrastructure. Obviously, this
problem is accentuated when the underlying storage infrastructure is heterogeneous
as it happens in user-assisted or P2P storage systems.
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Besides coding or replication schemes, one can also combine these two techniques
into a hybrid redundancy scheme. In some circumstances these hybrid redundancy
schemes can reduce the costs of classical coding schemes [41, 81]. Besides reducing
costs, there are other reasons why maintaining whole file replicas in conjunction
with encoded copies is advantageous: (i) old systems using replication that can-
not migrate the whole infrastructure, (ii) user-assisted storage systems combining
replication in the datacenter and coding techniques in edge nodes, or (iii) when
whole copies of files are used to guarantee efficient data retrievals. Unfortunately, in
these cases where whole replicas present advantages to storing data in an encoded
format, there are no studies analyzing the conditions —i.e. node failure model or
node’s bandwidth— where hybrid schemes can reduce the storage and communica-
tion costs as compared to simple replication.

In this Chapter we analyze the communication and storage costs of Regenerat-
ing Codes when used in stand-alone configurations as well as when used in hybrid
schemes. Using our analysis we derive a set of rules to determine which Regen-
erating Codes configurations minimize the costs for a given storage infrastructure.
Besides that, for hybrid storage systems, we identify the conditions where a hy-
brid scheme can reduce the storage and communication costs of a simple replication
scheme. Finally, we evaluate through simulation the effects that different redun-
dancy scheme configurations have on the scalability of the storage system. We show
that some theoretically-optimal schemes cannot guarantee data reliability in realistic
storage environments.

Although in this thesis we put emphasis on analyzing heterogeneous storage sys-
tems, predicting the storage and communication when all storage nodes have differ-
ent online node availabilities is an enormous endeavor. This complexity resides in
the large number of online nodes combinations that arise when nodes present het-
erogeneous online availabilities. Because of this complexity, in this Chapter we focus
our cost-analysis on homogeneous storage infrastructures. It means that we assume
that all storage nodes have the same online availability, a: ai = a; ∀i ∈ N . Despite
assuming node homogeneity, our novel analysis provides new insights about the
role that the different parameters of redundancy schemes have in the average costs
of a distributed storage system.

The rest of this Chapter is organized as follows. In Section 3.2 we evaluate the
related work on the analysis of redundancy costs. In Section 3.4, we analytically
evaluate the storage and communication costs of Regenerating Codes. In Section 3.5
we analyze a hybrid redundancy scheme that combines Regenerating Codes and
replication. Finally, in Section 3.6 we validate and extend our analytical results
using simulations, and in Section 3.7, we state the conclusions of this chapter.
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3.2 Related Work

Data redundancy is one of the main components required to guarantee the QoSS in
distributed storage systems. The simplest way to introduce redundancy is to store
several replicas of each data object in different storage nodes. However, Weather-
spoon and Kubiatowicz [79] showed that compared to simple replication, redun-
dancy schemes based on erasure codes can significantly reduce the amount of re-
dundancy (and storage space) required to achieve the same data durability and
data availability than replication. However, Lin et al. [54] demonstrated that this
redundancy reduction cannot be always achieved, but it depends on the node on-
line availability, a, and the redundancy introduced, r. In general terms, Lin et al.
determined that erasure codes require less redundancy than replication when the
following inequality holds:

a >
1
r

.

For example, nodes must be more than 50% of the time on-line when files are stored
occupying twice their original size, or more than 33% of the time on-line when files
occupy three times their original size.

Besides reducing storage costs, distributed storage systems also need to minimize
communication costs. These communication costs are mainly caused by the traffic
that data maintenance processes consume. Blake and Rodrigues [13] demonstrated
that the communication bandwidth used by these data maintenance processes can
limit the scalability of the system in three main situations: (i) when the node failure
rate is high, (ii) when the cross-system bandwidth is low, (iii) or when the system
stores too much data. Additionally, Rodrigues and Liskov [62] compared replication
and erasure codes in terms of communications overheads and concluded that when
on-line node availabilities are high, replication requires less communication than
erasure codes. These results pose a dilemma for storage designers: when node on-
line availabilities are high, erasure codes minimize storage overheads [54] and replication
minimize communication overheads [62].

In order to reduce communication costs for erasure codes, Wu et al. [81] proposed
the use of a hybrid redundancy scheme that combines erasure codes and replication.
Although this technique slightly increases the storage overhead, it can significantly
reduce the communication overhead of erasure codes when node on-line availabil-
ities are high. Bhagwan et al. [46], and Datta and Aberer. [26], proposed similar
mechanisms to reduce the communication costs of erasure codes. These mecha-
nisms, called lazy repairs, try to amortize the costs of several consecutive repairs, re-
constructing the whole data object once and generating several new storage blocks
from it. In [26] Datta and Aberer go one step further and propose a Markov model
to precisely evaluate the system’s resilience as well as to analytically determine the
communication savings of applying lazy repairs.
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Unfortunately, lazy repairs present two main drawbacks for distributed storage
systems:

(i) Deferring repairs can reduce the amount of available redundancy, requiring
extra redundancy to guarantee the same data availability [26]. Although lazy
repairs can reduce communication costs, this extra redundancy increases stor-
age costs.

(ii) Repairing several blocks at the same time requires the transmission of large
amounts of data. It can cause spikes in the network resource usage that can
compromise the QoSS [32, 67].

To solve this second problem (network usage spikes), Sit et al. [67] and Dumin-
uco et al. [32] proposed to repair lost blocks in a proactively manner. It means that
the storage system schedules the creation of new blocks at a constant rate. This
rate is set accordingly to the mean block failure rate, guaranteeing that the number
of alive blocks (available blocks plus temporally unavailable ones) is kept always
within a determined range. Additionally, Duminuco et al. [32] provided an analyt-
ical framework based on a network of queues to dynamically adjust the proactive
ratio based on estimators of the average online node availability and their failure
rates. We want to note that these proactive repair schemes do not reduce the com-
munication costs of erasure codes as lazy repairs do.

To reduce the communication costs of erasure codes, some papers have pro-
posed storage optimizations that exploit heterogeneities in node bandwidth and
node availabilities. For example, Duminuco and Biersack [31] propose Hierarchical
Codes that apply MDS codes to sub-parts of data to construct a hierarchical erasure
code. In these hierarchical codes the repair degree, d, varies depending on which
storage block is being repaired. By properly storing high-repair-degree blocks to
stable nodes the system can significantly reduce the repair communication.

On the other hand, to exploit bandwidth heterogeneities, Li et al. [52] proposed a
tree-structured data repair algorithm that allow to repair lost blocks as in a "reverse
broadcast" tree: (i)Using network coding techniques, leaf nodes send their repair
blocks to intermediate nodes. (ii) Intermediate nodes apply coding operations be-
tween the repair blocks they receive and the repair block that they have and forward
the resulting block to their parent node. (iii) Finally, the root node receives the new
storage block. When these repair trees are properly constructed, the storage system
can speed up the repair process and reduce the bandwidth utilization.

Finally, as we already presented Dimakis et al. presented Regenerating Codes [27]
as a flexible redundancy scheme for distributed storage systems. Regenerating
Codes use ideas from network coding to define a new family of erasure codes that
can achieve different trade-offs in the optimization of storage and communication
costs. This flexibility allows to adjust the code to the underlaying storage infras-
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tructure. However, there are no studies on how Regenerating Codes should be
adapted to these infrastructures, or how Regenerating Codes should be configured
when combined with file replication in hybrid schemes. In this chapter we will use
Regenerating Codes [27, 28] as the base of our analysis on how to adapt and opti-
mize redundancy schemes for different underlying storage infrastructures, and for
different application needs.

3.3 Data Availability in Homogeneous Systems

Before analyzing storage costs in homogeneous storage systems we want to define
how to measure data availability in these scenarios. In Section 2.3.1 we obtained the
following data availability definition:

D(k, n, g, S) = ∑
A∈Lk

∏
i∈A

ai ∏
i∈S\A

(1− ai)

 .

Being Lk the set with all the combinations of online nodes that together store at least
k blocks.

However, when distributed storage systems are homogeneous and all nodes have
the same online availability a, ai = a; ∀i ∈ N , then data availability can be signifi-
cantly simplified. As we already stated, in homogeneous case and for large n values,
the unitary assignation function, g(i, n, S) = 1; ∀i ∈ S , minimizes the redundancy
required to achieve a certain data availability [51]. Then assuming that node online
availabilities are homogeneous, and that the unitary assignment function is used,
the existing literature defines data availability as follows [54, 62, 79]:

D(k, n, g, S) =
n

∑
x=k

(
n
x

)
ax(1− a)n−x.

In this section we aim to show how this classical definition of data availability for
homogeneous storage systems can be derived from our definition of data availability
for heterogeneous storage systems.

Since in homogeneous systems we assume the use of the unitary assignment func-
tion, we can easily see that the number of available blocks in each combination of
online nodes is the same than the number of online nodes,

∑
i∈A

g(i) = |A|; ∀A ∈ 2S ,

and we can redefine Lk from eq. (2.13) as follows:

Lk =
{
A : A ∈ 2S , |A| ≥ k

}
. (3.1)
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Additionally, since all nodes have an online availability a, we can easily restate
eq. (2.11) as:

Pr[QA] = ∏
i∈A

ai ∏
i∈S\A

(1− ai) = a|A|(1− a)|S\A|. (3.2)

Let us define the subset L′x as the subset containing the combinations of available
nodes that altogether store exactly x blocks: L′x = {A : A ∈ Lk, |A| = x}. It follows
then that Lk =

⋃n
x=k L′x; and that the cardinality of L′x is equal to the number of

distinct x-element subsets of S , |S| = (n
x). Using L′x one can rewrite eq. (2.15) as:

D(k, n, g, S) = ∑
A∈Lk

Pr [QA] =
n

∑
x=k

∑
A∈L′x

Pr [QA] . (3.3)

Then we can also formulate the following lemma:

Lemma 1. Pr[QA1 ] = Pr[QA2 ]; ∀ A1,A2 ∈ L′x, x ∈ [1, n].

Proof. Taking eq. (3.2) we can restate the lemma as follows:

Pr[QA1 ] = Pr[QA2 ],

a|A1|(1− a)|N \A1| = a|A2|(1− a)|N \A2|.

However, since A1,A2 ∈ L′x, by definition of L′x we have that |A1| = |A2| = x, and
then,

ax(1− a)|N |−x = ax(1− a)|N |−x.

Using Lemma 1 and considering that |L′x| = (n
x), we can rewrite eq. (3.3) as fol-

lows,

D(k, n, g, S) =
n

∑
x=k

(
n
x

)
Pr [QA] =

n

∑
x=k

(
n
x

)
ax(1− a)n−x , (3.4)

which is the traditional data availability expression used in the literature.

3.4 Cost Analysis

In this section we provide the analytical framework to predict the average storage
costs (Section 3.4.1) and the average communication costs (Section 3.4.2) of generic
Regenerating Codes.
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3.4.1 Average Storage Costs

In Section 2.2.2 we defined data redundancy as r = nα/M, and in Section 2.3.1,
eq. (2.10), we also defined the redundancy required to achieve a certain data avail-
ability, d, as R(k, S , δ). Unfortunately, the function R depends on the data avail-
ability function D, that as we showed in Section 2.3.1 can become very complex to
evaluate for large heterogeneous storage systems. In order to simplify the cost anal-
ysis and easily determine R, we consider a homogeneous distributed storage system
where all nodes have the same online availability, a. Under this circumstances we
can measure R using the data availability function for homogeneous storage systems
defined in eq. 3.4:

D(k, n, g, S) =
n

∑
x=k

(
n
x

)
ax(1− a)n−x.

However, for notation convenience, and since r = nα/M, we will redefine the
redundancy function R as follows:

R(k, S , δ) =
η[k, a, δ] · α
M ; a = ai ∀i ∈ S . (3.5)

Where η[k, a, δ] is the number of storage blocks, n, required to achieve a desired
data availability d when the reconstruction degree is set to k, and the online node
availability is a:

η[k, a, δ] = min

{
n′ : δ ≥

n′

∑
x=k

(
n′

x

)
ai(1− a)n′−x, n′ ≥ k

}
. (3.6)

In the rest of this chapter we will use the notation η[k, a, δ] to refer to the number
of storage blocks n required to achieve a data availability δ for the specific k and a
values.

Using eq. (3.5) we can obtain the redundancy required by Minimum Storage Re-
generating codes (MSR) and Minimum Bandwidth Regenerating codes (MBR), RMSR

and RMBR respectively, by substituting α with the expressions given for α in eq. (2.6)
and eq. (2.7):

RMSR =
η[k, a, δ] · αMSR

M =
η[k, a, δ] · (M/k)

M =
η[k, a, δ]

k
(3.7)

RMBR =
η[k, a, δ] · αMBR

M =
η[k, a, δ] · (2dM/(k(2d− k + 1)))

M =
2d · η[k, a, δ]

k(2d− k + 1)

(3.8)

Using these expressions we can state the following lemma:

Lemma 2. For n, k and d fixed, the redundancy RMSR, required by MSR codes is always
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Figure 3.1: Redundancy R required to achieve a data availability δ = 0.999999 for MSR and MBR
codes as a function of the reconstruction degree k. Each plot in (a) and (b) depicts the redundancy
evaluated using eq. (3.7) and eq. (3.8) for different values of d, and different values of the node on-line
availability a. In (c) we plot the number of storage blocks n required to achieve the data availability δ
for each case.

smaller than or equal to the redundancy RMBR required by MBR codes.

Proof. We can state the lemma as RMSR ≤ RMBR. Using equations (3.7) and (3.8) we
obtain:

η[k, a, δ] · αMSR

M ≤ η[k, a, δ] · αMBR

M
αMSR ≤ αMBR,

which is true by the definition of MSR codes and MBR codes [27].

In Figure 3.2c and 3.2a we plot the redundancy R required to achieve a data
availability δ = 0.999999 for MSR and MBR codes. We plot the values of R as
a function of the reconstruction degree, k, and for different node availabilities, a.
Additionally, for MBR codes we also depict the values of RMBR for the two extreme
repair degree values: d = k and d = n− 1. We do not evaluate RMSR for different
d values because RMSR is independent of d (see eq. (3.7)). In Figure 3.2b we use
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a = 0.5
k = 50

a = 0.75
k = 20

a = 0.99
k = 5

MSR 47% 77% 84%
MBR (d = k) 69% 55% 11%
MBR (d = n− 1) 81% 70% 25%

Table 3.1: Storage space savings for adopting a Regenerating Code instead of replication. We use
different k values for each on-line node availability and a target data availability of δ = 0.999999.

eq. (3.6) to plot the number of blocks, η[k, a, δ], used in figures 3.2c and 3.2a for the
data availability δ = 0.999999.

In Figure 3.1 we can see that for MSR and MBR, increasing k reduces R, and
therefore, reduces storage costs. Additionally, comparing figures 3.2c and 3.2a we
can appreciate the consequences of Lemma 2: for a given node availability, a, and a
reconstruction degree k, the redundancy required for MSR codes is always smaller
than the redundancy required for MBR codes. Finally, we can see that R first quickly
deceases with increasing k before it reaches its asymptotic values. There is no point
in choosing k very large to minimize the storage costs of MSR and MBR codes, since
large k values induce a very high computational cost for coding and decoding [30].
At first sight it seems reasonable to recommend k values close to where the function
R starts the asymptote, namely k = 5 for a = 0.99, k = 20 for a = 0.75 and k = 50
for a = 0.5. In Table 3.1 we provide the redundancy savings achieved by using these
k values.

However we aim to analyze optimal k values for other node availabilities a. To do
that we approximate the asymptotic value of R by setting k to k = 1020 and evalu-
ating RMSR[k = 1020] and RMBR[k = 1020]. Then we find the optimal reconstruction
degree by finding the minimal k value that achieves a certain relative error with the
asymptotic R value obtained by setting k = 1020. The optimal k is measured then as:

k = min
{

k′ :
R[k′]− R[k = 1020]

R[k′]
< ε

}
. (3.9)

In Figure 3.2 we show the optimal k measured using eq. (3.9) for different Regener-
ating Code configurations. In general terms, if we fit the optimal k value for ε = 0.5
and for MSR codes (classical Reed-Solomon or MDS codes included) to a linear
equation, we have that we can approximate the optimal k to k = d125(a − 1)e. It
gives us k = 63 for a = 0.5, k = 32 for a = 0.75 and k = 2 for a = 0.99; which are
similar to the k values that we obtained by analyzing Figure 3.1.

3.4.2 Average Communication Costs

When a node fails, the system must repair all the data blocks stored on the failed
node. Repairing each of these blocks requires to transfer data between nodes, which
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entails a communication cost. In this section we measure the minimum per-node
bandwidth required to sustain the overall repair traffic of the storage system. We
will first compute the total amount of data that is transfered within the system
during a period of time ∆:

data transfered during ∆ = nodes failed during ∆ ×
× blocks stored per node ×
× traffic to repair one block. (3.10)

Let us consider a storage system storing O objects of sizeM. Assuming that there
are N, N = |N |, storage nodes with an average lifetime E [L], the average number of
nodes that fail during a period ∆ is ∆N/E [L] [32]. Additionally, assuming that data
blocks are uniformly distributed between all storage nodes, the average number of
blocks stored per node is n ·O/N. Finally, since the traffic required to repair one
failed block is γ, we can rewrite eq. (3.10) as:

data transfered during ∆ =

(
∆

N
E [L]

)
×
(

n O
N

)
× γ
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(a) MBR codes (d = k).
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(b) MBR codes (d = n− 1).
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(c) MSR codes (MDS codes).

Figure 3.2: Optimal k values for different Regenerating Code configurations and for different tolerance
error, ε, as defined in eq. (3.9). We assume that the targeted data availability is δ = 0.999999.
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Then, the minimum per-node bandwidth, W, required to ensure that all stored
data can be successfully repaired is the ratio between the amount of data transmitted
per unit of time (in seconds), and the average number of on-line nodes, aN:

W =
data transfered during ∆

∆× avg. number on-line nodes
=

γ n O
a N E [L]

. (3.11)

Assuming that the repair bandwidth, γ, is given in KB, and the node lifetime,
L, in seconds, then the minimum per-node bandwidth W is expressed in KBps.
Then, if the upload bandwidth of each node is always smaller than or equal to the
download bandwidth, ω ↑≤ ω ↓, this minimum per-node bandwidth, W, represents
the minimum upload bandwidth required by each node.

If we use the values of the repair bandwidth γ given in equations (2.6) and (2.7),
we obtain the minimum per-node bandwidth for each Regenerating Code configu-
ration:

WMSR = γMSR ·
η[k, a, δ] O
a N E [L]

=
M
k

d
(d− k + 1)

η[k, a, δ] O
a N E [L]

=
d · η[k, a, δ]

ak(d− k + 1)
OM
NE [L]

(3.12)

WMBR = γMBR ·
η[k, a, δ] O
a N E [L]

=
M
k

2d
(2d− k + 1)

η[k, a, δ] O
a N E [L]

=
2d · η[k, a, δ]

ak(2d− k + 1)
OM
NE [L]

(3.13)

Taking these two expressions we can state the following lemma:

Lemma 3. For the same n, k and d parameters, the per-node bandwidth required by MBR
codes, WMBR, is always smaller than or equal to the per-node bandwidth required by MSR
codes, WMSR.

Proof. We can state the lemma as WMBR ≤ WMSR. Using equations (3.12) and (3.13)
we obtain:

γMBR ·
η[k, a, δ] O
a N E [L]

≤ γMSR ·
η[k, a, δ] O
a N E [L]

γMBR ≤ γMSR,

which is true by the definition of MSR codes and MBR codes from [27].

In the rest of this section we analyze the per-node bandwidth requirements, W,
for MSR and MBR codes. Since in eq. (3.12) and eq. (3.13) the term OM

NE[L] does not

depend on the Regenerating Code parameters, n, k, d, we will assume that OM
NE[L] = 1.

To obtain the minimum per-node bandwidth, we simply have to multiply W times
OM

NE[L] .
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Figure 3.3: We use eq. (3.12) to show the per-node bandwidth required to achieve δ = 0.999999 for
MSR codes.

Communication Cost for MSR Codes In Figure 3.3 we use eq. (3.12) to analyze the
per-node bandwidth requirements of MSR codes when the required data availability
is δ = 0.999999. We plot the results for d = k and d = n− 1 and for three different
on-line node availabilities:

• For d = k we can see in Figure 3.3a how the per-node bandwidth of a MDS
code such as a Reed-Solomon code, is linear in k. In this case, the lowest
per-node bandwidth is achieved when k = 1, which corresponds to a simple
replication scheme.

• For d = n− 1, however, we can see in Figure 3.3b that the per-node bandwidth
is asymptotically decreasing in k. However, as already said, we recommend
to choose k = 20 when a = 0.75 and k = 50 when a = 0.5. Finally, we can
see that for a = 0.99, WMBR is not an asymptotically decreasing function: As a
tends to one, the number of required blocks, η[k, a, δ], tends to k (see eq. (3.6))
and the case d = n − 1 is identical to the case d = k, which is depicted in
sub-figure 3.3a.

In Figure 3.3a we saw that MDS codes (d = k; k > 1) do not reduce the per-
node bandwidth as compared to replication (d = k = 1) while in Figure 3.3b we
saw that for d > k, a MSR code can reduce the bandwidth as compared to replica-
tion except for high node on-line availabilities (a = 0.99). We now want to deter-
mine the maximum node on-line availability, a, for which a MSR code can reduce
the per-node bandwidth requirement as compared to replication. Let us denote by
WMSR[k = d = 1] the per-node bandwidth required by replication and
WMSR[k > 1, d ≥ k] denote the per-node bandwidth required by a MSR code. Then,
a MSR reduces the bandwidth required by replication when the following inequality
holds:

WMSR[k = d = 1] ≥WMSR[k > 1, d ≥ k] (3.14)

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DESIGN AND OPTIMIZATION OF HETEROGENEOUS DISTRIBUTED STORAGE SYSTEMS 
Lluís Pàmies Juárez 
DL:T. 1455-2011 



42 Cost Analysis

min. repair degree satisfying eq. (3.14) and the value of n.
Node availability k = 50 k = 20 k = 5

a = 0.5 n = 159; d = 59 n = 81; d = 24 n = 36; d = 7
a = 0.75 n = 95; d = 61 n = 47; d = 25 n = 20; d = 7
a = 0.9 n = 71; d = 65 n = 34; d = 27 n = 13; d = 8
a = 0.92 n = 69; d = 64 n = 32; d = 26 n = 12; d = 7
a = 0.95 n = 64; d = −− n = 29; d = 27 n = 11; d = 8
a = 0.97 n = 61; d = −− n = 27; d = −− n = 10; d = 9
a = 0.99 n = 57; d = −− n = 25; d = −− n = 8; d = −−

Table 3.2: Minimum d values to construct MSR codes that requiring less repair bandwidth than
simple replication. The targeted data availability is set to δ = 0.999999.
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Figure 3.4: Per-node bandwidth required to achieve δ = 0.999999 for MBR codes using eq. (3.11).

Table 3.2 shows the minimum d that satisfies the inequality defined in eq. (3.14) for
different on-line node availabilities, a, and different reconstruction degrees k. We ad-
ditionally provide the number of storage blocks, n, required to achieve δ = 0.999999.
We can see that for low node availabilities small values of d, slightly larger than k,
are sufficient to reduce the per-node bandwidth required by replication. However,
for high on-line node availabilities, the minimum value of d satisfying eq. (3.14) be-
comes larger than n− 1, which is not a valid Regenerating Code configuration. This
maximum on-line availability becomes higher for low k values, namely a ≥ 0.95 for
k = 50, a ≥ 0.97 for k = 20 and a ≥ 0.99 for k = 5. We can generally state that for
high on-line node availabilities, replication becomes more bandwidth efficient than any
MSR code, which confirms the result obtained by Rodrigues and Liskov in [62].

Communication Cost for MBR Codes In Figure 3.4 we plot the required per-node
bandwidth of MBR codes for d = k and d = n− 1. For MBR codes, in difference to
MSR codes, we can see that for both d values the required per-node bandwidth W
asymptotically decreases with increasing k and we can state:

Remark 1. For MBR codes WMBR [k = k′] ≥WMBR [k = k′ + 1].
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Figure 3.5: Reduction of the communication cost by adopting a MBR code instead of replication as
function of k for a data availability of δ = 0.999999.

From Lemma 3 we know that for the same configuration, MBR codes are more
bandwidth efficient than MSR codes. Using Remark 1 we can now state that all
MBR codes are also more bandwidth efficient than simple replication, which is a
special case of MSR:

Lemma 4. The per-node bandwidth requirements of MBR codes are lower than or equal to
the per-node bandwidth requirements of simple replication: WMBR ≤WMSR [k = d = 1].

Proof. If this lemma is true, then the per-node bandwidth of the MBR configuration
that consumes the most bandwidth must be lower than or equal to the per-node
bandwidth of replication. Since WMBR is largest for k = 1 (see Remark 1), we can
rewrite this lemma as: WMBR [k = d = 1] ≤ WMSR [k = d = 1]. To proof it by con-
tradiction we assume that WMBR [k = 1] > WMSR [k = d = 1]. Using equations (3.12)
and (3.13) we obtain:

γMBR [k = d = 1] · η[1, a, δ] O
a N E [L]

> γMSR [k = d = 1] · η[1, a, δ] O
a N E [L]

γMBR [k = d = 1] > γMSR [k = d = 1]

1 > 1;

which is a contradiction.

In Figure 3.5 we plot the communication savings a storage system makes when
using a MBR code instead of replication. The savings have the same asymptotic
behavior than the bandwidth requirements, WMBR, depicted in Figure 3.4. Since
for MBR codes αMBR = γMBR, i.e. the storage block size is the same as the repair
bandwidth, the communication savings for MBR are the same as the storage savings listed
in Table 3.1.
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3.5 Hybrid Repositories

In Section 3.4 we saw that except for one a particular case (MSR codes and high node
on-line availabilities), MSR and MBR codes offer both, lower storage costs and lower
communication costs than simple replication. However, there are some scenarios
where the storage system needs to ensure that objects can be accessed without the
need of decoding operations. For example, storage infrastructures using replica-
tion [15, 37] may not afford a migration of their infrastructures from replication to
erasure encodes. Other examples are on-line streaming services or content distribu-
tion networks (CDNs) that need efficient access to stored objects without requiring
complex decoding operations.

As we saw in Section 3.4, maintaining whole object replicas (MSR codes with
k = d = 1) has a higher storage cost than using coding schemes. However, when
whole object replicas are required, storage systems can reduce this high cost by using
a hybrid redundancy scheme that combines replication and erasure codes. The replicas can
also help reduce the communication cost when repairing lost data by generating
new redundant blocks using the on-line replicas: Generating a redundant block from
a whole replica requires transmitting α bytes instead of the γ = d · β bytes required
by the normal repair process. From eqs. (2.6) and (2.7) it is easy to see that α ≤
γ. While some papers have studied hybrid redundancy schemes [27, 41, 62], their
aim was to reduce communication costs and not to guarantee permanent access
to replicated objects. Therefore, these papers assumed that only one replica of each
object was kept in the system, ignoring the two problems that arise when this replica
goes temporarily off-line: (i) it is not possible to access the object without decoding
operations, and (ii) repairs using the replica are not possible.

In this section we evaluate a different hybrid scenario, where the storage system
may maintain more than one replica of the whole object in order to ensure with
high probability that there is always one replica on-line. However, it is not clear
if the overall communication costs of our hybrid scheme will be lower than the
communication costs of a single replication scheme. Further, even if communication
costs are reduced, the use of a double redundancy scheme (replication and coding)
may increase storage costs. To the best of our knowledge, there is no prior work
analyzing these aspects. In our analysis we differentiate between the probability δlow

of having a object replica on-line, and the data availability δ of being able to retrieve
objects using encoded blocks, which requires that k out of a total of n storage blocks
are on-line. We assume that δlow � δ, for example δlow = 0.99 and δ = 0.999999,
which is motivated by the fact that while users are likely to tolerate higher retrieval
times, which will need to be reconstructed first in some rare cases when no replicas
are found on-line, but they require very strong guarantees that data is never lost.
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Adapting Communication Cost to the Hybrid Scheme In a hybrid scheme we
need to consider two types of repair traffic, namely (i) traffic WMSR[k = d = 1], to
repair lost replicas and (ii) traffic Wrepl to repair encoded blocks. Since in the hybrid
scheme blocks are repaired directly from a replicated copy, repairing an encoded
block requires transmitting only one new storage block of α bytes. We obtain Wrepl

by replacing in eq. (3.10) the term “traffic to repair a block” in by α. Arranging the
terms we obtain the following two expressions:

Wrepl
MSR =

η[k, a, δ]

ka
× MO

N E [L]
(3.15)

Wrepl
MBR =

2d · η[k, a, δ]

ka(2d− k + 1)
× MO

N E [L]
(3.16)

Note that these expressions assume that all lost blocks are repaired from replicas. Since
we are adopting a proactive repair scheme, the system can delay individual repairs
when no replicas are available. However, since replicas are available most of the
time, these delays will rarely happen.

Comparing Wrepl
MSR, and Wrepl

MBR we can state the following lemma:

Lemma 5. For the same k, d and δ parameters, a hybrid scheme using a MBR code has a
communication cost that is at least as high as the communication cost of a hybrid scheme
using a MSR code.

Proof. We can state the lemma as Wrepl
MSR ≤ Wrepl

MBR. Using equations (3.15) and (3.16)
we obtain:

η[k, a, δ]

ka
× MO

N E [L]
≤ 2d · η[k, a, δ]

ka(2d− k + 1)
× MO

N E [L]

1 ≤ 2d
2d− k + 1

2d− k + 1 ≤ 2d

1 ≤ k

which is true by the definition of Regenerating Codes.

Lemma 5 implies that MSR codes when used in hybrid schemes are both, more
storage-efficient and more bandwidth-efficient than MBR codes. For this reason we
will not consider the use of MBR codes in hybrid schemes.

Let us assume that the required data availability for the whole hybrid system is δ

and that the data availability for replicated objects is δlow, δlow � δ. A hybrid scheme
reduces the storage cost compared to replication when the following condition is
satisfied:

RMSR[k = 1; δlow] + RMSR[k > 1; δ]︸ ︷︷ ︸
hybrid storage costs

< RMSR[k = 1; δ]︸ ︷︷ ︸
replication storage costs

. (3.17)
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Node availability Number of replicas required
a δlow = 0.99 δlow = 0.98 δlow = 0.95

0.5 7 6 5
0.75 4 3 3
0.99 1 1 1

Table 3.3: Replicas required to achieve a data availability δlow for different node availabilities a.

And analogously, a hybrid scheme reduces communication costs when:

WMSR[k = 1; δlow] + Wrepl
MSR[k > 1; δ]︸ ︷︷ ︸

hybrid comm. costs

< WMSR[k = 1; δ]︸ ︷︷ ︸
replication comm. costs

. (3.18)

In Figure 3.6a we plot the maximum value for δlow that satisfies eq. (3.17) as a
function of the overall data availability δ for different on-line node availabilities
a. The k parameter is set to k = 50 when a = 0.5, k = 20 when a = 0.75 and
k = 5 when a = 0.99. The (δ, δlow)-pairs below each of the lines correspond to the
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(b) Bandwidth efficient hybrid schemes
(when d = k).
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Figure 3.6: The (δ, δlow)-pairs under each of the lines represent the scenarios where a hybrid scheme
(replication+MSR codes) reduces the costs of a single replicated scheme. The lines are the maximum
δlow values that satisfy eq. (3.17) for (a), and eq. (3.18) for (b) and (c).
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hybrid instances that satisfy eq. (3.17), i.e. a hybrid scheme reduces the storage costs.
Similarly, in figures 3.6b and 3.6c, we plot the (δ, δlow)-pairs that satisfy eq.(3.18),
i.e. a hybrid scheme reduces the communication costs.

As example, let us assume a storage system that wants 99% data availability for
their replicated objects. In this case (δlow = 0.99), looking at Figure 3.6 we see that
a hybrid scheme (replication+MSR codes) can reduce the storage costs compared to
replication only when δ ≥ 0.999999 for a = 0.99, when δ ≥ 0.99 for a = 0.75, and
when δ ≥ 0.9 for a = 0.5. Since in general we always want strong guarantees that
objects are never lost —e.g., we assume δ ≥ 0.999999—, we can conclude that hybrid
schemes reduce storage and communication cost for almost all practical scenarios.

It is interesting to note that in Figure 3.6 all three sub-figures look very much alike.
The reason is that the cost contribution of replication is significantly higher than the
cost contribution of the coding (see Section 3.4). Since we have demonstrated the
cost efficiency of a hybrid scheme for δlow = 0.99, which requires a larger number
of replicas than configurations with δlow ≤ 0.99, see Table 3.3, a hybrid scheme
will also reduce storage and communication costs for any system requiring fewer
replicas i.e., δlow ≤ 0.99.

3.6 Experimental Evaluation
In previous sections we presented our generic storage model based on Regenerating
Codes and we analytically analyzed the storage and communication costs for MSR
and MBR codes, as well as the efficiency of using these codes in hybrid redundancy
schemes. In this section, we aim to evaluate how the network traffic caused by repair
processes can affect the performance and scalability of the redundancy scheme. For
that, we assume a distributed storage system constrained by its network bandwidth:
a system where storage nodes have low upload bandwidth and nodes have low
on-line availabilities. For such a storage system we will evaluate two measures
that are difficult to obtain analytically: (i) the real bandwidth used by the repair
process —i.e., bandwidth utilization—, and (ii) the repair time —i.e., time required
to download d fragments. In this way we can evaluate the impact of the repair
degree d on bandwidth utilization and system scalability.

Bandwidth utilization Given a node upload bandwidth, ω↑, and the per-node re-
quired bandwidth, W, we can theoretically state that a feasible storage system must
satisfy ω ↑≥ W, and that the storage system reaches its maximum capacity when
ω ↑= W. However, practical storage systems may not reach this maximum capacity
because of system inefficiencies due to failed repairs or fragment retransmissions.
To measure these inefficiencies, we will compare the real bandwidth utilization ρ̂

with the theoretical bandwidth utilization ρ = W/ω↑.
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Repair time The repair time is proportional to the repair bandwidth, γ, the repair
degree, d, and the probability a of finding a node on-line. We showed in Section 3.4
that increasing d reduces the repair bandwidth γ, (see eqs. (2.6) and (2.7)), which
should then intuitively reduce repair times. However, since the system only guaran-
tees k on-line nodes, contacting d > k nodes may require to wait for nodes coming
back on-line, which will cause longer repair times. In previous sections we only
considered two repair degrees d, namely d = k and d = n− 1. In this section we will
analyze how different d values affect repair times and bandwidth utilization.

3.6.1 Simulator Set-Up

We implemented an event-based simulator that simulates a dynamic storage infras-
tructure. Initially, the simulator starts with N = 500 storage nodes. New node
arrivals follow a Poisson process with average inter-arrival times E [L] /N. Node
departures follow a Poisson process with the same inter-departure time. Once a
node joins the system it draws its lifetime from an exponential distribution L with
expected value E [L] = 100 days. During their lifetime in the system, nodes alternate
between on-line/off-line sessions. For each session, each node draws its on-line and
off-line durations from distributions S1 and S0 respectively. In this chapter S1 and
S0 are exponential variates with parameters 1/(B · a) and 1/(B(1− a)) respectively,
where B is the base time and a the node on-line availability. Using the mean value
of the exponential distribution we can compute the average duration of the on-line
and off-line periods as (in hours):

E [S1] = B · a (3.19)

E [S0] = B · (1− a) (3.20)

The simulator implements parameterized Regenerating Code. To cope with node
failures, redundant blocks are repaired in a proactive manner following the algo-
rithm defined in [32] and the simulator proactively generates new redundant blocks
at a constant rate. For each stored object, a new redundant block is generated every
E [L] /n days. To balance the amount of data assigned to each node, each repair is
assigned to the on-line node that is lest loaded in terms of the number of stored
blocks and the number of repairs going on.

If the repair node disconnects during a repair process, the repair is aborted and
restarted at another on-line node. Similarly, when a node uploading data discon-
nects, the partially uploaded data is discarded and the repair node starts a block
retrieval from another on-line node.

The number of objects stored in the system is set in all the simulations to achieve
a desired system utilization ρ. Given ρ, the number of stored objects, O, is obtained
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using the two following expressions:

OMSR =
ω↑ ·ρak(d− k + 1)

d · η[k, a, δ]
× NE [L]
M (3.21)

OMBR =
ω↑ ·ρak(2d− k + 1)

2d · η[k, a, δ]
× NE [L]
M (3.22)

These formulas are obtained by taking the definition of utilization, ρ = W/ω ↑,
replacing W by ρ ·ω↑ in eq. (3.11) and solving the equation for O.

We set the on-line node availability to a = 0.75 and we set k = 20. With these
values, we use eq. (3.6) to compute the minimum number of redundant blocks, n,
required to achieve a data availability δ = 0.999999: η[20, 0.75, 0.999999] = 47.

Finally, the node upload bandwidth is set to ω ↑=20KB/sec, allowing only one
concurrent upload per node. To simulate asymmetric network bandwidth, we al-
low up to 3 concurrent downloads per node, which makes a maximum download
bandwidth of 60KB/sec.

3.6.2 Impact of the Repair Degree d

In Figure 3.7 we measure the effect of the repair degree on the system utilization and
on the repair times. In this experiment, we set the size of the object toM = 120MB
and the base time to B = 24 hours —i.e. on average nodes connect and disconnect
once per day. The number of stored objects is set to achieve a bandwidth utilization
of ρ = 0.5. Figure 3.7c shows the number of objects O for ρ = 0.5, and Figure 3.7d
the storage space required. Figures 3.7a and 3.7b show that small d values (values
close to k = 20) allow to keep the bandwidth utilization on target and assure low
repair times. However, for repair degrees d > 34 the repair times start to increase
exponentially.

It is interesting to see that when the repair times are quite long, nodes executing
repairs may not finish their repairs before disconnecting since repair times become
longer than on-line sessions. In this case, failed repairs are reallocated and restarted
in other on-line nodes. These unsuccessful repairs cause useless traffic that increase
then the real bandwidth utilization. In Figure 3.7a we can see how for d > 38 repair
times start to be larger than on-line sessions, increasing utilization beyond 0.5. It is
important to note that these larger repair times can jeopardize the reliability of the
system: large d values can cause most repairs to fail, reducing the amount of available blocks
and reducing the probability of successfully accessing stored objects.

To investigate the increase of bandwidth utilization in detail, we analyze in Fig-
ure 3.8 the performance of the storage system for the point where repair times begin
to increase, d = 36. At this point we evaluate repair times and bandwidth utiliza-
tion for different base times, B. As B increases, the duration of on-line sessions
become longer and fewer repairs need to be restarted, theoretically reducing band-
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Figure 3.7: Bandwidth utilization and repair times for MSR and MBR and different repair degrees
d when the object size is M =120MB and the number of objects O is set to achieve half bandwidth
utilization ρ = 0.5. The rest of the parameters are set to: k = 20 and B = 24hours.
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Figure 3.8: Bandwidth utilization and repair times for MSR and MBR and different base times B when
the object size is M =120MB and the number of objects O is set to achieve a bandwidth utilization
ρ = 0.5. The rest of the parameters are set to: k = 20 and d = 36. For the MSR case O = 5069, and
for MBR O = 10984.
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Figure 3.9: Bandwidth utilization and repair times for MSR and MBR and different targeted utiliza-
tions ρ when the object size isM =120 MB and the number of objects O is set to achieve the targeted
ρ. The rest of the parameters are set to: k = 20, B = 24 hours and d = 20.

width utilization. We can see this effect in Figure 3.8a, larger base times reduce the
bandwidth utilization of the system. Due to this utilization reduction, repair times
are also slightly reduced as we can see in Figure 3.8b.

3.6.3 Scalability

Other than the impact of the repair degree d and the base time B we aim to analyze
the behavior of the storage system under different target bandwidth utilizations. In
Figure 3.9 we plot the measured utilization and repair times for a wide range of
target utilizations ρ. We set the size of the stored objects to 120MB and we increase
the number of stored objects, O, to achieve different utilizations. In this scenario
we set k = d = 20. In Figure 3.9a we see how the measured utilization is nearly
the same than the target utilization. This is because d = k causes short repair times
and repairs typically finish before nodes go off-line. However, in Figure 3.9b we can
appreciate how for a high bandwidth utilization of ρ = 0.9, the saturation of the
node upload queues increases repair times significantly.

In Figure 3.10 we plot the same metrics as in Figure 3.9 but for a repair degree of
d = 36. Increasing the repair degree causes longer retrieval times, however as we
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Figure 3.10: Bandwidth utilization and repair times for MSR and MBR and different targeted utiliza-
tions ρ when the object size isM =120MB and the number of objects O is set to achieve the targeted
ρ. The rest of the parameters are set to: k = 20, B = 24 hours and d = 36.

saw in Figure 3.7, d = 36 keep repairs short enough to guarantee that the utilization
is not affected. However, by increasing the repair degree from d = 20 to d = 36 we
can store on the same system configuration one order of magnitude more objects,
namely 6452 (MSR, d = 36) instead of 683 (MSR, d = 20).

Finally, in Figure 3.11 we analyze the impact of object size on bandwidth utiliza-
tion and repair times. For each object size we set the number of stored objects to
achieve a target bandwidth utilization of ρ = 0.5. Since the utilization is the same
for all object sizes, the number stored objects, O, decreases as the object size in-
creases (Figure 3.11c). Independently of the object size, the total amount of stored
data, O×M remains constant: 774GB for MSR codes and 1206GB for MBR codes.
We can also see in Figure 3.11a that the measured bandwidth utilization is indepen-
dent of the object size. However, as expected, we can see in Figure 3.11b that larger
objects take longer to repair.
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3.7 Conclusions

In this chapter we evaluated redundancy schemes for distributed storage systems
in order to have a clearer understanding of the cost trade-offs in distributed storage
systems. Specifically, we analyzed the performance of the generic family of erasure
codes called Regenerating Codes [27], and the use of Regenerating Codes in hy-
brid redundancy schemes. For each parameter combination we analytically derived
its storage and communication costs of Regenerating Codes. Our cost analysis is
novel in that it takes into account the effects of on-line node availabilities and node
lifetimes. Additionally, we used an event-based simulator to evaluate the effects of
network utilization on the scalability of different redundancy configurations. Our
main results are as follows:

• Compared to simple replication, the use of a Regenerating Codes can reduce
the costs of a storage system (storage and communication costs) from 20% up
to 80%.

• The optimal value of the retrieval degree k depends on the on-line node avail-
ability, ranging from k = 5 when nodes have 99% availability, to k = 50 when

0

0.2

0.4

0.6

0.8

1

50 100 200 300 400 500 600

�
(b
w
.
u
ti
li
za
ti
o
n
)

M (object size in MB)

MSR
MBR

(a) Bandwidth utilization

10
2

10
3

10
4

10
5

50 100 200 300 400 500 600

re
p
ai
r
ti
m
e
(s
ec
o
n
d
s)

M (object size in MB)

MSR
MBR

(b) Repair times

0

5000

10000

15000

20000

25000

30000

50 100 200 300 400 500 600

n
u
m
b
er
o
b
je
ct
s
O

M (object size in MB)

MSR
MBR

(c) Number of Objects

Figure 3.11: Bandwidth utilization and repair times for MSR and MBR and different object sizes
M when the number of objects O is set to achieve a bandwidth utilization ρ = 0.5. The rest of the
parameters are set to: k = 20, B = 24hours and d = 36.
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nodes have 50% availability. Once k is fixed, storage systems with limited stor-
age capacity can maximize their storage capacity by adopting MSR codes. On
the other hand, systems with limited communications bandwidth can maxi-
mize their storage capacity by adopting MBR codes.

• High repair degrees d reduce the overall communication costs but may in-
crease repair times significantly, which can lead to data loss. We experimen-
tally found that the repair degree should be small enough to make sure the
repair times are shorter than the on-line session durations of nodes.

• Finally, in storage systems where the access to raw objects is required, we
showed that hybrid schemes combining replication and MSR codes are more
cost efficient than simple replication.
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Chapter 4
Relationship between

Redundancy, Availability &
Retrieval Times

Summary

In this chapter we present a set of tools to measure data availability and retrieval times
for a given data redundancy value in heterogeneous distributed storage systems. Due to the
complexity of measuring these two properties, our tools focus on obtaining accurate estima-
tors that can be used for storage designers to provide flexible QoSS without compromising
data reliability.

The main contributions of this chapter appeared in [2, 5, 6] and were published in [8]. Some
of them have been also submited for review to the Journal of Parallel and Distributed Com-
puting (JPDC) and to the Information Processesing Letters (IPL).
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4.1 Introduction

In Chapter 2 we defined data availability and retrieval times as important metrics to
measure the QoSS. We also showed that data redundancy has an important impact on
two of the metrics that define the QoSS, namely data availability and retrieval times:

• Increasing redundancy —i.e., setting larger n values— increases the probability
to find at least k online blocks, which guarantees a higher data availability.

• On the other hand, since increasing redundancy ensures more online blocks,
retrieval processes can download blocks without needing to wait for the re-
connection of nodes, which shortens retrieval times —i.e., reconstruction and
repair times.

More specifically, since we defined data redundancy, r, as r = nα/M, it is easy
to see that data redundancy is linearly proportional to the number of stored blocks,
n. Then, from the definition of data availability, D(k, n, g, S), eq. (2.9), and from
the definition of retrieval times, T(`, ϕ, n), it is also easy to see that n, and then
redundancy, has a direct impact on both metrics. In Figure 4.1 we show a simple
representation of the relationship between redundancy and these two metrics.

Although the relationship between data redundancy and data availability is quite
obvious and well known in the literature, the relationship between data redundancy
and retrieval times is more tricky. To illustrate it we will use a simple example. Let
us assume two different storage scenarios, both using a MSR Regenerating Code
scheme with k = d = 4. In the first scenario, objects are stored using n = 8 differ-
ent storage blocks spread to 8 different storage nodes (unitary assignment function).
Similarly, in the second scenario objects are stored using n = 6 storage blocks. Using
the expression of data redundancy, eq. (3.7), it is easy to see that in the first scenario

Redundancy

retrieval times

data availability

Figure 4.1: Simple scheme showing the relationship between redundancy and data availability, and
between redundancy and retrieval times.

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DESIGN AND OPTIMIZATION OF HETEROGENEOUS DISTRIBUTED STORAGE SYSTEMS 
Lluís Pàmies Juárez 
DL:T. 1455-2011 



Chapter 4. Relationship between Redundancy, Availability & Retrieval Times 57

1st retrieval
4
3
2

1

4
3

2
1

High Data Availability:

2nd retrieval
3
2

1
4

wait
tim

e

4
3
2

1

Low Data Availability:

1st retrieval nd
retrieval2

Figure 4.2: Examples of two object retrievals in a system using a MBR(k = d = 4; n = 8) code (High
Data Availability) and in a system using a MBR(k = d = 4; n = 6) code (Low Data Availability).
Each on/off process represents the online/offline sessions of a storage node.

the redundancy factor is r = 6/4, while in the second scenario it is r = 8/4. And by
definition of data availability, it means that the second scenario obtains a higher data
availability. To show the relationship between redundancy and repair times in Fig-
ure 4.2 we show two reconstruction processes that try to gather k = 4 blocks in these
two different storage scenarios. In the first example (High Data Availability), both
reconstruction processes succeed to download the 4 blocks immediately. However,
since in the second case (Low Data Availability) there are less stored blocks, we can
see how the second reconstruction process needs to wait to download the last block,
which lengthens the reconstruction time. Although this example simplifies most
of the real complexities in retrieval processes, like parallel block downloads, or net-
work inefficiencies, it easily reflects the tricky relationship between data redundancy
and retrieval times.

To the best of our knowledge, existing distributed storage systems have not con-
sidered the relationship between redundancy, data availability and retrieval times.
This is because existing distributed storage systems do not allow the possibility
to target flexible QoSS, instead they base their QoSS only on guaranteeing a data
availability close to 100%; D(k, n, g, S) ' 1. This high data availability ensures
that object retrieval processes always find k redundant blocks online, which causes
retrieval times to be considered constant and equal to the optimal object retrieval
time, τ(`), defined in Section 2.3.2. However, analyzing Figure 4.1 one can appreci-
ate the relationship between redundancy, data availability and retrieval times, and
intuitively see that a distributed storage system can relax their QoSS expectations
—i.e., tolerate less data availability and longer retrieval times— by using less redun-
dancy, and then, reducing the associated costs: storage and communication costs.
However, if such cost reduction is not done cautiously, it can severely compromise
the QoSS in two different ways:

• Long reconstruction times can cause users to suffer poor retrieval performance.

• Long repair times can cause data to be destroyed faster than it is repaired,
which can be catastrophic for data durability.
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However, if redundancy is wisely reduced, distributed storage systems can achieve
QoSS trade-offs that allow to reduce their costs while still offering a good storage ser-
vice to their users. For example, in backup applications where data is occasionally
read, users can tolerate long reconstruction times as long as their data durability
is not compromised. Or other storage systems can offer more storage capacity to
those users accepting some loss in their data retrieval performance. Unfortunately,
although the relationship between redundancy and data availability has been deeply
studied in homogeneous storage systems, there is a lack of understanding of the rela-
tionship between redundancy, data availability and retrieval times, in heterogeneous
storage infrastructures.

In this chapter we present a basic analytical framework that allows to measure
data availability and retrieval times in heterogeneous storage systems. With our
tools system designers can provision their distributed storage systems with the opti-
mal redundancy required to satisfy specific QoSS needs. For example, designers can
find the minimum data redundancy that guarantees a targeted data availability, or
the minimum redundancy that guarantees data durability in backup systems. How-
ever, as we will see, measuring data availabilities and retrieval times precisely can
become computationally intractable in the presence of node heterogeneities. Due to
this complexity we focus our efforts on obtaining good estimators of the two metrics:

• We provide two algorithms to measure data availability. The first algorithm
groups nodes with similar online availabilities into clusters to reduce the com-
putation required to measuring data availability. However, for large sets of
storage nodes where this first algorithm is still too complex, we propose a
second algorithm to approximate data availability based on a Monte-Carlo
method.

• To approximate retrieval times we use the fact that retrieval times are usually
several orders of magnitude shorter than online session durations; we assume
that T(`, ϕ, n) � S1. This assumption is based on observations of real dis-
tributed infrastructures and allows us to simplify the stochastic analysis of
retrieval processes and obtain two independent retrieval time estimators: (i) a
recursive algorithm to approximate the average retrieval time, and (ii) a closed-
form expression to approximate the full retrieval time distribution.

The rest of this chapter is organized as follows. In Section 4.2 we present the
related work on this topic. Then, given an amount of data redundancy in Section 4.3
we present how to measure data availabilities, and in Section 4.4 we present how to
measure retrieval times. Finally, in Section 4.5 we state our conclusions.
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4.2 Related Work

We distinguish between the related work on measuring data availability and the
related work on measuring retrieval times.

Measuring Data Availability

When storage nodes present homogeneous online node availabilities, existing dis-
tributed storage systems measure data availability using the inverse cumulative
function of the Binomial distribution, as we defined in eq. (3.4). But as far as we
know, there are no papers detailing how to specifically measure data availabil-
ity when storage nodes present heterogeneous online availabilities. However, in
these heterogeneous environments some papers proposed data maintenance pro-
cesses that dynamically adjust redundancy —i.e., the number of stored blocks, n—
to achieve a certain data availability.

For example, assuming a reconstruction degree set to k = 30, storage systems
can guarantee 100% data availability by initially inserting n, n > 30, storage blocks,
and reinsert additional storage blocks as soon as a block failure is detected. This
maintenance technique, was used by the earliest P2P storage designs, like Past [29],
CFS [25], or OpenDHT [61]. However, one of the problems with this maintenance
process is that it does not differentiate between temporal and permanent node fail-
ures, obtaining excessive redundancy when a temporal failed block comes back on-
line. To solve this problem, other systems like Carbonite [20] and TotalRecall [46],
differentiated between permanent and transient failures by setting upper and lower
thresholds on the number of stored blocks, and by triggering new repairs when
the number of storage blocks descended below these thresholds. Unfortunately,
although reactive repairs can achieve arbitrary data availability levels in heteroge-
neous distributed storage systems, they do not allow system designers to determine
a priori the redundancy that the system will require to achieve this data availability.

We finally want to note that in Section 3.2 we described that reactive repairs can
smooth the bandwidth usage of these previous reactive data maintenance processes.
However, reactive repairs need to schedule the insertion of new storage blocks at the
same rate as the average block failure rate, which inevitably assumes homogeneous
node availabilities. Storage systems can not using reactive repairs in heterogeneous
systems because the error between the targeted data availability and the real mea-
sured one would be too high to guarantee a good QoSS.

Measuring Retrieval Times

Although there are no studies analyzing the relationship between redundancy and
retrieval times in distributed storage systems, some papers analyzed retrieval times
in BitTorrent-like systems [36,53,59]. The main similarity between BitTorrent systems
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and distributed storage systems is that stored objects can be retrieved by down-
loading data from different nodes, and that it is difficult to predict how many of
these nodes would be available at any time. However, storage systems, and partic-
ularly erasure code-based storage systems, present some particularities that should
be considered apart from these BitTorrent retrieval time studies. On the one hand,
BitTorrent-like systems are usually analyzed in their short-term behavior. It means
that a node disconnection is considered as a permanent failure, and data is not rein-
tegrated when the node reconnects. However, P2P storage systems need to deal with
the long-term behavior of the system. For this reason, they have to consider both,
permanent and transient node disconnections. On the other hand, in BitTorrent-like
systems there are several nodes that have a full replica of the file (seeder nodes), and
even much more nodes that have almost a complete replica (leecher nodes). Con-
trary to this replication strategy, erasure codes disperse data among several nodes,
where no node has a complete replica of the file. Due to this dispersion, retrieval
processes need to contact several nodes in order to reconstruct the original data
object.

Although we explained the problems of retrieval time measurements in BitTor-
rent, we will briefly review the most important ones. Ramachandran et al. [59]
studied the times required to retrieve replicated objects in BitTorrent-like systems.
They present an analytic framework based on a queuing system. Their framework
is able to evaluate and predict the transfer times as well as the data query times.
Additionally, they consider different node characteristics like: number of simulta-
neous downloads, object popularity or number of replicas. However, their model
is focused on measuring retrieval times for BitTorrent-like systems. Since they are
not focused on storage systems, they do not consider either the impacts of low data
availabilities or the effects of erasure codes. Gaeta et al. [36] propose a stochastic
fluid model to analyze file download times. Their analysis is focused on the impact
of four different parameters: file popularity, peer selection policies, available band-
widths and concurrent downloads. Similarly, Liao et al. [53] analyze the same, file
retrieval times, but considering bandwidth-heterogeneous systems.

4.3 Measuring Data Availability

In Section 2.3.1 we have defined data availability as the probability to detect k stor-
age blocks online. Additionally, in eq. (2.15) we have provided an analytical expres-
sion to measure data availability, D(k, n, g, S), for generic heterogeneous storage
systems. Unfortunately, we have showed in Section 2.3.1 that the evaluation of D
can become computationally intractable when the set of storage nodes used to store
each object, S , is large. The reason of this complexity is that all nodes have different
availabilities and then, the number of different combinations of online nodes grows
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exponentially as we use larger storage node sets. Due to the impossibility of evaluat-
ing D, in this section we propose two algorithms that approximate data availability
for large sets of nodes, S . The main drawback of the above implementation is that it
has an exponential computational complexity proportional to O(2n). This is because
the generation of Lk requires the filtration as in eq. (2.13) of all the possible combina-
tions of online nodes, 2S . It makes almost impossible with commodity computers to
measure data availabilities for sets larger than 20 nodes, |S| > 20. In this section we
provide some heuristics to obtain estimations of data availability with less complex
algorithms.

Finally, by Definition 3 (data redundancy) we have that data redundancy is lin-
early proportional to the number of storage blocks, n. Additionally, by Definition 4
(assignment function) we have that increasing redundancy (higher n values) increase
the number of blocks stored per node, g(i, n, S), and then, it increases the number
of elements in Lk (see eq. (2.13)). Due to this, we can use eq. (2.15) to remark the
following:

Remark 2. For a fixed k, increasing redundancy (higher n values) also increases data avail-
ability D(k, n, g, S), and the opposite, reducing redundancy reduces data availability.

4.3.1 Clustering Nodes

The first method to approximate data availability consists on reducing the number
of different online node availabilities considered by the function D. To do so, we
group the storage nodes in S into clusters of nodes with similar online availability,
and we treat all nodes in each cluster as if they had the same online availability,
allowing us to reduce the number of combinations of online nodes that can happen.
For example, let us consider a set of storage nodes with three nodes S = {i1, i2, i3}.
Using eq. (2.15) the heterogeneous measurement should consider 23 = 8 different
combinations of online nodes, which are the following:

A1 = ∅

A2 = {i1}
A3 = {i2}
A4 = {i1, i2}
A5 = {i3}
A6 = {i1, i3}
A7 = {i2, i3}
A8 = {i1, i2, i3}
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However, when ai1 = ai2 , the assignment function assigns the same amount of blocks
to each node:

g(i1, n, S) = g(i2, n, S); ∀ai1 = ai2 .

In this case, the online combinationsA6 = {i1, i3} andA7 = {i2, i3} contain the same
number of redundant blocks, i.e. g(i1, n, S) + g(i3, n, S) = g(i2, n, S) + g(i3, n, S),
and occur with the same probability, Pr[QA6 ] = Pr[QA7 ], eq. (2.11). To simplify
the measurement of data availability we can detect the online combinations that
occur with the same probability, Pr[QA2 ] = Pr[QA3 ] and Pr[QA6 ] = Pr[QA7 ], which
reduces the total number of combinations of available nodes from 8 to 6.

Let us consider that storage nodes can only present m different online availabili-
ties, a1, a2, . . . , am, and that all nodes with availability ai are grouped together into
the ith availability cluster, Ci. Then, union of all these m clusters constitutes a parti-
tion of the entire set of storage nodes:

S =
m⋃

i=1

Ci.

We want to note that the creation of these clusters is a simplification of the real
distributed storage system. However, it can be used to obtain a good data availability
approximation when online node availabilities tend to group around some centroid
availabilities. In these cases we can define the availability of the ith cluster, âi, as the
average availability of all the nodes in the cluster:

âi =
1
|Ci| ∑

j∈Ci

aj.

When we group nodes in availability clusters we have to consider the following:

Remark 3 (Cluster Homogeneity). Since all nodes in the ith availability cluster are con-
sidered to have the same online availability, the assignment function will treat them equally.
It means that, g(il , n, S) = g(is, n, S); ∀il , is ∈ Ci. For the sake of simplicity, we will
simply refer to ĝ(âi) as the number of redundant blocks stored in nodes belonging to cluster
Ci.

To represent all the possible combinations of online nodes in the Ci cluster, we
define the set of tuples Zi. Each tuple in Zi contains three elements: (i) the total
number of nodes in the cluster, (ii) the cluster online availability, and (iii) the number
of online nodes in that combination. We can formally define Zi as follows:

Zi = {〈|Ci|, âi, x〉}|Ci |
x=0 . (4.1)

For each tuple z, z ∈ Zi, we will refer by z1 the number of nodes in the cluster, by z2

the cluster availability, and by z3 the number of online nodes.
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Since we consider that all nodes in a cluster have the same online availability, the
number of online nodes in a cluster follows a binomial distribution with probability
âi and population |Ci|. For each z ∈ Zi, we can measure the probability of finding z3

online nodes in Ci as f (z3; z1, z2), where f is the probability mass function (p.m.f.)
of the binomial distribution.

In the same way that the set 2N contains all the combinations of online nodes
for the generic heterogeneous case, the Cartesian product ∏m

i=1 Zi contains all the
possible combinations of online nodes for the clustered heterogeneous case. Each
combination of online nodes A, A ∈ ∏m

i=1 Zi, contains m tuples defining the number
of online nodes in each cluster. Then, QA represents the event that the combination
of available nodes A happens. Since node availabilities are independent, and the
number of online nodes in a cluster follows a binomial distribution, we can measure
the probability of QA as,

Pr[QA] = ∏
z∈A

f (z3; z1, z2). (4.2)

We additionally define Zk as the set of combinations where the available nodes
store at least k redundant blocks,

Zk =

{
A : A ∈

m

∏
i=1

Zi, ∑
z∈A

z3 · ĝ(z2) ≥ k

}
. (4.3)

Then, using this notation, we can rewrite eq.(2.14) to obtain the probability of finding
at least k online blocks when QA happens as:

Pr [G ≥ k|QA] =

Pr [QA] , if A ∈ Zk,

0, otherwise.
(4.4)

Finally, we can use the generic definition of data availability from eq. (2.12) to
determine D for the clustered heterogeneous data availability as,

D(k, n, g, S) = ∑
A∈Zk

Pr[QA] = ∑
A∈Zk

[
∏
z∈A

f (z3; z1, z2)

]
=

= ∑
A∈Zk

[
∏
z∈A

(
z1

z3

)
zz3

2 (1− z2)
z1−z3

]
. (4.5)

The complexity of evaluating this function depends on the size of Zk. To analyze
its complexity we take the worse case that happens when k = 1 and ĝ(âi) = 1, ∀i ∈
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[1, m]. Under this constraint we have that:

Z1 =
m

∏
i=1

[Zi \ {〈|Ci|, âi, 0〉}] .

From eq. (4.1) we know that there are |Ci| + 1 tuples in Zi. Then we can take the
previous expression to measure |Z1| as,

|Z1| =
m

∏
i=1
|Ci|.

However, although we know with |Z1| the maximum number of combinations to
evaluate in D, the computational complexity of measuring D still depends on the
nature of the node clusterization: the number of clusters and their size. To find the
worse cluster scenario we need to define the following Remark and Lemma:

Remark 4. The inequality of arithmetic and geometric means [18] (also known as AM-GM
inequality), states that the inequality,

1
n

n

∑
i=1

xi ≥ n

√
n

∏
i=1

xi

only holds when x1 = x2 = · · · = xn.

Lemma 6. The worst scenario (where clustered data availability is more computationally
intractable) is when all clusters have the same size, |Ci| = |S|/m, ∀i ∈ [1, m].

Proof. When all clusters are equal-sized we have that,

|Z1| =
m

∏
i=1
|Ci| =

(
|S|
m

)m
. (4.6)

We want to prove that this value is the greatest possible for |Zk|, hence,(
|S|
m

)m
≥

m

∏
i=1
|Ci|

|S|
m
≥ m

√
m

∏
i=1
|Ci|

Then, since |S| = ∑m
i=1 |Ci|,

1
m

m

∑
i=1
|Ci| ≥ m

√
m

∏
i=1
|Ci|,

which is true by Remark 4 and the lemma follows.
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Figure 4.3: Computational complexity: Number of summands required to measure d as a function of
the number of clusters, m. Note than m = 1 corresponds to the heterogeneous case.

Finally, considering Lemma 6 and eq. (4.6), it follows that in the worse case we
have that the number of online availability combinations to consider is:

|Z1| =
m

∏
i=1
|Ci| =

m

∏
i=1

|S|
m

=

(
|S|
m

)m
.

And then, the complexity of evaluating D using eq. (4.5) is still O(2n). However,
compared to the generic D function, in this case, the hidden constants are smaller,
the complexity is exponential on the number of clusters instead on the number
of storage nodes. In Figure 4.3 we evaluate the computational complexity of the
clustered version for different number of clusters, m, and we compare the number
of summands required to measure D in both cases. Considering that in a typical
desktop computer we were unable to measure D for sets larger than 20, the results
show that for measuring D in sets of up to 50 nodes, 4 or less clusters my reduce
computation time significantly. Although having less than 8 clusters could be useful
for measuring D in sets from from 20 to 50 nodes, we need other tools to measure
D for larger node sets.

4.3.2 Monte Carlo Approximation

As we showed in previous sections, it is unfeasible to measure the exact data avail-
ability for large heterogeneous storage sets. However, to exploit node heterogeneities
and to predict the required redundancy for a distributed storage infrastructure, we
need to obtain at least an approximation of the data availability obtained. In this
section we use a Monte Carlo method to obtain this approximate value. The main
idea behind this technique is to simulate the real behavior of the storage system and
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empirically measure the obtained data availability.

Let 2S be the set with all the possible combinations of online storage nodes. Then,
let Vν be a random sample of ν of these combinations, Vν ⊂ 2S , |Vν| = ν. Each
combination of online nodes, A, A ∈ Vν, is chosen considering the individual avail-
abilities of each node, ai, as follows:

Pr[i ∈ A] = ai, ∀A ∈ Vν, ∀i ∈ S .

Using a ν-sample of all the 2S combinations we can obtain a data availability
approximation, dν, of the real data availability, D(k, n, g, S).

dν =
|{A : A ∈ Vν, ∑i∈A ĝ(ai, n,S) ≥ k}|

ν
, (4.7)

which tends to the real data availability value as the random sample grows,
D(k, n, g, S) = limν→∞ dν. Algorithm 1 reflects how this value can be easily mea-
sured using an iterative method.

Algorithm 1 Measuring dν.

1: successes← 0
2: iterations← ν
3: while iterations > 0 do
4: blocks← 0
5: for i ∈ S do
6: if rand() ≤ ai then
7: blocks← blocks + ĝ(ai, n,S)
8: end if
9: end for

10: if blocks ≥ k then
11: successes← successes + 1
12: end if
13: iterations← iterations− 1
14: end while
15: dν ← successes/ν

4.3.3 A Guide to Measure Data Availability

In sections 4.3.1 and 4.3.2 we presented two different method to approximate data
availability in heterogeneous storage systems when the generic equation, eq. (2.15),
becomes computationally intractable. However, we showed that each method has its
own advantages and disadvantages. Here we give a rule of thumb to know when to
use each of them:
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• Although the generic method described by eq. (2.15) is the only mechanism
to measure the exact data availability, it is only applicable for sets of nodes
smaller than 15 or 20 (in typical desktop computers).

• When all the nodes have the same availability, or the heterogeneity among
them is low, we can assume a homogeneous availability and use eq. (3.4). This
expression is highly scalable and can be used with very large sets of nodes.

• When the presence of heterogeneity is significant but there are several groups
of nodes with similar availabilities, we can use the cluster-based expression,
given in eq. (4.5). Although this method has an exponential complexity, it
can be used for large sets of nodes whenever the number of clusters remains
relatively small.

• Finally, when the above methods are not appropriate, we need to use the
method based on the Monte Carlo approximation: eq. (4.7).

4.4 Measuring Retrieval Times

As it happens with data availability, predicting precisely the relationship between
data redundancy and retrieval times in heterogeneous storage infrastructures is a
complex task. The complexity resides in the unpredictable online/offline behavior
of storage nodes. In this section we analyze how to obtain good retrieval times
estimators given a data redundancy. However, for the sake of simplicity, in this
section we will assume that objects are stored using the unitary assignment function:
g(i, n,S) = 1, ∀i ∈ S .

The rest of this section is organized as follows. In Section 4.4.1 we show how we
simplify the heterogeneous node failure model to reduce the complexity of measur-
ing retrieval times. In Section 4.4.2 we present the basic stochastic model that we
use to model retrieval processes in heterogeneous distributed storage systems. How-
ever, due to the great difficulty that poses solving this stochastic model, we make
a few assumptions on the node failure model to approximate retrieval times. In
Section 4.4.3 we provide a recursive algorithm that approximates the mean retrieval
time. Finally, in Section 4.4.4 we provide a closed-form expression to approximate
the whole retrieval time distribution. In both cases we compare our estimated values
with real retrieval times obtained by simulation.

4.4.1 Aggregation of the Heterogeneous Behaviors

Yao et al. [82] showed that while each node has different offline and online session
durations, Si

0 and Si
1, ∀ i ∈ N , the aggregate online/offline behavior of the sys-

tem can be reduced to a simple closed-form expression of these session durations.
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Specifically, Yao et al. [82] demonstrated that the heterogeneous online/offline ses-
sion distributions, Si

0 and Si
1, can be reduced to two aggregate online/offline session

distributions, namely S0 and S1, that can be used to completely characterize the
failure model of a heterogeneous distributed system. Similarly, the residual session
distributions, Ji

0 and Ji
1, can be reduced to J0 and J1 respectively.

In the rest of this section (Section 4.4), we will model retrieval times using the
aggregate online/offline session durations, S0 and S1, as well as the aggregate resid-
ual durations, J0 and J1. As we will see, it reduces the complexity of our retrieval
times analysis, while still considering heterogeneous online availabilities. In our
evaluation we will assume that S0 and S1 are Weibull variates and we will set the
distribution parameters to fit the distribution of real availability traces.

4.4.2 Modeling the Retrieval Process

As we defined in Section 2.3.2, a retrieval process aims to download ` different
blocks out of the total n stored blocks. In order to take advantage of nodes’ asym-
metric bandwidth, retrieval processes can download up to p blocks simultaneously,
where ω↓

ω↑ ≥ p > 0. In general terms a retrieval process can be modeled as p down-
loading subprocesses that collaborate to download ` different blocks.

Additionally, in Section 2.3.3 we defined the stochastic process X = {Xt}t≥0, as
the number of nodes from S that are online at time t. But to model retrieval times,
besides Xt, we also need to define two additional stochastic processes:

• The process Z = {Zt}t≥0 is a pure-birth process that accounts for the total
number of blocks downloaded by the p downloading subprocesses.

• The process Y = {Yt}t≥0 is birth-death process that accounts for the num-
ber of blocks online that have not already been downloaded by any of the p
downloading subprocesses.

In Figure 4.4 we depict an example of the evolution of these three stochastic pro-
cesses: X, Y and Z. In the horizontal axis we plot the three different types of events
that make the system evolve: (S) a block is downloaded successfully, (C) an offline
node connects, and (D) and online node disconnects. Every time that a block is
successfully downloaded (S), the number of downloaded blocks increases and the
number of non-downloaded blocks decreases. On the other hand, when a node con-
nects (C), the number of non-downloaded blocks is increased, as well as the number
of online blocks. However, a node disconnection (D), always decreases the number
of online blocks, but only decreases the non-downloaded blocks if the block had
already been downloaded. At times t = 4 and t = 5 we can see two node discon-
nection events, both causing decreases in the number of online blocks, Xt. However,
while at t = 4 the node disconnection also decreases the number non-downloaded

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DESIGN AND OPTIMIZATION OF HETEROGENEOUS DISTRIBUTED STORAGE SYSTEMS 
Lluís Pàmies Juárez 
DL:T. 1455-2011 



Chapter 4. Relationship between Redundancy, Availability & Retrieval Times 69

1 2 3 4 5 7 8 96

S C S D D C C SS

Xt: online blocks

Yt: non-downloaded and online blocks

Zt: downloaded blocks

time:

events:

Figure 4.4: Evolution of the three stochastic process used to model object retrieval times: Xt, Yt, Zt.

blocks, the disconnection at t = 5 does not decreases the number non-downloaded
blocks. In this second case (t = 5) the block that disconnects was previously down-
loaded by some downloading subprocess, and then, it does not decrease Y (no. of
non-downloaded online blocks). Finally, we can see how between t = 6 and t = 7
there is a period where there are no non-downloaded blocks online: Yt = 0. During
these periods the download subprocesses are waiting for node reconnections. Mea-
suring the duration of these waiting periods is fundamental to predict retrieval
times.

As we defined in Section 2.3.2, T(`, ϕ, n) represents the overall retrieval time
distribution —time required to download ` blocks of size ϕ out of the total n
blocks. Measuring T(`, ϕ, n) in the previous model is equivalent to measure the
time elapsed until the number of downloaded blocks is equal to `. Formally,

T(`, ϕ, n) = min{t : t ≥ 0, Zt ≥ `}. (4.8)

However, determining the value of Zt requires to know the exact evolution of
X and Y. Unfortunately, solving these two processes entails a high complexity be-
cause the p simultaneous download subprocesses need to be aware of the number of
available nodes at any time t and the number of downloaded and non-downloaded
blocks. However, due to the complexity of determining T(`, ϕ, n), in this thesis we
focus on obtaining an accurate estimate T̂(`, ϕ, n) of T(`, γ, n). In the next sec-
tion we will provide a simplification of the retrieval process model to measure the
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expected retrieval time, E
[

T̂(`, ϕ, n)
]
. In Section 4.4.4 we will provide an approxi-

mation for the whole distribution of T̂(`, ϕ, n).

4.4.3 Mean Retrieval Times

To measure E
[

T̂(`, ϕ, n)
]

we will make some assumptions to simplify the node
failure model presented in Section 2.2.1. Using exponential session durations we
will show that our assumptions have low impact in retrieval times, and that can be
successfully applied in realistic distributed storage systems.

Simplifying the Node Failure Model

Several studies have analyzed the duration of online and offline sessions in P2P file
sharing systems [40,68,70]. In these studies, we can observe how nodes tend to have
long online sessions, usually of the order of some hours. These studies give us the
insight that even in these highly unstable distributed infrastructures, nodes tend to
stay long online sessions in the system. Since the P2P nodes in these studies were not
holding a distributed storage system, but a file sharing application, we expect that in
P2P storage systems nodes would even have larger online session durations. One of
the reasons to expect that is that in P2P storage systems like Wuala [75] users trade
storage to obtain a storage capacity proportional to their online availability. If nodes
improve their online availability, then they obtain more online storage resources.

Due to the previous considerations, it is reasonable then to expect object retrieval
times shorter than online node session durations: T(`, γ, n) � E [S1]. For example,
in the worst scenario, assuming an average bandwidth of 20KBps, we can retrieve
a 60MB object in approximately 50 minutes. However, typical session durations
are of the order of some hours, and this difference becomes even larger in better-
provisioned storage infrastructures. Then, considering the difference between ses-
sion durations and retrieval times, we can make the following assumption:

Assumption 1 (Nodes change their state once.). During a retrieval process, nodes can
only change their online state once. It means that initially online nodes will tend to discon-
nect, but once disconnected, they will not connect again. Similarly, initially offline node will
tend to connect, but once connected, they will not disconnect again.

In Section 2.2 we defined the process Xt as the number of online blocks at time
t. Assuming that the retrieval process started at t = 0, we can use Assumption 1 to
classify the number of online blocks at time t, Xt, in two different categories:

Xt = Xon
t + Xoff

t .

On the one hand, Xon
t represents the online blocks stored in nodes that were online

when the retrieval process started. On the other hand, Xoff
t represents the online
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Figure 4.5: Evolution of the number of nodes online in Xon and Xoff categories. With lines we depict a
simulation scenario where nodes are constrained to Assumption 1. With points we depict a simulation
scenario with non-constrained nodes.

blocks stored in nodes that were offline when the retrieval process started. Let us
assume a simple scenario with 100 redundant blocks (n = 100) and with 30 online
blocks when the retrieval process started. In this scenario we initially have that
Xon

0 = 30, Xoff
0 = 0 and the number of initially offline nodes can be represented as

n− Xon
0 = 100− 30 = 70. Since under Assumption 1 nodes can only change their

state once, Xon
t will tend from 30 to zero as time tends to infinity, limt→∞ Xon

t = 0.
Analogously, Xoff

t will tend from 0 to 70 as time tends to infinity, limt→∞ Xoff
t =

n− Xon
0 .

To evaluate the impact of Assumption 1, we analyze the evolution of the number
of online nodes in each category, Xon

t and Xoff
t . We use two different simulated sce-

narios: In the first scenario, nodes act freely, connecting and disconnecting according
to the non-simplified failure model described in Section 2.2.1. In the second scenario,
we restrict nodes’ behavior to Assumption 1 —nodes connect or disconnect once. In
both simulations we study the evolution of 100 nodes that have an online availability
of 30%, a = 0.3. For both simulations, we used simple exponential session durations
with the following rates: S0∼Exponential(λ=0.14) and S1∼Exponential(λ=0.06).
These rates gave us the following expected session durations: E[S0] ' 7.14 hours and
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E[S1] ' 16.7 hours. As in the previous example, we set the number of initially on-
line nodes to 30 in both cases, hence, Xon

0 = 30. This initial number of online blocks
corresponds to the expected number of online nodes in the system. In Figure 4.5a,
we depict the evolution of Xon

t and Xoff
t . We use lines to describe the evolution of the

nodes modeled by Assumption 1 and points for non-constrained nodes. We can see
how after some hours, the number of online nodes in each category clearly differs in
both scenarios. However, in Figure 4.5b, we zoom the first 4 hours of the simulation.
In this figure, we can see how the consequences of Assumption 1 are almost inap-
preciable for the first 3-4 hours of simulation. Since we expect retrieval times much
more shorter than online sessions, T(S0, S1, k, n) � S1, simplifying the behavior of
nodes using Assumption 1 will have small impact in the measured retrieval times.

In order to measure the mean object retrieval time, E
[

T̂(`, ϕ, n)
]
, we need to

formally describe the average evolution of Xt under Assumption 1. To do so, we
will focus on the average evolution of the number of blocks in the two previous
defined categories:

E[Xt] = E[Xon
t ] + E[Xoff

t ].

The probability that a single block disconnects during a period of time h is given
by its residual online lifetime distribution, R1, defined in eq. (2.4). Further, the
number of potential nodes to disconnect at time t is Xon

t . Then, the number of
blocks that disconnect during a period h, Xon

t −Xon
t+h follows a Binomial distribution

with probability Pr[R1 ≤ h] and population E[Xon
t ]. Using the expected value of the

Binomial distribution we have that the average evolution of Xon
t is:

E[Xon
t − Xon

t+h] = E[Xon
t ] · Pr[R1 ≤ h]. (4.9)

Analogously, the probability that a single offline block connects during a period
of time h is Pr[R0 ≤ h], and the number of potential nodes to connect at time t is
(n− Xon

0 )− Xoff
t . Where n− Xon

0 is the number of initially offline blocks. Then, we
have that the average evolution of Xoff

t is:

E[Xoff
t+h − Xoff

t ] =
(
(n− Xon

0 )− E[Xoff
t ]
)
· Pr[R0 ≤ h]. (4.10)

We want to note that this equation depends on the random variable that defines the
initial state of the system: Xon

0 (initial number of online nodes). In the following
paragraphs we will analyze the effects of different initial online nodes Xon

0 .

Solving the Model for the Mean Object Retrieval Time

With eq. 4.10 we can measure the average evolution of X assuming that nodes only
change their state once. In this section we will focus on the average evolution of the
other two processes, Y and X, and how to use the evolution of these processes to
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measure E
[

T̂(`, ϕ, n)
]
.

We defined Yt as the number of online and non-downloaded blocks at time t.
Following the same notation used for Xt, we will separate the online and non-
downloaded blocks in two different categories:

Yt = Yon
t + Yoff

t ,

where Yon
t are the blocks that were online at t = 0 (when the object retrieval started)

and Yoff
t the blocks that were offline at time t = 0.

Similarly, we defined Zt as the number of downloaded blocks at time t. Since we
are downloading blocks using p simultaneous subprocesses, we can account for the
number of blocks downloaded by each subprocess individually, Zi

t, ∀i ∈ [1, p], so
that, Zt = ∑

p
i=1 Zi

t. Then, we can similarly categorize the number of blocks that the
ith subprocesses downloaded at time t as:

Zi
t = Zon,i

t + Zoff,i
t ,

where Zon,i
t is the number of blocks downloaded until time t from initially online

nodes, and Zoff,i
t is the number of blocks downloaded until time t from initially of-

fline nodes. In order to simplify the evolution of Zon,i
t and Zoff,i

t , we do the following
assumption:

Assumption 2 (No transfer is canceled). Once a block transfer starts, it is always fin-
ished. No block transfer is canceled because of a node disconnection. The storage system can
choose a block size small enough to assume that.

Then, since no block download is ever canceled, every time t that a download
subprocess starts to download a block, the number of downloaded blocks Zt is im-
mediately increased and the number of non-downloaded blocks Yt is immediately
decreased. Since the block to download is uniformly chosen from all the online
blocks, it will corresponds to an initially online block with probability πt and to an
initially offline block with probability 1− πt. It means that each block download in-
creases Zon and decreases Yon

t with probability πt; and decreases Zoff
t and increases

Yoff
t with probability 1− πt, where πt is defined as:

πt =
Yon

t

Yon
t + Yoff

t
.

Assuming that the ith download subprocess started to download a block at time
t, then Di,k

t is the time that this subprocess needed to download its kth block. We
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define E[Di,k
t ] as follows:

E[Di,k
t ] =

τ(1) when E[Yt] ≥ 1,

τ(1) + E[βt] otherwise,
(4.11)

where E [Yt] ≥ 1 denotes when there is a block that has not been already down-
loaded, τ(1) is the mean time required to download a block (a system constant),
and βt is the time that the processes is waiting for an offline node to connect. Since
at time t there are (n− Xon

0 )− Xoff
t offline blocks, the value of βt can be expressed

as the minimum of (n− Xon
0 )− Xoff

t residual offline sessions:

βt = min
(

J1
0 , . . . , J(n−Xon

t )−Xoff
t

0

)
.

Where J0 is the residual offline session distribution. According to Castillo [17],

Pr[βt < u] = 1− (1− Pr[J0 ≤ u])(n−Xon
0 )−Xoff

t ,

E[βt] =
∫ ∞

0
(1− Pr[J0 ≤ u])(n−Xon

0 )−Xoff
t du.

Then, once defined the mean duration of each block download, E[Di,k
t ], we can

describe the evolution of Zon,i
t and Zoff,i

t as follows:

Zon,i
t+E[Di,k

t ]
− Zon,i

t =

1 with prob. πt,

0 otherwise

Zoff,i
t+E[Di,k

t ]
− Zoff,i

t =

1 with prob. 1− πt,

0 otherwise

Using the mean value of the Bernoulli distribution we obtain the expected values:

E
[

Zon,i
t+E[Di,k

t ]
− Zon,i

t

]
= πt (4.12)

E
[

Zoff,i
t+E[Di,k

t ]
− Zoff,i

t

]
= 1− πt. (4.13)
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Once we know the evolution of X and Z, we can finally describe the evolution of
Y by means of Yon and Yoff:

Yon
t −Yon

t+h =
(
Xon

t − Xon
t+h
)︸ ︷︷ ︸

disconnected blocks

+
p

∑
i=1

(
Zon,i

t+h − Zon,i
t

)
︸ ︷︷ ︸

downloaded blocks

(4.14)

Yoff
t+h −Yoff

t =
(

Xoff
t+h − Xoff

t

)
︸ ︷︷ ︸
connected blocks

−
p

∑
i=1

(
Zoff,i

t+h − Zoff,i
t

)
︸ ︷︷ ︸

downloaded blocks

(4.15)

Since we are interested in the average evolution of object retrieval times, we can
describe the average evolution of Y as the expected values of (4.14) and (4.15):

E
[
Yon

t −Yon
t+h
]
= E

[
Xon

t − Xon
t+h
]
+

p

∑
i=1

E
[

Zon,i
t+h − Zon,i

t

]
(4.16)

E
[
Yoff

t+h −Yoff
t

]
= E

[
Xoff

t+h − Xoff
t

]
−

p

∑
i=1

E
[

Zoff,i
t+h − Zoff,i

t

]
, (4.17)

where E
[
X*

t − X*
t+h
]

is defined in equations (4.12) and (4.13), and E
[

Z*,i
t+h − Z*,i

t

]
is

defined in equations (4.9) and (4.10).

At this point we have described the interdependencies between the processes X, Y
and Z as well as their average evolutions. We want to note that the equations de-
scribing the evolution of X (eq.(4.10)) still depend on the number of initial blocks
online, Xon

0 . Assuming that Xon
0 = x, we can use our formal model to measure the

conditioned expected retrieval time:

E[T(S0, S1, k, n)|Xon
0 = x] = min{t ≥ 0|E [Zt] ≥ k}.

To obtain E[T(S0, S1, k, n)], we have to consider all the initial circumstances as fol-
lows,

E[T(S0, S1, k, n)] =
n

∑
x=0

Pr[Xon
0 = x] · E[T(S0, S1, k, n)|Xon

0 = x], (4.18)

where Pr[Xon
0 = x] follows a binomial distribution with node availability, a, as its

probability, and the number of redundant blocks, n, as its population:

Pr[Xon
0 = x] =

(
n
x

)
ax(1− a)n−x.
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Online Sessions Offline Sessions

KAD µ = 0.38, λ = 6, 300 µ = 0.39, λ = 28, 000
E[S1] = 6.7h E[S0] = 27.7h

Skype µ = 0.42, λ = 19, 000 µ = 0.42, λ = 13, 000
E[S1] = 15.4h E[S0] = 10.5h

The µ and λ parameters correspond to the scale
and shape parameters of the Weibull distribution.

Table 4.1: Weibull parameters used to fit the session durations

Evaluation

In order to evaluate our analytical framework, we compare the retrieval times mea-
sured with our analytical framework with the times obtained by simulation. We
model the online/offline behavior of nodes using real traces from two real P2P ap-
plications. The first set of traces is from Skype, obtained by Guha et al. in [40].
These traces describe the behavior of 4,000 Skype’s super-nodes during a period
of one month. The second set of traces is from eMule’s KAD overlay, obtained by
Steiner et al. in [68], and describe the behavior of 400,000 KAD nodes, monitored
during 6 months.

Unfortunately, in both traces there are some nodes that present short membership
times –the time between the first online appearance and the last one. However, since
real storage systems provide incentives to nodes to prolong their membership —e.g.
in Wuala [75] users are rewarded with more storage capacity— we filtered the traces
in order to use only the nodes with longer memberships. We kept the top 1,000
nodes with longer membership from Skype traces and top 10,000 nodes from KAD.

For the analytical model, we obtained the distribution of the online/offline session
durations by fitting the Skype and KAD traces to a Weibull variate. Although Steiner
et al. provided the parameters for a Weibull fitting, we had to refit after filtering the
top 10,000 nodes. Using Yao et al. result [82], we use the offline session durations of
all nodes to obtain S0, all the online session durations to fit S1. In Figure 4.6 we can
see how the fitted distribution is close to real distribution of the online and offline
sessions.

In order to use the Weibull distribution in the analytical framework, we need to
measure the residual lifetimes of the online/offline session durations. We represent
the session duration distribution as S∗. Then, from the Weibull distribution we know
that,

Pr[S∗ < t] = 1− e−(
t
λ )

µ

,

E[S∗] = λ Γ
(

1 +
1
µ

)
.
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And then, using equations (2.3) and (2.4), we can compute the residual lifetimes, J∗,
as:

Pr[J∗ < t] =
1

E[S∗]

∫ t

0
(1− Pr[S∗ < u])du =

=
1

λ Γ
(

1 + 1
µ

) ∫ t

0
e−(

u
λ )

µ

du =

=
Γ
(

1
µ

)
− Γ

(
1
µ ,
( t

λ

)µ
)

µΓ
(

1 + 1
µ

) , (4.19)

where Γ is the gamma function, and µ and λ the shape and scale parameters of the
Weibull distribution.

Our evaluation is focused on measuring the reconstruction time of a data object
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Figure 4.6: Log-log plot of the CCDF for the online/offline session durations, S0 and S1 respectively,
(in seconds) of each trace, and its Weibull fitting. The crosses represent the values obtained from the
traces and the continuous line the fitted distribution.
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KAD Traces (a ' 0.2)

n 110 130 150 170 190 210 230

r 3.6̇ 4.3̇ 5 5.6̇ 6.3̇ 7 7.6̇

D(k, n, g, S) 0.030 0.181 0.476 0.761 0.921 0.981 0.996

Skype Traces (a ' 0.6)

n 40 45 50 55 60 65 70 75

r 1.3̇ 1.5 1.6̇ 1.83̇ 2 2.16̇ 2.3̇ 2.5

D(k, n, g, S) 0.030 0.200 0.525 0.807 0.945 0.989 0.998 0.999

Table 4.2: Redundancies and Availabilities Studied

stored using a MDS code (MBR Regenerating Code with k = d) with reconstruction
degree k = 30 and a variable number of storage blocks n. So the number of blocks
to download is set to ` = k = 30, and the amount of data downloaded from each
node is ϕ =M/k. Additionally, since we are using the unitary assignment function
we also have that the number of storage nodes used to store each file is equal to n,
|S| = n. Then, we can measure the redundancy introduced as r = n/k = n/30, and
the obtained data availability as D(30, n,S).

Regarding the time required to download each block, τ(1), we assume that it is
a system’s constant, determined by the block size, ϕ, and the upload bandwidth,
ω ↑: τ(1) = ϕ/ω ↑. However, the value of τ should be short enough to satisfy
Assumption 2 —block downloads are not canceled because of node disconnections.
This assumption satisfies when the residual online sessions are much larger than
τ(1), J1 � τ(1). To find a boundary value for τ(1) we define a small positive
constant ε = 0.001 so that Pr[J1 ≤ τ(1)] ≤ ε. Given the distribution of J1 for the
KAD and Sype traces, we obtain that the block transmission time, τ(1) is set to
τKAD(1) = 26 seconds for the KAD traces, and τSkype(1) = 59 seconds for the Skype
traces.

Since in Section 2.3.2 we defined the optimal retrieval time as τ(k), for k = 30
it gives us optimal retrieval times of τKAD(k) = 208 seconds and τSkype(k) = 472
seconds. For simplicity, instead of using seconds, we will measure object retrieval
times as a function of the optimal retrieval time, τ(k). We set the number of parallel
retrieval processes to 4 (p = 4).

We want to note that, although our analytical framework is constrained to as-
sumptions 1 and 2, the simulation scenario is not constrained to these assumptions:
(i) there is no restriction in the number of online/offline sessions of each node, and
(ii) block downloads can be canceled because of node departures.

Finally, in order to validate our framework in different data availability situations,
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Figure 4.7: Mean object retrieval time measured for different redundancy ratios (diff. n values). We
compare the values obtained by the experimental simulation and by the stochastic model.

we use different n values. We set n values to obtain a wide range of data avail-
abilities, from close to 0% to almost 100%. In Table 4.2, we show the redundancies,
r = n

k , and data availabilities, D(k, n, g,S), obtained for each number of redundant
blocks, n.

In Figure 4.7, we compare the retrieval times obtained by our stochastic model
against the retrieval times obtained in the simulated scenario. As we can observe,
the error incurred by the analytical framework increases for low n values: when
data availability is low. Low data availability causes longer retrieval times. When
these retrieval times become longer than session duration, Assumption 1 does not
hold, and the analytical prediction fails. To show how long the violation of As-
sumption 1 affects the error of the analytical framework, in Figure 4.8 we measure
the probability that online/offline sessions become longer than the mean object re-
trieval time (MRT). We can see how this probability becomes significant when the
number of redundant blocks, n, descents below 170 for KAD traces, and below 55
for Skype. Taking the values from Table 4.2 we can claim that, in the studied case,
data availabilities lower than 80% cause retrieval times longer than session dura-
tions. However, our stochastic model can perfectly predict object retrieval times
when data availability is higher than 80%.

Besides analyzing the mean retrieval times, in Figure 4.9 we plot the comple-
mentary cumulative distribution function (CCDF) of retrieval times. We want to
highlight the results obtained in the scenarios with more than 80% of data availabil-
ity: n ≥ 55 for Skype and n ≥ 170 for KAD. In these scenarios, more than half of the
retrievals recover the stored object with the optimal time, 1× τ(k). It means that by
reducing data availability from 99.9% to 80%, more than half of the retrievals are not
affected. However, reducing this data availability reduces the required redundancy
a 38%, and hence its associated costs. We also want to note that besides the different
node online availabilities (a = 0.2 for KAD and a = 0.6 or Skype), the shape of the
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Figure 4.8: Log plot of the probability that the online/offline sessions are longer than the mean object
retrieval time (MRT). When this probability is high, Assumption 1 cannot be applied.
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Figure 4.9: Log-log plot of the CCDF of the object retrieval time. Each line represents a different
redundancy ratio (different n value).

retrieval time distribution is the same for both traces.

In Figure 4.10 we show the effects of parallel block downloads. Each point in the
figure represents the time when the ith block was downloaded. Since we set p = 4,
we can see how the first blocks are downloaded four at a time. Under high data
availability, this behavior remains for all the 30 blocks. However, when objects are
stored with low data availability, the retrieval process must wait for the reconnection
of nodes before downloading the last blocks. In these cases, we can see how the use
of parallel downloads only speeds up the first retrieved blocks. Parallel downloads
do not have any effect beyond approximately the 15th block download.

Finally, in Figure 4.11 we focus our study in the times required to download the
last redundant block. In this case, the download times are expressed as a function of
the optimal block download time, τ(1). It is interesting to see how the download of
the last block suffers the same effects than the distribution of the total retrieval time.
However, predicting the time required to download the last block is a simpler task.
This last block retrieval time can be used to analyze the main effects that churn and
redundancy have in the total object retrieval time.
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Figure 4.10: Effects of concurrent block downloads. Each point represents the time where the ith block
was downloaded. Each line represents a different redundancy ratio (different n value).
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Figure 4.11: Log-log plot of the CCDF of the last block retrieval time (the 30th block). Each line
represents a different redundancy ratio (different n value).

4.4.4 Retrieval Time Distribution

In this section we provide an approximation of the distribution T(`, γ, n), T̂(`, γ, n).
As the method used in the previous section to obtain the mean retrieval time, the
approximation that we present in this section is also based on the fact that the time
required to download a block, τ(1), is several orders of magnitude smaller than the
average session durations: τ(1) � E [S0] and τ(1) � E [S1]. Under these circum-
stances we can make the following assumption:

Assumption 3. During a retrieval process, an online node does not disconnect before the
retrieval process completely downloads its stored block.

We want to note that this Assumption is slightly different from the Assumption 1
used in Section 4.4.3, where we assumed that nodes can only change their state once.

In order to obtain the retrieval time distribution under Assumption 3, we will
need the following theorem:

Theorem 1. Let o be the number of off-line nodes at any time t. The time elapsed until r of
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these m nodes reconnect follows the distribution Wr:o, which is defined as:

Pr[Wr:o ≤ t] = Iβ (Pr [J0 ≤ t] ; r, o− r + 1) ,

where Iβ is the regularized beta function, and J0 the residual offline time distribution,
eq. (2.3).

Proof. Let (x1, x2, . . . , xo), where x1 ≤ x2 ≤ · · · ≤ xo, be an i.i.d. sample drawn
from J0. This sample represents the residual off-line times of the o off-line nodes.
Since the sample is ordered, Wr:o corresponds to the distribution of the rth order
statistic of a sample of size o. As shown in [17], Wr:o is distributed accordingly to a
regularized beta function. This concludes the proof.

Once introduced Theorem 1 we can obtain the retrieval time distribution. Let
a retrieval process start at time t = 0. Let X0 be the number of on-line nodes at
time t = 0. From Assumption 3 we can state that when the number of initially
on-line nodes is X0 ≥ `, the retrieval process finishes in optimal time: τ(`) seconds.
When X0 < `, the retrieve process takes exactly τ(X0) seconds to download the
X0 initially on-line blocks. However, to download the remaining `− X0 blocks, the
retrieval process needs to wait for `− X0 nodes to reconnect, and download their
blocks.

Then, it is clear that the retrieval time distribution T̂(`, γ, n) depends on the initial
number of on-line nodes, X0. As a consequence of this, the CDF of T̂(`, γ, n) can be
expressed as the sum of the conditioned retrieval times:

Pr
[

T̂(`, γ, n)≤ t
]
=

n

∑
i=0

Pr[X0= i]·Pr
[

T̂(`, γ, n)≤ t
∣∣∣X0= i

]
where Pr[X0 = i], the probability to find i online nodes out of the total n storage
nodes, can computed using the data availability function:

Pr[X0 = i] = D(n, n, g,S).

To define Pr
[

T̂(`, γ, n)≤ t
∣∣∣X0= i

]
we consider three different cases:

Pr
[

T̂(`, γ, n)≤ t|X0= i
]
=


0 if t < τ(`)

1 if t ≥ τ(`) and i ≥ `

ϑ if t ≥ τ(`) and i < `

Due to the impossibility of retrieving ` blocks with less than τ(`) seconds, the
first case happens with zero probability. However, when t is larger or equal than
τ(`), we need to consider two cases depending on whether there are all the required

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DESIGN AND OPTIMIZATION OF HETEROGENEOUS DISTRIBUTED STORAGE SYSTEMS 
Lluís Pàmies Juárez 
DL:T. 1455-2011 



Chapter 4. Relationship between Redundancy, Availability & Retrieval Times 83

On-line Ses-
sions

Off-line Ses-
sions

KAD traces µ1 = 0.38, λ1 = 6, 300 µ0 = 0.39, λ0 = 28, 000
(a ' 0.2) E[S1] = 6.7h E[S0] = 27.7h

Skype traces µ1 = 0.42, λ1 = 19, 000 µ0 = 0.42, λ0 = 13, 000
(a ' 0.6) E[S1] = 15.4h E[S0] = 10.5h

Table 4.3: Weibull parameters (µ, λ) and mean node availability (a) used to fit session durations in
KAD and Skype traces.

blocks initially on-line (i ≥ `) or not (i < `). When i ≥ `, we know by Assumption 3
that the probability to retrieve ` initially on-line blocks with more than τ(`) seconds
is always one. Finally, when i < `, the retrieval process downloads the i initially on-
line blocks with τ(i) seconds, but it has to wait for `− i nodes to reconnect. From
Theorem 1 we know that the retrieval process will last W`−i:n−i additional seconds,
plus the τ(1) seconds required to download the block from the `− ith reconnected
node. We define the probability of this total time being shorter than t as ϑ:

ϑ = Pr [W`−i:n−i ≤ t− τ(1)|W`−i:n−i ≥ τ(`)] =

=
Pr [W`−i:n−i ≤ t− τ(1)]− Pr [W`−i:n−i ≤ τ(`)]

1− Pr [W`−i:n−i ≤ τ(`)]
.

Evaluation

To evaluate the accuracy of our approximation, T̂(`, γ, n), we assume on-line and
off-line session durations, S0 and S1 following Weibull variates with CDF F(t) =

1− e−(
t
λ )

µ

and expected value E[S] = λ · Γ
(

1 + 1
µ

)
. Weibull distribution has been

reported to provide a tight fit to real session distributions found in P2P systems [68].
Using the Weibull distribution, the residual off-line session durations can be com-
puted as we did in eq. (4.19):

Pr[J0 ≤ t] =
Γ
(

1
µ

)
− Γ

(
1
µ ,
( t

λ

)µ
)

µ · Γ
(

1 + 1
µ

) .

With this expression, we can measure T̂(`, γ, n) using the closed-form expression
presented in the previous section. To evaluate the accuracy of T̂(`, γ, n) we run
simulations that measure real retrieval times in a scenario where nodes connect and
disconnect freely. Specifically, the simulator models the behavior of n nodes that
draw their on-line and off-line session durations directly from the distributions S1

and S0 respectively. We validate our results using two real distributed scenarios
with different λ and µ values. The λ and µ values are the result of fitting real traces
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Figure 4.12: Log-log plots of retrieval times for KAD and Skype scenarios. The lines depict object
retrieval times obtained by simulation when ` = 30 and for different n values. Dots represent the
results approximated by T̂(`, γ, n) for the same ` and n values.

of aMule’s KAD nodes and Skype nodes. Table 4.3 provides the parameters (µ, λ)
used in each scenario as well as the mean on-line node availability a.

In our simulator, the node running the retrieval process does not disconnect before
finishing it. To satisfy Assumption 1, we set the parameters to ensure retrieval times
shorter than on-line/off-line session durations. The effects of violating Assump-
tion 1 were measured in Section 4.4.3. The retrieval process needs to download
` = 30 blocks of γ = 2MB at a constant bandwidth of ω = 20 KBps, allowing
only p = 4 concurrent downloads. This gives τ(1) = 102 seconds and τ(`) = 816
seconds. For each scenario we analyze retrieval times for different n values. In
Figure 4.4.3 we use lines to depict the CCDF of 5000 retrieval times obtained by
simulation and points to depict the CCDF measured using our closed-form approx-
imation: 1− Pr

[
T̂(`, γ, n) ≤ t

]
. We can see how our simple closed-form approxima-

tion obtains a high accuracy on predicting retrieval times in erasure-coded storage
systems.

4.4.5 A Framework Usage Guide

We have evaluated our analytical framework in terms of its accuracy on predicting
object retrieval times, for both the expected retrieval time and the whole retrieval
time distribution. We showed that there is a trade-off between data redundancy and
mean object retrieval times. However, we are interested in showing how distributed
storage systems can take advantage of our framework in order to allow nodes to
trade-off storage costs for retrieval time and optimize their storage systems.

In order to reduce the storage and communication costs, distributed storage sys-
tems must decide which are the mean retrieval times they can afford. Let us assume
a system using a MDS code (MSR Regenerating Code where k = d), and that x · τ(k)
is the mean reconstruction time expected by users, being τ(k) the optimal retrieval
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Figure 4.13: Redundancy required and data availability obtained to achieve different mean object
retrieval times.

time. For a specific x, the system can determine the value of n that achieve this mean
retrieval time x as:

n = min
{

n′ : n′ ≥ k, E
[
T(k, α, n′)

]
≤ xτ(k)

}
Using this n value we can compute data availability using D(k, n, g,S) and data

redundancy as r = k/n. In Figure 4.13 we plot for both traces data availability and
redundancy for nine different x values: x = {1.01, 1.1, 1.3, 1.5, 1.75, 2, 3, 4, 5}. We
depict redundancy using squared points and data availability using triangle points.
We can see how in both traces, redundancy and data availability are reduced as
retrieval times increase. We can also see how the relationship between retrieval
times and redundancy or between retrieval times and data availability is the same
in both traces.

Using the results from Figure 4.13, we can state how storage systems can benefit
from our analytical framework and reduce their storage costs:

• P2P storage systems: In storage systems like Wuala [75] or OceanStore [48],
users trade their local storage resources to obtain an ubiquitous and reliable
storage service. The more redundancy required to store each object, the more
local resources the user needs to trade. Using our framework, users can indi-
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vidually reduce the amount of local resources they trade by allowing longer
object retrieval times: each user can choose its own tradeoff between retrieval
times and resources used. For example, a user that can afford retrieval times
50% longer than optimal retrieval times (x = 1.5) can reduce their redundancy
requirements by a 30% in KAD traces (a = 0.2) and by a 18% in Skype traces
(a = 0.6). This entails a significant reduction of the amount of traded resources.

• Backup systems: In backup systems stored objects are occasionally read. In
these environments, repair times should be shorter than the mean time be-
tween block failures: redundancy is repaired faster than it is lost. For ex-
ample, let us assume that the average lifetime of a node until it permanently
disconnects is L,. Then, the expected number of blocks that fail during a repair
process is determined by E [T(k, α, n)] · n/L [32], where T(k, α, n) is the recon-
struction time distribution. Since we measure E [T(k, α, n)] as how many times
it exceeds the optimal retrieval time, E [T(k, α, n)] = x · τ(k), we can determine
the number of nodes that fail during a repair as x · τ(k) · n/L. A backup system
must configure n to guarantee that x · τ(k) · n/L < 1, i.e. no node disconnects
during a repair process. For KAD traces it means that when x = 5 and n = 154
the storage system can tolerate average node lifetimes of L > 44 hours. For
Skype traces when x = 5 and n = 56 the storage system can tolerate average
node lifetimes of L > 36 hours. Since in a storage systems nodes are expected
to remain in the system several months instead of several hours, tolerating
x = 5 can reduce the required redundancy up to 60% without compromising
data reliability.

4.5 Conclusions

In this chapter we have provided a set of tools to measure the effects that data
redundancy has on (i) data availability and (ii) on retrieval times.

To measure data availability we have provided an algorithm that measures it when
storage nodes only present a few possible online availability values. However, the
same algorithm can be used to approximate data availability when we create clusters
of nodes with similar availability and consider all nodes in these clusters as if they
had the same online availability. We have showed in this chapter that this approxi-
mation method reduces the computational complexity of measuring data availabil-
ity in heterogeneous systems. Besides that, we have provided a simple Monte Carlo
method to approximate data availability for those cases where the computational
complexity of the clustered algorithm is still too high.

Regarding how to predict retrieval times in distributed storage systems, we have
presented a novel analytical framework to model retrieval times in storage systems
using erasure code schemes. Our framework is based on two different modules:
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(i) A recursive algorithm that, step by step, measures the time required to retrieve
the next redundant block and approximates the mean value of retrieval times

(ii) An analytical closed-form expression that approximates the whole retrieval
time distribution.

Our retrieval time framework allows us to study the impacts that redundancy and
data availability have in object retrieval times. Thanks to our framework, we have
demonstrated that under real P2P churn scenarios, P2P storage systems can reduce
their redundancy up to 60% without affecting more than half of the object retrieval
times. By using our framework, P2P storage applications will be able to reduce the
storage costs while maintaining their optimal service. For P2P backup applications
it means to perform maintenance tasks with minimal communication. For other
storage systems, it means the opportunity to reduce storage and communication
costs with an acceptable loss in the retrieval performance.
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Chapter 5
Data Assignment Policies

Summary

In distributed storage systems different optimization questions arise when one has to de-
cide how to redundantly store a data object to a set of heterogeneous storage nodes: How can
we minimize the required redundancy? How can we maximize data availability and shorten
retrieval times? How can we guarantee fair data assignments? How can we maximize the
storage capacity of the system? In this chapter we analyze different data assignment polices
that face all these questions.

Some of the contributions of this chapter appeared in [3–5, 7] and were published in [8].
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5.1 Introduction

In Chapter 2 we have described the storage process of our generic storage system.
This storage process is used every time that a data object is redundantly inserted
in the system. Basically, for each data object the storage process obtains a subset
of storage nodes, S , and stores g(i, n, S) storage blocks to each node i, i ∈ S .
In Chapters 3 and 4 we have showed that the redundancy introduced during this
storage process entails storage and communication costs. We have provided the tools
required to optimize redundancy schemes to minimize these costs and provided
tools to measure the relationship between the introduced redundancy and the data
availability achieved and the expected retrieval times. To conclude the study of our
generic storage system, in this chapter, we focus on analyzing the impact of different
types of assignment functions g(i, n, S).

In the analysis of the design of the assignment function g we distinguish between
two different types of distributed storage systems:

Orchestrated Storage Systems.

An orchestrated distributed storage system is a storage system where all stor-
age nodes are managed or administrated by a single organization. We can
classify into this type of storage systems data center file systems, where all
storage nodes have the same owner, or even those storage systems where the
nodes’ owners concede the management to a third party, like in Cleversafe [21],
or in BOINC [11] infrastructures.

The main property of these orchestrated storage services is that the nodes’
owners are rarely users of the storage service. Additionally, the administrator
objective is to reduce the overall storage cost of the system and maximize its
total storage capacity.

Peer-to-Peer (P2P) Storage Systems.

Contrarily, in P2P storage systems, users owning storage nodes are also users
of the storage service. These users contribute their local storage resources to
obtain an online storage service.

To guarantee that a P2P storage system works, one expects a certain collabora-
tion between users. Unlike in P2P file sharing systems where tit-for-tat based
cooperation provides short-term incentives to users sharing their upload ca-
pacity, P2P storage systems need other incentives to maintain long-term co-
operation between users. One of the simplest ways of enforcing long-term
cooperation is the use of reciprocal data exchanges between nodes [23, 33]. It
means that for each data stored in a remote node, users need to give some
amount of local disk resources to the owner of the remote node. Besides forc-
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ing users to collaborate, these reciprocal exchanges guarantee that no user
consumes storage capacity without contributing some of their own resources.

Due to their different nature, each of these types of storage systems obtains the set
of storage nodes, S , using different node selection policies. Due to these different
node selection policies, and due to the presence of node heterogeneities, designing
efficient assignment functions, g, becomes a challenging task. We describe the node
selection policy and the challenges of designing g, for orchestrated storage systems,
and for P2P storage systems:

Orchestrated Storage Systems:

Selection of S .

In orchestrated storage systems the set of storage nodes S is chosen ran-
domly among all nodes with free disk capacity. This node selection policy
guarantees that the storage load is balanced across all the storage nodes.

Designing g(i, n, S).
Given a heterogeneous set of storage nodes S , obtained uniformly at ran-
dom, the storage process needs to determine how many storage blocks
to assign to each node so that the required redundancy to achieve a data
availability δ, R(k,S , δ), is minimized.

At first glance, it seems quite intuitive that one can minimize the required
redundancy by exchanging more redundant information to the highest
available nodes. However, if we take this approach to the extreme, i.e.,
by considering only the highest available nodes, we may experience a
decrease in data availability for the simple reason that there are less node
where to distribute the same amount of redundancy. This illustrates the
importance of finding an optimal trade-off between the number of nodes
and their online availability.

Contributions.

In this chapter, we analyze different data assignment functions through an
optimization algorithm. Also, we infer that assigning data proportional
to the availability of storage nodes minimizes the redundancy required
to achieve a certain data availability. We also show that the overall ca-
pacity that a storage system can achieve with proportional assignment is
superior than for simple symmetric assignments.

P2P Storage Systems:

Selection of S .

In P2P storage systems, users obtain online storage capacity by exchang-
ing their own local storage resources with the nodes in S . When users
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can select their sets of storage nodes selfishly, the storage system becomes
a competition where all users try to establish data exchanges with the
highest available nodes, reducing this way their required redundancy and
their contributed resources. This competition ends in a gradient topol-
ogy where nodes tend to exchange data with nodes of similar availabil-
ity [64, 72]. One of the advantages of this gradient topology is that it
provides incentives to nodes to improve their online availability. Addi-
tionally, since all nodes in S have similar online availability, this gradient
topology reduces the storage problem to a homogeneous storage prob-
lem, which allows to use the simple unitary assignment function and
to measure availabilities using the inverse Binomial CDF. Unfortunately,
these gradient topologies present two main drawbacks:

(i) Users from low-available nodes can only exchange data with other
low-available nodes. It greatly increases their required redundancy
which can discourage these users from joining the system [64].

(ii) As we demonstrate in Section 5.5, this gradient topology is subopti-
mal from the point of view of the overall resources that users need to
contribute in the system.

Designing g(i, n, S).
To solve the two above problems P2P storage systems can avoid gradient
topologies and simplify their design by randomly selecting the set of stor-
age partners, S . However, to adopt this new strategy, P2P storage systems
need a new assignment function g(i, n, S) meeting these three properties:

(i) The assignment function should maintain fairness among users. Users
that contribute more local storage resources, and for longer, should
receive more online storage resources.

(ii) New users must receive incentives to join the storage system. It
means that low-available users that just provide a few resources should
be also able to obtain some online storage service.

(iii) Beyond maximizing the storage capacity that each users receives, the
data assignment function should also guarantee that the overall stor-
age resources of the system are optimized, maximizing the total stor-
age capacity of the storage system.

Contributions.

Instead of exchanging more data to the highest available nodes, in Sec-
tion 5.5.4 we analyze a different solution that exchanges data asymmetri-
cally with other nodes. Our approach consists on asymmetric reciprocal
data exchanges between users: low-available nodes give extra disk capac-
ity to high-available nodes. The challenge is to determine which asym-
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metric exchange ratios guarantee the fairness among users and minimize
global and individual disk costs. We derive an analytical framework to
model asymmetric exchanges. Using our model we develop an algorithm
that each node can locally run to determine the asymmetric exchange
ratio to apply with any other random user. We demonstrate that our
asymmetric exchange model reduces the overall storage resources that
users contribute in the system, as well as the individual storage resources
contributed by each user.

The rest of this chapter is organized as follows. In Section 5.2 we present the re-
lated work. In Section 5.3 we model different node selection policies. In Section 5.4
we analyze data assignment policies for orchestrated storage systems, and in Sec-
tion 5.5 we analyze data assignment polices for P2P storage systems. Finally, in
Section 5.6 we state our conclusions.

5.2 Related Work

Independently of the redundancy scheme used to store each file, distributed storage
systems need to deal with the data assignment problem: Which is the most reliable
and less expensive way to store a file to a subset of storage nodes? Several papers have
proposed solutions to this question. We distinguish between those solutions assum-
ing homogeneous online node availabilities and those solutions assuming heterogeneous
online node availabilities:

5.2.1 Data Assignments in Homogeneous Storage Systems

When all nodes of a distributed storage system present the same (or relatively close)
online availability, the storage system can randomly use subsets of nodes to store
each data object. For systems with high number of nodes, a random node selec-
tion policy guarantees good load balancing between all storage nodes. However, the
problem of deciding which is the optimal way to assign an amount of redundancy
to this random subset of storage nodes is a complex non-convex optimization prob-
lem [49]. Leong et al. [51] demonstrated that a symmetric data assignment —i.e., the
unitary assignment function— is an optimal assignment when the size of the storage
node set, S , tends to infinity. These symmetrical allocations are the classical used in
existing distributed storage systems [35, 48, 83]. However, for small sets of storage
nodes, finding the optimal assignment function is a complex problem that depends
on several factors such as the amount of redundancy used, the online availability of
nodes, or the specific set of storage nodes [50].
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5.2.2 Data Assignments in Heterogeneous Storage Systems

Distributed storage systems like P2P or user-assisted systems are very susceptible
to be affected by heterogeneous online node availabilities. When nodes present this
heterogeneity, the selection of the set of storage nodes, S , is an important decision.
We analyze different proposed approaches.

External selection of storage nodes. Several papers have presented solutions to
exploit node heterogeneities and reduce redundancy. Mickens et al. [56] presented a
solution to exploit heterogeneities by storing more redundancy to the highest avail-
able nodes. However, a problem that arises when users store more data to those
high-available nodes is that it unbalances the amount of data stored per node, which
leads to the under-utilization of low-available nodes, and to reduce the overall ca-
pacity of the storage system. Another approach to deal with heterogeneities is to
measure node online patterns instead of online availabilities. Kermarrec et al. [45]
proposed a node selection policy that takes into account these different online pat-
terns to store files to sets of uncorrelated nodes. By guaranteeing that storage nodes
are not correlated they can reduce significantly the redundancy required.

Local selection of storage nodes. Other papers presented solutions that consid-
ered the rationality of the users that own storage nodes in P2P storage systems.
When users can freely adapt their own node selection policy, the system ends in a
competition where all users aim to store data (exchange data) to the most available
nodes [64,72]. Users tend to group and establish exchange relationships with nodes
of similar availability. Toka et al. [72] used a game theory analysis to show that a
selfish node selection policy, or even a semi-random node selection policy, is suffi-
cient to provide incentives to users for improving their online availability. However,
a similar study by Rzadca et al. [64] points out two problems of the selfish node
selection policies: (i) Achieving a perfect matching for all users is almost impossible
with decentralized algorithms, and it is NP-complete using centralized algorithms;
(ii) low-available users fail to obtain exchanges with nodes available enough to store
files with high availability. The impossibility of storing data for low-available users
discourages new users to join the system. To the best of our knowledge there are
no node selection algorithms for P2P storage systems that consider the selfishness
of users and solve the problems mentioned here.

Besides the mentioned problems, in this chapter we show another problem that
arises when users selfishly select their storage nodes: it reduces the overall storage
capacity of the system. Toka and Maillé [71] came at a similar conclusion when
they analyzed the global welfare of a selfish node selection policy. According to
their conclusions a hypothetical storage system based on price mechanisms might
outperform selfish node selection policies in terms of global welfare. In this chapter
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we go one step further and we demonstrate that a random node selection policy
outperforms selfish selection policies in terms of the overall disk consumption of
the system and we quantify the reduction of disk costs. Furthermore, we design a
complete incentive model based on asymmetric reciprocal exchanges between nodes
that somehow mimics the idea of an economic market where users buy availability
with disk resources. However, unlike in economic solutions, our algorithm is local
in the sense that each user can individually know a priori the asymmetric exchange
ratios to apply to any other user.

5.3 Modeling Node Selection Policies

To model different assignment functions, we follow the same methodology used in
Section 4.3.1 and group storage nodes in clusters with similar availability. Specif-
ically, we assume a storage system where storage nodes only present m different
online availability values. In this storage system, nodes group by availability to
form m different clusters. The union of these m clusters constitutes a partition of the
storage system, N . Let Ci be the ith availability cluster, then:

N =
m⋃

i=1

Ci. (5.1)

Unlike in Section 4.3.1, for the sake of simplicity in this chapter we assume that all
clusters are equally populated:

|Ci| = |Cj|; ∀i, j ∈ 1, . . . , m;

and we enumerate the m different clusters so that the following condition satisfies:

â1 ≤ â2 ≤ · · · ≤ âm,

where âi is the representative availability of the ith cluster, aj = âi; ∀j ∈ Ci.
We want to note that the creation of these equally-populated clusters is a simplifi-

cation of a real heterogeneous storage system. In real systems where nodes present
more than m different online availabilities, we can group nodes by similar avail-
ability and define the cluster availability, âi, as the average online availability of all
nodes in Ci:

âi =
1
|Ci| ∑

j∈Ci

aj.

As we stated in Section 4.3.1, although the clusterization of a heterogeneous system
is just an approximate representation, we can assume that for large m values, the
clustered system is a faithful representation of a real heterogeneous storage system.
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Using this clustering model we can can assume that the number of availability
clusters m is set to the size of the set of storage nodes, m = |S|. This assumption
allows us to define two simple node selection functions that we will evaluate in the
rest of this chapter. These node selection functions are:

• Uniform node selection policy. Each storage processes obtains a mixed set of
storage nodes, denoted by Suniform, that contains exactly one node from each
availability cluster:

Suniform = {j : j ∈ Ci}m
i=1 .

• Clustered node selection policy. Each storage processes obtains a clustered
set of storage nodes, denoted by Sith, that is a m-subset of the ith availability
cluster:

Sith ⊆ Ci s.t. |Sith| = m.

And there are only m different clustered sets, namely, S1st,S2nd, . . . ,Smth.

In the rest of this chapter we will use these two node selection policies to evaluate
the assignment functions used in orchestrated storage systems and in P2P storage
systems.

5.4 Data Assignment in Orchestrated Storage Systems

The aim of this section is to evaluate, given a uniform set of storage nodes, Suniform,
which is the optimal assignment function, g(i, n, Suniform), that minimizes the re-
dundancy required to achieve a specific data availability. By abuse of notation in the
rest of this section we will refer to Suniform simply as S .

The basic intuition to minimize the required redundancy in a heterogeneous stor-
age system is to store data to the nodes with the highest availability in S . However,
if we take this approach to the extreme, i.e., by considering only to the highest
available nodes, we may experience a decrease in data availability for the simple
reason that there are less nodes where to distribute the same amount of redun-
dancy. Another approach is to use all nodes and store more data to the nodes with
visibly higher availability. Unfortunately, this approach may also has negative ef-
fects in the data availability obtained since it concentrates all the redundancy to
only a few nodes. Therefore, the assignment function g should find the optimal
trade-off between spreading redundancy to all storage nodes in S and concentrat-
ing redundancy to the highest available nodes. Finding this optimal assignation is a
NP problem that cannot be precisely solved in less than exponential time. However,
in this section, we use a heuristic based on a particle swarm optimization (PSO)
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to find the best assignment among all the possible ones. In our case, the optimal
assignment, g, is the one that maximizes D(k, n, g,N ) for a fixed k, n and N values.

In Section 5.4.1 we define the search space for the PSO algorithm. Then, in Sec-
tion 5.4.2, we describe the PSO algorithm and in Section 5.4.4, we infer the optimal
function g from the optimization results. Finally in Section 5.4.5 and 5.4.6 we com-
pare the performance of the inferred g against the classical symmetric assignment
function.

5.4.1 Defining the Search Space

Due to the huge number of possible assignment function implementations, in this
section we use an optimization algorithm to find the optimal assignment among all
the possible ones. In our case, the optimal assignment, g, is the one that maximizes
the data availability function, D(k, n, g,N ), for a fixed k, n and N values.

Definition 9 (Search Space of g). Given a storage set, S , and a number of storage blocks,
n, the search space of g, H(S , n), is defined as the set with all the possible implementations
of g.

To formally define H(S , n), let us consider the Cartesian |S|-space, R|S|; that is:
R|S| is an affine and Euclidean |S|-dimensional space coordinated and oriented by
the orthonormal affine frame

R =
{

O;−→e 1, . . . ,−→e |S|
}

.

Then, assuming that S is an ordered set, the vector with all node assignments,
[g(i, n,S)]i∈S , corresponds to a point p ∈ N|S| on frame R with integer coordi-
nates

(
x1, x2, . . . , x|S|

)
. Each component xi corresponds to the number of redundant

blocks assigned to the ith node in S .
From the whole search space R|S|, we are only interested in a small subset of

possible solutions that satisfy the requirement of the assignment function g (from
Definition 4):

∑
i∈S

g(i, n, S) = n.

This requirement restricts the search space to the positive area of the hyperplane πn,

πn ≡
|N |

∑
i=1

xi = n.

And finally, we can define the search space H(S , n) as:

H(S , n) = {~x ∈ πn|xi ≥ 0; ∀ i = 1, . . . , |N | } . (5.2)
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5.4.2 The Particle Swarm Optimizer (PSO)

To find the optimal assignment function, we used Particle Swarm Optimization
(PSO) [44]. PSO can be applied to virtually any problem that can be be expressed
in terms of an objective function for which an extrema is required to be found. PSO
conducts search using a population of particles that “flies” across the surface of the
objective function. Information about promising regions of the function is shared
between particles, allowing other particles to update their velocities to direct their
motion towards other particles in fitter regions. The election of PSO was not arbi-
trary. We chose PSO because research results has shown that it outperforms other
nonlinear optimization techniques such as Simulated Annealing and Genetic Algo-
rithms [44].

On the search space H(S , n), the ith particle is defined by two vectors in H(S , n):
its position,~xi, and its velocity, ~vi. The initial positions and velocities are generated
uniformly at random within the search space.

At each step, the ith particle updates its velocity ~vi and position~xi using random
multipliers, the personal best position,~xi,best, and the swarm’s best experience, ~ubest,
using the following equations:

~vi = w ~vi + ξ1r1(~xi,best −~xi) + ξ2r2(~ubest −~xi), (5.3)

~xi =~xi +~vi, (5.4)

where w is a parameter called the inertia weight, ξ1 and ξ2 are two positive constants,
referred to as “cognitive" and “social" parameters, respectively, and r1 and r2 are
drawn from a random uniform distribution on [0, 1].

Informally, when all the particles collapse with zero velocity in a particular posi-
tion in the search space, the swarm has converged.

The inertia weight is a user-specified parameter that controls the impact of the
previous history of velocities on the current velocity. Hence, it resolves the trade-off
between the global and local exploration ability of the swarm. A large inertia weight
value encourages global exploration (moving to previously not searched areas of the
space), while a small one favors local exploration.

A suitable value for this coefficient provides the optimal balance between the
global and local exploration ability of the swarm, thereby improving the effective-
ness of the algorithm. Previous experimental results suggest that it is preferable to
initialize the inertia weight to a large value, giving priority to global exploration of
the search space, and gradually decrease it to obtain refined solutions [66]. Conse-
quently, we set the inertia weight using the following equation:

w = wmax −
wmax − wmin

imax
× i,
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where wmax and wmin are respectively the initial and final values of the inertial
coefficient, imax is the maximum number of iterations, and i is the current iteration.

Finally, at each iteration of the PSO algorithm each particle i executes the fitness
function to rate its actual position and update, if required, the ~xi,best or ~ubest. In
our case the fitness function is the data availability function, D(k, n, g,S), where
for each particle ~x the function g is defined so that the following condition holds
(assuming that S is an ordered set):

~x = {g(i, n, S)}i∈S .

5.4.3 Adapting the Search Space for the PSO Algorithm

The main drawback of using PSO to find the optimal assignment function is that the
search space is not continuous and particles cannot “freely" adjust their positions
according to the rules defined in the previous subsection. To illustrate this drawback,
let us imagine a particle ~xi describing a specific position within the search space.
Then, by definition of the search space it holds that:

n

∑
j=1

xi,j = n. (5.5)

If the particle has a velocity ~vi = {1,−1, 0, 0, . . . , 0, 0}, the particle will update its
position by applying the following operations:

xi, 0 := xi, 0 + 1, (5.6)

xi, 1 := xi, 1 − 1; (5.7)

and will move to a valid position that still satisfies eq. (5.5). Unfortunately, if the
particle has a velocity ~vi = {1, 0, 0, . . . , 0, 0}, it will update its position only by
xi, 0 := xi, 0 + 1, and will not satisfy the necessary condition from eq. (5.5), i.e., it
will happen that ∑n

j=1 xi,j = n + 1. It means then that we cannot apply PSO directly
by randomly assigning particles to positions in the positive area of the hyperplane
πn and allowing them to move freely in all directions. If we allowed this, PSO would
randomly update the position and velocity of each particle in all of its dimensions in
the frame R. It would cause particles moving within all R|N |, generating positions
out of the hyperplane πn, which is not compliant with the requirements of function
g: particles should move within the positive area of πn.

In order to solve this drawback we move the reference frame within R|N |, setting
|S| − 1 vectors of the new frame within the plane πn, and then, freeing particles
from one degree of freedom, and keeping them always within πn. Figure 5.1 depicts
a simple example of the frame movement. The example represents a node set with
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Figure 5.1: Example of the reference frame transformation from R to R′ with three storage nodes.
Each axis represents the number of redundant blocks stored in each node. The assignment function has
to assign 6 redundant blocks (n = 6). The hyperplane π6 represents the search space containing all the
possible assignments.

only three nodes N = {a, b, c}. Each axis represents the number of redundant
blocks assigned to each of these nodes. Thanks to the transformation from frame
R to frame R′, we can see how the block assignment (1, 3, 2) ∈ R corresponds to
(1, 3, 0) in the new frame R′. Note that the interesting property here is that the
third dimension in R′ is always zero.

Further, because we are dealing with block assignments, we can only work with
integer positions in R. An interesting property of the transformation R → R′ is
that when integer positions in R′ are transformed backwards to R, they always
have integer coordinates in R too. This property allows to freely move particles in
R′ and round them to the nearest integer position each time we evaluate it through
the fitness function. Lemma 7 describes this property analytically. Before stating it,
we first introduce the required geometrical background.

If we write,

−→u i =


−→e i −−→e |S|, if 1 ≤ i ≤ |S| − 1,

|S|
∑

i=1

−→e i, if i = |S|.
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we can easily find the vectorial equation of πn:

πn ≡ X = A +
|S|−1

∑
i=1

λi
−→u i,

where λi ∈ R, and A is the intersection of πn with the |S|th axis of coordinate
system R; A = πn ∩ r|S|. The coordinates of point A on R are (0, 0, . . . , 0, n). And
the vector −→u |S| is orthogonal to πn.

Now, let
(

x′1, x′2, . . . , x′|S|
)

be the coordinates of a point~x ∈ R|S| on the new affine

frame R′ =
{

A;−→u 1,−→u 2, . . . ,−→u |S|
}

. Then, ~x ∈ πn if an only if its last coordinate

x′|S| = 0.

Lemma 7. If a point ~x ∈ πn has integer coordinates on frame R′, then ~x has also integer
coordinates on frame R; that is: if we have

~x =
(

x1, x2, . . . , x|S|
)
R
=
(

x′1, x′2, . . . , x′|S|−1, 0
)
R′

then, {
x′i
}|S|

i=1 ⊂ Z⇒{xi}
|S|
i=1 ⊂ Z.

Proof. To prove the lemma we consider the algebraic relationship between the two
systems of coordinates, using the definition of −→u i:

M


x′1
...
x′|S|−1

0

+


0
...
0
n

 =


x1
...
x|S|−1

x|S|

 , (5.8)

where (0 . . . 0 n) represents the shift between R and R′, and M is the rotation and
scale matrix given by:

M =



1 0 0 · · · 1
0 1 0 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 1 1
−1 −1 −1 −1 1


.
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Then,

xi = x′i , with 1 ≤ i ≤ |S| − 1,

x|S| = −
|S|−1

∑
i=1

x′i + n;

and the lemma follows.

Finally, we want to note that in order to run the PSO algorithm, we initially set
all particles ~xi randomly in the positive part of frame R′. At each PSO step we
use eq. (5.8) to transform the coordinates of each particle from R′ to R, and we
evaluate the fitness function D(k, n, g,S) using the coordinates of~xi over R. Finally,
when all particles collide in a single point, we can obtain the optimal assignments
by transforming this point to R. This way we obtain the assignment function that
maximizes the data availability function D.

5.4.4 Deriving g from PSO results

To find the optimal assignment function, we ran the PSO algorithm in different
scenarios with different set sizes and different node availabilities. In our experiments
we set the PSO’s inertia parameters to wmin := 0.5, wmax := 0.75 and imax = 50, and
the constants to ξ1, ξ2 := 1. We used a population of 100 particles. Using this setup
we ran two different experiments:

(i) In the first experiment we used a small set of storage nodes |S| = 10 and
we evaluated the availability function D(k, n, g,S) —i.e., the fitness function—
using the generic analytical expression defined in eq. (2.15).

(ii) In the second experiment we made use of a larger storage set |S| = 100, and
we approximated D(k, n, g,S) using the Monte Carlo method presented in Sec-
tion 4.3.2.

Due the lack of real availability traces from distributed storage systems, we used
random availabilities drawn from different beta distributions with mean values
{0.25, 0.5, 0.75} and variances {0.01, 0.02, 0.03, 0.04}. To show the effects of the
value of k, we tested four different k values for each experiment,
k ∈ {n/5, n/3, n/2, n/1.5}, where n := 10 |N |.

Figure 5.2 shows the optimal assignment found for the first experiment (|S| = 10).
Each subfigure plots the number of storage blocks assigned to each node as a func-
tion of its online availability, ai. For each mean online availability we depict the
assignments of 100 different PSO executions. We can observe that the optimal as-
signment tends to assign more redundant data to nodes with the highest availabil-
ity, without discarding the low-availability ones. This assignment also tends to be
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aligned along a line that passes through the origin of coordinates. The errors that
we appreciate —i.e., points separated from this line— are due to the side effects of
using a non-deterministic assignment algorithm: PSO.

Figure 5.3 shows the same results than Figure 5.2 but for the second experiment
(|S| = 100). Although this time we used a doubled heuristic (PSO + Monte Carlo),
the results tend to be analogously aligned. This time, since we used a larger set
of storage nodes, the results appear less sparse. Again, some errors appear —i.e.,
points separated from the main line— because of the non-deterministic assignment
algorithm: PSO.

Since the number of assigned blocks to each node i ∈ S , g(i, n,S), depends only
on its online availability, ai, we can directly infer from the experimental results that
g could be expressed as a linear equation, g(i, n,S) = s ai + o. Since the origin of
the resultant line is (0,0), we know that o = 0. Further, since the total amount of
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Figure 5.2: Optimal assignments for |S| = 10, n = 100. Each point represents the number of
redundant blocks assigned to a node, the availability of which is in the horizontal axis. Each sub-figure
contains the assignments for the four different variances used.
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assigned blocks should be equal to n,

∑
i∈S

g(i, n,S) = ∑
i∈S

s ai = n ⇒ s =
n

∑i∈S ai
,

where s is the slope and then,

g(i, n,S) = ai

∑j∈S aj
× n , (5.9)

Equation (5.9) is the optimal assignment function derived from experimental ob-
servations. This simple function assigns to each node a fraction of redundant blocks
proportional to the amount of availability it provides to the system. It is possible (in
the case of high heterogeneous environments) that g(i, n,S) > k, i ∈ S . Although
it is unlikely to happen, we need to prevent a single node from storing more blocks
than the required to recover the original data object. To address this issue, we define
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Figure 5.3: Optimal assignments for |S| = 100, n = 1000. Each point represents the number of
redundant blocks assigned to a node, the availability of which is in the horizontal axis. Each sub-figure
contains the assignments for the four different variances used.
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the assignment function g′ as follows:

g′(i, n,S) = min (g(i, n,S), k) .

It is interesting to note how we have managed to transform a complex optimiza-
tion problem into a simple, easy-to-implement, yet (as we will see in the next section)
effective solution. Finally we want to make the following important remark:

Remark 5 (Assignment Granurality). In order to allow the assignment function to assign
storage blocks in proportion to each node availability, the total number of storage blocks to
assign, n, should be large enough to provide the desired assignment granularity. Even so, in
some scenarios the assignment process will need to assign/deassign some redundant blocks
from some nodes to guarantee that ∑i∈S g(i, n,S) = n is satisfied.

5.4.5 Redundancy Savings with Proportional Assignment

Once we determined the optimal assignment function, it is natural to ask whether
or not the proportional assignment defined in e.q. (5.9) requires less redundancy to
achieve a certain data availability, δ, than the classical symmetric assignment (the
unitary assignment function). To do so we analyze the redundancy required to store
a single data object using a set of storage nodes selected uniformly among the m
different availability clusters.

In Chapter 2, eq. (2.10), we defined the minimum redundancy required to achieve
a certain data availability δ as a function of the reconstruction degree, k:

R(k, S , δ) =
min {n : D(k, n, g, S) ≥ δ, n ≥ k} × α

M .

This redundancy definition finds the minimum n value that guarantees δ for any
given k value. However, in this case, to achieve the required assignment granularity
that we mentioned in Remark 5, we need to fix the number of storage blocks, n, to
a large value: n := |S| · Φ, for a large Φ, Φ ∈ R+. Then, to avoid changing the
value of n, we redefine data redundancy as a function of n instead of defining it as
a function of k:

R(n, S , δ) =
max {k : D(k, n, g, S) ≥ δ, n ≥ k} × α

M . (5.10)

Using this redefinition of R we aim to validate if in heterogeneous storage infras-
tructures, the proportional data assignment function defined in eq. (5.9) reduces the
redundancy requirements of the symmetric assignment function (unitary function)
that assigns one block per node (for n = |S|). For this purpose we define the Redun-
dancy Saving Ratio metric (RSR). This metric measures the savings in redundancy
caused by using the proportional assignment function, Rprop(n,S , δ), instead of the
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|S| = 10 |S| = 100
Trace Mean Var. δ = 0.9 δ = 0.99 δ = 0.999 δ = 0.9 δ = 0.99 δ = 0.999
Skype [40] 0.544 0.105 42.24% 49.17% 73.15% 28.76% 31.80% 34.84%
Planetlab [69] 0.816 0.063 16.41% 19.60% 24.38% 10.00% 11.68% 13.69%
Microsoft [14] 0.738 0.061 16.39% 19.60% 48.77% 14.45% 16.24% 19.22%
Seti@Home [43] 0.552 0.109 33.14% 36.17% 41.03% 19.76% 22.15% 31.12%
Beta(0.25,0.01) 0.25 0.01 0% n.a. n.a. 4.54% 5.87% 0%
Beta(0.25,0.02) 0.25 0.02 0% n.a. n.a. 19.22% 19.99% 17.63%
Beta(0.25,0.03) 0.25 0.03 0% n.a. n.a. 27.57% 30.42% 31.56%
Beta(0.25,0.04) 0.25 0.04 0% n.a. n.a. 36.35% 40.72% 40.89%
Beta(0.5,0.01) 0.5 0.01 0% 0% n.a. 0% 2.50% 5.26%
Beta(0.5,0.02) 0.5 0.02 0% 0% n.a. 6.24% 7.14% 5.40%
Beta(0.5,0.03) 0.5 0.03 0% 0% n.a. 10.00% 11.36% 9.75%
Beta(0.5,0.04) 0.5 0.04 0% 0% n.a. 15.38% 14.89% 13.95%
Beta(0.75,0.01) 0.75 0.01 0% 0% 0% 1.41% 0% 1.59%
Beta(0.75,0.02) 0.75 0.02 0% 0% 0% 4.11% 5.71% 3.08%
Beta(0.75,0.03) 0.75 0.03 0% 0% 0% 5.33% 5.79% 7.46%
Beta(0.75,0.04) 0.75 0.04 0% 0% 0% 7.89% 8.33% 8.69%

Table 5.1: RSRs for real and synthetic availability traces. For the n.a. cases, the storage system was
not able to achieve the desired data availability, δ.

symmetric one, Rsymm(n,S , δ). Provided that the proportional assignment can po-
tentially reduce the amount of redundancy, we define the Redundancy Saving Ratio
as:

RSR =

(
1−

Rprop(n,S , δ)

Rsymm(n,S , δ)

)
× 100 (5.11)

For our evaluation, we again use the two different experiments defined in Sec-
tion 5.4.4 with node set sizes of |S| = 10 and |S| = 100. We run the experiments in
both cases with three different desired availabilities δ = {0.9, 0.99, 0.999}.

For the online availability of the nodes we use the same 12 distributions based on
the Beta distribution we used in Section 5.4.4. Further, we use four node availability
traces from real distributed applications [38]. These traces consists of the availabili-
ties of Planetlab nodes [69], Skype super-nodes [40], Microsoft desktop PCs [14], and
Seti@Home’s desktop grid nodes [43]. Note that all these traces are heterogeneous
scenarios where nodes present different online availabilities. For each simulation we
find the optimal redundancy Rprop(n,S , δ) and Rsymm(n,S , δ) using eq. (5.10) and
we set n := 100|S| in all the experiments.

Table 5.1 shows the redundancy savings, RSR, for each simulation. It is interesting
to note that for small set of nodes, |S| = 10, the proportional assignment is unable
to reduce the required redundancy compared with the symmetric assignment func-
tion, in those scenarios where with low heterogeneity (Beta distributions with low
availability variance). However, the required redundancy is reduced up to 73.15%
in storage scenarios with higher variance (i.e., Skype). For the large set of nodes,
|S| = 100, there are redundancy savings for almost all the scenarios. Finally, from
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the overall results we can infer that the redundancy savings are maximized when the
heterogeneity increases, or when the storage system targets more data availability,
δ.

5.4.6 Overall Storage Capacity with Proportional Assignment

However, although we demonstrated that the proportional assignment function re-
duces significantly the redundancy required to store a single object with a certain
data availability, δ, it is not clear if the proportional assignment can maximize the
overall storage capacity of an orchestrated storage system. The main drawback of
the proportional assignment function is that it assigns more data to the highest
available nodes, and once all the storage capacity of these high-available nodes is
used, no more data can be inserted into the system. However, when this happens,
low-available nodes still have free storage resources that are no longer used. In this
subsection we aim to formally measure if despite these unused resources, the low
redundancy requirements of the proportional assignment can improve the storage
capacity of a system using a symmetric data assignment function.

As we defined in Section 5.3, in orchestrated storage systems the set of storage
nodes S contains a node from each data availability cluster. We want also note that
we treat all nodes from one cluster as if they had the same online availability, and
that by definition of g (Definition 4), all nodes in the same cluster are assigned with
the same amount of data. Then, we can denote by Ch the cluster where the assign-
ment function assigns more storage blocks. Then, it is easy to see that g(i, n,S),
∀ i ∈ Ch, is the maximum number of blocks that a node from S stores.

Assuming that all all nodes in N have a storage capacity of s storage blocks (of
size α · s bytes), then the maximum number of objects that can be stored in this
clustered system is:

max. number of stored objects =
s

g(j, n,S) × |Ch|; where j is any j ∈ Ch.

And since all clusters have the same size, |Ci| = |N |/m; ∀i = 1 . . . m, the previous
expression reduces to:

max. number of stored objects =
|N | · s

m · g(j, n,S) ; for any j ∈ Ch.

Assuming that |N | and s are system constants, the maximum storage capacity of
a clustered storage system is proportional to S:

S =
1

m · g(j, n,S) ; for any j ∈ Ch. (5.12)
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Traces δ = 0.9 δ = 0.99 δ = 0.99 δ = 0.999999
KAD [68] 15.18% 15.55% 17.28% 15.49%
Microsoft [14] 8.70% 9.40% 9.43% 9.25%
Seti@Home [43] 14.95% 15.99% 17.03% 14.68%
Skype [40] 17.78% 17.73% 18.80% 23.36%
Planetlab [69] 6.69% 7.04% 7.34% 5.22%

Table 5.2: Storage Capacity Gains (SCG) achieved by using a proportional assignment function in-
stead of a symmetric assignment function. The values are obtained for different targeted data availabil-
ities, δ, and after clustering nodes into m = 100 different availability clusters.

Let gproportional be the proportional assignment function that we derived in eq. (5.9).
Let also gsymmetric be the symmetric (or unitary) assignment function from Defini-
tion 5 (Chapter 2). Then, replacing the assignment function g from eq. (5.12) by
gproportional, and by gsymmetric, we can compare the storage capacity of proportional
assignment function with the storage capacity of a symmetric assignment function
using the Storage Capacity Gain (SCG); defined as follows:

SCG =
S[g = gproportional]− S[g = gsymmetric]

S[g = gproportional]
× 100. (5.13)

To evaluate it, we use the same real traces used in the previous subsection: avail-
abilities of Planetlab nodes [69], Skype super-nodes [40], Microsoft desktop PCs [14],
Seti@Home’s desktop grid nodes [43], and aMule’s KAD DHT nodes [68]. For each
simulation we clustered the availability traces in m = 100 equally-populated avail-
ability clusters, and we constructed the set of storage nodes S by selecting one
random node from each cluster. Hence, the storage sets S used by each storage
process do not have to be the same. To measure SCG, we set n := 100 · |S| =
100 ·m for the proportional assignment (to increase the assignment granularity) and
n := |S| = m for the symmetric assignment. For both cases (proportional and sym-
metric assignments), the storage processes targeted 4 different data availabilities:
δ = {0.9, 0.99, 0.999, 0.999999}.

In Table 5.2, we show the average SCG value of 100 different clustered node se-
lections. As we can see, the average SCG value is positive for all the experiments,
which means that the proportional assignment function obtains more storage ca-
pacity than the symmetric assignment function. Consequently, despite the uneven
distribution of the data redundancy across the different clusters, the proportional as-
signment function is able to increase the overall storage capacity of a heterogeneous
and orchestrated storage system.
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5.5 Data Assignment in P2P Storage Systems

In the first part of this chapter we have analyzed how to maximize the overall storage
capacity of an orchestrated storage system by using a simple proportional assign-
ment function. However, unlike in orchestrated systems, in P2P storage systems
users need to contribute some of their own local storage resources in order to obtain
a certain online storage capacity. Forcing users to contribute resources leads rational
users to develop assignment policies that minimize the amount of local resources each
user needs to contribute, instead of maximizing the overall storage capacity of the sys-
tem. In these selfish scenarios, the main challenge of a heterogeneous distributed
storage system is to design data assignment policies satisfying the following two
requirements:

(i) Incentives to Improve Availability: The assignment policy must encourage
users to improve their online availability in order to reduce the overall redun-
dancy costs.

(ii) Fairness Among Users: The assignment policy must guarantee the fairness
among users in terms of the amount of contributed resources. If two users i and
j have availabilities ai and aj respectively such that ai > aj, a fair P2P storage
system must guarantee that the storage resources user i needs to contribute are
always less than the resources user j needs to contribute.

Two different solutions have been proposed in the literature to meet the previous
two requirements:

• Centralized Monitoring: Users receive an online storage capacity proportional
to its online availability, and proportional to the amount of storage resources
they contribute to the system. A centralized entity is responsible for monitor-
ing the amount of resources each user provides, and their online availability.
Wuala [75] is a clear example of a P2P storage system with a centralized moni-
tor. In Wuala, a user contributing s bytes, and with online availability a, obtains
an online storage capacity of a · s bytes 1.

• Gradient Topologies: To avoid the use of a central monitoring entity, P2P
storage systems can achieve the previous two requirements (incentives and
fairness) using symmetrical data exchanges between users, and selfish stor-
age node selection policies. On the one hand, by using symmetrical data
exchanges, users can only demand to remote nodes the same amount of data
they give to them, guaranteeing that no user consumes more resources than
the ones it provides [33]. On the other hand, allowing users to selfishly se-
lect their set of storage nodes leads to a competition game where users group

1To be able to trade storage in Wuala, users need to be online at least 4 hours a day
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by similar availability in a gradient topology [64, 72]. This gradient topology
provides incentives to low-available users to improve their online availability,
and to obtain sets with higher available nodes. And the gradient topology
also guarantees fairness between users because high available nodes need to
use less redundancy to store their objects, and then, need to contribute less
resources.

In this section we focus our analysis on decentralized assignment policies for P2P
storage systems. Besides analyzing gradient topologies, we also analyze uniform
topologies where users use symmetrical data exchanges between them, but select
their set of storage nodes uniformly at random. Then, we define the resource savings
that a user i obtains by changing its selfish selection policy for a uniform selection
policy by:

si = Rselfish − Runiform;

where Rselfish are the resources contributed by user i with selfish selection policy,
and Runiform are the resources contributed by user i with uniform selection policy.

Analyzing the value of si for different nodes we will show that high-available
nodes have negative savings, si < 0. It means that high-available nodes cannot
reduce their contributed resources by adapting uniform node selection policy in-
stead of selfish selection policy. However, low-available nodes obtain positive sav-
ings, si > 0. This result is intuitive since low-available nodes improve the aver-
age availability of their storage sets by adapting uniform node selection policy, but
high-available nodes cannot improve the average availability of their storage sets by
adapting uniform selection policy. Surprisingly, in this section we show that the sum
of all the node savings are always positive for most of the P2P scenarios, it is to say
that:

∑
i∈N

si > 0.

Then, the problem that we aim to solve in this section is the following:

Given that the overall savings of adopting uniform selection policy are pos-
itive, can we distribute these savings among all nodes, so that si > 0 ∀i ∈ N ,
while maintaining the incentive and fairness requirements?

To distribute the savings obtained by the random selection policy in this section
we propose a novel incentive mechanism based on asymmetric reciprocal data ex-
changes between users. Asymmetric exchanges allow low-available nodes to pro-
vide extra disk capacity to high-available nodes, compensating the redundancy lost
of the latter by obtaining more remote capacity. The challenge is to determine which
asymmetric exchange ratios guarantee the fairness among nodes and minimize the
overall contributed resources as well as individual contributed resources. We de-
rive an analytical framework to model asymmetric exchanges. Using our model we
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develop an algorithm that each node can locally run to determine the asymmetric
exchange ratio to apply with any other random node. We evaluate our asymmet-
ric exchange model using availability traces from real P2P applications. The results
show that our asymmetric exchange model reduces overall disk costs up to 30%,
and it reduces the resources contributed by users up to a 50%.

Finally, we want to note that unlike in orchestrated storage systems, in this sec-
tion we focus our analysis on how large blocks of storage resources are exchanged
between users rather on how real data objects are assigned to these large storage
blocks. For the sake of simplicity, in the rest of this section we will assume the use
of the unitary assignment function.

5.5.1 Reciprocal Data Exchanges between Users

To reinforce collaboration in P2P storage systems we will assume that users store
data in remote nodes by exchanging data reciprocally between them. To describe
these exchange relationships between users, we model a P2P storage system as a
weighted and directed graph, G :=(N , E), formed by the set of all the storage nodes
N , and the set of edges E. Each edge ei,j, ei,j ∈ E, represents the amount of data
that user i stores in node j. Since data assignments are reciprocal, it means that
ei,j 6= 0 ⇔ ej,i 6= 0, ∀i 6= j, and i, j ∈ N . When the reciprocal exchanges are also
symmetric, then ei,j = ej,i. Finally, we assume that no user stores data to itself, hence,
ei,i = 0, ∀i ∈ N .

We want to note that although a user i stores different amounts of data to other
nodes j, j 6= i, the use of the unitary assignment functions means that individual
objects are stored symmetrically. Assuming that a user i wants to store Oi different
objects, each of them using n storage blocks, then:

ei,j =
Oi

∑
o=1

g(j, n, So) · α,

where So, |So| = n, is the set of storage nodes used to store the oth data object, α

is the size of the storage block, and g is the unitary assignment function defined as
follows:

g(j, n, So) =

1 if j ∈ So,

0 otherwise.

Finally, for notation convenience, and since we are more interested in the availabil-
ities of storage nodes rather than on the set of storage nodes itself, in the rest of this
section we change the parameters of the redundancy function defined in eq. (2.10),
R(k, S , δ), as follows:

R(~a, δ) = R(k, S , δ);
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where,

~a = (a1, a2, . . . , an) , ∀aj ∈ Sith,

|~a| = |Sith| = n,

g(j, n, Sith) = 1; ∀j ∈ Sith.

Hence, the redundancy required to achieve a data availability δ, R(~a, δ), only de-
pends on the online availabilities of the nodes used to store the n blocks,~a.

5.5.2 Overall Contributed Resources in Gradient Topologies

As we defined in the introduction of this chapter, in P2P storage systems users
selfishly select their sets of storage nodes, S . This selfish behavior leads to a compe-
tition game where users aim to store data to the highest available nodes, minimizing
their required redundancy, and then, reducing the amount of storage resources they
contribute to the system. Since all users run the same selfish storage node selection
policy, the competition to establish exchange relationships with the highest available
nodes ends in a gradient topology where users exchange data with nodes of similar
online availability. Specifically, using the availability clusters defined in Section 5.3,
we can define the gradient topology with the following two properties:

(i) Nodes do not exchange data with nodes outside their cluster:

ei,j = 0, ∀ i ∈ Ck, j ∈ Cl , k 6= l.

(ii) And since we consider all nodes in a cluster to have the same online availability,
then all nodes in any cluster, Ck, establish the same exchange relationships with
nodes from other clusters:

ei,l = ej,l , ∀ i, j ∈ Ck, l /∈ Ck.

In this subsection we aim to analytically measure the overall storage resources re-
quired by these gradient topologies. Since in selfish node selection, the n selected
nodes belong to the same availability cluster, the vector with the n node availabili-
ties, ~aj, is an homogeneous vector where all nodes have an availability equal to the
availability of the jth cluster, âj: ~aj = (âj, . . . , âj). Then, the redundancy that each
node i, i ∈ Cj, uses to store each of its data objects is denoted by R(~aj, δ). This
means that the amount of disk that a user from the cluster Cj needs to contribute
to the system when it wants to store b bytes is R(~aj, δ) · b. Hence, the overall disk
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resources contributed by all users is:

overall disk resources =
m

∑
j=1

∑
i∈Cj

R(~aj, δ) · b.

Since we assumed that all availability clusters contain the same number of nodes
—i.e., |Cj| = |N |/m—, then the previous expression reduces to:

overall disk resources =
m

∑
j=1

|N |
m
· R(~aj, δ) · b =

= |N | · b · 1
m

m

∑
j=1

R(~aj, δ).

If in the previous expression we neglect the system constants, |N | and b, we can
then say that the disk requirements of a selfish storage system are proportional to
the average redundancies required by each availability cluster. We will define Rselfish

as a metric that reflects the overall disk resources contributed by all users:

Rselfish(m) =
1
m

m

∑
j=1

R(~aj, δ). (5.14)

We want to note that for large m values the function Rselfish becomes a good metric
to measure the overall disk resources consumed by a selfish P2P storage system.

5.5.3 Gradient Topologies are Suboptimal

In this subsection we aim to show that the previous selfish node selection is sub-
optimal from the point of view of the overall contributed resources. To show it we
compare the resources contributed by the selfish node selection policy, eq. (5.14),
with the resources required by the uniform node selection policy. We show that the
uniform node selection policy reduces significantly the overall resources that users
need to contribute in a P2P storage system.

As we defined in Section 5.3, in a uniform node selection policy the storage pro-
cesses obtain a set of storage nodes, Suniform that contains a node from each different
availability cluster. It means that the availability vector used in a uniform selection
policy, ~au, is composed of m different online availability values, ~au = {â1, . . . , âm}.
However, this uniform selection policy assumes that there are only m different
availability values. To adapt the uniform selection policy to more practical sce-
narios, we assume that nodes are clustered by similar availability into m different
availability clusters, where n is a multiple of the number of availabilities m, i.e.,
n = m× x; x ∈ N+. Then, every time that a storage process needs n storage nodes,
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Figure 5.4: Plot of the Rselfish(2)/Runiform(2) ratio for different â1 and â2 values, â1, â2 ∈ [0.2, 0.9].
The number of storage nodes is set to n = 100 and the targeted data availability to δ = 0.999999. We
also plot the surface where the ratio is equal to one to show that it is always above this value.

it selects n/m random nodes from each of the m availability clusters. Then, we can
approximate~au as:

~au = (â1, . . . , â1︸ ︷︷ ︸
n
m

, â2, . . . , â2︸ ︷︷ ︸
n
m

, . . . , âm, . . . , âm︸ ︷︷ ︸
n
m

).

Note that under this assumption any user i, i ∈ N , will store all its data objects
using sets with online availabilities equal to ~au. It means that all users will store
their files using a redundancy equal to R(~au, δ). Let us assume again that each user
aims to introduce b bytes into the storage system. Then, we can account for the
overall resources contributed when using the uniform node selection as:

overall disk resources = ∑
i∈N

R(~au, δ) · b

And neglecting the constant variables, |N | and b, we can define Runiform as a metric
proportional to the overall disk resources required by the uniform node selection
policy:

Runifrom(m) = R(~au, δ).

Although Runifrom(m) does not represent the cost of a real random P2P storage
system, when n is large enough, and m tends to n, Runiform(m) becomes a good
approximation of the overall contributed resources.

Finally, to show that the overall disk resources contributed by a selfish node se-
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Figure 5.5: Cumulative distribution function (cdf) of four different availability traces. The mean
values and variances of these four availability traces are specified in Table 5.3.

lection policy are higher than or equal to the overall disk resources contributed by a
uniform selection policy we will evaluate the following inequality:

Rselfish(m) ≥ Runiform(m).

To show that the previous inequality holds for most of the practical P2P storage
scenarios we will experimentally measure the ratio Rselfish(m)/Runiform(m) for dif-
ferent P2P availability traces. We will show that this ratio is greater or equal to one
for all the traces.

In the first experiment we use the simpler scenario, m = 2, where there are
only two different online availabilities, â1 and â2. In Figure 5.4 we depict the ratio
Rselfish(2)/Runifrom(2) using a 3-dimensional surface that measures it for all possible
pairs of availabilities, (â1, â2), where â1, â2 ∈ [0.2, 0.99]. Due to the symmetry of the
surface we only depict one-half of the surface. We consider that the system uses 100
storage nodes, n = 100, and that it targets a data availability equal to δ = 0.999999.
The high n value guarantees that there are enough storage nodes to guarantee d for
all different (â1, â2) pairs. However, we set the minimum availability to 0.2 because
100 nodes cannot guarantee the required data availability for node availabilities be-
low 0.2. We can see in Figure 5.4 that the 3-dimensional surface is always above
the surface where the ratio is one, which means that uniform selection outperforms
selfish node selection in terms of overall contributed resources.

We cannot plot the ratio Rselfish(m)/Runiform(m) for larger m values and for all
the online availability combinations in a single figure. For m > 2, we will use
availability traces from real P2P applications, namely, aMule KAD nodes [68], Skype
super-nodes [40], SETI@Home nodes [43] and desktop computers from a Microsoft
distributed storage study [14]. In Table 5.3 we specify the mean availability value,
the variance and the size of these four availability traces. In Figure 5.5 we depict
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Availability Trace mean (ā) var. (σ) nodes (|N |)
aMule KAD Peers [68] 0.36 0.109 260,784

Skype Super-nodes [40] 0.54 0.105 1,631

SETI@Home Nodes [43] 0.55 0.109 212,599

Microsoft Nodes [14] 0.82 0.063 46,304

Table 5.3: Mean, Variance and Size of the Four Availability Traces
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Figure 5.6: Plot of the Rselfish(m)/Runiform(m) ratio for different online availability traces. The
number of storage nodes is set to n = 100 and the targeted data availability to δ = 0.999999 in all
cases.

their cumulative distribution function (cdf).

As we did for m = 2 we assume that files are stored using n = 100 nodes, and
the targeted data availability is δ = 0.999999. We then consider different m values,
m ∈ {2, 4, 5, 10, 20, 25, 50, 100}, all divisors of 100. For each m value and each avail-
ability trace, we group all nodes with similar availability in m different equally-sized
clusters. In Figure 5.6 we plot the ratio Rselfish(m)/Runiform(m) for all the m values
and all traces. We can see that independently of the number of clusters, and inde-
pendently of the node online availability, the ratio is always greater than one; which
means that the overall redundancy cost of the uniform node selection policy is lower
than for the selfish node selection policy. If we measure the redundancy savings as
(1−Runiform(m)/Rselfish(m))× 100, we can see how the uniform policy can reduce
the overall redundancy cost from 10% up to 60%. It is interesting to note that the
greatest savings are for Skype and SETI traces, which looking at their cdf are the two
traces with the availabilities more uniformly distributed. Finally, when the number
of clusters is equal to the number of storage nodes, m = n = 100, we measure the
greatest savings for all traces.
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Figure 5.7: Plot of the redundancy savings when adopting an uniform selection of nodes policy with
symmetric exchanges. We plot the (1− R(~aj, δ)/R(~au, δ))× 100 for different cluster availabilities
âj. The number of storage nodes is set to n = 100 and the targeted data availability to 0.999999. We
also plot the zero line to distinguish between positive and negative savings.

5.5.4 Asymmetric Reciprocal Exchanges

In the previous subsection, we have showed that the uniform selection of nodes
leads to savings on the overall contributed resources. Unfortunately, if we take a
closer look at the resource savings of each individual user we will see that selecting
storage nodes uniformly breaks fairness among nodes. To show it, let us measure the
individual redundancy savings that a user i, i ∈ Cj, obtains when adopting uniform
node selection instead of selfish node selection: (1− R(~aj, δ)/R(~au, δ))× 100. These
savings are measured as a percentage. In Figure 5.7, we plot these saving values
using the same availability traces used in the previous section. Again we assume
n = 100 and d = 0.999999.

Although the uniform node selection policy entails significant savings in the over-
all storage resources contributed by all users, in Figure 5.7 we can see that not all
users can individually reduce their contributing resources. Actually, using he uni-
form node selection policy, high available nodes have negative savings, which means
that these nodes should contribute more storage resources than when using the self-
ish node selection policy. Then, although a uniform node selection policy reduces
the overall disk requirements of selfish selection policy, it destroys the incentive
mechanism of the P2P storage systems: high-available noes should contribute the
same amount of resources than low-available nodes. It provides no incentives for
low-available nodes to improve their online availability, which can be catastrophic
for the reliability of the storage system.

But despite the unfair distribution of savings, the overall resources savings are
always positive, which poses two important questions for P2P storage designers:
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• Can the savings of the low-available nodes compensate the losses of high-
available nodes via asymmetrical exchanges?

• After the compensation, and to maintain fairness among nodes, can high-
available nodes obtain higher savings than low-available nodes?

In this subsection we present an incentive mechanism based on asymmetric recip-
rocal exchanges that addresses these two questions. Although economic models can
be used to address these questions, asymmetric exchanges allow nodes to individ-
ually and locally choose the asymmetric exchange ratio that they need to use with
each other node. Besides that, by using reciprocal exchanges, nodes can agree in
the asymmetric exchange ratio and locally identify the nodes that do not follow the
protocol.

To model asymmetric exchanges we use the node exchange matrix, E, defined in
Section 5.3. Each component of the matrix, ei,j, ei,j ∈ E, represents the amount of
data that node i stores to node j. Using this matrix we can define the node reward
matrix, W, where each component wi,j is the amount of extra storage space that node
i stores in node j, defined as

wi,j = ei,j − ej,i.

When wi,j > 0, node j rewards node i with extra storage capacity, however, when
wi,j < 0, node i rewards node j. Then, it is easy to see that wi,j = −wj,i.

Deciding whether a node i should be rewarded by a node j only depends on the
online availabilities of both nodes, ai and aj. Since we assume that all nodes in the
same cluster have the same online availability, nodes from the same cluster Cl should
be all equally rewarded:

wi,k = wj,k; ∀k ∈ N , i, j ∈ Cl .

Then, we will generally refer to wi,j as the extra space that a node from the ith
cluster demands to nodes from the jth cluster. Hence,

wi,j = ei′ ,j′ − ej′ ,i′ , ∀i′ ∈ Ci, j′ ∈ Cj.

And assuming that the number of clusters, m, is always set to its maximum value,
m = n, the reward matrix can be simply expressed as:

W =


0 −w1,2 · · · −w1,n

w1,2 0 · · · −w2,n
...

...
. . .

...
w1,n w2,n · · · 0

 .

which has n(n− 1)/2 unknown variables. Our objective is to solve W and determine
these unknown variables.
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5.5.5 Solving the Reward Matrix W

To simplify the process of solving W we will assume the following:

Assumption 4. In a system with asymmetric reciprocal exchanges, we assume that nodes
never demand extra storage space to higher available nodes. Given a pair of nodes i and j, it
means that ai < aj ⇒ wi,j < 0.

Let us define by si the net disk savings that a node from the ith cluster obtains
when moving from a selfish node selection policy to a uniform node selection policy.
These net disk savings are defined as:

si = R(~ai, δ)− R(~au, δ). (5.15)

As we can easily deduce from Figure 5.7, the value of si is negative for high-available
nodes, and positive for low-available nodes. However, from the results of Sec-
tion 5.5.3 we know that the sum S of all the individual savings, is positive, S > 0,
where S is:

S =
n

∑
j=1

∑
i∈Cj

si =

=
n

∑
j=1

∑
i∈Cj

R(~aj, δ)− R(~au, δ).

Thanks to the asymmetric data exchanges, a node from the ith cluster receives an
extra storage capacity of ψi. This extra storage capacity, ψi, is defined as:

ψi =
n

∑
j=1

wi,j.

We want to note that this extra storage capacity, ψi, can also be negative for nodes
in low-available clusters. Under Assumption 4 and since wi,i = 0 and wi,j = −wj,i,
we can rewrite ψi as follows:

ψi =
i−1

∑
j=1

wi,j −
n

∑
j=i+1

wj,i, (5.16)

where the first group of summands is the extra space that nodes from the ith cluster
receive, and the second group of summands is the extra space that nodes from the
ith cluster contribute.

Then, we define φi as the net disk savings that a node from the ith cluster obtains
once the distribution of the overall savings, S, is done. The value of φi is the sum of
the savings obtained by changing the selection policy, plus the extra disk capacity
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received from other nodes: φi = si +ψi. Regarding these net individual disk savings,
φi, a valid asymmetric exchange algorithm must satisfy the following two rules:

1. Savings Distribution Rule. The sum of all the individual savings is equal to
overall disk savings:

S =
n

∑
j=1

∑
i∈Cj

φi.

2. Incentives Rule. The asymmetric exchange model provides incentives to nodes
to improve their online availability. High-available nodes achieve higher sav-
ings than low-available nodes:

âi ≥ âj ⇒ φi ≥ φj.

If we use equations (5.15) and (5.16), we can use the fact that ψi = φi − si to write
the system of equations that defines W as:

i−1

∑
j=1

wi,j −
n

∑
j=i+1

wj,i = φi − R(~ai, δ) + R(~au, δ); ∀i ∈ [1, n]. (5.17)

This system of equations has n equations with n(n− 1)/2 variables, which makes
the system unsolvable for n > 2: there are more variables than equations. Further,
the net disk savings per cluster, φi, should be explicitly specified. In the following
subsection we propose a simple approach to solve this system of equations and
determine the reward matrix W.

5.5.6 Solving W Proportionally to Availability

Although there are many ways of solving W and guaranteeing the savings distribu-
tion and incentives rules, we will propose a simple solution that distributes savings
and rewards each node proportionally to its online availability. This simple solution
will allow us to measure the distribution of savings and the asymmetric exchange
ratios for each availability cluster.

We define the net disk savings that nodes from the ith cluster receive, namely
φi, proportionally to the cluster availability âi. It means that the total disk savings
assigned to nodes from the ith cluster, φi, are defined as:

φi = S× âi

∑
a∈~au

a
. (5.18)

It is easy to see that this disk savings distribution satisfies the savings distribution
rule, ∑n

k=1 |Ci| × φi = S. And it also satisfies the incentives rule: high-available
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nodes receive more disk savings that low-available nodes.
Once determined φi, to solve the system of equations eq. (5.17), we need to make

some assumptions to increase the number of equations from n to n(n − 1)/2. To
do so, we solve eq. (5.17) for the extra space that each node from the ith availability
cluster, Ci, provides to nodes with higher availability,

n

∑
j=i+1

wj,i =
i−1

∑
j=1

wi,j − φi + R(~ai, δ)− R(~au, δ); ∀i ∈ [1, n],

note that nodes from the ith cluster only provide extra disk space to nodes from the
jth cluster, if an only if âj > âi.

Similar to what we did to distribute the total storage savings S, nodes will dis-
tribute the total extra space that their provide proportionally to the online availabil-
ity of their parters:

wj,i =

[
i−1

∑
k=1

wi,k − φi + R(~ai, δ)− R(~au, δ)

]
aj

n

∑
l=i+1

al

; ∀i ∈ [1, n], j ∈ [i + 1, n].

(5.19)

After arranging the terms and applying the wj,i = −wi,j conversion, we obtain the
following system of equations:

n

∑
l=i+1

al

aj
wi,j +

i−1

∑
k=1

wi,k = φi − R(~ai, δ) + R(~au, δ); ∀i ∈ [1, n], j ∈ [i + 1, n]. (5.20)

which is a system with the same number of equations and variables, n(n − 1)/2,
and is easily solvable using linear algebra operations.

5.5.7 Asymmetric Exchanges Evaluation

In this section we evaluate the asymmetrical exchange model presented in the pre-
vious section. We use the four availability traces used in Section 5.5.3 (see Table 5.3).
We assume that to store each object users select n = 100 nodes from N following the
uniform selection policy defined in Section 5.3. Then, the data object is redundantly
stored to achieve a data availability of δ = 0.999999.

Once determined ~au for each trace, we solve W using eq. (5.20). In Figure 5.8
we depict the amount of extra resources that each node receives or provides to their
parters, measured as ψi, eq. (5.16). We can see how for high-availability peers ψi > 0,
which means that they are rewarded by extra storage capacity, while low-available
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Figure 5.8: Ratio between the amount of data peers contribute to the system and the amount of online
storage capacity they obtain.

peers should provide extra storage capacity, ψi < 0.
Besides measuring the aggregate extra capacity that each node receives or pro-

vides ψi, we are also interested in the individual rewards that node provide to each
of their partners, wi,j. In Figure 5.9 we depict the components of W, wi,j for all
traces. In each subfigure we plot wi,j as a function of aj and for different ai values.
Each line represents the amount of disk that a node with availability ai provides or
receives from partners with availability aj. For each availability trace we only show
five nodes with availability values ai, i ∈ {10, 30, 50, 70, 90} —e.g, a10 is the online
availably of nodes from the 10th availability cluster. It is interesting to note that the
amount of extra disk space that nodes provide, wi,j < 0, is linearly proportional to
their availability aj. This is the consequence of our proportional assumption used in
eq. (5.19). However, the amount of extra disk space that each node receives, wi,j > 0,
is rather exponential. This uneven behavior for the received and the provided extra
disk is an interesting aspect to analyze and try to smooth in further works.

Finally, we want to measure the reduction of contributed resources that each node
achieves by switching from selfish node selection policy to uniform node selection
policy. For that purpose we will distinguish those node that are rewarded with extra
storage capacity, ψi > 0, and nodes that reward their partners, ψi < 0:

• Nodes with ψi > 0: To store b bytes in the system these nodes need to con-
tribute b · R(~au, δ) bytes into the system. However, the extra space that they
receive, ψi, allows them to store ψi/R(~au, δ) extra bytes online. Then, these
nodes need to contribute b · R(~au, δ) bytes to obtain b + ψi/R(~au, δ) online
capacity. Their uniform contribution ratio —the amount of storage resources
nodes need to contribute to obtain one unit of online storage capacity—, funiform,
is:

funiform =
R(~au, δ)

1 + ψi/R(~au, δ)
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Figure 5.9: Values of the reward matrix W for different availability traces. For each trace we plot
wi,j as a function of âj for different i values (the legend shows the value of i and âi). The results
are obtained for different i values i ∈ {10, 30, 50, 70, 90}. We also plot the zero line to identify the
exchanges where nodes from the ith cluster receives extra storage, wi,j > 0, or provides storage to their
partners, wi,j < 0.

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DESIGN AND OPTIMIZATION OF HETEROGENEOUS DISTRIBUTED STORAGE SYSTEMS 
Lluís Pàmies Juárez 
DL:T. 1455-2011 



124 Conclusions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

sa
v
in

g
s 

co
n
tr

ib
u
te

d
 r

es
o
u
rc

es
 (

%
)

peer availability (a)

KAD
Skype

Seti@Home
Microsoft

Figure 5.10: Plot of the contributed resource savings for adopting a uniform selection policy with
asymmetric exchanges. We plot the savings for different peer availabilities a. We can compare this
figure with Fig. 5.7 to see that with asymmetric exchanges all peer’s savings are positive.

• Nodes with ψi < 0: To store b bytes in the system these nodes need to con-
tribute b · (R(~au, δ)− ψi). Then, their uniform contribution ratio is:

funiform = R(~au, δ)− ψi

Similarly, we define the selfish contribution ratio as:

fselfish = R(~aith, δ)

which is the amount of storage resources nodes needed to contribute with the selfish
node selection policy in order to obtain one unit of online storage capacity.

In Figure 5.10 we depict savings on the contribution ratio that node achieve by
switching from selfish to uniform node selection policy: (1 − funiform/ fselfish) ×
100. It is interesting to compare Figure 5.10 (savings for symmetric exchanges)
and Figure 5.7 (savings for asymmetric exchanges). Using asymmetric exchanges
all nodes, even low-available nodes, can successfully reduce their amount of con-
tributed resources as compared to selfish node selection policy. The reduction of
the contributed resources range from 2% for low-available peers up to 75% for high-
available peers.

5.6 Conclusions

In this chapter we have analyzed how to optimize data assignment policies for or-
chestrated and P2P storage systems. We have demonstrated that when assignment
policies do not take into account the heterogeneous node online availabilities present
in real systems, the amount of redundancy required to achieve the desired QoSS in-
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creases significantly. In addition to detecting these inefficiencies we provided two
new data assignment policies to optimize the redundancy in both, orchestrated and
P2P storage systems:

Orchestrated Storage Systems:

In orchestrated storage systems, the main target of the designer is to maximize
the overall storage capacity of the system.

For these systems we have provided an optimization algorithm based on Parti-
cle Swarm Optimization (PSO) to determine which is the best way to assign an
amount of redundancy to a set of storage nodes S so that the data availability
obtained is maximized. From this optimization algorithm we derived a novel
data assignment function that assigns to each storage node an amount of data
proportional to its online availability. We have shown how this simple assign-
ment function can reduce data redundancy up to 70% in highly heterogeneous
scenarios. Also, we have showed that storing all data objects using this pro-
portional data assignment function maximizes the overall storage capacity as
compared to the simple symmetric assignment function.

P2P Storage Systems:

In P2P storage systems, users aim to minimize their storage costs instead of
maximizing the overall storage capacity of the system. In this chapter, we pre-
sented a theoretical asymmetric data exchange model for P2P storage systems.
Our proposed model provides incentives to nodes to collaborate in the storage
process instead of acting selfishly.

Existing P2P storage systems were originally designed as a competition game
where all nodes aimed at trading storage resources with the highest available
nodes in the system. We have demonstrated that this selfish behavior leads
to a suboptimal utilization of the overall storage resources of the system. By
adapting random node selection strategies, the overall storage costs of the sys-
tem are reduced. Unfortunately, without proper rewarding mechanisms users
do not have incentives to switch to a random node selection strategy. Asym-
metric exchanges fill this gap, providing incentives to users to leave the selfish
node selection policy and adapting a random node selection policy. By using
our asymmetric exchange model all users adopting a random node selection
strategy can reduce their storage costs from 2% up to 75% depending on their
online availability.

Our asymmetric data exchange model is generic in the sense that it can be
adapted to implement different incentive policies. We have provided a simple
incentive policy that distributes disk savings proportionally to all users, but
other polices should be studied in the future.
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6.1 Conclusions

The increasing demand of reliable, scalable and online storage services motivates
the research in the field of distributed storage systems. Such systems integrate stor-
age resources from different devices, and from different locations, into a single data
storage service that applications and users can access from any location and from
any device. In Chapter 2 we showed that although distributed storage systems are
widely deployed and studied in large, well-provisioned and well-managed datacen-
ters, there is no work analyzing how to optimize and deploy distributed storage
systems over heterogeneous storage infrastructures such as federations of small dat-
acenters, user-assisted schemes or P2P environments.

The goal of this thesis is to identify the challenges that heterogeneous storage
infrastructures pose to storage systems designers, and to analyze how to optimize
data redundancy schemes in these heterogeneous infrastructures. The pursuit of
this goal lead our research to the following contributions:

Analysis of the Storage and Communication Costs

In any storage system, data is inserted with redundancy in order to guarantee a
certain data reliability. Unfortunately, redundancy introduces storage and commu-
nication overheads, which can either reduce the overall capacity of the system, or
increase its storage and communication costs. In Chapter 3 we developed an an-
alytical framework to understand the storage and communication costs of existing
redundancy schemes. Our framework allows to measure the average storage cost,
and the average communication cost of different redundancy schemes, and to de-
termine the impact that parameters like the repair degree and the reconstruction degree
have on these costs.

The framework that we presente is based on Regenerating Codes, a generic redun-
dancy scheme that can model a wide range of redundancy schemes such as repli-
cation or maximum-distance separable (MDS) codes —e.g., Reed-Solomon codes—,
among others. Our framework is the first to provide a complete model of the costs
of Regenerating Codes. Using our framework, storage designers can determine the
optimal trade-off between communication costs and storage costs for a great variety
of storage infrastructures.

We complement the analytical framework with an empirical evaluation of the ef-
fects that different redundancy schemes have on the scalability of distributed storage
systems. We showed that some theoretically-optimal schemes cannot guarantee data
reliability in realistic storage environments due to other factors, such as the repair
time or the network congestion, which are more complex to incorporate in the ana-
lytical model.
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Relationship between data redundancy, data availability and retrieval times

Existing distributed storage systems base the quality of their storage service on guar-
anteeing high data availability, usually close to 100%. Maintaining high data avail-
ability ensures that data is never lost and that it can be retrieved by users without
lengthening retrieval times. However, in Chapter 4 we showed that the quality of the
storage service that most users expect can be guaranteed even with much lower data
availabilities, reducing significantly the required redundancy, and then, the storage
and communication costs. However, reducing redundancy also lengthens retrieval
and repair times, which can cause data to be destroyed faster than data maintenance
processes can repair, which can be catastrophic.

In Chapter 4 we provided a set of algorithms to determine the expected data
availabilities and the expected retrieval times in heterogeneous storage systems. We
provided an algorithm to measure data availability precisely in heterogeneous stor-
age systems. We proposed two additional algorithms to approximate data availabil-
ity for large systems where obtaining precise values is computationally intractable.
We also provided a recursive stochastic process to model object retrieval times. We
solved this stochastic processes to obtain two useful analytical expressions: (i) an
estimate of the expected retrieval time, and (ii) a closed-form expression that ap-
proximates the whole retrieval time distribution.

With these algorithms and stochastic analysis we showed that data availability,
retrieval times, and data redundancy, are in fact, three faces of a unique storage
quality metric. Increasing redundancy always shortens retrieval times and increases
availability. On the contrary, reducing redundancy always lengthens retrieval times
and reduces availability.

Optimizing data assignment policies

Our final contribution addressed how to optimally distribute redundant data over a
set of heterogeneous storage nodes. To solve this problem we distinguished between
orchestrated storage systems (all nodes are managed by the same organization), and
P2P storage systems (each node is managed by a rational user), being the main
difference that orchestrated storage systems aim to maximize the overall storage
capacity of the system, and P2P storage systems users only aim to minimize their
own storage costs.

In orchestrated storage systems we developed an optimization algorithm to find
the optimal data assignment function that minimizes the redundancy required to
store each object. Using this optimization algorithm we inferred an optimal as-
signment policy that assigns to each node an amount of data proportionally to its
online availability. This proportional assignment policy minimizes the redundancy
that each storage process needs to contribute to achieve its desired QoSS. Besides
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that, we also showed that this assignment policy also minimizes the overall storage
capacity of the storage system.

In P2P storage systems where users compete to minimize their own costs, al-
lowing users to select their own storage partners leads to gradient networks where
nodes are grouped with nodes of similar online availability. These gradient net-
works guarantee low costs for high stable users and provide incentives to unstable
users to improve their online availability. However, we showed that this node se-
lection policy is suboptimal from the point of view of the overall storage resources
consumed. To reduce these large amounts of consumed resources, we proposed an
incentive mechanism based on asymmetric data exchanges between users that re-
duces the overall required redundancy. Besides reducing the overall redundancy,
we also demonstrated that these asymmetric exchanges reduce the storage costs of
each individual user and maintain fairness among them.

6.2 Directions for Future Works

Heterogeneous distributed storage systems is a area of intensive research with sev-
eral unexplored research directions. In the development of this work, several in-
teresting future research directions have arisen, among which the following are of
particular interest.

• In this thesis we explored how heterogeneous online node availabilities can
be exploited to minimize the costs of distributed storage systems. However,
online node availability is just one of the properties that can present high het-
erogeneities in distributed storage systems. Nodes can also present hetero-
geneous bandwidth, heterogeneous storage capacity, or different geographic
locations. It would be interesting to analyze the repercussion of all these other
heterogeneities and explore new ways to optimize distributed storage systems.

• Despite nodes’ heterogeneities, in this thesis we always assumed that nodes’
properties are static, e.g. nodes never change their online availability or their
bandwidth. However, in real distributed storage systems, and specially in P2P
storage systems, properties such as the online node availability can change
over time. In this case, it would be interesting to evaluate how data assign-
ment policies, and redundancy schemes can adapt to these variable nodes’
properties.

• In distributed file-systems data is mutable. It means that stored objects are
not only read, but also modified. Using erasure code schemes in these envi-
ronments is cumbersome because coding operations are required every time
an object is modified. It basically means that distributed file-systems cannot
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take advantage of the low storage and communication costs of erasure codes.
In order to design more efficient distributed file-systems, researchers should
put emphasis on how to adapt erasure codes, and specially data retrieval and
storage processes, for systems requiring mutable data.
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