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ABSTRACT

Objectives: To determine potential associations of the rs2296651 variant (c.800C > T, S267F) of NTCP
with HBV and HBV plus concomitant HDV infection as well as with the progression of related liver
diseases.
Methods: The S267F variant was genotyped by DNA sequencing in 620 HBV-infected patients and 214
healthy controls (HCs). Among the patients, 450 individuals were tested for HDV by a nested PCR assay.
Logistic regression was applied to examine the association.
Results: The S267F variant was found more frequently among HCs (16%) compared to HBV-infected (6%)
and HBV-HDV co-infected patients (3%) (HBV patients vs HC: OR=0.32, P=0.00002 and HDV patients vs.
HC: OR=0.17, P=0.018). The frequency of S267F variant was inversely correlated with CHB, LC or HCC
patients compared with HCs (OR=0.31, P=0.001; OR=0.32, P=0.013; OR=0.34, P=0.002, respectively).
S267F variant was also associated with decreased risk of the development of advanced liver cirrhosis (LC)
and hepatocellular carcinoma (HCC) (Child B and C vs. Child A, OR =0.26, adjusted P=0.016; BCLC B,C,D vs.
BCLC A, OR=0.038, P=0.045, respectively). In addition, patients with the genotype CT had lower levels of
AST, ALT, total and direct bilirubin as well as higher platelet counts, indicating an association with a more
favorable clinical outcome.
Conclusion: The NTCP S267F variant of the SLC10A1 gene exhibits protective effects against HBV and HDV
infection and is associated with a reduced risk of developing to advanced stages of LC and HCC.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Introduction

Although effective hepatitis B virus (HBV) vaccines are in use

Abbreviations: NTCP, sodium taurocholate co-transporting polypeptide; S267F,
substitution of serine at position 267 of NTCP with phenylalanine; SNP, single
nucleotide polymorphism; HC, healthy control; HBV, hepatitis B virus; HDV,
hepatitis delta virus; CHB, chronic hepatitis B; LC, liver cirrhosis; HCC, hepatocel-
lular carcinoma; HBsAg, Hepatitis B surface antigen; HDAg, Hepatitis D antigen;
BCLC, Barcelona Clinic Liver Cancer staging; AFP, alpha-fetoprotein; PLT, platelets;
AST and ALT, aspartate and alanine amino transferase.
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worldwide, HBV-related liver diseases are still a major public
health concern, causing considerable morbidity and mortality.
Approximately 257 million people are currently suffering from
chronic hepatitis B and 887,000 deaths have been recorded in 2015
due to HBV infection (WHO, 2017a). HBV causes various clinical
conditions, including acute hepatitis B, chronic hepatitis B (CHB),
liver cirrhosis (LC) and hepatocellular carcinoma (HCC) (Liaw and
Chu, 2009; WHO, 2017a). The risk of HCC development in chronic
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HBV carriers is approximately 40 times higher than that in non-
carriers (Lee et al., 2013).

Hepatitis D virus (HDV), an RNA virus first identified in 1977
(Rizzetto et al., 1977), can cause disease only in the presence of
preexisting HBV infection, as it requires HBV envelope proteins for
effective infection of hepatocytes (Sureau and Negro, 2016). HDV
particles contain a circular single-stranded RNA of 1679 nucleo-
tides and two viral proteins, the small and large hepatitis D
antigens, which are surrounded by an outer coat containing HBV-
derived envelope proteins and host phospholipids (Hughes et al.,
2011). HDV coinfection affects 15-20 million HBV carriers
worldwide (Noureddin and Gish, 2014; WHO, 2017b). HDV
infection is associated with an increased risk of LC and HCC
development (Hughes et al., 2011).

As both HDV and HBV utilize identical proteins, they may enter
the hepatocytes through similar mechanisms. Recently, the sodium
taurocholate co-transporting polypeptide (NTCP) receptor has been
identified as a cellular receptor for both HBV and HDV entry (Ni et al.,
2014; Yan et al., 2012). A homozygous non-synonymous Arg252His
substitution in the NTCP was associated with the impaired uptake of
bile salts into hepatocytes, confirming the important role of this
hepatic bile acid transporter (Vaz et al., 2015). NTCP is encoded by
the SLC10A1 gene (Solute Carrier family 10, member 1) located on
chromosome 14. It is a transmembrane protein and involved in
transport of sodium and bile acids across cellular membranes. The
N-terminus of the pre-S1 domain of the large HBV envelope protein
binds to NTCP, which is predominantly expressed at the basolateral
membrane of hepatocytes, supporting HBV and HDV entry into
hepatocytes (Ni et al., 2014; Yan et al., 2012).

The missense rs2296651 variant (¢.800C > T, S267F; substitution
of serine by phenylalanine at position 267) of the SLC10A1 gene
may influence HBV infection by modifying the structure of the
membrane receptor, resulting in decreased susceptibility of
hepatocytes to HBV/HDV infection. Several studies have shown
that the S267F variant influences susceptibility to HBV infection,
but not in HDV infection and that it is associated with a decreased
risk of liver disease progression (Hu et al., 2016; Lee et al., 2017;
Peng et al., 2015).

Vietnam is highly endemic for both HBV and HDV infections
(Mai et al., 2018; Nguyen et al., 2017; Sy et al., 2013). The functional
role of the missense S267F variant in HBV infection has not yet
been investigated, and data on whether S267F correlates with
susceptibility or resistance to HDV infection is still limited. We
conducted a genetic association study on the role of the NTCP
S267P variant in HBV and HBV/HDV infection as well as its
association with clinical progression of related liver diseases.

Materials and methods
Patients

We randomly recruited 620 HBV-positive patients and 214
healthy controls (HCs) at 108 Military Central Hospital, Hanoi,
Vietnam, between 2013 and 2015. Patients and healthy controls
represent individuals from the Hanoi metropolitan area and were of
Kinh ethnicity. The patients were clinically characterized and HBsAg-
positive for at least 6 months. Patients were classified into clinical
subgroups, including CHB patients without LCor HCC (n=176), HBV-
related LC patients (n = 144) and HBV-related HCC patients (n=300).
The clinical and diagnostic characteristics applying to each subgroup
have been described previously (Hoan et al., 2017). LC and HCC
patients were further grouped according to the Child-Pugh scores A,
B, and C (Cholongitas et al., 2005). HCC patients were categorized
according to the Barcelona Clinic Liver Cancer (BCLC) staging (Diaz-
Gonzalez et al., 2016). HCs were civilian individuals and were blood
donors tested to be HBsAg seronegative. Both patients and HCs were

negative for anti-HCV and anti-HIV antibodies as assessed by routine
ELISA assays. None of the study participants had a history of alcohol
or drug abuse. Of the 620 HBV-infected patients, 450 individuals
were tested for concomitant HDV-infection. Blood sampling of all
patients was performed on hospital admission. Whole blood and
serum samples were stored at —80°C until further use.

Ethics statement

Informed written consent was obtained from all study
participants after detailed explanation of the study at the time
of blood and serum sampling. The study protocol was approved by
the Institutional Review Board of the 108 Military Central Hospital,
Hanoi, Vietnam. All experiments were performed in accordance
with applying guidelines and regulations.

NTCP genotyping

Genomic DNA was isolated from whole blood using a DNA
purification kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Exon 4 of the SLCI0A1 gene was
amplified using primers NTCP_4F (5’-CCA TCG CTG CGA AAC TC-
3’) and NTCP_4R (5-GGG CTA CCT GGT TCT TAG TGA-3’). PCR
amplificationwas carried outin 20 .l reaction volumes containing 1
X PCR buffer,1 XQ solution, 0.2 mM dNTPs, 1 mM MgCl,, 0.15 mM of
each primer, 1 unit of Taq Polymerase and 50 ng of genomic DNA.
Thermal cycles consisted of initial denaturation (95°C, 5min), 36
cycles of denaturation (30s, 95 °C), annealing (20, 55 °C), exten-
sion (305, 72 °C), followed by a final extension step (10 min, 72 °C).
PCR products were visualized on 1.2% agarose gels. Amplicons were
purified by Exo-SAP-IT (USB, Affymetrix, CA, USA) and 5 ul of
products were used as sequencing templates (BigDye Terminator
v.1.1 cycle sequencing kit, ABI 3130XL DNA sequencer; Applied
Biosystems, Foster City, CA, USA). Genotypes of SNPrs2296651 were
wild-type (CC), heterozygous (CT) and homozygous (TT).

HDV detection

Viral RNA was isolated from serum (QIAamp Viral RNA Mini Kit;
Qiagen GmbH, Hilden, Germany) and RNA was subsequently
reversely transcribed into cDNA using the High-Capacity cDNA
Reversers Transcription Kit (Thermo Fisher Scientific, Foster City,
CA, USA) following the manufacturer’s instructions. HDV-specific
nested PCR was employed for HDV detection as described
previously (Mai et al., 2018; Nguyen et al., 2017; Sy et al.,, 2013).

Statistical analysis

Clinical and demographic data are given in medians with ranges
for quantitative variables and categorical data, provided as
numbers and percentages. Hardy-Weinberg equilibrium was
assessed. Binary logistic regression models adjusted for age and
gender were applied to determine NTCP S267F associations with
HBV and HBV/HDV-related liver diseases. Adjusted odds ratios
(OR) with 95% confidence intervals (CI) were calculated. Chi-
square and Fisher’s exact tests were used to test for differences in
categorical variables. Kruskal-Wallis and Mann-Whitney-Wil-
coxon tests were applied to compare quantitative variables.
Statistical analyses were performed using SPSS version 22 (SPSS
Statistics, IBM, Armonk, NY, USA) and GraphPad Prism 7 (http://
www.graphpad.com). Significance was set at a value of P<0.05.


http://www.graphpad.com
http://www.graphpad.com

M.T. Binh et al./International Journal of Infectious Diseases 80 (2019) 147-152 149
Table 1
Demographic and clinical characteristics of healthy controls and HBV patients.
Characteristics HC HBV CHB LC (n=144) HCC (n=300) P value
(n=214) (n=620) (n=176)
Age (years) 46 [18-69] 55 [18-90] 39 [18-85] 57 [20-86] 60.5 [18-90] <0.0001%
Male (%) 66.8 85.8 77.3 83.3 92 <0.0001 B
Child-Pugh NA
Child A NA 50/144 217/300
Child B NA 55/144 67/300
Child C NA 38/144 16/300
Clinical parameters
AST (U/L) NR 63 [14-6206] 44 [14-6206] 60 [15-1221] 60 [17-983] 0.0096%
ALT (U/L) NR 52 [8-3390] 64 [9-3390] 56 [8-1426] 47 [10-934] <0.0001
Total bilirubin (pmol/L) NR 19 [4.1-571] 17 [5.5-551] 31.3 [4.1-571] 17 [4.3-392] <0.0001%
Direct bilirubin (pmol/L) NR 6.5 [0.4-349] 6.2 [0.7-349] 12 [0.4-291] 5.4 [0.4-247.3] <0.0001%
Albumin (g/L) NR 39 [12-51] 42 [12-51] 31 [15-47] 38 [18-49] <0.0001%
Prothrombin (%) NR 85 [13-269] 92 [17-267] 58.5 [13-101] 86 [20-269] <0.0001%
WABC (x10%/mL) NR 6.13 [1.7-20.5] 6.2 [41-13.44] 5.6 [1.7-20.5] 6.15 [2.7-17.8] 0.0011%
RBC(x105/mL) NR 4.51 [1.7-6.8] 4.9 [3.1-6.8] 4.04 [1.9-6.7] 4.5 [1.7-6.3] <0.0001%
PLT (x10%/ml) NR 170 [17-441] 211 [89-360] 90 [17-441] 159 [35-432] <0.0001%
HBV DNA NR 5 [2-10] 6 [2-10] 5 [2-10] 5 [2-9] 0.018
(logyo copies/ml)
AFP (IU/L) NR 9.8 [0.84-300] 3.5 [1-300] 6.8 [1.18-300] 111.4 [0.84-300] <0.0001%

CHB, chronic hepatitis B; LC, liver cirrhosis; HCC, hepatocellular carcinoma; HC, healthy control; RBC, red blood cells; WBC, white blood cells; PLT, platelets. AST and ALT,
aspartate and alanine amino transferase; AFP, alpha-fetoprotein; NR, normal range, NA, not applicable. Values given are medians and ranges. (1) Kruskal-Wallis test. (): chi-

square test.
Results
Baseline characteristics of study subjects

The demographic, laboratory and clinical parameters of the 834
participants are summarized in Table 1. In the HC group, the mean
age was 46 years (range: 18-69), and the majority of HCs were male
(67%). Of the 620 patients, 532 (86%) were male. The mean age of
patients was 55 years (18-90), and the median age of patients
increased according to the degree of progression of liver diseases
(P<0.0001). The albumin and prothrombin levels and platelet
counts were higher among CHB patients compared to HCC and LC
patients (P<0.0001). We also observed high HBV DNA levels in
CHB compared to LC and HCC patients (P=0.018). Higher total
bilirubin and direct bilirubin were observed in LC patients
compared to the subgroups of CHB and HCC patients
(P<0.0001). AFP levels were significantly higher among HCC
patients compared to the subgroups of CHB and LC patients
(P<0.0001).

Association of the S267F variant with HBV infection and clinical
outcome

The genotype and allele frequencies of the S267F variant
(rs2296651) in the 620 HBV patients and 214 HCs are shown in
Table 2. Genotype frequencies of both HCs and cases were in Hardy
Weinberg equilibrium (P=0.6 and 0.09, respectively). The geno-
type frequency of S267F (CT/TT) was significantly lower in HBV
patients (6%) compared to HCs (16.4%) (OR=0.32, 95% CI=0.19-
0.54, adjusted P=0.00002; Table 2); indicating that genotypes CT
and TT are associated with relative resistance to HBV infection.
Similarly, the frequency of the T allele was also significantly lower
among HBV patients (3%) compared to HCs (8.4%), suggesting that
the T allele exerts a protective role in HBV infection (OR = 0.34, 95%
CI=0.2-0.57, adjusted P=0.00004) (Table 2). In order to confirm
the protective role of S267F in HBV infection, we compared the
frequency of the CT genotype in HBV monoinfection with that
found in the HCs. The analysis showed that this genotype
contributes to a significantly decreased risk of HBV monoinfection
(OR=0.39, 95% CI=0.22-0.69, adjusted P=0.0012) (Table 4).
Frequencies of genotypes and alleles did not differ between the
patient subgroups of CHB, LC and HCC (data not shown).

Next, we analyzed the association of S267F with clinical outcomes
of the HBV patients. Individuals carrying the genotype CT had
significantly higher platelet counts (P=0.002), but lower serum
AST as well as total and direct bilirubin levels (P=0.012; 0.031;
0.038, respectively) compared to patients with the genotype CC
(Figure 1). Although not statistically significant, individuals with
genotype CT had a similar trend of ALT, prothrombin, total protein
and albumin levels compared to those carrying the genotype CC
(data not shown).

Association of S267F with LC and HCC

We applied a logistic regression model adjusted for age and
gender to analyze the association of S267F with LC and HCC.
Compared to the HCs, individuals with the CT genotype had a 3-fold
decreased risk of both LC and HCC (LC vs. HC: OR=0.32, 95%
CI=0.13-0.79, adjusted P=0.013; HCC vs. HC: OR=0.34, 95%
CI=0.17-0.68, P=0.002) (Table 2).

Patients with LC were classified into the Child-Pugh subgroups
A, B and C. Genotype CT was significantly more frequent in patients
with more advanced LC compared to patients with less advanced
LC (Child-Pugh scores B and C vs. Child-Pugh score A: OR=0.26,
95% CI=0.09-0.78, P=0.016). Patients with HCC were classified
into the BCLC subgroups stage A, B, C and D. The frequency of the
genotype CT was significantly higher among patients with
intermediate and advanced stages of HCC compared to those with
an early stage of HCC (BCLC staging B, C and D vs. BCLC staging A:
OR=0.38, 95% CI=0.15-0.97, P=0.045) (Table 3).

S267F in HDV infection

To explore the protective role of genotype CT in HDV infection,
we compared the frequency of genotype CT in HBV-HDV co-
infected patients with HCs. The analyses indicated that S267F
variant contributes significantly to a decreased risk of HBV-HDV
coinfection (OR=0.17, 95% CI=0.04-0.74, adjusted P=0.018).
Although not statistically significant, chronic HBV patients with
genotype CT had a reduced risk of concomitant HDV infection
compared to those carrying genotype CC (Table 4).
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0.002
0.001

HCC vs. HC

OR (95%CI)
Reference

0.34 (0.17-0.68)
0.33 (0.17-0.63)

0.013
0.012

P

OR (95%Cl)

0.32 (0.13-0.79)
Reference

0.32 (0.13-0.78)

LC vs. HC
Reference

0.001
0.001

P

CHB vs. HC

OR (95%CI)
Reference

0.31 (0.15-0.64)
Reference

0.32 (0.16-0.63)

P value
0.00002
0.00004

HBV patients vs. HCs
OR (95%CI)
Reference

0.32 (0.19-0.54)
Reference

0.34 (0.2-0.57)

214 (%)
179 (83.6)
35 (16.4)
392 (91.6)
36 (8.4)

HC
n=

n=620 (%)
1203 (97)

37 (3)
CHB, chronic hepatitis B; LC, liver cirrhosis; HCC, hepatocellular carcinoma; HC, healthy controls; n, numbers individuals; OR, Odd ratio. P values were calculated using binary logistic regression model adjusted for age and gender. (*),

one healthy carried TT genotype.

583 (94)
37 (6)

HBV

HCC n=300 (%)
281 (93.7)

19 (6.3)

581 (96.8)

19 (32)

LC
n=144 (%)
137 (95.1)
7 (4.9)
281 (97.6)
7 (2.4)

176 (%)

165 (93.8)
11 (6.2%)
341 (96.9)

11 (31%)

CHB n

152296651 (S267F)

NTCP
Genotype
CT+TT*
Allele

Association of NTCP S267F variant with HBV-related liver diseases.

Bold values reflect statistical significance.

Table 2

Discussion

NTCP is a member of the solute carrier family of transporters. Its
major physiological function is the transport of bile acids from
portal blood into hepatocytes (Claro da Silva et al, 2013;
Hagenbuch and Meier, 1994). NTCP is the hepatocytic receptor
for HBV and HDV (Ni et al., 2014; Yan et al., 2012); thus, genetic
variation of the gene encoding NTCP might be associated with HBV
and HDV susceptibility. Previous studies have indicated the clinical
significance of the NTCP variant S267F only in HBV infection (Hu
etal., 2016; Lee et al., 2017; Peng et al., 2015; Wang et al., 2017). Our
data confirm the protective role of S267F in HBV infection,
including the stages of HBV-related liver disease progression and
especially also in HBV-HDV coinfection.

Several studies have reported that the genotype and allele
frequencies of S267F vary considerably between different study
groups and geographical regions (Ezzikouri et al., 2017; Hu et al.,
2016; Lee et al., 2017; Li et al., 2014; Pan et al,, 2011; Peng et al.,
2015; Yang et al., 2016; Zhang et al., 2017). Here, we report that the
frequencies of the genotypes CC, CT and TT are 83.6%, 15.9% and
0,5%, respectively, among 214 Vietnamese healthy individuals. The
frequency of the S267F genotypes CT and TT in our study was lower
than in other Asian populations, e.g. in the Chinese Han (20.4%) and
Taiwanese (18.5%) (Hu et al., 2016; Peng et al., 2015), but more
common than in the Korean population (5.7%) (Lee et al., 2017).
Although the occurrence of S267F was significantly lower in HBV
patients than in HCs in most studies, including our present study,
its frequency is regionally different, ranging from 0.9% to 18%
(Ezzikouri et al., 2017; Hu et al., 2016; Lee et al., 2017; Li et al., 2014;
Pan et al, 2011; Peng et al., 2015; Yang et al., 2016; Zhang et al.,
2017).

A protective effect of S267F in HBV infection has been reported
in previous studies, indicating that individuals with the S267F
variant were 2-5-fold less susceptible to chronic HBV infection (Hu
et al., 2016; Lee et al., 2017; Peng et al., 2015). Our study yields
corresponding results (OR=0.3, 95% Cl=0.19-0.54). The protective
effect of S267F on HBV infection has also been demonstrated in in
vitro experiments, showing that in mixed cells of wild-type NTCP
and S267F at a 1:1 ratio the efficiency of HBV infection was higher
than 70% (Yan et al., 2014), suggesting that the T allele of S267F
contributes to a certain degree to resist HBV infection. Similarly, we
observed that the T allele of S267F contributes to reducing the risk
of CHB (OR=0.34).

The earlier studies have also shown that S267F is independently
associated with a decreased risk of progression to LC and/or HCC
(Hu et al,, 2016; Lee et al., 2017; Wang et al., 2017). In our study,
when comparing HBV patients with advanced stages of LC and HCC
with HCs, those carrying S267F had a significantly decreased risk of
developing LC or HCC, indicating a lower probability of unfavorable
clinical outcome compared to individuals carrying the wild-type
genotype. The substitution of serine, a hydrophilic residue, by
phenylalanine, a large hydrophobic residue, alters the structure of
NTCP and causes a modification of the HBV/HDV receptor function
(Yan et al., 2012), but also results in a reduced function of bile acid
transport (Ho et al., 2004). Bile acids are cytotoxic compounds, and
as their concentrations increase in the liver, they trigger
hepatocyte apoptosis by activating the death receptor interactive
signaling pathway, thereby promoting persistent inflammatory
injury (Faubion et al., 1999; Ho et al., 2004; Miyoshi et al., 1999).
The NTCP S267F variant decreases uptake of bile acids into
hepatocytes, thus reducing accumulation of intrahepatic cytotoxic
bile salts (Ho et al., 2004). Decreased uptake of bile acids into
hepatocytes is associated with mild hypotonia, growth retardation,
and delayed motor milestones (Vaz et al,, 2015). However, the
relationship between reduced bile salt uptake into hepatocytes
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Figure 1. Association of NTCP S267F variant with clinical outcome of HBV infection.
Laboratory parameters were compared between patients with genotype CC and those with genotype CT. Box plots illustrate medians with interquartile range. P values were
calculated by using Mann-Whitney-Wilcoxon test.

Table 3

Association of NTCP S267F variant with LC and HCC progression.

I I
CC (n=562) CT (n=36)

Child-Pugh score

NTCP Child A Child B Child C Child B vs. Child A Child C vs. Child A Child B/C vs. Child A
rs2296651 (S267F) n=266 (%) n=123 (%) n=54 (%)

OR (95%CI) P OR (95%CI) P OR (95%CI) P
cc 245 (92.1) 120 (97.6) 52 (96.3) Reference Reference Reference
CcT 21(7.9) 3(24) 2(3.7) 0.19 (0.04-0.81) 0.025 0.44 (0.1-1.9) 0.28 0.26 (0.09-0.78) 0.016
BCLC classification
NTCP Stage An=94 Stage B Stage C/D Stage B vs. Stage A Stages C/D vs. Stage A Stages B/C/D vs. Stage A
152296651 (S267F) n=132 n=55

OR (95%CI) P OR (95%CI) p OR (95%CI) p
cc 83 (88.3) 127 (96.2) 52 (94.6) Reference Reference Reference
CcT 11 (11.7) 5(3.8) 3(5.4) 0.33 (0.11-0.99) 0.049 0.54 (0.06-4.5) 0.5 0.38 (0.15-0.97) 0.045

Child A, B, C: Child-Pugh score A, B, C; Stage A, B, C, D: Barcelona Clinic Liver Cancer stage A, B, C, D; Pvalues were calculated using binary logistic regression model adjusted for

age and gender.

Bold values reflect statistical significance.

Table 4
Association of NTCP S267F variant with HBV and HDV infections.
NTCP HC HBV monoinfection HDV/HBV coinfection HBV monoinfection vs. HC HDV/HBV coinfection vs. = HDV/HBV coinfection vs.
1s2296651 (S267F) n=214 (%) n=386 (%) n=64 (%) HC HBV monoinfection
OR (95%CI) P value OR (95%CI) P value OR (95%Cl) P value
Genotype
cc 179 (83.6) 361 (93.1) 62 (96.8) Reference Reference Reference
CT+TT* 35(164) 25(6.9) 2(3.2) 0.39 (0.22-0.69) 0.0012 0.17 (0.04-0.74) 0.018 0.44 (0.1-1.9) 0.27
Allele
C 392 (91.6) 747 (96.8) 126 (98.4) Reference Reference Reference
T 36 (8.4) 25 (3.2) 2(1.6) 0.38 (0.22-0.66) 0.0006 0.17 (0.04-0.73) 0.017 0.45 (0.11-1.93) 0.28

HC, healthy controls; HBV mono, hepatitis B monoinfection; HDV/HBV, HDV and HBV coinfection, n=numbers of individuals; OR, Odd Ratio. P values were calculated using
binary logistic regression model adjusted for age and gender. (*), one healthy carried TT genotype.
Bold values reflect statistical significance.
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and lower risk of LC and HCC development warrants further
investigation.

Regarding the association of the S267F variant with HDV
infection, individuals carrying S267F had a lower risk of concomi-
tant HDV infection. However, we did not observe any difference of
S267F genotype and allele frequencies when the comparison
between HBV monoinfection and HDV/HBV coinfection was
considered. This may be explained by the fact that HBV and
HDV share NTCP as hepatocytic receptor and the minor allele of
S267F contributes to impair entry of both HBV and HDV.

A larger number of HDV-HBV coinfected patients is desirable to
confirm any association of S267F with HDV infection as well as to
correlate the genetic findings with the clinical outcome of HBV-
HDV coinfection. In conclusion, the NTCP S267F variant was
frequent in the Vietnamese population. It is associated with
decreased susceptibility to HBV and HDV infection, as well as with
a decreased occurrence of LC and HCC and advanced stages of HBV-
related liver diseases.
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