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Abstract

Online petitions are an important avenue for direct political action, yet the dynamics that

determine when a petition will be successful are not well understood. Here we analyze the

temporal characteristics of online-petition signing behavior in order to identify systematic dif-

ferences between popular petitions, which receive a high volume of signatures, and unpopu-

lar ones. We find that, in line with other temporal characterizations of human activity, the

signing process is typically non-Poissonian and non-homogeneous in time. However, this

process exhibits anomalously high memory for human activity, possibly indicating that syn-

chronized external influence or contagion play and important role. More interestingly, we

find clear differences in the characteristics of the inter-event time distributions depending on

the total number of signatures that petitions receive, independently of the total duration of

the petitions. Specifically, popular petitions that attract a large volume of signatures exhibit

more variance in the distribution of inter-event times than unpopular petitions with only a

few signatures, which could be considered an indication that the former are more bursty.

However, petitions with large signature volume are less bursty according to measures that

consider the time ordering of inter-event times. Our results, therefore, emphasize the impor-

tance of accounting for time ordering to characterize human activity.

Introduction

In the last decade online activism [1], in particular online petition platforms such as openPeti-
tion, Avaaz, change.org, Campact, MoveOn.org attracted the attention of many citizens since

these platforms allow a more active participation in politics and also enable them to form com-

munities for getting involved in local or even international political decisions. Despite the

great interest in online activism, relatively little is known about benefit, success and the

dynamics of online petitions [2, 3]. Here we analyze the temporal evolution of petitions

belonging to openPetition, an online platform that aims to support citizens to make their

requests public, coordinate their actions and open a dialog with elected representatives. Geo-

graphically, the platform addresses online petitions from Germany, Austria, Switzerland and

member countries of the European Union. For every petition openPetition calculates a quorum

defining the minimum number of signatures needed to make the platform sending a request

for an official statement from the responsible representatives. However, regardless whether the
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petition reaches quorum, it can be always handed over. Since the launch of the openPetition
homepage in 2010 more than 3 million users signed over 14 million times.

Here we analyze the temporal characteristics of signing on the openPetition platform. Previ-

ous studies investigating the temporal features of human activity have reported a power-law

distribution of inter-event times [4, 5]. These findings are in sharp contrast to the general

assumption of exponentially distributed inter-event times, i.e. a Poisson process description of

human activity [6, 7]. However, different mechanisms have been suggested to explain devia-

tions from a Poisson description [4, 8, 9]. We show that online petition signing time-series

exhibit different characteristic inter-event time distributions according to their popularity, i.e.

the total number of signatures a petition receives. We further analyze this effect by studying

regularity and burstiness of the signing “spike trains”, i.e. the time series of discrete signing

events. Burstiness is, broadly speaking, intermittent activity. However, the specific definition

varies. In the study of human activity it was initially defined as short intervals of high activity

followed by log intervals of inactivity [10]. However, subsequently measures of burstiness from

the neuroscience literature, specifically the local variation, have proved useful in characterizing

human activity [11–15]. Originally defined to describe neuronal bursts, in this context a bursty

time-series exhibits short inter-event times typically followed by long ones. We apply different

measures of burstiness to characterize online petition time series by studying the local varia-

tion of the signing spike trains. These measures are introduced in the Materials and Methods
section. In the subsequent Results section we discuss the characterization of the petitions’

temporal features. Most importantly, our characterization allows for a clear differentiation

between popular petitions that accrue a large volume of signatures and less popular ones that

fail to do so. As described in the concluding Discussion section, this could point to a funda-

mental difference in the signing dynamics at work in each case. Furthermore, our results

emphasize the importance of burstiness measures, such as the local variation, that take the

time ordering of inter-event times into account.

Materials and methods

The data set we analyze contains detailed information on all petitions of the online platform

openPetition. Besides petition name, content, category and current status, the data base also

includes signers’ and initiators’ geolocations and the corresponding signature timestamps. In

total, there are 16282 petitions with 10948145 signatures. 10570 petitions have at least one sig-

nature. The most recent numbers are available online: https://www.openpetition.de/. In this

study, we focus on the analysis of the petitions’ time series which are based on the correspond-

ing time stamps. To investigate their regularity and burstiness we use different measures

which we describe below.

The local variation LV has been applied to study the spiking characteristics of non-station-

ary processes, in particular for investigating neural spike trains [11, 12], and is defined by:

LV ¼
3

N � 2

XN� 1

i¼2

tiþ1 � ti

tiþ1 þ ti

� �2

; ð1Þ

where τi corresponds to the i-th inter-event time. Recently, the local variation has been used to

analyze temporal features of Twitter hashtags [13, 14]. LV takes values within the interval [0, 3]

and approaches unity for Poisson sequences. This can be seen by assuming a gamma distribu-

tion pκ(τ) = (κξ)κ τκ−1 exp (−κξτ)/Γ(κ), where κ denotes the shape parameter controlling the

burstiness (irregularity) and ξ defines the firing rate determining the speed of spike train
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dynamics. Calculating the average of LV with respect to the given distribution pκ(τ) yields [11]:

hLVi ¼

Z 1

0

dt1

Z 1

0

dt23
t1 � t2ð Þ

2

t1 þ t2ð Þ
2
pkðt1Þpkðt2Þ ¼

3

2kþ 1
: ð2Þ

For the gamma distribution pκ(τ), mean and standard deviation are given by mτ = 1/ξ and

st ¼ mt=
ffiffiffi
k
p

respectively. For κ = 1 we obtain a Poisson process and indeed LV = 1 [12]. The

standard deviation στ of the signal increases as κ decreases—the signal is said to be more

bursty. Thus LV> 1 indicates that the signal is more bursty than a signal generated by a homo-

geneous Poisson process and LV< 1 one that is less. Deviations from the Poissonian signal

(LV = 1) either occur because of a non-exponential inter-event time distribution or are due to

correlations in the signal.

Besides the local variation LV, we also consider two other measures in this study, namely

the burstiness coefficient B and the memory coefficient M [10]. The burstiness coefficient B is

defined as:

B ¼
st=mt � 1

st=mt þ 1
¼

st � mt

st þmt

; ð3Þ

where mτ is the mean of the inter-event time distribution and στ the corresponding standard

deviation. For real-world finite time series with existing mean and standard deviation the val-

ues of B are within the interval (−1, 1) [10]. An exponential inter-event time distribution with

κ = 1 yields B = 0. For the most bursty signal for which the variance approaches infinity, we

find B = 1. Completely regular signals are described by B = −1. In contrast to LV, the measure B
does not take into account the temporal order of inter-event times.

We characterize the correlation properties of a time series using the memory coefficient M,

which is simply the correlation coefficient of consecutive inter-event times (τi, τi+1):

M ¼
1

nt � 1

Xnt � 1

i¼1

ti � m1ð Þ tiþ1 � m2

� �

s1s2

; ð4Þ

where nτ is the total number of inter-event times. The mean and the standard deviation of all

inter-event times excluding the last one (the first one) are denoted by m1 and σ1 (m2 and σ2)

respectively. The memory coefficient takes values in the interval (−1, 1) and is positive for sig-

nals where short (long) inter-event times have a tendency to be followed by another short

(long) one, and it is negative in the opposite case.

Results

Time evolution of petitions’ numbers of signatures and their distribution

In order to understand the temporal features of successful petitions with a large number of sig-

natures, we divide all petitions into four different classes based on the number of signatures N,

cf. Fig 1. In subsequent paragraphs we refer to them as signature number classes. Class 1 con-

tains petitions with the smallest numbers of signatures and class 4 the ones with the largest

numbers respectively. The numbers of petitions in each class are: 2182, 1213, 151 and 8

(ascending class index). The probability density function of the inter-event times is shown in

Fig 1 (left). As expected, inter-event times are more broadly distributed than the exponential

distribution expected from a Poisson process. In Fig 1 (right), we show the relative frequency

of signing activity per second. Most of the signing activity corresponds to one signing event

per time stamp. The time series of signing events clearly exhibits bursty behavior, i.e. there are

periods of high signing activity followed by periods of low or no activity. As an example, we
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show the time series of the signatures per hour of the petition with the largest number of signa-

tures in Fig 2 (left). The time evolution of the total number of signatures is illustrated in Fig 2

(right). As illustrated in the inset of Fig 2 (left), we also observe a circadian rhythm in the peti-

tions’ time series, which is typical for human activities. However, it is clear that bursty behavior

is observed on a larger time scale. We find that the heterogeneity of inter-event time distribu-

tions holds independently of the popularity of the petition, looking at the behavior of the four

different classes of numbers of signatures. However, we note that there is a systematic increase

in the frequency of short inter-event times and decrease in longer inter event-times as the pop-

ularity of a petition increases.

Before discussing the actual time series analysis, we shortly analyze the petitions in our data

set in terms of their number of signatures. In previous studies it has been found that only a

small fraction of petitions accumulate a considerable amount of signatures [2, 3]. For the peti-

tions in our data set a Zipf plot (number of signatures vs. petition rank) is shown in Fig 3 (left).

Fig 1. Inter-event time distribution and burstiness. All petitions are divided into four different classes based on the number of signatures N. (left) The

corresponding probability density function (PDF) of the inter-event time intervals (hour). (right) The relative frequency of signing activity per second. The vast

majority of signing activity corresponds to one signing event per time stamp.

https://doi.org/10.1371/journal.pone.0178062.g001

Fig 2. Signing time series and time evolution of total number of signatures. (left) Time series of the largest petition’s signing activity per hour. The inset

shows the superimposed circadian pattern. (right) The corresponding total number of signatures as a function of time.

https://doi.org/10.1371/journal.pone.0178062.g002
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The red lines are guides to the eye with slopes −0.9 and −8.0. The change in slope has been also

observed previously for another online petition platform [3]. However, in the latter case the

change occurs at a number of signatures of around 500 which corresponds to the predefined

quorum of 500 in their data set and led the authors to the conclusion that petitions are less

eager to accrue additional signatures after meeting the number required for an official govern-

ment response. In our data there is no fixed quorum value since the openPetition quorum

scales with the number of inhabitants in the target region. The different slopes might be a con-

sequence of different growth dynamics. In Fig 3 (right) we show the probability distribution of

the numbers of signatures. Around 30% of all petitions in our data set only have one or zero

signatures. However, some petitions (0.01%) acquired more than 100.000 signatures. The inset

in Fig 3 (right) shows good agreement between the distribution of the numbers of signatures’

first digits and the expected Benford distribution which is a typical feature of logarithmically

distributed data [16, 17].

Petition spike trains and local variation

To further analyze the temporal features of signing time series, we employ tools for non-sta-

tionary time series. We construct signing spike trains, i.e. the time series of discrete signing

events, for each petition. Here a spike represents signing activity at the corresponding time.

We are thus not taking into account multiple signing activity—a legitimate approximation

since nearly all signing activity corresponds to one signing event per time stamp, cf. Fig 1

(right).

As a null model for comparison, we generate a randomized sequence of the original inter-

event intervals within the considered time interval, i.e. the total number of seconds between

the petition’s start and end [13]. This procedure destroys the inter-event time correlations but

preserves the distribution. Using this null model allows to study if correlations are the key fac-

tor to produce the observed local variation.

Before analyzing the local variation LV of the petition time series, we apply a statistical F-

test as suggested in Refs. [15, 18] to decide whether LV consistently characterizes the time

series. This means that the variance of LV across different periods in one time series should be

Fig 3. Characterizing the distribution of the number of signatures a petition accrues. (left) Number of signatures as function of their rank (Zipf plot) in

the openPetition data set. The red lines are guides to the eye with slopes −0.9 and −8.0 respectively. (right) Relative frequency of petitions in the openPetition

data set with a certain number of signatures. The inset shows the distribution of the petitions’ signatures first digit (green bars) and the corresponding Benford

distribution data (red dots).

https://doi.org/10.1371/journal.pone.0178062.g003
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smaller than the variance in the population of all time series. Here we subdivide each time

series in 20 slices and calculate the corresponding F-values as the ratios between the variance

of LV in the population of all time series and the variances across the 20 slices [15, 18]. For dif-

ferent popularity classes, we show the F-values of LV in Table 1. The F-values are significantly

larger than the 0.1-percentile values. This suggests that the variance of LV in a single time series

is significantly smaller than the variance in the population and we conclude that the local vari-

ation LV properly characterizes our time series.

We now compute the local variation LV as defined in Eq (1) and see differences in the dis-

tributions of LV between the real spike train data in Fig 4 (upper left) and the randomized

null model data in Fig 4 (upper right). For the eight petitions with the largest numbers

of signatures, we present the corresponding LV values in Table 2. Popular petitions with

large numbers of signatures exhibit smaller values of LV compared to less popular ones sug-

gesting that the former are less bursty. As described in the Materials and Methods section,

we expect hLVi = 1 for a Poisson process and we find deviations for the real data as illus-

trated in Fig 4 (lower left). To capture the strength of the deviation we compute the

z� value ¼ ðmðLVÞ � m0Þ=sðLVÞ=
ffiffiffi
n
p

, where μ0 = 1, μ(LV) and σ(LV) define the mean and

standard deviation of a given LV distribution respectively and n is the number of data

points. The z-values of the randomized spike trains are almost zero indicating a Poissonian

signal whereas petitions with low numbers of signatures exhibit a very large z-value,

indicating anomalously high LV, as shown in Fig 4 (lower right). This indicates that

petitions with fewer signatures deviate more from the Poissonian null model. The results

for LV are in agreement with a similar analysis involving LV of different popularity

classes in Twitter data [13, 14]. In Ref. [13], popular hashtags were found to exhibit less

bursty spike trains compared to less popular ones and in Ref. [14] more popular user’s activ-

ity is less bursty than that of sporadic users. It is worth noting that petition signing seems

to more closely resemble the second case of user’s activity, since the popular spike trains

exhibit LV values just below 1, while in the first study LV� 1. Interestingly, when we parti-

tion petitions by their duration, i.e. the time period in which people have the possibility to

sign a petition, we do not find that the burstiness varies according to the duration class cf.

Fig 5.

In accordance with Ref. [13], we study the persistence of LV through time by dividing each

time series into two halves to calculate the local variation LV(t1) in the first half and LV(t2) in

the second half. We find that higher numbers of signatures lead to higher correlations [18]

between these two values of LV (see Fig 6). In the past similar patterns have been observed in

Twitter data [13], with the critical difference that high correlation coefficients have only been

found for intermediate classes. This effect might be an artifact due to the small number of sam-

ples in classes with extremely high activity. In fact, when excluding the classes of extremely

high activity the data presented in Fig 6 and the findings on twitter data [13] indicate that

the distribution of LV is getting narrower with increasing activity causing an increase in

correlation.

Table 1. F-test statistics of the local variation LV. The F-test statistics of the local variation LV in different popularity classes.

Popularity class Number of petitions 0.1-percentile F-value (LV)

102� N < 103 2182 1.04 2.93

103� N < 104 1213 1.05 5.39

104� N < 105 151 1.16 19.01

105� N < 106 8 1.76 48.16

https://doi.org/10.1371/journal.pone.0178062.t001

Temporal dynamics of online petitions

PLOS ONE | https://doi.org/10.1371/journal.pone.0178062 May 18, 2017 6 / 12

https://doi.org/10.1371/journal.pone.0178062.t001
https://doi.org/10.1371/journal.pone.0178062


Burstiness coefficient and the role of memory

According to the results presented in Fig 4 (upper left) that are based on the local variation LV,

popular petitions with a large number of signatures are less bursty compared to the ones with

less signatures. However, a characterization based on the burstiness coefficient B as defined in

Eq (3) indicates more bursty signals for larger numbers of signatures (see inset in Fig 7 (left)).

Why do high signing petitions exhibit burstiness according to the burstiness coefficient B but

not according to the local variation LV? This difference is due to the an important difference in

the conceptual and formal definitions of burstiness according to LV and B. Namely, LV takes

the order of inter-event times into account, whereas B does not.

The discrepancy between the effect can be partly understood measuring the memory M of

the inter-event time distribution, according to Eq (4). For the different petition classes we illus-

trate their burstiness coefficient, memory coefficient, and the local variation in Fig 8. For the

eight petitions with the largest numbers of signatures, we present the corresponding B, M and

LV values in Table 2. The local variation LV is based on the differences of consecutive inter-

Fig 4. Local variation analysis of petition signing spike trains for different classes of numbers of signatures. All petitions are divided into four different

classes based on the number of signatures N. (upper left) Distribution of the local variation for the real signing activity spike train data. (upper right) Same as

the latter for randomized spike trains (null model), showing behavior that is more clearly Poissonian and the same for all classes. (lower left) The mean μ(LV)

of real and randomized spike trains for different classes of numbers of signatures. (lower right) The z-values of real and randomized data for different classes

of numbers of signatures, showing that the classes with only a few signatures deviate from the Poissonian assumption according to the LV measure.

https://doi.org/10.1371/journal.pone.0178062.g004
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Table 2. Burstiness coefficient, memory coefficient and local variation of highly popular petitions.

The burstiness coefficient, memory coefficient and local variation of the eight petitions with the largest num-

bers of signatures.

Local variation LV Burstiness coefficient B Memory coefficient M

0.93 0.96 0.04

0.92 0.73 0.36

0.85 0.99 0.95

0.82 0.70 0.32

0.38 0.83 0.47

0.40 0.89 0.36

0.56 0.73 0.52

0.90 0.77 0.39

https://doi.org/10.1371/journal.pone.0178062.t002

Fig 5. Local variation analysis of petition signing spike trains for different duration classes. All petitions are divided into eight different classes based

on their duration T. A small class index corresponds to short durations and large one to long durations. (upper left) Distribution of the local variation for the

real petition spike train data. (upper right) Same as the latter for randomized spike trains, showing behavior that is more clearly Poissonian and the same for

all classes. (lower left) The mean μ(LV) of real and randomized spike trains for different duration classes. (lower right) The z-values of real and randomized

data for different petition duration classes.

https://doi.org/10.1371/journal.pone.0178062.g005
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event times. However, for the computation of B the order of inter-event times does not matter.

Memory is a measure of the correlation between adjacent inter-event intervals. The probability

density function of M is illustrated separately in Fig 7 (right). We find a positive memory coef-

ficient with an average value of M� 0.3 as also contained in Fig 8 (right). This suggests that

such correlations between adjacent intervals are an important source of burstiness in the peti-

tion’s signing process and thus B alone is not a good measure of the burstiness, as suggested in

[10]. Interestingly, unlike prior analysis of patterns of human activity [10] (e.g. e-mail commu-

nication [19]), we find a non-negligible positive memory coefficient. To summarize, burstiness

is a consequence of strong correlations in daily human activity and thus cannot be captured by

the burstiness coefficient B alone. The memory coefficient M, as defined in Eq (4), captures

some of these correlations but capture differences between subsequent inter-event times. How-

ever, the local variation LV quantifies this local time order.

Fig 6. Correlation of local variation for successive time intervals and the related Pearson correlation coefficient. (left) Correlation plot for the local

variation LV for two successive time intervals. (right) The corresponding Pearson correlation coefficient for different classes of numbers of signatures.

https://doi.org/10.1371/journal.pone.0178062.g006

Fig 7. Inter-event time distribution and burstiness. (left) The PDF of the burstiness coefficient B and the corresponding mean values (inset). (right) The

PDF of the memory coefficient M and the corresponding mean values (inset).

https://doi.org/10.1371/journal.pone.0178062.g007
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Discussion

In this study we focussed on the characterization of online petition time series based on data

from the openPetition online platform. The burstiness of petition signing is systematically dif-

ferent between those petitions that receive high signing volumes and those that do not. Our

findings might therefore have implications on predicting whether a petition will be successful

or not. Specifically, low signing petitions exhibit high local variation, but low correlations in

local variation across successive time intervals. Conversely, high signing petitions exhibit local

variation similar to that expected in a Poisson process, and the correlations between successive

intervals are high. However, high signing petitions also exhibit a higher memory and bursti-

ness coefficient than a Poisson process and than low signing petitions. Thus, these observa-

tions can be reconciled if more popular petitions have, alongside a broad distribution of inter-

event time intervals, periods where there are clusters of high frequency signing, leading to a

low local variation and high memory. Our results suggest that the local variation LV precisely

quantifies the local time order whereas the burstiness coefficient B should not be used alone to

quantify nonlinear time series.

The distribution of the local variation in different classes of signing activity are in agree-

ment with previous findings on the popularity of microblogs on Twitter [13, 14]. Popular

hashtags were found to exhibit less bursty spike trains compared to less popular ones [13]and

more popular user’s activity is less bursty than that of sporadic users [14]. Our results more

closely resemble the ones of Ref. [14] since the popular spike trains exhibit LV values just

below 1, while in Ref. [13] LV� 1.

Another interesting characteristic of the petitions is that they exhibit a positive memory

coefficient, indicating that the duration of adjacent inter-event times is correlated. This is in

contrast to the negligible memory coefficient that other studies of human activities have

revealed [10]. The unusually high memory of petition signing could be due to the influence of

contagion and social influence dynamics on signing events or the effect of exogenous influence

such as wide-spread media broadcasting of the petition or a related topic. One could expect to

find smaller values of the memory coefficient for online petitions when countries are in politi-

cal and social turmoil. This is the subject of future investigation.

Fig 8. Memory coefficient and burstiness. (left) Burstiness vs. memory coefficient. One clearly sees deviations from the human activity patterns in

Ref. [10], where M is close to zero. (right) The local variation LV vs. memory coefficient.

https://doi.org/10.1371/journal.pone.0178062.g008
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