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Abstract
The key challenge during food-borne disease outbreaks, e.g. the 2011 EHEC/HUS outbreak in Germany, is the 
design of efficient mitigation strategies based on a timely identification of the outbreak’s spatial origin. 
Standard public health procedures typically use case-control studies and tracings along food shipping chains. 
These methods are time-consuming and suffer from biased data collected slowly in patient interviews. Here we 
apply a recently developed, network-theoretical method to identify the spatial origin of food-borne disease 
outbreaks. Thereby, the network captures the transportation routes of contaminated foods. The technique only 
requires spatial information on case reports regularly collected by public health institutions and a model for the 
underlying food distribution network. The approach is based on the idea of replacing the conventional 
geographic distance with an effective distance that is derived from the topological structure of the underlying 
food distribution network. We show that this approach can efficiently identify most probable epicenters of food-
borne disease outbreaks. We assess and discuss the method in the context of the 2011 EHEC epidemic. Based 
on plausible assumptions on the structure of the national food distribution network, the approach can correctly 
localize the origin of the 2011 German EHEC/HUS outbreak.
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Introduction
Due to intensified mass production, facilitated world-wide shipping and novel food manufacturing methods, food-
borne disease outbreaks occur more frequently with increasing impacts on society, public health institutions, 
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the economy, and food industry1. An estimated 60% of annual gastrointestinal illnesses for each adult in the 
general population of the United States is caused by food-borne diseases2. Moreover, diarrhoea is the second 
leading cause of morbidity and mortality among children under five years worldwide3. food-borne diseases 
impose enormous financial burden on health care services, routine surveillance and public health investigations, 
and trigger substantial productivity impacts and product recalls by the food industry. For seven food-borne 
pathogens an annual burden of $6.5-$34.5 billion in the United States alone was estimated4.

One of the most substantial challenges in this context is determining the spatial origin of the contaminated food 
vehicle, which causes the epidemic, for earlier and more effective disease containment. Several factors make 
detection of the food-borne disease outbreak origin challenging, e.g. population growth, changing eating habits, 
globalization of food supply chains, production and processing innovations, and microbiological adaptation1,5. 
Furthermore, public health institutes have limited resources to solve issues such as underreporting and low 
specificity in the association between aetiology and food vehicle6. Origin reconstruction is a complex problem 
because the effects of contaminated food typically occur with a significant time lag and incidence patterns are 
geographically incoherent. Additionally, specific transport pathways are generally not monitored. More 
importantly, food distribution networks are multi-scale, spanning length-scale of hundreds to thousands of 
kilometers, delivering to and within spatially heterogeneous populations. Consequently, it is generically 
impossible to estimate the geographic origin of the phenomenon based on geometric aspects of the spatial 
distribution of reported cases. Only for 66% of the outbreaks, public health investigations identified evidence 
concerning the infection source7.

These practical difficulties were particularly striking during the German 2011 EHEC (enterohemorrhagic 
Escherichia coli) outbreak, which affected 3,842 people with unusually high rates of severe HUS (hemolytic-
uremic syndrome) cases and mortality. The EHEC/HUS outbreak raised the awareness of timely and efficient 
origin reconstruction methods and their importance to society, public health institutions, risk assessment 
authorities and the food industry 2. There is no general procedure for food-borne disease outbreak 
investigations, that fits a particular event perfectly. However, the World Health Organization (WHO)8 provides 
practical standard guidelines for the investigation and control of food-borne disease outbreaks as a multi-
disciplinary task which requires information from many sources.First, an unusual accumulation of disease 
reports has to be detected and defined as an outbreak. After pathogen specification, initial cases are 
investigated with regard to common factors and clinical and food specimens are sampled. The corresponding 
microbiological ‘fingerprinting’ of strains may also identify case relatedness and/or potential sources of 
contamination.From associated food and environmental samples, backward tracings are initiated to determine 
the origin. Furthermore, a case definition can be established to identify outbreak related cases and to collect 
their information on a standardized questionnaire.Using this data, analytical investigations, such as case-control 
and cohort studies, are performed to test hypotheses about the transmission vehicle and origin. The outbreak 
source is determined by combining all collected information, otherwise further analytical studies are 
required.Finally, the potential origin and transmission routes are controlled using forward tracings from 
contamination to the outbreak cases. Several attempts to improve traceability of food products to their 
geographical origin have been developed including technical innovations9, microbiological advances10, or food 
forensics11. However, detection of outbreak origin remains time-consuming and cost-intensive.

Network theory and network models have become the most important tools for understanding and predicting 
epidemics in general12,13,14. The majority of studies focuses on spatial disease dynamic systems in which 
networks quantify the coupling strength or transportation fluxes between spatially distributed populations. 
Almost all studies aim at understanding and forecasting the future time course of an epidemic based on the 
topological connectivity of the underlying transport networks15,16. Furthermore, most studies focus on human-
to-human transmissible diseases. Little work has been done, however, on the inverse problem, also known as 
the ‘zero patient’ problem in epidemics. Shah and Zaman 17,18 developed a universal source detection 
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maximum likelihood estimate, which assumes virus spread in a general graph along a breadth-first-search tree 
and derive theoretical thresholds for the detection probability. Pinto at al. 19 extended this estimate for partially 
observed transmission trees. Alternative origin reconstruction methods are based on shortest paths or 
consequent diameter from transmission trees 20,21. Prakash et al. 22 and Fioriti and Chinnici 23 developed 
methods based on spectral techniques to identify a (set of) origin nodes on a transmission network. They utilize 
a close relationship of source estimation and node centrality as shown by Comin and da Fontoura Costa 24. 
However, these methods require comprehensive knowledge of the transmission network, which is rarely the 
case.

Here we apply a recently developed network-geometric approach for epicenter reconstruction25 to food-borne 
diseases. This approach is based on a plausible redefinition of spatial separation and the introduction of an 
effective distance derived from the underlying food distribution network in combination with viewing the 
contagion process from the perspective of a specific node in the network. Using the effective distance method, 
complex spreading patterns can be mapped onto simple, regular wave propagation patterns if and only if the 
actual outbreak origin is chosen as the reference node. This way, the method can determine the correct 
outbreak origin based on the degree of regularity of the measured prevalence distribution when viewed in the 
effective distance perspective. This reconstruction is successful without the knowledge of the detailed infection 
hierarchy. Here, the underlying network captures the underlying transportation of the contaminated food rather 
than the mobility pattern of humans.

German EHEC O104:H4/HUS outbreak 2011
Regarding the number of severe HUS cases, the 2011 EHEC/HUS outbreak in Germany, has been the largest E. 
coli outbreak reported worldwide. Between May 2 and July 26, 2011, 3,842 outbreak associated EHEC cases 
were reported to the Robert Koch-Institute (RKI), the German Federal Public Health and Surveillance Institute. 
This included 855 severe HUS cases (22.3%) and 53 patients (1.4%) died. The outbreak was caused by a rare 
serotype O104:H4 which infected predominantly adults (median age, 43 years), particularly women (68%), and 
resulted in high HUS and mortality rates 26. In the previous years, between 925 and 1,283 cases were reported 
annually, mostly in children. The majority of the infection cases was observed in Northern Germany, which 
resulted in a higher incidence (number of cases per 100,000 inhabitants) for the corresponding districts than 
the overall one for Germany (see Fig. 1). Extensive investigations were conducted by the Task Force EHEC, 
which included a matched case-control study, a recipe-based restaurant cohort study, and backward-/forward-
tracings 27. The entire process was complicated, resource demanding and time-consuming. All investigations 
required a large amount of data that are typically biased, incomplete, erroneous, and sometimes contradictory. 
The tracings require a large amount of trained personnel and their success depends on the results of 
epidemiological studies.Only the combination of several study designs finally lead to the determination of 
sprouts as the transmission vehicle and the identification of their origin, a farm in Bienenbüttel located in the 
district Uelzen, Lower Saxony. On June 10, 38 days after outbreak onset, the public was informed to avoid 
sprout consumption and the responsible production farm was closed.
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coli outbreak reported worldwide. Between May 2 and July 26, 2011, 3,842 outbreak associated EHEC cases 
were reported to the Robert Koch-Institute (RKI), the German Federal Public Health and Surveillance Institute. 
This included 855 severe HUS cases (22.3%) and 53 patients (1.4%) died. The outbreak was caused by a rare 
serotype O104:H4 which infected predominantly adults (median age, 43 years), particularly women (68%), and 
resulted in high HUS and mortality rates 26. In the previous years, between 925 and 1,283 cases were reported 
annually, mostly in children. The majority of the infection cases was observed in Northern Germany, which 
resulted in a higher incidence (number of cases per 100,000 inhabitants) for the corresponding districts than 
the overall one for Germany (see Fig. 1). Extensive investigations were conducted by the Task Force EHEC, 
which included a matched case-control study, a recipe-based restaurant cohort study, and backward-/forward-
tracings 27. The entire process was complicated, resource demanding and time-consuming. All investigations 
required a large amount of data that are typically biased, incomplete, erroneous, and sometimes contradictory. 
The tracings require a large amount of trained personnel and their success depends on the results of 
epidemiological studies.Only the combination of several study designs finally lead to the determination of 
sprouts as the transmission vehicle and the identification of their origin, a farm in Bienenbüttel located in the 
district Uelzen, Lower Saxony. On June 10, 38 days after outbreak onset, the public was informed to avoid 
sprout consumption and the responsible production farm was closed.
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Fig. 1: E. coli incidence in Germany during 2011 EHEC/HUS outbreak.

(A) Each panel depicts a different outbreak week (May 30th until June 20th, 2011). Color intensity quantifies 
infection counts in for each of the German districts (Data source: 28, Map source: 29). The alleged origin of 
outbreak (district Uelzen) is marked in blue. (B) Time course of E. coli incidence for selected districts. For 
reference, the overall German incidence per district is shown in black.

The severe impact of the disease on the population and industry, the fast and wide spread due to mass 
production and optimized food shipping, and the large public attention emphasize the need for fast and efficient 
outbreak origin localization.

Network-theoretic origin detection
We consider a model network for spatial food distribution, where nodes  represent 
administrative districts in Germany. Links  quantify the amount of goods that are shipped from node  to 
per unit time. Note that in the following, we let . For what follows, only relative flux fractions
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(1)

are required to specify the network. The quantities  can be interpreted as an effective coupling between 
districts  and  that is induced by the food distribution between these districts. We consider the quantities 
as a proxy from which spreading propensities between  and  can be derived. 
Because precise measurements of food distribution pathways are not available, we consider an established, 
approximate heuristic from the social sciences, economics and transportation theory known as the gravity 
model 30,31. This approach accounts for the observation that traffic flow increases monotonically with the 
population size between locations and decreases algebraically with distance, leading to the relationship
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(2)

where , , and  quantify the population size of origin , destination , and their geographic distance, 
respectively. The non-negative exponents  and distance scale  are parameters of the gravity model 32,33

. Plausible choices for these parameters can be found in the following way: First, we assume that the coupling 
strength between two locations  and  increase with the number of connections ( ) that can be formed 
between elements of the populations. This implies that . Additionally, the coupling strength should be 
proportional to a mean value of the origin and destination population sizes, while leverage by large population 
nodes should be attenuated. Accounting for this, we choose the geometric average 
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Furthermore, we let the coupling strength decrease with distance. The corresponding tail exponent is 
consistent with the quantitative assessments of human mobility and transportation networks 34,35, i.e. 
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(4)

Finally, we fix the scale parameter  (in km) in Eq. (2) to be of the order of the average linear extent of a 
district. With these assumptions, the parameters in the gravity model are  and  km. 
Although we choose these parameter values as base values, we also investigate the robustness of our results 
against variations in exponents and found that our results are quite robust. 
The gravity model generates a fully connected network with strongly heterogeneous weights, contrasting 
realistic mobility or transportation networks that possess a sparse topology. In order to obtain a more realistic 
model for food distribution that exhibits topological sparseness of connections, we follow a procedure recently 
introduced by Serrano et al. 36. The idea of this approach is that only links are retained that are statistically 
significant with respect to a random null model, in which traffic is distributed uniformly among links of a node. 
Following this idea, we first compute the flux fraction
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(5)

for each node . If at each node, traffic was randomly distributed among the remaining  other nodes, a null 
model would produce . Thus, we only retain links that possess a flux fraction larger than , i.e. if 
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(6)

This approach yields a network skeleton of statistically significant links. Following this procedure the resulting 
network has an overall connectivity of 18%, see Fig. 2B. 
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Fig. 2: Multiscale Food Distribution in Germany

(A) A map of German districts; hues correspond to the regional network modules obtained by modularity 
maximization 37; color intensity quantifies population density. The origin of the 2011 EHEC/HUS outbreak is 
marked by a white circle in Bienenbüttel located in the district Uelzen. (B) German food shipping network 
constructed from a gravity model with parameters , and  km. Each district is 
represented by a network node, coloring corresponds to the link strength. The network has a connectivity of 
18.1%.

One of the characteristic features of transportation networks in general, which is also captured by the above 
gravity model, is its multiscale structure. Although short-range links are usually strongest, the algebraic tail in 
Eq. (2) yields long-range connections that can dominate spreading phenomena evolving on these networks. 
Qualitatively, this is illustrated in Fig. 3A which depicts an simple planar quasi-lattice network, in which every 
node is connected only to its spatially adjacent nodes. Additionally, a few long-range, random connections are 
added. Because of long-range connections in the network, an initially localized spreading process quickly attains 
a spatially incoherent structure. As a consequence of this, it is no longer possible to predict with ordinary 
diffusion when a spreading process will arrive at a given location in the network. More importantly, it is difficult 
to reconstruct the outbreak origin from a snapshot (or a sequence of snapshots) of the spatio-temporal pattern 
of spread alone based on conventional planar distance measures and two-dimensional geometry.

Effectively, two nodes that are connected by a long-range link in a multiscale network system are more 
adjacent than their spatial distance would suggest. Based on this basic and intuitive insight, a recent study 25

introduced the concept of effective distance to network-driven contagion or spreading phenomena. The most 
important result of this study is that spatio-temporally complex patterns of spreading can be mapped onto 
simple, regular wave front patterns when conventional distance is replaced by a suitably chosen effective 
distance. This not only permits calculations of arrival times at any node in the network but, more importantly, 
the identification of outbreak origins as will be explained in more detail below. The effective distance approach 
has been shown to work in the context of infectious disease dynamics on a global scale, for instance, the 
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worldwide spread of SARS in 2003 and pandemic influenza H1N1 in 2009.

The effective distance method assumes that, irrespective of the details of the local dynamics of a spreading 
process, the proliferation of the contagion throughout the network is determined by the coupling between 
nodes, and that this coupling is quantified by the flux matrix elements . Given an initial outbreak location 
, a contagion process can take a multitude of paths to any other node in the network. Each path  is taken with 
probability . Consider a path that starts at  and ends at  with a sequence of intermediate steps at 
nodes such that
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(7)

The probability of the contagion process taking this path is assumed to be given by the product of probabilities 
of each step
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(8)

Here, for every link in the network the function  is the probability that a contaminated food at  is moved 
to . The fundamental assumption in Brockmann and Helbing 25 is that the single step probability  is 
identified with the flux fraction that is determined by the underlying transportation network: 
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(9)

Then, we define the effective distance of a multi-leg path by 
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(10)

where  is the number of links composing the path and the corresponding path probability. For the sake of 
motivation and interpretation, we can decompose the path length into contributions by direct links of this 
formula: 
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(11)

Here, the effective length of a direct link is given by 
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(12)

This relation establishes a connection between network topological features and effective distance. The 
functional form is chosen such that a number of important features are fulfilled: (i) the length from  to 
decreases with increasing probability . That is, for large values of , the effective length is 
small and for vanishing transition probability the effective length diverges. (ii) The effective length of a multi-
step path  as defined in Eq. (7) is the sum of the effective lengths of each segment in the path. (iii) Given two 
paths that occur with certainty (e.g. with  for each link), but have a different number of segments, 
the path that has more segments also has a larger effective length. 
Generically, transportation networks are strongly heterogeneous such that, in an ensemble of paths with origin 

 and destination , the dynamics are dominated by the most probable path and therefore the path of 
minimum effective length 25. The effective distance  is defined as the minimum effective length of a path 

 from origin  to destination :
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(13)

From the perspective of a chosen root or reference node , one can compute the shortest path tree , which 
is the collection of shortest effective paths to all other nodes in the network. This shortest path tree is 
equivalent to the most probable contagion hierarchy that a spreading process will take through the network. 

(13)

From the perspective of a chosen root or reference node , one can compute the shortest path tree , which 
is the collection of shortest effective paths to all other nodes in the network. This shortest path tree is 
equivalent to the most probable contagion hierarchy that a spreading process will take through the network. 

(13)

From the perspective of a chosen root or reference node , one can compute the shortest path tree , which 
is the collection of shortest effective paths to all other nodes in the network. This shortest path tree is 
equivalent to the most probable contagion hierarchy that a spreading process will take through the network. 

19PLOS Currents Outbreaks



Fig. 3: Effective distance and outbreak origin reconstruction in multi-scale network contagion 
processes.

(A) Each panel depicts a temporal snapshot (from left to right at equidistant time intervals) in a simple 
contagion process in which infected nodes (red) deliver the infection to connected nodes at a fixed rate 
before they recover at a another rate (SIR dynamics 38). The network consists of 512 nodes on a quasi-
triangular, random lattice. Each node is connected to its nearest local neighbors. In addition to the local 
lattice structure, 128 long range links exist between randomly chosen pairs of nodes. The origin of the 
outbreak is marked in green. Because of long range connectivity the pattern quickly loses spatial structure 
and becomes chaotic such that it is difficult to predict from metric cues alone when the contagion arrives at 
a given node. More importantly, long range connectivity leads to a loss of spatial coherence and it becomes 
impossible to determine the origin of outbreak. (B) The same pattern as in (A) is shown in the effective 
distance perspective from the outbreak origin. The depicted tree is the shortest path tree, i.e. the most 
probable spreading path of the contagion process. Radial distance is proportional to effective distance as 
defined in the text. In this alternative representation the complex pattern in the conventional view is 
mapped onto a simple propagating wave front and arrival times are easily computed. (C) The regularity of 
the pattern is only present from the perspective of the actual outbreak origin. When the contagion process 
is viewed from any other node (here the node depicted in blue), the pattern lacks regularity.
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Fig. 3B illustrates the advantages of this approach in an artificial multi-scale network. From the perspective of 
the outbreak origin, the shortest path tree of the root node is shown, and the radial distance in the new map 
corresponds to the effective distance from the root node to the remaining nodes in the network. The same 
spreading process that appears to be spatio-temporally complex in the conventional metric layout is equivalent 
to a regular, constant-speed spreading wave in the effective distance representation. Consequently, one can 
calculate arrival times based on effective distance alone. In fact, in Brockmann and Helbing 25 it was shown 
that effective distance from the outbreak origin and arrival time strongly correlate in real scenarios, e.g. the 
2003 SARS epidemic and the 2009 H1N1 pandemic influenza outbreak.

The most relevant consequence of the effective distance approach is that, only from the perspective of the 
actual outbreak origin, the pattern exhibits a regular concentric wave front structure. From the perspective of 
any other node in the network, the pattern exhibits a more or less disordered structure. Fig. 3C illustrates this. 
The panels depict the same dynamics as in the other panels from a randomly chosen reference node. Clearly, 
any spatial regularity is absent. One can now make use of this observation, i.e. the fact that the spreading 
pattern is regular only from the perspective of the actual outbreak location, to reconstruct the outbreak origin. 
Given a snapshot of the disease spread, e.g. the disease incidence at every node, one computes the effective 
distance perspective for each node in the network and quantifies, from which node the pattern appears to be 
most regular. The node with maximum regularity is considered to be the most likely outbreak origin. In the 
following we apply this approach to the 2011 EHEC/HUS outbreak in Germany.
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any spatial regularity is absent. One can now make use of this observation, i.e. the fact that the spreading 
pattern is regular only from the perspective of the actual outbreak location, to reconstruct the outbreak origin. 
Given a snapshot of the disease spread, e.g. the disease incidence at every node, one computes the effective 
distance perspective for each node in the network and quantifies, from which node the pattern appears to be 
most regular. The node with maximum regularity is considered to be the most likely outbreak origin. In the 
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Fig. 4: Shortest path trees and effective distance among districts in Germany.

Each column depicts the shortest path tree  for a sample root node (red), from left to right districts 
Uelzen, Göttingen, and Oberalbkreis. The top row depicts embedded in the conventional geographic 
representation, the bottom illustrates the shortest path tree in a layout such that the radial distance is 
proportional to the effective distance from the root node in the same way as in Fig. 3. The shortest path tree 

 represents the most probable path that a contagion process takes with initial outbreak in node .

Detection of the German EHEC/HUS outbreak origin
Given the gravity model network for food transportation, we first compute the shortest path tree  for every 
potential root node , see Fig. 4 for examples. Next, a temporal snapshot of the EHEC incidence pattern is 
analyzed in each of the shortest path tree representations, i.e. from the perspective of all network nodes as 
potential candidate origins of outbreak. The incidence pattern typically consists of a subset  of nodes with non-
zero incidence. From the perspective of the actual outbreak origin, the effective distance to these affected 
nodes, should be small and exhibit a small variance, a consequence of the concentricity of the spreading 
pattern in the effective distance representation. Therefore, in order to quantify the regularity of the incidence 
pattern from every potential outbreak origin, we compute the average  and standard deviation  of 
effective distances to nodes with nonzero incidence (the subset of nodes ) 25.
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Detection of the German EHEC/HUS outbreak origin
Given the gravity model network for food transportation, we first compute the shortest path tree  for every 
potential root node , see Fig. 4 for examples. Next, a temporal snapshot of the EHEC incidence pattern is 
analyzed in each of the shortest path tree representations, i.e. from the perspective of all network nodes as 
potential candidate origins of outbreak. The incidence pattern typically consists of a subset  of nodes with non-
zero incidence. From the perspective of the actual outbreak origin, the effective distance to these affected 
nodes, should be small and exhibit a small variance, a consequence of the concentricity of the spreading 
pattern in the effective distance representation. Therefore, in order to quantify the regularity of the incidence 
pattern from every potential outbreak origin, we compute the average  and standard deviation  of 
effective distances to nodes with nonzero incidence (the subset of nodes ) 25.
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In combination, small mean and variance are equivalent to high concentricity and, thus, high likelihood that the 
chosen reference node is the likely outbreak origin. 
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chosen reference node is the likely outbreak origin. 
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Fig. 5: EHEC/HUS outbreak origin reconstruction

Each panel depicts a scatterplot of mean  and standard deviation  (see Eqs. (14)) of effective 
distances from candidate nodes  to the subset  of nodes that have nonzero incidence for weeks 
after outbreak onset. All districts are considered as potential candidates as outbreak origin. Symbol size 
quantifies population size of each district, blueness quantifies incidence in the respective week. A few large 
district are labeled. The district with combined minimal mean and variance (closest to the origin) has a high 
likelihood of being the actual 2011 EHEC/HUS outbreak origin. The actual outbreak origin Uelzen in marked 
by a red cross.

We used the public available E. coli case count data with report date between calendar weeks 18 and 26 of 
2011 28. According to the Task Force EHEC, this corresponds to the entire outbreak duration from May 2nd until 
July 4th, 2011 26. Fig. 5 shows the results of origin detection when the effective distance approach in 
combination with a gravity model for food distribution is applied to the EHEC incidence data. Since an E. coli 
infection clustering was noticed at May 19th, 2011 (outbreak week 3), we computed the mean  and 
standard deviation  pair for weeks  and every node in the network treating every node  as a 
potential outbreak origin. When both quantities are small, the resulting spreading patterns is most concentric in 
the effective distance perspective. Fig. 5 shows that already in week 3 of the event, district Uelzen is identified 
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by a red cross.

We used the public available E. coli case count data with report date between calendar weeks 18 and 26 of 
2011 28. According to the Task Force EHEC, this corresponds to the entire outbreak duration from May 2nd until 
July 4th, 2011 26. Fig. 5 shows the results of origin detection when the effective distance approach in 
combination with a gravity model for food distribution is applied to the EHEC incidence data. Since an E. coli 
infection clustering was noticed at May 19th, 2011 (outbreak week 3), we computed the mean  and 
standard deviation  pair for weeks  and every node in the network treating every node  as a 
potential outbreak origin. When both quantities are small, the resulting spreading patterns is most concentric in 
the effective distance perspective. Fig. 5 shows that already in week 3 of the event, district Uelzen is identified 

24PLOS Currents Outbreaks

http://currents.plos.org/outbreaks/files/2014/03/fig5.png
http://currents.plos.org/outbreaks/files/2014/03/fig5.png
http://currents.plos.org/outbreaks/files/2014/03/fig5.png


as the potential origin of the outbreak, this is also true for weeks 6 and 7. In week 5 the method incorrectly 
identifies district Lüneburg as the likely outbreak origin and Uelzen ranks third in the epicenter reconstruction. 
Note that the geographic center of district Lüneburg is as close to Bienenbüttel (the alleged location of 
contaminated sprouts) as the geographic center of Uelzen (ca. 20km). Note also, that the overall distribution of 
pairs  differs considerably for each temporal snapshot of EHEC incidence districts close to the 
actual outbreak location exhibit combined small values of . Table in Fig. 6 ranks the candidate 
outbreak locations for weeks 2 to 8. The ranks were computed by comparing the effective distance to the origin 
in the  scatter plot. For all time windows except weeks 4 and 8 the correct district ranks among 
the top candidates for EHEC outbreak origin. Note that other potential outbreak origins are typically districts 
that are in close geographic proximity to the actual outbreak location. This implies that even if the origin cannot 
be identified on the scale of a single district, potential candidates according to the effective distance methods 
are confined to a small region in the vicinity of the actual outbreak location, for instance the set of neighboring 
districts.
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Fig. 6: EHEC/HUS outbreak origin reconstruction

For each week 2-9 relative to the beginning of the EHEC/HUS outbreak and for each node  in the network a 
rank was computed based on minimization of a concentricity score . District Uelzen, 
the actual outbreak district is robustly ranked among the top ranked districts, in weeks 3, 6 and 7, Uelzen is 
ranked first. We considered all 412 districts. For each district the distance provided in parenthesis 
represents the approximate distance to the actual outbreak location Bienenbüttel in district Uelzen.
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Fig. 7: Correlation of effective distance and arrival time during the German EHEC/HUS outbreak, 
2011.

For each district as a potential outbreak origin, we computed the correlation coefficient of arrival time 
at every other node  and effective distance from  to . The magnitude of the correlation coefficient is 
color-coded from blue to red, corresponding to low and high correlation, respectively. High correlation, 
corresponding to high likelihood of being the outbreak origin is observed in a spatially coherent region in 
Northern Germany.

The effective distance method provides an alternative method for outbreak origin reconstruction. An important 
result presented in Ref. 25 is that arrival times of a network-driven contagion process correlate strongly with 
effective distance. In fact, the arrival time  of the process at a node  with initial outbreak at node 
increases linearly with effective distance . Again, arrival time and effective distance only correlate 
strongly when the actual outbreak origin is chosen as the reference node. To supplement the above analysis we 
computed the correlation coefficient  of arrival times (i.e. the week of reported first case of EHEC/HUS in a 
given district) with effective distance, considering each node  of the 412 districts as the potential outbreak 
origin. We then ranked these correlation coefficients. Fig. 7 depicts the magnitude of  in a map of all 
German districts. Clearly, this method identifies a well-defined region in Northern Germany as containing the 
likely outbreak location. Note that, in contrast to the incidence patterns, the correlation coefficient varies 
smoothly with distance from the epicenter somewhere in Northern Germany. When correlation coefficients are 
ranked according to magnitude, the correct origin district Uelzen only ranks 30 out of 412 districts. However, 
the difference in correlation coefficients is small among the top-ranked districts, see Table in Fig. 8. The reason 
for the comparatively low performance of the correlation-based outbreak reconstruction could be that the 
temporal resolution of the data is too coarse and fluctuations dominate the signal. For instance, travel-related 
cases could warp the infection pattern. We conclude that outbreak origin reconstruction based on the 
topological features of the wave front in effective distance, as presented in Fig. 5 and Table in Fig. 6, is a more 
reliable technique for the detection of the outbreak origin than the correlation approach. Also, for the 
topological rather than the correlation-based approach only single temporal snapshots of incidence are 
required, which is an additional advantage.
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The effective distance method provides an alternative method for outbreak origin reconstruction. An important 
result presented in Ref. 25 is that arrival times of a network-driven contagion process correlate strongly with 
effective distance. In fact, the arrival time  of the process at a node  with initial outbreak at node 
increases linearly with effective distance . Again, arrival time and effective distance only correlate 
strongly when the actual outbreak origin is chosen as the reference node. To supplement the above analysis we 
computed the correlation coefficient  of arrival times (i.e. the week of reported first case of EHEC/HUS in a 
given district) with effective distance, considering each node  of the 412 districts as the potential outbreak 
origin. We then ranked these correlation coefficients. Fig. 7 depicts the magnitude of  in a map of all 
German districts. Clearly, this method identifies a well-defined region in Northern Germany as containing the 
likely outbreak location. Note that, in contrast to the incidence patterns, the correlation coefficient varies 
smoothly with distance from the epicenter somewhere in Northern Germany. When correlation coefficients are 
ranked according to magnitude, the correct origin district Uelzen only ranks 30 out of 412 districts. However, 
the difference in correlation coefficients is small among the top-ranked districts, see Table in Fig. 8. The reason 
for the comparatively low performance of the correlation-based outbreak reconstruction could be that the 
temporal resolution of the data is too coarse and fluctuations dominate the signal. For instance, travel-related 
cases could warp the infection pattern. We conclude that outbreak origin reconstruction based on the 
topological features of the wave front in effective distance, as presented in Fig. 5 and Table in Fig. 6, is a more 
reliable technique for the detection of the outbreak origin than the correlation approach. Also, for the 
topological rather than the correlation-based approach only single temporal snapshots of incidence are 
required, which is an additional advantage.
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Fig. 8: Effective distance and arrival time analysis

For each potential district  as outbreak origin we computed the Pearson correlation of arrival time  and 
effective distance  and ranked all districts with respect to correlation magnitude. The actual outbreak 
origin Uelzen is ranked at position 30. High correlation districts all lie in Northern Germany.

Discussion and conclusion
We introduced a fast and efficient approach for the identification of the origin during food-borne disease 
outbreaks and evaluated the approach in the context of the 2011 EHEC/HUS outbreak in Germany. A clear 
advantage of the method is the robust performance on the basis of limited case report data and plausible 
topological assumptions concerning the underlying food distribution network. When applied to the 2011 
EHEC/HUS outbreak in Germany, our method was able to identify an outbreak origin in close proximity to the 
actual outbreak location (Uelzen, Lower Saxony). Already three days (May 22nd, 2011) after spatial infection 
clustering, the effective distance approach was able to reconstruct the actual origin. This is particularly 
promising, as in the context of EHEC/HUS, conventional outbreak investigations, including case-control- and 
cohort-studies as well as sample testings and tracings along the food-shipping chain,wrongly suggested 
tomatoes, leafy salads and cucumbers as contaminated foods. When specific suspicions arose that cucumbers 
imported in Hamburg would be the infection source, our method classifies Hamburg to be a very unlikely origin. 
The consideration of such contradictory information could have lead to more spatially targeted sample testing, 
and, therefore could have improved the efficiency of the outbreak investigations.
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We believe that this method can complement conventional methods of origin localization of food-borne diseases 
and consequently facilitate a more timely success which is vital for the development of containment strategies. 
The underlying network definition by the gravity model is very flexible, so that the transmission vehicle does 
not has to be known. Basically, the network could also capture a combination of food transportation routes as 
well as human mobility pattern. As our method is structurally quite general and just derived from topological 
features of the underlying distribution networks, we believe that our approach may be adapted and applied to a 
variety of contagion phenomena, human-to-human transmissible diseases, and disease dynamics on individual 
based contact networks and human-mediated bioinvasion processes.
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