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The impact of human health co-benefits on
evaluations of global climate policy
Noah Scovronick1,2,17, Mark Budolfson 3,4,17, Francis Dennig5,6,17, Frank Errickson7,17, Marc Fleurbaey2,8,

Wei Peng9, Robert H. Socolow10, Dean Spears11,12,13,14 & Fabian Wagner2,15,16,17

The health co-benefits of CO2 mitigation can provide a strong incentive for climate policy

through reductions in air pollutant emissions that occur when targeting shared sources.

However, reducing air pollutant emissions may also have an important co-harm, as the

aerosols they form produce net cooling overall. Nevertheless, aerosol impacts have not been

fully incorporated into cost-benefit modeling that estimates how much the world should

optimally mitigate. Here we find that when both co-benefits and co-harms are taken fully into

account, optimal climate policy results in immediate net benefits globally, overturning pre-

vious findings from cost-benefit models that omit these effects. The global health benefits

from climate policy could reach trillions of dollars annually, but will importantly depend on the

air quality policies that nations adopt independently of climate change. Depending on how

society values better health, economically optimal levels of mitigation may be consistent with

a target of 2 °C or lower.
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C limate policies targeting CO2 may also reduce air pollutant
emissions—and the aerosols they produce—as the two
share emission sources. Prior studies on the topic have

quantified the associated health co-benefits of pre-defined
greenhouse gas reduction scenarios1–6, or estimated the eco-
nomic impacts from reducing specific pollutants7–9, but these
types of impacts have not been fully incorporated into cost-
benefit modeling that estimates how much the world should
optimally mitigate. We move this literature forward by develop-
ing a comprehensive cost-benefit integrated assessment model
based on William Nordhaus’ Regionalized Integrated Climate
Economy (RICE) model, where the new developments allow the
model to weigh both the health co-benefits and the climate co-
harms of aerosol co-reductions (co-harms exist because aerosols
produce net cooling overall10); the latter in particular has been a
largely neglected aspect of the co-benefits discussion. (We use the
term co-harm to refer to the net climate harm of aerosol reduc-
tions, recognizing that reducing some species of emissions indi-
vidually may produce different effects than the net of all species
together; for example, although reducing black carbon produces a
climate benefit, that effect may be outweighed by the climate
harm of reductions in other species.).

These modeling developments, which account for the key air
pollutant emissions and their individual properties, provide new
capability to investigate fundamental policy questions that have
not been answered by existing studies11. This includes deter-
mining: (1) the optimal climate policy across time and how it is
affected by independent air quality control, (2) whether climate
policy produces immediate net benefits, or if there are inter-
generational tradeoffs, and (3) if specified climate targets are
justifiable on cost-benefit grounds.

To answer these questions, we modify the RICE optimization
model12 to include an empirically calibrated, regionally differ-
entiated feedback mechanism whereby reducing CO2 also reduces
regional air pollutant emissions from co-emitting sources. We
then quantify and monetize the impact on both health and
radiative forcing throughout the world and compute the resulting
optimal climate policy. We thus modify the standard tradeoff
between CO2 mitigation costs and climate damages with a more
complete analysis that simultaneously weighs mitigation costs,
climate damages from CO2, and the health and climate con-
sequences of changes in air pollutant co-emissions. The resulting
model estimates optimal climate policy after jointly considering
all these factors. As a robustness check, we also modify the widely
used FUND (Climate Framework for Uncertainty, Negotiation
and Distribution) model13 to include the same mechanisms.

We find that when both co-benefits and co-harms are taken fully
into account, optimal climate policy results in immediate net ben-
efits globally, which overturns previous findings from cost-benefit
models that omit these effects. The global health benefits from
climate policy could reach trillions of dollars annually, but their
magnitude will importantly depend on the air quality policies that
nations adopt independently of climate change. Depending on how
society values better health, we show that economically optimal
levels of mitigation may be consistent with a target of 2 °C or lower.

Results
Main results. We summarize the results of the new model (here-
after referred to as RICE+AIR, for RICE+Aerosol Impacts and
Responses) in terms of the optimal fraction of business-as-usual
CO2 emissions that should be reduced over time. We refer to this
quantitative reduction in CO2 as the optimal decarbonization
fraction and express it as a percentage. (What we call the dec-
arbonization fraction is often referred to as the control rate.). The
blue line in Fig. 1a shows the optimal decarbonization pathway if

the cost-benefit analysis only considers the climate impacts of CO2

and associated aerosol co-reductions. Health impacts are not
included. In this reference case, the optimal decarbonization frac-
tion is 24% of business-as-usual emissions in 2030, rising to 35% in
2050 and ultimately reaching full decarbonization by 2130. It is
similar to the optimal trajectory of the standard RICE model, which
features exogenous aerosol forcing and excludes health co-benefits
(Supplementary Fig. 1).

In contrast to the blue line, which considers only the climate
impacts of CO2 and aerosols, the red line also includes the health
co-benefits of the aerosol reductions that result from decarboniza-
tion. This leads to increased optimal CO2 mitigation. The difference
between the red line and the blue line demonstrates the importance
of the health benefits; roughly 45–60% more decarbonization is
optimal over the next five decades (and 10–40% thereafter)
compared to the reference case that only considers climate
consequences. Full mitigation also occurs earlier in time. The
additional emission reductions that result from the inclusion of the
health co-benefits cumulatively amounts to ~270GtC (Fig. 1a).
Importantly, all of these results account for the damages from lost
cooling attributable to the aerosol co-reductions.

The additional decarbonization justified by the health gains
leads to a peak temperature 0.4 °C lower than the reference case
(Fig. 1b). The carbon price pathways associated with Fig. 1 can be
found in Supplementary Fig. 2.

Figure 2a shows that the optimal climate policy has immediate and
continual monetized global net benefits when accounting for health
co-benefits. This overturns the findings from standard cost-benefit
optimization models, which ignore health co-benefits and thus imply
that optimal climate policy has net costs for much of this century
(Fig. 2b). The result is consistent with prior co-benefits studies that
have analyzed specific emission reduction scenarios and reported
high benefits relative to mitigation costs1,14, but which generally do
not also account for (monetized) climate-related impacts.

The distribution of health co-benefits by region for the full
RICE+AIR optimum is displayed in Fig. 3a. In line with recent
scenario-based studies1,2,15, many of the co-benefits accrue in
India and China in early periods, attributable to their large
populations and high capacity for mitigation-related reductions
in PM2.5. China’s benefits decline by mid-century due to relatively
rapid economic development and a stabilizing population—which
both act to constrain emissions—whereas those in India persist
and are the major driver of increased decarbonization relative to
the reference case (see below for a sensitivity test which
corroborates India’s importance). Towards the end of the century,
sub-Saharan Africa replaces China as the second-largest bene-
ficiary, as air pollution remains problematic due to lagging
economic development accompanied by the world’s largest
population. Other regions also stand to benefit, including less
populous regions that show important benefits per capita and/or
per Gross Domestic Product (GDP) (Fig. 3b).

In the results presented above, the averted premature mortality
from aerosol co-reductions produces annual monetized benefits in
the hundreds of billions of dollars over the next few decades, rising
to several trillion annually at the end of the century (Fig. 3c). To
derive these numbers, we multiply, for each region-time pair, the
total life-years gained by 2 years of per capita consumption. This
approach produces different life-year monetizations for each region,
which leads to the slight change in composition of monetized
benefits (compare Fig. 3a, c). However, this does not imply that we
assign life-years in poorer regions less value in the objective
function, because the optimization accounts for the diminishing
marginal utility of consumption through a concave relationship
between wealth and well-being, as described below and in the
Methods section (Eq. (1)). Below we also show the sensitivity of our
results to alternative valuations of health benefits.
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Fig. 2 Costs and benefits of mitigation. Decomposition of the change in global consumption relative to the business-as-usual (BAU) scenario under a the
full RICE+AIR optimal policy, and b the reference case optimal policy. Health co-benefits and benefits from avoided CO2 damages are positive, while
mitigation costs and aerosol co-harms (climate damage from the co-reduction of cooling aerosols) are negative. The black solid line displays the global net
effect. a shows that the net effect on global consumption is immediately positive when health co-benefits are taken into account, in contrast to the
reference case (b), which is representative of standard cost-benefit models that do not include health co-benefits and thus imply that optimal climate
policy has net costs for much of this century. If health co-benefits are added to the reference policy in b—by adding the light-red bars displayed in a—the
global net effect becomes immediately positive, and if health co-benefits were removed from a, the net effect would be negative for most of this century
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Fig. 1 Optimal decarbonization and temperature. a Decarbonization over time for the reference case optimal policy that excludes health co-benefits (blue
line) and in the full RICE+AIR optimal policy that includes health co-benefits (red line). b Estimated global temperature rise above preindustrial levels that
would occur given the decarbonization in a. Decarbonization is relative to a business-as-usual scenario without any climate action, and 100%
decarbonization signifies zero net carbon emissions
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Independent air quality control. All results presented above
assume the level of air quality control that occurs independently
of climate policy will proceed approximately as projected in the
coming decades, based on current and planned policies. We
systematically test the importance of this assumption by imple-
menting an environmental Kuznets-type approach where emis-
sion intensities decrease with increasing per capita income
(described in detail in the Methods section, and in particular Eqs.
(2)–(4) and associated discussion). Figure 4 reports results when
we slow down and speed up this Kuznets-relevant income,
allowing it to range between roughly 50% (χ= 0.5) and 150%
(χ= 1.5) of the true (modeled) income; lower values imply less
stringent air quality control and vice versa. In these model runs
the true income is used in all other parts of the model.

The results demonstrate that although assumptions about air
quality control do influence optimal mitigation levels, more
decarbonization remains optimal compared to the reference case
under all of these scenarios. However, the mechanisms driving the
additional decarbonization vary. If the (pre-mitigation) air is dirtier

than projected (χ < 1), extra mitigation occurs primarily to reap the
health co-benefits. If stringent air quality control occurs in the future
(χ > 1), more decarbonization is also optimal compared to the
reference case. In part this is to capture remaining health co-benefits,
but also for two other reasons. First, the potential damages associated
with the substantial loss of the aerosol cooling effect requires
additional CO2 reductions as a counterbalance. And second, when
the air is cleaner, each marginal reduction in CO2 has a greater net
benefit because it is not coupled to as much cooling aerosol.

Another way of understanding the role of independent air quality
measures on optimal climate policy is by comparing not only the
different RICE+AIR cases, as in Fig. 4, but also the difference
between the RICE+AIR cases and their corresponding reference
cases, as reported in Table 1. The results confirm that as
autonomous emission controls get stronger (represented by higher
χ values), the less health co-benefits matter for climate policy.

One of the scenarios displayed in Fig. 4 is the fully co-optimal
case that selects the ideal combination of both air quality and
climate policies by introducing an additional policy lever that can
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Fig. 3 Health benefits of carbon mitigation. Life-years gained a overall and b per 100,000 population by region from the air quality improvements
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global air quality assessments16, and is tested in the sensitivity analyses
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act directly on individual air pollutant emissions through end-of-
pipe measures, rather than via CO2 (described in Supplementary
Note 1). When this lever is added, large reductions in air pollutant
emissions occur when and where associated abatement costs are
low, the reductions lead to relatively large decreases in exposure,
and/or they produce few climate damages. This first-best policy
where climate and air pollution policies are co-optimized leads to
rapid air quality improvements but still increased decarbonization
relative to the reference case, albeit by a lower margin than in the
standard χ= 1 case that underlies our main results. Note that
we selected χ= 1 as the basis for the main result in order to explore
the effect health co-benefits have when regions act consistently with
their current and planned air pollution policies (which are
suboptimal). As this section demonstrates, the magnitude of the
co-benefit effect is importantly influenced by the assumed level of
independent air quality control.

Discounting. The RICE model has a discounted utilitarian
objective, meaning that for optimal policy calculations, the
objective of the model is to maximize the sum of discounted well-
being (see Eq. (1) of the Methods and associated discussion). The
discount rate for consumption is determined via the Ramsey rule,
which adds the rate of pure time preference to the product of the
elasticity of marginal utility and the economic growth rate. The
rate of pure time preference is the rate at which the weight given
to future well-being declines over time. The elasticity of marginal
utility represents the lesser importance of each additional dollar
to well-being as one gets richer. Unless otherwise noted, we
assume an elasticity of marginal utility of 1.5, the default in RICE.

In all the results presented so far we have used a rate of pure time
preference of 1.5% per year, which is the default value RICE, but
close to the upper end of the range highlighted by the IPCC
(Intergovernmental Panel on Climate Change)16,17. This choice
puts more weight on near-term impacts compared to those
occurring further in the future. As a result, aerosol impacts, which
occur more immediately than the climate impacts from CO2, have a
relatively outsized importance. Nevertheless, when we implement a

much lower rate that corresponds to a near-zero (0.1%) preference
for the present over the future, optimal decarbonization remains
substantially higher in RICE+AIR compared to the analogous
reference case (Fig. 5). (Near-zero time preference is often used in
the climate economics literature17, including in the Stern Review18).

Conversely, if we increase time preference to 3.5%, which
implies a discount rate for consumption of 7%, the difference
between RICE and RICE+AIR becomes even more stark. (To
calculate the 7% discount rate via the Ramsey rule, we used the
economic growth rate in the initial time period. We note that the
exact discount rate may change over time due to the effect of
climate damages on economic growth; the impact however, is
negligible.). We chose the 7% value because it is the highest of the
primary discount rates generally used in US federal cost-benefit
analyses. (Although most experts consider lower rates to be more
appropriate in an intergenerational context such as in the case of
climate change-related analyses16,17, the current US administra-
tion has signaled a preference for including the higher 7% rate19.)

Such high time preference places so much emphasis on the
near-term health benefits associated with reducing CO2 that
optimal decarbonization is substantially higher than both the
analogous reference case and the reference case with more
moderate (1.5%) time preference. These results indicate that even
after strongly discounting the future, a robust climate policy is
still warranted. In Supplementary Fig. 3 we present further
analyses showing results with a 3% discount rate, which is the
lower value generally used for US federal cost-benefit analyses.

Monetizing and valuing health benefits. The results above
assume that one life-year gained equals 2 years of per capita
consumption in dollar terms. Two years of per capita consump-
tion corresponds to the approach to monetizing health impacts
used in key studies that form the basis of the RICE climate
damage function12,20, and is similar to survey-based life-year
assessments21. However, this approach yields much lower
monetary benefits than using the value of a statistical life (VSL),
which is also widely adopted in the literature. If we assume that
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each adult death attributable to PM2.5 results in approximately 10
years of life lost22, we would use roughly 8–16 years of per capita
consumption per life-year gained, instead of two; thus, in what
follows we use 8–16 years of per capita consumption as one
possible approximation of a VSL, in addition to a more direct
VSL-based approach described below.

The sensitivity of our results to alternative life-year monetiza-
tions is reported in Table 2. The monetized global health benefits
in our main results discussed above would be roughly 4–11 times
higher if we used VSL-like monetizations in the optimization, and
the associated optimal level of decarbonization would likely be
consistent with keeping the maximum global temperature rise to
2 °C. Two degrees is a target specified in the Paris Agreement and
widely considered as necessary to avoid dangerous climate
change, but one that has generally not been warranted according
to previous cost-benefit assessments (using similar discounting
parameters) that omit health co-benefits12. Combining the low
(0.1%) rate of time preference with a VSL-based approach may
justify a target as low as 1.8 °C.

Table 2 reports the sensitivity of the results to differences in how
life-years are monetized in dollar terms. In RICE’s cost-benefit
approach, an important second step occurs when the monetized
health benefits are valued in well-being terms via the objective
function (see Eq. (1) in the Methods section), which gives the model

the aim of maximizing the (discounted) sum of global well-being
through time, as is standard in optimal policy modeling. A key
feature of the objective function is diminishing marginal utility of
consumption, which captures the core concept that an additional
dollar generates more well-being when given to a poorer person
than to a richer person. The result is that while life-years are
assigned a lower dollar amount in poorer countries in absolute
terms, they are actually assigned greater value in well-being/utility
terms. We discuss this issue in more detail in Supplementary Note 2
and show in Supplementary Table 1 that the strong effect of adding
health co-benefits persists whether life years are valued more highly
in poorer regions, less highly, or exactly the same as in wealthier
regions; however, the magnitude of the effect changes.

Additional sensitivities in RICE+AIR. Table 3 reports results
for several other sensitivities, presenting the percent increase in
optimal decarbonization rates in the RICE+AIR case compared
to the corresponding reference case. The table is organized as
follows, with variables in parentheses referring to the relevant
parameter in the model equations reported in the Methods.

First (Test 1), we explore different air pollutant co-reduction levels
(κ), with the range representing the high and low values after
applying alternative estimates from the other four Shared Socio-
economic Pathways (SSPs). Note that the SSPs are not ordered in
terms of their co-reduction potentials, but instead reflect different
possible futures across multiple socioeconomic dimensions. In the
second test (Test 2), we substitute the TM5-FAst Scenario Screening
Tool (TM5-FASST) source-receptor matrix (SRM) for the SRM
based on simulations of the European Monitoring and Evaluation
Program atmospheric chemistry and transport model. We confined
this sensitivity to Asia because it was the only region analyzed as part
of a recent project at the International Institute of Applied Systems
Analysis. However, the four Asian regions account for ~85% of all
life-years gained globally over the next century in the main analyses
(Fig. 3), and therefore largely drive the findings. In Test 3 and Test 4
we assume that the relative risk for all-cause mortality (β) was the
lower and upper bound, respectively, of the confidence interval in
Forestiere et al.24 rather than the central estimate. Test 5 lowers the
PM2.5 threshold below which there are no adverse health effects (τ)
to 1 μg/m3 instead of 5.8 μg/m3. In Test 6 we assume there is no
benefit from reducing air pollution at levels above 50 μg/m3. We
include this counterfactual boundary case for two reasons. The first is
to investigate the maximum possible concavity in risk functions at
high levels of exposure; in reality however, recent empirical
studies25,26 indicate that the marginal effect of air pollution remains
positive at levels well above 50 μg/m3. The second reason is to
provide additional emphasis on the importance of India and China,
as this test effectively eliminates the impact of both of those nations
(as well as the Middle East/North Africa region) over the next several
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Table 1 Impact of independent air quality control

2030 2030 2050 2050 Diff. in peak temp (°C)a

Reference RICE+AIR Reference RICE+AIR

χ= 0.5 20% 39% 27% 57% 0.9
χ= 0.75 22% 37% 33% 54% 0.5
χ= 1 (main result) 24% 36% 35% 52% 0.4
χ= 1.25 24% 35% 36% 51% 0.4
χ= 1.5 25% 35% 37% 50% 0.3

Optimal decarbonization rates in RICE+AIR versus the corresponding reference case for different values of χ, which represent different levels of independent air quality control. χ= 1 represents the
assumption underlying the main results, whereas higher (lower) values indicate more (less) stringent air quality control in the future. The difference in peak temperature is the difference between the
highest global average temperature in the RICE+AIR optimum versus the reference case given the assumed value of χ
aPositive values indicate a lower peak temperature in RICE+AIR. Values are rounded
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decades and thus explores the model’s sensitivity to their exclusion.
Test 7 assumes that climate damages are twice the standard values in
RICE, while the final test (Test 8) uses the Finite Amplitude Impulse
Response (FAIR) climate model (version 1.0)27 as an alternative to
RICE’s native climate model (Supplementary Note 3 describes how
we integrate the FAIR model).

Exploring model uncertainty by linking AIR to the FUND
model. Like RICE/DICE (the Dynamic Integrated Climate
Economy model (DICE) is RICE’s global counterpart), the FUND
model is another one of the three leading climate economy models
used by the US Interagency Working Group to estimate the social
cost of carbon28. FUND has different world regions, a different
economic framework, a different climate model, and a different
specification of damages when compared to RICE, and thus
provides an important opportunity to explore model uncertainty.
Comparing Fig. 1 with Fig. 6 demonstrates that results for FUND
+AIR and RICE+AIR are qualitatively similar, despite the well-
known differences in the structure and policy recommendations of
the two models28,29; adding aerosol impacts leads to dramatically
increased optimal levels of decarbonization. (Supplementary
Note 4 describes how we link FUND to AIR.)

Discussion
We have developed a new modeling framework for analyzing the
costs and benefits of the co-reductions in air pollutant emissions
that result from CO2 policy. We find that these impacts have a
critical role in determining optimal decarbonization rates, as the

potential health co-benefits that result from improved air quality
are large, occur quickly enough to be economically important,
outweigh the near-term co-harms from lost cooling, and are
concentrated in developing regions. This remains true even with
high discount rates and relatively conservative valuations of
improved health. However, as the size of the health co-benefits
will be partially determined by future air quality policies, decision
makers should jointly plan both types of interventions.
Depending on how society values health, it may be economically
optimal to limit temperature rise to 2 °C or lower, thus corro-
borating the climate targets from the Paris Agreement. Overall,
optimal mitigation results in immediate net benefits globally.

Our findings should be interpreted in light of several factors.
First, our sensitivity analyses identified key variables that mean-
ingfully affect the optimal level of decarbonization in RICE+
AIR. These include the shape and magnitude of the exposure-
response functions that relate PM2.5 exposure to mortality, the
assumed relationship between CO2 emissions and air pollutant
emissions, the discount rate, and the valuation of the health
benefits. The first two factors are largely amenable to empirical
inquiry, whereas the latter two depend partially on ethical jud-
gements; all have a strong bearing on how much society should
mitigate, and when.

Second, we follow standard convention in assuming a uniform
global carbon price in our optimal policy calculations. Economists
prefer this assumption because a uniform price minimizes the cost
to the global economy of any particular level of emissions reduc-
tions, and is thus a necessary part of the first-best approach to
climate policy. However, another necessary part of first-best policy
is a non-climate equity policy involving redistribution to address the
large economic inequalities that exist throughout the world; in the
absence of such an equity-focused policy, a uniform global carbon
price would ignore equity considerations, and arguably impose an
unjustifiably heavy burden on developing countries. An important
feature of our results relevant to this issue is that health co-benefits
provide the most incentive for additional decarbonization in lower-
and middle-income regions. An interesting extension of our
research would explore how co-benefits affect mitigation policies in
a range of different burden-sharing regimes and in second-best
climate policy calculations30,31.

Third, we follow common practice in the co-benefits literature
in assuming that there is a background appetite for air pollution
policy that is independent of climate policy, such that the same
background levels of investment will be made in air quality
regardless of CO2 reductions (and so policies will ratchet up
insofar as greater CO2 reductions make the antecedent level of air
quality mitigation less expensive); this is the basic assumption
behind the co-reductions we estimate in our main results. As
reported above in Fig. 4, we also co-optimize air quality and

Table 3 Additional sensitivity analyses

2030 2050 Diff. in peak
temperature (°C)a

Main result 52% 49% 0.4
Test 1 7–49% 10–50% 0.1–0.4
Test 2 51% 48% 0.4
Test 3 33% 30% 0.2
Test 4 70% 65% 0.5
Test 5 52% 49% 0.4
Test 6 3% 13% <0.1
Test 7 30% 29% 0.3
Test 8 82% 76% 0.7

Percent increase in optimal decarbonization rates in RICE+AIR versus the corresponding
reference case given different modeling assumptions. The difference in peak temperature is the
difference in the highest global average temperature
aThe difference in peak temperature between the reference case and the RICE+AIR case within
each test: positive values indicate a lower peak temperature in the RICE+AIR case. Values are
rounded

Table 2 Monetizing life-years/lives

2030 2050 Peak temperature (°C)a

Reference (no co-benefits) 24% 35% 3.0
1 year of per capita income 30% 44% 2.9
2 years of per capita income (main result) 36% 52% 2.6
4 years of per capita income 46% 66% 2.3
8 years of per capita income 60% 85% 2.1
16 years of per capita income 78% 96% 1.9
VSLb 57% 85% 2.1
VSL with low discountingc 79% 100% 1.8

Optimal decarbonization rates in 2030 and 2050, as well as the maximum global temperature rise given different life-year monetizations for health co-benefits. (The last two rows use an alternative
method that monetizes lives using the VSL.)
aAbove preindustrial levels. Values are rounded
bValue of a statistical life. Equation: VSL= 9,000,000 × (GDPpc/54,000)1.4 as in Robinson et al.23
cIn this run, time preference= 0.1%, compared to 1.5% in all other runs
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climate policies, which is another scenario (with different prop-
erties) in which there would be co-benefits from CO2 reductions.
A limitation is that other scenarios are also possible, such as CO2

reductions in a context involving a fixed cap and trade regime for
air pollutants where the cap remains fixed at the same level in
conjunction with new CO2 reductions; in this scenario, it is
possible that there would not be many co-benefits from CO2

reductions32.
Fourth, we were not able to fully assess uncertainties around

key aerosol processes. For example, the aerosol indirect effect may
be the single largest source of uncertainty in radiative forcing
assessments10,33. New evidence continues to accrue about key
factors that contribute to the formation of new particles from
precursor gases, and there are likely to be complex feedback
mechanisms that occur in response to future temperature
changes34,35. Some of these processes are not yet adequately
represented in even the most sophisticated Earth system models,
let alone reduced-form versions. A related concern is that we have
used separate models to estimate the health effects (TM5-FASST)
and climate effects (Model for the Assessment of Greenhouse gas
Induced Climate Change 6 (MAGICC6)) of air pollutant emis-
sions, a decoupling that may also introduce uncertainty. Never-
theless, MAGICC and TM5 have distinct strengths that we
harness accordingly; MAGICC takes account of the full aerosol
load of the whole atmosphere, top to bottom, and at the level of
hemispheres, while TM5 tells us about the concentration at
ground level, where people live and breathe, in principle at much
higher resolution. Both models work with the same global
emission inventories.

Fifth, we have only explored the effect of co-reducing air
pollutant emissions on PM2.5-related mortality. Other co-benefits
may occur, which would likely push further in the direction of
increased decarbonization; these include morbidity impacts from
PM2.5—which are generally minor compared to those from
mortality—as well as other more indirect impacts such as
potential increases in crop yields, improvements in visibility, and
health impacts from changing exposure to tropospheric
ozone2,9,35,36. In addition, cost-benefit models also miss some
other impacts of reduced climate change, including the effects of
methane on ozone, the effects of ocean acidification, and others37.

Due to the uncertainties inherent in our modeling framework,
we expect the accuracy of quantitative estimates of the co-harms
and co-benefits of optimal climate policy to sharpen over time,
particularly as our understanding of atmospheric science

progresses. Nevertheless, the novel modeling approach described
here offers important new insights into how much we should
mitigate and over what time period, and the sensitivity tests above
indicate that we should not expect the qualitative story told by
our results to change in light of improved empirical estimates.
Our methods also enable investigation of other key questions
beyond the scope of this study, including how the inclusion of
health co-benefits influences optimal climate policy under dif-
ferent burden-sharing regimes and different worldviews about
how much to prioritize the poor, future people, and citizens of
other countries.

Methods
The RICE model. The RICE model was first developed in 1996 to analyze the
tradeoffs between investing in climate mitigation, which incurs a cost relatively
soon, and climate damages, which incur costs in the more distant future38,39. RICE
is the regionalized counterpart to the DICE model, which is one of three leading
cost-benefit climate economy models used by researchers and governments for
regulatory analysis, including to estimate the social cost of carbon28. Here we
describe the key aspects of the standard RICE2010 model; for a more extensive
description of this open-access model, see ref. 12. (Also see ref. 39 for a more
extensively documented, but earlier version of RICE.)

Briefly, RICE is a regionalized global optimization model that includes an
economic component and a geophysical component that are linked. RICE divides
the world into 12 regions, some of which are single countries, while others are
groups of countries. Each region has a distinct endowment of economic inputs,
including capital, labor, and technology, which together produce that region’s gross
output via a Cobb–Douglas production function. Pre-mitigation carbon emissions
are a function of gross output and an exogenously determined, region-specific
carbon intensity pathway. These carbon emissions can be reduced (mitigated) at a
cost to gross output through control policies, set to equalize the marginal
abatement cost in all regions. Local mitigation cost is borne by each region, and
there are no inter-regional transfers. Any remaining (post-mitigation) carbon
emissions are incorporated into the climate module where they influence global
temperature and, ultimately, the future economy through climate-related damages.
Future climate change affects regions differently, with poorer regions generally
more vulnerable to climate damages. Damage estimates increase quadratically with
a change in the global surface temperature and, like mitigation costs, are incurred
directly as the loss of a proportion of gross output. Gross output minus the loss of
mitigation costs and climate damages is what we refer to hereafter as GDP.

The model’s optimization balances mitigation costs, which lower consumption
at the time of mitigation, against climate damages which lower consumption in the
future. (Regional consumption is the fraction of GDP that is not saved; mitigation
cost and climate damage affect consumption only via their effect on GDP). The
optimal tradeoff maximizes the sum of discounted well-being, W, which is a
concave function of consumption as follows:

WðcitÞ ¼
X
it

Lit
ð1þ ρÞt

cð1�ηÞ
it

1� η
; ð1Þ

where L is population, c per capita consumption, ρ the rate of pure time preference,
and η the consumption elasticity of marginal utility (inequality aversion). The
subscripts i and t are the region and time indices, respectively. The model is solved
by maximizing this global objective function. As a result, any factor affecting
consumption, such as health impacts or climate damages, can be included in the
model’s optimization framework. Unless otherwise specified, we maintain RICE’s
default parameter values for time preference and inequality aversion of 1.5% and
1.5, respectively.

For this study, all simulations were run using the Mimi model development
package in the Julia programming language. This Mimi/Julia version of RICE is
fully faithful to the standard Excel version, but has more flexibility40. We make four
changes to this standard version of RICE, in addition to those directly related to the
AIR module, which are described below. First, we update the population
projections to those of the UN2017 medium variant41. This is a newer source of
projections and also enables us to use internally consistent projections of deaths
and life-years, as described further below. The impact of changing population has
been comprehensively explored elsewhere42–44. Second, we update the exogenous
radiative forcing terms to the values used in RCP6.045, which is in line with the
latest versions of DICE46,47, which is the global (single-region) variant of RICE.
These estimates are newer than those found in RICE2010 and are available in
disaggregated form, thus allowing us to remove and endogenize the individual
aerosol term for use in the AIR module, while maintaining the other non-CO2

forcings (also described in more detail below). Third, we allow CO2 concentrations
and the global temperature to be endogenous in the second time-step (2015–2025)
—it is fixed in standard RICE2010—as the now-endogenized aerosols will produce
effects immediately after mitigation. And fourth, we use a modified objective
function that avoids Negishi weights, which distort time preferences48 and the
inter-regional tradeoff in ways that are opaque and difficult to justify descriptively
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Fig. 6 FUND + AIR results. Optimal decarbonization rates over time for the
FUND reference case (that excludes health benefits) and the FUND+AIR
case (that includes health benefits)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09499-x

8 NATURE COMMUNICATIONS |         (2019) 10:2095 | https://doi.org/10.1038/s41467-019-09499-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and normatively49. We have explained this latter change in more detail in a
previous publication50 and also in a sensitivity presented in Supplementary Table 2.

In the standard RICE2010 model, anthropogenic CO2 is the only endogenous
climate forcer. All other sources of radiative forcing, including land-use change,
non-CO2 gases, and aerosols are represented through a single exogenous forcing
term that aggregates the individual trajectories of each source. This simplifying
assumption is problematic when it comes to aerosols. Mitigation actions affecting
CO2 have the potential to strongly influence emissions of the air pollutants that
produce aerosols, as the two types of emissions share many sources4,5. Therefore, if
carbon emissions are reduced, aerosols will tend to decrease simultaneously. A
change in aerosols implies a change in radiative forcing as well as a change in
ambient particulate air pollution5. Climate change and air pollution both affect
well-being, and capturing the impact of these pathways was the motivation for
developing the AIR module, which we now explain.

Overview of the AIR module. In this section, we provide a general overview of
how we developed the AIR module, with a technical description—including all
equations—in the sections that follow.

Broadly speaking, our approach consists of five steps. First, we estimate the
baseline (before carbon mitigation) emissions of five air pollutant species (primary
PM2.5, oxides of nitrogen, sulfur dioxide, organic carbon, and black carbon).
Emissions are estimated for each region-time pair with income-dependent
emission intensity projections (emissions per unit GDP) based on the Greenhouse
gas and Air pollution Interactions and Synergies (GAINS) model and specifically
the ECLIPSE emission scenarios51. Our central case assumes air pollutant
emissions in the coming decades follow the ECLIPSEV5a baseline scenario, which
includes current and planned air quality legislation but no climate policy. In
sensitivity analyses we alter this assumption, allowing for faster or slower
independent air quality cleanup, including a case where we simultaneously co-
optimize both air quality and climate policy. This co-optimization introduces
policy levers for end-of-pipe technologies that act on individual air pollutants.
These levers require associated cost curves that are also drawn from the
GAINS model.

In the second step, we determine the change in air pollutant emissions that
would result from a change in CO2 emissions using information from the SSP
project52. This provides an estimate of co-reductions based on empirically realistic
projections about the regionally differentiated interaction between future climate
and air pollution policies, and is consistent with theoretical results from economics
that show that co-benefit effects could be different in scenarios with different
properties32. Emission information in the SSPs is estimated from bottom-up
integrated assessment modeling that includes regionally differentiated, spatially
explicit representations of energy production and structure and, like in RICE,
assumes that CO2 policy occurs through a single global carbon price.

Third, we link changes in air pollutant emissions to changes in estimated
average human exposure to PM2.5 by applying the source-receptor matrix (SRM)
from the TM5-FASST air quality model53. The TM5-FASST SRM was computed
from simulations of the full TM5 chemical transport model for 56 source regions,
which were aggregated to approximate the RICE regions53. Once exposure is
estimated, it is possible to calculate the number of life-years gained attributable to
(reduced) air pollution by combining an exposure--response function with
projections of future mortality and life expectancy54, which we took from the UN
World Population Prospects. We applied a (log)linear exposure-response function
for mortality from all causes in adults based on a meta-analysis published in a
recent World Health Organization report24. We selected this approach for
consistency with the UN projections—which only estimate mortality from all
causes—and because recent epidemiological analyses indicate that the strong effects
of air pollution occur at exposure (concentration) levels up to and including those
most relevant to our study and that they likely affect a wide range of outcomes25,26.

Fourth, we allow the change in air pollutant emissions to influence the global
temperature using aerosol forcing coefficients derived from the MAGICC climate
model55. The coefficients incorporate both the direct and indirect effects
represented in MAGICC, with the latter including those related to albedo and
cloud responses. Aerosol forcing is added to the forcing from the other greenhouse
gases in RICE’s climate module to produce estimates of future climate change.

And fifth, for each region we monetize and then value the aerosol impacts. The
average per capita health benefits are added to per capita consumption, whereas the
climate effects—monetized using RICE’s standard climate damage function—
subtract from consumption12. Consumption is transformed into well-being by a
concave function in the optimization via RICE’s objective/social welfare function
(Eq. (1)). Once the impacts have been valued in this way, they then enter the
optimization.

Figure 7 illustrates the different model components and their linkages. We now
present a technical description of each of these steps.

Estimating baseline emissions. Air pollutant emissions from natural sources and
open burning remain exogenous in our framework, following the trajectory based
on RCP6.045. All other anthropogenic air pollutant emissions are endogenous, as
follows.

The level of baseline (pre-mitigation) anthropogenic emissions of each aerosol
precursor, E0, is a function of an emission intensity factor (emissions per unit

GDP), e, and the GDP, Y:

E0
itpðYit ; Lit ; eitpðYit=LitÞÞ ¼ eitpðYit=LitÞ � Yit : ð2Þ

The emission intensity is region (i), time (t), and pollutant (p) specific and
characteristically depends on the per capita income level of the region, defined
above as the GDP, Y, divided by the population, L. GDP is endogenously
determined in RICE while population is exogenous, taking the medium variant
estimate of the 2017 version of the UN Population Prospects through 210041, and
remaining constant thereafter.

We estimated emission intensities (and emissions) for five air pollutants: sulfur
dioxide (SO2), primary fine particulate matter (PM2.5), oxides of nitrogen (NOx),
organic carbon (OC), and black carbon (BC). Emission intensities up to the year
2050 were derived from region-specific projections used in the GAINS model and
specifically the ECLIPSEV5a scenario that reflects existing national and regional air
pollution policies, but excludes decarbonization from climate mitigation51.

We fit the following functional form to the scenario data to extrapolate beyond
2050:

eitpðYit=Lit ; χÞ ¼ φ1;ip � exp �Ω1;ip � IitðYit=Lit ; χÞ
� �h

þφ2;ip � exp �Ω2;ip � IitðYit=Lit ; χÞ
� �i

;
ð3Þ

where the Ωs and φs are fitting parameters and χ is the Kuznets-relevant income, as
described below. Resulting emission intensities are displayed graphically in
Supplementary Fig. 4.

This functional form implies that emission intensities decrease with rising per
capita income I, as observed in the projected emission scenario. This can be
interpreted as a particular version of the environmental Kuznets curve, estimated
with the ECLIPSE data. We write our Kuznets-relevant income I(χ) as:

IitðYit=Lit ; χÞ ¼
Yiðt¼2005Þ
Liðt¼2005Þ

þ χ � Yit

Lit
� Yiðt¼2005Þ

Liðt¼2005Þ

 !
: ð4Þ

For χ= 1, the Kuznets-relevant income equals the true (modeled) per capita
income in the region-time pair, producing our default best-guess emission intensity
factors. Changing I(χ) allows us to explore assumptions of more or less stringent
autonomous air quality policies: we can speed up (χ > 1) or slow down (χ < 1) the
decrease in emission intensities over time accordingly.

Supplementary Figure 5 shows the baseline (pre-mitigation) level of emissions
by region and time under the default of χ= 1, where the Kuznets-relevant income
equals the true (modeled) income.

Relationship of CO2 mitigation to air pollutant emissions. The above method
projects the level of air pollutant emissions assuming no CO2 mitigation. Reducing
emissions of CO2 will typically also reduce the emissions of air pollutants, as they
often stem from the same sources. In our framework, the percentage reduction in
CO2 relative to the business-as-usual (without mitigation) scenario is called the
decarbonization fraction (control rate), μit, and it is associated through parameter
κip with a reduction in pollutant p relative to its baseline (pre-mitigation) level:

ΔEitpðμitÞ
E0
itp

¼ κitp
ΔEit;CO2

ðμitÞ
E0
it;CO2

¼ κip � μit ð5Þ

or,

ΔEitpðμit ;Yit ; LitÞ ¼ κip � μit � E0
itp ¼ κip � μit � eitpðYit=LitÞ � Yit : ð6Þ

The parameter κip describes the effectiveness of CO2 mitigation in co-reducing
emissions of pollutant p. The κip parameter was estimated from the SSPs, which are
a set of five storylines designed to analyze tradeoffs between climate change and
socioeconomic factors52. Each of the five SSPs contains multiple sub-scenarios that
differ only by their level of decarbonization; all socioeconomic factors remain
constant. Therefore, each pairwise comparison of these sub-scenarios includes an
implicit estimate of κitp at each time period for each region and pollutant. The
emission information in the SSPs is estimated from bottom-up integrated
assessment modeling that includes regionally differentiated, spatially explicit
representations of energy production and structure, and like RICE, assumes that
CO2 policy occurs through a single global carbon price.

We fit a simple linear regression line through the multiple estimates of κ for
each SSP, constrained to begin at the origin, and take the slope of that line as our
estimate (Supplementary Fig. 6). We derive five estimates of κ (one for each SSP)
for each region-pollutant pair, using the middle-of-the-road SSP2 as our standard
case, with the alternative SSPs tested in sensitivity analyses. The total post-
mitigation level of emissions is therefore:

EitpðμitÞ ¼ E0
itp � ΔEitp ¼ E0

itp � ð1� κip � μitÞ: ð7Þ
We acknowledge that there are cases where the data derived from the SSP

database appear to exhibit a non-linear rather than linear relationship between CO2

reduction and air pollutant reduction (Supplementary Fig. 6). Our goal was to find
a relationship that on average, and in particular at full mitigation, provides a
reasonable approximation to the implied air pollution reduction. Having said this,
we are aware that our assumption of linearity in the relation may affect our overall
results: a higher co-reduction at low CO2 mitigation offers incentives for further
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reduction than in the linear case, and vice versa. Thus, the shape of the mitigation
profile could be affected, though the effect is likely to be small if, as we assume, the
carbon prices in the RICE regions are coupled to each other.

From air pollutant emissions to health impacts. The health co-benefits in RICE
+AIR are calculated directly from the change in ambient population-weighted
concentrations of PM2.5 attributable to CO2 mitigation. In the next paragraph, we
describe how we estimate this change in concentration. Further below we describe
how we keep track of the absolute level of pre- and post-mitigation PM2.5 con-
centrations, which are used in the health impact calculations only to ensure that no
health benefits accrue at exposures below given threshold values.

The change in ambient concentrations of PM2.5 attributable to CO2 mitigation
is a function of the change in aerosol precursor emissions—in this case primary
PM2.5, NOx, and SO2—as well as other factors such as meteorological conditions.
To estimate this relationship, we extracted the SRM from the freely available TM5-
FASST global atmospheric SRM53. For each pollutant, the SRM provides an
estimate of the change in population-weighted PM2.5 concentrations (hereafter
referred to as exposure) given a unit change in emissions. The SRM from TM5-
FASST was computed for 56 source regions from simulations with the full TM5
chemical transport model53. Using an SRM is a practical alternative to running full
atmospheric chemistry transport model simulations, which is infeasible in our
optimization context. The TM5-FASST model is described in detail elsewhere, and
has been used similarly in other projects3,53.

The TM5-FASST interface allows the 56 source regions to be aggregated into
larger regions that approximate the RICE regions. Due to the size of the RICE
regions, we assume that the change in exposure to PM2.5, ΔC, in region i depends
only on the change in emissions within that same region (i') and that the change is
estimated via the SRM (SR) that encodes atmospheric transport. We also assume
that the SRM does not change over time and that changes in the three precursor
pollutants are additive:

ΔCitðμit ;Yit ; LitÞ ¼
P
i′p

SRii′p � ΔEi′tpðμi′t ;Yi′t ; Li′tÞ

¼P
p
SRiip � ΔEitpðμit ;Yit ; LitÞ:

ð8Þ

As mentioned above, we keep track of the absolute level of exposure, a variable
that is used only to ensure that no health benefits accrue at exposures below a given
threshold level (described further below). The absolute exposure levels in the pre-
mitigation case (where μ= 0) are calculated by translating the change in emissions
relative to 2005 into a change in exposure using the SRM, and then subtracting it
from the 2005 exposure

C0
itðμit ¼ 0Þ ¼ max Ci;t¼2005 �

X
i′p

SRii′p � ðEi′;t¼2005;p � E0
i′tpÞ; 0

 !
: ð9Þ

Here the max function ensures PM2.5 concentrations do not drop below zero.
Emissions and exposure in 2005 were taken from the EDGAR (Emission Database
for Global Atmospheric Research) emission database56 and Brauer et al.57,
respectively, and then aggregated into the RICE regions.

Mitigation of CO2 (μ > 0) reduces exposure further:

CitðμitÞ ¼ max Ci;t¼2005 �
X
i′p

SRii′p � ðEi′;t¼2005;p � ðE0
i′tp � ΔEi′tpÞÞ; 0

 !
ð10Þ

¼ max Ci;t¼2005 �
X
i′p

SRii′p � ðEi′;t¼2005;p � Ei′tpðμitÞÞ; 0
 !

ð11Þ

We define the health co-benefit as the avoided premature mortality
resulting from reductions in PM2.5 exposure attributable to CO2 mitigation (ΔC
from Eq. (8)). This benefit can be quantified through the attributable fraction
(AF) (54):

AFit ¼
RRit � 1
RRit

; ð12Þ

where the relative risk, RR, for each region and each time period is a function of the
change in exposure and a health impact function (β) that links a unit change in
exposure to a change in the risk of adult (≥30) mortality from all causes:

RRit ¼ expðβ � ΔCitðμit ;Yit ; LitÞÞ: ð13Þ
We assume a log-linear relationship between PM2.5 exposure and all-cause

mortality with a relative risk of 1.066 (95% confidence interval (CI)= 1.040, 1.093)
for each 10 μg/m3 change in exposure, based on a meta-analysis published by the
World Health Organization24. However, we note that many recent assessments of
ambient air pollution have used the cause-specific integrated exposure-response
(IER) functions to estimate mortality impacts58. Here we focus on all-cause
mortality for two reasons. First, we have recently shown that population size/
growth strongly affects estimates of optimal climate policy, including for reasons
unrelated to human health42,43. Therefore, we use the most recent long-term (to
2100) population projections provided by the UN Population Division, which does
not publish corresponding estimates of cause-specific mortality. Second, important
recent studies indicate that the IER functions may underestimate excess
mortality25,26, and suggest that mortality risks at the exposure levels seen in our
regional analyses may fall within the 95% CI of the WHO estimate presented above
and tested in sensitivity analyses25.

In all analyses, we assume that components of PM2.5 are equally toxic24, that
health benefits accrue in the same 10-year time-steps as the improvement in
air quality, and that population and mortality remains constant after 2100. We
also confine the health impacts to mortality from PM2.5 exposure, though
note that there is also concern about the health effects of exposure to smaller
particles59.

Multiplying the AF by the total number of life-years lost from all causes, Θ,
yields the life years gained from the reduction in air pollution:

LYitðμit ;Yit ; LitÞ ¼ AFit � Θit ; ð14Þ

¼ RRit � 1
RRit

� Θit ; ð15Þ

¼ ð1� expð�β � ΔCitðμit ;Yit ; LitÞÞÞ � Θit : ð16Þ

Emission intensities
(GAINS ECLIPSEV5a: Eq. 2-4)

Post CO2-mitigation emissions
(SSPs: Eq. 5-7)

Radiative forcing
(MAGICC6: Eq. 19-21)

PM2.5 exposure / health impacts
(TM5-FASST / WHO: Eq. 8-18)
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Fig. 7 Diagram of the AIR module. Flow chart illustrating how the AIR module (rectangles) links with the RICE model (gray circle) to estimate emissions of
air pollutants and their impacts. The model/method underlying each step in AIR is shown within parentheses, along with the relevant equations
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Since β ⋅ ΔCit(μit, Yit, Lit)≪ 1, we can write as an approximation:

LYitðμit ;Yit ; LitÞ ¼ β � ΔCitðμit ;Yit ; LitÞ � Θit : ð17Þ
Theta (Θ) values are estimated from the UN data by multiplying the total

deaths by the remaining life expectancy at the age of death. As UN life expectancy
data is by exact age, reported at 5-year intervals, whereas mortality data is for 5-
year age groups, remaining life expectancy for each 5-year age group was taken as
the average of the group’s bounding ages. For example, remaining life expectancy
for all (averted) deaths in the 30–34 age group would be the average of the
remaining life expectancy for a 30 year old and a 35 year old.

Health benefits in a given region can accrue until absolute exposure to PM2.5

converges to some minimum level, representing either a point below which no
additional health impacts occur (a threshold) or a theoretical minimum level where
residual PM2.5 consists only of natural sources. We followed recent global studies
(e.g., ref. 60) and chose a lower threshold/theoretical minimum of 5.8 μg/m3.
However, we acknowledge that there is a growing consensus that there may not be
a safe level of PM2.5 below which no adverse health effects occur59,61 and therefore
ran sensitivities down to 1 μg/m3. If a reduction in a given time period brings a
region’s exposure below the threshold, the health co-benefit is calculated from the
increment between the unmitigated level and the threshold:

LY�
itðμit ;Yit ; LitÞ ¼ β � Θi �max min ΔCitðμit ;Yit ; LitÞ;

��
ðC0

itðμit ;Yit ; LitÞ � τÞ�; 0�; ð18Þ

where τ is the value of the threshold level.

Radiative forcing and temperature effects from aerosols. Some air pollutants
are climate forcers: BC is a warming agent while SO2, NOx, and OC act to cool the
atmosphere10. The net global forcing in each time period attributable to aerosols is
taken as the sum of the individual contributions:

RFaert ¼
X
p

X
i

ript � Eitpðμit ;Yit ; LitÞ; ð19Þ

where ript is a region-specific coefficient that relates the regional change in emis-
sions of pollutant p to the change in average global forcing.

We used the MAGICC6 climate model55 to derive the coefficients by
determining the impact on forcing from a pulse change in emissions in each time
period in each region:

ript ¼
∂RFaert

∂Eitp

" #
MAGICC6

: ð20Þ

For this we ran MAGICC6 with a pre-defined representative concentration
pathway (RCP) scenario and then again after having reduced the emissions of one
pollutant in one region by a marginal amount. We repeated this procedure for each
region, pollutant, time-step, and, finally, each RCP. We thus derived a reduced-
form surface-response representation of aerosol forcing in MAGICC6. We
separated the effects of the different pollutants to allow them to be controlled
independently, as they are in reality (also see Supplementary Note 1). In this
experiment, we observed a time dependence that accounts for changes in
atmospheric dynamics as emissions accumulate:

ript ¼ u1;ip � t þ u0;ip: ð21Þ
The resulting coefficients incorporate both the direct and indirect forcing effects
represented in MAGICC6, with the latter including those related to albedo and
cloud responses. The time- dependence is independent of the initial conditions. We
noted that r depends on the magnitude of the pulse change, but the effect is
relatively small. Supplementary Table 3 reports values of ript and Supplementary
Fig. 7 shows the radiative forcing over time for three scenarios. Here the reader will
note that we have used two separate models for estimating the health effects (TM5-
FASST) and climate effects (MAGICC6) of air pollutant emissions, a decoupling
that may introduce uncertainty. Nevertheless, MAGICC and TM5 have distinct
strengths that we harness accordingly; MAGICC takes account of the full aerosol
load of the whole atmosphere, top to bottom, and at the level of hemispheres, while
TM5 tells us about the concentration at ground level, where people live and
breathe, in principle at much higher resolution. Both models work with the same
global emission inventories.

Aerosol forcing affects global mean atmospheric temperature just as CO2

forcing does, so that the added atmospheric temperature flow is equal to:

ΔTatm
t ¼ ξðRFCO2

t þ RFaert Þ; ð22Þ

where RFCO2
t is CO2 forcing and ξ is the decadal speed of adjustment for

atmospheric temperature (equal to 0.208).

Aerosol feedbacks on the economy. As described, aerosol impacts occur from a
change in radiative forcing and from a change in air quality. Changes in radiative
forcing are transferred to RICE’s climate module where they influence the global
average surface temperature, which is the basis of the monetized climate damage
estimates39.

Changes in air quality are monetized as the health co-benefit, B, by multiplying
the number of life years gained by the value of a life-year (VOLY). We follow the
same approach taken in early versions of RICE’s climate damage function where a
VOLY is assumed to equal 2 years of regional per capita consumption, c39:

Bitðμit ; citÞ ¼ VOLYitðcpre�health
it Þ � LY�

itðμit ;Yit ; LitÞ: ð23Þ
A VOLY of 2 years of per capita consumption is generally the same order of

magnitude as empirical estimates based on willingness-to-pay surveys21, but we
also test several alternative values in sensitivity analyses. Final (post-health) per
capita consumption, cit is calculated as:

cit ¼ cpre�health
it þ Bit=Lit : ð24Þ

With monetized aerosol impacts now included in the economic framework,
RICE can follow its normal optimization procedure to find the decarbonization
pathway that maximizes the objective (Eq. (1)).

Additional information on select sensitivity analyses. The Supplementary
Information contains additional information on the co-optimization of air quality
and climate policies (Supplementary Note 1 and Supplementary Fig. 8), life-year
monetization and valuation (Supplementary Note 2), integrating the FAIR climate
module into RICE+AIR (Supplementary Note 3), and the development of FUND
+AIR (Supplementary Note 4).

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its Supplementary Information files.

Code availability
The AIR model is licensed under the open source MIT license. The code is freely
available at https://github.com/Environment-Research/AIR.
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