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Deep learning methods for likelihood-free inference  5 1 Introduction  The precise explanation and prediction of processes that underlie our cognition is the ultimate goal in psychological research. Yet, mental characteristics of the human mind are far too complex to be described in full detail. Hence, researchers have to make simplified assumptions about particular aspects and incorporate them within a model that best mimics the dynamics of the real process. Such an endeavor forces researchers to be as precise as possible in formulating the respective assumptions underlying the model. Only if an exact description of process is made, will the model be falsifiable and research can make progress. The ideal approach to ensure that the mentioned requirements are met is a mathematical specification of the inner workings of the model/theory. Such a mathematical model most often consists of several equations and corresponding parameters where each equation/function describes the process of how a cognitive process emerges (or a behavior is generated). Ideally, in psychology, all associated parameters of a mathematical model should be meaningful and interpretable in that they can be mapped to psychological or neurocognitive processes.   Besides the precise description within a mathematical framework, a crucial requirement for gaining insights about complex human behavior, experiences or cognitive processes is the ability to assess how mathematically formulated assumptions are in line with observed data. Measuring the goodness-of-fit of a model to data, expressed as the plausibility of certain characteristics of a statistical model, i.e., its parameters, with respect to some data at hand, plays one of the most important roles throughout the field of statistical inference. The function that maps each possible parameter value to a plausibility score is commonly denoted as the likelihood. In frequentist statistics, the likelihood builds the foundation for the method of maximum likelihood estimation, a standard approach for parameter estimation to find the parameters of a model that are the most likely, given some observed data. In the field of Bayesian statistics, the likelihood, represented as a conditional distribution of the observed data given the parameters, is essential to update prior beliefs about parameters in light of new data. Since the likelihood is deeply rooted in some of the most widely used statistical procedures, it is hard to imagine doing inferences if there were no likelihood. However, in the constant strive for a better understanding of psychological phenomena, existing statistical models are adapted and extended. As models become more and more diverse and involved, there is no guarantee that the likelihood function can still be expressed which in turn leads to a demand for more sophisticated statistical analyses.   



Deep learning methods for likelihood-free inference  6 As a result, researchers from a variety of disciplines are increasingly faced with scenarios where no proper likelihood function is available or it is too complex and inference becomes infeasible due to limited computational resources.   In this thesis, I will introduce the reader to an area of research, so called approximate Bayesian computation (ABC), also known as likelihood-free inference, that attempts to circumvent the problem of a missing likelihood function by approximating it. At the time of writing, likelihood-free inference still plays a rather secondary role in psychological research. However, there has been increased interest in applying ABC techniques in recent years (Palestro, Sederberg, Osth, van Zandt, & Turner, 2018). For instance, Turner, Dennis, and Van Zandt (2013) applied ABC to two influential episodic memory models, namely the Bind Cue Decide Model of Episodic Memory (BCDMEM; Dennis & Humphreys, 2001) and the Retrieving Effectively from Memory model (REM; Shiffrin & Steyvers, 1997). Due to missing neuroscientific knowledge, both models are constrained in that no mathematical statements relating parameters to dependent variables can be made (Turner, Dennis, & Van Zandt; 2013). As a result, both models do not have a likelihood function and it is only possible to simulate data from these models, given a set of parameter values.   Research on likelihood-free inference has come up with a range of clever ideas to approximate the likelihood or to replace it with concepts of similar meaning. However, bypassing the likelihood has not been feasible without paying the price of making several important decisions regarding one’s own data. Even worse, there is little if no guarantee those decisions have been the rights ones.   My major contribution to this area of research is the development of a machine learning algorithm, which we named DeepInference, that allows to overcome a few of the most important limitations of existing procedures, while at the same time leading to state-of-the-art results in terms of accuracy of parameter estimation. In this thesis, I will furthermore show how DeepInference can be applied to one of the most widely known sequential sampling models, the drift diffusion model (DDM; Ratcliff, & McKoon, 2008; Voss, Nagler, & Lerche, 2013). Although the DDM is only one specific model especially targeted at the analysis of response time data for binary decision tasks, it is perfectly suited as an example that reinforces the arguments above for the increasing importance of likelihood-free inference. Whereas researchers interested in estimating parameters of the classic DDM have a likelihood function available and are hence able to use common techniques, no statements can be made about the likelihood for interesting extensions of the DDM, such as the Lévy flight model 



Deep learning methods for likelihood-free inference  7 (Voss A., Lerche, Mertens, & Voss, J., 2019). The example clarifies how new advances in likelihood-free inference might support or even facilitate new insights that would otherwise stay hidden. The Lévy flight model, an extension of the DDM which stretches some familiar assumptions of the DDM, will be the final application of DeepInference.   My thesis will be organized as follows: First, I will briefly explain the main ideas of Bayesian statistics, which then allow me to outline the basic principles of approximate Bayesian computation (throughout this thesis abbreviated as ABC), by explaining one of the first and simplest algorithms, the so-called ABC rejection algorithm (Pritchard, Seielstad, Perze-Lezaun, & Feldman, 1999; Tavaré, 1997). The ideas will be presented in a way to ease the understanding of more advanced techniques and algorithms, presented in later sections of this thesis, and to highlight their commonalities. Next, in order to lead the reader to the research conducted in my first Manuscript (Manuscript 1), I will put aside the area of parameter estimation and focus on ABC techniques for hypothesis testing. The advantages and capabilities of ABrox, a graphical user interface I developed that is especially suited for hypothesis testing in an ABC context, will be highlighted. Before diving into the details of DeepInference (explained in detail in Manuscript 2), I want to outline what machine learning is and how it already contributed to the field of ABC. Following this section, I will present results from two parameter recovery studies (see Manuscript 3) in which we applied DeepInference to the drift diffusion model and the Lévy flight model. The thesis will be concluded by a discussion of some interesting open research questions/applications which I hope will be addressed in future research projects.    



Deep learning methods for likelihood-free inference  8 2 The basics of approximate Bayesian computation  The general idea of Bayesian statistics (see e.g., Gelman, 2013) is to treat the parameters of a statistical model as random variables and the observed data as fixed. Hence, by placing probability distributions over the parameters, the inherent uncertainty of statistical inference is quantified. Assuming a single parameter, the researcher starts with a prior distribution thereof, i.e., a probability distribution representing some prior belief about the values of the parameter. Depending on the current stage of knowledge, one might either start with strong prior beliefs (e.g., the probability of a coin landing heads is ~50%) or no information at all. After having collected some data, these prior beliefs are updated using the likelihood, i.e., the plausibility of the parameter values given the data. It is important to mention a slightly different interpretation of the likelihood within the Bayesian framework compared to the frequentist view as being a conditional density of the data given the parameters, often denoted as 𝑝(𝒙|𝜽).   The posterior then is the belief about the values of the parameter, after the prior beliefs have been weighted with their corresponding plausibility (likelihood). By looking at the posterior distribution, it not only becomes evident which value is the most probable one, but at the same time, the distribution contains information about the uncertainty of the parameter. Only in a Bayesian context is it correct to state that values of a parameter lie within a certain region with a prespecified probability (Hoekstra, Morey, Rouder, & Wagenmakers, 2014). The mathematical formulation of these ideas is incorporated in Bayes’ rule: 𝑝(𝜽|𝒙,𝑀) = 	 𝑝(𝒙|𝜽,𝑀)𝑝(𝜽|𝑀)∫ 𝑝(𝒙|𝜽,𝑀)𝑝(𝜽|𝑀)𝑑𝜽 (1)  In the above equation, M is a specific statistical model with parameter vector q. Any collected dataset is represented by 𝒙. Note that being explicit about the role of a model helps in clarifying Bayesian model comparison as explained in a later section of the thesis. In equation 1, 𝑝(𝒙|𝜽,𝑀) is the likelihood, in other contexts explicitly referred to as a function of the parameters (𝑓(𝜽|𝒙)). 𝑝(𝜽|𝑀) is the (joint) prior distribution and 𝑝(𝜽|𝒙,𝑀) the posterior distribution expressed as a conditional distribution of the parameter vector q, given model M and dataset 𝒙. The denominator of Bayes’ rule, ∫𝑝(𝒙|𝜽,𝑀)𝑝(𝜽|𝑀)𝑑𝜽, is commonly known as the normalizing constant or marginal likelihood and is sometimes written in short form as simply 𝑝(𝒙|𝑀). The marginal likelihood is a scalar that renormalizes the product of prior and 



Deep learning methods for likelihood-free inference  9 likelihood so that the posterior is a proper probability distribution integrating to 1. Since the marginal likelihood is hard to compute when the parameter space is high-dimensional, modern algorithms such as Markov Chain Monte Carlo (MCMC), allow to make inferences without the need to calculate it (Gilks, Richardson, & Spiegelhalter, 1996). Thus, the equation above can be simplified by writing:  𝑝(𝜽|𝒙,𝑀) 	∝ 	𝑝(𝒙|𝜽,𝑀)𝑝(𝜽|𝑀) (2)  If the likelihood function is not available as a weighting or updating factor of the prior beliefs about 𝜽, other ways have to be found to assess their plausibility in light of data. Fortunately, most models can be seen as a set of assumptions that try to imitate a stochastic process from which the collected data might have been generated from, i.e., the data-generating process. Thus, many existing statistical models can also be used as functions to generate new data 𝒙2, conditioned on prespecified parameters.   Assuming that such a generative model 𝑞(∙ |𝜽) is able to capture the true data-generating process, one would assume that there exists a sample of parameter values 𝜽 such that the resulting generated data are identical to the observed data. In this context, the likelihood is the probability of the aforementioned event happening (Pr(𝒙 = 𝒙2)). This probability is approximated via an iterative process, known as the rejection sampling algorithm (Rubin, 1984):  Algorithm 1. Exact rejection algorithm. for 𝑖 ← 1 to 𝑁     repeat         Sample 𝜽	~	𝑝(·)         Simulate 𝒙2	~		𝑞(· |𝜽)	     until 𝒙2 = 𝒙     𝜽(<) ← 	𝜽 end for  For every iteration, one samples 𝜽 from the prior distribution 𝑝(·) and, using the sampled 𝜽, simulates data 𝒙2 according to 𝑞(· |𝜽). As long as 𝒙2 is not equal to 𝒙, the two steps (sampling and simulating) are repeated. Only if 𝒙2 is exactly equal to 𝒙, the process stops and the currently sampled 𝜽 is stored. The whole procedure continues until a total of N samples have 



Deep learning methods for likelihood-free inference  10 been stored. The N kept samples from the rejection algorithm are samples from the exact posterior distribution 𝑝(𝜽|𝒙,𝑀).   The presented algorithm, in the same manner as a usual likelihood function, ‘awards’ parameter values generating data resembling the observed data with high plausibility scores, and downgrades others by assigning lower scores, respectively. While Algorithm 1 makes intuitive sense, it is not practical for high-dimensional continuous 𝒙, since the probability that simulated data will be exactly equal to the observed data decreases as the dimensionality of 𝒙 increases.   An ABC version of Algorithm 1 (see Algorithm 2) is able to approximate the true posterior by introducing three hyperparameters. First, instead of keeping samples only if 𝒙2 =𝒙, a distance function 𝑑(∙) has to be chosen to measure the similarity of 𝒙2 and 𝒙. Secondly, a threshold 𝜖 is necessary for deciding how many samples to keep (which distances are accepted or rejected). Lastly, a function 𝜂(∙) to compute summary statistics of the raw data has to be picked. For instance, if 𝒙 can be represented as a vector of response times, one might choose common statistical values such as the mean, standard deviation, kurtosis and skewness as summary statistics. The reason for the importance of summary statistics is as follows: If raw, potentially high-dimensional data are directly compared (instead of the comparing summary statistics), the chance of random deviations between the raw observed data and the raw simulated data is higher. To account for this fact, a large threshold 𝜖 has to be picked for the algorithm to stay reasonably efficient. The necessity to increase the threshold 𝜖 however causes many accepted datasets to be accepted which are actually different to the observed data and the approximation of the posterior distribution becomes worse. The ABC rejection algorithm reads as follows (see Tavaré, 1997): Algorithm 2. ABC rejection algorithm. for 𝑖 ← 1 to 𝑁     repeat         Sample 𝜽	~	𝑝(·)         Simulate 𝒙2	~		𝑞(· |𝜽)	     until 𝒅@𝜼(𝒙2),𝜼(𝒙)B ≤ 	𝝐     𝜽(<) ← 	𝜽 end for 



Deep learning methods for likelihood-free inference  11  Algorithm 2 generates samples from an approximate posterior distribution 𝑝E(𝜽|𝜼(𝒙2),𝑀). Setting 𝜖 to zero and using as 𝜂(∙) the identity function, Algorithm 2 reduces to Algorithm 1. An increase in the threshold 𝜖 makes the resulting posterior less accurate but causes a decrease in time required to obtain N samples. Besides the right choice of 𝜖, choosing summary statistics that are sufficient, i.e., reduce the dimensionality without loss of information about the parameters, is a crucial aspect with which all ABC algorithms have to deal. In manuscript 2 of this thesis, I will present a way to overcome this serious issue of having to compute summary statistics using an algorithm from machine learning, namely convolutional neural networks (LeCun et al., 1989).  The ideas presented so far deal with the problem of parameter estimation when no likelihood is available. In psychological research though, often the interest lies in comparing models and quantifying which model, or hypothesis, is more probable given some collected data. From a psychologist’s perspective, being able to easily conduct Bayesian hypothesis testing in a likelihood-free setting is at least of equal importance as parameter estimation. The first manuscript of this thesis therefore addressed the topic of ABC model comparison and introduced an easy-to-use interface for conducting such analyses.    



Deep learning methods for likelihood-free inference  12 3 ABrox – a python module for approximate Bayesian computation (Manuscript 1)  When interested in Bayesian model comparison, the goal is to compute the ratio of posterior probabilities of two competing models (M1 and M2), given the data 𝒙. The corresponding Bayes formula for each of the models is similar to Equation 1:  𝑝(𝑀F|𝒙) = 	 𝑝(𝒙|𝑀F)𝑝(𝑀F)∫ 𝑝(𝒙|𝑀F)𝑝(𝑀F)𝑑𝑀 (3) In this thesis, I explicitly distinguish between the denominator term of Equation 1 and the denominator of Equation 3, which is why I refer to the latter as the evidence. The evidence is the likelihood averaged over all models under consideration (in contrast to the marginal likelihood which is the likelihood of a specific model averaged over its parameters). The ratio of posterior model probabilities is the ratio of the right-hand sides of Equation 3. Since the evidence terms cancel out, we are left with:  𝑝(𝑀H|𝒙)𝑝(𝑀I|𝒙) = 𝑝(𝒙|𝑀H)𝑝(𝒙|𝑀I) ∗ 	𝑝(𝑀H)𝑝(𝑀I)	 (4) In the above expression, 𝑝(𝑀H|𝒙)/𝑝(𝑀I|𝒙)	is the ratio of posterior model probabilities, 𝑝(𝑀H)/𝑝(𝑀I) is the ratio of prior model probabilities and 𝑝(𝒙|𝑀H)/𝑝(𝒙|𝑀I) is the ratio of marginal likelihoods known as the Bayes factor (BF) (Jeffreys, 1961; Kass & Raftery, 1995). By taking a look at Equation 1 again, one immediately notices that the computation of the Bayes factor requires the calculation of marginal likelihoods. If researchers do not intend to favor any of two models or hypotheses a priori, which is usually the case, the Bayes factor is equal to the ratio of posterior model probabilities, the actual term of interest. The Bayes factor is interpreted as the evidence of one model relative to the other. For instance, a BF12 of 3 states that model M1 is three times more likely than M2 whereas a BF12 of 0.2 indicates that M2 is 1/0.2, i.e., 5 times as likely as model M1. For some common statistical procedures, an analytic solution for the Bayes factor can be derived (see e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009). However, for more complex models, the Bayes factor has to be approximated via Monte Carlo techniques (Diciccio, Kass, Raftery, & Wasserman, 1997; Gronau et al, 2017).  The aim of Manuscript 1 was to announce ABrox as a graphical user interface for ABC and to investigate how well an approximation of the Bayes factor due to a missing likelihood function was able to approach an exact Bayes factor. For all comparisons within Manuscript 1, I used an adaptation of the above presented ABC rejection algorithm, illustrated below: 



Deep learning methods for likelihood-free inference  13 Algorithm 3. ABC rejection algorithm for model comparison. for 𝑖 ← 1 to 𝑁     repeat         Sample M ~ p(M)         Sample	𝜽	~	𝑝(𝜽|𝑀)         Simulate 𝒙2	~		𝑞(· |𝜽,𝑀)	     until 𝑑@𝜂(𝒙2), 𝜂(𝒙)B ≤ 	𝜖     𝑀(<) ← 	𝑀 end for  The result of Algorithm 3 is an array storing the model indices that led to a distance smaller or equal to 𝜖, e.g., M𝑀H(H),𝑀I(I), 𝑀I(N),𝑀I(O), … ,𝑀H(Q)R. The number of occurrences of M1 divided by the number of occurrences of M2 is the approximation of the Bayes factor (throughout this thesis denoted as ABC Bayes factor). As an example, if 75 out of N=100 model indices belong to M1 and hence 25 to M2, the resulting Bayes factor is 75/25 = 3.   As a first example, I was interested in the comparison of both BF versions (approximated and exact) for the independent samples t-test. Rouder, Speckman, Sun, Morey, & Iverson (2009) offer a ‘default’ Bayes factor where the parameter of interest is the effect size Cohen’s d. For one model, the alternative hypothesis (ℋH), Cohen’s d is allowed to differ from zero by using a Cauchy distribution with a scale of 0.707 as the prior distribution. The null hypothesis (ℋT), in contrast, assumes Cohen’s d to be exactly zero (see details in the Manuscript). I implemented a version of Algorithm 3 using the same setup as Rouder et al. (2009). For the comparison, we simulated observed data which varied in the size of the effect (Cohen’s d) and the total sample size. For every such constructed dataset, we calculated the default Bayes factor and the ABC Bayes factor. Overall, results indicated that the ABC Bayes factor of the independent samples t-test was highly correlated with the default Bayes factor.   In manuscript 1, I wanted to go further and demonstrate the usefulness of ABC Bayes factors on two other tests/models for which no easy way to compute Bayes factors was available at the time of writing. The first of the two examples was the Levene-Test which tests whether the variances of two samples are homogeneous. Here, since no exact Bayes factor could be computed, we compared the ABC Bayes factor with the p values extracted 



Deep learning methods for likelihood-free inference  14 from the frequentist version of the Levene test. Results showed that in general, the ABC Bayes factor and the p value led to the same decision (retaining or discarding ℋT), yet for small sample sizes, there was also a non-neglectable amount of distinct decisions.   For the last example in the paper, I was interested in a more realistic and hence more complex class of models, multinomial processing tree models (MPT; Riefer & Batchelder, 1988). I picked two prominent MPT models from the area of research on stereotypes. Each model makes different predictions about the roles of automaticity and control in the so-called weapon misidentification task (Conrey, Sherman, Gawronski, Hugenberg, & Groom, 2005; Bishara & Payne, 2009). Whereas the Process Dissociation Model (Jacoby, 1991; Payne, 2001) assumes controlled processing being a more important factor than automaticity, the Stroop Model (Lindsay, & Jacoby, 1994) supposes the reverse order. Without elaborating any further on the characteristics of both models (see Manuscript 1 for more details), the ABC Bayes factor seemed to be a promising way for comparing MPT models, even computed with the most basic algorithm such as Algorithm 3. Assuming a reasonable choice of the prior distributions for all parameters, results indicated that the ABC Bayes factor favored the model for which the observed data had been simulated from.   The goal of manuscript 1 was not only to draw attention to the flexibility and potential of Bayes factors in a likelihood-free setting as mentioned above, but at the same time to introduce ABrox, a user-friendly graphical user interface for approximate Bayesian computation. ABrox was mainly developed to help researchers apply the presented techniques in their own labs with as few obstacles as possible. Although quite a few other software packages are available (see e.g., Csillery, Francois, & Blum, 2011; Liepe et al., 2010), ABrox, to the best of my knowledge, is the first one with a focus on model comparison that aims to be applicable in different research areas. During my research on open-source software for ABC, I was surprised that many tools were specifically designed for only a certain class of models, e.g., models encountered in Systems biology. These tools, while extremely helpful for users working in the field, were barely or not at all applicable in other domains. With ABrox, I tried to build a tool that can be used by anyone, regardless of one’s research background, by both experienced researchers and people new to the field of ABC or programming in general. While more versed users can apply the syntax mode of ABrox, others might prefer the GUI mode. I hope many will profit from ABrox making ABC techniques much more accessible than they would have been before.  



Deep learning methods for likelihood-free inference  15  After finishing my work on Manuscript 1, I focused my research less on applications of existing algorithms, but on the development of new ways to overcome some longstanding deficits of all ABC algorithms, especially the necessity to choose and compute summary statistics. First, I will briefly introduce the field of machine learning and neural networks. Then I present the characteristics of DeepInference, a specific algorithm from the field of deep learning. The following section will also introduce the terminology used throughout this thesis.   



Deep learning methods for likelihood-free inference  16 4 The basics of machine learning   Quantitative research methods applied in psychological research and machine learning are both forms of applied statistics with many commonalities. Yet, their focus is rather different. Researchers in the field of empirical psychology follow an explanatory approach (trying to explain behavior) by leveraging the concept of significance (Yarkoni, & Westfall, 2017). In machine learning, however, the focus lies predominantly on predictive accuracy and generalization of results. In machine learning, the goal is to build machines, i.e., algorithms, that are able to learn from data (Goodfellow, 2016). The following definition of machine learning by Mitchell (1997) will be used to introduce some important concepts used throughout this thesis: ‘A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.’ (p. 2).   There are many types of tasks T one might be interested in. The most common tasks in applied statistics are either classification (e.g., using binary logistic regression) or regression (e.g., using linear regression). The performance P of an algorithm is quantified by a loss function. A loss function quantifies how close the predictions 𝒚V of a model are to the true scores 𝒚. For instance, in classification tasks, a simple loss function would just be the accuracy, i.e., the number of times the model produces the correct output. Finally, the definition above introduces the notion of experience E. Supervised learning algorithms, the core of this thesis, experience a dataset X of n examples and n corresponding targets (𝒚) and are instructed to find a function 𝑓(𝑿,𝒘)  to map X on 𝒚. The experienced dataset together with the targets denotes the training set, the available data to find good parameters 𝒘 (e.g., regression coefficients in linear regression).   Depending on the task, each example Xi, is either a vector of predictor variables (called features from now on) or a whole matrix. Throughout this thesis, each observation (example) of X will be represented as a matrix	𝓧 where a vector is expressed as a matrix with one row. Similarly, each target, corresponding to one example, is represented as a row vector. In multiple regression analysis, for instance, 𝓧 is typically represented as a 1-dimensional matrix (row vector) containing the features and 𝒚< is a metric scalar outcome.   Many machine learning algorithms have one or more parameters that cannot be learned from data and are set by the user beforehand. Although these hyperparameters are not changed during training, an objective is still to find good values so that the training loss is 



Deep learning methods for likelihood-free inference  17 low. An example of a hyperparameter in linear regression analysis is the degree of polynomial which alters the ability of the model to fit the data. If different degrees would be evaluated on the training set, the highest degree polynomial would always be picked as the best setting since it leads to the lowest error on the training set (training error). Unfortunately, the model which performs best on the training set might not be the one that best generalizes to new data. To circumvent these problems, the performance of an algorithm is tested on a separate validation set. The validation set is usually a small fraction of examples that are removed from the training set and used to validate the performance of the algorithm during the training phase. By using a validation set, different settings of hyperparameters can be evaluated without the aforementioned problem. If the underlying relationship between X and 𝒚 is linear, a high degree polynomial performs worse on the validation set than a simpler model with no polynomial term.   Finally, in order to test how well the algorithm actually performs, it is asked to make a prediction for new examples 𝓧Z[\. These new examples with their associated targets are called the test set. Hence, besides minimizing the loss on the training set, the goal is to make the gap between training and test error as small as possible (see Goodfellow, 2016).    



Deep learning methods for likelihood-free inference  18 5 Neural networks  In this section, I will briefly explain what basic ‘Neural Networks’ are before presenting a specific type of neural network called convolutional neural network (LeCun et al., 1989). I will start with the description of one of the simplest neural network architectures, commonly known as binary logistic regression. The binary logistic regression model can be seen as a 1-layer neural network and has the form: 𝒀̂ = 𝜎(𝑿𝑾) (5) In the above expression, 𝑿 is the input layer containing n observations (rows) where each observation 𝓧 is a matrix represented as a d-dimensional row vector x = (x1, x2,…, xd)T. Each 𝓧 contains as many values (columns) as there are features. As an example, if six variables from 100 participants would be used for prediction of a dichotomous outcome, 𝑿 would be a dataset with 100 rows and six columns. W is the matrix with k columns representing the number of outputs per observation. Each column represents a vector w = (w1, w2, …, wd) of weights (regression coefficients).  In logistic regression analysis, there is only one predicted value (k = 1). Hence, W is a matrix with one column. Picking up on the example above, W would be a matrix with one column and six rows containing the regression coefficients. Each entry of  𝑨 = 𝑿𝑾 is referred to as an activation value a which is further passed through an activation function, here the logistic sigmoid function.  𝜎(𝑨) = 	 11 + exp(−𝑨) (6) The sigmoid function, applied elementwise, returns the final prediction matrix 𝒀̂ where each row is a vector of predictions 	𝒚V< = (𝑦j<H, 𝑦j<I, … , 𝑦j<F)k. Since k = 1 in the LR model, 𝒀̂ is a matrix with one column. The output of a Neural Network is also termed as the output layer.  Although the logistic regression model can be seen as a neural network with only input and output layer, the actual power of neural networks results from the possibility to add one or more intermediate stages of processing, so called hidden layers. Each hidden layer itself has a set of individual weights associated with it and a separate nonlinear activation function. The number of weight matrices W1, W2, …, Wl determines the depth of the network. The LR model from above can be extended to have more than one weight matrix W associated with it by incorporating a hidden layer. In the literature (Goodfellow, 2016; Bishop, 2011), such an 



Deep learning methods for likelihood-free inference  19 architecture is known as a multilayer perceptron or feedforward network. Equation 7 shows a 2-layer LR model:  𝒀̂ = 𝜎@ℎ(𝑨)𝑾(I)B (7) With 𝐴 = 	𝑿𝑾(𝟏) (8) where 𝑾(H) is a matrix of size {d x l} with l being the number of intermediate outputs. 𝑾(I) is a matrix of size {l x k} with k equal to 1 in the LR model.  In Equation 7, instead of directly passing the activation matrix A to the sigmoid activation as in Equation 6, A is treated as an intermediate result that gets passed through an activation function h to get an intermediate output Z =ℎ(𝑨). Z, taking the role of X in the input layer, is weighted again with weight matrix 𝑾(I)  . The result is finally forwarded to the sigmoid function to get predictions. One common choice for the activation function h of a hidden layer, besides the sigmoid function, is the rectified linear unit (ReLU):  𝑅𝑒𝐿𝑈(𝑨) = 	 u 𝑨,								if	𝑨 > 00,						otherwise (9) The size of each layer in a neural network is determined by the number of units. For the LR model, the input layer has d units where each unit represents a feature, the output layer has 1 unit. The number of units (intermediate outputs) in hidden layers can vary depending on the application. Figure 1 shows both 1-layer and 2-layer neural network as a network diagram.    
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Figure 1.  Left: Linear regression model shown as a 1-layer neural network with the identity 

function (id) as output activation function. Right: 2-layer neural network with 3 units in the 

hidden layer and nonlinear activation function h.  

 It has been proven (see e.g., Ripley, 1996), that neural networks with a linear output 

activation function and a hidden layer (such as the one presented above) are able to 

approximate continuous functions to any degree provided enough data and a large number of 

hidden units. Thus, neural networks with 2 or more layers, other than linear or logistic 

regression, can learn highly nonlinear relationships between X and . By stacking multiple 

layers on top of each other, this hierarchy of layers enables the network to learn simple 

concepts in the first layers which are then passed to later layers to learn more complex 

concepts (Goodfellow, 2016). Research concerned with the development and application of 

such neural networks with many layers stacked together, is known as deep learning 

(Aggarwal, 2018).  

 Convolutional neural networks (LeCun et al., 1989) or CNNs are a special type of 

neural network that exploit the spatial structure in the data. CNNs have first been applied to 

image data which is why I will use images throughout this section to explain how they work. 

Starting with images as an example for CNNs will also help to smoothly proceed with 

DeepInference in the next section. Recall from above that usually, when dealing with 

regression analyses, each observation  is a matrix with one row and d columns. The values 

x1i, x2i,…, xdi, only share information about the specific observation i but other than that, there 

is no connection of any kind among those values. However, one can easily think of naturally 

structured or correlated features. In a simple time-series analyses, for instance,  contains 

measurements of the same feature measured at different time intervals. Hence, there is 

presumably a strong dependency between values measured at nearby time intervals. Besides 

 



Deep learning methods for likelihood-free inference  21 time-series, in the field of computer vision, 𝓧 is an image expressed as a 3-dimensional matrix with rows representing the height (h) of the image in pixels, columns representing the width (w) in pixels and the third dimension depicting the color channels (c) red, green, and blue (rgb). Each value xwhc is a single pixel intensity value and is again, as in time-series data, strongly correlated to its neighboring pixel values. In a classic feed-forward neural network, this inherent structure in the image cannot be properly accounted for and each image would have to be flattened out into a single row matrix with d columns with d equal to ℎ ∗ 𝑤 ∗ 𝑐. In addition to the fact that CNNs take the grid-like structure of the input into account and can process the data as is, they often use far less weights than their feed-forward counterparts.   CNNs make use of the grid-like structure in the data by applying a mathematical operation called convolution. A convolution operation in CNN context can be described as a dot product between two matrices returning a scalar value. In CNNs, a volume (e.g., an image) is separated into small parts (windows) of a certain size, e.g., 5 x 5 x 3 pixels. Starting from the upper left corner of the image, a filter matrix of the same size (5 x 5 x 3) is convoluted with the corresponding pixel values, i.e., each element of the filter matrix is multiplied with the respective pixel value and all 5 x 5 x 3 = 75 values are summed up. After the first convolution, the filter matrix is shifted to the right by some number of pixels and is applied again to the pixel values in this window. Broadly speaking, a filter matrix can be seen as a feature extractor or object detector; if applied (via convolution operation) at all regions of the image, the resulting values, also denoted as a feature map, indicate the presence or absence of an object in the respective regions of the image. It has to be emphasized that the entries (weights) in the filter matrix, instead of having to manually set them, are learned during the training phase. In other words, the CNN learns to detect objects properties that are relevant for a good performance on the task (e.g., classification).        



Deep learning methods for likelihood-free inference  22  In every practical application of CNNs, the researcher chooses to apply not only one but many such filter matrices to the image where the number of filter matrices depends on the specific application. The dimension of the volume resulting from all filter matrices applied to all regions in the image is reduced in width and height1 and has as many channels (depth) as there are filter matrices. The convolution operation is repeated with the new volume with a new window size and new filter matrices.   Similar to feed-forward neural networks, many such convolutional layers are stacked together with nonlinear activation functions in between each layer pair. After each convolutional layer, the spatial dimension decreases depending on the chosen size of the windows and the amount of shifting, until there is only a volume left of size 1 x 1 x d where d is the number of filter matrices applied to the previous volume. This 3-dimensional matrix, in a last step, is flattened out into a d-dimensional vector which can be thought of as a learned feature vector containing all necessary information about the image in a compressed form. Finally, this vector can be used as input to a classic feed-forward neural network as presented in previous sections.2   
                                                1 The output width (𝑤Z[\) and height (ℎZ[\) depend on the size of the filter matrix (𝑓) and the amount of shifting (𝑠) and can be computed via the following formula:  𝑤Z[\ = �𝑤 − 𝑓𝑠 � + 1 ℎZ[\ = �ℎ − 𝑓𝑠 � + 1 Where a value of 𝑠 = 1 means to shift the window one pixel to the right. If the right border of the image has been reached, the window is then shifted down by one pixel. 2 Note that the both processes, computing the summary-statistics vector and training a feed-forward network with it can be run in one model in an end-to-end fashion. It is not necessary to train another model with the summary-statistics vector.  



Deep learning methods for likelihood-free inference  23 6 Towards end-to-end likelihood free inference (Manuscript 2)  For all simulator-based models, i.e., models for which data can easily be simulated from, it is straightforward to frame the problem of approximate Bayesian computation as a supervised learning problem. Within the framework of supervised learning, there are two potential advantages compared to the simple ABC rejection algorithm. If a satisfactory mapping from X to 𝒚 via function 𝑓(𝑿,𝑾) can be found, then there is no need to decide upon which distance metric 𝑑(∙) or threshold value 𝜖 to choose anymore. As a downside, however, supervised learning algorithms are currently not able to return a full (posterior) distribution (see Discussion for an approach to overcome this problem). Rather, only the first two posterior moments (mean and variance) are estimated.   In order to use neural networks or other supervised learning algorithms, a dataset X of n examples and n corresponding targets (𝒚) has to be constructed. Each example (or observation) in X is a simulated dataset 𝓧 expressed as a 2-dimensional matrix consisting of m rows (trials) and d columns3 and 𝒚 is a vector containing the parameters with which the data have been simulated from (𝜃H, 𝜃H, … , 𝜃F). In the framework of ABC, the training set is called reference table and is constructed via Algorithm 4: Algorithm 4. Generation of the reference table. for 𝑖 ← 1 to 𝑁     Sample 𝜽(<)	~	𝑝(·)     Simulate 𝒙2(<)	~		𝑞@· �𝜽(<)B	     Compute 𝜂@𝒙2(<)B     Store the pair @𝜂@𝒙2(<)B, 	𝜽(<)B in row 𝑖 of the reference table end for  Note that in Algorithm 4, the simulated data, prior to storage, are passed through the pre-processing function 𝜂(∙) which could either be a function to compute summary statistics (predefined features) or the identity function if no summary-statistics should be computed.                                                  3 In the case of summary statistics, each observation in X is a d-dimensional vector where each element of the vector is a specific summary statistic.   



Deep learning methods for likelihood-free inference  24  One obvious way to represent a simulated dataset is via its summary statistics. Summary statistics are useful in two ways: they simplify the data and make the algorithm independent of the actual trial size m. Marin, Raynal, Pudlo, Ribatet, and Robert (2017) applied a random forest (Breiman, 2001) to learn the mapping from a d-dimensional summary statistics vector x = (x1, x2,…, xd), with d equal to the number of summary statistics computed, to estimate the posterior mean and posterior variance of 𝜽 (see details in Manuscript 2). Although their attempt was promising, it nonetheless suffered from two major downsides. First, they had to construct useful and sufficient summary statistics before applying the algorithm. Secondly, a separate random forest for each 𝜃< in 𝜽 had to be trained. DeepInference, introduced shortly, overcomes both problems.  As a second approach, Jiang, Wu, Zheng, and Wong (2015) used a feed-forward neural network on the raw data to predict the posterior mean of 𝜽. After the network was trained, they used the predictions of the network as summary statistics and applied the usual ABC rejection algorithm by comparing observed summary statistics (prediction of the network on the observed data) and simulated summary statistics (predictions for all observations in the reference table). Although Jiang and colleagues did not use any prespecified summary statistics, their approach eventually suffered from having to choose a threshold 𝜖. Also, in contrast to Marin et al. (2017), their neural network could not be reused since it had to be trained anew if the trial size of the observed data changed.   DeepInference is a convolutional neural network that takes the raw simulated data as input, learns a condensed and informative representation of the raw data internally (see the notion of learned feature vector above), and outputs a prediction of the first two posterior moments of the parameter vector 𝜽. I will demonstrate the features of DeepInference that distinguish it from all previous attempts using a multiple regression model as an example case. Given an observed dataset suited for multiple regression analysis with m rows and d columns (with d-1 predictor variables and one outcome variable), the goal is to predict the parameter vector 𝜽 of the d-1 regression coefficients4. The reference table is constructed as described in Algorithm 4 where each simulated dataset contains as many rows as the observed dataset. Taking the feed-forward neural network approach of Jiang et al. (2015) would not be practical in such a scenario since flattening out each simulated dataset would result in a d x m-dimensional vector of features. Imagine a multiple regression dataset with                                                 4 In this example, the intercept term is neglected. 
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200 participants (rows), 10 predictor variables and one outcome (10 + 1 columns), the neural 

network had to start with 200 x 11 = 2200 features. Setting the number of units in the first 

hidden layer to 64, this already would imply a weight matrix of 2200 * 64 = 140800 values 

that had to be learned during the training phase5.  

 

Figure 2. A 6-layer DeepInference neural network architecture illustrated for a multiple 

regression with two predictor variables. A multivariate dataset with n rows and 3 columns 

(x1, x2, y) is reshaped into a 3-dimensional matrix of dimensions (1 x n x 3 (I)). 64 filters are 

then applied with a stride of 1 resulting in a 1 x n x 64 volume (II). The next convolutional 

layer applied 64 filters of size 3 with a stride of 2 resulting in a 1 x m x 64 volume (III) with m 

equal to (n-3)/2 + 1. Three layers with 128 filters of size 3 with stride 2 are added 

consecutively (IV). Finally, for each of the 128 filters, an average is computed (GAP = global 

average pooling) so that 128 values are left (V). Given these 128 values, the network predicts 

the two regression coefficients and the residual variance together with their posterior 

variances.  

 One of the major insights that allows DeepInference to process the raw data is to make 

use of the inherent structure in the data. In any multivariate dataset without any time-

dependencies, each row is independent of all other rows (independent and identically 

distributed). However, the values of each row share some common information that could be 

leveraged. In the multiple regression scenario, for instance, the d-1 instances of the predictor 

variables are somehow linked to the instance of the outcome variable and reveal a tiny bit of 

information about the relationship between predictor variables and outcome. The 

convolutional network applies multiple filters of size 1 x d to each row of the simulated 

                                                
5 Of course, taking such an approach is still feasible given a large enough reference table.  



Deep learning methods for likelihood-free inference  26 datasets. Since each filter has only d weights that have to be learned, the number of weights to be learned is reduced tremendously (if 64 filters are used as in the feed-forward neural network above, this results in only 64 x 12 = 768 weights6).   Whereas a classic neural network requires input of the same shape, thus making the network dependent on a specific trial size, in DeepInference, I used a technique called global average pooling. Instead of reducing the spatial dimension in each convolutional layer until only a volume of size 1 x 1 x q is left (see description of CNNs above), the average over each feature map is taken as shown in step (IV) to (V) in Figure 2, irrespective of the number of elements in the feature map7. DeepInference is, to the best of my knowledge, the first algorithm for approximate Bayesian computation that works with variable input sizes without the need to figure out summary statistics. Hence, DeepInference, after training on data from a specific model configuration, can be reused by other researchers.   Another strength of DeepInference is the use of a specific loss function. In linear regression, the true scores 𝒚 are assumed to be conditionally normally distributed with a constant variance term: 𝑝(𝒚|𝑿,𝑾) = 𝒩(𝑓(𝑿,𝑾), 𝜎I) (10)  where 𝑓(𝑿,𝑾) are the predictions of the neural network8. In maximum likelihood estimation, 𝑾 is chosen to minimize the product of densities of each value yi in 𝒚. It can be shown (see e.g., Bishop, 2011), that by taking the negative logarithm of the likelihood function, the resulting loss function becomes the common mean squared error loss: ℒ(𝑾) = 	 1𝑛��𝑦j(<) −	𝑦(<)�IIZ<�H (11)  Whereas the mean squared error loss function relies on the assumption of homoscedasticity (constant variance), the heteroscedastic loss function (Kendall & Gall, 2017; Nix & Weigend, 1994) stretches this assumption.                                                  6 Each filter has an additional bias term, hence (64 x 11) + 64 = 64 x 12. 7 CNNs with global pooling are sometimes also referred to as fully convolutional networks (FCN). 8 Although 𝑓(𝑿,𝑾) seems to contain only one weight matrix 𝑾, 𝑓(𝑿,𝑾) can still be a neural network with several layers where the weight matrices have been concatenated together into 𝑾. 



Deep learning methods for likelihood-free inference  27 As the mean squared error loss is based on homoscedasticity, so does the heteroscedastic follow from the assumption of heteroscedasticity. In heteroscedastic regression, each data point is assumed to be normally distributed with an individual variance term:  𝑝(𝒚|𝑿,𝑾) = 𝒩@𝑓(𝑿,𝑾), 𝜎I(𝑿)B (12)  Taking the negative logarithm of the product of densities as in Equation 11, the result becomes the heteroscedastic loss: ℒ(𝑾) = 1𝑛	��𝒚V(<) −	𝒚(<)�II2𝝈I(𝑿(𝒊))	 	Z<�H + 12 log𝝈I@𝑿(𝒊)B (13)  By using the loss above, the neural network is required to output two vectors 𝜽̂ and 𝝈V(𝜽) each of length k where k is the number of parameters of interest. Note that 𝝈I is not estimated in a supervised fashion, i.e., the variances of each parameter are not available, but inferred implicitly via the loss above. If the deviation of 𝑦j< and 𝑦< is large, the variance term 𝜎<I, in order for the overall loss to stay low, has to be increased. Notice that the network could learn to set the variance term in the denominator to infinity which would imply an infinitely small loss. This undesirable behavior is counteracted via the term HI log 𝝈I(𝑿(𝒊))	 which prevents the estimated variance term to grow to infinity.   In Manuscript 2, we applied DeepInference to two toy examples, namely a bivariate normal model and a multiple regression model. These two examples, although equipped with a likelihood function, were well suited to test how accurately we could approximate both posterior mean and posterior variance of each parameter. For both models, a closed-form posterior distribution of each parameter was available which was used to assess the performance of the predictions. We could show (see details in Manuscript 2) that the neural network, when evaluated on the test set of each of the two models, indeed made accurate predictions for both posterior mean and posterior variance.   As a last and more realistic scenario, we chose to estimate parameters of the leaky competing accumulator model (LCA) for which no likelihood-function is available (Usher & McClelland, 2001). The LCA model belongs to the class of sequential sampling models and can be seen, just as the Lévy flight model, as an extension of the classic DDM. Usher and 



Deep learning methods for likelihood-free inference  28 McClelland (2001) draw attention to the fact that in the classic DDM, information is accumulated without decay or loss thus leading to perfect discrimination between two differing stimuli given enough time. They address this assumption and argue that there might be scenarios in which further sampling of information does not help in making better or more accurate decisions. In order to account for this fact, Usher and McClelland (2001) introduce a leakage parameter (𝜅) with which the amount of loss can be captured. Moreover, since the LCA model allows for one accumulator per choice alternative (other than the relative evidence of one alternative with respect to another), it can be applied to experimental designs with more than two choice alternatives (see details in Manuscript 2). In a previous attempt to recover the parameters of the LCA model, Miletić, Turner, Forstmann, and van Maanen (2017) used a technique called Probability Density approximation, a state-of-the-art technique for likelihood-free inference (Turner & Sederberg, 2014). We demonstrated in the manuscript that DeepInference outperformed the Probability Density approximation method in recovering the parameters of the LCA model.  Having seen the potential of our approach for the LCA model, we wanted to apply it on two other prominent sequential sampling models, namely the drift diffusion model and the Lévy flight model. Although the DDM is provided with a likelihood function, we were still interested in a comparison of maximum likelihood estimation and our approach as explained shortly.    



Deep learning methods for likelihood-free inference  29 7 Learning the Likelihood (Manuscript 3)  In complex cognitive models such as the DDM, no analytical solution for the maximum likelihood estimates of the parameters is available. As a consequence, multidimensional search procedures (ML search) have to be used (see e.g., the SIMPLEX-search; Nelder & Mead, 1965). ML search procedures for maximum likelihood estimation are not only time-consuming but also not guaranteed to converge to a global minimum (as they may get stuck in local minima). Moreover, the precision with which the likelihood function is evaluated is sometimes not accurate enough which in turn leads to wrong updates of the parameters. Lastly, every algorithm based on a complex likelihood function is very sensitive to unusual data points (outliers) (see details in Manuscript 3).  From this point of view, DeepInference thus becomes an interesting alternative even for models where a likelihood function is available as it completely bypasses the evaluation of the likelihood. For the stated difficulties associated with ML search, we were first interested in a comparison of the DDM and the deep learning approach in terms of parameter recovery. Furthermore, we tested the sensitivity of both ML search and DeepInference in the presence contaminants, i.e. unusual responses not emerging from a diffusion process (Lerche, Voss, & Nagler, 2017). The same analyses were repeated for the Lévy Flight model. In the next two sections, I will briefly present the two sequential sampling models and the main findings of the simulation studies, starting with the DDM and continuing with the Lévy Flight model.   The drift diffusion model is a model for the analysis of response time data from binary decision tasks. The DDM assumes that information during a binary decision accumulates continuously according to a Wiener diffusion process until one of two thresholds (corresponding to the choice of one of the two alternatives) is reached (e.g., Lerche & Voss, 2017; Voss, Nagler, & Lerche, 2013). Instead of a constant increment of information, the DDM treats the information accumulation process probabilistically by adding Gaussian noise, thus allowing for different response times and decisions across trials.  The classical drift diffusion model consists of four parameters, namely drift rate (𝜈), threshold separation (𝑎), starting point (𝑧), and non-decision time (𝑡T), where each parameter reflects a different cognitive process underlying the decision. Hence, the DDM, other than a simple comparison of mean response times, helps to determine what psychological process leads to a fast or slow response by looking at its respective parameters. The parameter 𝑎 (threshold separation) for instance can be interpreted as the amount of information necessary to make a decision (e.g., Voss, Nagler, & Lerche, 2013). Accordingly, a person for which a high value of 𝑎 has been 



Deep learning methods for likelihood-free inference  30 estimated can be seen as being rather conservative (and vice versa). The full diffusion model has three additional intertrial variability parameters for drift rate (𝑠�), starting point (𝑠�, e.g., Ratcliff & Rouder, 1998), and non-decision time (𝑠�T, Ratcliff & Tuerlinckx, 2002).   We decided to train DeepInference on simulated data from the full diffusion model with two different stimulus types. For each stimulus type, all parameters but the drift rate were held constant. In summary, the final model had a total of eight parameters. Since the goal was to make DeepInference as reusable as possible, we decided to train the network only once on a simulated reference table containing both clean and contaminated data and reuse it to compare the performance on three different test sets (0%, 10%, or 100% contaminated datasets9. In order to make it learn the most robust mapping from data to parameters, we followed the approach used by Lerche, Voss, and Nagler (2017) and inserted two different types of contaminants to the training data. For each simulated dataset, we randomly chose 0% to 10% of the trials to be fast guesses resulting in either correct or false response. In addition, for 0% to 10% of the trials, we simulated distractions of participants (slow contaminants) by making the respective response times longer without changing the corresponding response types.   Moreover, as another important and new aspect of the training procedure, we explicitly focused on the ability of DeepInference to handle datasets of variable size (different trial sizes). We wanted to examine if the network performs well on a range of different trial-sizes and get the best performance regardless of the respective trial size. Previously, the network was trained on a reference table of simulated datasets with equal trial sizes. In Manuscript 3, however, we changed the training of the network by providing the architecture with different trial sizes, ranging from 100 trials (50 per stimulus type/condition) to 1000 trials (500 per stimulus type/condition) during training10. With such an approach, the network was forced to find global patterns in the datasets without the possibility to focus on one specific trial size.  We compared the ML search with DeepInference on a test set with 0%, 10% and 100% contaminated datasets. For each predicted/estimated parameter, we looked at the root mean square error (RMSE), the Pearson correlation coefficient of predicted and true                                                 9 From the perspective of making use of a trained model, training the network on both clean and contaminated data is not advisable since users would have to know whether their data are contaminated or not.  10During training, we randomly picked a trial size (ts) between 100 and 1000. We then randomly picked ts/2 trials from the first condition and also from the second condition so that the network processed a dataset with varying number of trials but a balanced number of trials within each condition.  



Deep learning methods for likelihood-free inference  31 parameter values, and the variance explained by a line from the identity function. For clean data, results revealed that both approaches were equally good on recovering the parameters. For contaminated data though (both 10% and 100%), DeepInference showed up to be superior and more robust than multidimensional parameter search.   The Lévy-Flight model (see Voss et al., 2019) forgoes the assumption that the noise in accumulating information is distributed according to a normal distribution. Rather, the normal distribution is replaced with an alpha-stable distribution that is more flexible in that it can account for varying decision processes among participants. The additional parameter 𝛼 controls the width of the noise distribution and has a theoretical range from 0 to 2. The commonly known cauchy distribution (𝛼 = 1) and the normal distribution (𝛼 = 2) are special cases of the alpha-stable distribution. Due to the possibility to make the error distribution more heavy-tailed (values of 𝛼 close to 1) than in the usual diffusion model, the Lévy-Flight model allows for random jumps in the decision process. Voss et al. (2019) showed that relaxing the assumption of normal noise and hence allowing for random jumps considerably improved the goodness-of-fit to experimental data. As promising as the Lévy-Flight model has been shown to be, as cumbersome it is to estimate its parameters since there is no likelihood function available. In Manuscript 3, as a comparison with DeepInference, we used an approach introduced by Heathcote, Brown, & Mewhort (2002) (see details in Manuscript 3) which still enables parameter estimation but turns out to be enormously computationally expensive and therefore rather inpratical for most purposes.  The procedure to compare both estimation procedures was almost identical to the drift diffusion model comparison, except that we simulated data without the inter-trial variability parameters. Accordingly, the Lévy-Flight model was a 6-parameter model with two drift rates (𝜈H, 𝜈I), threshold separation (𝑎), starting point (𝑧), non-decision time (𝑡T), and the parameter from the alpha-stable distribution (𝛼). Results indicated two important findings. First, as in the drift diffusion model, the usual parameters were equally well recovered for clean data but much better recovered by DeepInference when the data were contaminated. Secondly, the main parameter of interest, 𝛼, was estimated with higher precision by DeepInference than when using the ML search by Heathcote et al. (2002).    



Deep learning methods for likelihood-free inference  32 8 Discussion  Whenever researchers adopt existing mathematical models to better account for their experimental data, it might become difficult to find an appropriate likelihood function that accounts for the changes of the respective model. Oftentimes, increased modeling complexity is accompanied with the loss of the likelihood function and sometimes models can only be described as simulator-based models in the first place. Parameter inference for such complex likelihood-free cognitive models is an important area of research and several algorithms have been developed in the past with the goal to accurately estimate the parameters of models without a likelihood function. Although parameter inference is not a prerequisite for the development of new models, it is nonetheless crucial if these new models and their associated theoretical considerations should be tested in a quantitative manner. Equally important is the ability to directly compare novel models with existing ones. If a new modification, no matter how theoretically intriguing it might be, describes existing data worse in most cases, it cannot be seen as a real advancement. Model comparison/hypothesis testing thus is a vital aspect to assess and evaluate innovative new advances.   In this thesis, I was first focused on model comparison and showed how existing algorithms for likelihood-free inference can be applied to hypothesis testing using an approximation of the Bayes factor. While the Bayes factor for common statistical tests can easily be computed with existing software, this is not the case for more complex models. For instance, computing Bayes factors is not as straightforward when users want to change the prespecified prior distributions over the parameters or when one is interested in running non-standard tests. In addition, users are often only allowed to compare nested models (hypotheses) whereas ABC methods can naturally be applied to the comparison to both nested and non-nested models. With ABrox, an open-source graphical user-interface I developed, users are equipped with a flexible toolbox to conduct approximate Bayesian hypothesis testing and compute ABC Bayes factors with as less effort as possible.   Previous attempts on likelihood-free inference made more or less use of the fact that most models allow for easy simulation of data given specific parameter values. Assuming such simulator-based models, many algorithms are then based on the idea of comparing simulated datasets to the actual dataset of interest for which the parameters should be estimated. If the parameter values chosen for a specific simulation lead to data similar to the observed data, this information is used as a proxy for a high likelihood of these parameters. To address the question of how to compare simulations with observed data, many algorithms 



Deep learning methods for likelihood-free inference  33 use summary statistics of both observed and simulated data for the final comparison to reduce the dimensionality of the raw data. Summary statistics are useful and necessary in most cases since easy metrics (such as Euclidean distance) can be used to examine their similarity. Unfortunately, as a downside, relying on summary statistics prevents users to investigate models for which it is not straightforward or even impossible to compute summary statistics containing the relevant information in the data. Moreover, all algorithms for likelihood-free inference we are aware of, are bound to a particular observed dataset. In other words, for every dataset one is interested in, the algorithm of choice has to be run. Since many algorithms are computationally extremely intensive and require a long time to finish, the use of these algorithms drastically constrains their applicability.   The main contribution of this thesis is the improvement of existing techniques to estimate parameters for likelihood-free models using deep learning. We showed that a convolutional neural network with global average pooling combined with the heteroscedastic loss function, which we termed DeepInference, overcomes the limitations of having to compute summary statistics and being bound to a particular observed dataset. A convolutional neural network with global average pooling is able to process datasets of different size (variable number of trials). Thus, only one network needs to be trained for a specific cognitive model design, e.g., a DDM with upper and lower threshold, which can then be reused for other datasets with different trials sizes. Besides the choice of the neural network architecture, the heteroscedastic loss function was used to not only estimate the posterior mean of each parameter but also its posterior variance.   We first tested first DeepInference on two toy examples for which the posterior distribution of each parameter can be computed analytically.  For several simulated datasets, we then calculated both the true mean and variance of the posterior distribution of each parameter and compared it to the predicted posterior means and variances of DeepInference. Results suggested that our method could approximate both mean and variance of the posterior distribution to a high degree. After this first successful application, we applied it to three models from the family of sequential sampling models, namely the Leaky competing accumulator model (Manuscript 2), the drift diffusion model (Manuscript 3), and the Lévy flight model (Manuscript 3). For all three models, parameters could be recovered as good as with existing state-of-the art techniques and under specific conditions (contaminanted data) even better.  In summary, DeepInference is the first end-to-end ABC algorithm, taking raw 



Deep learning methods for likelihood-free inference  34 data as input and predicting the first two posterior moments of the parameters’ posterior distribution.    In the next sections, I will discuss a few limitations of DeepInference as well as some open questions for future research.  8.1 Model comparison  Throughout this thesis (Manuscript 2 and 3), the deep learning model was only applied to parameter estimation. Both in Manuscript 2, where we introduced DeepInference, and in Manuscript 3, where we applied the model to estimate the parameters of two prominent sequential sampling models, the aim was to estimate the first two posterior moments of the posterior distribution of parameters. However, the task for the DeepInference architecture could easily be framed as a classification task. Whereas previously, the model was supervised by providing it with the true parameter estimates for training, in model classification, the model is, for each 𝓧, provided with the corresponding model (index) from which the data were simulated from. The neural network then tries to find patterns in the simulated datasets of each model in order to distinguish them. To implement this, the architecture essentially needs to be changed in three ways. First, the linear (identity) activation function would be replaced with a so-called softmax activation function (see Equation 14 below). The softmax activation function is the extension of a sigmoid function for a comparison of more than two models. The network produces an output vector of k real numbers with k equal to the number of models being compared. This vector is then passed through the softmax function so that the sum of the resulting elements equals to 1. Afterwards, each final element can be treated as a probability that the respective model generated the data. A prediction is made by simply picking the maximum value (probability). 𝜎(𝑨)� =	 exp@𝑨�B∑ exp(𝑨F)�F�H (14)   Secondly, instead of storing the true parameter values for each 𝓧 in the reference table, a model index (or one-hot encoded vector of model indices) has to be recorded. Finally, the heteroscedastic loss function should be replaced with another loss function accounting for the fact that one is interested in classification accuracy rather than regression. The simplest choice of a loss function is the cross-entropy loss function (see e.g., Bishop, 2011):  



Deep learning methods for likelihood-free inference  35 ℒ(𝑾) = −��𝑦ZF ln(𝑦jZF)�F�HQZ�H (15)  where N is the total number of observations in the training set and K is the total number of models being compared. In the cross-entropy loss, the loss is increased if a prediction 𝑦jZF  is far off of the true value 𝑦ZF .   One important thing to notice is that model comparison, conducted in such a way, is potentially applicable for any models, as long as data from these models can be simulated in a reasonable amount of time. However, the final decision of such a neural network (from which of the K models the data come from) does not take into account the parsimony of the models. The only source of information it gets to differentiate among the models is the resulting datasets. Put differently, if a complex model is compared to a parsimonious one, and for a particular dataset the network predicts a probability of the dataset to belong to the latter of 50%, we cannot state whether the dataset is equally likely under both models or rather the network itself is not accurate enough (e.g., has not been trained long enough). Theoretically though, assuming a perfect network, the user could assign the datasets for which the network was indecisive (e.g., predicted probabilities between 0.45 and 0.55), to the simplest model.  8.2 Fully-Bayesian approach  In this thesis, I introduced DeepInference as an algorithm that comes a step closer to the goal of real end-to-end likelihood-free inference. Most importantly, I showed how the algorithm achieves state-of-the art results with respect to parameter recovery without the need to compute summary statistics. Nonetheless, DeepInference is only ‘partly-bayesian’ in the sense that it outputs only the first two posterior moments of a parameter’s posterior distribution instead of the whole distribution. Fortunately, there is a promising approach that might have the potential to overcome even this shortcoming in the near future, namely the conditional variational autoencoder (cVAE) (e.g., Kingma & Welling, 2013; Doersch, 2016; Sohn, Lee, & Yan, 2015). In the next section, I will describe on a high-level what a cVAE is and how it might be adapted to generate whole posterior distributions of parameters.   Before explaining cVAE, I will first describe what an autoencoder is. An autoencoder is a neural network that is trained to reproduce its input. In other words, instead of learning a mapping from X on 𝒚, it learns a mapping from X to X. However, instead of the rather simple task to produce as output its own input, the autoencoder is used as a dimensionality reduction 
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technique. The autoencoder consists of two neural networks that are trained end-to-end, the 

encoder network and the decoder network (see Figure 3). The encoder network takes the input 

and reduces its dimensionality to a certain degree. It finally ‘outputs’ a vector containing a 

dense representation of the raw input. The decoder network then takes this lower-dimensional 

vector and tries to reconstruct the original raw input using only this condensed version of the 

input. Moreover, the autoencoder is forced to put as much information in this dense 

representation (summary vector) as possible so that a minimum of information is lost. If the 

bottleneck layer, as it is sometimes referred to, is too small, it might not be possible to 

reproduce the input adequately. If, on the other hand, the input is not compressed enough, the 

resulting summary-vector might not be interpretable in any way. Consider the scenario of an 

autoencoder applied to images of faces where the summary vector is allowed to contain only 

10 elements (attributes). The autoencoder learns to compress an image of a face into 10 

attributes that might or might not suffice to reconstruct the original image. Interestingly, after 

training, each element of the vector might be interpretable as an attribute of a face, e.g., smile, 

gender, skin color, etc.  

 

 

Figure 3. An autoencoder taking as input a parameter vector  consisting of five parameters. 

 is passed forward to the encoder network which compresses the size to three values. The 

latent representation vector (grey box), consisting of three values, is passed over to the 

decoder network which tries to reconstruct . 

 

 With the variational autoencoder (VAE), each possible attribute does not have to be 

represented using only a single value, but is rather described as a probability distribution. The 

VAE (see Figure 4) works similarly to the autoencoder but instead of generating the internal 
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representation (summary vector) directly, the encoder network only outputs means and 

variances. Each combination of mean and variance is then used to generate each element of 

the summary vector by sampling from a normal distribution. Thus, every time the same image 

is passed to the encoder, it is represented slightly different, depending on the size of the 

variances. The decoder network is asked to reconstruct the same original input using these 

different representations. The total loss in the VAE consists of two terms. The first term is the 

reconstruction loss and is decreased the more similar the reconstructed input is to the original 

input. The second term is the Kullback-Leibler divergence which enforces the latent 

distribution spanned by each mean and variance term to be unit Gaussian (standard normally 

distributed)11. The VAE, other than the simple autoencoder, can be used a generative model. 

In order to generate (sometimes also referred to as hallucinate) a new input, one generates the 

latent representation (summary vector) by drawing values from a standard normal 

distribution. This constructed vector is then passed through the decoder network to generate 

an output.  

 

 

Figure 4. A variational autoencoder taking as input a parameter vector  consisting of five 

parameters.  is passed forward to the encoder network which compresses the size to three 

values. The latent representation vector is generated by sampling each latent attribute from a 

normal distribution with the respective  and . The latent representation, consisting of three 

samples from different normal distributions is passed over to the decoder network which tries 

to reconstruct .  

 The word conditional in CVAE refers to the ability to generate data conditional on 

some attribute. For instance, one could train a VAE by providing both encoder and decoder 

                                                
11 Forcing the latent representation to be standard normally distributed induces each attribute to be uncorrelated 

(independent) to the others, thus making it more interpretable.  



Deep learning methods for likelihood-free inference  38 network with an additional label of the image (e.g., 0 = if the face is from a male person, 1 = if the face is from a female person). After training, it becomes possible to generate faces conditional on the given labels (e.g., generate only male faces).   We could apply such a cVAE to the field of likelihood-free inference in the following manner. A reference table is constructed in the same way as for DeepInference. However, instead of choosing 𝓧 to be a simulated dataset, 𝓧 becomes the parameter vector 𝜽, previously used as the target. Using a simple feed-forward neural network, the task for the variational autoencoder is to compress the parameter vector 𝜽  and reconstruct it. In addition, however, the idea is to condition the process on a particular simulated dataset. One obvious difficulty with such a conditioning is the representation of a dataset. Instead of conditioning on a simple vector with labels (see example above), it is not clear how to condition on a whole matrix. One possible solution would be to apply DeepInference as a way to compress the complexity into a learned feature vector (see section on Neural Networks) which could then be used for the conditioning. The hope in using a CVAE for likelihood-free inference is to generate multiple hallucinated parameter vectors 𝜽 which can be treated as samples from the approximate posterior distribution of 𝑝(𝜽|𝒙,𝑀). It has to be emphasized though that at the time of writing, there is no mathematical justification for why such generated samples might approximate the posterior distribution but the described procedure seems nevertheless to be a promising future perspective worth studying.  8.3 Neural networks as ‘black-boxes’  Modern machine learning algorithms are often assumed to be ‘black boxes’ meaning that there is no way to figure out how the algorithm actually learns (see e.g., Alain & Bengio, 2016). Although deep learning models were tremendously successful in recent years and reached human-level performance or even exceeded it in quite a few domains such as image classification, speech understanding or sentiment analysis, they still lack in transparency in that it is tedious and often impossible to gain information about their inner workings (see Samek, Wiegand, & Müller, 2017). This major drawback, the inability to fully interpret and explain how exactly a model transforms its input and arrives at a decision in the end, has gained a lot of attention in recent years and can be seen as one of the current hot-topics in deep learning research. If researchers would be able to enhance their theoretical understanding of the learning processes of deep neural networks, networks would not only be easier to improve but also important insights about how the human brain works might be derived (Lei, Chen, & Zhao, 2018). 



Deep learning methods for likelihood-free inference  39  CNNs applied to images constitute an exception in that manner since it is easy to visualize what such a CNN learned by looking at the learned filters. Commonly, researchers make a CNN more transparent by looking at activation patterns, i.e., the type of patterns that maximally activate the filters used (lead to the largest dot-product of filter and input). By looking at the resulting patterns of each filter, it has been demonstrated (see e.g. Zeiler & Fergus; 2013) that early filters seem to learn low-level features such as corners and edges. Later filters build up on those low-level features and learn increasingly abstract features. If applied to images of faces, such later filters are activated for instance by high-level features of faces such as eyes, mouths, teeth, etc.   Although DeepInference is a CNN, understanding its internal mechanism is complicated. The approach described above is not suitable because activations prototypical for specific filters cannot be represented as images. While we as humans are used to looking at images and making sense of them, inspecting activations inferred from multivariate datasets is a nontrivial task or perhaps even a scientific deadlock. However, even if a thorough review of the current research about explainable machine learning is important it has to be emphasized that we exclusively used DeepInference as a way to estimate psychologically meaningful and interpretable parameters from cognitive models.    



Deep learning methods for likelihood-free inference  40 9 Summary and Conclusions  Machine learning, and more specifically deep learning, is an exciting field of research which has grown rapidly in recent years and has already led to major scientific contributions in various disciplines, including medicine, biology and physics (Jordan, & Mitchell, 2015). However, in Psychology, machine learning tools have not yet gained as much attention as in other disciplines so far (see e.g. Yarkoni, & Westfall, 2017). In this thesis, I combined modern psychological research and machine learning to improve the estimation of parameters from interesting sequential sampling models. Cognitive models with psychologically meaningful parameters are important tools to uncover human behavior. Nonetheless, reliably estimating these parameters for highly complex models is often a non-trivial task.   I think that in the next years, models will become even more sophisticated to account for the many characteristics and subtleties of human behavior. Keeping up with the increasing refinement of theories and mathematical models respectively, i.e., being able to accurately estimate the model’s parameters, will be a crucial aspect of future psychological research. While it is commonly straightforward to generate data based on specific parameter values, the reverse problem, namely estimating parameters given some data is hard. Neural networks, an algorithm from the field of deep learning, are known to be universal function approximators and offer a way to learn a function for this reverse problem.   I would like to conclude this thesis by emphasizing the great potential that lies in joining both psychological research and deep learning methods whenever data simulation is relatively easy and cheap. Although I only covered a few specific cognitive models in this thesis, the presented algorithm is generalizable to any multivariate dataset and therefore a large amount of other interesting psychological models. At the time of writing, most popular models in psychological research are provided with a likelihood function, which one might think drastically reduces the areas of application of the presented techniques. Yet, as shown in this thesis, DeepInference can be an interesting alternative way to estimate parameters even in domains where a likelihood function exists.  
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Abstract

We give an overview of the basic principles of approximate Bayesian computation (ABC), a

class of stochastic methods that enable flexible and likelihood-free model comparison and

parameter estimation. Our new open-source software called ABrox is used to illustrate ABC

for model comparison on two prominent statistical tests, the two-sample t-test and the

Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian

hypothesis testing by computing an approximate Bayes factor for two multinomial process-

ing tree models. Last but not least, throughout the paper, we introduce ABrox using the

accompanied graphical user interface.

Introduction

Approximate Bayesian computation (ABC) is a computational method founded in Bayesian

statistics. ABC enables parameter estimation as well as model comparison when the probability

of observed data under the model of consideration is unknown, or put differently, when the

likelihood function is not available or computationally intractable. The idea of ABC is to

bypass the computation of the likelihood by comparing model predictions with observed data,

thus taking a simulation-based approach.

In psychological research, the classical null hypothesis significance testing (NHST) based

on the p-value falls more and more under disrepute due to its many weaknesses [1–6]. One

main criticism among others, especially stressed by Wagenmakers and colleagues [7], is the

fact that p-values only depend on what is expected under the null hypothesis (H0) but not

what is expected under the alternative hypothesis (H1). Hence, a small p-value only states that

the observed data is unlikely underH0 but it might be even more unlikely underH1. Further-

more, the p-value is often misinterpreted (e.g. as the probability of the null hypthesis being

true) [8]. As a solution, many authors suggest the use of Bayes factors as they allow to quantify

evidence for bothH1 andH0 and can be easily interpreted as the relative evidence of one

hypothesis with respect to another hypothesis [1, 2, 4, 7, 8].

Despite the advantages of Bayes factors, a shortcoming is that their computation is often

hard or even impossible which in turn narrows their applicability [9]. Wagenmakers and col-

leagues [5] address this aspect by stating:
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“In order to profit from the practical advantages that Bayesian parameter estimation and

Bayes factor hypothesis tests have to offer it is vital that the procedures of interest can be

executed in accessible, user-friendly software package”

(p. 4).

They provide such a software package, called JASP [10], in order to ease the process of

Bayesian hypothesis-testing. With JASP, they continue,

“[. . .] users are able to conduct classical analyses as well as Bayesian analyses, without hav-

ing to engage in computer programming or mathematical derivation”

(p. 4).

Yet, users of JASP are restricted when it comes to the specification of user-defined prior dis-

tributions or the application of non-standard tests. In addition, users are limited in the applica-

tion of Bayesian hypothesis-testing in the sense that JASP always assumes a point null

hypothesis and thus the models being compared are always nested. Although such a scenario is

undoubtedly the most common one in psychological research, it is desirable to extend the

methods for Bayesian model comparison to allow for non-nested model comparison. ABrox

exactly addresses these issues by providing a flexible toolbox to estimate Bayes factors in areas

where an exact mathematical solution is not available.

The outline of the paper is as follows. First, we will give an introduction to ABC with a

focus on model comparison (technical details on ABC can be found elsewhere, [11, 12] or

[13]). We will then introduce our software called ABrox and demonstrate its validity by analys-

ing two models. For this purpose, we choose the Bayesian two-sample t-test and the Levene

test. Although there exists a bayesian version of the Levene test [14], a default Bayes factor is

only available for the two-sample t-test [15]. Lastly, we show the flexibility of ABrox by com-

paring two multinomial processing tree models applied to the weapon-misidentification task

[16, 17].

Approximate Bayesian computation for model selection

As previously mentioned, ABC can be used for both parameter estimation and model compar-

ison. If one is interested in the latter, the general idea of ABC methods is to test how well simu-

lated data from different models can mimic the observed data. If a model does not represent

the true data-generating process of the observed data reasonably well, then simulated data

from this model will not resemble the observed data adequately. Imagine for instance that

some data follow a quadratic trend. Trying to simulate such data with a model assuming a lin-

ear trend will fail most of the time. After multiple runs of the algorithm, the models are com-

pared by counting the number of times each one was able generate data that resemble the

observed data sufficiently well. One common algorithm is the ABC rejection algorithm for

model selection, in its basic form introduced by Rubin (1984) [18] (see explanation below):

1. Drawm� from the prior P(m)

2. Sample θ� from the prior P(θ |m�)

3. Simulate a candidate dataset D�
* f(D | θ�,m�)

4. Compute the distance. If d(D0, D
�)� �, accept (m�, θ�), otherwise reject it.

5. Return to 1 until k particles are accepted.
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First (step 1), one of the models under consideration (m�) is picked based on the (prior-)

probabilities of the models. In step 2, given the model, parameters (θ�) from the prior distribu-

tions of the parameters from the chosen modelm (P(θ |m�)) are drawn. Using model and

parameters, data (D�) is simulated in step 3 and is then compared with the observed data in

step 4. For this purpose, a distance measure d has to be defined that quantifies the dissimilarity

of simulated and observed data. If the distance d exceeds a predefined threshold (�), the so-

called particle containing both model indicator and the sampled parameters (m�, θ�) is

accepted and stored. The process is repeated N times until k particles have been accepted. The

number of accepted particles is then divided by N to get a marginal posterior distribution of a

model (m’) stating how likely the model is given the data at hand (D0) [11].

Pðm0 j D0Þ �
# accepted particlesðm0; :Þ

N
ð1Þ

With this metric, we can calculate the Bayes factor (BF) as the ratio of marginal likelihoods

(p(D0 |m1)/p(D0 |m2)). The Bayes factor (BF12) describes the amount of change from prior

odds to posterior odds after the data has been observed [5].

pðD0 jm1Þ

pðD0 jm2Þ
¼

pðm1 j D0Þ

pðm2 j D0Þ
�

pðm2Þ

pðm1Þ
ð2Þ

In Eq 2, p(m2)/p(m1) is referred to the model prior odds, indicating how likely one model

(m2) is relative to the other (m1) before seeing the data. p(m1 | D0)/p(m2 | D0) is the ratio of

marginal posterior distributions as approximated via ABC.

Summary statistics

In step 4 of the aforementioned algorithm, the distance could be computed by taking every

data point in the observed and simulated dataset into account. While computing the distance

based on every data point is reasonable theoretically, it is infeasible in most settings. If the data-

sets are large, then there is always a deviation from simulated data to observed data (the dis-

tance would only be zero if every simulated data point was exactly equal to the corresponding

observed one). Hence, the acceptance rates would be extremely low if the distance threshold

(�) was too strict. However, simply increasing the distance threshold to account for the low

acceptance rates would not be a reasonable decision either because exceedingly large thresh-

olds distort the approximation [19]. In order to account for these problems, the distance d

between observed and simulated data is often based on a summary statistic s(D) (e.g., mean

and (co)variance). While this procedure of computing summary statistics suffers less from the

curse of dimensionality, it often comes with a loss of information. Didelot et al. [12] showed

that insufficient summary statistics, not capturing the whole information of the raw data, can

lead to inconsistencies. Hence, the ABC model selection may fail to recover the true model.

The challenge is to balance out consistency and information loss [12]. Therefore, the approxi-

mation of the true Bayes factor depends on the summary statistic capturing the necessary

information in the data.

The threshold �

Besides picking an appropriate summary statistic, the notion of simulated data being “close

enough” to observed data has to be defined. Users interested in ABC have to set a specific

threshold value � based on a distance metric in order to decide whether a particle (m�, θ�)

should be accepted or discarded. The smaller the threshold �, the better the approximation of

the marginal posterior distribution to the true posterior distribution [11]. If the threshold is
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too liberal, too many particles fall below the threshold and the resulting posterior distribution

is not a good approximation. If, on the other hand, the threshold is too strict, it might take

very long to find the required number of particles that lead to distances smaller than � and the

procedure becomes computationally inefficient. The challenge is to find an � that leads to a

good approximation while retaining a tolerable running time of the algorithm. To tackle the

problem of finding a good threshold, Beaumont, Cornuet, Marin, and Robert [20] proposed to

select � as the kth percentile of computed distances prior to the actual start of the algorithm

(with k being a small value such as 5 or 1).

IntroducingABrox

We developed ABrox as an open-source python module which enables approximate Bayesian

model comparison and parameter estimation. With ABrox, we introduce a graphical user

interface (GUI) which is designed to be used as a tool for all-purpose ABC, making the meth-

ods much more accessible to researchers interested in applying ABC. The GUI is especially

useful for researchers without much prior knowledge of ABC. All necessary steps are separated

into small chunks to keep the structure clear and simple. Users can also save and load their

projects which allows for good maintenance and easy sharing with collaborators. Moreover,

prior distributions are automatically visualized for a better user-experience. ABrox facilitates

high flexibility regarding the specification of mathematical models and is especially useful if

one is interested in Bayesian model comparison where none of the traditional methods are

suitable, usual assumptions underlying those methods are not met, models of interest are not

nested, or software does not permit to change prior settings. Detailed instructions on how to

install ABrox can be found online (see https://github.com/mertensu/ABrox).

Comparison to other software packages

The main advantages of ABrox compared to other software packages such as the R-package

abc [21] or the Python module ABC-SysBio [22] are the domain-independence, meaning that

it is not designed for a specific field of research, and its ease of use due to the GUI. The soft-

ware DIYABC [23] is another attempt at simplifying the use of ABC by providing a GUI for

experimental biologists. DIYABC provides a convenient way to conduct ABC inferences about

population history using SNPs (Single Nucleotide Polymorphism), DNA sequence and micro-

satellite data, the areas of research it was designed for. DIYABC does not, as ABrox, necessitate

prior experience with a programming language. Due to its focus on specialized fields of

research, the process of simulating data and computing summary statistics is handled by the

program itself which is a helpful feature for users. However, it is limited to a few specific fields

of research.

The ABC reference table

The reference table in ABC is the starting point for most algorithms. It is a large table contain-

ing in each row the the model index (only used for model comparison), summary statistics of a

simulated dataset, the parameter(s) used for simulating the data and the distance with respect

to the observed summary statistics. The reference table contains as many rows as there are sim-

ulated datasets. ABrox usually generates the reference table internally but it also possible to

import an external reference table stored in a comma separated value (csv) file. The header of

csv-file needs to satisfy the the following conditions. There has to be a column named idx con-

taining the model index. Furthermore, if there are k summary statistics, each value has to be

stored in separate columns named s_ followed by a number (usually 1 to k). The same logic

applies to the parameters where each parameter column name should start with p_. In addition

Approximate Bayesian model comparison with ABrox

PLOSONE | https://doi.org/10.1371/journal.pone.0193981 March 8, 2018 4 / 16

https://github.com/mertensu/ABrox
https://doi.org/10.1371/journal.pone.0193981


to the columns containing information about summary statistics and parameter prior distribu-

tions, there has to be a column named distance containing the distance to the observed sum-

mary statistics.

Features of ABrox

Implemented algorithms. For model comparison, either the rejection algorithm or a ran-

dom forest approach can be chosen. Random forests [24] are a supervised learning algorithm

used extensively in machine learning. Given a sample of input-output pairs, the goal of a ran-

dom forest is to learn a mapping from the input to the output by training multiple decision

trees (a standard non-parametric algorithm for classification and regression) and aggregating

their decision function outputs. It incorporates the techniques bootstrap aggregation and ran-

dom feature selection to reduce over-fitting and thus increases the predictive generalization of

the model. In the context of ABC, random forests learns to map summary statistics to either

model indices or parameters of a model. Readers interested in more details should consult the

work by Pudlo et al. (2015) [25]. Besides model comparison, parameter estimation can be con-

ducted either via the basic rejection algorithm or a Markov chain Monte Carlo (MCMC) based

algorithm byWegmann [26].

Cross-validation. ABrox allows for cross-validating the results from both model compari-

son and parameter estimation using leave-one-out cross-validation as used in [21]. In leave-

one-out cross-validation, a randomly chosen simulated summary statistic is treated as pseudo-

observed summary statistic and an ABC algorithm is run in order to estimate parameters or a

Bayes factor (posterior model probability). This procedure is repeated N times. In the case of

parameter estimation, ABrox then provides a prediction error (see Eq 3) stating how different

the predicted parameters (~y) are from the true parameters (θ).

Epred ¼

P
ið
eyi � yiÞ

2

Var ðyiÞ
ð3Þ

Because the information provided by Eq 3 is limited, an additional pdf-file is automatically

saved. This file contains one plot for each parameter in which the estimated parameter is plot-

ted against the true parameter.

When performing model comparison, ABrox presents a confusion matrix stating how often

the pseudo-observed summary statistics could be correctly classified to the model they were

generated from. In this matrix, the diagonal elements should be large and the values in off-

diagonal elements should be small. The confusion matrix is also stored in a heatmap-style as a

pdf-file to ease the interpretation of the results.

The building blocks of ABrox

To calculate a Bayes factor, the user needs to provide several pieces of information.

1. the data to be analyzed (optional)

2. the prior distributions for all parameters of all models.

3. functions to simulate data from the models.

4. a function to compute summary statistics from data.

5. a function to compute the distance between summary statistics of observed and simulated

data (optional).

Approximate Bayesian model comparison with ABrox

PLOSONE | https://doi.org/10.1371/journal.pone.0193981 March 8, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0193981


The functions to compute the summary-statistic and the distance are the same for all com-

pared models. Prior distributions are internally stored as python dictionaries whereas simula-

tion-, summary-, and distance-function are user-defined functions.

Data import in ABrox. The data tab in ABrox shown in S1 Fig is used to import an exter-

nal data-file. The file should be stored as a comma-separated value file (.csv). The imported

data can be inspected and modified in the data tab. Note that users are able to access the data

in the embedded Python Console at the bottom by typing data.

The prior distribution in ABrox. Prior distributions for the parameters of each model

have to be specified. S2 Fig shows the prior settings tab of ABrox with a parameter called x and

its corresponding prior distribution showing a standard normal distribution. In the current

version of ABrox, a total of nine different prior distributions are available.

The simulate-function in ABrox. In a next step, the user has to write a Python function

for each model that simulates data. The simulated dataset has to be in the form of a NumPy

array [27]. The simulate-function can be written in the simulate tab (S3 Fig). Note that the

names of the functions should not be changed and default to simulate. The function has only

one argument (params) which is a dictionary with keys corresponding to the names of the

parameters specified and the values containing one sampled value from the respective prior

distribution of the parameter. Thus, each parameter value can easily be accessed by the param-

eter’s name.

The user has to take care that the format of the imported (observed) data is identical to the

format of the simulated data. Put differently, the return type of the simulate-function has to be

the same as the type of the imported data. If, for instance, the observed data is a multidimen-

sional array with 100 rows and two columns, the simulate function has to return a multidi-

mensional array of the same shape. If this is not the case, ABrox will throw an error message.

The summary and distance-function in ABrox. After the specification of each model

(priors and simulate-function), a new Python function to calculate the summary statistics from

the data has to be written. The function takes as input the output of the simulate function spec-

ified in the previous step. The function should return the summary statistics. The summary

statistics can be a scalar or a vector.

In ABrox, the user can optionally write a user-defined distance function for computing the

distance between observed summary statistics and simulated summary statistics. If the func-

tion is left empty, ABrox automatically uses the default distance metric which is the Euclidean

distance scaled on the median absolute deviation (MAD).

The settings tab in ABrox. In the settings tab (S4 Fig), the working directory has to be set.

Next, the type of analysis, that is model comparison or parameter estimation, has to be

selected. Note that ABrox allows to compare more than two models by simply adding more

models to the Project Tree. Each model needs to be specified with a unique simulate-function

and the corresponding prior distribution(s) for the parameter(s). If the rejection algorithm is

selected, ABrox calculates a matrix containing approximate Bayes factors. The random forest

approach, on the other hand, calculates posterior model probabilities.

In the case of parameter estimation, a summary of the posterior distributions of the param-

eters is returned. In addition, a data frame with all samples from the posterior of each parame-

ter is saved in the working directory.

The Console Panel at the bottom of S4 Fig shows the progress of the computation and

informs the user as soon as the computation is finished. The results are stored inside a python

variable which can be accessed from the integrated Python Console.

The user interface of ABrox generates a python script in the working directory with all the

configurations specified in the GUI. This feature of saving a python-file with all the configura-

tions is especially useful if users want to use ABrox within the Python framework.
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Besides the obligatory settings, we added the option to generate pseudo-observed data from

a model instead of having to import data (Model Test Settings). By choosing this option, one

can simply check if the approximate Bayes factor favors the model the data have been simu-

lated from or if the parameters chosen for the pseudo-observed data can be estimated

accurately.

Application example 1: The independent-samples t-test

In the following, we will first show how to compute an approximate Bayes factor for an inde-

pendent samples t-test assuming normally distributed data with equal variances. The corre-

sponding ABrox project file can be downloaded at https://github.com/mertensu/ABrox/tree/

master/project_files. We chose the t-test as the first example since it is one of the most com-

mon tests in statistics. Furthermore, the t-test qualifies for a comparison of the approximate

Bayes factor and the default Bayes factor as there is already software available to compute a

default Bayes factor for the t-test [15]. For all of the following examples, we refer to Bayes factor

as the Bayes factor expressing support for the alternative hypothesis (H1) over the null hypoth-

esis (H0), which is usually indicated as BF10.

Model specification

Simulation. In order to adapt the default Bayesian t-test for ABrox, we have to consider

how data are simulated from bothH0 andH1. In a first step, we know that data from both

samples are drawn from a normal distribution with a specific standard deviation (σ) and mean

(μ).H0 assumes that there is no difference in means (μ1 = μ2). As a consequence, we restrictH0 to generate two normally distributed samples with the same mean. The model representingH1, in comparison, is allowed to simulate data such that the two means differ.

Summary statistic. After that, a useful summary statistic has to be chosen. In the t-test

scenario, we choose the empirical effect size Cohen’s d as the summary statistic on which the

comparison between observed data and simulated data is based [28]. Note that by comparing

the data only by the effect size d, we do not get any information about other parameters that

might be of interest in a parameter estimation scenario (such as the overall standard deviation)

but focus only on model comparison.

Parameters and priors. Following Rouder et al. [15],H1 gets a prior for the population

effect size Cohen’s d. WhereasH0 does not have a parameter and therefore no prior, we put a

Cauchy prior with scale γ = 0.707 on the effect size d forH1 (see Fig 1).

Distance function. In order to assess the similarity between the observed and simulated

Cohen’s d, the squared difference is chosen as the distance metric.

Simulation results

In the following section, we provide simulation results focusing on the similarity between the

default Bayes factor and the approximated Bayes factor. We simulated N = 1000 data sets with

an Cohen’s d varying uniformly between no effect (d = 0) and a moderate effect of d = 0.5. For

each generated data set, we computed both the default Bayes factor using the R package Bayes-

Factor (version 0.9.12.2) [29], as well as the approximated Bayes factor using ABrox. Further-

more, we varied the sample size between Ntotal = 50 (25 per group) and Ntotal = 200 (100 per

group).

Support forH1. Results in Fig 2 indicate that, in cases where there is support forH1, the

approximation to the default Bayes factor is extremely good. There is a strong correlation

when the default Bayes factor lies somewhere between anecdotal and very strong support for

theH1. In areas where there is extreme support forH1 (to the right of very strong support in
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Fig 2, the accuracy of the approximation decreases somewhat). Even though this pattern of

increasing differences is not optimal, it is not a serious issue since it does not matter that much

how extreme the support forH1 actually is. Note that if the null hypothesis (H0) did not cross

the threshold at all (no data could be simulated that were close enough to the observed data),

this indicates extreme evidence forH1. In this case, no ratio could be computed (division by

zero). In such cases, we set the approximated Bayes factor to a value of 10000 (resulting in ln

(10000) = 9.21) which is an arbitrary choice simply reflecting a very large number.

Fig 1. Cauchy distribution with a scale of γ = 0.707 used as the prior distribution.

https://doi.org/10.1371/journal.pone.0193981.g001

Fig 2. Relationship of default Bayes factor and approximated Bayes factor for a two-sample t-test with support for the alternative hypothesis; left:
N = 50, right: N = 200. Note. a. = anecdotal. m. = moderate. s. = strong. v.s. = very strong evidence.

https://doi.org/10.1371/journal.pone.0193981.g002
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Support forH0. Fig 3 shows the relationship between the Bayes factors when there is sup-

port forH0. There are two things to notice. First, there is again a very high correlation between

the default and the approximated Bayes factor. Secondly, a lower limit of the default Bayes fac-

tor can be seen if the difference in means is exactly zero. One might very well ask why a mean

difference of zero does not result in a Bayes factor with strong evidence forH0. The reason for

this is that the prior forH1 also puts mass on an effect of zero so that it is still possible for the

model to account for the findings. However, the more vague the prior (increasing the scale) or

the larger the sample sizes, the lower the limit of the Bayes factor becomes. The lower limit of

the Bayes factor in the left plot of Fig 3 is (log(BF10) = -1.26) and (log(BF10) = -1.87) for the

right plot.

Application example 2: A Bayesian Levene test

In this section, we show the flexibility of ABC model comparison by implementing a Bayesian

Levene test for two samples. The corresponding ABrox project file can be downloaded at

https://github.com/mertensu/ABrox/tree/master/project_files. The Levene test checks whether

variances among different samples are equal (homogeneous). Assuming two samples, the null

hypothesis (H0) is specified as:

H0 : s
2
1
¼ s

2
2

ð4Þ

Using the ABrox framework, we construct two models.H0 is restricted in the sense that

both population variances are homogeneous. For the alternative hypothesis (H1) however, the

variances between both groups are allowed to differ. Note that theH0 has one parameter (the

identical variance within groups) whereasH1 has two parameters (one variance for each sam-

ple). Although this parameterization is valid, we reparameterized both models such thatH0

has no parameter (we fixed the variance in both groups to 1).

Fig 3. Relationship of default Bayes factor and approximated Bayes factors for a two-sample t-test with support for the null hypothesis; left: N = 50, right:
N = 200.Note. a. = anecdotal. m. = moderate. s. = strong. v.s. = very strong evidence.

https://doi.org/10.1371/journal.pone.0193981.g003

Approximate Bayesian model comparison with ABrox

PLOSONE | https://doi.org/10.1371/journal.pone.0193981 March 8, 2018 9 / 16

https://github.com/mertensu/ABrox/tree/master/project_files
https://doi.org/10.1371/journal.pone.0193981.g003
https://doi.org/10.1371/journal.pone.0193981


Following the approach for the two-sample t-test, we chose forH1 a prior specifying the

ratio between the two variances. A prior for a ratio should have a mean of 1 and has to be

strictly positive. In order to meet both conditions, we chose a gamma distribution with shape

k = 8 and scale θ = 0.125. The distribution has the form shown in Fig 4.

Simulation results

For the Levene test, we simulated datasets with a ratio of variances varying uniformly between

1 (homogeneity) and 2. For each of two sample sizes (N = 50 and N = 200), we simulated 1000

datasets.

Fig 5 shows the relationship of p-values from the Levene test and approximate Bayes factors.

The vertical lines in Fig 5 represent the critical value of α = 0.05. All p-values left to this line

would lead to the decision of acceptingH1 (the variances are heterogeneous). The horizontal

lines corresponds to a BF10 of 1. Therefore, all values above this line would indicate support forH1, whereas all Bayes factors below this line would indicate support for theH0 (homogeneous

variances). Although both p-value and Bayes factor often lead to the same decision about the

homogeneity of variances, according to the left plot of Fig 5, there are many datasets where

decisions differ, if sample sizes are small. The area above the horizontal line and to the right of

the vertical line shows datasets where there is support for heterogeneity of variances based on

the Bayes factor. However, the result of the Levene test is not significant (p> .05).

Application example 3: Multinomial processing trees

In this last example, we demonstrate the usefulness of ABC model comparison by computing

approximate Bayes factors for multinomial processing tree models (MPT) [30]. MPT models

are models for categorical data that are often used in the cognitive and social sciences. These

models assume that information processing follows one of several possible paths in a so-called

processing tree. For each fork in the path, probabilities are estimated. Note that recently an

alternate approach to compute Bayes factors for MPT models was published [31].

Fig 4. Gamma distribution used as the prior for the ratio of standard deviations. Parameters are k = 8 and θ =
0.125.

https://doi.org/10.1371/journal.pone.0193981.g004
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For this example, we choose two prominent models that aim to determine the role of con-

trol and automaticity in the so-called weapon misidentification task [16, 17]. In this task, par-

ticipants have to identify either guns or tools under high time pressure after being primed with

either white or black faces. If a stereotype effect is apparent, the probability of erroneous “gun”

responses is increased after black primes and vice versa. In this paradigm, it is an important

question what role automatic and controlled processes play for the response selection. The

Process Dissociation Model [32, 33], depicted in Fig 6, assumes that controlled processing

dominates automaticity. A correct response is given whenever controlled processes prevail

(probability C). Automatic processing, on the other hand, determines the response only if con-

trolled processing fails (1-C). The increased probability of an stereotype-consistent answer is

Fig 5. Relationship of p-values and approximated Bayes factors for a Levene test; left: N = 50, right: N = 200.

https://doi.org/10.1371/journal.pone.0193981.g005

Fig 6. The Process DissociationModel with guessing. Branches lead to correct (+) and incorrect (-) responses.

https://doi.org/10.1371/journal.pone.0193981.g006
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captured in parameter A. A sterotype-consistent response is only correct for conditions where

a gun is presented after the prime of a black face and a tool is presented after the prime of a

white face. The Stroop Model [34], however, claims a reversed order of automatic and con-

trolled processes. (see Fig 7). First, the automatic influence of a prime determines whether a

stereotype-consistent response is given. With probability (1-A), there is no automatic influence

and controlled processing becomes relevant [16, 17].

Since MPT models can be quite complex but the data (or the simulated output of the mod-

els) only consists of counts, it is often necessary to run experiments with one or more experi-

mental conditions in order to estimate parameters adequately. Therefore, we compare both

models by implementing the design of Lambert et al. (2003) [35]. The authors of this study

were interested in whether stereotypical responses are more pronounced in private settings or

anticipated public settings. It was hypothesized, based on previous findings, that the antici-

pated public condition, in which participants were told that they had to talk to others about

their results after the experiment, leads to more stereotype-consistent behavior [35]. Following

Bishara and Payne (2009) [17], both models have 11 free parameters in total. Whereas the

probability of controlled processing (C) is assumed to vary only between both conditions (pri-

vate and anticipated public), the probability that the automatic response is stereotype-consis-

tent(A) is allowed to vary by condition (public vs. private), prime (white vs. black) and target

gender (female and male). Finally, there is one additional guessing parameter G that does not

vary by condition.

Prior distributions

For each of the parameters (i.e., the path probabilities), we have to set a prior distribution.

Based on the parameter estimates presented in Bishara and Payne (2009) [17], we use mildly

informed prior distributions. According to those results, parameter A, representing the proba-

bility of an stereotype-consistent answer, seems to be quite small. Therefore, a beta distribution

placing more weight on small values is chosen (α = 2, β = 10). Controlled processing (parame-

ter C), occurs in about half of the trials which is why we chose a symmetric beta distribution

capturing this information (α = 3, β = 3). Note, that by choosing rather small values for both α
and β for the prior of parameter C, we indicate the uncertainty regarding the parameter. In

Fig 7. The StroopModel with guessing. Branches lead to correct (+) and incorrect (-) responses.

https://doi.org/10.1371/journal.pone.0193981.g007
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contrast, when dealing with the guessing parameter G, we restrict it to more narrow range

around 0.5. This assumption is expressed in a beta distribution with parameters α = 10 and

β = 10.

Simulation results

In the previous simulations, we compared the Approximate Bayes factor with the default Bayes

factor. For this last example, we generate 100 pseudo-observed datasets for each of the two

models and compute the approximate Bayes factor. For each simulated dataset, we draw the

parameters from beta distributions. The three distributions are chosen to mimic common

parameter estimates (e.g. [17]).

• A* Beta(α = 2, β = 10)

• C* Beta(α = 60, β = 40)

• G* Beta(α = 50, β = 50)

The results shown in Fig 8. For the log-Bayes factors, positive values express the support

for the Stroop Model. The left boxplot in Fig 8 shows the approximate Bayes factor when the

data are simulated from the Stroop Model. As expected, most of the approximate Bayes fac-

tors are supporting the model the data have been generated from (in this case the Stroop

Model). In a few cases, the approximate Bayes factor favored the PDGModel. These false

decisions might be due to the fact that the threshold was set rather loose (0.05). The boxplot

on the right side of Fig 8 shows the approximate Bayes factors expressing support for the

Stroop Model when the data are simulated from the Process Dissociation Model. Thus, val-

ues below zero indicate support for the Process Dissociation Model. The pattern of results is

similar to the one on the left-hand side. All calculated Bayes factors favor the Process Disso-

ciation Model.

Fig 8. Approximate Bayes factors (log-scale) expressing support for the StroopModel.Data are simulated from the
StroopModel (left) or the Process Dissociation Model (right).

https://doi.org/10.1371/journal.pone.0193981.g008
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Concluding remarks

This article introduces the reader to ABrox, a python package for approximate Bayesian com-

putation with a user-friendly interface. We demonstrated the similarity of approximate and

default Bayes Factor on two prominent statistical tests and demonstrated the flexibility of ABC

on a comparison of multinomial processing tree models. ABrox defaults to the rejection algo-

rithm for both parameter inference and model choice. However, more sophisticated algo-

rithms are implemented. For parameter inference, a Markov chain Monte Carlo (MCMC)

based algorithm byWegmann [26] is available. Concerning model comparison, there is also

the option to use random forests to calculate the posterior model probabilities [25]. Moreover,

we plan to extend the set of available machine-learning algorithms for ABC by adding neural

networks to the toolbox. With ABrox, we hope to reduce the burden for researchers to actually

apply ABC methods in their labs.
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Abstract 

Complex simulator-based models with non-standard sampling distributions require sophisticated 

design choices for reliable approximate parameter inference. We introduce a fast, end-to-end 

approach for Approximate Bayesian Computation (ABC) based on fully convolutional neural 

networks (CNNs). The method enables users of ABC to simultaneously learn the posterior mean 

and variance of multi-dimensional posterior distributions solely from raw simulated data. Once 

trained on the simulated data, the CNN is able to map real data samples of variable size to the 

first two posterior moments of the relevant parameter’s distributions. Thus, in contrast to other 

machine learning approaches to ABC, our approach is reusable by multiple researchers across a 

given domain. We verify the utility of our method on two common statistical models, namely a 

multivariate normal distribution and a multiple regression scenario, for which the posterior 

parameter distributions can be derived analytically. We then apply our method to recover the 

parameters of the Leaky Competing Accumulator (LCA) model and compare our results to the 

current state-of-the art technique, the Probability Density Estimation (PDA). Results show that 

our method exhibits lower approximation error compared to other machine learning approaches 

to ABC. It also outperforms PDA in recovering the parameters of the LCA model.    

Keywords:  approximate bayesian computation, likelihood-free inference, convolutional 

network, machine learning, leaky competing accumulator  
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TOWARDS END-TO-END LIKELIHOOD-FREE INFERENCE WITH  

CONVOLUTIONAL NEURAL NETWORKS 

A major goal in statistical modeling is to describe data generation processes by a finite 

parameter vector 𝜽. Due to different sources of uncertainty (Goodellow et al., 2016, p. 52), such 

descriptions are inherently stochastic. Naturally, researches are interested in quantifying the 

uncertainty in their parametric estimates (Kendall & Gal, 2017; Schoot et al., 2014; Lee, 2008). 

By drawing on the mathematical framework of probability theory, one way to represent 

uncertainty is to place probability distributions over parameters, and update the parameters of 

these distributions as the current state of knowledge changes. In fact, this is the quintessential 

idea incorporated in Bayesian statistics (Gelman et al., 2013). Suppose we have collected a 

dataset ࢞ = 𝑖=ଵ𝑁{ሺ𝑖ሻݔ}  in an observational or an experimental setting. At the core of all Bayesian 

data analysis lies Bayes’ rule: 

ሻ࢞|ሺ𝜽݌  = ∫𝜽ሻ𝜋ሺ𝜽ሻ|࢞ሺ݌  𝜽ሻ𝜋ሺ𝜽ሻ݀𝜽 (1)|࢞ሺ݌

 
 

 

In the above expression, ݌ሺ𝜽|࢞ሻ denotes the posterior distribution of the model parameters, ݌ሺ࢞|𝜽ሻ denotes the likelihood function, 𝜋ሺ𝜽ሻ - the prior probability distribution, and the 

denominator ݌ሺ࢞ሻ = ∫  𝜽ሻ𝜋ሺ𝜽ሻ݀𝜽 - the marginal probability of the data. Considered as a|࢞ሺ݌

normalization constant, the computation of the marginal probability can often be bypassed, so the 

posterior distribution can be expressed as being proportional to the prior times the likelihood: 

ሻ࢞|ሺ𝜽݌  ∝  𝜽ሻ𝜋ሺ𝜽ሻ (2)|࢞ሺ݌
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If the likelihood belongs to a known family of probability distributions, and if the prior is 

conjugate to the likelihood, then the posterior belongs to the same distribution family as the 

prior. Therefore, by choosing mathematically convenient priors, one can obtain a closed-form 

expression for the posterior which has the same algebraic form as the prior, merely with 

modified parameter values. In the case of non-conjugate priors, one needs to resort to Monte 

Carlo sampling methods, such as Markov Chain Monte Carlo (MCMC) algorithms.   

A different problem arises when the likelihood ݌ሺ࢞|𝜽ሻ is computationally intractable, or 

cannot be specified algebraically. This situation occurs when models become increasingly 

complex, or rely on a simulation-based mechanism for generating the data (Turner, 2012). In this 

case, approximation methods are required in order to perform any type of Bayesian inference.  

ABC methods 

Approximate Bayesian Computation (ABC) methods are part of a larger class of 

techniques aimed at bypassing the intractability problem arising when parametric models require 

a non-standard solution based on a likelihood function. 

ABC was first successfully implemented in genetics research (Tavare et al., 1997) and the 

utility of the method has been steadily increasing across research domains ever since (Pritchard 

et al., 1999). The main idea of ABC methods is to approximate the likelihood function by 

repeatedly sampling parameters from prior distributions and simulating artificial datasets 

conditioned on the sampled parameters. Even though exact numerical evaluation of the 

likelihood ݌ሺ࢞|𝜽ሻ might be intractable, a generative model of the form ݍሺ· |𝜽ሻ, usually specified 

as a function code in a programming language, is necessary for performing the simulations.  
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The starting point for all ABC algorithms is the creation of the so-called reference table 

(Raynal et al., 2017; Mertens et al., 2018). The reference table is a special data structure used to 

store a large number of simulated datasets or summary-statistics of such produced from an 

approximation of the posterior distribution given by ݌ሺ𝜽|࢞ሻ ∝ 𝜽ሻ𝜋ሺ𝜽ሻ|࢞ሺ݌  ≈ ·ሺݍ |𝜽ሻ𝜋ሺ𝜽ሻ as 

well as the corresponding samples from the prior distributions(s) used to generate these datasets. 

In the following, the details of creating the reference table are discussed.  

In line with the notation embraced by the literature on ABC, let 𝜽 denote a random vector 

of parameters and 𝜋ሺ𝜽ሻ denote the joint prior distribution over the parameter vector. Let {̃࢞ሺ𝑖ሻ}𝑖=ଵ𝑁  represent a collection of artificial datasets simulated by a generative model ݍሺ· |𝜽ሻ𝜋ሺ𝜽ሻ, ࢞ – the observed dataset, and ߟሺ̃࢞ሺ𝑖ሻሻ – a (vector) summary statistic obtained by 

some form of dimensionality reduction applied to each ̃࢞ሺ𝑖ሻ. Consequently, Algorithm 1 

describes the standard procedure for generating the ABC reference table.  

Algorithm 1. Generation of the reference table. 

for 𝑖 ← ͳ to ܰ 

    Sample 𝜽ሺ𝑖ሻ ~ 𝜋ሺߠሻ 

    Simulate ̃࢞ሺ𝑖ሻ ~  ݍሺ· |𝜽ሻ  
    Compute ߟ(̃࢞ሺ𝑖ሻ) 

    Store the pair (ߟ(̃࢞ሺ𝑖ሻ),  𝜽ሺ𝑖ሻ) in row 𝑖 of the reference table 

end for 

 

There are multiple ways to utilize the reference table for the purpose of parameter 

inference. The rejection algorithm, initially proposed by Rubin (1984), and refined by Tavaré et 

al. (1997) and Pritchard et al. (1999), requires specifying a distance function ݀ሺߟ(̃࢞ሺ𝑖ሻ),  ሻሻ࢞ሺߟ

quantifying the deviation of a given simulated sample from the observed data as well as a 
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threshold (also termed the tolerance level) Ͳ < 𝜖 ≤ ͳ, according to which a fraction of ͳ − 𝜖 

parameters is rejected, and the remaining are considered as samples from an approximate 

posterior distribution ݌𝜖(𝜽|ߟሺ̃࢞ሻ). Even though, in theory, the rejection method is doubly 

asymptotically consistent (Frezier et al., 2017), its practical limitations have been repeatedly 

noted by researchers (Raynal et al., 2017; Martin et al., 2012; Blum, 2010), necessitating the use 

of more sophisticated methods. First, the rejection method suffers from the curse of 

dimensionality, meaning that as the dimensions of the parameter space increase, the number of 

simulations required to obtain reasonable convergence grows exponentially large. Second, in 

order for ݌𝜖(𝜽|ߟሺ̃࢞ሻ) to approximate the true posterior distribution ݌ሺ𝜽|࢞ሻ within a reasonable 

amount of computational time, the parameter 𝜖 needs to be carefully tuned. Third, the summary 

statistic ߟሺ·ሻ has to be sufficient, meaning that no loss of information from the sample should by 

incurred by computing it. Last but not least, the choice of a particular distance metric ݀ሺ·,·ሻ is 

often arbitrary (i.e. Euclidian distance), and thus presents another nontrivial hyperparameter of 

the method requiring further attention.  

Machine learning approaches to ABC 

Recently, it has been proposed to “borrow” techniques from the machine learning 

literature in order to confront the above mentioned shortcomings of traditional ABC methods. In 

the next two sections, we briefly review two recent applications of the supervised machine 

learning approach to ABC. We address both the advantages and limitations of these approaches, 

and proceed to introduce our method. 

Random forest methodology 

 The random forest (RF) algorithm, originally developed by Breiman (2001), 

appears to provide an especially promising approach to estimating the first two moments (see 



TOWARDS END-TO-END LIKELIHOOD-FREE INFERENCE 7 

Raynal et al., 2017 for details) and quantiles of a posterior parameter distribution. In particular, 

random forest regression is a supervised learning algorithm, which, given a sample of input – 

output pairs, learns a highly nonlinear mapping from the input to the output by training an 

ensemble of decision trees (a standard non-parametric algorithm for classification and 

regression) and aggregating their regression function outputs.  

In the context of ABC, the inputs to the RF algorithm are the simulated and summarized 

datasets {ߟ(̃࢞ሺ𝑖ሻ)}𝑖=ଵ𝑁  from the reference table, while the outputs are the corresponding { 𝜽ሺ𝑖ሻ}𝑖=ଵ𝑁  

parameter values. In other words, the algorithm is asked to recover the unknown parameters used 

to generate a given dataset. Algorithm 2 describes the RF-ABC procedure.  

There are at least three main justifications to apply RF regression to ABC parameter 

inference. First, the representational capacity of the algorithm enables it to learn complex non-

linear input-output mappings and thus provides reliable and theoretically sound approximations 

of the posterior mean and variance: 𝔼[𝜽|ߟሺ̃࢞ሻ, 𝚯], ܸܽݎ[𝜽|ߟሺ̃࢞ሻ, 𝚯], where 𝚯 represents the 

random forest parameters. Second, the robustness of RF regression to the presence of irrelevant 

predictors and to different hyperparameter settings has been repeatedly emphasized and 

demonstrated (Pudlo et al., 2015; Roy & Larocque, 2012). Finally, since the method does not aim 

at performing full Bayesian inference, but instead relies on approximating the first two moments 

and quantiles of the posterior distribution, the need for selecting a tolerance level 𝜖 and a 

distance metric ݀ሺ·,·ሻ is completely eliminated. 

The ABC-RF methodology inevitably reduces the burden of meticulously hand-crafting a 

small number of sufficient summary statistics, since one can potentially define a (very) large 

number of summaries. However, it does not bypass the problem completely, since the user still 

needs to manually decide on and compute a (potentially large) collection of summary statistics. A 
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further specificity of the ABC-RF methodology is the fact that one needs to train a separate 

random forest ensemble for each individual model parameter ߠ𝑘 of the parameter vector 𝜽. Even 

though this approach could easily be parallelized across parameters, sequential solutions might 

experience computational bottleneck, especially when dealing with high-dimensional parameter 

spaces, combined with a large reference table. 

Algorithm 2. ABC-RF methodology (Raynal et al., 2017).  

Construct a reference table {(ߟ(̃࢞ሺ𝑖ሻ),  𝜽ሺ𝑖ሻ)}𝑖=ଵ𝑁  using Algorithm 1. 𝐾 ← # of model parameters 

for 𝑘 ← ͳ to 𝐾 

    Train a random forest regression ݂̂𝚯𝑘ሺߟሺ̃࢞ሻሻ to predict parameter ߠ𝑘 

end for 

Output a group of random forests {݂̂𝚯𝑘}𝑘=ଵ𝐾  

Posterior mean and variance estimation: 

for 𝑘 ← ͳ to 𝐾 

    Estimate 𝔼̂[ߠ𝑘|ߟሺ̃࢞ሻ, 𝚯𝑘], ܸܽ̂ߠ]ݎ𝑘|ߟሺ̃࢞ሻ, 𝚯𝑘] and posterior quantiles 𝒬̂𝑝ሺߠ𝑘|ߟሺ̃࢞ሻ, 𝚯𝑘) 

end for 

 

Deep neural network methodology 

Another promising approach to ABC inspired by machine learning utilizes deep neural 

networks (DNNs) for automatically learning summary statistics from the reference table (Jiang et 

al., 2015). At a general level, a neural network defines a mapping ࢟ =  to ࢞ ሻ from input࢞ሺ݂ࢃ 

output ࢟ and learns the parameters ࢃ that lead to the best function approximation (Goodfellow 

et al., 2016). As in the case of ABC-RF, the challenge of ABC is cast as a supervised learning 

task, with artificial datasets {̃࢞ሺ𝑖ሻ}𝑖=ଵ𝑁  as inputs, and dataset-generating parameters { 𝜽ሺ𝑖ሻ}𝑖=ଵ𝑁  as 

outputs. It is important to note that raw simulated data is used as input to the neural network, 
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since the goal is to learn the functional form of ߟሺ·ሻ implicitly from the data, treating the 

predicted parameters as the summary statistic. Algorithm 3 describes the ABC-DNN procedure.  

 

Algorithm 3. ABC-DNN methodology (Jiang et al., 2015). 

Construct a reference table {(̃࢞ሺ𝑖ሻ,  𝜽ሺ𝑖ሻ)}𝑖=ଵ𝑁  using Algorithm 1. 

Train a DNN ݂ࢃ with {̃࢞ሺ𝑖ሻ}𝑖=ଵ𝑁  as input and { 𝜽ሺ𝑖ሻ}𝑖=ଵ𝑁  as output  

Rejection ABC algorithm: 

for ݐ ← ͳ to ܯ 

    Sample 𝜽ሺ௧ሻ ~ 𝜋ሺ𝜽ሻ 

    Simulate ̃࢞ሺ௧ሻ ~  ݍሺ· |𝜽ሻ  
    Compute 𝜽̂ሺ௧ሻ = ݂ࢃ(̃࢞ሺ௧ሻ) as a summary statistic 

end for 

Compute summary statistic of observed data 𝜽 =  ሻ࢞ሺ݂ࢃ

Select 𝜽̂ሺ௧ሻ such that ݀(𝜽, 𝜽̂ሺ௧ሻ) < 𝜖 where ݀ሺ·,·ሻ is a distance function and 𝜖 is a pre-defined 

tolerance level 

Use selected 𝜽̂ሺ௧ሻ to estimate features of ݌ሺ𝜽|࢞ሻ 

 

The most important advantage of using DNNs as supervised approximators is their huge 

representational power (Goodfellow et al., 2016; Jiang et al., 2015; Hornik, 1991). According to 

the universal approximation theorem (Cybenko, 1989; Hornik, 1991), neural networks are able 

to, in principle, approximate any continuous function to an arbitrary degree of accuracy, given 

the appropriate conditions and parameters. Furthermore, neural network architectures can easily 

be designed to incorporate multi-output regression, as is the case when 𝜽 is multidimensional, 

thus learning each mapping from {̃࢞ሺ𝑖ሻ}𝑖=ଵ𝑁  to individual parameters simultaneously. 

One disadvantage of the ABC-DNN method compared to the ABC-RF approach is that it 

does not offer a straightforward way to quantify the uncertainty inherent in the DNN estimates, 
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which is captured by the estimate of the posterior variance ܸܽߟ|ߠ]ݎሺܺሻ, 𝚯] within the ABC-RF 

framework. As a consequence, Jiang et al. (2015) used the DNN estimates of the posterior 

expectation as summary statistics in the classical ABC rejection algorithm, thus inheriting the 

difficulties in specifying a convenient distance metric ݀ሺ·,·ሻ and guessing an appropriate 

tolerance level 𝜖. Another, more subtle, yet serious shortcoming of both ABC-DNN and ABC-

RF, is the inability to deal with variable input sizes (e.g., the observed sample size). This 

inevitably confines the dimensionality of the simulated data to the dimensionality of the 

observed data sample. In addition, reusing the same model in a context where the observed data 

sample has a different size is not possible. Hence, researchers interested in applying current 

machine learning models need to generate a completely new reference table and train the models 

from scratch. 

DeepInference 

The approach we investigate in this paper is an attempt to fuse the advantages of both the 

ABC-RF and the ABC-DNN methodologies discussed so far (Raynal et al., 2017; Jiang et al., 

2015). It is also inspired by recent advances in modelling uncertainty in DNN predictions 

(Kendall & Gall, 2017).  

We propose to train a fully convolutional neural network (CNN) on simulated data 

distributions to approximate the posterior mean of the relevant model parameters, and, at the 

same time, estimate the uncertainty in the posterior approximations directly from the available 

data by minimizing the heteroscedastic loss (Kendall & Gall, 2017). We argue that this approach 

overcomes most of the shortcomings of previous machine learning approaches to ABC.  

The outline of the rest of this paper is as follows. We first introduce the building blocks 

of our approach. Then, we confirm on two toy examples that the predictions and uncertainty 
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estimates obtained by the optimization procedure employed in the CNN closely approximate the 

analytically computed posterior expectations and posterior variances of the data-generating 

parameters. After that, we demonstrate the usefulness of the method in recovering the parameters 

of the Leaky Competitive Accumulator (LCA) model used widely in cognitive science and 

psychology (Miletić et al., 2017) and compare our results with the latest state-of-the-art method. 

Finally, we discuss the advantages of the current approach.  

Methods 

Inference as optimization 

In general, a regression model is trained by minimizing the mean squared error (MSE) 

loss across ܰ training examples (simulations) between actual parameters ߠሺ𝑖ሻ and parameters 

predicted by the model  ̂ߠሺ𝑖ሻ =  ሺ𝑖ሻሻ. The loss function for a single-parameter model is thus̃࢞ሺ݂ࢃ 

given by: 

 ℒሺࢃሻ = ͳܰ ሺ𝑖ሻߠ̂‖∑ − ሺ𝑖ሻ‖ଶଶ𝑁ߠ 
𝑖=ଵ   (3) 

and optimized via stochastic gradient descent using the backpropagation algorithm. Since the 

MSE loss is proportional to the cross-entropy between the empirical distribution of the training 

set and a Gaussian model, minimizing the MSE loss is equivalent to minimizing the negative 

log-likelihood of a conditional Gaussian model1 defined as: 

; ̃࢞|ߠሺ݌  ሻࢃ =  𝒩ሺߠ| ,ሻ̃࢞ሺ݂ࢃ 𝜎ଶሻ (4) 
                                                 

 

1 Another interpretation of maximum likelihood is to posit that it minimizes the cross-entropy between the 

data distribution and the model distribution (see Goodfellow et al., 2016, p. 129).  
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where the prediction of the neural network ̂ߠ =  ሻ corresponds to the mean of the Gaussiañ࢞ሺ݂ࢃ 

distribution. The negative log-likelihood thus becomes: 

 − log ; ̃࢞|ߠሺ݌ ሻࢃ = − ∑ log ሺ𝑁݌
𝑖=ଵ ;ሺ𝑖ሻ̃࢞|ሺ𝑖ሻߠ  (5) (ࢃ

                                                     = − ∑ log ( ͳ√ʹ𝜋𝜎ଶ ݁− ଵଶ𝜎2(𝜃̂ሺ𝑖ሻ− 𝜃ሺ𝑖ሻ)2)𝑁
𝑖=ଵ  (6) 

                                                   = ∑ ሺ𝑖ሻߠ̂‖ − ሺ𝑖ሻ‖ଶଶʹ𝜎ଶߠ  + ܰʹ log ሺʹ𝜋𝜎ଶሻ𝑁
𝑖=ଵ  (7) 

and we see that the minimizing the MSE criterion in (3) w.r.t to the DNN weights ࢃ is 

equivalent to minimizing (7) where 𝜎ଶ is considered to be a fixed constant. Since setting ̂ߠ to be 

equal to the posterior expectation 𝔼[̃࢞|ߠ] leads to the best possible prediction of ߠ given 

simulated data ̃࢞ and hence minimizes the expected MSE, the optimization procedure of the 

supervised learning approach effectively approximates the posterior mean of a given parameter ߠ 

(and similarly for a parameter vector 𝜽 in a multi-dimensional context). This observation also 

implies that any supervised learning approach which optimizes the MSE criterion can potentially 

be trained on an ABC reference table to approximate 𝔼[𝜽|࢞], thus re-framing the problem of 

inference as a problem of optimization. 

Heteroscedastic loss 

As in the previous machine learning approaches to ABC, we frame the problem of 

parameter estimation as a supervised learning task, provided that a reference table is available. 

We propose to train a 1D convolutional neural network (CNN) on the raw simulated datasets 
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𝑖=ଵ𝑁{ሺ𝑖ሻ̃࢞} , optimizing the heteroscedastic loss criterion (Kendall & Gal, 2017; Nix & Weigend, 

1994):  

 ℒሺࢃሻ = ͳܰ  ∑ ͳʹ𝜎ଶሺ̃࢞ሺ𝑖ሻሻ   𝑁
𝑖=ଵ ሺ𝑖ሻߠ̂‖ − ሺ𝑖ሻ‖ଶଶߠ  + ͳʹ log 𝜎ଶሺ̃࢞ሺ𝑖ሻሻ  (8) 

It is immediately obvious, that the heteroscedastic loss is proportional to the negative log-

likelihood of a Gaussian model with constant variance as defined by eq. (7). However, we now 

also train the network to implicitly predict the 𝜎ଶ term, corresponding to the variance of the 

target parameter distribution. The target distribution from eq. (4) then becomes: 

; ̃࢞|ߠሺ݌  ሻࢃ =  𝒩ሺߠ| ,ሻ̃࢞ሺ݂ࢃ 𝜎ଶሺ̃࢞ሻሻ (9) 

where we explicitly denote the dependence of the 𝜎ଶ variance term on the simulated input 

dataset ̃࢞. Thus, the network is trained to predict 𝜎ଶሺ̃࢞ሺ𝑖ሻሻ along with ̂ߠሺ𝑖ሻ. The network output 

then becomes (ߠ,̂  𝜎ଶሺ̃࢞ሻሻ) =  ሻ. Assuming a Gaussian regression model, another̃࢞ሺ݂ࢃ 

interpretation of the heteroscedastic loss suggests that the network’s predictions approximate 

both the posterior mean 𝔼[࢞|ߠ] and the posterior variance ܸܽ[࢞|ߠ]ݎ of the parameter 

distribution.  

Heteroscedastic regression comes with two important advantages: 1) it does not assume a 

fixed variance parameter across all inputs ̃࢞ሺ𝑖ሻ; 2) it enables us to learn the variance term 𝜎ଶሺ̃࢞ሺ𝑖ሻሻduring training as a function of the data. Intuitively, if the model makes a particularly 

bad prediction, the squared L2 loss term ‖̂ߠሺ𝑖ሻ −  ሺ𝑖ሻ‖ଶଶ is going to be large, thereby inducing anߠ 

increase in the 𝜎ଶሺ̃࢞ሺ𝑖ሻሻ uncertainty term to keep the overall error low. The log 𝜎ଶሺ̃࢞ሺ𝑖ሻሻ  term, on 

the other hand, prevents the model from “cheating” by not allowing the uncertainty to grow to 
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infinity, which would inevitably reduce the loss, but would not result in the model learning any 

meaningful information from the data.  

Neural network architecture 

For both toy examples, we used a fully convolutional neural network with three hidden 

layers (see O'Shea & Nash, 2015 for an in-depth discussion on convolutional networks) where 

the last hidden layer computes the average value over the first spatial dimension, also known as 

global average pooling (Lin et al., 2013). If ݉ is the number of parameters of the model from 

which samples are generated, the output layer of the CNN consists of ݉ linear activation units 

for predicting each component of 𝜽, and further ݉ units predicting each corresponding 𝜎ଶሺ̃࢞ሻ. 

The latter units apply the softplus activation function, defined by: 

 𝜉ሺݖሻ = log ሺͳ +  ݁𝑧ሻ  (10) 

The softplus activation is introduced in order to ensure that estimates of 𝜎ଶሺ̃࢞ሻ are always 

non-negative. Thus, for each application, the number of output units is double the number of 

parameters to be estimated. For all examples, we trained the CNN for 5 epochs using the Adam 

optimization algorithm (Kingma et al., 2014) with learning rate set to 0.001. We did not perform 

extensive hyperparameter search over the CNN parameter space, and strived to keep the model 

as small as possible.  

The core idea of our convolutional approach is to fully exploit the grid-like structure 

inherent in most datasets. In the simplest case of 1D 𝑖. 𝑖. ݀. datasets, each data point is 

statistically independent of all others, so it makes sense to use convolutional kernels (also called 

filters) of size 1 and stride 1 in the first layer of the network. We allow as many (or almost as 

many) kernels as there are data points in order to avoid excessive loss of information from the 

input layer to the first convolutional layer. Since these sliding convolutional kernels have the 
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property to extract equivariant representations (see the Discussion section for more details on 

why CNN properties are useful for extracting information from raw data samples), shuffling the 

distribution does not dramatically change the output of a particular kernel, which has hopefully 

learned to respond to a given range of values, regardless of the position of the value in the input 

sample. In later layers, we allow for kernel sizes > 1 in an attempt to implicitly learn a hierarchy 

of summary statistics.  

In the more complicated case where each simulated dataset forms a multidimensional 

array, and data points along a given axis (e.g. rows) are connected in some way, the first hidden 

layer is built from kernels of size which is appropriate for encoding information contained in 

combinations or sequences of data points.  

To make the latter description more concrete, consider a dataset with ݊ rows and 𝑘 

columns containing 𝑘 − ͳ predictor variables and an outcome variable in a multiple regression 

scenario (see also Figure 1). Each row is composed of one single value per predictor variable and 

the corresponding outcome. We exploit this structure by using 1d convolutional filters with a 

kernel size corresponding to the number of columns and stride of 1 as the first layers. These 

settings (kernel size = 𝑘, stride = 1) ensure that the network is fed all the relevant information 

inherent in this particular data structure.   

We now proceed to evaluate our proposed method on two artificial statistical models with 

known posterior distributions. Then, we apply the method to the LCA model from cognitive 

psychology.   
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Results 

Toy example 1: Multivariate normal with unknown mean and variance 

We first demonstrate the utility of our method on the simple conjugate multivariate 

normal (MVN) model introduced in Gelman et al. (2013, pp. 72–73). The conjugate prior 

distributions for the mean 𝝁 and covariance matrix 𝚺  of the MVN model are given by: 

 

            𝚺   ~   𝐼݊𝑣ܹ𝑖ݏℎܽݐݎሺ𝚲Ͳ, 𝑣Ͳሻ        𝝁|𝚺   ~   𝒩ௗሺ𝝁଴, 𝚺 𝑘Ͳ⁄ ሻ ࢞𝑖| 𝝁, 𝚺   ~   𝒩ௗሺ𝝁, 𝚺ሻ, 𝑖 = ͳ, … , ݉ 

(11) 

In this model, 𝐼݊𝑣ܹ𝑖ݏℎܽݐݎሺ𝚲଴, 𝑣଴ሻ denotes an inverse Wishart distribution parameterized 

by a ݀-by-݀ scale matrix  𝚲଴ and degrees of freedom 𝑣଴, and 𝒩ௗሺ𝝁, 𝚺ሻ denotes a multivariate 

normal distribution with a ݀-dimensional mean vector 𝝁 and a ݀-by-݀ covariance matrix 𝚺. Since 

these priors are conjugate to the normal likelihood, it is possible to derive closed-form solutions for 

the marginal posterior distributions (see Gelman et al., 2013, pp. 72–73). Thus, to obtain samples 

from the true joint posterior distribution of 𝝁 and 𝚺, one uses the following procedure: first, draw 𝚺|࢞ͳ, ,ʹ࢞ … , ,ሺ𝚲݉ݐݎℎܽݏ𝐼݊𝑣ܹ𝑖 ~ ݉࢞ 𝑣݉ሻ, then draw 𝝁|𝚺, ,ଵ࢞ ,ଶ࢞ … , ,𝑚  ~   𝒩ௗሺ𝝁𝑚࢞ 𝚺 𝑘݉⁄ ሻ where {𝚲݉, 𝑣݉, 𝝁݉, 𝑘𝑚} are the posterior model parameters. 

For the current example, we set ݀ = ʹ, ݉ = ͳͲͲ, 𝚲଴ =  𝑰ଶ, 𝑣଴ = ͷ, 𝑘Ͳ = ͵, 𝝁଴ =  ሺͲ, Ͳሻ𝑇 

and simulated 100 000 datasets from the model defined by (11). Thus, each row 𝑖 of the 

reference table contains the raw sample {̃࢞𝑘ሺ𝑖ሻ}𝑘=ଵଵ଴଴ , each element ̃࢞𝑘ሺ𝑖ሻ being a realization of a two-

dimensional random vector. Given the referenced table as input, the CNN model was trained to 

predict the corresponding values of {𝝁ሺ𝑖ሻ, ݀𝑖ܽ݃ሺ𝚺ሻሺ𝑖ሻ}. Note that we are only interested in the 

diagonal elements of the covariance matrix, since we are only estimating the variance of the 
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MVN model. We trained the model on a training set of 99 000 simulated datasets, holding out the 

remaining 1000 datasets for validation. Finally, to evaluate the performance of the model, we 

generated 100 independent datasets ࢄ௧௘௦௧, on which we estimated the true values of 𝔼[𝝁|࢞], 𝔼[݀𝑖ܽ݃ሺ𝚺ሻ|࢞], ܸܽݎ[𝝁|࢞] and ܸܽݎ[݀𝑖ܽ݃ሺ𝚺ሻ|࢞] by obtaining 10 000 samples from the true joint 

posterior distribution of 𝝁 and 𝚺, as dictated by the sampling procedure described above. Figure 

2 compares the estimates obtained from the true joint distribution with the estimates obtained 

from our CNN model.  

Table 1 compares the performance of our approach to the performance of the ABC-RF 

and ABC-DNN methods as specified by Algorithm 2 and Algorithm 3 in terms of root mean 

squared error (RMSE). We used the same training and test sets for all three methods. For the 

ABC-RF approach, we computed the sample means, sample variances, the sample covariance 

and sample median absolute deviations, as well as all possible sums and products with these four 

metrics as summary statistics. We also used the hyperparameter settings for the random forest 

regression algorithm recommended by Raynal et al. (2017, p. 16). For the ABC-DNN approach, 

we created a fully connected neural network with 3 hidden layers, each hidden layer consisting 

of 100 units, and trained it to minimize the MSE loss between true and predicted parameters 

(Jiang et al., 2015). For the subsequent rejection sampling scheme, we used the estimates of the 

trained neural network as summary statistics ߟሺ̃࢞ሻ with tolerance level 𝜖 = Ͳ.Ͳͳ, and Euclidian 

distance as the distance function ݀ሺߠ,  ሻ. Posterior moments were computed by consideringߠ̂

accepted samples from the approximate posterior distribution ݌𝜖(ߟ|ߠሺ̃࢞ሻ).   

Both graphical and numerical evaluation of the performance of our CNN model suggest a 

decent approximation of the first two posterior moments of the multivariate normal model. We 

observe a slight overestimation of the posterior variance ܸܽݎ[݀𝑖ܽ݃ሺ𝚺ሻ|࢞] in the lower and upper 
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regions of the parameter space. Moreover, our method clearly outperforms the ABC-DNN 

approach, and yields approximations comparable to the ABC-RF approach. However, it is 

important to note that in this example, it is easy to come up with summary-statistics that capture 

all the relevant information, thus giving the ABC-RF approach a clear advantage.  

Toy example 2: Bayesian regression 

We now turn to a slightly more complex example based on Zellner’s hierarchical 

regression model (Raynal et al., 2017; Marin & Robert, 2014, chapter 3). Given a simulated ݉ ݔ ݀ design matrix of covariates ࢄ = ሺݔଵ, ,ଶݔ … ,  ௗሻ, the hierarchical conjugate model isݔ

defined by: 

 

         𝜎ଶ   ~   𝐼𝐺ሺܽ଴, ܾ଴ሻ     𝜷|𝜎ଶ   ~   𝒩ௗሺ𝟎, ݊𝜎ଶሺࢄ𝑇ࢄሻ−ଵሻ ࢟|𝜷, 𝜎ଶ   ~   𝒩𝑚ሺࢄ𝜷, 𝜎ଶ𝑰ሻ  (12) 

where 𝐼𝐺ሺܽ଴, ܾ଴ሻ denotes an inverse gamma distribution with shape parameter ܽ଴ and scale 

parameter ܾ଴, the regression weights vector 𝜷 = ሺ𝛽ଵ, 𝛽ଶ, … , 𝛽ௗሻ 𝑇 follows a ݀-dimensional 

normal distribution, and the likelihood follows an ݉-dimesional normal distribution with an 

isotropic covariance matrix. As in the previous example, the conjugacy property of the model 

allows for an analytic computation of the marginal posterior distributions of 𝜷 and 𝜎ଶ (see Marin 

& Robert, 2014, chapter 3).  

For this example, we set ݀ = ʹ, ܽ଴ = Ͷ, ܾ଴ = ͵, ݉ = ͳͲͲ and generate a reference table 

containing 100 000 rows of raw 𝑖. 𝑖. ݀. samples {̃࢞𝑘ሺ𝑖ሻ}𝑘=ଵଵ଴଴  from the model defined by (12), where 

each element ̃࢞𝑘ሺ𝑖ሻ is an ordered triple containing the two covariates and the outcome generated 

using the covariates ሺݔଵሺ𝑖ሻ, ,ଶሺ𝑖ሻݔ  ሺ𝑖ሻሻ𝑘. The CNN is then asked to predict the corresponding dataݕ
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generating distribution parameters {𝛽ଵሺ𝑖ሻ, 𝛽ଶሺ𝑖ሻ, 𝜎ଶሺ𝑖ሻ}. In contrast to the previous example, each 

kernel in the input layer should learn to encode a particular combination of covariates and 

outcome (tripe) leading to a set of parameters instead of a single data point.  

As in the previous toy example, we trained the model on a training set of 99 000 

simulated datasets, holding out the remaining 1000 datasets for validation. Again, for the purpose 

of evaluation, we generated 100 independent datasets ࢄ௧௘௦௧, on which we computed the true 

values of 𝔼[𝜷|࢞], 𝔼[𝜎ଶ|࢞], ܸܽݎ[𝜷|࢞], and ܸܽݎ[𝜎ଶ|࢞]. Figure 3 compares the analytically 

computed posterior moments with the estimates obtained from our CNN model.  

Once again, we observe a very low approximation error (RMSE) of the posterior 

expectations of the regression weights 𝜷. The approximation error of the posterior expectation of 

the residual variance 𝜎ଶ is slightly higher. The approximation of the posterior variance of 𝜷 is 

also good, whereas we make the observation that the posterior variance of 𝜎ଶ is overestimated.  

Table 2 compares the performance of our approach to the performance of the ABC-RF 

and ABC-DNN methods as specified by Algorithm 2 and Algorithm 3 in terms of root mean 

squared error (RMSE). As in the previous example, we used the same training and test sets for all 

three methods. Hyperparameter settings of the algorithms were identical to those used in the 

previous example. The summary statistics we computed for the input to the ABC-RF were the 

same as employed by Raynal et al. (2017): the maximum likelihood estimates of 𝜷, the residual 

sum of squares, the empirical covariance and correlation between ࢟ and ࢄ, the sample mean, 

variance, and median of ࢟, resulting in a total of 10 metrics. Network architecture, tolerance 

level and distance function for the ABC-DNN did not differ from the previous example. 

Compared to the ABC-RF approach, our method achieves a slightly better approximation 

of the posterior expectation and variance of 𝜷, whereas the posterior expectation and variance of  
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𝜎ଶ is better approximated by the ABC-RF approach. Compared to the ABC-DNN approach, our 

models yields better approximations for all parameters except the variance of 𝜎ଶ. 

Example 3: Leaky Competing Accumulator (LCA) model 

As a final example, we apply our approach to a realistic model instance from the 

cognitive modeling literature – namely, the LCA model (Miletić et al., 2017; Usher & 

McClelland, 2001). LCA is rooted in the theoretical framework of sequential sampling models 

(SSMs), which attempts to describe perceptual decision-making via the mechanism of noisy 

evidence accumulation. SSMs assume that, for each decision path, there is a latent process at 

work, termed an accumulator, which samples evidence from sensory input through time. A 

decision process terminates when an accumulator exceeds a certain threshold of activation, 

meaning evidence for a given option has culminated in a decision in favor of the given option. 

The inherent stochasticity of evidence accumulation ensures variation in empirical response 

times given identical stimuli, and also allows for explaining the occurrence of erroneous 

responses. 

Despite the fact that different researchers have proposed different variants of SSMs 

(Ratcliff & McKoon, 2008; Voss et al., 2013; Usher & McClelland, 2001), most flavors of SSMs 

are specified in terms of a finite set of parameters, each interpretable in light of some assumed 

neurocognitive process or property of such a process. Importantly, all SSMs provide a way to 

decompose empirical response times into a decision time component and a non-decision time 

component, the latter accounting for pre-decisional perceptual (encoding time) and post-

decisional motor processes (response execution). Parameters of SSMs are typically estimated 

from empirical response time distributions via an assumption- and application-dependent 

estimation procedure (i.e., ML estimation).  
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In particular, the LCA defines evidence accumulation via the following stochastic 

differential equation (Miletić et al., 2017): 

𝑖ݔ݀  =  [𝐼𝑖 − 𝑘ݔ𝑖 − 𝛽 ∑ 𝑖′𝑖′≠ 𝑖ݔ ] 𝜏ݐ݀ +  𝜉𝑖√݀ݐ𝜏 𝑖ݔ   = max ሺͲ,  𝑖ሻ  (13)ݔ

In this model equation, ݀ݔ𝑖 denotes the change in activation of accumulator 𝑖, 𝐼𝑖 is the 

input accumulator 𝑖 recieves, 𝑘 is leakage, 𝛽 is inhibition, ௗ௧𝜏  denotes the time-step size and 𝜉 

represents Gaussian noise.  

The LCA model assumes one accumulator process for each option in a decision-making 

task. Each accumulator competes with all others for reaching a common threshold ܼ. Observed 

response times are obtained by an addition of constant non-decision time ܰ𝐷𝑇 prior to evidence 

accumulation and following the reaching of a threshold by an accumulator. The leakage and 

inhibition parameters are unique to LCA, and they appear to be motivated by neuroscientific 

observations demonstrating parallels to evidence accumulation on a neural level. Leakage 

describes the amount of information lost at each time point by an accumulator. Inhibition 

describes the proportion of an accumulator’s activation that suppresses the activation of 

competing accumulators.    

We chose to apply our approach to the LCA model, since the model parameters do not 

have a known likelihood function. Consequently, most parameter estimation procedures resort to 

a simulation-based approach (Miletić et al., 2017). For the following example, we simulate 

response times from the LCA model and attempt to recover the data-generating parameters. We 

place the same prior distributions over the model parameters as described in Miletić et al. (2017): 
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      ∆𝐼   ~   𝒰ሺͲ.Ͳͷ, Ͳ.͵ሻ         𝐼   ~   𝒰ሺͲ.8, ͳ.ʹሻ        𝑘   ~   𝒰ሺͳ, 8ሻ        𝛽   ~   𝒰ሺͳ, 8ሻ        ܼ   ~   𝒰ሺͲ.Ͳͷ, Ͳ.ʹͷሻ     ܰ𝐷𝑇   ~   𝒰ሺͲ.ʹͲͲ, Ͳ.ͷͲͲሻ  

(14) 

Note, that by choosing uniform priors, the Bayesian approximation of the posterior mean 

and variance would coincide with the maximum likelihood estimation of the mean and variance, 

since ݌ሺ𝜽ሻ acts solely as a constant multiplicative factor on the likelihood. 

For the current example, we fixed the noise variance to 𝜉 = Ͳ.ͳ. We generated a 

reference table with 500 000 simulated datasets, sampling parameters from (14) and generating 

1000 response times according to (13). We held out 1000 datasets for validation and generated 

500 further independent datasets ࢄ௧௘௦௧ for evaluation. 

With these settings, the model receives as input each simulated response time distribution {̃ݔ𝑘ሺ𝑖ሻ}𝑘=ଵଵ଴଴଴ as well as the information which accumulator “won” the threshold competition, 

encoded as a one-hot vector. It is then required to predict each of the following LCA parameters: {∆𝐼ሺ𝑖ሻ, 𝐼ሺ𝑖ሻ, 𝑘ሺ𝑖ሻ, 𝛽ሺ𝑖ሻ, ܼሺ𝑖ሻ, ܰ𝐷𝑇ሺ𝑖ሻ}. Figure 4 compares the data-generating parameters with the 

approximations obtained by the CNN model.   

We observe that our model is able to recover the parameters ∆𝐼, ܰ𝐷𝑇, and ܼ, reasonably 

well, indexed by low RMSE and high correlation between CNN estimates and actual data-

generating parameters. The recovery of the leakage and inhibition parameters, 𝑘 and 𝛽, 

respectively, is less accurate, but seems to be improvable with the addition of more simulated 
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samples or a deeper architecture with more layers. The CNN is unable to recover the input 

parameter 𝐼, as it appears as if the data did not contain any useful information about the 

particular parameter.  

Table 2 provides a comparison between our approach and two PDA-based methods 

(maximum likelihood estimation and Bayesian estimation performed via differential evolution 

Markov-chain Monte Carlo). It is noteworthy, that the relative estimation quality of our approach 

is similar to that of the PDA-based fitting procedures. However, our approach clearly 

outperforms PDA with respect to estimating leakage and inhibition, as well as the threshold 

parameters. 

Discussion 

In this paper, we proposed a novel method for ABC parameter estimation using CNNs to 

simultaneously approximate the means and variances of different posterior parameter 

distributions. We verified the usefulness of our approach on two toy examples and a “real” 

example from the cognitive modelling literature. 

Compared to previous ABC methods rooted in the supervised machine learning approach, 

our method is truly end-to-end, since it requires no computation or selection of summary 

statistics and no other feature-engineering activities. The possibility of representing raw 

simulated samples in a grid-like data structure allows us to exploit the advantages of modern 

CNNs over traditional DNNs, namely sparse interactions, parameter sharing, and equivariant 

representations (Goodfellow et al., 2016). 

Sparsity of interactions refers to the fact that in place of matrix multiplication, CNNs 

utilize convolution with a small kernel size, which make CNNs much more efficient in terms of 

memory usage and computational efficiency. Parameter sharing is directly related to the 
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property of sparse interactions. It refers to the fact that parameters of CNN layers are not tied to 

particular locations of the input, but rather used at every position of the input. Parameter sharing 

allows the CNN to learn a single set of parameters that capture this particular data point or series 

of data points. The third property, equivariance, is a consequence of the previous two. It implies 

that shifting the distribution (in the case of time-series), or shuffling the distribution (in the case 

of 𝑖. 𝑖. ݀. sequences), do not dramatically change the representation of the input learned by a 

particular kernel.  

Taken together, these properties make CNNs an excellent choice for implicitly learning 

summary statistics from simulated samples. In addition, they enable the network to work with 

inputs of variable size, making the size of the simulated samples ̃࢞ independent of the size of the 

observed data ࢞, thus overcoming a further huge limitation of all previous supervised machine 

learning approaches.  

The use of CNNs in the way described in this paper allows for transfer learning to enter 

the field of likelihood-free inference. Transfer learning refers to the process of re-using a pre-

trained network for the same or similar task. In other words, once trained, a CNN can be shared 

across and used as a fast, likelihood-free parameter estimator in a given cognitive domain (i.e. to 

estimate diffusion model parameters from reaction times in a single forward pass). Even 

regarding models with known likelihood, our approach might offer a good alternative to 

computationally costly sampling procedures. Moreover, its application as a general black-box 

estimator of hard-to-estimate parameters of various white box cognitive models is only limited 

by the capability of the white-box model to generate representative samples (i.e., a reference 

table). Needless to say, this transferability is a unique advantage of our deep learning model 

compared to different architectures.  
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Throughout our experiments, the approximation of the posterior means was shown to be 

very accurate. The posterior variance tends to be slightly overestimated – a fact that requires 

further attention, but, at the very least, implies that our model does not suffer from 

overconfidence. One possibility for the overestimation of uncertainty is that, due to the finite 

sample, the estimated 𝜎ଶሺ̃࢞ሻ term fails to capture the true posterior variance. Another possibility 

is that, since the heteroscedastic loss criterion implies an underlying Gaussian model, deviations 

of the true posterior from the Gaussian model will cause 𝜎ଶሺ̃࢞ሻ  to deviate from the true posterior 

variance. Nevertheless, the deviations we observed are not dramatic, and further experiments on 

models with known posteriors should reveal the true extent of the approximation error.    

As an attempt to circumvent the shortcomings of ABC rejection algorithms (curse of 

dimensionality, tolerance level tuning and selection of distance function), our approach does not 

provide a way to sample from the full joint posterior distribution, but rather summarizes the 

distribution with its first two moments.  However, if one wishes, one can still use the estimates 

obtained by the CNN as summary statistics in a rejection procedure (Jiang et al., 2015), with the 

added benefit of having the approximation of the second posterior moment beside the first 

moment. Furthermore, a full approximate distribution can be computed either by simply 

sampling from a normal distribution parameterized by the predicted means and variances or by 

using this distribution as a more informative prior distribution in a usual rejection sampling 

approach to drastically improve the efficiency.   

It is also straightforward to extend our approach to the problem of ABC model selection. 

In machine-learning terms, instead of performing regression, we simply need to frame the 

problem as a classification task, in which the network is trained to classify the label of the model 
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used to generate a particular data sample (see Pudlo et al., 2015 for a random-forest based 

approach). 

Conclusion 

In this paper, we proposed a method for reliable likelihood-free inference using fully 

convolutional networks to automatically learn optimal summary statistics from raw samples. We 

obtained accurate estimates of the first two moments of the posterior parameter distribution on 

two toy examples and a cognitive model of choice reaction times. Furthermore, our method 

exhibits the following unique features as compared to previous supervised learning approaches to 

ABC: 

1. An end-to-end architecture eliminating the need to manually hand-craft summary 

statistics of the data distribution; 

2. Fast training due to simultaneous parameter estimation; 

3. Re-usable models due to the possibility of working with variable-sized inputs; 

Further research should test the utility of our approach on various real-world examples from the 

cognitive modelling literature which require non-standard solutions or are too expensive to 

compute with sampling based procedures. Another future avenue for our approach is likelihood-

free model choice, which would require a different optimization procedure for “labelling” the 

data with the correct model and quantifying uncertainty at the same time.  
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Tables 

Table 1 

Methods comparison on the multivariate normal toy example.  

Method 𝔼[𝜇ଵ|࢞] 𝔼[𝜇ଶ|࢞] 𝔼[𝜎ଵଶ|࢞] 𝔼[𝜎ଶଶ|࢞] ܸܽݎ[𝜇ଵ|࢞] [࢞|𝜇ଶ]ݎܸܽ [࢞|𝜎ଵଶ]ݎܸܽ [࢞|𝜎ଶଶ]ݎܸܽ 𝔼[𝜇ଵ|࢞]  

DeepInference 0.013 0.029 0.056 0.046 0.001 0.001 0.066 0.048 0.013  

ABC-DNN 0.046 0.047 0.361 0.334 0.009 0.1 0.857 0.368 0.046  

ABC-RF 0.013 0.014 0.028 0.015 0.002 0.002 0.012 0.013 0.013  

Note:  Root mean squared error (RMSE) scores given in bold highlight the best approximation in 

a given column.  
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Table 2 

Method comparison on the Bayesian regression toy example. 

Method 𝔼[𝛽ଵ|࢞] 𝔼[𝛽ଶ|࢞] 𝔼[𝜎ଶ|࢞] ܸܽݎ[𝛽ଵ|࢞] ܸܽݎ[𝛽ଶ|࢞] ܸܽݎ[𝜎ଶ|࢞]  

DeepInference 0.062 0.059 0.148 0.021 0.046 0.219  

ABC-DNN 0.456 0.674 0.369 0.232 0.203 0.076  

ABC-RF 0.093 0.087 0.062 0.055 0.099 0.037  

Note:  RMSE scores given in bold highlight the best approximation in a given column.  
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Table 3 

Methods comparison on the LCA example. 

 RMSE Correlation r 

Method ∆𝐼 𝐼 𝑘 𝛽 ܼ ܰ𝐷𝑇 ∆𝐼 𝐼 𝑘 𝛽 ܼ ܰ𝐷𝑇 

DeepInference 0.011 0.113 1.309 1.586 0.02 0.02 0.99 0.11 0.73 0.59 0.9 0.97 

ML-PDA 0.024 0.508 2.487 3.216 0.045 0.044 0.96 0.07 0.4 0.27 0.71 0.91 

DE-MCMC 0.021 1.073 2.916 4.742 0.03 0.02 N/A N/A N/A N/A N/A N/A 

Note:  RMSEs and correlations for the ML-PDA and DE-MCMC methods with sample of size ܰ = ͳͲͲͲ are reproduced from Miletić et al. (2017).  

 

 

 

 

 



  

 

 

Figure 1. Graphical illustration of the CNN architecture used throughout this paper. The input 

represents data sets generated from the Bayesian regression model (toy example 2), organized as 

an  grid, with  equal to the number of predictors (in this case 2) + the outcome, and  

equal to the number of simulated samples. The CNN then performs a series of non-linear 

transformations, each layer applying convolution as a linear transformation followed by a 

rectified linear (ReLU) non-linearity, which is typical of modern convolutional architectures. 

The last layer then outputs the estimates of the posteriors mean and variance (one tuple of the 

form  for each model parameter). The loss is then evaluated via eq. 8. 
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Multivariate normal results 

Figure 2. Comparison of the estimates obtained by the CNN model with the true parameter 

values on the multivariate normal toy example. True parameter values are plotted on the x-axis, 

and corresponding estimates on the y-axis. The first row depicts the posterior expectations of the 

model parameters. Posterior variances are depicted in the second row. Root mean squared error 

(RMSE) is also given for each estimate. 
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Bayesian regression results 

 

Figure 3. Comparison of the estimates obtained by the CNN model with the true posterior 

parameter values on the Bayesian linear regression example. True parameter values are plotted 

on the x-axis, and corresponding estimates on the y-axis. The first row depicts the posterior 

expectations of the model parameters. Posterior variances are depicted in the second row. Root 

mean squared error (RMSE) is also given for each estimate. 
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LCA example results 

Figure 4. Depiction of parameter recovery of the LCA model. Values of the data-generating 

parameters are plotted on the x-axis, and corresponding CNN estimates on the y-axis. Both root 

mean squared error (RMSE) and Pearson’s correlation coefficient (r) are also reported. 
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2 LEARNING THE LIKELIHOOD  Abstract In the present paper, we use the recently develop DeepInference architecture as a general likelihood-free method to estimate parameters of cognitive models. DeepInference is a machine-learning algorithm based on the training of convolutional neural networks. In a first step, the network has to be trained with simulated data to learn the relation of parameters and data. Then, the trained network can be used to re-estimate parameters for real data. The efficiency and robustness of this approach was tested for two decision models based on continuous evidence accumulation. Study 1 investigated the recovery of parameters of the diffusion model, and Study 2 addressed the same question for a Lévy-Flight model. Results demonstrate that the machine-learning approach is superior to traditional multidimensional search algorithms that maximize the likelihood, both in terms of correlations of estimated parameters with true parameters and with regard to absolute deviations. The new approach also excels the maximum likelihood based search pertaining the robustness in the presence of contaminated data.   Keywords: Machine Learning, Parameter Estimation; Cognitive Model; Diffusion Modell; Lévy-Flight   



3 LEARNING THE LIKELIHOOD Learning the Likelihood: Using Deep Inference for the Estimation of  Diffusion-Model and Lévy Flight Parameters In recent years, a great increase in interest for cognitive modelling became evident in many areas of psychology (Heathcote, Brown, & Wagenmakers, 2015; Rodgers, 2010). The development of formal mathematical models for cognitive processes has many advantages: Firstly, the translation of a theoretical model into a mathematical formulation enforces a detailed definition of the model that avoids – or at least uncovers – remaining ambiguities. Secondly, the definition of a theoretical model allows for the derivation of well-founded hypotheses that in turn make possible stringent tests of the theoretical model. Thirdly – and most important for the present paper – cognitive models can be applied as measurement tools, that is, model parameters can be used as precise and process-specific measures for ongoing cognitive processes. For example, in the domain of diffusion models (Voss, Nagler, & Lerche, 2013), separate parameters map processing speed (drift rate), speed-accuracy settings (threshold separation), decision bias (starting point), or duration of non-decision processes like motoric response execution (non-decision time). Whereas traditional measures of performance (i.e., response times or accuracy rates) are the result of complex interactions of different processes, the drift rate from a diffusion model analysis is a purer measure for the speed with which the presented stimuli are processed, for example, because the drift is estimated independently from individual speed-accuracy settings and the speed of motor processes.  However, the use of parameters from cognitive models as measures for inter-individual differences requires a precise and reliable estimation of these parameters(Lerche & Voss, 2017; Lerche, Voss, & Nagler, 2016). For complex models, this can be a difficult endeavour. Even if the likelihood function for a specific model is known, its calculation can be time demanding, and analytical solutions for the maximum likelihood (ML) solution are often not available. In this case, multidimensional search algorithms to maximize the likelihood like the SIMPLEX-search (Nelder & Mead, 1965) have to be used (see Voss, Voss, & Lerche, 2015, for an example from diffusion modelling). For stochastic models with a high-dimensional parameter space, however, such searches are not only slow but often inaccurate as well, for example, when there are local minima, or when the likelihood is not calculated with the necessary precision1. One solution for this problem are Markov-Chain-Monte-Carlo (MCMC) algorithms that tend to be more efficient for high-dimensional problems (van                                                              1 For example, the calculation of the likelihood for the diffusion model contains an infinite sum, and the precision of calculation depends on the number of evaluations of this sum (Navarro & Fuss, 2009). 



4 LEARNING THE LIKELIHOOD Ravenzwaaij, Cassey, & Brown, 2018). These MCMC approaches bring the additional advantage that they make posterior distributions for parameters available, which provide information about the precision of parameter estimates. Although Bayesian modelling sometimes helps to overcome problems of parameter estimation, some problems remain: Firstly, the application of this approach is limited to models for which the likelihood is known. Secondly, as the likelihood is very sensitive to outliers, results can be strongly biased in case of contaminated data. Thirdly, the implementation can be quite demanding. We will discuss these limitations in more detail below, again drawing upon the example of diffusion modelling. Problems of likelihood-based parameter search While generally likelihood-based parameter search algorithms (traditional ML-methods or Bayesian approaches) are mathematically most efficient, their usefulness is limited in certain cases. We will illustrate these limitations within the diffusion model framework (for general introductions, see Ratcliff & McKoon, 2008; Voss et al., 2013). However, the presented arguments are not specific to diffusion models but apply also to other model classes.  The first limitation of likelihood-based approaches regards the availability of the likelihood of a model. While the likelihood can be calculated easily for most statistical models, it often becomes intractable for more complex cognitive models. For example, in diffusion modelling, the density for first passage times of a Wiener diffusion process with two absorbing boundaries (i.e., for the decision time) is well known (e.g., Navarro & Fuss, 2009). However, there are many plausible ways to extend or change the diffusion model that make the calculation of the density (and thus of the likelihood) intractable. Such changes comprise, for example, collapsing boundary models that assume that decision thresholds are decreased over time (e.g., Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015), models with changing drift rates (e.g., Ulrich, Schroter, Leuthold, & Birngruber, 2015), or so-called Lévy-flight models assuming non-Gaussian noise distributions in evidence accumulation (Voss, Lerche, Mertens, & Voss, 2018). In these examples, there is no known analytical function to calculate the likelihood of a response from the model parameters2. A restriction of research to models providing an analytic form of the likelihood would be a severe obstacle to progress in the research of cognitive processes.   A second limitation of likelihood-based approaches regards their sensitivity for outliers. Any data outside the scope of predictions of a model will result in a likelihood of                                                              2 Of course, the likelihood can be approximated by a simulation approach (Heathcote, Brown, & Mewhort, 2002). That is, responses are simulated many times, and the likelihood is estimated for response-time bins. However, this is a very slow method that might also lack of the required precision. 



5 LEARNING THE LIKELIHOOD zero, thus excluding some parameter values completely. On a first glance, it makes sense that if a model cannot account for observed data, the model needs to be invalid. However, assume for a moment that in a 500-trial experiment, a continuous accumulation process (as assumed by the diffusion model) guides the participant’s response in 499 trials, but that in the one remaining trial the participant uses a fast-guessing strategy, and responds before actually perceiving the stimulus. Performance in this one trial might have a likelihood of zero for the true parameter values from the 499 valid trials (because the observed RT is faster the minimum predicted non-decision time), thus rendering the total likelihood to be zero as well. Therefore, the parameter search is forced to adopt values that can encompass all data, that is, also the one fast response. Specifically, this would result in a lowered non-decision time, which in turn will result in a bias of other parameters as well. In this example, a careful pre-processing of data might suffice to remove the outlier before the modelling. However, Lerche et al. (2016) showed that fast contaminants strongly bias ML-based parameter estimation for diffusion models, even if the contaminants are no outliers in a statistical sense (i.e., the proportion of fast responses is increased at a point in time where the true model already predicts some responses). One way to respond to this problem is to extend the model so that it encompasses more than one response strategy. For example, Ratcliff and Tuerlinckx (2002) included a “guessing parameter” in the diffusion model to account for contaminations of data. However, this makes models more complex and relies on additional assumptions (i.e., the nature of contamination needs to be known). Another possibility is to substitute the ML search by methods that are more robust, like, for example, the Kolmogorov-Smirnov-Distance between observed and predicted cumulative response time distributions (Lerche & Voss, 2017; Lerche et al., 2016; Voss, Rothermund, & Voss, 2004). However, this comes at the cost of a reduced efficiency of the parameter search, and the precision of results will be reduced in the case of sparse data (i.e., low trial numbers).  The last problem we want to discuss here regards implementational issues. In the case of complex models, results of a multi-dimensional parameter search are often not very robust and can depend on details of the implementation (e.g., regarding the search algorithm and the precision of calculations). For Bayesian modelling, the implementation became much easier in recent years due to the development of efficient and flexible MCMC samplers like JAGS (http://mcmc-jags.sourceforge.net/) or Stan (http://mc-stan.org/). However, despite the great flexibility of these packages, they do not allow to implement all cognitive (process) models. For example, Stan includes the density distributions for a basic version of the diffusion model, but not for the full Ratcliff model containing inter-trial variabilities of starting point, drift, and 



6 LEARNING THE LIKELIHOOD non-decision time (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002).3 Thus, developing a parameter estimation procedure still often requires a skilled programmer, and implementing a complete MCMC solution might be too demanding for many researchers.  Typically, simulating data from a model is much easier, and this allows for a completely different approach for the parameter estimation in cognitive models. We propose a recently developed method based on Deep Learning to estimate estimate model parameters (Radev, Mertens, Voss, & Köthe, 2018). This approach is very flexible; it requires no knowledge of the likelihood, and no specification of an optimization criterion. The algorithm learns the relation of parameter values and observed responses. In the following section, we present a short introduction to the employed deep-learning algorithm that is based on convolutional neural networks (CNN).  DeepInference: Parameter recovery with convolutional neural networks Recently, we proposed to train a fully convolutional neural network to approximate the first two moments of the posterior distributions of relevant model parameters (Radev et al., 2018). In particular, we cast the problem of inference as a supervised learning task, where simulated datasets represent the inputs to the algorithm, and the corresponding data-generating parameters represent its outputs. The rationale of the method stems from the fact that minimizing the mean squared error (MSE) between actual parameters and estimated parameters via an optimization procedure (e.g., stochastic gradient descent) results in an approximation of the conditional expectation of the parameters given the data (Kendall & Gal, 2017). In order to quantify the uncertainty of the obtained parameter estimates, we optimize the heteroscedastic loss given by  ℒ(𝑾) = &' 	∑ &*+,(𝒙.(/))			'01& 2𝜃4(0) −	𝜃(0)2** + &* log𝜎*(𝒙.(0))	 (1) where 𝑁 denotes the number of simulated data sets, 𝑾 denotes the weights of the neural network, 𝜃4 gives the estimated parameter value, and 𝜃 the actual parameter value, and 𝜎*(𝒙.) represents an uncertainty parameter learned directly from the data 𝒙..  Minimizing the heteroscedastic loss, in contrast to the MSE loss, allows the neural network model to capture the inherent uncertainty of estimates caused by training with finite data samples. In the case of a Gaussian model, this uncertainty has a nice interpretation as the                                                              3 Vandekerckhove, Tuerlinckx, and Lee (2011) suggested implementing these inter-trial-variability parameters hierarchically via prior distributions for drift, starting point, and non-decision time. However, this is conceptually not the same as an implementation of the full diffusion model where inter-trial-variability parameters are used directly to calculate the densities, because in the hierarchical approach these “priors” will eventually be overridden by data, that is, the impact of the variability parameters will be reduced as a function of trial numbers (Andrew Heathcote, personal communication). 



7 LEARNING THE LIKELIHOOD posterior variance of the target parameter distribution (Radev et al., 2018). On an intuitive level, if the estimated parameter value is too far off from the actual parameter value, the squared L2 loss term 2𝜃4(0) −	𝜃(0)2** is going to penalize the model by increasing the total loss. In order to correct for this, the model will need to increase the 𝜎*(𝒙.(0)) uncertainty term to keep the total loss low. At the same time, the log𝜎*(𝒙.(0))	 term acts as a regularizer, which prevents the uncertainty from growing to infinity.  Once the network is trained on a set of simulated data-parameters pairs, all parameters of new (real) data sets, as well as corresponding uncertainties, can be obtained simultaneously through a single forward pass through the network. Moreover, the use of fully convolutional neural networks makes it possible to fully exploit the grid-like structure of most empirical data and also work with data sets of variable size (i.e., different trial numbers).   Simulation Study 1: Recovering diffusion model parameters Aim of Study 1 was to test whether the deep inference algorithm explained above can recover diffusion model parameters with a similar accuracy as a multidimensional search maximizing the likelihood (Lerche et al., 2016). To test the robustness of results, we additionally compared precision of recovery of parameters form the pure data with performance when data were contaminated by fast guessing in some of the trials. Simulation of data Data were simulated following the rationale of the diffusion model by a C program employing the gnu scientific library (gsl; www.gnu.org/software/gsl) for random number generation. For each trial of the simulation, a path of the diffusion process was simulated using the stochastic Euler method (Voss et al., 2018). Specifically, the decision process started at time 𝑡 = 0 at point 𝑃(𝑡 = 0) = 𝑧𝑟 ⋅ 𝑎. Then, in each step of time the process was changed following Equation 2: 𝑃(𝑡 + Δ𝑡	) = 𝑃(𝑡) + Δ𝑡 ⋅ 𝑣 + √Δ𝑡 ⋅ 𝜖; 𝜖~𝑁(0,1), (2) where Δ𝑡 is a small increment in time (1 ms in our simulations), 𝑣 is the drift rate of the information accumulation, and 𝜖 is Gaussian noise. This process was run until it reached an upper threshold at 𝑎 or a lower threshold at 0. To the process duration 𝑡 the non-decision time 𝑡J was added. For the training of the CNN we coded the response by multiplying simulated response times with −1, when the process terminated at the lower threshold.  Because our model incorporated inter-trial variability of starting point, drift, and non-decision time (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002), specific values for 𝑧K, 



8 LEARNING THE LIKELIHOOD 𝑣, and 𝑡J for each trial were drawn from uniform or normal distribution given by Equations (3) to (5):  𝑡J′~𝑈(𝑡J − 0.5 ⋅ 𝑠QJ; 𝑡J + 0.5 ⋅ 𝑠QJ) (3)  𝑧K′~𝑈(𝑧K − 0.5 ⋅ 𝑠SK; 		𝑧K + 0.5 ⋅ 𝑠SK) (4)  𝑣′~𝑁(𝑣; 𝑠T) (5) Training data For the training of the CNN, 500.000 datasets4, each comprising a total of 500 trials from two conditions were simulated. For the two conditions, all parameters but the drift were held constant; different drift rates were used for the first vs. second half of trials. For each data set, parameters were randomly chosen from uniform distributions (Table 1).   In a second step, contaminated data sets were generated by including a small proportion (4%) of fast-guessing trials in each dataset. That is, in each dataset response latencies form 4% of all trials were replaced by a fast response time, drawn from a uniform distribution ranging from the lower edge of the predicted RT distribution (t0-st0/2) minus 100ms to the lower edge plus 100ms (Lerche et al., 2016). Responses (i.e., the sign of the simulated RTs) for these fast guessing trials were determined randomly. To test whether including contaminated data into the training set makes estimation more robust, we compare performance when the training data contains 0%, 10%, or 100% contaminated data sets (note that each contaminated data set comprised only 4%, or 20 trials, of simulated guessing).  Test data To assess the precision of parameter estimation, additional test data were simulated. Test data were generated following the same procedure as the training data. One-thousand “pure” datasets and 1,000 dataset containing 4% contaminants each were simulated. Again, each dataset comprised 500 trials from two conditions.5 Estimation procedure Parameters from pure and contaminated test data were re-estimated in four ways: The machine-learning algorithm was employed with training based on 500.000 datasets from which 0%, 10% or 100% contained contaminants, and a ML-based parameter search using fast-dm-30 (Voss & Voss, 2007; Voss et al., 2015) served as a reference method.                                                              4 In pilot studies, we compared performance using different sizes of training data. We found a slight but notable increase in accuracy of results when the number of training samples was increased from 100.000 to 200.000. The additional increase from 200.000 to 500.000 training samples was much smaller, suggesting that a ceiling for accuracy was approached. 5 Test data from both studies are available under https://doi.org/10.11588/data/HY4OBJ. 



9 LEARNING THE LIKELIHOOD Results and Discussion As criteria for the quality of recovery, we use (1) the correlation of true parameter values from the simulation with the recovered parameter values and (2) the normalized mean absolute error (NMAE) that was calculated as  𝑁𝑀𝐴𝐸 = XY⋅∑Z[\][Z^_`([)]^ab([) (6) where 𝑛 is the number of analysed datasets (i.e., 𝑛 = 1000), 𝜃 is the true parameter value, and 𝜃4 is the recovered parameter value.  Correlations of true parameter values with estimates and mean absolute deviations (MNAE) are presented in Tables 2 and 3, respectively. Mean correlations averaged across all parameters using Fishers Z transformation and mean NMAE values are displayed in Figure 1. Correlations are generally high, which is little surprising given the large datasets. Replicating previous results, recovery of inter-trial-variability of starting point and drift is much less precise than recovery of other parameters (Lerche & Voss, 2017; Lerche et al., 2016; van Ravenzwaaij & Oberauer, 2009). For uncontaminated data, all methods perform accurately, with a slight advantage for the deep learning algorithm trained with no (0%) or little (10%) contaminated data. The advantage of the new machine-learning method over the multidimensional search for the ML solution performed by fast-dm becomes more pronounced in the case of contaminated data. Here, DeepInference proves to be generally more robust, but especially so if the training data incorporates contaminated samples. Results regarding the NMAE values show the same pattern as do correlational results. To sum up, machine learning proves to be superior to the multidimensional parameter search, both for pure and for uncontaminated data. Especially, including 10% of contaminated datasets into the training data notably increases the robustness of the procedure without doing much harm in the case of pure test data. DeepInference also provides the variance of estimation errors for all parameters (Bayesian speaking, this is an estimate for the variance of the posterior parameter distributions). The corresponding standard deviations are presented in Table 4, along with the percentage of 95% confidence-intervals that contain the original (i.e., true) parameter values. As can be seen from the table, variance is slightly overestimated, resulting in a minimal exaggeration of the confidence intervals that often contain true scores for more than 95% of estimated parameters (Radev et al., 2018). If the training data does not match the test data (i.e., training with pure data and recovery with contaminated data or vice versa), the size of confidence intervals for some parameters (especially st0) is dramatically underestimated. 



10 LEARNING THE LIKELIHOOD However, training the model with a moderate amount of contaminated data makes results again much more robust. Simulation Study 2: Recovering Lévy-Flight model parameters Recently, we observed that model fit of the diffusion model to real data can be notably improved, when the typical assumption of normal noise in the accumulation process is relinquished (Voss et al., 2018). Specifically, in the new model, accumulation of information is no longer mapped by a diffusion process but by a Lévy-Flight that is characterized by a constant drift and heavy-tailed (alpha-stable distributed) noise. The heavy-tailed noise distribution increases the probability of extreme events, that is, of jumps in the information accumulation process. The new model contains the additional parameter α (0 ≤ α ≤ 2	), which indicates the stability of the process. The diffusion model with normal noise is a special case of the more general model proposed here, because for 𝛼 = 2 the alpha-stable distribution becomes a normal distribution. Unfortunately, we cannot compute the likelihood for the Lévy Flight model, which makes fitting the model quite cumbersome. However, simulating data is still easy, so that the CNN approach is an ideal candidate for parameter estimation. Simulation of data Simulation of data followed exactly the same procedures as in Study 1 with the one exception that the diffusion process was replaced by a Lévy-Flight using the additional stability parameter α (see Table 1). The simulation of a Lévy Flight differs slightly from that of a diffusion process, because the relation of the error term with step size in time depends on 𝛼. The change in accumulated evidence over time Δ𝑡 (1ms in our simulation) is given by  𝑃(𝑡 + Δ𝑡) = 𝑃(𝑡) + Δ𝑡 ⋅ 𝑣 + Δ𝑡 Xh ⋅ 𝜖; 𝜖~𝑎𝑆(𝛼) (7) where 𝑣 is the drift, and 𝜖 follows a symmetric alpha-stable distribution with stability 𝛼. For 𝛼 a range of 1.0 to 2.0 was assumed (Table 1), which corresponds roughly to the values observed by Voss et al. (2018). Estimation procedure Parameter estimation of the DeepInference algorithm was identical to Study 1, with the exception that an additional parameter (𝛼) was estimated. For comparison, also a multi-dimensional parameter search was implemented in a C program. For this purpose, the likelihood was estimated by a simulation-based approach (Heathcote et al., 2002): In each step of the search, 50,000 Lévy-Flight processes were simulated for each of the two stimulus types from the actual parameter values. Then, the likelihood for each response was estimated by the portion of simulated processes terminating in the same RT “bin” (spaced 20ms) as the 



11 LEARNING THE LIKELIHOOD observed response. The total likelihood was minimized using a variant of the simplex search6 (Nelder & Mead, 1965). This search procedure took about 22 minutes per dataset (about 4 weeks for the 2 x 1000 test samples) of processor time on an Intel i7 CPU with 2.93 GHz. Results and Discussion Correlations of true parameter values and estimates and absolute deviations (MNAE) are presented in Tables 5 and 6, respectively. Table 7 presents the estimated uncertainty, that is, the mean standard deviations of estimation errors (approximating the standard deviations of the posterior parameter distributions) for all parameters. Mean correlations averaged across all parameters using Fishers Z transformation and mean NMAE values are displayed in Figure 2. Results closely resemble those of Study 1: Again, results from the DeepInference approach are more precise than those of the ML based approach, both in terms of correlations with true parameter values and in terms of absolute deviations. One main source of the disadvantage of the ML method compared to DeepInference approach is obviously located in problems of recovering the stability parameter α, which is estimated with much higher precision by the latter method. Also mimicking results from the previous study, DeepInference is much less influenced by outliers, and this robustness is even increased when contaminated datasets are included in the reference table for the training of the CNN. General Discussion In this paper, we propose DeepInference as a general, likelihood-free method to estimate parameters from cognitive models. The method can be applied to all types of models that allow simulating data from a given set of parameter values. Typically, generation of data is easy and fast for well-defined models. The fact that the likelihood no longer needs to be computed can boost research in the area of cognitive modelling because now researchers can easily apply new and more complicated models to their data. Although the procedure has its greatest advantages when the likelihood is not available and thus traditional methods of parameter estimation cease to apply, results from Study 1 demonstrate that deep learning is also a valuable tool for models for which the likelihood is known. Especially in cases where the ML solution cannot be directly computed, and thus a multidimensional search maximizing the likelihood is necessary, ML based searches have their own problems. For example, the likelihood function may be noisy when the precision of computation is limited. In the case of diffusion modelling, for instance, an exact calculation of the likelihood is not possible because the likelihood function contains an infinite sum. The introduced noise in the likelihood function can – in regions of the multidimensional space                                                              6 The simplex2 algorithm of the gsl library (www.gnu.org/software/gsl) was used for this purpose. 



12 LEARNING THE LIKELIHOOD where the slope of the likelihood function is quite flat – produce artificial local minima, in which the search procedure gets stuck. The DeepInference algorithm is more robust and – as the present results show – often better at finding the optimal solution. Parameter recovery from pure data In the present paper, the DeepInference algorithm has been validated in two simulation studies for two different accumulator models. Firstly, we re-estimated parameters from the standard diffusion model (Voss et al., 2013), for which the likelihood can be computed. Thus, it was possible to use a ML-based search for comparison. Secondly, we tested the DeepInference algorithm for a Lévy-Flight model (Voss et al., 2018) that assumes heavy-tailed noise in the accumulation of evidence. For this model, the likelihood function for the process durations in a model with two absorbing boundaries is unknown (at least to the authors of this paper), which makes the parameter estimation difficult. To get some standard for comparison here as well, we used a simulation-based approach to estimate the likelihood for bins on the time axis. Both simulation studies demonstrate that the DeepInference algorithm is very efficient. For both models, estimates generated by the DeepInference approach are related closely to the true parameters values with mean correlations well above 𝑟 = .90, and, most important, above the correlations from the traditional ML-based search algorithms. An inspection of the correlations for the separate parameters shows similar pattern for DeepInference and the multidimensional search: Replicating previous results (Lerche & Voss, 2017; Lerche et al., 2016; van Ravenzwaaij & Oberauer, 2009), inter-trial variability of starting point and drift can be estimated with much lower precision compared to all other parameters. To test whether the methods differ in a potential bias (that would not be detected by correlations), the normalized mean absolute errors (NMAE) were inspected as a second evaluation criterion. The analyses of NMAE-values corroborate the correlational findings, again demonstrating that the DeepInference algorithm provides even more accurate estimates than the multidimensional search. Parameter recovery from contaminated data In the application of cognitive modelling, contamination of data is often a problem, and ML results can be strongly biased by even very small percentages of contamination (Lerche et al., 2016). Theoretically, there are two ways to deal with contamination of data. Firstly, when contaminants are outliers in a statistical sense, they should be removed from data prior to the modelling. Secondly, sometimes it is possible to incorporate processes of contamination explicitly in the model (e.g., Ratcliff & Tuerlinckx, 2002). However, this not only makes the 



13 LEARNING THE LIKELIHOOD model less parsimonious, but also requires knowledge about the distribution of contamination, which might not be available. Because it is not always possible to capture all kinds of contamination with the two methods sketched above, parameter estimation procedures need not only to be efficient, but also to possess some robustness. To test for robustness, we investigated parameter recovery in the presence of one type of contamination: fast outliers. These were simulated by including 4% of trials within each data set with very fast response times (that were no statistical outliers, however) and random responses.  As expected, the ML-based procedures were corrupted strongly by the presence of contaminants, as evident from notably reduced correlations and increased NMAE values. In comparison, the DeepInference algorithm was much less affected by outliers, and robustness was even stronger, when the training data contained some contaminants as well. A very good performance for both pure and contaminated data was achieved, when the CNN was trained with 90% pure data sets and 10% contaminated data sets. Increased robustness due to data augmentation techniques are often encountered in other domains of Deep Learning. For instance, in computer vision, much better classification accuracies are obtained when the training set not only contains high resolution images but also noisy or blurry images (Jindal, Nokleby, & Chen, 2016) Uncertainty of estimates DeepInference is not only an efficient and robust method to obtain point estimates for all parameters. Simultaneously, for each parameter a variance is estimated that is a measure for the uncertainty of the parameter recovery and can be seen as an approximation of the true posterior variance. Although our approach does not provide a full posterior distribution, providing a measure of uncertainty is an important feature of this algorithm. For example, confidence intervals allow assessing whether parameters in a model differ from specific values (e.g., whether there is a decision bias with the relative starting point differing from 0.5).   Mean standard deviations show notable differences between parameters: While non-decision time and starting point can be assessed very accurately with the 500 trials used here, uncertainty in estimates is generally large for inter-trial variability of starting point or for drift rates. Whenever these parameters need to be estimated with high precision, even larger trial numbers are necessary. Limitations of the deep inference approach 



14 LEARNING THE LIKELIHOOD Although we believe that deep learning provides a fairly general framework that can be applied to a wide variety of cognitive models there are of course a number of limitations that need to be considered.  Firstly, machine learning rests on a large data basis, so usually many datasets need to be simulated. For the present application, we trained the models with 500.000 datasets consisting of 500 trials each. Although simulating these data is no real problem for modern computers, simulation of datasets as well as training the algorithms still needs a lot of processor time, working memory and space on the computer’s hard disc. The more complicated a model is the more training data will be required to allow for a precise parameter recovery. On the other hand, DeepInference is an architecture that is designed to be reused. Once it has been trained on a large number of simulated datasets, parameter estimation on new datasets is extremely fast.  Secondly, it can be seen as a disadvantage that machine learning operates to a certain degree as a black box, that is, it is difficult to understand how the machine learns to recover parameters. However, in a way the algorithm just translates the relation of parameter values to the generated data as specified by the data-generating model. Therefore, the algorithm implicitly learns the likelihood of data given certain parameter constellations. Thus, the algorithm does not add anything to the theoretical model.  Thirdly, there is the more practical limitation that – since no likelihood is calculated – the information criteria (AIC, BIC) cannot be used to compare model fit. There are several possibilities to solve this problem: For example, it is possible to approximate the likelihood after parameter estimation by simulating again many responses from the final parameter values. Then, the likelihood of each response – given the estimated parameters – can be approximated by the portion of responses that are close to the response (Heathcote et al., 2002). This approach has been used – with a limited accuracy – for the comparison method in Study 2. For parameter estimation, this simulation approach can be used only with a reduced accuracy, because the likelihood has to be approximated in each of many steps of the multidimensional search. However, if this approach is employed to assess the likelihood of the final model, a much larger number of simulated trials can be used to ensure a high precision (cf. Hawkins et al., 2015). Furthermore, DeepInference itself could easily be adjusted to predict the best-fitting model from observed data. Outlook: Future developments In the present paper, the usefulness of a deep learning algorithm was verified on two variants of accumulator models. In future research, the universality of the advantages of this approach 



15 LEARNING THE LIKELIHOOD should be investigated both within this class of decision models and for other types of models as well. Within the class of accumulator models, for example, the robustness of more parsimonious models (e.g., excluding the intertrial variability parameters, Lerche & Voss, 2016), or the precision of results for smaller data sets should be investigated. Although the application of machine learning algorithms in psychology is rising, it might still be challenging for many cognitive researchers to implement a deep learning algorithm for their own model. To make this method available for a broader community we recommend two strategies: On the one hand, general software (like ABrox, Mertens, Voss, & Radev, 2018) should be developed that perform likelihood-free parameter estimation from simulated data which needs to be provided by the user in form of a reference table. The advantage of this general method is that it can be used for all kinds of models as long as a reference table can be generated. On the other hand, specific models can be trained first and then be published, for example in form of an R package. This latter approach is of course applicable only to specific implementations of specific models. However, these packages can then be applied to data without any further training; that is, no simulation of data is required for the user of the model. Another useful future development of the principle discussed in the present paper goes one step further: Principally, a trained convolutional neural network can be reversed, that is, translated to a generative model. So, a trained model might be used to generate samples of parameter-sets from given data. In future, this principle could allow generating a full posterior distribution for the models parameters, without requiring a likelihood. Conclusion DeepInference via convolutional networks provides a highly efficient, precise, fast, robust, and likelihood-free method to estimate parameters of cognitive models. From the standard deviations of estimation errors, confidence intervals can be calculated for the model parameters. The only requirement for the application of this approach is the possibility to simulate (huge amounts of) data from model parameters. We believe that this approach has great potential to foster the application of cognitive models, and especially to use these models to assess inter-individual differences in latent cognitive processes.   



16 LEARNING THE LIKELIHOOD References Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R., & Brown, S. D. (2015). Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. J Neurosci, 35(6), 2476-2484. doi:10.1523/JNEUROSCI.2410-14.2015 Heathcote, A., Brown, S. D., & Mewhort, D. J. (2002). Quantile maximum likelihood estimation of response time distributions. Psychon Bull Rev, 9(2), 394-401. doi:10.3758/BF03196299 Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An introduction to good practices in cognitive modeling. In B. U. Forstmann, E.-J. Wagenmakers, B. U. Forstmann, & E.-J. Wagenmakers (Eds.), An introduction to model-based cognitive neuroscience. (pp. 25-48). New York, NY, US: Springer Science + Business Media. Jindal, I., Nokleby, M., & Chen, X. (2016, 12-15 Dec. 2016). Learning Deep Networks from Noisy Labels with Dropout Regularization. Paper presented at the 2016 IEEE 16th International Conference on Data Mining (ICDM). Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for computer vision? Paper presented at the Advances in Neural Information Processing Systems.  Lerche, V., & Voss, A. (2016). Model Complexity in Diffusion Modeling: Benefits of Making the Model More Parsimonious. Front Psychol, 7, 1324. doi:10.3389/fpsyg.2016.01324 Lerche, V., & Voss, A. (2017). Retest reliability of the parameters of the Ratcliff diffusion model. Psychol Res, 81(3), 629-652. doi:10.1007/s00426-016-0770-5 Lerche, V., Voss, A., & Nagler, M. (2016). How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behavior Research Methods, 49(2), 513-537. doi:10.3758/s13428-016-0740-2 Mertens, U., Voss, A., & Radev, S. (2018). ABrox-A user-friendly Python module for approximate Bayesian computation with a focus on model comparison. Plos One, 13(3), e0193981. doi:10.1371/journal.pone.0193981 Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53(4), 222-230. doi:10.1016/j.jmp.2009.02.003 Nelder, J. A., & Mead, R. (1965). A Simplex-Method for Function Minimization. Computer Journal, 7(4), 308-313. doi:DOI 10.1093/comjnl/7.4.308 



17 LEARNING THE LIKELIHOOD Radev, S., Mertens, U., Voss, A., & Köthe, U. (2018). Towards end-to-end likelihood-free inference with convolutional neural networks. Paper submitted for publication.  Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput, 20(4), 873-922. doi:10.1162/neco.2008.12-06-420 Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347-356. doi:Doi 10.1111/1467-9280.00067 Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438-481. doi:Doi 10.3758/Bf03196302 Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling: a quiet methodological revolution. Am Psychol, 65(1), 1-12. doi:10.1037/a0018326 Ulrich, R., Schroter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cogn Psychol, 78, 148-174. doi:10.1016/j.cogpsych.2015.02.005 van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A simple introduction to Markov Chain Monte-Carlo sampling. Psychon Bull Rev, 25(1), 143-154. doi:10.3758/s13423-016-1015-8 van Ravenzwaaij, D., & Oberauer, K. (2009). How to use the diffusion model: Parameter recovery of three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53(6), 463-473. doi:10.1016/j.jmp.2009.09.004 Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response times. Psychol Methods, 16(1), 44-62. doi:10.1037/a0021765 Voss, A., Lerche, V., Mertens, U., & Voss, J. (2018). Sequential Sampling Models with Variable Boundaries and Non-Normal Noise: A Comparison of Six Models. Paper submitted for publication.  Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: a practical introduction. Exp Psychol, 60(6), 385-402. doi:10.1027/1618-3169/a000218 Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: an empirical validation. Mem Cognit, 32(7), 1206-1220.  Voss, A., & Voss, J. (2007). Fast-dm: a free program for efficient diffusion model analysis. Behav Res Methods, 39(4), 767-775.  



18 LEARNING THE LIKELIHOOD Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30. Front Psychol, 6, 336. doi:10.3389/fpsyg.2015.00336    



19 LEARNING THE LIKELIHOOD Table 1: Ranges for the parameter values used for the simulations  a zr vmean vdiff t0 szr sv st0 α min 0.5 0.3 -2.0 1.0 0.2 0.0 0.0 0.0 1.0 max 2.0 0.7 2.0 6.0 0.5 0.6 2.0 0.2 2.0  Notes: 𝑎: threshold separation; 𝑧K: relative starting point; 𝑣klmn: drift criterion (mean drift across conditions); 𝑣o0pp: difference of drift rates between conditions; 𝑡J: non-decision time; 𝑠SK: inter-trial-variability of starting point; 𝑠T: inter-trial-variability of drift; 𝑠QJ: inter-trial-variability of non-decision time; α: Stability parameter of the noise distribution (only used in Study 2). Drift rates were re-parameterized as 𝑣J = 𝑣klmn − 0.5 ⋅ 𝑣o0pp  and 𝑣& = 𝑣klmn +0.5 ⋅ 𝑣o0pp .   



20 LEARNING THE LIKELIHOOD Table 2: Correlations of true and recovered values for the diffusion model parameters (Study 1) Algorithm a zr v0 v1 t0 szr sv st0 Uncontaminated Test Data DL 0% 0.98 0.97 0.97 0.97 0.99 0.38 0.68 0.85 DL 10% 0.98 0.97 0.97 0.97 0.99 0.36 0.69 0.82 DL 100% 0.98 0.95 0.97 0.97 0.98 0.32 0.68 0.76 fast-dm 0.98 0.98 0.96 0.96 0.98 0.38 0.60 0.89  Contaminated Test Data DL 0% 0.98 0.88 0.96 0.97 0.97 0.26 0.66 0.71 DL 10% 0.98 0.94 0.97 0.97 0.98 0.36 0.67 0.71 DL 100% 0.98 0.96 0.97 0.97 0.99 0.45 0.68 0.83 fast-dm 0.96 0.69 0.92 0.92 0.96 0.04 0.51 0.63  Notes: DL 0%, DL 10%, and DL 100%: Deep Learning algorithm trained with 0%, 10%, or 100% contaminated data.   



21 LEARNING THE LIKELIHOOD Table 3: Normalized Mean Absolute Error (NMAE) of recovered values from true diffusion model parameters (Study 1) Algorithm a zr v0 v1 t0 szr sv st0 Uncontaminated Test Data DL 0% 0.04 0.04 0.13 0.12 0.02 0.38 0.27 0.19 DL 10% 0.04 0.04 0.13 0.12 0.02 0.38 0.27 0.22 DL 100% 0.04 0.05 0.14 0.14 0.03 0.37 0.27 0.65 fast-dm 0.05 0.04 0.05 0.05 0.04 0.34 0.24 0.10  Contaminated Test Data DL 0% 0.04 0.07 0.15 0.14 0.04 0.37 0.30 1.05 DL 10% 0.04 0.05 0.14 0.13 0.03 0.38 0.28 0.30 DL 100% 0.04 0.04 0.13 0.14 0.02 0.36 0.28 0.21 fast-dm 0.07 0.16 0.07 0.07 0.11 0.38 0.25 0.81  Notes: DL 0%, DL 10%, and DL 100%: Deep Learning algorithm trained with 0%, 10%, or 100%, respectively, contaminated data.   



22 LEARNING THE LIKELIHOOD Table 4: Mean standard deviations (SD) of estimation errors and percentage of true parameter scores that fall within corresponding 95% confidence intervals (Study 1). Algorithm  a zr v0 v1 t0 szr sv st0  Uncontaminated Test Data DL 0% SD 0.091 0.030 0.353 0.348 0.017 0.389 0.158 0.030  % in CI 0.985 0.975 0.976 0.966 0.987 0.956 0.968 0.964 DL 10% SD 0.092 0.032 0.348 0.348 0.018 0.389 0.160 0.033  % in CI 0.987 0.979 0.971 0.967 0.988 0.951 0.972 0.968 DL 100% SD 0.087 0.032 0.358 0.355 0.016 0.386 0.157 0.033  % in CI 0.979 0.897 0.957 0.957 0.896 0.939 0.948 0.555   Contaminated Test Data DL 0% SD 0.093 0.031 0.355 0.347 0.018 0.388 0.156 0.023  % in CI 0.975 0.718 0.930 0.907 0.921 0.936 0.908 0.121 DL 10% SD 0.095 0.039 0.360 0.364 0.019 0.397 0.159 0.038  % in CI 0.974 0.934 0.964 0.960 0.973 0.950 0.965 0.883 DL 100% SD 0.089 0.033 0.359 0.355 0.017 0.393 0.156 0.031  % in CI 0.973 0.967 0.973 0.973 0.988 0.953 0.976 0.949  Notes: DL 0%, DL 10%, and DL 100%: Deep Learning algorithm trained with 0%, 10%, or 100% contaminated data.   



23 LEARNING THE LIKELIHOOD Table 5: Correlations of true and recovered values for the Lévy-Flight model parameters (Study 2) Algorithm a zr v0 v1 t0 szr sv st0 α Uncontaminated Test Data DL 0% 0.95 0.95 0.97 0.97 0.98 0.30 0.84 0.95 0.95 DL 10% 0.95 0.95 0.97 0.96 0.98 0.30 0.84 0.95 0.95 DL 100% 0.95 0.92 0.97 0.96 0.97 0.26 0.83 0.95 0.92 ML 0.86 0.91 0.92 0.89 0.96 0.06 0.59 0.49 0.58 Contaminated Test Data DL 0% 0.94 0.87 0.96 0.96 0.95 0.28 0.83 0.94 0.87 DL 10% 0.95 0.91 0.96 0.96 0.96 0.29 0.83 0.95 0.91 DL 100% 0.95 0.94 0.97 0.96 0.98 0.31 0.83 0.95 0.94 ML 0.84 0.88 0.94 0.84 0.96 -0.01 0.58 0.50 0.45  Notes: DL 0%, DL 10%, and DL 100%: Deep Learning algorithm trained with 0%, 10%, or 100% contaminated data. ML: Maximum-likelihood based parameter search.   



24 LEARNING THE LIKELIHOOD Table 6: Normalized Mean Absolute Error (NMAE) of recovered values for the Lévy-Flight model parameters (Study 2) Algorithm a zr v0 v1 t0 szr sv st0 Uncontaminated Test Data DL 0% 0.07 0.07 0.04 0.04 0.04 0.23 0.13 0.17 DL 10% 0.07 0.07 0.04 0.04 0.04 0.23 0.13 0.18 DL 100% 0.07 0.09 0.04 0.05 0.09 0.24 0.13 0.29 fast-dm 0.13 0.10 0.06 0.08 0.07 0.32 0.21 0.31 Contaminated Test Data DL 0% 0.08 0.11 0.05 0.05 0.15 0.25 0.14 0.24 DL 10% 0.08 0.10 0.05 0.05 0.07 0.23 0.13 0.19 DL 100% 0.07 0.08 0.04 0.04 0.05 0.23 0.13 0.16 fast-dm 0.14 0.12 0.06 0.09 0.09 0.31 0.20 0.64  Notes: DL 0%, DL 10%, and DL 100%: Deep Learning algorithm trained with 0%, 10%, or 100%, respectively, contaminated data.   



25 LEARNING THE LIKELIHOOD Table 7: Mean standard deviations (SD) of estimation errors and percentage of true parameter scores that fall within corresponding 95% confidence intervals (Study 2). Algorithm  a zr v0 v1 t0 szr sv st0  Uncontaminated Test Data DL 0% SD 0.135 0.038 0.37 0.352 0.019 0.310 0.162 0.041  % in CI 0.950 0.953 0.973 0.953 0.986 0.953 0.978 0.947 DL 10% SD 0.133 0.039 0.368 0.368 0.019 0.314 0.163 0.041  % in CI 0.956 0.965 0.97 0.958 0.983 0.946 0.982 0.955 DL 100% SD 0.129 0.036 0.372 0.369 0.018 0.328 0.163 0.038  % in CI 0.925 0.87 0.949 0.932 0.739 0.965 0.929 0.673   Contaminated Test Data DL 0% SD 0.162 0.042 0.357 0.342 0.019 0.271 0.151 0.044  % in CI 0.963 0.856 0.912 0.879 0.45 0.85 0.901 0.808 DL 10% SD 0.146 0.045 0.378 0.375 0.025 0.314 0.16 0.044  % in CI 0.961 0.939 0.959 0.945 0.932 0.94 0.974 0.929 DL 100% SD 0.138 0.039 0.368 0.365 0.02 0.314 0.159 0.037  % in CI 0.955 0.955 0.958 0.958 0.98 0.941 0.973 0.95  Notes: DL 0%, DL 10%, and DL 100%: Deep Learning algorithm trained with 0%, 10%, or 100% contaminated data.   
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  Figure 1. Recovery of Diffusion model Parameters. Mean Correlations (upper panel) and Normalized Mean Absolute Errors (NMAE, lower panel) are displayed as a function of the estimation algorithm and the contamination of data with 4% fast errors. DL 0%, DL 10%, and DL 100% indicates the Deep Learning algorithm trained with 0%, 10%, or 100%, respectively, contaminated data.   
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  Figure 2. Recovery of Lévy-Flight model Parameters. Mean Correlations (upper panel) and Normalized Mean Absolute Errors (NMAE, lower panel) are displayed as a function of the estimation algorithm and the contamination of data with 4% fast errors. DL 0%, DL 10%, and DL 100% indicates the Deep Learning algorithm trained with 0%, 10%, or 100%, respectively, contaminated data.  



Deep learning methods for likelihood-free inference A4      FAKULTÄT FÜR VERHALTENS-  UND EMPIRISCHE KULTURWISSENSCHAFTEN     Promotionsausschuss der Fakultät für Verhaltens- und Empirische Kulturwissenschaften der Ruprecht-Karls-Universität Heidelberg Doctoral Committee of the Faculty of Behavioural and Cultural Studies of Heidelberg University   Erklärung gemäß § 8 (1) c) der Promotionsordnung der Universität Heidelberg für die Fakultät für Verhaltens- und Empirische Kulturwissenschaften Declaration in accordance to § 8 (1) c) of the doctoral degree regulation of Heidelberg University, Faculty of Behavioural and Cultural Studies  Ich erkläre, dass ich die vorgelegte Dissertation selbstständig angefertigt, nur die angegebenen Hilfsmittel benutzt und die Zitate gekennzeichnet habe. I declare that I have made the submitted dissertation independently, using only the specified tools and have correctly marked all quotations.    Erklärung gemäß § 8 (1) d) der Promotionsordnung der Universität Heidelberg  für die Fakultät für Verhaltens- und Empirische Kulturwissenschaften Declaration in accordance to § 8 (1) d) of the doctoral degree regulation of Heidelberg University, Faculty of Behavioural and Cultural Studies  Ich erkläre, dass ich die vorgelegte Dissertation in dieser oder einer anderen Form nicht anderweitig als Prüfungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt habe. I declare that I did not use the submitted dissertation in this or any other form as an examination paper until now and that I did not submit it in another faculty.     Vorname Nachname First name Family name ________________________________________     Datum, Unterschrift Date, Signature  _______________________________________      


