
 

  

Abstract—Robot trajectory tracking control based on differential-algebraic equation 

(DAE) models is still a thorny issue, because the DAEs of such systems are inherently 

complex and unstable, such as the high index problem. In this paper, based on controlled 

DAEs, a symplectic instantaneous optimal control (IOC) method for robot trajectory 

tracking with input saturation is proposed. Based on the discrete variational principle and 

the canonical transformation, a symplectic discretization form for the controlled DAEs is 

first constructed. Then, the continuous trajectory tracking problem is approximated for a 

series of IOC problems at every time step, and the linear complementarity problem (LCP) 

can be derived for solving the IOC problems. Finally, the control inputs can be obtained by 

solving the corresponding standard LCP. The proposed method provides a unified 

framework for solving the trajectory tracking control problems of robot multibody dynamic 

systems. Numerical simulations and virtual experiments are conducted to verify the 

robustness and the efficiency of the proposed method, i.e., the input saturation 
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constraints are satisfied at the discrete time points, and high accuracy tracking control 

results can be obtained at low computational cost. 

 

Index Terms—Symplectic, instantaneous optimal control, input saturation, robot 

trajectory tracking, differential-algebraic equation, linear complementarity problem. 

I. INTRODUCTION 

ITH wide robotics applications in various fields, new requirements for the dynamics and control 

performance of robots have been increasingly proposed. Trajectory tracking is one of the typical control 

problems for robots [1]. In the past few decades, despite various control methods for trajectory tracking 

problems, most existing methods are established for several specific robots based on the description of 

ordinary differential equations (ODEs) [2], [3]. Therefore, independent generalized coordinates must be 

found first to represent the positions and orientations for the robot’s objects, and then different controlled 

dynamic models are built for different types of robots by complex and tedious symbolic operations. This 

modeling process is difficult, especially in much more complex robotic systems. In fact, a robot is essentially 

a multibody dynamic system. Thus, a unified multibody dynamic model for a robot can be built based on 

differential-algebraic equations (DAEs) with nonindependent generalized coordinates. However, robot 

dynamic systems described by DAEs will bring new challenges for the trajectory tracking control problems. 

The challenge primarily comes from the fact that numerical integration of the dynamical equations is a 

difficult problem because of the inherent instability due to the high-index problem for DAEs [4]. Thus, the 

optimal control law for such DAE systems is difficult to achieve. The aim of this paper is to provide a novel 

approach to solve the robot trajectory tracking control problem introduced by DAEs. 

Numerical methods for DAEs, including both index reduction approaches [5], [6] and direct discrete 

approaches [7], are popular, but they may be confronted with the issues of constraint violation and 

computational stability. In other words, the kinematic constraints are not easy to be satisfied, and the system 
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often “drifts” with time integration. In addition, for many direct discrete approaches, stability of the 

integration process has been proven mathematically in linear systems but not in nonlinear systems [8]. Thus, 

to overcome the difficulties associated with the index-3 DAEs, some geometric integration schemes [9]–[11] 

have be developed. The geometric integration approaches, normally constructed in the Hamilton mechanics 

framework, are proven to be symplectically preserved. The most fundamental property of the Hamiltonian 

systems is that the phase flow is a symplectic transformation [12]. Numerical methods preserving the 

symplectic structure can obtain good performances in the optimal control problem [13]. It is noted that 

symplectic algorithms can be constructed by appropriate difference schemes. Feng and Qin did some 

pioneering work and introduced the symplectic geometric theory in [10]. Marsden et al. [11], [13] have 

developed discrete mechanics and optimal control for constrained systems by the Lagrange-d’Alembert 

principle, which is a structure-preserving scheme. Peng and Gao et al. [9], [14] have proposed four types of 

generating functions that allow a symplectic algorithm to be constructed. Hu et al. [15] have proposed the 

generalized multisymplectic scheme based on the multisymplectic idea, which satisfies the discrete local 

momentum conservation law exactly. However, the above symplectic algorithm references are mainly 

applied to deal with ODEs or partial differential equations. In fact, the symplectic idea can be adopted and 

extended for the index-3 DAEs. Therefore, inspired by the above works, a symplectic method for solving the 

DAEs of a controlled robot system will be developed in this paper. 

To address the robot trajectory tracking control, research efforts have been focused on a variety of control 

approaches based on several kinds of control design criteria. These approaches include 

proportional-integral-derivative (PID) control [16], optimal control [17], predictive control [18]– [20], 

adaptive control [21] and neural network control [22]. These approaches are proven to be valid for a specific 

controlled multibody system, but they usually do not respect the invariants such as the symplectic structure 

and energy preserving in a nonlinear dynamic system, which are very important factors for keeping the 

long-time numerical stability [23]. At present, most of the symplectic-preserving control algorithms are 

based on the ODEs. Nevertheless, for the DAEs, symplectic gorithms have attracted enormous research 



 

attention, and several new algorithms have been developed. However, a symplectic method of trajectory 

tracking control for a robot described by DAEs is still very limited.  

Thus, in the present work, based on the theory of symplectic algorithms and instantaneous optimal control 

(IOC), a symplectic IOC method of trajectory tracking control for a robot described in DAEs is first proposed; 

this follows the work from Yang et al., who introduced the IOC method as it was applied to control 

seismically excited structures [24]. The performance index for the IOC method is a quadratic function of the 

responses and the control inputs. It is applicable to control linear, nonlinear and hysteretic structural systems 

[25]. The structural dynamic system is typically depicted by ODEs. However, the robot multibody dynamic 

system depicted by DAEs is more complicated because of the high index problem. Furthermore, the DAE 

kinematic constraints over the entire time horizon will also make it difficult to obtain an optimal control law. 

To overcome these difficulties in this paper, the original problem will be transformed into a sequence of 

discrete sub-optimal control problems in every instantaneous time slot with variational and symplectic 

discretization forms. The instantaneous optimal control inputs can then be obtained by solving such 

suboptimization problems. 

In addition, one of the most important practical problems related to robot trajectory tracking is the control 

input saturation [26]. In this work, the control input constraints are considered by extending the performance 

index of the IOC method with Lagrange multipliers, then the input saturation problem is transformed into a 

linear complementarity problem (LCP), and the Lagrange multipliers can be obtained by a standard LCP 

solver.  

Therefore, the main contributions of this paper are summarized as follows: 

1) Most existing methods for the trajectory tracking control  are based on ODEs, while the proposed 

method is based on DAEs. Thus, an important advantage of the proposed method is that it provides a 

unified framework for solving more general tracking control problems of different types of robots. 

2) The proposed method has merit since the numerical solution at discrete time points can be proven to be 

symplectically preserved. 



 

The remainder of this paper is organized as follows. In section II, the formulation of the trajectory tracking 

control problem for a robot based on DAE models with input saturation are introduced. Then, in section III, 

the controlled robot multibody dynamic system is discretized by a symplectic method. In section IV, based on 

the theory of IOC and the parametric variational principle, a symplectic IOC method for the robot trajectory 

tracking multibody dynamic system with input saturation is proposed with details. Subsequently, the 

simulation results for two types of robots are discussed to demonstrate the effectiveness of the proposed 

method in section V. Finally, some concluding remarks of this paper are provided in section VI. 

II. PROBLEM FORMULATION 

First, considering a controlled robot multibody dynamic system that is described by the 

differential-algebraic equations (DAEs), the basic formulations can be written as 

 ( ) ( ) ( )T , , , ( ) ( )t t t+ = +qM Φ Q A!! !q q q λ q q q u  (1) 

 ( , ) =tΦ 0q  (2) 

where (1) represents the dynamics of the mechanical system, and (2) represents the kinematic constraints. 

The vectors 1nR ×∈q , 1nR ×∈!q  and 1nR ×∈!!q  denote the generalized coordinates, velocities and accelerations, 

respectively. n nR ×∈M is the system mass matrix, 1sR ×∈λ  is the vector of Lagrange multipliers, and the vector 

of apparent force 1nR ×∈Q  includes the external, elastic, Coriolis and centrifugal forces. 1sR ×∈Φ is the vector 

of the constraint functions, and s nR ×∈Φq  is the Jacobian matrix of the kinematic constraint equations. The 

input matrix n mR ×∈A  distributes the m control inputs u onto the directions of the system generalized 

coordinates, whereby A is often a constant matrix. Here it should be noted that for some universal modeling 

strategies, coordinate transformations may be performed to calculate the contribution of u to the system’s 

generalized active force; thus, matrix A will be related to the generalized coordinates q, which will be 

reflected in the next section. In addition, n is the number of generalized degree of freedom, and s is the 

number of holonomic constraints. 

Then, the trajectory tracking control problem for the robot multibody dynamic system can be defined. The 



 

goal is to find the optimal control inputs u(t) with saturation to minimize the performance index J. Based on 

the DAEs, the formulations can be given as 
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where t0, tf are given initial and terminal times, respectively.  The operator ( , )ty q  computes the outputs of the 

dynamic system. The function ( )t!y  represents the known desired path, and it is to be tracked. A typical 

example for the system outputs is the position coordinates of the end-effector of a manipulator. ˆ r rR ×∈Q  and

ˆ m mR ×∈R  are the nonnegative and positive definite symmetric weighting matrices, respectively. The control 

inputs u(t) are not free but are constrained as the inequality formula in (3). In addition, r is the number of the 

generalized output coordinates for the control. 

So far, the robot tracking control problem described in index-3 DAEs has been given, as shown in (3).  

III. DISCRETIZATION OF THE ROBOT CONTROLLED DAES BY A SYMPLECTIC METHOD 

In this section, based on the discrete variational principle and the requirements of a canonical 

transformation [11], [14], a symplectic numerical algorithm is first developed to discretize the controlled 

DAEs of the robot multibody system. 

A. Discretization by a Symplectic Method 

First, to construct the symplectic method, the apparent force Q in (1) needs to be derived by the following 

forced Lagrange equation  

 ( ) ( ) ( )
, ,

, , ( ) ( )
c c

a

L Ld t t
dt
⎛ ⎞∂ ∂

− = +⎜ ⎟
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q q
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!
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Q A  (4) 

where Qa is the external force and Lc is the augmented Lagrangian function for constrained system, which can 

be defined as 



 

 ( ) ( ) ( )T T1, U( )
2

cL = − −M Φ λ! ! !q q q q q q q  (5) 

Here, it should be noted that both the gravity and deformation elastic potential energy are contained in U(q).  

Then, substituting (5) into (4), the dynamic equation for the robot multibody system can be derived and is 

given as 
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By comparing (6) and the standard form of (1), the external force can be obtained: 
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Second, in order to carry out numerical integrations, we assume that the whole continuous time domain T is 

divided into N time intervals 1[ , ]k kt t + , 0 k N≤ ≤  with equal time step length T Nη = . Then, from the 

Lagrange-d’Alembert principle, the action variation in 1[ , ]k kt t +  can be defined as 

 ( )
1 1
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k k

k k

t t
c T

a
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where the δ  represents variations vanishing at the endpoints. 

Then, using linear interpolation technology to discrete the generalized coordinates, the interpolation 

approximation of q  and !q  in the time interval 1( , )k kt t +  can be given as 

 ( )
1 1

1 , ( )
k k k k

α α η
+ +

= − + = −!q q q q q q  (9) 

where kq  and 1k+q  denote the generalized coordinates at two ends of the time steps, and the coefficient 

[0,1]α ∈ , respectively. In this paper, let 0.5α = . In addition, assume that the control inputs u(t) keep constant 

between any adjacent sampling points by using a zero-order holder. In other words, the control item A(q)u(t) 

of (8) in the time interval [tk, tk+1] is approximately equal to 1( )k k+A q u . Then substituting (9) into (8), we have 
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where 

 +1 +1( ) / 2, ( ) /k k k k η= + = −! !q q q v q q  (11) 

It should be noted that according to the discrete variational principle, the action S*, which only depends on 

kq and 1k+q , can be chosen as the first kind of generating function [14] for the discrete dynamical system. Its 

corresponding canonical transformation between the states of the time steps can be derived as follows 
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where kp  and 1k+p  are the dual variables at two ends of the time step, which actually are the momentums at 

time kt  and 1kt + , respectively, i.e., +1 +1 +1( ) , ( )k k k k k k=M =M! !p q q p q q . 

Finally, substituting (5), (7) and (10) into (12), the discrete forms of (1) can be constructed and given as 

 1 1 1
ˆ 0.5 ( )k kη ++ =A 0f = f q u  (13) 

 2 2 1
ˆ 0.5 ( )k kη += + =A 0f f q u  (14) 
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Inaddition, the kinematic constraints (2) should be satisfied at every discrete time node; therefore, 

 3 1 1= ( , )k kt+ +Φ = 0f q  (18) 

So far, the controlled DAEs have been discretized, as shown in (13), (14) and (18). Here, it should be noted 

that (12) derived by the canonical transformation is symplectically preserved in the absence of external 

forces, and the proof of preservation for the symplectic property will be given in the next subsection. 



 

B. Preservation of Symplectic Property 

For numerical algorithms, assume that the relationship of solution vectors on two discrete times is 

 1 ( )j jφ+ =z z  (19) 

where { }TT T,j j j=z q p , and φ  is a mapping function in the state space. A numerical algorithm is 

symplectic-preserving if and only if the Jacobi matrix of the mapping function φ  is a symplectic matrix [12]. 

The Jacobi matrix of the mapping function φ  can be given by 

 1k k+= ∂ ∂S z z  (20) 

Therefore, if the matrix S  satisfies 

 T ,= ⎡ ⎤
⋅ ⋅ = ⎢ ⎥−⎣ ⎦

0 I
I 0

S J S J J  (21) 

then the corresponding mapping 1: j jφ +!z z  is symplectic. 

Remark 1: To the best of the authors’ knowledge, the current research on the symplectic-preserving method 

is almost about conservative systems [9], [14]. But in this work, the symplectic property will be extended into 

nonconservative systems. 

Theorem: Assuming there is no velocity item in the external forces of a nonconservative system, the 

discretization of (12) derived via the discrete Lagrange-d’Alembert principle is symplectic. 

Proof: The specific expressions for (12) in the absence of velocity item in external forces can be derived as 

follows 
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The matrix S  can then be obtained, given by 
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So far, substituting (24) into (21), the criteria of (21) is satisfied. Therefore, it has been proved that (12) 

defines a symplectic-preserving update map { } { }T TT T T T
1 1, ,j j j j+ +!q p q p  in the absence of a velocity item in the 

external forces. Then, in the following two sub-sections, based on the above discretization equations, an 



 

instantaneous optimal control method will be presented to solve the tracking control problem with input 

saturation for the robot multibody dynamic system. 

IV. THE SYMPLECTIC IOC METHOD FOR ROBOT TRAJECTORY TRACKING WITH INPUT SATURATION 

In this section, a symplectic IOC method for the robot trajectory tracking multibody dynamic system with 

input saturation is proposed. The depiction and formula derivation can be found in the following 

sub-sections. 

A. Construction of the Iterative Scheme 

Equations (13) and (14) along with (18) constitute a nonlinear algebraic equation, which depends on the 

variables 1k+q , 1k+λ , 1k+p  and 1k+u . Combining (13) and (18), the generalized coordinates 1k+q  and the 

Lagrange multipliers 1k+λ  can be obtained by applying the Newton-Raphson iteration method. We have 

1 1 1= ( , ), = ( , )k k k k k k+ + +x q x qλ λ , and 

 1 3= [ ,( / 2) ]T T Tη− ⋅F f f  (30) 

 1
ˆ = ( )k k++ ⋅F F B q u  (31) 

where F and F̂ represent the iteration function for uncontrolled and controlled DAE systems, respectively. It 

is noted here that the function f3 is multiplied by a scaling factor –η/2 to increase the stability of the algorithm. 

The matrix B(qk) can be given as 
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Equation (31) is a nonlinear algebraic equation, which usually can be solved by the Newton-Raphson 

iteration algorithm [27]. The iteration scheme with control inputs 1k+u  can be given as 
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where the superscript in (33) denotes the iteration index, the symbol ( 1)
1
j
k
+
+x  is the variable vector of the current 

(j+1)th iteration at time 1kt + , and ( )
+1
j
kx  is the variable vector from the previous jth iteration , which is taken as the 



 

reference for the current computation. The initial value of 1k+x  for the iteration is (0)
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To simplify the presentation, (33) can be rewritten as 
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So far, the current iteration variables ( 1)
1
j
k
+
+x  have been derived and expressed by the control inputs 1k+u . 

B. Formulation and Solution of the Symplectic IOC Method 

In this sub-section, a symplectic IOC method with input saturation will be proposed to minimize the 

tracking error as much as possible. As shown in (3) of section II, the tracking problem is described as a 

nonlinear optimal control problem, subject to the constraints of DAEs and input saturation. An optimal 

control law for such systems is hard to obtain, since these complex constraints are imposed continuously over 

the entire time horizon. Thus, we will find a suboptimal control law for this problem. It is noted that the IOC 

method is applicable to the control for linear, nonlinear and hysteretic structural systems [25]. As presented in 

[24], the time-dependent performance index of the IOC method is just minimized at every time instant t for 

all 0 ft t t≤ ≤ . Therefore, compared with the performance index J given by (3), which is the integral of the 

quadratic functions over the time interval ( 0 ft , t ), the control law can be designed easily and very efficiently 

by the IOC method. 

Combined with the symplectic discretization form of the controlled DAEs in section III, we can transcribe 

the nonlinear optimal control problem of (3) into a discrete form as follows 
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where 1ˆk+y  is the output variable vector, which is equivalent to the operator y(q,t) in (3). It can be obtained by 

the following output equation 

 ( 1)
1 1ˆ j

k k
+

+ += ⋅Cy x  (38) 

where ( )r n sR × +∈C  is the target output matrix and r is the number of generalized output coordinates. Generally, 

the output values can include the positions, velocities and accelerations of the tracked points. In this work, the 

outputs are the position coordinates of a point to be tracked. 

To find the suboptimal control inputs uk+1, the constrained optimization problem in (37) will be 

transformed into an unconstrained optimization problem. 

First, for the equality constraints, substitute the iterative scheme of (35) into the output equation (38); then, 

the output vector 1ˆk+y  in the performance index Ĵ  can be expressed by the control inputs uk+1 explicitly, 

given as 

 1 2 1 1 1 2 1 1 1 1
ˆ ˆ ˆ ˆˆˆ ˆ( ) ( )T T

k k k k k kJ + + + + + += − − ⋅ ⋅ − − +Q R! !u y u y u uζ ζ ζ ζ (39) 

where 

 ( ) ( )
1 1 2 2
ˆ ˆ,j j= =C Cζ ζ ζ ζ  (40) 

Second, for the inequality constraints, introducing variables 1 0k+ ≥α and 1k+ ≥ 0α , the inequality constraints 

in (37) can be transformed into the equality constraints as follows 
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Then, based on the theory of instantaneous optimal control and the parametric variational principle [31], an 

expanded performance index ˆcJ  can be defined as 

1 2 1 1 1 2 1 1 1 1
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where 1
1 1, m

k k R ×
+ + ∈β β  are the parameter variables at time 1kt + . 

So far, the problem has been changed into an unconstrained optimization problem. Then, performing the 

calculus of variations with respect to the control inputs uk+1 is given as 

 1
ˆ
c kJ +∂ ∂ = 0u  (43) 

The suboptimal control inputs 1k+u  can be explicitly expressed, which are only dependent on 1k+β and 1k+β , 

given as 

 1
1 2 2 2 1 1 1 1

ˆ ˆ ˆ ˆˆ ˆˆ[ ] [ ( ) ( ) / 2]T T
k k k k

−
+ + + += + − − −Q R Q !u yζ ζ ζ ζ β β (44) 

To simplify the presentation and avoid the reduplicative computation of the matrix, we have 

 1
1 1 2 2 1 2

ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) / 2, 2T T−= + =K Q R K K Qζ ζ ζ   (45) 

Then, (44) can be rewritten as 

 1 1 1 1 2 1 1
ˆˆ ˆ( ) ( )k k k k+ + + += − − + −K K !u yβ β ζ   (46) 

Substituting (46) into (41), the constraint conditions can be transformed as follows: 
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Rewriting (47) in matrix form, yields 
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Consequently, the constraint IOC problem described by (37) is transformed into a linear complementarity 

problem (LCP). 1k+β  and 1k+β  can be calculated by solving the LCP, given as 
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The LCP has been well investigated in the last several decades; it can be solved by several methods, 

including interior-point methods [28], the pivotal methods [29] and noninterior continuation methods [30]. In 

this paper, the Lemke’s algorithm, which belongs to the pivotal method category, is adopted to solve the 

standard LCP of (49). One of the advantages of the proposed method is that the input saturation constraints 

can be satisfied directly just by solving the LCP, rather than adjusting the control parameters such as the 

weighting matrices to guarantee that the actuators are operating below their physical limits indirectly. 

Therefore, one can solve the LCP to obtain the parameters 1k+β  and 1k+β  firstly; then, the control inputs uk+1 

and the current iteration variables ( 1)
1
j
k
+
+x  can be obtained by (44) and (35), respectively. So far, one time 

numerical iteration of the nonlinear algebraic equations for (13) and (18) has been completed. Thus, the 

variables xk+1, i.e., the generalized coordinates qk+1 and the Lagrange multipliers λk+1, and the suboptimal 

control inputs *
1k+u  for the current time step can be solved successively until an acceptable convergence error 

is achieved in few iterations. The convergence criteria can be defined by the variables xk+1 or the performance 

index ˆcJ , given as follows, and the former is used in this work. 

 ( 1) ( ) ( 1) ( 1) ( ) ( 1)
1 1 1

ˆ ˆ ˆj j j j j j
k k k c c cor J J Jε ε+ + + +
+ + +− < − <x x x (51) 

Finally, the dual variables pk+1 can be successively obtained by substituting qk+1, λk+1 and 𝒖"#$∗  into (14). 

Also it can be derived by 1 2
ˆ ˆ− = 0f f , i.e., ( )1 2k k+ = ⋅ −M ! !p q v p . 

Therefore, the variables in time interval 1[ , ]k kt t +  can been obtained, then computing step by step, the 

numerical simulation can be completed successfully. Before the end of this section, two beneficial remarks 

about the stability and optimality of the proposed method have been given as follows. 

Remark 2 (local stability): The controlled DAEs system described by (31) implies a nonlinear discrete 

dynamical system. Substituting the suboptimal control inputs uk+1 of (46) into the iteration equation (35), a 

closed-loop control system, which is a map at time tk+1, can then be constructed by a vector function ψ(x), 

which maps a vector x(j) onto a vector x(j+1), i.e. 

 ( 1) ( )( )j jψ+ =x x   (52) 



 

where 

 ( ) ( ) ( )
1 2 1 1 1 2 1 1

ˆˆ ˆ( ) [ ( ) ( )]j j j
k k kψ + + += + − − −K K !x yζ ζ β β ζ  (53) 

Then, the solution x* solved by x*=ψ(x*) can be treated as a fixed point. According to the stability theory of 

fixed points [32], the convergence ( )j ∗
!x x  can only take place for j→∞  when 1iµ <  for all i=1, 2, ..., n+s. 

Here, iµ  denotes all the eigenvalues of the Jacobian matrix ψ(x), evaluated at x*. If the fixed points of all the 

time moments are locally stable, then the controlled trajectory will obviously converge to a region around the 

target path in the whole time domain. The local stability of the proposed method can also be verified by 

numerical analysis as demonstrated in the next section. 

Remark 3 (optimality): The global optimal formula (3) for the entire time domain is transformed into a 

local optimal formula (37), which is an IOC problem. The Lagrange multiplier method is applied for solving 

this problem. The control inputs at the current moment are locally optimal since they satisfy the necessary 

optimality conditions (43). Then, based on the theory of IOC, a suboptimal control law can be achieved by 

combining the control input sequences at all time points. Therefore, the proposed symplectic IOC method is a 

global suboptimal control algorithm with local optimality. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, two robot trajectory tracking control problems will be investigated to illustrate the 

effectiveness of the proposed method. It is noted here that the convergence precision ε in the criterion of (51) 

and the gravity acceleration are set to be 1.0e-7 and -9.8N/kg, respectively. And all computations were 

performed in MATLAB (R2014a) on a personal computer with an Intel(R) core(TM) i7-6700 CPU (3.40 

GHz) processor and 8 GB RAM, running on Win.7 64bit. 



 

A. A Plane Serial Manipulator 

 
(a) 

 
(b) 

Fig. 1 Two types of robot multibody models. (a) The model of plane serial manipulators. (b) The 
model of a space parallel delta robot. 
 

 
(a) 

 
(b) 

Fig. 2 Comparisons for different trajectories of the controlled point Pr. (a) The circular motion 
trajectory. (b) The random motion trajectory. 

 
As shown in Figs. 1(a–b), serial and parallel are two typical geometric models of industrial robots. Their 

various closed-loop robot trajectory tracking control methods based on ODEs have been discussed 

extensively in the existing literatures, for instance, the nonlinear model predictive control (NMPC) algorithm 

[18], [19]. However, to the best knowledge of the authors, the closed-loop trajectory tracking control 

methods based on index-3 DAEs can rarely be found. Considering that in practical control engineering, there 



 

are many model-independent control methods, which are convenient for code realization, such as the PID 

control. Thus, in this sub-section, for the serial manipulator trajectory tracking control problem, the PID 

control and the NMPC will be compared to demonstrate the validity and the robustness of the proposed 

symplectic IOC method. 

For the serial manipulators shown in Fig. 1(a), assuming that both bars are homogeneous and rigid, their 

lengths and masses are l1 = l2 = 1 m and m1 = m2 = 2 kg, respectively. The initial generalized coordinates 

q0=(0.5, 0, 0, -0.7071, 0, 0.7071, 0,1, 0.5, 0, -0.5, 0.5, 0.5, 0.5)T, and the corresponding velocities 0 = 0!q . The 

trajectory tracking control problem can be defined so that the controlled end point Pr is forced to follow a 

given trajectory, which is defined by a circular path or a feasible random path from a given start point 

(X0,Y0)=(1,1). The control inputs u(t) are the torques of M1 and M2, which are applied on these two joints. 

The circular trajectory is given as 
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The random trajectory is designed by the spline interpolation of selecting some discrete points. In addition, 

the control inputs of the system are subject to the inequality constraint |u(t)|≤50Nm. 

 

 
(a) 



 

 
(b) 

Fig. 3 Comparisons for the tracking errors and control inputs of the serial manipulators with 
disturbances. (a) Time history curves of the tracking errors. (b) Time history curves of the control 
inputs. 

 
Because that disturbance rejection is one of the most important objectives to any control methodology, it 

reflects to some extent the robustness of a control approach. Therefore, the control simulations are performed 

not only in a gravity field environment but also with two disturbance torques that are set on the joints, which 

are given as 

 { }T1 2 1 2( ) , , sin( ) and 1 cos( )t t tσ σ σ σ= = = −σ   (55) 

The above disturbance torques can be treated as the generalized external forces, which can be added to the 

controlled differential equations as follows 

 ( ) ( ) ( )T , , , ( ) ( ) ( ) ( )t t t t+ = + +qM Φ Q A W!! !q q q λ q q q u q σ  (56) 

where W(q) distributes the disturbance torques σ(t) onto the directions of the system generalized coordinates. 

In addition, for the proposed method, the weighting matrices in the expanded performance index ˆcJ  of (42) 

are chosen to be 12
3

ˆ =1.0 10 I× ×Q  and 2
ˆ =1.0 I×R , where 2 2

2I R ×∈  and 3 3
3I R ×∈  are unit matrices. All the results 

are computed with a constant step length η=0.002s. For the PID method, referring to the literature [34], the 

controller is designed by the PD compensator with a feedforward transfer function. The gain coefficient 

matrices of the proportional and derivative items are both set to be 230.0 I× . For the NMPC method, referring 

to the literature [18], the ODE-based continuous-time state equation of the serial manipulators can be 

discretized by the backward Euler’s method, and the Resilient Propagation (RPROP) algorithm is adopted to 

minimize the cost function. In addition, referring to the literature [19], the index-1 DAEs of the serial 



 

manipulators is derived, and the system is discretized via the BDF integration method, then the NMPC 

problem is solved by the software toolkit Automatic Control and Dynamic Optimization (ACADO). Here, 

the above two NMPC methods are named NMPC1 and NMPC2, respectively. The weighting values in their 

cost functions are chosen the same as those of the proposed symplectic IOC method. The prediction horizon 

time is 0.01s, and the number of prediction points is 5. The control results for these four methods with 

disturbances are presented in Figs. 2 and 3. 

As shown in Fig. 2(a), if there are no control inputs for this robot manipulator system, then the position of 

the end point Pr will move in a disorderly fashion. This phenomenon shows a very complex nonlinear 

characteristic of the motion for the double pendulum system, in which chaos can even exist. While controlled 

by the PID method, the NMPC1 method, the NMPC2 method or the proposed symplectic IOC method, the 

target trajectory can be tracked effectively. The average online CPU time of the above controllers for one step 

are approximately 1.20x10-5 s, 2.86x10-4 s, 8.11x10-4 s and 4.48x10-4 s, which are all less than the sampling 

period of 0.002 s. However, the details between these four methods can be compared. For the PID method, 

deviations will obviously occur at some moments. The control effect is improved to some extent by both the 

NMPC1 and NMPC2 method, while the target point Pr can be well tracked by the proposed symplectic IOC 

method. The tracking errors in the X-direction and Y-direction are presented clearly in Fig. 3(a) and the 

specific data are listed in Table I. It is noted that the results of the NMPC1 and the NMPC2 methods in the 

tables are marked by ‘(a)’ and ‘(b)’, respectively. For the PID method, the maximum absolute (Max. Abs.) 

values increase to approximately 0.05 m. And those are approximately 0.003 m for the NMPC1 method and 

0.008 m for the NMPC2 method. However, for the proposed method, tracking errors can be kept at the 

magnitude order of 10-5 m as shown in the enlarged drawing of the IOC method. Furthermore, as shown in 

Fig. 3(b), the control inputs for the proposed method can be well satisfied with the saturation constraints, and 

the values are limited between -50 Nm and 50 Nm. Detailed data comparisons for control inputs in the time 

range 4–20 s are made in Table II. The root-mean-square (RMS) in Table I and Table II can be expressed as 
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TABLE I 

COMPARISONS OF TRACKING ERRORS IN THE TIME RANGE 4-20 S 
Tracking 

error 
Ex (x10-3 m)  EY (x10-3 m) 

NMPC PID IOC  NMPC PID IOC 

RMS 2.0 (a) 
8.1 (b) 34.2 0.005  2.0 (a) 

4.7 (b) 21.2 0.010 

Max. Abs. 2.8 (a) 
8.8 (b) 53.0 0.011  2.8 (a) 

7.1 (b) 55.0 0.016 
 

TABLE II 
COMPARISONS OF CONTROL INPUTS IN THE TIME RANGE 4-20 S 

Control 
input 

M1 (Nm)  M2 (Nm) 
NMPC PID IOC  NMPC PID IOC 

RMS 20.59 (a) 
20.47 (b) 20.94 10.31  6.98 (a) 

7.04 (b) 2.47 3.52 

Max. 28.44 (a) 
28.39 (b) 30.49 14.24  9.86 (a) 

9.84 (b) 3.85 4.51 

Min. -30.44 (a) 
-30.40 (b) -20.18 -15.24  -9.86 (a) 

-9.83 (b) -3.96 -5.51 

 
From Table II, it can be found that for the proposed method, the RMS, maximum (Max.) and minimum 

(Min.) of the control input M1 are about 10.31 Nm, 14.24 Nm and -15.24 Nm, respectively. However, for the 

PID method, the corresponding data will increase by approximately 103.1%, 114.1% and 32.4%, 

respectively. Those will also increase by approximately 99.7% for the NMPC1 method, and approximately 

98.5%, 99.4% and 99.5%, respectively, for the NMPC2 method. The control input M2 of the proposed 

method is slightly larger than that of the PID method and smaller than the two NMPC methods. The RMS 

values of M2 for both the four methods are smaller than those of M1, and they are only approximately 34.1%, 

11.8%, 33.9% and 34.4%. Thus, overall, these results demonstrate that the proposed method needs less 

control inputs than the other three methods to perform the same circular trajectory tracking task. In addition, 

the good control performance of the proposed method can be further illustrated with the results of a random 

motion tracking task, which has been presented in Fig. 2(b).  

Therefore, compared with the PID method, which belongs to the model-independent control, the NMPC1 

method, which is ODE-based and solved by the RPROP algorithm, or the NMPC2 method, which is index-1 



 

DAE-based and solved by the software toolkit ACADO, the above numerical simulations illustrate that the 

proposed symplectic IOC method has a higher tracking precision and better robustness, which is mainly 

owed to the symplectic property of the proposed method. 

 
Fig. 4 The Max. Abs. eigenvalues for each step in the time range 4-20 s. 

 
Furthermore, to illustrate the control stability of the proposed algorithm mentioned in Remark 1 of Section 

IV, the stability of all the fixed points for the nonlinear discrete map ψ(x) at each time step has been analyzed 

in this example. Fig. 4 gives the maximum absolute eigenvalues of the Jacobian matrix ψx, evaluated at each 

solution point, i.e., the fixed point. From Fig. 4, it can be deduced that all the absolute eigenvalues of ψx at 

each time step will lie in an unit circle, since all the corresponding maximum values are between 0 and 1. 

Based on the stability theory of fixed points [32], the states controlled by the proposed method are stable and 

reliable. 

B. A Space Parallel Delta Robot 

For the parallel robots, the kinematics and dynamics are more difficult to derive than those of serial robots 

if modeling by the ODEs. However, as a model that can describe a wider and more complex robot multibody 

system, DAEs have a great advantage in the field of numerical simulations for robot multibody dynamics. 

Thus, to demonstrate the convenience of the modeling process and the ability of solving more complex robot 

trajectory tracking control problem based on DAEs by the proposed method, the parallel delta robot [33], as 

shown in Fig. 1(b), will be discussed, not only by a numerical simulation but also by a virtual experiment 

platform that is set up using V-rep and MATLAB. The implementation strategy of the virtual experiment 

platform is presented in Fig. 5. 



 

 

 
Fig. 5 The virtual experiment platform constructed by V-rep and Matlab 

 
As shown in Fig. 5, the dynamic model of a delta robot should first be built. Then, for the kth cosimulation 

step, the state values xk can be calculated by V-rep. Next, the controller in MATLAB will provide the data xk 

as states feedback and compute the local optimal control forces uk by solving the LCP of (49) and some 

matrix operations of (44). Finally, the control forces uk  will be applied to the dynamic system in V-rep as 

external forces and update the states for next time step. In this way, the virtual experiment can be successfully 

performed step by step. 

Then, some DAE-based model information and controller parameters will be given. As shown in Fig. 1(b), 

the distance between the fixed base and the workspace is 0.52 m, and for the workspace, its thickness is 0.05 

m, and its section is an equilateral triangle whose circumradius is 0.02 m. Then, three bars are linked to the 

fixed base by revolute joints, and the lengths of these bars are l1 = 0.5 m, l2 = 0.4 m and l3 = 0.3 m. In addition, 

another three bars are linked to the workspace by spherical joints. The material density of all bodies of the 

system is 2.74× 103 kg/m3, and the section area of all bars is 8× 10-4 m2. Thus, the trajectory tracking control 

problem can be defined such that the tracked point Pr is forced to follow a given trajectory, which is defined 

by a helix path from a given start point (X0,Y0, Z0)=(0,0,0.52). The control inputs u(t) are the torques of M1, 

M2 and M3, which are applied on the revolute joints. The inequality control constraint is |u(t)|≤200Nm, and 

the helix trajectory is given as 
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Then, assume that the model is a rigid multibody system, and the proposed symplectic IOC method, the 



 

NMPC2 method, and the PID method are used to solve this example. For the IOC and the NMPC2 methods, 

the weighting matrices are set to be 13
3

ˆ =1.0 10 I× ×Q  and 3
ˆ =1.0 I×R . The initial generalized coordinates q0 are 

given in Table III, and the velocities 0 = 0!q . For the PD compensator, the gain coefficient matrices of the 

derivative and proportional items are set to be 330.0 I×  and 41.3 10 diag(5,1,1)× × , respectively. 

 
TABLE III 

INITIAL GENERALIZED VELOCITIES 

ID Centroid Coordinates (m) Attitude Angle Described by the Quaternion 
X Y Z e0 e1 e2 e3 

1 -0.417 -0.240 0 -0.683 -0.183 0.683 -0.183 
2 0.373 -0.215 0 -0.683 0.183 0.683 0.183 
3 0 0.381 0 -0.5 0.5 0.5 0.5 
4 0 0 0.52 -0.5 0.5 0.5 0.5 
5 -0.417 -0.240 0.23 -0.078 0.689 0.621 -0.366 
6 0.373 -0.215 0.26 -0.309 -0.686 -0.652 -0.091 
7 0 0.381 0.26 -0.176 0.659 0.706 0.189 

 
Finally, the number of iterations of the proposed IOC method is given in Fig. 6. The control results of the 

virtual experiment by the proposed IOC method, the NMPC2 method and the PID method are presented in 

Fig. 7. 

From Fig. 6, it can be seen that an acceptable convergence error by the convergence criteria of (51) can be 

achieved with 3 or 5 iterations for a short time at the beginning and that only 3 iterations is needed after 1 s. 

As shown in Fig. 7(a), the controlled point Pr, i.e., the centroid of the workspace, can be tracked by all three 

methods with different accuracies. The configuration at times t = 0 s, 4.02 s and 15 s are presented to observe 

the tracking process directly. For the proposed IOC method, the stable tracking errors are at the magnitude of 

order of  10-3 m. Compared with the numerical simulation results, the tracking accuracy decreases by the 

virtual experiment may come from the fact that some inaccurate physical engine methods are adopted for 

dynamic analysis by V-rep. For the NMPC2 method, somewhat larger errors will occur at some points. 

However, obvious deviations can be found for the PID method. Besides, the control inputs of all the three 

methods are limited between -200 Nm and 200 Nm as shown in Fig. 7(b).  

 



 

 
Fig. 6 The number of iteration for the parallel delta robot. 

 

 
(a) 

 
(b) 

Fig. 7 The control results of the parallel delta robot. (a) The trajectories of the controlled point Pr. (b) 
Time history curves of the control inputs. 
 

The virtual experiment of this example demonstrates that the DAE-based modeling of the robot multibody 

systems is simple and clear, and it can unify the modeling processes for different types of robots, such as 

serial robots and parallel robots. The proposed method based on DAEs is effective to solve the more complex 

robot trajectory tracking control problems. 

VI. CONCLUSIONS 

In this paper, a symplectic IOC method is proposed to solve the nonlinear trajectory tracking control 

problem of a robot multibody dynamic system with input saturation. First, based on the continuous controlled 



 

DAEs, the trajectory tracking control problem is described as a nonlinear optimal control problem with 

constraints. Then, to overcome the difficulties for solving this problem, the continuous nonlinear optimal 

control problem is transformed into a sequence of IOC problems at all time points with a variational and 

symplectic discretization scheme. Finally, the numerical solutions for the control inputs can be obtained by 

solving these IOC problems. The proposed method is a symplectic structure-preserving algorithm and 

provides a unified framework for solving more general robot tracking control problems. In addition, the 

control input saturation constraints can be guaranteed directly by the linear complementarity solver. The 

numerical simulations and virtual experiments demonstrate that the proposed method is effective, easy to 

implement, and able to provide accurate tracking results. For future work, based on the current algorithm 

framework, another symplectic discrete strategy with the velocity item in the external forces will be studied 

to extend the proposed method for further applications. A distributed symplectic IOC method can be further 

developed to adapt for the larger-scale robot tracking control systems. 
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