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Monitoring the amount and composition of airborne particulate matter (PM) in the urban environment is a crucial 28 

aspect to guarantee citizen health. To focus the action of stakeholders in limiting air pollution, fast and highly 29 

spatially resolved methods for monitoring PM are required. Recently, the trees’ capability in capturing PM 30 

inspired the development of several methods intended to use trees as biomonitors; this results in the potential of 31 

having an ultra-spatially resolved network of low-cost PM monitoring stations throughout cities, without the 32 

needing of on-site stations. Within this context, we propose a fast and reliable method to qualitatively and 33 

quantitatively characterize the PM present in urban air based on the analysis of tree leaves by scanning electron 34 

microscopy combined with X-ray spectroscopy (SEM/EDX). We have tested our method in the Real Bosco di 35 

Capodimonte urban park (Naples, Italy), by collecting leaves from Quercus ilex trees along transects parallel to 36 

the main wind directions. The coarse (PM10-2.5) and fine (PM2.5) amounts obtained per unit leaf area have been 37 

validated by weighting the PM washed from leaves belonging to the same sample sets. PM size distribution and 38 

elemental composition match appropriately with the known pollution sources in the sample sites (i.e., traffic and 39 

marine aerosol). The proposed methodology will then allow to use the urban forest as an ultra-spatially resolved 40 

PM monitoring network, also supporting the work of urban green planners and stakeholders.  41 

 42 
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Introduction 51 

Air pollution represents the biggest environmental risk to health (World Health Organization 2016). Air pollution 52 

is a complex mixture of gases and particulate matter originating from a variety of sources. Particulate matter (PM) 53 

is defined as solid or aqueous compounds in the air, consisting of a multitude of shapes and is classified by mean 54 

of the aerodynamic diameter (therefore: PM10 is ≤10 µm, PM2.5 is ≤2.5 µm). In 2015, exposure to the PM2.5 55 

component of air pollution was estimated to be the highest ranking environmental/occupational risk-factor and 56 

the fifth highest ranking overall risk factor of globally mortality, responsible for an estimated 4.2 million deaths 57 

globally (Cohen et al. 2017). Cities are severely affected by pollution, especially rapidly growing cities in 58 

industrialising countries (Landrigan et al. 2018) and recent estimates suggest 92% of the world population were 59 

living in places where the World Health Organization (WHO) air quality guidelines for PM2.5 were not met (World 60 

Health Organization 2016). Assessed from across a range of global urban environments, it is estimated that 25% 61 

of PM2.5 is attributed to road traffic, 15% is industrial, 20% is due to domestic fuel burning and 22% is unspecified 62 

(Karagulian et al. 2015). Road traffic derived PM are associated with engine emissions, brake and tyre-wear and 63 

road surface abrasion, each with their own signatures of particulate size fractions and chemical compositions (Pant 64 

and Harrison 2013), and such particles exhibit higher concentrations in the atmosphere near the road (Beevers et 65 

al. 2013). Epidemiological studies have identified such anthropogenic particulates to be associated with 66 

respiratory conditions such as asthma, chronic bronchitis, and also with strokes, many cancers and dementia (Pope 67 

et al. 2002; World Health Organization 2016; Maher at al. 2016; Fuks et al. 2016). By 2050, it is predicted that 68 

68% of the global population will be urban (United Nation 2018) and exposure to anthropogenic urban air 69 

pollution, and particularly PM, represents one of the most imminent environmental risks to public health. In this 70 

connection, WHO recommends: “Strengthening capacities of cities to monitor their air quality with standardized 71 

methods, reliable and good quality instrumentation, and sustainable structures is key.” (World Health 72 

Organization 2016).  73 

This study reports an evaluation of analytical approaches to assess the potential for using leaves as filters and 74 

samplers of urban atmospheric PM. The use of vegetation as a cost effective strategy to reduce air pollution has a 75 

long history (Beckett et al. 1998). The removal of airborne PM through interception by leaves has been widely 76 

studied in an attempt to help reduce the negative health impacts associated with urban PM, by urban greening 77 

(e.g. Nowak et al. 2006). Decades of such deposition studies have been recently summarised in a meta-analysis 78 

by Cai et al. (Cai et al. 2017), reporting urban leaves to accumulate between 3–5 g of PM per m2 of leaf surface 79 

and identifying the fine particulates (PM2.5) to be the highest representation of total PM on leaves with respect to 80 
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particle numbers, but lowest with respect to particle mass. This study also calculated that PM deposition to leaves 81 

was in a dynamic equilibrium with the environment after 10 days of no precipitation (Cai et al. 2017), a finding 82 

similar to the 6 days identified by Mitchell et al. (Mitchell et al. 2010). Such characteristics suggest leaves to be 83 

good passive samplers of local PM.    84 

Any technique using leaves as passive samplers of airborne PM will need to be accurate, precise, repeatable, 85 

reproducible and chemically informative. The process must characterise size, numbers and chemical composition 86 

of the particulates to be relevant for the monitoring of urban PM related to citizens’ health. Vacuum filtration 87 

(VF) has been used most extensively (e.g. Dzierżanowski et al. 2011; Sæbø et al. 2012; Sgrigna et al. 2015; Song 88 

et al. 2015; Mo et al. 2015; Popek et al. 2017). Using VF, different filters with the respective pore sizes 89 

approximate the PM mass into size fractions, e.g. PM10 or PM2.5. However, because the PM is agglomerated upon 90 

the filter surface, the particle numbers, size distribution and chemical composition are rarely quantified (Sgrigna 91 

et al. 2016). Additionally, as this is an aqueous filtration, soluble fractions, can be unaccounted for on filter 92 

deposition (Freer-smith et al. 2005). Atomic absorption spectroscopy (AAS), gas chromatography - mass 93 

spectrometry (GC-MS) and inductively coupled plasma – mass spectrometry (ICP-MS) can be used for chemical 94 

analysis but are limited in details of particle size and numbers (De Nicola et al. 2008; Sawidis et al. 2011; Simon 95 

et al. 2014). Also biomagnetic monitoring of atmospheric pollution accumulated on biological surfaces is a 96 

growing application in the field of environmental magnetism, providing a record of location-specific, time-97 

integrated air quality information, mainly through saturation isothermal remanent magnetization (SIRM) (Hofman 98 

et al. 2017), but no information on particle morphology can be obtained. Using leaves as in situ, low-cost, highly 99 

spatially resolved passive samplers for monitoring urban PM, scanning electron microscopy combined with 100 

energy dispersed X-ray spectroscopy (SEM/EDX) has been reported to be the most appropriate analytical 101 

technique to study PM size, number and chemical composition directly on the leaves of urban trees (Wang et al. 102 

2015; Yan et al. 2016; Baldacchini et al. 2017) or shrubs (Weerrakkody et al. 2018; Shao et al. 2019). However, 103 

the spatial scale of a SEM/EDX analysis (typically hundreds of microns square of leaf area per sample) is very 104 

limited compared to the more commonly used VF (typically many leaves per sample) and no quantitative 105 

estimation of the PM amount in terms of mass has been reported by this technique up to date. 106 

This study investigates the deposition of coarse (PM10-2.5) and fine (PM2.5) particles on the leaves of evergreen 107 

Holm Oak (Quercus ilex) trees in an urban park in Naples (Italy), at varying proximity to potential PM pollution 108 

sources and along the two main wind directions (one of which is from the sea). A method to provide mass 109 

estimation of leaf deposited PM using SEM/EDX is proposed and validated by the comparison with data obtained 110 
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by VF from the same samples. Further, electron conductivity (EC) was used to estimate the quantity of total 111 

dissolved solid (TDS) in the filtrate, typically unrepresented in the VF technique. 112 

 113 

Materials and Methods 114 

Leaf sampling 115 

The sampling campaign took place in Real Bosco di Capodimonte (February 1st, 2017), an urban forest within 116 

Naples, Italy (40.8725° N, 14.2533° E). Seven different locations within the forest (Figure 1a) were selected along 117 

the two main wind directions (Figure 1b and 1c), within an area less than 5 ha wide. Locations were chosen by 118 

the following criteria: location 1 within the wood, locations 2 and 4 adjacent to a busy street, locations 3 and 5 on 119 

the border between wood and meadow, 6 and 7 on the border between wood and brownfield. Single Quercus ilex 120 

(Holm Oak) trees were selected at each location. The aspect of the canopy that was sampled was selected 121 

according to the prevailing wind directions: North-West winds from urban and industrial areas dominating 122 

influence on the canopy sampling at locations 2, 3 and 6; South-West wind direction from the coastline of Naples 123 

dominating influence on canopy sampling at locations 1, 4, 5, and 7. Two replicate branches were taken from each 124 

tree, at a height of 8 m. New leaves, approximated to be 8 months old, were sampled to ensure that the PM 125 

accumulation is from recent deposition, comprising of 58 (± 17) leaves per branch, with an average leaf area of 126 

452 cm2 (SD ±82 cm2). Leaf samples were stored in sealed bags at -20°C for three months prior to analysis. 127 

 128 

 129 

Fig. 1 a) Sampling locations across the urban forest of Real Bosco di Capodimonte (Naples, Italy). Rose wind 130 

diagrams describing wind direction and speed at night (b) and day (c).  131 

 132 
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Scanning electron microscopy and energy-dispersive X-ray spectroscopy 133 

A Phenom ProX (Phenom-World, The Netherlands) scanning electron microscope was used, equipped with X-134 

ray analyzer and charge-reduction sample holder suited for biological samples. Two leaves were selected from 135 

each replicate branch, giving a total of 28 leaves used for SEM/EDX analysis. An approximately 1 x 1.5 cm2 136 

portion of each leaf was selected per sample and fixed to the head of carbon-based stub (PELCO Tabs, Ted Pella, 137 

Inc.), with the adaxial leaf surface pointing upwards, after having fluxed them with compressed air.  138 

For particulate size analysis and number count, SEM images were performed in backscattered electron 139 

configuration, with an incident electron energy of 5 keV, in order to limit the surface charging. Ten random 140 

images, with an approximate area of 150x150 µm2 (1024x1024 pixels), were taken for each sample (280 images 141 

in total). Each selected image was analysed using Gwyddion open source software (Nec ̌as et al. 2012). By 142 

applying a colour threshold based grain analysis (Yan et al. 2016; Baldacchini et al. 2017), the number of particles 143 

in the image, together with the aerodynamic diameter (diameter of the equivalent sphere, deq) of each particle, 144 

were obtained. Particles with a deq comparable with the size of a single pixel (0.146 μm) were excluded, resulting 145 

in a lower cut-off at about 0.3 μm in the diameter of the analysed particles. Particles with a deq larger than 10 μm 146 

(which accounted for less than 0.1% of the total detected particles) were also excluded, resulting in a final data 147 

set composed by PM10-0.3 particles. 148 

For the elemental analysis of the leaf deposited particles, five images with a lateral size of 50 µm (1024x1024 149 

pixels) per sample were further acquired, in backscattered electrons configuration and at an electron voltage of 15 150 

kV. Ten particles were randomly chosen per each image, resulting in a total of 50 particles for each leaf sample 151 

and, including each replicate, a total of 200 particles per sampling location. Per each particle, deq was obtained by 152 

averaging their two main Feret diameters (Merkus 2009), as measured by ImageJ software (Schneider et al. 2012), 153 

and, through dedicated Phenom Pro Suite software, the corresponding EDX spectrum was obtained by positioning 154 

the laser beam in the particle center (Baldacchini et al. 2017). The main elements identified in the PM are C, N, 155 

O, Na, Mg, Al, Si, Cl, K, Ca, Ti, and Fe. Trace elements (F, P, S, Cr, Mn, Co, Ni, Cu, Zn, Sr, Mo, Sn, Sb, Ba, and 156 

Bi) have been also observed. An estimation of the PM elemental composition was obtained by calculating the 157 

weighted volume percentage (W%) occupied by each element x over the number of selected particles, outlined in 158 

equation Equation 1 (Sgrigna et al. 2016; Baldacchini et al. 2017). For each location n, W%n was obtained as the 159 

product of the relative percentage of each element x in each particle i (Cxi, as obtained by the EDX software) and 160 

the corresponding particle volume Vi = 4/3 π (deqi/2)3. Then, for each element, the relative volumes occupied in 161 
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all the analysed particles were summed together, and the sum was normalized by using the total volume of the 162 

EDX analysed particles. 163 

𝑊𝑊%𝑥𝑥𝑥𝑥 =  ∑ 𝐶𝐶𝑥𝑥𝑥𝑥 𝑉𝑉𝑖𝑖𝑖𝑖
∑ 𝑉𝑉𝑖𝑖𝑖𝑖

                        (Equation 1) 164 

Leaf deposited PM mass estimation was then obtained by multiplying the W%xn of each element x, at the location 165 

n, by the total particle volume at the corresponding location (Vn, as obtained by the SEM images of the collected 166 

leaves) and by the corresponding elemental atomic mass per volume (amx, also known as solid state density; 167 

values have been taken from https://www.webelements.com/periodicity/density/). The obtained quantity was then 168 

normalized by the total imaged area (An) multiplied by a factor of 1.5, to take into account that images have been 169 

acquired only on the adaxial leaf side, while PM accumulation occurs on both leaf sides, with the abaxial one 170 

being able to accumulate almost half of the PM quantity with respect to the other (Baldacchini et al. 2017). The 171 

resulting quantity is the PM load per unit leaf area (μg cm-2, Mn): 172 

𝑀𝑀𝑛𝑛 = ∑ 𝑊𝑊%𝑥𝑥𝑥𝑥∙𝑉𝑉𝑛𝑛∙𝑎𝑎𝑎𝑎𝑥𝑥
1.5𝐴𝐴𝑛𝑛𝑥𝑥                       (Equation 2) 173 

 174 

Vacuum filtration 175 

The VF analysis was conducted as previously described (Sgrigna et al. 2015). Ten leaves from each replicate 176 

branch and sampling location were selected for the VF procedure. Leaf samples were thoroughly shaken in a flask, 177 

with 250 ml of de-ionised water, for 5 minutes. Washed leaves were then scanned and leaf surface area measured 178 

using ImageJ. The wash water was pre-filtered through a 100 µm pores sieve and then pulled by a vacuum pump 179 

though cellulose filters with a pore size of 10-15 µm (Anoia S.A., Barcelona, code 1250) measuring the size 180 

fraction between 10 and 100 µm, then though filters with a pore size of 2-4 µm (Anoia S.A., Barcelona, code 181 

1244) measuring the size fraction 2-10 µm, and finally though nitrocellulose membranes (Advanced Microdevices 182 

Pvt. Ltd, type: CN-S) for 0.2 µm measuring the size fraction 0.2-2 µm.  183 

All filters were dried in a moisture controlled oven (Griffin Company) for 40 minutes at 70°C and were placed 184 

into the balance room for 30 minutes before obtaining the mass, to equilibrate to humidity levels. The dried mass 185 

of filters was obtained (Sartorius moisture laboratory) at precision of x10-5 g before (T1) and after (T2) filtration. 186 

The mass of leaf deposited PM per unit leaf area was then estimated for each respective size fraction as the 187 

difference between T2 and T1 masses, further divided by the total two-sided leaf area washed (μg cm-2). 188 

https://www.webelements.com/periodicity/density/
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 189 

Total dissolved solid determination 190 

The EC of wash solution after the 0.2 µm membrane filtration was measured (Crison Basic 30 conductimeter, 191 

equipped with standard 5070 platinum cell). Normalized values of the EC, taking account of the measuring 192 

temperature, are provided by the instrument and used to estimate the TDS (mg ml-1) by multiplying the EC by the 193 

fresh water conversion factor (0.65; Rusydi 2018). For TDS values to be compared with the mass values obtained 194 

by the two other techniques, these were multiplied by the total volume of the wash solution (0.25 litres) and 195 

divided by the total two-sided washed leaf area (and expressed as μg cm-2). 196 

 197 

Data analysis 198 

Correlation and principal component (PC) analyses have been performed on the W% data of the most abundant 199 

elements, i.e. those having W% higher than 0,1% at each location (namely, Na, Mg, Al, Si, Cl, K, Ca, Ti, Fe), for 200 

three PM size fractions (PM10-2.5, PM2.5-1.0, PM1.0-0.3). Statistica v 8 (StatSoft Italia srl, Padua, Italy) 201 

software has been used. C, N, and O were excluded from the analysis since they can be related to biogenic factors 202 

and EDX is known to fail in the correct determination of these light elements (Wilkinson et al. 2013, Baldacchini 203 

et al. 2017). For mass load correlation analysis among techniques, Origin v.8.1 (OriginPro) software has been 204 

used.  205 

 206 

Results and discussion 207 

The mean particle densities per unit leaf area of PM10-0.3, as estimated by the SEM imaging and grain analysis 208 

over the 4 replicates per the 7 locations, are shown in Fig.2a. The lowest particle densities (about 1 x 105 209 

particles/mm2) are observed at the inner park locations (1 and 5), and this value was doubled for the particle 210 

density observed at the locations along the high traffic density street (2 and 4). Location 6 and 7, which are located 211 

at the border between a small woodland and a brownfield, have intermediate particle density values, comparable 212 

between them. Inner park location 3 shows a particle density comparable with the roadside locations. The observed 213 

particle densities are similar to those previously reported for PM deposition on Tilia cordata leaves, along a 5-214 

months sampling campaign performed in Parma (Mantovani et al., 2018), while they are large if compared with 215 

those obtained by using Platanus acerifolia as sampling species (Baldacchini et al. 2017). In this latter case, values 216 
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as high as 105 particles/mm2 were observed only in critically polluted and dry cities (i.e., Yerevan), while in Naples 217 

the leaf particle density was about 2-3 x 104 particles/mm2. However, such a variability in the leaf deposited 218 

particle density  is not surprising: it may depend on several factors, such as the sampling sites and the sampling 219 

period, as well as on the sampling species. Indeed, different species can be characterized by different capturing 220 

capability, likely due to leaf macro and micro morphological differences (Kardel et al. 2011, Sæbø et al. 2012, 221 

Wang et al. 2013, Mo et al. 2015, Chen et al. 2017).  222 

The distribution over the three main particle size fractions (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) is reported in Fig.2b. 223 

All the locations have similar particle size distribution, with about 90% of the particles having an aerodynamic 224 

diameter below 1.0 μm (PM1.0-0.3), from 5% to 10% belonging to the PM2.5-1.0 fraction and less than 2% of coarse 225 

particles (PM10-2.5); these values being similar to those previously reported for P. acerifolia (Baldacchini et al. 226 

2017) and being consistent with the typical atmospheric PM size fraction distribution observed, for instance, by 227 

optical particle counters (Tittarelli et al. 2008). Location 3 shows a relatively high percentage of PM2.5-1.0 (18%) 228 

that, together with the unexpected high particle density observed, would suggest that the sampled leaves could be 229 

older than those collected at other locations; this possibly implying a higher number of particles on the leave 230 

surfaces and clustering of fine PM in larger particles. 231 

 232 

Fig. 2 A description of total particle density (a) and particle size distribution (b) across locations, as estimated 233 

from grain analysis of the SEM images of adaxial Q. ilex leaf surfaces. 234 

 235 

The elemental composition of PM belonging to the three size fractions is shown in Fig. 3. At every location, with 236 

decreasing the PM size, the W% of the main crustal elements (Al and Si) decreases, with a corresponding 237 
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increasing of the Fe W%. At every size fraction, the Fe W% content is from three to four times larger in locations 238 

2 and 4, the roadside ones, with respect to the other locations. It increases from 4.60% and 9.15% (PM10-2.5) to 239 

9.08% and 11.52% (PM2.5-1.0) and to 10.94% and 14.41% (PM1.0-0.3), for location 2 and 4, respectively. A W% of 240 

over 5% of Fe has been described as predictive of roadside pollution footprint (Baldacchini et al. 2017). Indeed, 241 

airborne particles in the proximity of high traffic roads are characterized by  high Fe content, likely due to brake 242 

consumption, as previously verified, for instance by ICP-MS on impactor collected PM (Harrison et al. 2012).  243 

Correlation analysis has been performed among those elements having W% higher than 0,1% at each location 244 

(namely, Na, Mg, Al, Si, Cl, K, Ca, Ti, Fe), for the three PM size fractions. Significant (p < 0.05) positive 245 

correlations have been obtained: in PM10-2.5, for Na and Cl (r = 0.97) and for Ca and Ti (r = 0.85); in PM2.5-1.0, for 246 

Na and Cl (r = 0.82), for Mg and Ca (r = 076), Ca and Ti (r = 0.89), Ca and Fe (r = 0.94), and for Ti and Fe (r = 247 

0.82); in PM1.0-0.3, for Na and Cl (r = 0.78), for Al and Si (r = 0.79), and for K and Cl (r = 0.86). It is worth noting 248 

that significant correlation between Na and Cl W% is obtained at every size fraction, likely due to marine aerosol 249 

deposition on leaves (Baldacchini et al. 2017), with some of the selected locations being exposed to marine breeze 250 

from South-West during the day. High and correlated concentrations of Na+ and Cl- have been previously reported 251 

as due to marine breeze also in airborne particles collected by gravimetric techniques and analyzed by 252 

chromatography (Yin et al. 2005). 253 
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 254 

Fig. 3 The elemental composition, estimated by elemental W% from the SEM/EDX analysis, for the three PM size 255 

fractions (10-2.5 µm, 2.5-1.0 µm, 1.0-0.3 µm) from all sampling locations. 256 

 257 

Principal component analysis (PCA) based on correlation, applied to the W% data of the selected elements, for the 258 

three PM size fractions, highlights the most location discriminant elements. The factor coordinates (Fig. 4a, c and 259 

e) and the factor scores (Fig. 4b, d and f) of the two first PCs are plotted in Fig. 4, for the three PM size fractions. 260 

The eigenvalues of the two principal components (PCs), measuring proportion of variance, are at 52.55% and 261 

22.58% for PM10-2.5, 51.54% and 23.02% for PM2.5-1.0, 42.99% and 30.32% for PM1.0-0.3, for PC1 and PC2 262 

respectively. At the three size fractions, according to the correlation analysis, PC1 mainly describes the clustering 263 
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of sites dominated by the correlated presence of Na and Cl (1, 5 and 7). PC2, instead, discriminates, at the three 264 

sites fractions, sites dominated by “crustal components” such as Al and Si (sites 3 and 6) from those presenting 265 

high Fe concentration (2 and 4). Only in PM10-2.5 location 2 is grouped with 3 and 6 instead of 4, likely due to the 266 

fact that coarse PM results from the aggregation of fine PM with different source apportionment. 267 

The behaviour of the remaining elements (Mg, K, Ca, Ti) is not straightforward, probably because they are 268 

characterized by lower W% and may have different origins, either natural and anthropogenic (Sgrigna et al. 2016). 269 

As a consequence, they correlate with different elements in the different size fractions, but without discriminant 270 

power: PCA performed by eliminating these elements one by one displayed no differences in the location 271 

clustering.  272 

The clustering of sites 1, 5 and 7 at each PM size fraction, according to the correlated presence of Na and Cl, 273 

reveals that leaves have been sampled from the canopy facing the prevailing sea breeze from South-West at these 274 

locations. On the other side, locations 3 and 6 are correctly characterized by high concentrations of Al and Si, 275 

which could be associated with soil or earth compounds, since leaves have been sampled from the canopy side 276 

exposed to wind from North-West and protected with respect to the marine breeze. Finally, the cluster explained 277 

by high Fe concentration (typical of roadside combustion particulates, as previously said) is associated with 278 

roadside and road-facing canopy leaves from locations 2 and 4. 279 
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 280 

Fig. 4 Biplots of the factor coordinates of variables (a, c, e) and of factor scores (b, d, f) of the two first PCs 281 

obtained by correlation PCA of the elemental W% for the PM10-2.5 (a, b), PM2.5-1.0 (c, d) and PM1.0-0.3 (e, f) size 282 

fractions. 283 

 284 

The PM mass per unit leaf area (i.e., the particle load) as estimated by combining SEM and EDX data is shown 285 

in Table 1, for each location. The corresponding particle loads as obtained by VF by using leaves from the same 286 

sampling collections are reported in Table 2. The results obtained with the two techniques can be directly 287 

compared for the coarse particles’ fraction (which is PM10-2.5 for SEM/EDX and PM10-2.0 for VF), while the fine 288 

particles’ fraction obtained by VF (PM2.0-0.2) contains both the two finest fractions of the SEM/EDX analysis 289 

(PM2.5-1.0 and PM1.0-0.3). The mean particle loads obtained for coarse and fine PM with the two techniques are 290 

compared in Fig.5a.  291 
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Table 1 The estimated mass of PM on leaves, per unit leaf area, as obtained from SEM/EDX, as average values 292 

over the two replica. Standard deviation (SD) is given for each estimation at the different seven sites. The value 293 

averaged over the seven sites, at each PM size fraction, is given with standard error (SE). 294 

 
PM mass per unit leaf area estimated by SEM/EDX (μg/cm2) (± SD)  

 
1 2 3 4 5 6 7 Mean ± 

SE 

PM10-2.5 3.9 4.1 9.3 16.7 2.9 5.9 6.4 7.0  

± 01.3 ± 1.9 ± 5.0 ± 7.3 ± 2.1 ± 3.6 ± 5.6 ± 1.8 

PM2.5-1.0 1.8 3.3 4.6 5.6 1.7 2.6 2.6 3.2 

± 0.5 ± 0.7  0.4 ± 0.7 ± 0.2 ± 1.3 ± 0.6 ± 0.6 

PM1.0-0.3 0.9 2.1 2.1 2.3 0.7 1.3 1.2 1.5 

± 0.3 ± 0.1 ± 1.2 ± 0.3 ± 0.2 ± 0.7 ± 0.3 ± 0.2 

 295 

Table 2 The estimated mass of PM on leaves, per unit leaf area, as obtained from VF, as average values over the 296 

two replica. Standard deviation (SD) is given for each estimation at the different seven sites. The value averaged 297 

over the seven sites, at each PM size fraction, is given with standard error (SE). 298 

 
PM mass per unit leaf area estimated by VF (μg/cm2) (± SD)  

 
1 2 3 4 5 6 7 Mean ± SE 

PM10-2.0 0.44 1.77 1.28 1.18 0.37 0.81 0.06 0.8 

± 0.11 ± 0.51 ± 0.19 ± 0.16 ± 0.03 ± 0.01 ± 0.6 ± 0.2 

PM2.0-0.2 3.66 2.95 5.21 3.73 6.41 5.55 4.64 4.6 

± 0.12 ± 1.02 ± 0.05 ± 0.90 ± 0.23 ± 0.88 ± 1.67 ± 1.2 
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 299 

Fig. 5 (a) Mean particle loads of coarse and fine PM over the sampling set, as obtained by SEM/EDX and VF. 300 

Error bars represent the standard error. (b) Coarse (black squares) and fine (red circles) PM loads estimated by 301 

SEM/EDX plotted as a function of the corresponding value estimated by VF, per each sampling location. The 302 

dashed lines represent the corresponding best linear fits, as obtained separately for the coarse fraction (black line; 303 

slope = 3.8 ± 1.2, R2 = 0.55) and the fine fraction (red line; slope = 0.91 ± 0.22, R2 = 0.70). The grey thick line 304 

(slope = 1) guides the eye to identify the ideal 1:1 correlation between the datasets. 305 

 306 

Averaged across all sites, the two techniques strongly agree in the determination of fine PM load, which is 4.7 ± 307 

0.8 μg/cm2 by SEM/EDX and 4.6 ± 1.2 μg/cm2 by VF, and these values are further consistent with a previous 308 

study performed by using Q. ilex to monitor PM in the industrial city of Terni (Italy) by VF (Sgrigna et al. 2015). 309 

However, they completely disagree in the coarse PM quantification: the coarse PM load is greater than that of fine 310 

PM when determined by SEM/EDX (7.0 ± 1.8 μg/cm2), as expected (Cai et al. 2017), while an inverted ratio is 311 

observed when VF is used (VF determined coarse PM load is 0.8 ± 0.2 μg/cm2). The total PM10 load obtained 312 

(summed mass of all particulates ≤ 10 µm) is 11.7 ± 2.5 μg cm-2 by SEM/EDX and 5.4 ± 0.9 μg cm-2 by VF. The 313 

previous VF study performed on Q. ilex obtained a coarse PM load of about three times the fine PM load, resulting 314 

in a mean total PM10 load of about 20.6 μg cm-2 (Sgrigna et al. 2015). An higher coarse PM load was generally 315 

observed also by two further studies studying fine and coarse PM loads by VF on a wide range of tree species in 316 

China (Mo et al. 2015) and in Norway and Poland (Sæbø et al. 2012). The mean PM10 load in these cases was 317 

about 12 μg cm-2 (Mo et al. 2015) and ranged between 4 and 17 μg cm-2, depending on the sites (Sæbø et al. 2012), 318 

respectively. All these mean PM10 load values are highly consistent with our SEM/EDX estimates. However, 319 

some exceptions showing coarse PM load lower than fine PM load have been also reported by the two latter 320 

studies, mainly depending on the tree species. 321 



16 
 

The PM load location-dependent analysis is shown in Fig.5b, where the values obtained by SEM/EDX for both 322 

the coarse and the fine PM load, at each location, are plotted as a function of the corresponding VF results. Again, 323 

a close parity between the two techniques is obtained for the fine PM estimates of mass (red circles), as represented 324 

by the trend of scatter around the 1:1 line (grey line in Fig.5b); the best linear fit of the fine PM results (red dashed 325 

line, R2 = 0.70) having a slope of 0.91 ± 0.22. On the contrary, for the coarse PM, the SEM/EDX value is always 326 

higher than the corresponding VF value (black squares). With the intercept forced through zero, the gradient of 327 

the positive linear relationship (black dashed line, R2 = 0.55) is 3.8 ± 1.2, indicating that the mass estimation by 328 

SEM/EDX is almost four times higher than that of VF for the coarse PM fraction. A possible explanation for this 329 

different estimation could reside in the soluble part of PM, which is lost, or fragmented, in VF. Indeed, the sites 330 

with prevailing PM contribution from the marine aerosol (1, 5, and 7), which is predominantly salt (NaCl), are 331 

those showing the lowest coarse PM load by VF. 332 

Salt dissociation should result in an enhancement of the electrical conductivity (EC) of the wash solution, 333 

proportional to the quantity of dissolved ions, i.e. of the washed salt. The total dissolved solid (TDS) estimates 334 

obtained by the EC measurements of the wash solutions, combined with the VF determined PM10 loads 335 

(VF+TDS), are compared with the corresponding SEM/EDX estimates in Fig. 6. The total (VF+TDS) PM10 load 336 

is quite homogeneous over the locations, with a mean value of 13.0 ± 1.5 μg cm-2, while the SEM/EDX estimate 337 

is more scattered, having a mean value of 11.7 ± 2.5 μg cm-2. However, the two mean estimates are now in 338 

agreement, as well as five of the sites’ estimates (2, 3, 4, 6 and 7). Only locations 1 and 5 exhibit a disparity 339 

between the techniques, likely due to the rough TDS estimation performed, which largely affects those sites with 340 

major salt contribution in the PM load. Moreover, locations 1 and 5 have the lowest Fe W%: a total estimate of 341 

1.62 ± 0.30 and 1.99 ± 0.97, respectively, as compared with an average of 4.15 and maximum of 9.15 in location 342 

4 (road-side). Since SEM/EDX sensitivity improves with the atomic weight, a general underestimation of PM 343 

load by SEM/EDX at low Fe W% locations cannot be excluded.  344 
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 345 

Fig. 6 A comparison of estimated PM10 load by SEM/EDX (PM10-0.3) and by combined VF (PM10-0.2) and TDS. 346 

 347 

 348 

Conclusions 349 

This study reports a detailed evaluation of a new analytical approach to assess the potential of tree leaves as 350 

passive samplers for in situ, low-cost, highly spatially resolved urban PM monitoring. In particular, tree leaves 351 

and SEM/EDX have been identified as a highly spatially resolved system with the capability to inform on 352 

particulate size, frequency distribution of sizes classes and elemental composition of atmospheric PM. By 353 

accurately sampling the tree canopy with respect to the main wind directions, we have obtained very different 354 

results, highly indicative of the source apportionment, within a 5 ha area of the same urban park. North-West wind 355 

flux from the outskirts of the city of Naples mainly brings elements of natural origin (crustal elements) such as Al 356 

and Si. The South-West wind flux is from the sea, notably containing the Na and Cl elements. High Fe deposition 357 

(W% > 10%) characterizes the areas typical of heavy traffic. 358 

Moreover, an original method to obtain PM mass deposition estimates from SEM/EDX measurements of leaf 359 

deposited PM has been presented and validated. For fine PM (PM2.5), the provided estimates are generally 360 

comparable to those obtained with VF, which determines the PM load from whole leaf washing and therefore 361 

offers the potential of a large sample size. Discrepancies have been obtained in the coarse PM (PM10-2.5) mass 362 

determination. This could be due to the loss of the soluble part of PM during VF, as demonstrated by measuring 363 

the EC of the wash solution. However, EC can take into account only the ionic part of the solved PM and further 364 
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studies are in progress to include also non-ionic compounds in this analysis. Moreover, to disclose the efficiency 365 

of the presented method in quantifying PM as a function of its elemental composition and/or size fraction, the 366 

elemental and ion composition of both leaf deposited PM and wash solution will be further characterized by 367 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Optical Emission 368 

Spectroscopy (ICP-OES), and by Ion Chromatography (IC), respectively. 369 

The use of SEM/EDX to study leaf deposited PM emerges then as a suitable tool to be used to guide future 370 

estimation of PM deposition upon vegetation and support best practise in identifying airborne PM pollution 371 

sources within the urban environment. Furthermore, the high spatial resolution provided by this technique offers 372 

an approach to allow closer alignment between medical studies of the airborne disease pathway and the reduction 373 

by vegetative interception of PM, so informing targeted planting for air quality management. 374 

 375 
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