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Demand forecasting is a critically important task in grocery retail. Accurate
forecasts allow the retail companies to reduce their product spoilage, as well as
maximize their profits. Fast-moving products, or products with a lot of sales and
fast turnover, are particularly important to forecast accurately due to their high
sales volumes.

We investigate dynamic harmonic regression, Poisson GLM with elastic net, MLP
and two-layer LSTM in fast-moving product demand forecasting against the naive
seasonal forecasting baseline. We evaluate two modes of seasonality modelling in
neural networks: Fourier series against seasonal decomposition. We specify the
full procedure for comparing forecasting models in a collection of product-location
sales time series, involving two-stage cross-validation, and careful hyperparameter
selection. We use Halton sequences for neural network hyperparameter selection.

We evaluate the model results in demand forecasting using hypothesis testing,
bootstrapping, and rank comparison methods. The experimental results suggest
that the dynamic harmonic regression produces superior results in comparison
to Poisson GLM, MLP and two-layer LSTM models for demand forecasting in
fast-moving products with long sales histories. We additionally show that de-
seasonalization results in better forecasts in comparison to Fourier seasonality
modelling in neural networks.
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Abbreviations and Acronyms

SKU Stock keeping unit
PL Product-location
ARIMA Autoregressive integrated moving average
NN Neural network
HW Holt-Winters
SARIMA Seasonal autoregressive integrated moving average
MLP Multilayer perceptron
MAPE Mean absolute percentage error
RMSE Root mean square error
ANN Artificial neural network
MAE Mean absolute error
MdAPE Median absolute percentage error
RNN Recurrent neural network
LSTM Long short-term memory
MSE Mean squared error
SVM Support vector machines
CV Cross-validation
i.i.d. Independent identically distributed
r.v. Random variable
OLS Ordinary least squares
SSE Sum of squared errors
GLM Generalized linear model
ARMA Autoregressive moving average
ARIMA Autoregressive integrated moving average
ReLU Rectified linear unit
SGD Stochastic gradient descent
MBGD Mini-batch gradient descent
MLE Maximum likelihood estimation
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Chapter 1

Introduction

In the past few decades, the capabilities of computer systems have increased
dramatically. The problems, where the meaningful insight has recently been
impossible due to insufficient amount of data, or lack of computational re-
sources, can now be solved with the help of the techniques from the fields
of machine learning, and statistics. New algorithms [55], optimization tech-
niques [51], and tools [1, 80] make the inference from big data possible within
reasonable time.

Very often data is collected through time, and represented as a sequence
of time-indexed data points. Such sequences are called time series, and fre-
quently encountered in science and business. In the business settings, ex-
ploratory time series analysis can be used to find interesting patterns in
consumer behaviour, hidden dependencies between events, or to assess how
particular business decisions influenced the company growth, sales, or some
other processes. Very often the time series data is also used for forecasting.
Other common tasks in time series analysis include visualization, anomaly
detection, classification, clustering, segmentation, and dimensionality reduc-
tion.

1.1 Retail Sales as Time Series

One interesting application of time series forecasting is the prediction of
future sales in retail, or demand forecasting. The business can save money by
ordering the right amount of products for each of its stores [25]. In particular,
if too much of some product is ordered, and there is not enough demand at
the shop, then the product stays on the shelves until the expiry date, when it
has to be removed, which results in money loss. At the same time, if there is
not enough of some product at some outlet, the customers cannot purchase
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CHAPTER 1. INTRODUCTION 8

more of it, and the retailer loses its potential earnings. Thus, the problem of
accurate demand forecasting is of primary importance to the retail business.

In retail stores, each product can be tagged with the location, where it
is kept. Hence, the inventory of a retailer can be listed as a set of product-
locations [82], or stock keeping units (SKU). Each product-location has an
associated sales history on a weekly, daily, hourly, or some other level. How-
ever, too much granularity for the sales time series data is rarely useful, since
ordering is not usually done more than once a day. Thus, the sales histories
and forecasts are usually required on a daily level.

The forecasts can be produced either for each product-location separately,
or for some aggregate level, such as a product group, or a group of locations.
The selection of the forecast aggregate level depends on the suspected de-
mand generation process, and the level on which the decision about the
forecast usefulness is made [82]. In supply chains, SKUs are often arbitrarily
classified by the amount of sales. It is easy to notice that product-locations
can be either fast-moving, characterized by very high stock turnover and
frequent purchases, or slow-moving with intermittent demand, where a lot
of days have no sales at all. Forecasting of slow-moving products presents
difficulties of its own, since it is hard to estimate parameters from a scarce
sales history which is a hallmark of slow-moving product-locations.

Sales histories often have multiple seasonalities, as well as abrupt level
shifts. Additionally, various calendar effects, such as the number of weekends
in a month or public holidays like Christmas and Easter, can influence the
demand dramatically [56]. These effects can interfere with seasonalities in a
non-linear way, giving rise to unusual demand patterns. Moreover, sometimes
an event like a stockout can happen. It occurs when the product is sold out
at a retail shop. The stockouts have a negative impact on the forecasts of
the affected product-locations, since the sales histories, that contain them,
do not represent the real demand anymore [70].

The sales histories in grocery retail are often represented as time series
of counts since many products are sold by piece. For the products, that are
sold by weight or volume, the sales history is usually represented by fractional
numbers with up to 2 decimal digits of precision. Sales time series often have
external regressors which are recorded and supplied along with the sales
data. These additional variables can be viewed as time series themselves,
and may include information about the weather, advertising campaigns, or
other events. Calendar effects, weekdays, seasonalities, and other significant
implicit occurrences are often encoded as artificially engineered features.

There are multiple models and methods which are used in demand fore-
casting in retail. They can be broadly divided into qualitative and quan-
titative methods [48]. Qualitative methods are also known as judgmental
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forecasting. They are most often used in situations when history sales data
is not available or scarce, and the forecast has to be based on the informed
opinion of an expert. On the other hand, quantitative methods are used in sit-
uations when the sales history is readily available, and include a broad range
of statistical and machine learning procedures. Very often, after applying an
appropriate quantitative method, forecasts are adjusted using judgment.

1.2 Contributions

It is important to determine beforehand the length of the computed fore-
casts. The forecast horizon, or length, depends on the practices established
in a particular supply chain, and the type of a product. For fast-moving
products with stable demand, precise forecasting on daily level is crucial
since relevant product-locations have many sales, and the mismatch in the
demand and supply results in big losses of profits. The goal of this thesis is
to evaluate the performance, as well as the advantages and disadvantages of
6 quantitative methods (2 statistical and 4 machine learning models) for fast-
moving product demand forecasting on a daily level. The experimental part
of this paper is based on the real sales histories received from a grocery retail
supermarket in Europe. In addition to the sales data, the recorded time series
also have the information about the promotions and weather. We limit our
attention to the models which can handle time series with regressors. The
model forecasts are produced and evaluated on the product-location level.
The evaluated forecast horizon is 7 days, and the forecast preparation fre-
quency is assumed to be approximately once in a week, so that the forecasts
do not overlap.

The secondary objective of this thesis is to investigate the implications
of multiple seasonality, external regressors, large fluctuations in demand, as
well as stockouts in sales histories. We present two approaches to multiple
seasonality modelling in demand forecasting, and compare them in neural
network models. We show a method to handle stockouts appropriately, so
that the compared models accurately account for the out-of-stock situations
in the past, and the forecasts accurately represent the future demand. In the
experimental part, we additionally evaluate the effect of large fluctuations
on forecast accuracy.

The thesis aims to establish and describe the methodology of forecast-
ing model comparison. We provide a detailed description of the steps that
should be taken to produce the required forecasts, how the forecasts should
be evaluated with respect to a large number of product-location time series,
and the details of the model comparison. This work shows a new approach to
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compare multistep forecasting models based on a large number of time series
with regressors, using a series of cross-validation steps, and nonparametric
hypothesis testing. Our attention is focused exclusively on daily multistep
forecasts of fast-moving products in grocery retail, literature on which is
scarce.

1.3 Thesis Structure

The thesis chapters are briefly described as follows:

• Chapter 1 presents the specifics of time series analysis and forecasting
in retail, states the main problem and goals of the thesis.

• Chapter 2 introduces the key concepts of statistics and machine learn-
ing, that are necessary to understand the further discussion.

• Chapter 3 is a broad review of related applied research in retail demand
forecasting.

• Chapter 4 presents the theoretical and practical details of the methods
used in the experimental part of this thesis.

• Chapter 5 summarizes the experimental part, and presents it as a se-
quence of steps. This chapter also briefly lists the technologies and
tools used in the experiments.

• Chapter 6 states the results achieved in the experimental part in the
form of tables and graphs with summaries and descriptions.

• Chapter 7 touches upon the experimental process in a critical manner,
lists the advantages and disadvantages of the used methods, and gives
another summary of the results.

• Chapter 8 gives the final brief statement on the results of demand
forecasting model comparison for fast-moving products.



Chapter 2

Background

2.1 Machine Learning and Statistics

Machine learning is a field of study that is concerned with statistical methods
and algorithms used by computer systems to build models from data in order
to make decisions and solve problems without being explicitly programmed
to [11, 53]. As such, machine learning is closely related to statistics. The
two fields differ in their modelling and decision making philosophy, as well
as practitioner communities and research focus.

Statistics places great emphasis on assumptions about the process gen-
erating the data, and then inference, hypothesis testing, and asymptotic
properties are studied. Breiman [12] notes, that the biggest problem with
this approach is that the nature does not follow predefined assumptions, and
too much emphasis on artificial models may result in wrong conclusions. In
contrast to this approach, machine learning treats the model as a black box
not paying as much attention to assumptions.

Many tools used in both fields are the same. Machine learning explores
the applications of linear regression models, Bayesian inference and other
tools, originating in statistical literature, to computationally hard problems.
At the same time, tools that were created in the machine learning commu-
nity, such as regression and classification trees, support vector machines, and
neural networks are researched and explained from the statistical viewpoint.

In terms of application, machine learning emphasizes prediction tasks
over inference, confidence intervals or asymptotic analysis. In this work, we
do not shy away from using statistical procedures that are not widely used
in machine learning research, such as hypothesis testing, but the emphasis
is on prediction and out-of-sample model performance comparison using as
few assumptions as possible, which explains some modelling choices further.

11



CHAPTER 2. BACKGROUND 12

2.2 Machine Learning Basics

Machine learning problems can be roughly presented as either supervised or
unsupervised. In supervised learning problems, data is presented as a col-
lection of records, called data points, and each data point has two parts:
input (feature vector, explanatory variables, independent variables, covari-
ates, or regressors) and output (label, response, target variable, or dependent
variable). Suppose that data labels are related to their features by some un-
known process y = f(x), where y is the target variable, and x is the feature
vector. The purpose of supervised machine learning is to find a hypothesis
function y = h(x;θ) from the hypothesis space H, such that the function
h(x;θ) ∈ H approximates the true underlying process f(x) as close as pos-
sible given some error measure, L(f(x), h(x;θ)), called the loss function. In
statistical learning theory, the optimized quantity is called the ”risk”, which
is the expectation of the loss function over the true data-generating distribu-
tion. However, the true distribution is never known, and the quantity that is
optimized in reality is the empirical risk, which is the approximation to the
true data generating process based on the training set. The hypothesis space
is a collection of functions that can approximate the true data generating
process f(x) under the initial restrictions of the used learning procedure.
Supervised learning problems can be further subdivided into classification
and regression problems. In classification problems, the output y of the pro-
cess y = f(x) is discrete, so each feature vector x is associated with one
category from a finite set. In regression problems, the output variable y is
continuous, such that y ∈ R.

Unsupervised machine learning is applied to the data which has no la-
bels. Such data often has interesting hidden patterns which can give insight
into the problem at hand. Data mining is a large field related to machine
learning that explores learning algorithms to discover various patterns in
unlabelled datasets. Common unsupervised learning problems include clus-
tering, density estimation, and dimensionality reduction for the purpose of
visualization [11]. Other two types of machine learning are semi-supervised
and reinforcement learning. Semi-supervised learning deals with the data
which is only partially labelled, while reinforcement learning involves the in-
teraction of an artificial intelligence agent with the environment in order to
receive rewards for its actions and learn interactively.

In supervised machine learning, the best hypothesis has to be learned
(estimated) from the training data before the predictions for the new data
can be made. The hypothesis space limited to a certain set of parameters and
shapes is further referred to as a model. Finding the best hypothesis is the
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same as fitting or training the model. In order to find the best hypothesis,
the training data is usually split into the training, validation, and test sets.
The training set is used to estimate the parameters θ of the model h(x;θ).
However, some of the model parameters, called hyperparameters, have to
be set manually before the training takes place. The validation set is used
to find the optimal hyperparameters of the model, or to evaluate the model
out-of-sample performance. The test dataset, or holdout dataset, is used
specifically for reporting. No parameter learning, or model selection should
be performed on the test set. The training/validation/test set division can
be roughly 50%/25%/25% of the total training data available [29]. The more
labelled data is available, the larger the training set can be. If the labelled
dataset is very large, the division can as well be 95%/2.5%/2.5%. However,
the numbers vary from application to application, depend on the problem,
and on the person using the procedure.

2.2.1 Model Training

In order to find a suitable set of parameters θ for the hypothesis y = h(x;θ),
the model has to be trained with the labelled data. As stated above, the
training part of the dataset is specifically allocated for this purpose. The
set of suitable parameters θ is chosen according to some loss (cost) func-
tion L. There is a variety of loss functions available for supervised machine
learning. Regression problems often use the mean squared (quadratic) or
absolute loss, while classification problems can employ mean squared, cross-
entropy, or hinge loss [29]. The most desirable qualities of a loss function
are continuity and differentiability. For example, the quadratic loss function
is both continuous and differentiable, while the absolute loss is continuous
everywhere, but not differentiable at the origin. The mean squared loss for
a dataset of N points can be defined as follows

L(f(x), h(x;θ)) =
1

N

N∑
i=1

(yi − h(xi;θ))2 (2.1)

After the loss function is specified, some optimization procedure has to
be employed to find the set of parameters θ that minimizes the cost function
value. There is a broad range of procedures used for this task, such as the
gradient descent and its variations, the family of newton methods, expecta-
tion maximization and other algorithms. In the simplest cases, a closed form
solution of the loss minimization can be found, and the parameters of the
model can be estimated in one step. The optimal set of parameters defines
the best hypothesis function h(x;θfinal), h ∈ H.
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2.2.2 Model Selection

Many models have hyperparameters related to regularization, model class
complexity (number of neurons, trees, polynomial degree, etc.), optimization
routine (learning step, momentum, number of restarts), or feature trans-
formations (windows sizes, differencing order in time series, etc.). In order
to properly set these manually selected parameters, a validation set can be
allocated. Hyperparameter selection can also be done with the help of cross-
validation which is discussed further. The process of hyperparameter tuning
is a part of model selection.

The procedure of hyperparameter selection involves hyperparameter vec-
tors ξi ∈ Ξ defined for the hypothesis subspace h(x;θ, ξi) ∈ H(ξi). The vec-
tor ξi is set before the loss function is optimized on the training data to find
the best parameters θfinal for h(x;θ, ξi). Then the performance of the model
h(x;θfinal, ξi) is assessed on the validation set. The metric used to measure
the model performance on the validation set is often different from the loss
function used in the training phase. The training-validation two-step proce-
dure is iterated by trying ξ1, ..., ξn ∈ Ξ one-by-one, retraining the model, and
then assessing its performance on the validation set. After all possible com-
binations of hyperparameters in the set Ξ have been exhausted, the vector
ξi, which gives the best performance on the validation set, is selected as the
best set of hyperparameters, or the best model. The set Ξ, which we further
call the hyperparameter space, is defined by the practitioner, and is often
generated using the grid search, random search, or some other sophisticated
procedure for hyperparameter selection like Gaussian processes.

One common procedure for the automatic hyperparameter space genera-
tion is the grid search. It involves defining a range for each model hyperpa-
rameter, which is split into a predefined number of equidistant points. We
create the hyperparameter space Ξ with the help of a Cartesian product.
Suppose that each hyperparameter i from the set of hyperparameters of size
N has produced a set of points Si for its respective range. Then, we define
Ξ in the grid search as

Ξ = S1 × S2 × ...× SN−1 × SN = ×
1≤i≤N

Si (2.2)

If each hyperparameter is thought of as an axis in the N -dimensional space,
then each vector ξi ∈ Ξ represents a coordinate set, which uniquely identifies
one particular model. The grid search is used extensively through all areas
of machine learning due to its simplicity. The grid search does not require
as much intuition and judgement as the manual parameter selection, since it
only needs to know the hyperparameter ranges, and how far the points on
each axis are from each other (grid spacing).
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Validation sets, and cross-validation in general, are a typical way to per-
form model selection in machine learning community. In statistical commu-
nity, models are often selected based on information criteria. These quanti-
ties include Akaike information criteria (AIC), deviance information criteria
(DIC), widely applicable information criteria (WAIC), as well as Bayesian
information criteria [34]. These measures are different from cross-validation
since they are computed on the training set after the model has been fit,
and many of them cannot be used for out-of-sample performance estimation
across multiple datasets and model classes [47].

Among the information criteria, AIC is commonly used in time series
analysis and has the following form [34]:

AIC = 2k − 2 log p(y|θ̂mle) (2.3)

where k is the number of the model parameters, and p(y|θ̂mle) is the estimate
of the maximum likelihood of the trained model. The model is better, if its
AIC is smaller. Thus, this measure penalizes models with a large number of
parameters. It is also evident from the formula, that in order to assess this
quantity, the model has to have some assumed probability distribution p(.).
However, for many models in machine learning, such as neural networks or
SVMs, there is no associated probability distribution, so the computation
of information criteria is not straightforward (these models have to be given
a probabilistic interpretation). Moreover, the probability distribution p de-
termines the type of error which can be computed on the test set given the
selected model. For example, AIC for Gaussian maximum likelihood will re-
turn the optimal model for the mean squared error, while it might not be the
optimal model for MAPE or MAE [47]. There are many other issues with
the AIC and its variants that make the cross-validation in machine learning
more popular than these information criteria. However, when applicable,
the information criteria can usually be computed much faster than the cross-
validation which often becomes the decisive factor in favour of AIC and other
related methods.

2.2.3 Bias-Variance Tradeoff

An important phenomenon that often arises in model selection process is
overfitting. It means that the trained model has a low error on the training
set, but its performance is much worse when it tries to predict new data
points. In other words, the discovered model does not generalize well. Over-
fitting happens as a part of the bias-variance tradeoff. Suppose that we have
a particular training dataset D, and a hypothesis f̂(X;D) that was esti-
mated on the dataset D. We can relate the labels of the data points in D
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to the features X as Y = f(X) + ε, where f(X) is the true data generat-
ing function, and ε is a source of noise, or error, in the dataset, such that
E
[
ε
]

= 0,Var
(
ε
)

= σ2. It turns out that the expected generalization error
for some given feature vector x0 can be decomposed as follows [29]:

E{Y,D}
[
(Y − f̂(x0;D))2

]
= σ2 + Bias2

(
f̂(x0;D)

)
+ Var

(
f̂(x0;D)

)
(2.4)

The bias and variance of the suggested hypothesis f̂(X;D) are computed
over all possible random training datasets D. This equation allows us to
analyze the error incurred for a particular test sample x0. Since the term σ2

is irreducible, and the expected generalization error is constant, the decrease
in the bias will increase the variance, while the decrease in the variance
will increase the bias. High bias in the equation means that the difference
between the estimator expectation E

[
f̂(x0;D)

]
and the true parameter f(x0)

is large. The variance part indicates how much the estimate f̂(x0;D) differs
depending on the training dataset.

Overfitting occurs when the bias of the model is too low while the vari-
ance is high. It means that the model can adjust too much to insignificant
fluctuations in the training set data, which leads to a poor generalization
capability. In this situation, even though the expectation of the estimator is
close to the true value, the scatter Var

(
f̂(x0;D)

)
is large, and it is probable

that the given model f̂(x0;D) trained on D will have a significant deviation
from its mean. In practice, high bias is associated with rigid, inflexible, or
overly simplistic models, while high variance is on the other hand attributed
to complex models with many degrees of freedom. Even though overfitting
is a problem, choosing an insufficiently complex model also results in poor
predictions, since the bias is high. Usually, this tradeoff can be visualized as
the error achieved by the model versus the model complexity as in Figure 2.1.

It is evident from Figure 2.1 that the best model for prediction is nei-
ther too simple, nor too complex. While the model complexity can always
increase, the test error starts eventually growing. Thus, it is important to
measure how well the model generalizes. The standard way to do it is to use
the validation dataset in conjunction with regularization. After fitting the
model on the training set, its performance is measured on the validation set.
If the model performance is unsatisfactory, and the model is too simplistic, a
more complex alternative is tried. However, if overfitting is suspected, it can
be prevented by either choosing a simpler model, or tuning the regularization
hyperparameters.
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Figure 2.1: Bias-variance tradeoff

2.2.4 Model Evaluation

After the model selection has taken place, it is important to assess the per-
formance of the selected model and compare it to other models if any. For
this purpose, a test set is usually allocated. After the model selection stage,
the training and validation sets are combined into one, and the final model
is trained on the combined dataset with the best hyperparameters ξfinal to
obtain h(x;θfinal, ξfinal). The performance of the model is often checked on
the test set using the same metric that was used on the validation set during
model selection. This procedure, also known as the holdout method, allows
to assess the out-of-sample performance of the model.

Another way to assess the out-of-sample performance of a model involves
using cross-validation (CV). The CV is a procedure that splits the dataset
into multiple equally sized parts, called folds, and then selects one fold as
a validation/test set, while merging all other folds into 1 training set. This
procedure is repeated with each of the folds exactly once. After all folds
have been used as the test set, the final accuracy measure is calculated as an
average across all folds. The holdout method can be viewed as the CV with
1 fold.

There are many types of the cross-validation procedure in the literature.
When the data is split into k folds, the procedure is called k-fold cross-
validation. An extreme example is when k equals the number of data points
in the dataset. In this case, it is called the leave-one-out cross-validation
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(LOO-CV). The number of folds has to be determined manually, but the
estimate can be biased if the number of folds is small [52]. A stratified k-fold
cross-validation is a procedure which splits the data into k folds, and ensures
that the distribution of labels in each fold is approximately the same as in
the whole dataset. Stratification allows the cross-validation to have a lower
bias.

2.3 Statistical Inference

Each experimental set of data is usually a subset of a much larger collection of
data, called the population, that could not be obtained due to various restric-
tions. Thus, any experimental dataset represents only a part of all possible
observations. The purpose of statistical inference is to discover the true data
generating distribution or the properties of the population given a sample
(set of observations) from the population. For example, in time series analy-
sis one can analyze a sequence of observations to arrive at the parameters of
the process driving it, or given the sales history, we can try to determine if
the amount of sales on Wednesdays is equal to any other day of the week, or
people tend to buy more products on Wednesday. The concept of statistical
inference is tightly connected to the concept of a model, which represents the
beliefs about the population distribution. A statistical model can be either
parametric or non-parametric. Informally, parametric statistical models can
be described with a finite set of parameters, while nonparametric models
cannot be parameterized by a finite number of parameters [73]. Further, we
discuss two common statistical inference procedures: hypothesis testing and
bootstrap.

2.3.1 Hypothesis Testing

Hypothesis testing is a well-established inference method in traditional statis-
tics. This procedure involves testing some theory, or null hypothesis H0,
against an alternative theory, H1, where the evidence is provided by the
sample data [73]. If there is enough evidence in the data, then the null
hypothesis is rejected. If not, then the null hypothesis is retained.

More formally, given a set of possible parameter values Θ, we partition
it into two disjoint subsets Θ0 and Θ1. The null and alternative hypotheses
for the parameter θ ∈ Θ can then be stated as follows [73]:

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1
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We define an observable random variable T (X), which is the function of
a possible data sample X, and call it a test statistic. After the sample has
been collected, we can compute the statistic realization tobs = T (Xobs) for
the observed dataset Xobs. The p-value pobs is the probability that the test
statistic T (X), under the assumption that the null hypothesis is true, is at
least as extreme as the observed test statistic tobs. We define a significance
level α ∈ (0, 1) before the test, and assume that the null hypothesis is rejected
if the observed p-value pobs < α. The typical significance levels are 5%, or 1%.
There are 3 types of hypothesis tests: right-tailed, left-tailed, and two-tailed.
These tests have the following null and alternative hypotheses:

Two tails : H0 : θ = θ0 vs H1 : θ 6= θ0 (2.5)

Left tail : H0 : θ ≥ θ0 vs H1 : θ < θ0 (2.6)

Right tail : H0 : θ ≤ θ0 vs H1 : θ > θ0 (2.7)

Given a null-hypothesis H0, and the test statistic T , the p-values for each
type of the test can be defined as

Two tails : pobs = 2 ∗min(P (T ≥ tobs|H0), P (T ≤ tobs|H0)) (2.8)

Left tail : pobs = P (T ≤ tobs|H0) (2.9)

Right tail : pobs = P (T ≥ tobs|H0) (2.10)

Since the test statistic T is a random variable, there is some variation
associated with it, and it might be possible that even though the null hy-
pothesis is true, the observed tobs has pobs < α, and the null hypothesis is
rejected. Rejecting the null-hypothesis H0, when it is true, is an example of
Type I error. On the contrary, keeping the null hypothesis H0 when H1 is
true, is the type II error.

Before applying a given hypothesis test, a number of initial conditions
must be met. These conditions, called statistical assumptions, directly influ-
ence the test statistic. The assumptions can be related to the distribution of
the observations in the sample (i.i.d. observations, normal errors, etc.), or to
the sampling procedure (sampling method, size of the population, size of the
sample, etc.). Hypothesis tests can be either parametric or nonparametric
depending on the task and the data.
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2.3.2 Bootstrap

Bootstrap is a nonparametric method based on sampling with replacement
which is used for computing standard errors and confidence intervals for sam-
ple estimates. The non-parametric bootstrap is a valuable tool because it can
be used with minimal assumptions: it only requires that all observations in
the sample should be independently and identically distributed (i.i.d.). The
bootstrap is an implementation of the non-parametric maximum likelihood,
and it is especially useful when no formulas for the sample estimates are
available [29].

The confidence intervals for the estimate of some population parameter θ
can be obtained with the bootstrap in multiple steps. Suppose that we have
a sample of N i.i.d. observations X = {x1, ..,xN} from some distribution
F , and some estimator T (X). Given some number K ∈ N, the bootstrap
procedure is used to identify the 100(1 − α)% confidence interval with the
following steps [73]:

1. Perform N draws with replacement from the original dataset X. Name
the new sample X∗

2. Compute a new sample estimate θ∗i = T (X∗)

3. Repeat steps 1 and 2, K times, to obtain the sample of estimates
S∗ = {θ∗1, ..,θ∗K}

4. Define the sample order statistics θ∗(i) on S∗, such that θ∗(1) = min(S∗),

θ∗(K) = max(S∗), etc.

5. Define the 100(1−α)% confidence interval as a range (θ∗(a),θ
∗
(b)), where

θ∗(a) is the Kα/2 order statistic, and θ∗(b) is the K(1−α/2) order statistic
on S∗

The quality of the bootstrap estimates grows with the original sample size
N , and the number of bootstrap samples K [46]. The bootstrap confidence
interval estimation is a widely applicable method due to its non-parametric
nature, and simplicity. It is often applied to the estimation of confidence
bounds and standard errors for the mean, variance, and other higher sample
moments. It can also be used to estimate the confidence interval of model
forecasts. There exists a parametric version of the bootstrap too [29].
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2.4 Time Series Analysis

We define a stochastic process as a collection of random variables {Ys}s∈S
indexed by a set of numbers S, which represents time. Time series is a
realization of this stochastic process observed at specific times T ⊆ S, and
defined as {yt}t∈T . Time series have a distinct order which makes them
different from cross-sectional data, which has no such dependence. However,
time series is a realization of some collection of random variables, and, as
such, they can be analyzed with general statistical tools.

Each point yt in a time series is a realization of some distribution p(yt;θt).
In usual statistical analysis with cross-sectional data, the population mean,
variance, higher moments and other quantities of interest could be reliably
obtained from the data with appropriate estimators and sufficient number of
samples. However, each time series is a single realization of the collection of
random variables {Yt}t∈T which effectively means that it is a single sample
from a multidimensional distribution of size T . Since no reliable estimate can
usually be obtained from a single data point, multiple further assumptions
about the properties of the time series have to be made.

Given a stochastic process {Yt}+∞
t=−∞, let us define the expectation of a

random variable at time t ∈ T as E
[
Yt
]
, and the covariance between two

random variables at times t, s ∈ T as Cov
(
Yt, Ys

)
. The stochastic process is

called weakly stationary or covariance-stationary if the expectation, variance,
and covariance between the random variables do not depend on time [13].
In other words, the first and the second moments of the distribution of Yt
remain the same through time, or for all h ∈ Z:

E
[
Yt
]

= E
[
Yt+h

]
Cov

(
Yt, Ys

)
= Cov

(
Yt+h, Ys+h

)
Corr

(
Yt, Ys

)
= Corr

(
Yt+h, Ys+h

)
With respect to stochastic processes, the covariance and correlation be-

tween random variables are called autocovariance and autocorrelation re-
spectively, since the random variable Yt correlates with its own past value in
the stochastic process. We define the expectation, the autocovariance and
autocorrelation as follows:

E
[
Yt
]

= µ, for all t (2.11)

E
[
(Yt − µ)(Yt−j − µ)

]
= γj, for all t and j (2.12)

Corr
(
Yt, Yt−j

)
= γj/γ0 = ρj, for all t and j (2.13)

The quantities 2.11, 2.12 and 2.13 can be estimated from the available
time series data. The estimated autocorrelations, or sample autocorrelations,
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can be conveniently summarized using autocorrelation plots. The autocorre-
lations between variables can also be examined after the linear dependence
on the variables at shorter lags has been removed. It can be achieved with
partial autocorrelation plots. Suppose that the variables in stochastic pro-
cess {Yt}t∈T have the following moments: E

[
Yt
]

= 0,Var
(
Yt
)

= 1, and
E
[
YtYs

]
= 0, t 6= s. Then the variables Yt represent a weakly stationary

process called a white noise process, WN(0, 1). Figure 2.2 depicts the sample
autocorrelation plot of this process.

Figure 2.2: Autocorrelation plot of WN(0, 1)

If the time series is not weakly stationary, its first or second moments de-
pend on time, because the marginal distribution of random variables {Yt}t∈T
changes through time. Such time series often have obvious patterns, that
can be exploited in data analysis. Among these patterns, the most common
are trend-cycles, seasonalities, level shifts, and heteroscedasticity (change in
variance). The seasonality is a systematic pattern in data which repeats
itself over equal intervals. The time series data can have multiple season-
alities. The trend represents a long-term increase or decrease in time series
values [48]. Very often the trend grows or decays linearly, but can also ex-
hibit a non-linear behavior. Trends are often connected to non-systematic
long-term oscillations in time series observations called cycles. The cycles
differ from seasonalities because the latter always have a set frequency, while
the cycles do not. Level shifts represent an abrupt change in the mean of
the time series, such that E

[
Yt
]
6= E

[
Ys
]
, t 6= s, and |t − s| is small. The
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heteroscedasticity usually appears as a growing amplitude of random oscilla-
tions in time series as t→∞. One of the most common ways to overcome it
is to use a data transformation such as the logarithm, or a general Box-Cox
transform, on the time series.

Trend-cycles and seasonalities are systematic patterns, and can be re-
garded as the components of the time series. By separating these compo-
nents, the following classical additive decomposition model [13, 48] can be
produced:

Yt = Mt + St + εt (2.14)

E
[
εt
]

= 0

where Mt is the trend value, and St is the seasonality addition, such that
St = St+D, whereD is the seasonal period,

∑D
t=1 St = 0, and εt is a remainder,

or zero-mean random component, at time t. The multiplicative analog of the
classical decomposition exists as well [48]:

Yt = Mt × St × εt
E
[
εt
]

= 0

It can be turned into the classical additive decomposition by using a log-
transformation, since log(Mt×St× εt) = logMt+logSt+log εt. An example
of an additive time series decomposition is presented in Figure 2.3.

Figure 2.3: Classical additive time series decomposition.
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2.5 Linear Statistical Models

In parametric statistics, strict modelling assumptions are usually made be-
fore trying to predict or describe a certain process. During the inference it
is often assumed that the experimental data is generated by some unknown
probability model of a certain class. A very important and widely used class
of linear models has an intrinsic assumption that there is some linear rela-
tionship between population variables. The linear models are widespread in
both statistics and machine learning due to their simplicity, solid theoretical
background, and many theoretical guarantees which are partly due to the
linearity assumption.

2.5.1 Linear Regression

Linear regression is one of the most commonly used models in statistical anal-
ysis and machine learning. It tries to model a linear relationship between the
dependent random variable Yt and a set of M explanatory variables, vector
XT
t = (Xt1, ..,XtM). Each data point t in the sample is a realization of the

random variable Yt given its associated Xt. If there is only one explanatory
variable for each observation, then the regression is called a simple linear re-
gression, while multiple linear regression is the name of the model with more
than one covariate. The linear regression assumes that the random variable
Yt is related to the covariates Xt with the following linear relationship:

Yt = θTXt + εt (2.15)

This model naturally has a few other assumptions. All Xt are considered to
be non-random and the errors εt are independent from all Xt. The regression
errors εt are i.i.d. for all t and E

[
εt
]

= 0, Var
(
εt
)

= σ2. The aim of the
inference is to estimate the coefficient vector θ, which quantifies the linear
dependence between Xt and Yt.

The estimation in linear regression models can be done in many ways, but
one of the reasons why the linear regression is so popular is that the most
common estimation procedure called the ordinary least squares (OLS) has a
closed form solution. Given the realizations yt of Yt and the features Xt, the
OLS minimizes the sum of squared errors (SSE):

SSE =
N∑
t=1

(yt − θTXt)
2

where the optimization is done with respect to θ. This equation can be
written in the matrix form, where X is a matrix with the feature vectors Xt
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as its rows, and a column vector Y, where each row is yt:

SSE = (Y −Xθ)T (Y −Xθ) (2.16)

This function is convex with respect to θ, and thus, has one global minimum.
It can be easily verified that the solution of this minimization problem can
be written as:

θ̂ = minimize
θ

SSE = (XTX)−1XTY

This estimator of the parameters θ is unbiased which can be easily checked by
denoting the column vector of random errors as ε, and taking the expectation
of the estimator:

E
[
(XTX)−1XTY

]
= (XTX)−1XTE

[
Xθ + ε

]
= (XTX)−1XTXθ = θ

which proves that the OLS estimator is unbiased. A further result, called
Gauss-Markov theorem, states that the OLS estimator is the best linear
unbiased estimator [29]. It can also be noted, that if the errors εt ∼ N (0, σ2)
then Yt ∼ N (θTXt, σ

2) and the OLS corresponds to the maximum likelihood
estimation of the mean of Yt.

Figure 2.4: Linear regression model fit to a set of 6 data points: with and
without polynomial basis functions.

As suggested by its name, the linear regression can be used to model lin-
ear relationships in data. It is often insufficient to model complex non-linear
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relationships between the regressors and the response variable. Sometimes
the problem of non-linearity can be ameliorated by using basis functions [11].
This solution involves mapping the features Xt of dimension S to some other
dimension M through f : RS → RM . This operation allows to extend the
linear regression models to polynomials and other non-linear functions with
respect to the original features Xt. However, the regression remains to be lin-
ear in its coefficients θ, and hence the name. This method allows to decrease
the high bias of simplistic linear models as demonstrated in Figure 2.4.

In Figure 2.4 the features are mapped from the original space into the
space of polynomial functions. The linear regression with the polynomial
features is then compared to the simple linear regression without basis func-
tions. It is clear from the image that using a 5-degree polynomial feature
transformation can achieve zero error, while simple linear regression is rigid
and has a lot of bias. This result shows the importance of feature engineering.

2.5.2 Generalized Linear Models

Generalized linear models (GLM) are an extension of the simple and multi-
ple linear regression to the cases when the response variable is assumed to
follow some other distribution that normal. For example, GLMs are widely
used in case the dependent variable is categorical or constrained. The linear
regression with the assumption of Gaussian errors is just a specific instance
of the GLM. The GLM theory provides the unified framework for the linear,
Poisson and logistic regression [59]. Moreover, any distribution that belongs
to the exponential family can be used in the GLM regression. The class
F of probability distributions belongs to the exponential family if all of its
members can be transformed into the following form [28]:

pY (y; θ, φ) = exp
[yθ − b(θ)

a(φ)
+ c(y, φ)

]
(2.17)

where y is an observation from the distribution pY that belongs to the class
F . θ and φ are distribution parameters. φ is a dispersion parameter which
is usually known and related to the variance of the distribution pY . The
functions a(.), b(.), and c(.) are known and depend on the class F of the
distribution. Parameter θ is a canonical parameter for the exponential family
F , if it is a function of the expectation, θ = gc(E

[
Y
]
). The function gc(.)

is called the canonical link function if it does not depend on the dispersion
parameter φ.
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Given the response variable Yt and a set of regressors Xt, the GLM can
be introduced in terms of 3 components as follows [28]:

1. Random component

It is the conditional distribution f(Yt|Xt) of the random variable Yt
given a vector of constant regressors Xt. This distribution has to be-
long to the overdispersed exponential family [59]. By extension, all
distributions in the exponential family (Normal, Poisson, Binomial,
Gamma) can also represent the random component of a GLM.

2. Linear predictor

It is a linear function of the regressor vector Xt that can be denoted
as ηt = βTXt, where β0 is the intercept, and Xt0 = 1. The features Xt

can include basis functions and binary variables similar to the multiple
linear regression.

3. Link function

It is a function g(.) that relates the mean µt of the random compo-
nent f(Yt|Xt) to the output ηt of the linear predictor βTXt, such that
g(µt) = ηt. The link function has to be invertible.

Thus, the GLM is a probabilistic model where the distribution of the re-
sponse variable depends on the linear combination of the input variables as
its mean. The aim of the GLM regression is to maximize the log-likelihood
function represented by the logarithm of the random component with respect
to the vector of parameters β. This log-likelihood function is not concave
in general, and does not always have a simple closed-form solution like the
multiple linear regression, so it has to be optimized with numerical methods.
The traditional approach to optimizing common GLM log-likelihood func-
tions is to use the iteratively reweighted least squares (IRLS) algorithm [59].
However, if the canonical link function is used, IRLS becomes similar to
the Newton-Raphson (Newton’s) optimization procedure [28]. The Newton’s
method can have problems with local maxima, but if the link function is
canonical, the optimized GLM log-likelihood is always concave, so the al-
gorithm can find the global log-likelihood optimum. The Newton-Raphson
method is preferable to gradient ascent methods in applicable situations,
since it is much faster [41].

The Newton-Raphson optimization method is based on the Newton’s
method to find the roots of a function and on the fact that the maxima
and minima of a function have their derivatives equal to zero. In order to
find the maximum of the log-likelihood function L(β), where β is a vector
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of parameters, it is necessary to find the points where its gradient is zero, or
∇βL = 0. The Newton’s method can help to find the roots of the gradient
function. Since the gradient is a vector valued function, its first-order partial
derivative is Hβ =

∂∇βL
∂β

, where Hβ is the matrix of the second-order deriva-

tives of L(β), or Hessian computed at β. We can form a second-order Taylor
expansion of the log-likelihood function around the current best parameter
guess β̂ as follows:

L(β̂ + ∆β) = L(β̂) +∇β̂L∆β +
1

2
∆βTHβ̂∆β (2.18)

This equation approximates the log-likelihood function, and it should con-
form to the condition of zero derivative with respect to ∆β as a parameter at
the maxima of the function. Setting the derivative of the Taylor expansion
L(β̂+ ∆β) with respect to the new parameterization ∆β to 0, the following
result can be shown:

0 = ∇β̂L+ Hβ̂∆β

which naturally leads to the definition of the Newton’s method iteration in
multiple dimensions:

β̂t+1 = β̂t − sH−1

β̂t
∇β̂tL (2.19)

where s is a step size parameter, and t specifies the iteration number. Since
the Newton’s optimization routine is derived from the Taylor series expan-
sion, it has some inherent error associated with it. Per each iteration the
Newton’s method gives an estimate close to the extrema of the log-likelihood
function, but due to the approximation error the next suggested β̂ is not the
exact optimum. Thus, Equation 2.19 has to be iteratively invoked until a
sufficiently good approximation to the maximum of the GLM log-likelihood
function is achieved.

As mentioned before, the Newton-Raphson method has some serious
drawbacks. In general, saddle points of functions also have zero gradients.
It means that if the log-likelihood function is not concave, then the algo-
rithm can get stuck not only in local optima, but also in saddle points. The
Newton-Raphson method can also have problems with slow convergence and
overshooting. However, these problems can be avoided by applying the algo-
rithm only to the GLMs with the canonical link functions. Most commonly
used GLMs, such as the logistic or Poisson regression, have well-behaving
log-likelihoods with a clear maximum, and the Newton-Raphson optimiza-
tion method is an optimal choice.
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2.5.3 Regularization in Linear Models

Both linear regression and GLM can have problems related to overfitting.
An excessively flexible linear model trained on a dataset with a large number
of features or with many outliers, can turn out to be too complex, and result
in overfitting and bad generalization capability. For example, if polynomial
basis functions are used, the regression model can fit the sample data near-
perfectly. However, it is often not the desired result, since the model adjusts
to the noise too much. The overfitting for the linear regression model is
demonstrated in Figure 2.5, where the red line which stands for the flexible
model visits all the points, but the relationship between the input and output
is obviously much simpler and closer to a straight line.

The problem of overfitting is usually solved with regularization. The
procedure penalizes the linear model coefficients, and results in more conser-
vative parameter estimates. One common regularization procedure is called
the ridge regression. It penalizes the linear regression model with the L2-
norm, or sum of squared coefficients. Given that the matrix X is a feature
matrix, where each row contains the features of one data point from the
training set, and Y is a vector of labels, the ridge regression formulation can
be written as follows:

SSERidge = (Y −Xθ)T (Y −Xθ) + λ‖θ‖2 (2.20)

where θ is the column vector of the regression coefficients. The parameter λ
has to be tuned manually using the validation dataset. This equation has a
closed-form solution which is straightforward to compute. The effect of the
L2-regularizer is demonstrated in Figure 2.5, where two different values of λ
produce obviously different results when applied to the 5-degree polynomial
linear regression. Given a large value of λ, the regularizer restricts the 5-
degree polynomial to the form of an almost straight line, which is supposedly
a better fit for this data.

Another common type of regularizer is the least absolute shrinkage and
selection operator (LASSO). It penalizes the parameters by absolute value,
or L1-norm, and its SSE for the linear regression can be written as follows:

SSELASSO = (Y −Xθ)T (Y −Xθ) + λ

S∑
i=1

|θi| (2.21)

where θi is the coefficient associated with the feature Xti, and S is the
dimension of the feature vector. As with the ridge regression, λ controls
the strength of the regularization and is usually chosen manually. Higher
values imply stronger regularization. While the ridge regression penalizes
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all the parameters equally by making them smaller, the LASSO regression
tries to set some of them to zero, providing the sparse representation of the
coefficient vector θ [38].

Figure 2.5: Three 5-degree polynomial linear regression models fit to a set of
6 data points with a different strength of ridge regularizer.

Generalized linear models can also be regularized like the linear regression
using the L2 and L1 penalties. Given a vector of optimized parameters β, the
L2 and L1 terms are appended directly to the log-likelihood function L(β)
as follows:

L̂ridge(β) = L(β)− λ‖β‖2 (2.22)

L̂LASSO(β) = L(β)− λ
S∑
i=1

|βi| (2.23)

Thus, the equations for the ridge GLM regression (2.22) and LASSO GLM
regression (2.23) are conceptually analogous to those of the multiple regres-
sion. The term λ defines how much regularization is applied to the coefficients
of the GLM model. The regularization in the GLM can be viewed as set-
ting specific priors in Bayesian inference. The ridge regression corresponds
to the multivariate normal prior, while LASSO corresponds to the multi-
variate Laplace prior. Like in the non-regularized GLM formulation, there
are no closed form equations to estimate the coefficients β in the presence
of the penalty term, and some numerical optimization method like Newton-
Raphson or gradient ascent has to be applied.
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2.5.4 Autoregressive Moving Average

Autoregressive moving average (ARMA) models are a class of linear models
that can describe covariance-stationary processes. The ARMA model can be
also viewed as a process with the autoregressive (AR) and the moving average
(MA) parts. Both AR and MA can be separate models representing their
own stochastic processes. Moving average processes are always stationary
unless they are of an infinite order, while autoregressive processes can be
non-stationary depending on their parameters.

In order to explain the nature of the ARMA models better, it is easier
to use time series operators. The time series operator is a mapping that
transforms one time series into another time series by acting on each of
the time series elements [41]. Time series operators can also be applied to
stochastic processes. One of such operators is the lag operator L. When
applied to a time series element at t, it returns the preceding element t− 1.
Suppose that there exists a time series {yt}∞t=−∞. If the lag operator is applied
to it, then for each element t, Lyt = yt−1. The lag operator is commutative
with multiplication, which means Lθyt = θLyt, and has the distributive
property, L(yt + yt−1) = Lyt + Lyt−1. The lag operator can also be applied
iteratively, and rewritten in the exponential notation LLyt = yt−2 = L2yt.

Given a moving average stochastic process MA(q) with observable random
variables {Yt}t∈T , the model can be presented in the form of a difference
equation as follows:

Yt = µ+ εt +

q∑
i=1

θiεt−i (2.24)

where µ is chosen as the mean of the stationary MA(q) process, and εt,∀t ∈ T
follows the white noise process as per the definition in Section 2.4. The mean
µ and the set of coefficients θ represent the parameters of the moving average
model, and are the target of the statistical inference. The MA(q) process can
be also presented in the lag operator notation:

Yt − µ =
(

1 +

q∑
i=1

θiL
i
)
εt (2.25)

The autoregressive stochastic process AR(p) involves the dependence of
each time series observation on p past observations preceding it. Given the
AR(p) stochastic process {Yt}t∈T , the model can be presented in the form of
a difference equation as follows:

Yt = c+

p∑
j=1

φjYt−j + εt (2.26)
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where c is some constant, and εt is generated by a white noise process as per
Section 2.4. The variable c and a set of coefficients φ represent the model
parameters. Using the lag operator notation, we can restate the AR(p) model
as follows:

εt =
(

1−
p∑
j=1

φjL
j
)(
Yt − µ

)
(2.27)

µ =
1

1−
∑p

j=1 φj

where µ is the expectation of the stochastic process AR(p) and can be eas-
ily found by taking the expectations on the both sides of (2.26) under the
assumption that the process is weakly stationary.

Given the definitions of the MA(q) and AR(p) stochastic processes, we
can define the ARMA(p, q) process as follows:

Yt = c+

p∑
j=1

φjYt−j + εt +

q∑
i=1

θiεt−i (2.28)

where εt is a white noise term with variance σ2, also called an innovation,
and c is a variable related to the mean of the ARMA process as in the AR(p)
process. From this presentation, it is clear that ARMA is a linear process
in its coefficients φ and θ. The target of statistical inference is to find the
population parameters θ,φ, c, and σ2. We can state the ARMA(p, q) model
in the lag operator notation as follows:

(
1−

p∑
j=1

φjL
j
)(
Yt − µ

)
=
(
1 +

q∑
i=1

θiL
i
)
εt (2.29)

The ARMA(p, q) process is stationary only when its AR(p) part is sta-
tionary, or in other words the polynomial (1 −

∑p
j=1 φjz

j) = 0 has its roots
outside of the unit circle. Given that the autoregressive part of Equation 2.29
is stationary, the ARMA(p, q) can be rewritten as:

(Yt − µ) =
(1 +

∑q
i=1 θiL

i)

(1−
∑p

j=1 φjL
j)
εt =

∞∑
k=0

ψkL
kεt (2.30)

where ψ0 = 1, and
∑∞

k=0|ψk| <∞. It means that the stationary ARMA(p, q)
process can be represented as the MA(∞) process. The similar conversion
is also possible from ARMA to AR(∞) when the MA part of the ARMA
process is invertible.
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2.5.4.1 Forecasting

Time series forecasting amounts to predicting the value of a random variable
Yt given the history of prior observations of random variables {Yt}t−1

−∞ in the
stochastic process which drives the given time series. It can be shown that
the optimal forecast Ŷt with respect to the mean squared error E

[
(Yt − Ŷt)2

]
is the conditional expectation:

Ŷt = E
[
Yt |Yt−1, Yt−2, .., Y−∞

]
However, this type of forecast is usually impossible to make since the full con-
ditional distribution cannot be computed. Instead, the forecasts are limited
to a specific class of linear functions in the form of g(X) = aTX, where X
is a list of regressors, such as the past observations of the stochastic process,
which includes the constant term, and a is a vector of coefficients. The linear
forecast can be presented as follows:

Ŷt =Ê
[
Yt |X

]
= aTX, (2.31)

s.t. E
[
(Yt − aTX)XT

]
= 0 (2.32)

where the condition (2.32) set on a means that the residual between the
random variable Yt and its forecast aTX is uncorrelated with the regressor
random variables X. This condition ensures that the linear combination aTX
represents the linear projection of r.v. Yt on X. It can be easily shown [41]
that such a forecast will be the optimal linear forecast with respect to MSE
E
[
(Yt − aTX)2

]
. Nevertheless, the best linear forecast is at best equal to the

conditional expectation:

E
[
(Yt − aTX)2

]
≥ E

[
(Yt − E

[
Yt |X

]
)2
]

The linear forecast is much easier to compute than conditional expectation
due to the property (2.32):

E
[
YtX

T
]
− aTE

[
XXT

]
= 0

a = E
[
XXT

]−1
E
[
XY T

t

]
(2.33)

which shows the closed form expression to find the coefficient vector a.
Therefore, in order to make an optimal linear forecast, it is only necessary
to find the vector of parameters a, which requires the covariance matrix
E
[
XY T

t

]
between the forecast variable Yt and its regressors X, as well as the

inverse of the covariance matrix E
[
XXT

]
. In order to compute the covariance

matrices, the population parameters of the joint distribution of (Yt,X) have
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to be known beforehand. If the variable Yt is predicted using n past values
of the stochastic process {Yt}t−1

−∞, then X = (Yt−1, .., Yt−n). In this case, an
assumption is usually made about some linear model, such as ARMA, that
drives the stochastic process, while the covariance matrices and the coefficient
vector a are estimated based on this assumption.

The exact forecast for the ARMA process can be obtained from (2.33) by
finding the required second moments. In order to achieve this, we need the
ARMA population parameters θ and φ. Given a vector of s random variables
Y(t+1):(t+s) to forecast, and a vector of past t values Y1:t of the ARMA stochas-
tic process, we specify the column vector v = (Y(t+1):(t+s),Y1:t). Then we
can compute the second-moment matrix Ω = E

[
vvT

]
from the population

parameters θ and φ. Using the LDU decomposition, the closed form expres-
sions for the coefficients a can be found [41]. Given the vector of coefficients
a, the forecasts can be easily produced from Equation 2.31. An effective al-
ternative to the use of LDU factorization for exact forecasting is the Kalman
filter.

2.5.4.2 Parameter Estimation

The inference in ARMA models is often done using maximum likelihood. For
this procedure, some convenient error distribution has to be assumed. The
random part of the ARMA(p, q) process is the white noise innovations εt, and
it is often assumed that this noise is Gaussian, εt ∼ N (0, σ2). Let us assume
that for an ARMA(p, q) process, the past observations ypastt = (yt−1, .., yt−p)
are known at t = 0, and past innovations εpastt = (εt−1, .., εt−q) are set to zeros
in εpast0 . According to the ARMA definition (2.28), the error εt|ypastt , εpastt can
be expressed as

εt = Yt − c−
p∑
j=1

φjyt−j −
q∑
i=1

θiεt−i (2.34)

Since the innovation εt is assumed to be Gaussian, Yt follows the conditional
normal distribution:

Yt |ypastt , εpastt ∼ N (c+

p∑
j=1

φjYt−j +

q∑
i=1

θiεt−i, σ
2)

Thus, using the whole history of time series observations, and the initial
conditions ypast0 , εpast0 , we can rewrite the distribution of each r.v. Y0, .., YN
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as:

pYt(yt |y
past
t , εpastt ) =

1√
2πσ2

exp
[
−(yt − c− φTypastt − θTεpastt )2

2σ2

]
=

1√
2πσ2

exp
[
− ε̂2t

2σ2

]
(2.35)

where ε̂t is the realization of the innovation random variable εt, φ represents
the vector of autoregressive coefficients, and the vector θ represents the mov-
ing average coefficients. From Equation 2.34, it is clear that each εt depends
on the previous q values of the innovation process. This results in complex
equations in the parameters φ and θ for each conditional likelihood pYt(.).
The maximum likelihood estimator based on the conditional distribution
pYt(.) is called the conditional maximum likelihood function.

Another way to estimate the parameters φ,θ, σ2, and µ of the ARMA(p, q)
model is to use the exact log-likelihood function, which is multivariate
normal since all the innovations εt are correlated Gaussians:

L(φ,θ, µ, σ2) = log pYN ,..,Y0(yN , .., y0; φ,θ, µ, σ2)

= −N + 1

2
log(2π)− 1

2
|Ω| − 1

2
(y − µ)TΩ−1(y − µ) (2.36)

where y is the vector of the observations (YN , .., Y0), µ is the mean of Yt, σ
2 is

the innovation variance, µ = (µ, .., µ) due to the assumed stationarity of the
ARMA process, and |Ω| is the determinant of the covariance matrix of the
r.v. sequence YN , .., Y0. The covariance matrix Ω depends on φ, θ and σ2,
and in general is non-trivial to estimate. The easiest way to infer the exact
maximum likelihood estimates of the ARMA(p, q) population parameters is
to use the Kalman filter [41] as described further.

2.5.4.3 Autoregressive Integrated Moving Average

Autoregressive integrated moving average (ARIMA) models represent an ex-
tension of the ARMA model class. The ARIMA class of models allows to
make the time series stationary with the help of differencing, and then apply
an ARMA model to the transformed time series values. The ARIMA can
be specified with 3 parameters as ARIMA(p, d, q), where d is the order of
differencing. The parameters p and q denote the ARMA(p, q) model which
is applied to the differenced time series. Given a stochastic process {Yt}t∈T ,
the ARIMA(p, d, q) can be written in the lag operator notation as follows:(

1−
p∑
j=1

φjL
j
)(

1− L
)d(

Yt − µ
)

=
(

1 +

q∑
i=1

θiL
i
)
εt (2.37)
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The autoregressive part of Equation 2.37 is a product of the polynomials
(1−

∑p
j=1 φjL

j)(1− L)d, which can be rewritten in the form of a single lag
polynomial with d unit-roots. In other words, it shows that ARIMA(p, d, q)
is an instance of the ARMA(p + d, q) model with d unit-roots. Therefore,
each difference operation (1−L) on time series {yt}t∈T removes one suspected
unit-root from the stochastic process driving the observations.

Unit-roots have to be removed because they imply non-stationarity. The
unit-root in the autoregressive process indicates that the changes in the dif-
ference equation, that represents it, do not die out with time, which leads
to the unstable process (which can grow or decrease for long periods of time
resulting in cycles, that do not have a deterministic pattern). Many of the
useful time series results do not hold with non-stationary processes. Differ-
encing helps to transform a non-stationary autoregressive stochastic process
to the stationary one by removing the unit-roots. The number of differences
should equal the number of unit-roots.

If the time series can be made stationary after removing unit-roots, it is
considered difference-stationary. Another type of non-stationarity is trend-
stationarity. Trend-stationary processes have a pattern that depends on time
(trend), but no unit-roots. The main difference is that as the time goes, the
trend-stationary process converges to the trend. In practice, trend-stationary
time series can be made stationary by estimating the trend and subtracting it
from the time series. However, the method of trend estimation and removal
does not work for difference-stationary time series, while polynomial trends
of all degrees can still be removed with a sufficient number of differences [13].

2.6 Neural Networks

Artificial neural networks (ANN) are a large class of models that show state-
of-the-art results in many machine learning problems, such as speech recogni-
tion, video processing, and object detection [55]. ANNs originally appeared
as an attempt to model the brain activity of animals [64]. A canonical neu-
ral network can be regarded as a set of neurons connected by synapses in
the brain. Thus, the most basic neural network represents a single neuron
and an associated learning rule. An example of such a simplistic model is
the perceptron, which is a supervised classification algorithm. The decision
boundary of the perceptron is linear, so if the training data points are not
linearly separable, then they cannot be classified perfectly by the perceptron.

An artificial neuron is the basic unit from which larger neural networks
are constructed. It is conceptually similar to the perceptron in its functional
form, but it does not represent a standalone learning algorithm. Given an
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input x, a vector of weights w, a bias parameter b, and some activation
function φ(.), the artificial neuron can be represented as a function f(x) in
the following way:

f(x;w, b) = φ(wTx+ b) (2.38)

Artificial neurons can have a wide range of activation functions. Given
sufficiently many neurons with some non-linear activation function, the ANN
can have a non-linear decision boundary of any complexity. The activation
function is often selected as a hyperparameter, and depends on the applica-
tion. For example, the perceptron has a threshold activation function, while
if a neural network has only linear activation functions, it is equivalent to
the linear regression. Some popular activation functions include:

Hyperbolic tangent: φ(x) =
ex − e−x

ex + e−x
(2.39)

Logistic: φ(x) =
1

1 + e−x
(2.40)

Identity: φ(x) = x (2.41)

Rectifier: φ(x) = max(0, x) (2.42)

Leaky rectifier: φ(x) =

{
x, x ≥ 0

αx, otherwise, α > 0
(2.43)

The structure of an artificial neuron is presented in Figure 2.6.
In the diagram, the light green boxes specify the components of the input

feature vector, where the feature 1 corresponds to the bias parameter b.
The features are multiplied by the weights to produce the linear response
a = wTx + b, and the blue box φ(a) represents some activation function
applied to the linear response a of the neuron. ŷ is the output of the activation
function.

Even though a structure that consists of a single artificial neuron supplied
with an optimization algorithm, like perceptron, can be trained and capable
of prediction tasks, it is usually not capable of learning complex represen-
tations possible in data. In order to overcome this issue, artificial neurons
are combined into larger structures, called artificial neural networks. ANNs
often have a layered structure, where each layer is represented by a number
of parallel artificial neurons. If the layers are connected to each other and
these connections do not form cycles, the ANN is called a feedforward neural
network since inputs are transformed exactly once by each neuron as the
input travels throughout the network. In contrast to that, recurrent neural
networks (RNN) use the outputs of some layers as inputs for the previous
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Figure 2.6: Artificial neuron with a bias term b and the input x of size 3.

layers. This creates cycles in the ANN structure. If all the neurons (nodes)
in one layer are connected to each of the nodes in the next layer, then such
a neural network is considered to be fully-connected.

2.6.1 Multilayer Perceptron

The most basic and ”vanilla” [29] neural network is the multilayer perceptron
(MLP). MLP is a feedforward fully-connected neural network which consists
of at least 3 layers: input, output, and a non-zero number of hidden layers
between the input and the output layers. The input layer is not a fully
functional layer, since it only represents the features of the input vector x,
where each neuron is one variable of the feature vector x. All neurons in
the input layer have the bias of 0, and their activation functions are identity.
After the input layer, a number of hidden layers follow, and each hidden layer
i outputs the sequentially transformed vector x, let us call it yi. The vector
yi is then fed as input to each neuron of the next layer i + 1, and so on.
The output layer produces the final prediction ŷ, that can be either a single
number or a vector.

An MLP with two hidden layers is presented in Figure 2.7. In the figure,
the input of the MLP is a vector x, which also represents the input layer.



CHAPTER 2. BACKGROUND 39

Figure 2.7: Four-layer MLP acting on a 3-dimensional feature vector x.

It is fed into the first hidden layer. The weights of each neuron i in the
first hidden layer are denoted as W

(1)
i . As it is evident from the figure, each

neuron of the first hidden layer receives the full copy of the input vector x.
Next, the output of the first hidden layer y1 ∈ R4 is fed to each node of the
second hidden layer, where each neuron j has its set of weights W

(2)
j . The

second hidden layer produces an output vector y2 ∈ R2, and it is fed into the
output layer, which has a single neuron with the weights W

(3)
1 . The output

layer finally produces the prediction ŷ. It is obvious, that each layer’s output
has the same dimension as the number of neurons in that layer.

All artificial neurons in the same layer usually have the same type of
activation function. Let us denote the activation function in the layer i as
φi : Rn → Rn, where the activation function φi(.) has been applied element-
wise to all linear outputs of n layer neurons. If the matrix W(i) denotes the
weights of the neurons in the layer i, where each row represents the weights
of one neuron, and b(i) is the column vector of biases for all the neurons in
the layer i, the output of the neural network can be rewritten in the form
of matrix equations. Given that the output of the layer i is yi, the MLP
equations for each separate layer are as follows:

yi = φi(W
(i)yi−1 + b(i)) (2.44)
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Since MLP is a fully connected feedforward neural network, the func-
tions (2.44) can be composed iteratively for adjacent layers until the output
of the neural network is produced. Thus, the MLP in Figure 2.7 can be
presented as the following function:

ŷ = φ3

(
W(3)φ2

(
W(2)φ1(W(1)x+ b(1)) + b(2)

)
+ b(3)

)
This example is easy to extend to three hidden layers and beyond. The target
of learning in MLP is to estimate the weight matrices W(i) and bias vectors
b(i). The process of finding the required parameters is traditionally called
learning rather than inference in machine learning [73]. Unlike the simplest
types of neural networks like perceptron, MLP is able to learn complex non-
linear patterns. It has been proven by Cybenko [18] that MLP with sigmoid
activation functions (2.39) and (2.40) can approximate any given continu-
ous function with any degree of accuracy assumed that a sufficiently large
number of neurons is used. This result for multilayer perceptrons is known
as Universal Approximation Theorem. Later it was shown [68] that other
commonly used activation functions like rectifiers (2.42) and (2.43) possess
this quality too. Unfortunately, these results do not specify the estimation
procedure or how the learning algorithm can discover the necessary number
of neurons in MLP layers.

2.6.2 Long Short-Term Memory

Another type of neural networks, that is used for sequence processing, is
recurrent neural networks (RNN). Recurrent neural networks are preferable
for the data that can be represented as a sequence of inputs [55]. Figure 2.8a
presents the RNN as a feedforward neural network (FNN) which feeds its
output yt back to the input. Using such loops, RNN can maintain an internal
state, or memory, through time. It is also possible to view RNNs unwrapped
through time as in Figure 2.8b, when the output of the FNN at time t is fed
to another FNN with exactly the same structure at step t+ 1. At each t, the
input is formed from the features xt and the output of the previous FNN,
yt−1.

Any type of the feedforward neural network can be easily converted into
RNN by simply adding loops in between the layers. However, this approach
usually fails for long sequences because the gradient-based methods for pa-
rameter optimization in such RNNs often either get too close to zero or too
large for computer systems to process [8], which is known as the problem of
vanishing and exploding gradients.
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Figure 2.8: a) RNN basic view. b) Unrolled RNN.

The problems with the gradient-based optimization methods in simple
RNNs prompted the new approaches to long sequence processing. Eventu-
ally a type of the RNN that solves the vanishing gradient problem, called
the long short-term memory (LSTM), was introduced in 1997 by Hochreiter
and Schmidhuber [45]. LSTM became popular due to its exceptional re-
sults in natural language processing [55, 78] including handwriting [40]. The
schematic presentation of an LSTM layer is given in Figure 2.9.

Figure 2.9: LSTM layer structure.

Suppose that the input of the LSTM is X = {x1,x2, ..,xT}, xt ∈ Rn, and
the LSTM output is respectively Y = {y1,y2, ..,yT}, yt ∈ Rm. Given the
input xt LSTM produces the output yt, and also updates its internal state
(cell) which is passed to the next time step as the variable St in Figure 2.9.
The upper horizontal line represents the LSTM cell, or the memory of the
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network. Parallel to it, at the bottom, run both the input xt and the output
of the previous time step yt−1. LSTM is different from simpler types of
RNNs because it has a concept of gates. The three gates are presented in
the Figure 2.9 as σ1, σ2, and σ3.

The initial state of the cell is received from the previous time step, St-1.
The first gate σ1(.), called the forget gate, takes both the previous output yt−1

and the new input xt, and supplies them to the function σ1 : Rn×Rm → Rm

which is an element-wise logistic sigmoid. The result is a vector of values
from 0 to 1. The output of σ1 is then multiplied with the previous state value
St-1 element-wise. It makes the LSTM to forget those parts of the cell, which
are multiplied by the values close to 0. Given the notation in Figure 2.9, the
forget gate can be defined mathematically as follows:

s1
t = St-1 ∗ σ1(bf + Ufyt−1 + Wfxt) (2.45)

where bf is the column vector of the bias coefficients of the forget gate, Wf

and Uf are the matrices with the neuronal weights of the forget gate. The
symbol ∗ denotes the element-wise multiplication.

The external input gate logistic function σ2 : Rn×Rm → Rm follows after
the forget-gate. The function tanh1 : Rn×Rm → Rm produces a new update
for the sell state s1

t based on the input vector xt and the previous output
yt−1 using the hyperbolic tangent. The external input gate controls which
entries of this new update to keep with the element-wise sigmoid. The new
update is multiplied element-wise with the output of the gate to produce the
vector ot, which is added to the cell state s1

t to produce a new cell state s2
t .

This sequence of operations can be mathematically summarized as follows:

s2
t = s1

t + σ2(bg + Ugyt−1 + Wgxt) ∗ tanh1(b+ Uyt−1 + Wxt) (2.46)

where bg are the biases, and Wg,Ug are the neuronal weights of the external
input gate. The input transformation function tanh1 is parameterized with
the vector of biases b, the matrix of input weights W, and the matrix of
recurrent weights U.

The last gate is the output gate σ3 : Rn ×Rm → Rm. It controls what is
the output of the LSTM layer for the time step t. First, it takes the input xt,
and the previous output yt−1, and transforms them into a vector of values
from 0 to 1 using the logistic sigmoid. This vector controls which values
from the cell state are output. The state s2

t is first transformed with the
element-wise hyperbolic tangent function, and then multiplied element-wise
by the control sequence of the output gate. Thus, the output yt is formed
and passed to the next time step. The modified vector s2

t becomes the new
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cell state St. These equations can be written as follows:

yt = tanh(s2
t ) ∗ σ3(bo + Uoyt−1 + Woxt)

St = s2
t

where bo is the vector of the output gate biases, Uo is the matrix of recurrent
weights, and Wo is the matrix of input weights of the output gate. Given
the gate definitions above, the complete equations for the LSTM for the time
step t can be defined as follows:

St = St-1 ∗ σ1(bf + Ufyt-1 + Wfxt)+

σ2(bg + Ugyt−1 + Wgxt) ∗ tanh1(b+ Uyt−1 + Wxt) (2.47)

yt = tanh
(
St-1 ∗ σ1(bf + Ufyt−1 + Wfxt)+

σ2(bg + Ugyt−1 + Wgxt) ∗ tanh1(b+ Uyt−1 + Wxt)
)
∗

σ3(bo + Uoyt−1 + Woxt) (2.48)

The LSTM input transform weights W and U can be viewed as sets of
artificial neurons, and tanh1 can be viewed as an activation function. The
number of rows in these matrices defines the number of neurons. Likewise,
each gate has its own set of neurons, which are connected to other parallel
clusters of neurons through non-linear operations. Thus, the LSTM can be
viewed as a single layer of parallel feedforward NNs which feed their 2 non-
linearly combined outputs back into their inputs.

2.6.3 Learning in Neural Networks

The MLP, LSTM and other ANN models are incomplete without a way to
discover the neuronal weights. The target of learning in neural networks
(NN) is to find such a combination of parameters that the neural network
provides reliable and accurate predictions. Neural networks are a very broad
and flexible class of models that are prone to overfitting and poor generaliza-
tion when training is done incorrectly since sufficiently large neural networks
have the capacity to remember the whole training set [38]. Moreover, due
to the inherent complexity of many ANN functions, some traditional opti-
mization methods are poor at their parameter estimation. Thus, there is a
set of specific approaches commonly used for the training of ANN models.
Most commonly and successfully used methods for parameter optimization in
neural networks are based on different variations of the gradient descent, but
other alternatives exist [8]. The target of learning in neural networks is to
minimize the empirical risk function under the restriction of the bias-variance
tradeoff phenomenon introduced earlier.
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2.6.3.1 Gradient Descent and Variants

The standard way to optimize a neural network loss function involves using
some optimization routine based on the gradient descent. This class of algo-
rithms involves computing the gradient of the loss function with respect to
the parameters of interest and updating the current best solution with the
calculated gradient iteratively until convergence. Since the gradient points
in the direction of the largest speed of increase of the function value, moving
against it in a high-dimensional space implies that the function values should
decrease.

Given the dataset X which consists of N data points (xi, yi), the loss
function is defined as L(X;θ). The steepest gradient descent finds the gradi-
ent∇θ̂L(X) of this loss function given the data X with respect to θ evaluated

at θ̂, and proposes the next better estimate of the function optimum. Let
us define the sequence of points generated by the gradient descent as θ̂t for
t ∈ (1,∞). Then we can write the algorithm iteration as follows:

θ̂t+1 = θ̂t − α∇θ̂tL(X)

where the parameter α is called the learning rate, or step size, and controls
how large a step should be made in the direction opposite to the gradient.
By choosing a large step size, the procedure converges to the optimum faster,
but has a potential to overshoot θ̂min, so the algorithm might never converge.
A smaller learning rate improves convergence, but is much slower.

The steepest gradient descent works with the loss function defined on the
whole training set. If the gradient is computed using the loss function of 1
observation at a time, L(yi,xi;θ), and the algorithm picks different points
at different iterations, then this type of procedure is called the stochastic
gradient descent (SGD). Its update rule can be specified as follows:

θ̂t+1 = θ̂t − α∇θ̂tL(yi,xi)

where the points (xi, yi) are chosen randomly without replacement from the
dataset X one-by-one until all of them have been used at least once. One full
iteration cycle through all the points in the training set is called an epoch.
The SGD can be shown to converge almost surely to a local or the global
minimum.

An alternative to both SGD and steepest gradient descent is the mini-
batch gradient descent (MBGD). The MBGD is the most popular approach
to NN optimization. The dataset X of N data points is partitioned into M
batches randomly, and the gradient descent is computed for the loss function
L of each batch Xm, 1 ≤ m ≤M as follows:

θ̂t+1 = θ̂t − α∇θ̂tL(Xm), ∀m ∈M (2.49)
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The updates (2.49) are repeated until all batches have been used once, or
one epoch in MBGD. After the epoch is over, the dataset is partitioned
into batches again and the whole process is repeated starting from the lat-
est estimated parameter vector θ̂t. The epochs are repeated until sufficient
convergence is achieved.

The MBGD algorithm can converge a little slower than the steepest gra-
dient descent, and some of its steps can even diverge from the minimum, but
on the average it converges to the local or global optimum. It also has an
advantage that it can escape local minima, since it is only an approximation
to the steepest gradient descent, and does not always move in the best di-
rection due to the batch sample randomness. All the batches apart from the
last one (it gets the leftover data points) are usually of the same size Nm,
which is usually tuned along with the learning rate on the validation set.
Another important consideration is the careful selection of the starting point
θ̂0, which is the initial parameter guess of the algorithm. The proper setting
of θ̂0 can help avoid local minima as well as make the convergence faster.

One of the hardest parts of the gradient descent based optimization is
to decide what is the appropriate step size α. Very often it is too small,
which results in slow decreases in objective function value, even though the
movement direction may be correct. On the other hand, large values of α
result in divergence. The simplest approach to this problem is to use the
learning rate decay, where the step size α decreases with each epoch. But a
more robust option is to use momentum [66]. This method saves the change
in the parameters from the last iteration, and combines it with the scaled
gradient of the current iteration. For the mini-batch gradient descent, the
update with the momentum can be presented as follows:

4tθ = β4t−1θ − α∇θ̂L(Xm) (2.50)

θ̂t+1 = θ̂t +4tθ (2.51)

where the coefficient β ∈ (0, 1) controls how much of the previous updates
4t−1θ is added to the current scaled negative gradient estimate −α∇θ̂L. The
initial momentum value 40θ can be set to zero. After that, the momentum
update Equation 2.50 and parameter update Equation 2.51 are iterated with
different batches for many epochs until the algorithm finds a sufficiently good
solution. The momentum method improves the convergence of the MBGD
by preventing the gradient oscillations between batches. If the updates have
had the same direction for some iterations, then the momentum is large, and
the new update will partially disregard the gradient direction change if the
new gradient is different from the previous gradients.

Another way to improve the MBGD convergence is to use the root mean
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square propagation (RMSProp). This technique uses the scaling of the gra-
dient descent learning rate for each updated parameter separately [65]:

vt = γvt−1 + (1− γ)
(
∇θ̂L(Xm)

)2
(2.52)

θ̂t+1 = θ̂t −
α√
vt + ε

∗ ∇θ̂L(Xm) (2.53)

where γ ∈ (0, 1) is a parameter that controls how much the vector of second
moments vt should be updated per each iteration of the gradient descent.
The square of the gradient in Equation 2.52 is the element-wise operation,
the asterisk operator ∗ denotes the element-wise multiplication,

√
v + ε is

the element-wise square root, and the division is also element-wise in Equa-
tion 2.53. The vector ε is filled with small values which ensure that the de-
nominator does not become zero. The RMSProp algorithm allows to shrink
the large component updates in the gradient descent and prevent oscillations
around the best minimization direction when the mini-batches are used. The
initial value v0 can be set to zeros, and then Equations 2.52 - 2.53 are it-
erated until all batches have been used once. The epochs are iterated until
convergence.

2.6.3.2 Backpropagation

The computation of the gradients in neural networks is nontrivial, since
ANNs have many layers with their own sets of parameters, and the out-
puts of layers are combined with non-linear activation functions to produce
the output. The method used to compute the gradient in ANNs is called
backpropagation. The backpropagation recursively computes the gradients
for each layer in the neural network using the chain rule. It gets its name
from the fact that it uses the errors from the deeper (closer to the output)
layers to compute the gradients for the preceding layers, which can be seen as
error propagation in the direction opposite to the data flow. The backprop-
agation version for the RNNs is called the backpropagation through time,
since it unrolls the RNN as in Figure 2.8b, and propagates the error through
the existing layers, as well as through the past steps of the RNN input.

The backpropagation algorithm can be illustrated by using the feedfor-
ward fully-connected NNs. Let us use the layer view of the MLP from Equa-
tion 2.44. We further introduce the linear response of the layer i as ai. The
input-output equations of the layer i are as follows:

ai = W(i)yi−1 + b(i)

yi = φi(ai)
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where W(i) and b(i) stand for the weights and biases of the neurons in the
layer i, while φi(.) is the activation function of this layer. This can be viewed
as a transformation from the input yi−1 to the output yi. The input, output,
and linear response of a layer are all regarded as the variables that depend
on the previous layers’ parameters in the backpropagation routine.

Given an MLP neural network with n layers, assume the loss function
L(y, ŷ), where y is the label, and ŷ is the output of the MLP neural network
for the input features x such that ŷ = yn = φn(an). Let us introduce the
error vector as follows:

ei =
∂L(y, ŷ)

∂yi
(2.54)

where yi is the output of layer i. Now, we can use the chain rule to find the
derivatives of the loss function with respect to any parameters of the neural
network by recursively computing the error terms from the deepest layer n
to the first layer. The chain rule looks as follows:

∂L(y, ŷ)

∂W(i)
=
∂L(y, ŷ)

∂yi
× ∂yi
∂ai
× ∂ai
∂W(i)

∂L(y, ŷ)

∂b(i)
=
∂L(y, ŷ)

∂yi
× ∂yi
∂ai
× ∂ai
∂b(i)

ei =
∂L(y, ŷ)

∂yi+1

× ∂yi+1

∂ai+1

× ∂ai+1

∂yi
(2.55)

where Equation 2.55 suggests that the error in the layer i can be computed
recursively from the error in layer i+ 1, given the notation of Equation 2.54.
All the derivatives are with respect to a vector, or a matrix. We introduce
the partial derivatives of the layer’s response yi with respect to its linear
response ai as a matrix Φ(i). This matrix is diagonal and its dimensions equal
the number of neurons in the layer i. Its diagonal entries are Φ

(i)
jj = φ′i(aij)

where φ′i(.) is the derivative of the activation function in the layer i with
respect to its argument, and aij is the linear response of the neuron j in the
layer i. Now the relevant partial derivatives of the MLP loss function can be
stated formally as follows:

ei = W(i)TΦ(i)ei+1 (2.56)

∂L(y, ŷ)

∂W(i)
= Φ(i)eiy

T
i−1 (2.57)

∂L(y, ŷ)

∂b(i)
= Φ(i)ei (2.58)

where the errors are column vectors.
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In the neural network with n layers, the backpropagation starts by ini-
tializing the error term en = ∂

∂ŷ
L(y, ŷ). Then, for each layer from n to

1, the backpropagation computes the errors recursively with Equation 2.56.
The weight and bias partial gradients are computed from Equations 2.57
and 2.58 as soon as the error ei is available. After the parts of the gradient
have been computed through all the layers, the weight and bias parameters
can be updated in one gradient descent step:

W
(i)
t+1 = W

(i)
t − α∇W(i)L(y, ŷ) (2.59)

b
(i)
t+1 = b

(i)
t − α∇b(i)L(y, ŷ) (2.60)

where α is the learning rate of the gradient descent algorithm.
The backpropagation in recurrent neural networks including LSTM fol-

lows the same principles (chain rule, recursion) as the backpropagation in
MLP. However, the errors in the RNN are also propagated through time,
from the end towards the beginning of the input sequence. Complex back-
propagation routines like those in RNNs are usually executed through compu-
tational graphs in various libraries like Tensorflow [1]. The backpropagation
is a very flexible procedure. Due to the chain rule, very complex neural net-
work function gradients can be decomposed in terms of sums, products, and
well-known activation function derivative forms. This allows to create rich
representations of data using ANNs.

2.6.3.3 Regularization

There is a broad range of techniques to prevent overfitting in neural networks.
The simplest regularization approaches in ANNs are based on L2 and L1 norm
penalties discussed in Section 2.5.3. Given the loss function L(y, f(x;θ)),
where y is the label, x is the vector of features, and f(.;θ) is a neural
network function with the vector of parameters θ of size N , the L2 and L1

regularized loss can be presented as follows:

LL2(y, f(x;θ)) = L(y, f(x;θ)) +
λ

2
θTθ

LL1(y, f(x;θ)) = L(y, f(x;θ)) +
λ

2

N∑
i=1

|θi|

where the parameter λ controls the strength of the regularization. The vector
of parameters θ can include either all parameters of the neural network, or
just some of them. However, the most common approach is to regularize
only the neuronal weights W(i). The L1- and L2-norm regularization can be
applied with different strength to separate layers and neurons [38].
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Another regularization technique which has become recently popular is
dropout. The technique prevents overfitting by dropping the units of the
neural network randomly during training, reducing its capacity to adapt to
the data too much [69]. It can be applied to the layers of the neural network
separately. In the case of LSTM, the dropout can be used with different gates
independently. The regularization strength of this method is controlled with
the parameter pi ∈ (0, 1), which specifies the probability of a single unit in
the layer i to be switched off during one iteration of the gradient descent.
Given the output vector yi of the layer i as defined earlier in (2.44), we can
specify the mask di of the same dimension as yi, such that each element of
the vector di is either 1 with probability pi, or 0 otherwise. When the neural
network processes the input feature vector, the output yi of the dropout layer
i is transformed with the following mapping

ydropout
i =

1

pi
di ∗ yi (2.61)

During the backpropagation, the vectors ydropout
i are used instead of yi. The

mapping (2.61) does not happen during the prediction.
A very popular regularization technique is called early stopping [38]. This

method relies on the preliminary stopping of the optimization algorithm such
as the gradient descent before it finds the minimum of the loss function on
the training set as soon as the validation set accuracy metric starts showing
that the neural network begins overfitting as demonstrated in Figure 2.10.

Figure 2.10: Early stopping point for neural network regularization.
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In Figure 2.10 it is seen that the validation set error starts rapidly growing
around 90 epochs into the training, which is indicated by the dashed vertical
line. At the same time the training set error continues to decrease. However,
the validation set error is the indicator of how well the neural network fits the
out-of-sample data points, and is the definitive indicator of the generalization
ability of the ANN. The early stopping regularization routine checks the
validation set error regularly, and when the error on the validation set stops
decreasing for a few epochs, the current parameters are selected as the final
ones. In the figure, the set of the best parameters is found around the 90th
epoch, and the optimization procedure is terminated.

2.6.3.4 Batch Normalization

We can view each hidden layer in the neural network as a function that
transforms its input yi−1 from the previous layer into the output yi accord-
ing to Equation 2.44. During the mini-batch gradient descent optimization,
neuronal weights of hidden layers change after each MBGD iteration. As a
result, the NN hidden layers produce varying outputs at different time steps
for the same inputs. It indicates, that the distribution of the hidden layer
inputs changes during the mini-batch gradient descent. This phenomenon
is known as the internal covariance shift. It necessitates the use of smaller
learning rates in deep neural networks, makes the careful parameter initial-
ization very important, and reduces the effectiveness of saturating activation
functions [50].

In order to avoid the problems caused by the covariance shift, a procedure
called batch normalization is introduced in deep neural networks. It is
based on the hidden layer input normalization for each batch in MBGD, and
allows to use much higher learning rates, and simpler weight initialization
techniques [50]. The batch normalization also acts as a weak regularizer.

Assume the full training set size is N . Suppose that we have a mini-
batch of size m, and the respective activation outputs for the layer i, which
are denoted as {y(i)

1 , ..,y
(i)
m }. The batch normalization function ζγi,βi maps

these outputs as

ζγi,βi : y
(i)
j → z

(i)
j , lim

m→N
z

(i)
j = y

(i)
j

where the subscript notation suggests that the function ζ depends on 2 vector
parameters: γi and βi. These two parameter vectors are estimated during
the backpropagation in addition to normal neuronal weights and biases. The
function ζ is in fact an identity transform [50]. Its purpose is to learn the
parameters γi and βi, which represent the full training sample mean and
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variance for the inputs in layer i, that can get distorted due to mini-batches.
Even if the mini-batch sample mean or variance get significantly distorted
during training, the batch normalization transform will normalize the layer
input back to its full sample mean and variance with γi and βi. The full
form of the batch normalizing function is as follows [50]:

ζγi,βi(y
(i)
j ) = γi

(
y

(i)
j − E

[
y

(i)
j

]√
Var
(
y

(i)
j

)
+ ε

)
+ βi (2.62)

where the constant ε is a vector of small numbers to prevent the division by
zero. The multiplication, division, and square root operations are element-
wise. The sample expectation and variance are computed with the sample
of outputs y

(i)
j , 1 ≤ j ≤ m corresponding to the currently processed mini-

batch. Both statistics are vectors: a vector of expectations, and a vector of
variances (not the covariance matrix). The variance estimator is biased, and
computed by dividing with m instead of m− 1 [50]. The output of the batch
normalization function for the layer i is a vector.

The function ζ is differentiable, and can be applied to all or some of the
hidden layers in the deep neural network. The parameters γi and βi (one
separate pair of parameter vectors for each layer where the batch normaliza-
tion is applied) are learned with the gradient descent algorithm. After the
training, we calculate the statistics E

[
y(i)
]

and Var
(
y(i)
)

using the whole
training set opposite to using mini-batches before. Then, we can make the
predictions by applying the function ζγi,βi with the learned parameters γi, βi
and sample statistics computed on the whole training set to the activation
outputs in the layers with the batch normalization. Since the batch nor-
malization parameters are estimated to represent an identity function given
the full training set, the transformation should not distort the layer out-
puts during prediction. Using the batch normalization mappings allows to
approximate the underlying distribution of the inputs in each layer during
training. Even though the batch normalization statistics E

[
.
]

and Var
(
.
)

can
change a lot during the MBGD depending on a given batch, the discovered
parameters γi and βi should correct for this random variation.
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Related Work

Demand forecasting practices in various types of businesses have signifi-
cantly evolved in the past 50 years, specifically due to introduction of new
statistical methods and software. The earliest forecasting practices in sup-
ply chains were heavily based on judgmental forecasting and basic estima-
tion procedures such as moving averages, simple exponential smoothing and
naive methods which was indicated by many surveys held in the US and the
UK [20, 26, 67]. It was found, that the prevalence of specific techniques de-
pended on the type of the organization and the size of the company producing
the forecasts. Organizations of all sizes used judgmental techniques equally
often, but more sophisticated quantitative methods were usually employed
at larger companies, while smaller companies relied more on simpler quanti-
tative extrapolation methods [67]. It slowly became obvious that judgmental
forecasting had a lot of drawbacks, and forecasting started moving towards
more advanced quantitative procedures. In the past 50 years, a broad range
of quantitative methods have been used to predict demand such as various
types of regression and state-space modelling, exponential smoothing, autore-
gressive integrated moving average (ARIMA), and various machine learning
techniques including neural networks (NN).

A significant amount of research into predictive modelling originates out-
side of grocery retail. Comparative analyses of demand forecasting models
are usually conducted for large manufacturers, utility providers (gas, water
or electricity), and tourism businesses, while similar research is scarce for
shops. However, stochastic processes that drive sales in retail and other in-
dustries, such as tourism business, or manufacturing [35], are often similar,
so the set of models used to predict demand outside of retail is often applied
to demand forecasting in grocery retail, even though some attention should
be paid to the frequency of historical data and forecasts, level of forecast
automation, and specific demand patterns in different studies.

52



CHAPTER 3. RELATED WORK 53

ARIMA and exponential smoothing with trend and seasonality are con-
sidered to be very popular models for demand forecasting. ARIMA models,
that have a rigorous theoretical background, were popularised by Box and
Jenkins in 1970s [48, 71]. Since then, they have been used in many com-
parative studies of demand forecasting, recently against neural networks.
However, in literature review by Syntetos et al. [71], exponential smoothing
techniques are stated to be the most frequently used forecasting methods in
supply chains. Miller et al. [58] tests a wide range of Holt-Winters (HW)
exponential smoothing methods on the aggregated sales of 28 product fam-
ilies of a process manufacturer. In this research, a vast superiority of ex-
ponential smoothing methods over naive forecasting is shown. In a study
of department store retail sales, Geurts and Kelly [35] come to a conclu-
sion that exponential smoothing outperforms both judgmental forecasting,
as well as ARIMA models. Gamberini et al. [32] compares additive seasonal
HW exponential smoothing model to seasonal ARIMA (SARIMA) with re-
spect to predicting intermittent demand for different forecast horizons. HW
compares favourably to SARIMA models for shorter forecast horizons, but
seasonal ARIMA seems to be universally better when the trend and seasonal
components remain consistent in the time series for longer horizons.

Arunraj and Ahrens [6] present a hybrid of seasonal autoregressive in-
tegrated moving average with external variables (SARIMAX) and quantile
regression, called SARIMA-QR. They compare it to naive forecasting, mul-
tilayer perceptron (MLP) with 2 different architectures, plain SARIMA, and
SARIMAX. The authors use a daily time series of banana sales from a food
retailer to analyze the accuracy of demand forecasts. The dataset has a large
number of covariates, such as weather recordings, holiday and promotion
indicators, and month indicators. The authors use mean absolute percent-
age error (MAPE) and root mean squared error (RMSE) to evaluate the final
accuracy of the models on the test set. While both SARIMAX and SARIMA-
QR are better than neural networks in MAPE, multiple hidden layer MLP
architecture is better than both SARIMA-based models in RMSE. Arunraj
and Ahrens note, that SARIMA-QR is a more valuable model in demand fore-
casting, since it allows to estimate confidence bounds for future sales without
specific error distribution assumptions, which helps the management to make
decisions when they are interested in the worst or the best scenarios of the
future demand.

With the recent advent of neural networks and deep learning, a lot of
recent research has concentrated on neural networks and their applications
to demand forecasting. Alon et al. [4] compares feedforward neural networks
to more traditional models such as Holt-Winters, Box-Jenkins ARIMA, and
multivariate regression. The model performance is assessed for the monthly
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aggregate retail sales time series provided by the U.S. Department of Com-
merce. In the study, there are 2 test sets for different time periods, one of
which is marked by macroeconomic instability, that directly affects aggregate
retail sales by making them fluctuate. Forecasts have different horizons, up
to 12 months into the future, and the performance metric is MAPE. The
artificial neural networks (ANN) provided the best forecasts for all horizons
for the period of macroeconomic instability, followed by ARIMA, while for
the second test set with fewer fluctuations, ARIMA turned out to be the best
model for the one-step forecast, and exponential smoothing created the best
multi-step forecasts. The authors conclude that ANN as a whole performed
the best across both test sets combined, while showing superior accuracy in
the periods of economic volatility. They make an interesting observation that
for such periods of fluctuations, multi-step forecasts are paradoxically better
than one-step forward forecasts.

Chu and Zhang [15] compare linear models (SARIMA and linear regres-
sion) against feedforward neural networks with different feature representa-
tions (dummy variables against trigonometric functions to model seasonality)
in forecasting monthly retails sales compiled by the US Bureau of the Census.
Models of each class are selected with cross-validation, while out-of-sample
performance of all final models is measured on a holdout dataset. Chu and
Zhang identify three-layer feedforward neural network with deseasonalized
time series to be the best method for aggregate sales forecasting. The au-
thors arrive at a conclusion that nonlinear models in general are preferable
to linear ones for demand forecasting in retail. Their other interesting find-
ing, that contradicts previous results [76], is that trigonometric modelling
of seasonality results in inferior accuracy of retail sales time series forecast-
ing. In another work, Zhang and Qi [81] assess the performance of neural
networks against SARIMA on monthly retail sales as well as artificially gen-
erated time series, which have multiple seasonalities and the trend. The
authors select the best seasonal ARIMA model using in-sample data, while
the best NN model is selected using cross-validation. Additionally, Zhang
and Qi estimate the performance of neural networks on the original time se-
ries in contrast with deseasonalized or detrended time series. They find, that
three-layer feedforward NN model with deseasonalized and detrended time
series data outperforms SARIMA in demand forecasting of all retail time se-
ries across all performance metrics (RMSE, MAE and MAPE). The authors
find, that in cases when the data is not preprocessed properly, neural net-
works are worse that ARIMA models in forecasting demand. Consequently,
Zhang and Qi conclude that data preprocessing is critical for neural network
performance.

An interesting approach to retail sales forecasting is suggested by Aburto
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and Weber [2]. The authors present a novel approach to short-term demand
forecasting in a Chilean supermarket, which involves a hybrid of SARIMA
with explanatory variables (SARIMAX) and a multilayer perceptron neural
network, which fits the errors of the SARIMAX process. The time series in
the study are presented on a daily level and have a large number of explana-
tory variables, most of which denote specific events such as holidays, or the
price of the forecast product. The external regressors represent the features
of both SARIMAX and the neural network, while NN also accepts autore-
gressive terms. Aburto and Weber find that neural network models with any
window size outperform ARIMA models in case they are used separately,
while the suggested hybrid model has the lowest test errors (MAPE, NMSE)
out of all the models. All forecasting methods in the study outperform the
naive and seasonal naive baseline forecasts.

While a lot of research in neural networks applied to retail sales predic-
tion focuses on multilayer feedforward neural networks with one hidden layer,
recently new studies about retail demand forecasting featuring deep learn-
ing and recurrent neural networks have emerged. Flunkert et al. [27] pro-
poses a novel recurrent neural network (RNN) architecture named DeepAR,
and compares it to the state-of-the-art forecasting methods for intermittent
demand as well as simpler versions of recurrent neural networks on a vari-
ety of time series, including weekly retail sales data from Amazon, which
contain both fast and slow-moving products, as well as new product in-
troductions. The suggested model has the encoder-decoder long short-term
memory (LSTM) architecture (sequence-to-sequence learning), and produces
probabilistic forecasts based on a variety of possible error distributions. The
dataset includes multiple features apart from sales, that can include origi-
nal explanatory variables or dummies responsible for the week number, time
series offset, or item category. According to Flunkert et al., their approach al-
lows to model group-dependent dynamics with minimum effort, and produce
forecasts for the products with no history since it uses all available prod-
uct sales histories for training. The authors present the empirical evidence
that DeepAR outperforms other alternatives in standard forecasting error
measures (normalized deviation and normalized RMSE) as well as quantile
error measures. Another interesting finding is that their model requires little
tuning, which is usually not the case for neural network models.

Wen et al. [75] proposes a novel neural network architecture, called MQ-
RNN, based on sequence-to-sequence learning, and multistep quantile fore-
casts. MQ-RNN is an encoder-decoder type algorithm, where the encoder
is a typical RNN such as LSTM, while its decoder consists of two stacked
MLP layers (global and local branches), where the global branch works with
all the future inputs and RNN output at the same time, and passes horizon
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specific contexts as outputs to the local branch, where the next MLP outputs
the forecast quantiles. The authors argue that this two-layered architecture
allows MQ-RNN to better model seasonalities and future events, and over-
comes the problem of accumulating error in multistep forecasts. The error is
computed as the quantile loss, used in quantile regression. MQ-RNN trains
on a dataset where each training sample is one full time series with local
and global (product category, identity, or other constant features) covari-
ates. The authors argue that even though constant features do not influence
individual forecasts as much as local features, they allow to share tempo-
ral information among time series, and generate forecasts for stock keeping
units (SKUs) with few or no sales. During training, the decoder makes a
forecast, computes and backpropagates the error for each step in the time
series. Wen et al. apply their approach to demand forecasting at Amazon for
60,000 products from different categories. The authors compare MQ-RNN
against itself with minimal variants, where they switch off some functional-
ities of their method to partly mimic other state-of-the-art algorithms, such
as LSTM or DeepAR. The authors report that their method gives the best
accuracy and confidence bounds among its simplified variants.

Other machine learning methods outside neural networks have been re-
ported in several retail demand forecasting studies. Hansen et al. [42] com-
pares support vector regression to multiple variations of ARIMA with normal
and non-normal error assumptions. The forecasts are evaluated for a variety
of economic time series including retail. As a result, support vector regression
marginally outperforms traditional statistical methods in most forecasting
tasks including retail demand forecasting. The authors point to the excellent
ability of support vector regression to model nonlinear trend-cycles and sea-
sonalities, but mention the lack of studies about time series characteristics
that make the support vector regression a preferable method. Ali et al. [3]
evaluates stepwise linear regression, support vector regression with three dif-
ferent kernels, and regression trees in grocery store demand forecasting on a
weekly level in the presence of promotion information. Exponential smooth-
ing is used as a benchmark, as well as for feature engineering. The authors
use multiple data representations where each product-location week sales and
its regressors (both real and artificially generated) are data points, and dis-
tinguish between different product categories, stores and SKUs with the help
of dummy variables. Ali finds that regression trees have the best accuracy at
the expense of the data preparation costs and algorithm complexity. Another
interesting finding is that machine learning techniques significantly improve
the forecasting accuracy during the promotion weeks, while they do not have
any benefit in comparison to the exponential smoothing baseline during the
weeks with no promotions.



Chapter 4

Methods

The target of this thesis is to find the best model class for demand fore-
casting of the fast-moving products. The forecasts themselves are on a daily
level, have a horizon of 7 days, and should take external weather variables
and promotion information into consideration. The most promising models
identified from the literature so far include the ARIMA family of models and
neural networks. These two classes of models are either tested or mentioned
in some way in most research literature dedicated to the retail demand fore-
casting as per Chapter 3. However, these models have never been adequately
compared in terms of multistep forecasts on a daily level in a larger subset
of fast-moving products from the grocery retail. Given the results achieved
with these forecasting methods for intermittent demand, as well as demand
forecasting on a weekly and monthly level, it is probable that these models
are most suitable for the problem of multistep daily forecasts for fast-moving
products in grocery retail.

Even though various exponential smoothing models like Holt-Winters
(HW), also seem to be promising in sales forecasting, these models are usu-
ally applied to univariate time series, while the sales data in our investigation
involves multiple covariates in addition to sales themselves. There are some
attempts in the literature to overcome this obstacle. For example, Pfeffer-
mann and Allan [62] propose a multivariate extension of the HW exponential
smoothing and apply it to the multivariate time series of hotel room demand.
The work shows that the proposed extension of the HW model is better than
its univariate counterpart, and is comparable to multivariate ARIMA for
short forecast horizons. Another drawback of exponential smoothing models
is that they lack a capability to deal with multiple seasonality, which is also
present in our experimental dataset. Taylor [72] reviews the capabilities of
exponential smoothing in the setting of two seasonalities and introduces dou-
ble seasonal Holt-Winters model which fares well in comparison to ARIMA
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models in the prediction of electricity demand. Nevertheless, the author
notes that the double seasonal Holt-Winters method should be combined
with other forecasting techniques for better results. Thus, various extensions
of exponential smoothing that deal with regressors and multiple seasonal-
ity are uncommon, have many limitations, and the scarce applied research
makes us doubt their efficacy in multivariate multiseasonal multistep demand
forecasting.

The original ARIMA formulation cannot deal with external regressors.
Thus, we use a regression model for weather and campaign status covariates,
while using the ARIMA to model the regression errors. Multiple seasons
are easily modelled with the trigonometric functions of sines and cosines and
passed on to the regression with the other features. This approach is called
the dynamic harmonic regression [48]. This model is compared against
two types of deep neural networks: MLP and LSTM. The MLP is one of
the most commonly used non-linear algorithms in time series analysis which
is evident by the amount of research using the modifications of this model.
It can work with multivariate, non-stationary time series, and multiple sea-
sonalities. At the same time, LSTM has not been as common in demand
forecasting, but it has been recently gaining popularity due to its excep-
tional results in other fields. Since the LSTM is specifically tailored to work
with sequential data, while it also has the same benefits as the MLP in time
series forecasting, it can potentially produce excellent results in fast-moving
product demand forecasting.

Since many time series in the dataset are count data, Poisson GLM is
also added to the compared model set. It is a well-known generalized linear
model, which is simple and gives good results in many regression tasks that
involve positive countable response variables. It is extended to handle mul-
tiple seasonality through trigonometric feature engineering as in dynamic
harmonic regression case. Since overfitting is also a concern, the Poisson
GLM is equipped with an elastic net to control for the model complexity.

All the models are compared against each other on a big dataset of long
sales histories. All the models are compared against the naive seasonal fore-
casting, which is simple to implement and commonly used as a baseline.
The tuning and final evaluation of the models is done with cross-validation
(CV). The cross-validation is preferred to other methods of model selection
in order to standardize the methodology across all model classes. In evalu-
ation, the cross-validation is the only procedure that can reliably assess the
out-of-sample performance of all presented models unlike AIC or other in-
formation criteria as mentioned in Sections 2.2.2 and 2.2.4. The details of
the feature engineering, model selection and evaluation, as well as the theory
and practical use of the compared models are discussed further in full detail.
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4.1 Time Series Selection and Properties

The experimental data is carefully selected to represent the fast-moving prod-
uct demand. A collection of real sales histories is received from one of Euro-
pean supermarket chains, and contains information about tens of thousands
of products sold in 13 different locations. The sales data is aggregated on a
daily level, and all records are non-negative. Additional information includes
promotions for product-locations (PL), and weather data. A subset of time
series is further selected according to the following criteria:

1. Length of more than 4 years of daily data

2. At least 10000 sales overall

3. The number of days that have no sales is less than 3%

4. Each time series has only 1 type of promotions

5. The first promotion always happens during the first year of sales history

The first three criteria ensure that the selected histories represent fast-selling
products. The last two criteria are introduced to make the training and
test sets represent the same distribution, since different campaign types can
produce various changes in demand. The sales histories with a single type of
campaign, which is represented in the training, validation and test sets, do
not have this problem. The final dataset is formed from 100 product-location
time series that are selected randomly so that each location has no more than
9 product sales histories.

In the final dataset, most time series have the length of 1826 days. 68%
time series have only weekly seasonality, 29% have both yearly and weekly
seasonalities, 2% have a half-yearly seasonality and a week seasonality, while
only 1 product-location has a sales history with all three seasonalities. 87%
of the final sales histories are count time series, while 13% are represented by
fractional numbers. Figure 4.1 presents the sample means of the time series in
the dataset. The figure shows that the majority of product-locations (> 50)
are sold around 2 to 23 items per day. However, some PLs have large average
sales up to 53 items/units per day.

Figure 4.2 presents the maximum sales against the 90th percentile of
sales per day for each product-location time series in the dataset. The graph
reveals that while 90 percent of all days for all product-locations have at most
125 sales, there are some days for many PLs when the sales are significantly
higher than usual. Many time series in the dataset are heterogeneous, with
possible outliers and level shifts.
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Figure 4.1: Mean sales per day for each product-location.

Figure 4.2: Maximum sales versus 90th sample percentile of sales per day.

The sales histories of product-locations are accompanied by covariates
for each day of sales. The regressors include the campaign status binary
variable, which is 1 if the sales of a given PL happened during the campaign,
or 0 otherwise. Additionally, there are the temperature and wind speed
records for each day of the sales history data for all product-locations. These
regressors are floating points numbers. Temperature ranges from −2.23◦C to
30.58◦C, while the wind speed ranges from 0.01 to 15.7 m/s.
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4.2 Model Selection and Evaluation

In the final dataset of 100 chosen product-locations, each time series is fur-
ther split into three consecutive parts which are called the training, validation
and test parts. These parts are not the same as the training, validation and
test sets discussed in Chapter 2: the time series parts serve as the boundaries
for the time series cross-validation procedures. The training part of the time
series contains most of the observations from the beginning of the time series
and is always used for training the models. It is followed by the validation
part which includes the folds of the CV procedure for model (hyperparame-
ter) selection. The last segment of the time series is the test part. It contains
the consecutive folds of the CV used for the final model out-of-sample per-
formance assessment and reporting of the experimental results. This time
series division is schematically presented in Figure 4.3.

Figure 4.3: Time series division into train, validation and test parts.

Each time series is represented as a separate entity with its own train,
validation and test parts. The last 371 × 2 = 742 days of each time series
are selected for the validation and test parts. These two consecutive parts
are of equal size of 371 days, or 53 weeks. The validation and test parts
span the whole year each in order to include all the seasons and holidays into
the out-of-sample performance measurement. The rest of the sales history
is always used for training in cross-validation. In Figure 4.3, the test part
of the time series with T observations starts at ts and is colored blue. The
red validation part preceding it spans from tv to ts−1. The training part is
colored green, starts at t1 and continues up to tv−1.

4.2.1 Time Series Cross-Validation

All compared models have hyperparameters to be selected. As described
in Chapter 2, one traditional way to compare models on the cross-sectional
data is cross-validation. However, temporal dependencies in the time series
make the direct application of CV impossible because its estimate of out-of-
sample performance will be biased in the presence of correlated errors [9]. A



CHAPTER 4. METHODS 62

specific modification of the cross-validation for time series is known as the
evaluation on a rolling forecasting origin [48]. Given the test fold, this
procedure uses only the preceding part of the time series for training. This
way the time dependency of observations can be properly preserved. After
each fold has been evaluated, the final result is obtained by averaging. The
procedure is illustrated schematically in Figure 4.4.

Figure 4.4: Time series 2-step forward rolling origin cross-validation.

Figure 4.4 presents an example of time series cross-validation for a 2-day
forward forecasting model hyperparameter selection. In the figure, each line
represents one iteration (fold evaluation) of the CV procedure. The CV folds
are colored red, while the training portion of the time series is colored green.
The test folds are evaluated in the order of the time series. The blue color
denotes the time steps of the time series which follow the currently evaluated
fold, and are not used until the fold that contains them is reached. After
the prediction is obtained for the fold i, it is recorded and the next fold is
fetched by moving two time steps forward. As the cross-validation proceeds,
the training part of the time series grows, so that it always ends right before
the evaluated fold. The CV folds for model selection cover the range of the
time series (denoted with the dashed lines in Figure 4.4) from the start of the
validation part of the time series until the test part of the time series. The
cross-validation procedure for the model evaluation is similar to the one for
hyperparameter selection, but its folds cover the test part of the time series.
During the model evaluation, both the training and validation parts serve as
the training data in each CV iteration.
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As in the example above, the cross-validation used in the experimental
part involves two stages:

1. Cross-validation with folds specified on the validation part of the sales
time series, which is used to find the optimal model hyperparameters.

2. Cross-validation with folds specified on the test part of the sales time
series, that is used to give the final estimate of the model performance.

The repeated cross-validation procedure allows to avoid the overfitting which
can arise due to the selection of the hyperparameters on the same folds as
the model assessment. Each fold in both stages is 7 days long. At the end of
each iteration, the next fold can be viewed as the current fold shifted forward
by one week. The shifting continues until the boundary is reached. All the
folds are adjacent to each other in the time series. Each stage of the CV
spans 371 days, so that each cross-validation has 53 folds.

A variation of the cross-validation with longer folds is used in the models
with long training times. For the experimental setup, a fold can contain
multiple weeks of predictions. However, for all the 7-day predictions in a
single fold, the model is not retrained. The example of this CV extension is
demonstrated in Figure 4.5.

Figure 4.5: Time series 2-step forward rolling origin cross-validation with
4-step long folds.

As evident from the figure, the CV iteration involves 2 predictions of the
multistep forecasting model: a and b. However, the model is not retrained
to predict the part b of the fold. The part b is predicted using the past
values, including the observed values in the part a of the same fold, but with
the model trained on the time series observations before the start of the fold.
Next fold is 4 steps forward from the start of the previous fold. When a
new fold is reached, the model is retrained using all the observations from



CHAPTER 4. METHODS 64

the training part of the time series including parts a and b of the previous
folds. The cross-validation for a 7-day forward forecasting model works the
same way, except the fold lengths are a multiple of 7. In the cross-validation
with longer folds, all folds have the same length, except the last one, which
contains the remaining weeks so that the cross-validation does not step over
the validation or test part boundaries.

After the predictions for all folds in the cross-validation have been made,
the usual way to summarize the result is to find the average of the errors
across all folds. The optimal approach is to find the average of the errors
for each non-zero sales day in either the validation or test part of the time
series. Each 7-day fold results in up to 7 errors due to zero-sales day skipping,
which are then summed up together with the errors from the other folds of
the same cross-validation stage, and divided by the number of the days with
the positive sales quantity to find the average demand forecast error per day.

4.2.2 Model Performance Summary

4.2.2.1 Error Metrics

When a 7-day forecast is produced in the cross-validation, it is important
to know how good this prediction is. In order to do so, some kind of error
metric between the observed sales value yt and the predicted demand ŷt
has to be computed. There is a broad range of possible evaluation metrics
applicable to demand forecasts in practice. However, they have their own
advantages and disadvantages. One of the most commonly used metrics in
time series forecasting is RMSE [5]. Given the sales records yi, i ∈ {1..N}
and model predictions ŷi, i ∈ {1..N}, the RMSE for these N predictions can
be summarized as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (4.1)

RMSE is known to be scale-dependent [48]. It means that the error depends
on the time series variability, and cannot be used for the evaluation of the
model performance across different time series, since the final error metric is
completely irrelevant as was demonstrated in the M-competition review by
Chatfield [14]. Another problem with RMSE is that it is sensitive to outliers.
A more robust alternative to RMSE is MAE, or mean absolute error, which
is also scale-dependent. Using the previous notation, it can be presented as
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follows:

MAE =
1

N

N∑
i=1

|yi − ŷi| (4.2)

Even though both RMSE and MAE have the same units as the time series,
MAE is easier to interpret, since MAE is the average absolute difference
between the quantity of interest and its forecast unlike RMSE, which involves
the sums of squared differences and subsequent normalization with the square
root.

Another class of evaluation metrics involves the median of the cross-
validation errors. The metrics based on the median are robust against out-
liers, and provide a good summary of the model performance in 50% of cases.
One such metric is MdAE, or median absolute error. Like RMSE and MAE,
MdAE is also scale-dependent. It can be specified as follows:

MdAE = median
(
|yi − ŷi|

)
Due to the scale-dependence of RMSE, MAE, and MdAE, unit-free error

metrics are often chosen. One such metric, which is used particularly often,
is MAPE [5, 39], which can be presented as follows:

MAPE =
1

N

N∑
i=1

∣∣∣∣100
(yi − ŷi)

yi

∣∣∣∣ (4.3)

This error metric measures how far the predictions ŷi are from the observed
values yi relative to yi in percent. This error metric has multiple problems.
One of them is that it is not symmetric. In general, MAPE puts a heavier
penalty on the forecasts that are larger than the actual observations [39].
Additionally, this performance metric is infinite if the actual observations
are 0. Another problem of MAPE is that it is also sensitive to outliers. In
highly volatile time series, MAPE error metric can be easily distorted by
the occasional unpredictable spikes in observations. Even though MAPE
and MAE are more robust than RMSE in this respect, it would be good if
MAPE had the robustness of MdAE. The median absolute percentage error,
or MdAPE, can be specified as follows [49]:

MdAPE = median
( ∣∣∣∣100

(yi − ŷi)
yi

∣∣∣∣ ) (4.4)

MdAPE is a robust percentage error metric. However, it has the same issues
as MAPE with respect to symmetry.
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In the experiments, the scale-dependent MAE and RMSE evaluation met-
rics are used to compare the forecasting models for each time series separately.
The MAE is chosen because it is very easy to interpret, and in the case of
demand forecasting it represents the exact quantity that we would like to min-
imize (average error between the demand forecast and actual sales). RMSE
is used in addition to MAE in order to monitor the model response to the
time series with significant outliers. Most sales histories in the final dataset
have unpredictable fluctuations, and it is important to know how well the
models handle them.

In addition to the scale-dependent metrics, we use MAPE to track the ab-
solute deviations of the forecasts from the target demand in percent. MAPE
allows to summarize the results of a model across all product-location sales
time series, and compare these summaries among all models. MAPE is also
easy to interpret unlike RMSE or median metrics. In this respect, it is a
direct scale-free alternative to MAE.

Sometimes a few large outliers can distort MAE, RMSE, or MAPE error
summaries, even though the forecast is excellent for the majority of the days.
The insight into the most frequent model behaviour can be gained by checking
how large the error is in 50% of cases for the studied models. MdAPE is
chosen as an appropriate evaluation metric for this task. The drawback of
MdAPE is that it is a little less intuitive than MAE, or MAPE for the model
performance interpretation. Like MAPE, MdAPE is scale-free, and can be
used to examine the performance of a model across the time series with
different variability.

4.2.2.2 Ranking

As mentioned in the previous section, scale-dependent error metrics like MAE
and RMSE cannot be used to assess the model performance across many
different product-location time series. One way to avoid this limitation is
the use of ranking. We can assign the ranks rji to each model j based on how
well they perform relative to each other for a product-location time series i
according to some error metric. Suppose that the two models F and D have
the error metric values a and b for some product-location i. If a < b, then
rFi < rDi . Therefore, we can summarize the performance of each model in
terms of its ranks across all product-locations. In our experimental setting,
each model can achieve the ranks from 1 to 7 (since there are 7 models to
compare). When the original errors are converted to ranks, the information
about the error discrepancy between the ranks is lost. The error difference
between the ranks 1 and 2 in product-location i can be multiple times larger
than the difference between the ranks 1 and 2 in the product-location j. In
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rank comparison, we assume that the model is better if it has a lower rank
than another model, while the size of the difference between ranks does not
matter.

Given the ranks of the models A and B for 100 product-locations, we
can use statistical hypothesis testing to determine if one model is more likely
to get better ranks in the specified error metric. In order to do it, we can
use the paired sign test due to its simplicity, and minimal assumptions. For
the test, it is necessary to have 2 samples, where the observations in both
samples are paired. In the case of demand forecasting, the two samples
represent the ranks of the compared models, and both samples are for the
same error metric. The ranks of the two models are obviously paired by
product-location. Given the two models F and D, whose ranks rFi and rDi
belong to the same pair, i ∈ {1, .., 100}, the statistical assumptions of the
paired sign test are as follows [22]:

1. For all pairs of rank observations (rFi , r
D
i ), there is the same probability

p, 0 < p < 1, of rFi < rDi .

2. The probability of the event rFi = rDi is zero.

3. The event rFi < rDi is independent from the event rFj < rDj , i 6= j.

The target of the test is to make conclusions about the parameter p. The
second assumption holds because when two regression models of different
classes are compared in CV, the chance of their errors being equal is very
small and can be disregarded. We use the right tail version of the paired sign
test as described in Section 2.3.1. We assume the following hypotheses:

H0 : p = 0.5

H1 : p > 0.5

The test statistic T of the sign test is the number of pairs, where rFi < rDi ,
or tobs = #(rFi < rDi ). The test statistic follows the Binomial distribution:

T ∼ Bin(0.5, 100)

The probability P (T ≥ tobs) gives the p-value. The significance level we use
in the experiment is 5%. If the null hypothesis is rejected, it means that
p > 0.5. This shows that the model F gets a lower (better) rank than the
model D with a higher probability for any given fast-moving product time
series, which we regard as a superior model. The test can be used for all
error metrics, but is especially useful for scale-dependent metrics.



CHAPTER 4. METHODS 68

4.2.3 Feature Transformations

Some features in the data have to be preprocessed before the training and
forecasting. The general preprocessing step for all models is to scale the
weather regressors. It is mostly important for the gradient-based optimiza-
tion methods used in neural networks and GLM. In order to scale the weather
data, the temperature and wind speed features for each PL are divided by
their largest respective recordings. In most experimental cases this allows to
improve the speed of optimization routine convergence.

The further data transformations depend on the specific model in use.
ARIMA-based models work with real numbers, both positive and negative,
and require the transformation from the strictly non-negative sales history
to the co-domain of real numbers. This is achieved by using the log transfor-
mation on the shifted time series. Assume that there exists a non-negative
time series {yt}t∈T , yt ≥ 0, then the log transformation can be presented
as follows

y′t = log(yt + 1) (4.5)

which is a Box-Cox transformation [41] with λ = 0 of the shifted time series
{yt}t∈T + 1. The log transformation is also necessary for the neural network
models due to a specific problem with the dying rectified linear units (ReLU)
discussed further. The log transform is applied to the training part of the time
series during cross-validation, and the fold forecasts are then transformed
back to the original scale by the inverse of the function in Equation 4.5.

It is important to note that the majority of time series in the dataset
are count-based. Forecasting such time series on the continuous scale after
transforming them with Equation 4.5 can in theory produce inferior results
in comparison to the forecasts of the models like Poisson or negative binomial
GLM, which are traditionally used for the time series of counts. However, if
the number of counts is large, there is no difference between the continuous
and discrete sample spaces [48]. All the time series in this study have large
counts as evident from Figure 4.2, where almost all sales histories have at least
1 day with 25 sales. There are no time series with small counts (e.g. from
0 to 5 at the maximum) which are considered to be the primary indication
to use the models of counts. Therefore, we assume that the logarithmic
transformation should not decrease the quality of forecasts, and the models
like dynamic harmonic regression and neural networks will perform at least
as well as count-based models.

Another basic feature transformation is needed for the Poisson regres-
sion (Poisson GLM). This model requires that the sales response variable is
countable during training. However, some sales histories are represented by
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the fractional numbers with up to 2 decimal places of precision. In order to
solve this problem, the sales variable is multiplied by 100 which is called here
the count transform:

y′t = yt × 100 (4.6)

During the cross-validation, Equation 4.6 is applied to the training part of the
time series with fractional numbers. After the model has been trained, and
the predictions have been obtained, the forecast is divided by 100 and the er-
rors are computed on the original number scale. This approach allows to fulfil
the assumption of the Poisson regression about the count response variable.
However, the count transform most probably violates another assumption
about the equality of the mean and variance of the Poisson GLM [28]. We
discuss why this approach is permissible for the subset of the sales time series
represented with the real numbers in Section 4.3.3.

4.2.4 Fourier Series Representation of Multiple Sea-
sonality

Many time series in the dataset have more than one seasonality. There is a
lack of models that can capture multiple seasonalities out of the box. For ex-
ample, SARIMA can capture only one seasonality, while ANNs are inefficient
when it comes to long seasonalities. There are two general ways how this
problem can be solved. The first approach is the time series decomposition
described in Section 2.4. The second approach involves seasonality modelling
with trigonometric components like sines and cosines [48, 76].

All sales time series in the dataset have at least a weekly seasonality.
Other seasonalities are detected with a periodogram, which shows how much
frequency components contribute to the time series. The periodogram is
computed using the Cooley-Tukey fast Fourier transform algorithm [16]. A
typical periodogram is presented as a plot in Figure 4.6.

Using the periodogram for the training set, the pairs (frequency, density)
are computed, and then the three pairs with the largest densities are selected.
The frequency is then converted into the period for each pair i as a recipro-
cal. The next step involves checking if the period of any of the three pairs
(periodi, densityi), i ∈ 1, 2, 3 falls within a certain range:

periodi ∈ (355, 385)→ Yearly seasonality present (4.7)

periodi ∈ (170, 192)→ Half-yearly seasonality present (4.8)

If it does, then the assumption is made, that a corresponding seasonality
in the time series exists. In Figure 4.6, the presented time series has the
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Figure 4.6: Periodogram of a time series with a single weekly seasonality.

three largest periods (corresponding to the tallest spikes in the plot) of 1875,
6.99, and 3.5 days, which results in no additional seasonalities according to
the selection criteria (4.7) and (4.8). After the time series seasonalities are
discovered, they can be modelled using the Fourier series.

Fourier series is a representation of any periodic function in terms of
weighted orthogonal sines and cosines. Suppose that the function f(x) is
piecewise continuous and periodic on the interval x ∈ [−l, l], such that the
period T = 2l, then the Fourier series representation of the function f(x)
can be specified as follows [24]:

f(x) =
a0

2
+
∞∑
n=1

(
an cos

(2πnx

T

)
+ bn sin

(2πnx

T

))
(4.9)

an =
1

l

∫ l

−l
f(x) cos

(2πnx

T

)
dx (4.10)

bn =
1

l

∫ l

−l
f(x) sin

(2πnx

T

)
dx (4.11)

where an and bn are Fourier coefficients. In Fourier series analysis, it is
important to determine the optimal number of components N, such that the
function f(x) is represented sufficiently well. Alternatively, it is possible
to smooth the function by choosing a small number of components, since
some rapid fluctuations that are described by sines and cosines with higher
frequencies, will be effectively left out.
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In order to model the weekly seasonality, we introduce 3 Fourier sine
terms and 3 Fourier cosine terms as defined in (4.9). For each time step t
of the time series {yt}Tt=1 we compute the Fourier series sines and cosines as
follows:

sin
(2iπt

Tw

)
, i ∈ {1, 2, 3}

cos
(2jπt

Tw

)
, j ∈ {1, 2, 3}

where Tw = 7, which means that the terms represent the weekly seasonal-
ity. Each of these sines and cosines computed for all time steps t becomes
a separate feature. Likewise, if the periodogram detects either yearly or
half-yearly seasonalities, new yearly and half-yearly seasonality features are
created from the Fourier terms computed for each time step t. These sea-
sonalities are modelled using only 2 Fourier terms each:

Yearly : sin
(2πt

Ty

)
, cos

(2πt

Ty

)
Half-yearly : sin

(2πt

Thy

)
, cos

(2πt

Thy

)
where Ty = 365.25 and Thy = 182.6.

The number of Fourier terms for each periodicity Tw/y/hy is kept large
enough so that the sines and cosines can represent the underlying seasonal-
ity sufficiently well. However, too many components may themselves overfit
by adjusting to the noise of the time series too much. For the weekly season-
ality of the daily sales time series, the number of Fourier components is kept
at six. However, for the yearly and half-yearly seasonalities, it is assumed
that the two terms would be enough, since these patterns should be very sim-
plistic and possible to present with at most one sine and cosine. The number
of Fourier terms can also be determined with cross-validation or information
criteria [48], but for the given dataset, the specified number of seasonal com-
ponents is assumed to be optimal. Table 4.1 presents the seasonal features
of a time series which has both weekly and yearly seasonalities. The weekly
covariates are named w1, w2, w3, w4, w5, w6, while yearly features are
called y1 and y2.

One of the most interesting properties of the Fourier seasonal modelling is
that the Fourier coefficients ai and bi are not required to create the seasonality
features. These coefficients are in fact learned by the model itself. In the
case of linear models, the inference will estimate the regression coefficients
corresponding to a set of seasonality features as the Fourier coefficients of the
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t w1 w2 w3 w4 w5 w6 y1 y2

sin(2πt
Tw

) cos(2πt
Tw

) .. .. sin(6πt
Tw

) cos(6πt
Tw

) sin(2πt
Ty

) cos(2πt
Ty

)

1 0.78 0.62 0.97 -0.22 0.43 -0.90 0.01 0.99

2 0.97 -0.22 -0.43 -0.90 -0.78 0.62 0.03 0.99

3 0.43 -0.90 -0.78 0.62 0.97 -0.22 0.05 0.99

4 -0.43 -0.90 0.78 0.62 -0.97 -0.22 0.06 0.99

5 -0.97 -0.22 0.43 -0.90 0.78 0.62 0.08 0.99

.. .. .. .. .. .. .. .. ..

Table 4.1: Weekly and yearly Fourier seasonal features.

smoothed unobserved seasonality component for the given period Tw/y/hy. In
the case of neural networks, not only the coefficients are estimated, but also
the number of Fourier terms is adaptively expanded by the neural network
model itself because the terms cos(nx) and sin(nx) can always be written as
non-linear functions of cos(x) and sin(x), and this nonlinear dependence can
be approximated by the ANN [76].

4.2.5 Modelling Stockouts

As discussed previously, stockout is a situation when the retail store runs
out of some product, and the recorded sales drop down to zero if the stock
is not immediately replenished. This situation has an effect on demand
forecasting, since the sales history on the stockout days does not represent the
real demand, which the model ideally should be trained on. For this reason
the cross-validation evaluation of the model performance might be wrong.
The problem can be solved with a new binary feature called stockout.

The stockout feature is created for all days of a time series. It is set
to 1 for all days when the sales are zero, and 0 otherwise. During training,
this feature is used directly by the learning algorithm to distinguish between
the stockout and normal days. However, the stockout covariates are set to 0
for the forecast horizon during prediction in cross-validation. This tells the
model that the predicted quantities should be the actual demand. Addition-
ally, when the accuracy is finally evaluated, all the forecast days which have
the stockout feature set to 1 (days that have 0 recorded sales) are excluded
from the accuracy estimation, since the model always forecasts the demand of
the days when enough product is available, and comparing its prediction with
the real sales data that has a stockout day would be inappropriate. In terms
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of cross-validation, it means that in all folds the errors are not computed for
the days where the actual sales are 0.

4.3 Regression Models for Demand Forecast-

ing

4.3.1 Naive Baseline Model

Naive forecasting is one of the most commonly used quantitative methods in
demand forecasting due to its simplicity. It predicts the demand to be equal
to the last available sales history observation. The naive forecasts can include
a trend extrapolation, where the trend slope is calculated as the average of the
previous two observations. The naive forecasting can also be seasonal, when
the future demand is predicted to be the same as the demand on the same
day during the previous season. Even though the naive forecasting seems to
be too simplistic, it is easy to prepare and interpret, while it has almost no
cost [70]. However, the collection of naive methods clearly lacks the means
to forecast complicated time series, and account for the presence of noise
and complex repeated patterns in data. As a result, the naive forecasting
is often used as a benchmark to assess the accuracy and efficiency of other
models [48, 70].

Given the simplicity, as well as the speed of the naive forecasting al-
gorithms, the seasonal naive method with a period of one week is chosen
as the baseline for the comparison with the other more advanced mod-
els. Suppose that the validation/test part of the time series is denoted as
{y1

1, .., y
1
7, y

2
1, .., y

53
7 }, where the observation yji is the sales on the weekday i

of the fold j, where the folds for the naive model are of length 7, and the
model produces 7-day forward multistep forecasts. Assume that y0

1, .., y
0
7 are

the 7 sales observations from the end of the training part of the time series
if the cross-validation is run for model selection. In the case of final model
evaluation, these values would correspond to the last 7 observations of the
validation part of the time series. Then, the predictions for the fold j can
be given as ŷji = yj−1

i . In short, the seasonal naive model forecasts equal the
sales values observed the week before. It is expected that all other models in
the experiment outperform this naive baseline.

4.3.2 Dynamic Harmonic Regression

Dynamic harmonic regression is a model that consists of two parts: the
regression part, and the ARIMA process which represents the errors of the
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regression procedure. A data point for this model is presented in Table 4.2.

Features Label

campaign temperature wind speed stockout

sales quantity
w-cos1 w-sin1 w-cos2 w-sin2
w-cos3 w-sin3 y-cos1* y-sin1*
hy-cos1* hy-sin1*

Table 4.2: Data point for the dynamic harmonic regression.

The data point in Table 4.2 relates the daily sales record with the weather,
promotion status and stockout regressors, as well as the Fourier series season-
ality features on the same day. The Fourier features are denoted as w-cos1,
w-sin1, w-cos2, w-sin2, w-cos3, w-sin3, y-cos1*, y-sin1*, hy-cos1*,
and hy-sin1*. The prefixes w, y, and hy stand for the respective periods
of one week, year, and half-year. The numeric ending specifies the multi-
plier n in the frequency of the sine or cosine as cos / sin

(
2πnt
T

)
. The asterisk

means that the presence of the feature is time series specific as described in
Section 4.2.4.

Given a sales time series {yt}t∈T with the associated regressor process
{xt}t∈T as defined per Table 4.2 for each day t, the dynamic harmonic re-
gression model can be presented in the lag operator notation as follows

(1− L)dyt = βT (1− L)dxt + (1− L)dηt (4.12)

ηt =

(∑q
j=0 θqL

q
)(

1−
∑p

i=1 φpL
p
)(

1− L
)d εt (4.13)

where θ0 = 1, ηt is an error term which follows the ARIMA(p, d, q) process,
β is a vector of regressor parameters of the same dimension as the input
feature vector xt, and εt ∼ N (0, σ2) represent the innovations used in the
maximum likelihood estimation. Equation 4.13 is a MA(∞) representation of
the ARIMA process presented in Equation 2.37. By dividing Equation 4.12
with (1− L)d, we arrive at another representation of the dynamic harmonic
regression:

yt = βTxt +

(∑q
j=0 θqL

q
)(

1−
∑p

i=1 φpL
p
)(

1− L
)d εt (4.14)

By multiplying (1−L)dηt in Equation 4.12, the term (1−L)d in (4.13) dis-
appears from the denominator of ηt, which becomes an ARMA(p, q) process
representation in terms of MA(∞) as shown in (2.30). From Equation 4.12 it
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becomes clear that the differencing can be performed directly on the features
xt and labels yt to make the error ηt a stationary ARMA process.

The requirement of stationarity still stands for the dynamic harmonic re-
gression errors ηt. However, the situation is harder than in the basic ARIMA
model case, since the regression errors are not observable, and cannot be
tested for stationarity right away as in a time series without regressors. In
order to find the required number of differences d in the autocorrelated part of
the dynamic regression model, we first apply the basic OLS regression to the
data points ignoring the autocorrelation. Given a time series (xt, yt) of length
T and regression estimates ŷt, the modified time series {ωt}t∈T , ωt = yt − ŷt
represents the approximation to the series of autocorrelated errors ηt defined
in Equation 4.13. After computing the ωt values, the time series {ωt}t∈T
can be investigated for stationarity. If this time series requires differencing,
then both the labels and the features of the original series (xt, yt)t∈T are
differenced the required number of times. After the appropriate differenc-
ing, the dynamic harmonic regression still includes the regression part, but
the ARIMA(p, d, q) errors become the ARMA(p, q) errors. Now, under the
assumption of the ARMA innovation εt normality, the maximum likelihood
can be computed, and the parameters of the model can be estimated.

4.3.2.1 ARMA Process State-Space Form

The state-space form, or representation of a dynamic system is a model
represented in terms of an observable output yt, known input xt, the hidden
state st which evolves over time, and the noise components. In a state-space
model, the hidden states, the inputs, and the outputs are related by the
first-order difference equations. Given a sequence of inputs {xt}t∈T , hidden
states {st}t∈T , outputs {yt}t∈T , as well as sequences of noise terms {vt}t∈T
and {wt}t∈T , the state space representation of the model dynamics can be
specified as follows:

st = Fst−1 + Rvt (4.15)

yt = Axt + Bst +wt (4.16)

vt ∼WN(0,Q)

wt ∼WN(0,H)

Equation 4.15 is known as the state/transition equation, while Equa-
tion 4.16 is called the observation equation. The vectors vt and wt are
multivariate white noise, where Q and H are the covariance matrices. Of-
ten the state transition equation term Rvt is written simply as εt, where
εt ∼ N (0,RQRT ). The matrices F, R, A, B, Q and H specify the model
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and contain all the required parameters. In the most basic state-space rep-
resentation of a model, the following additional assumptions are made [41]:

E
[
vtv

T
τ

]
=

{
Q, t = τ

0, otherwise
E
[
wtw

T
τ

]
=

{
H, t = τ

0, otherwise

E
[
wts

T
τ

]
= 0, ∀τ ∈ T

E
[
vts

T
τ

]
= 0,E

[
wty

T
τ

]
= 0,E

[
vty

T
τ

]
= 0, ∀τ < t

Any ARMA process can be presented in a state-space form. We use a
common representation of the ARMA process by Gardner et al. [33] that
can be summarized using Equations 4.15 and 4.16. By also specifying the
input matrix A which contains the regression coefficients β we arrive at the
state-space form that represents the dynamic harmonic regression. Given the
model ARMA(p, q), we define r = max(p, q + 1), and set k as the number of
features in xt. Then the state-space form matrices for the dynamic harmonic
regression can be presented as follows:

F =



φ1
...

φ2
... Ir−1

...
...

φr−1
. . . . . . . . . . . .

φr
... OT

r−1


R =



1
θ1

θ2
...

θr−2

θr−1


A =

[
β1 . . . βk

]
, B =

[
1

... OT
r−1

]
, wt = 0, ∀t ∈ T

where Ir−1 is the identity matrix of size r − 1, and OT
r−1 is a row zero vector

of length r − 1. The observation equation noise is set to zero, and does not
influence the output. Thus, the observation equation assumes the short form
of yt = Axt+ Bst. Depending on the model specification, unless p = q+ 1 in
ARMA(p, q), some of the coefficients φi or θj will be zeros. This particular
state-space representation is used further for parameter estimation, as well
as forecasts in the dynamic harmonic regression model.

4.3.2.2 Kalman Filter and Inference

Given a state space representation of the dynamic harmonic regression model,
an algorithm known as Kalman filter can be used to perform parameter
estimation and compute forecasts for this model. The Kalman filter is an
algorithm that is traditionally used to estimate the hidden state vector st in
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the state-space models. Given a Gaussian ARMA process, the Kalman filter
produces the optimal linear least squares forecasts of the state vector st and
the next observation yt based on the past observations of the system up to
time t as defined in Equation 2.31. However, its most useful property is that
it allows to calculate the exact maximum likelihood function of the ARMA
process in a simple way under the assumption that the ARMA innovations
are Gaussian [41].

The Kalman filter is an iterative algorithm which consists of the two
steps: the update step, and the prediction step. These two steps iterate from
the start until the end of the processed sequence. If the past observations
and inputs up to step t are given as Ξt−1, then the state forecast based on
these values is denoted as ŝt|t−1, and the forecast of the output yt based
on Ξt−1 and xt is similarly denoted as ŷt|t−1. The state forecast ŝt|t−1 is
associated with the MSE matrix Pt|t−1. We define these terms more formally
as follows [41]:

ŝt|t−1 = Ê
[
st |Ξt−1

]
(4.17)

ŝt|t = Ê
[
st |Ξt

]
(4.18)

ŷt|t−1 = Ê
[
yt |xt,Ξt−1

]
(4.19)

Pt|t−1 = E
[
(st − ŝt|t−1)(st − ŝt|t−1)T

]
(4.20)

where Ê denotes the optimal linear forecast as shown in Section 2.5.4.1. Given
these definitions as well as the state-space form presented in Equations 4.15
and 4.16, the Kalman filter iteration can be specified as follows [41]:

ŝt|t = ŝt|t−1 + Pt|t−1BT (BPt|t−1BT + H)−1(yt − Axt − Bŝt|t−1) (4.21)

ŝt+1|t = Fŝt|t (4.22)

Pt+1|t = F(Pt|t−1 − Pt|t−1BT (BPt|t−1BT + H)−1BPt|t−1)FT + RQRT (4.23)

Given the sequence {yt}t∈T of length T and assuming that the state-space
form matrices are known, the Equations 4.21 - 4.23 are iterated until the
final state prediction ŝT |T is reached. Then the m-step forward forecast can
be computed by the Kalman filter with the following equation [41]:

ŷT+m|T = AxT+m + BFmŝT |T (4.24)

Thus, given the ARMA process specification in the state-space form, the
Kalman filter can compute the forecasts for the model. In order to start the
iterations, we also need to know the values ŝ1|0 and P1|0. Their values can be
chosen arbitrarily since the Kalman filter will converge to the correct forecasts
as it proceeds. However, in order to use the Kalman filter for inference, one
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common choice of the hidden state and MSE matrix initialization is the
following [33, 41]:

ŝ1|0 = E
[
s1

]
= 0 (4.25)

vec(P1|0) = E
[
(s1 − E

[
s1

]
)(s1 − E

[
s1

]
)T
]

=
(
Ir2 − (F⊗ F)

)−1
vec(RQRT ) (4.26)

The operator ⊗ denotes the Kronecker product, while the operator vec(.) is
the column-wise vectorization operator. This particular initialization has an
assumption that the eigenvalues of the matrix F lie within a unit-circle. How-
ever, for the stationary ARMA process this is the case by default. Therefore,
the initialization in (4.25) and (4.26) is often chosen as the default to start
the iterations of the Kalman filter.

The parameters of the ARMA process are usually not known in advance,
so only the shapes of the state-space matrices are known (due to the pre-
defined hyperparameters p and q in the ARMA(p, q)). The Kalman filter
can be conveniently used to compute the log-likelihood function value of the
ARMA(p, q) given that the errors vt and wt are Gaussian. In such a case,
each observation yt follows a multivariate normal distribution [41]:

yt|xt,Ξt−1 ∼ N (Axt + Bŝt|t−1,BPt|t−1BT + H) (4.27)

In the case of sales time series, the output yt is a single variable, so the
distribution in (4.27) reduces to a univariate normal. Therefore, given the
sequence of length T of inputs and outputs y = (xt, yt)t∈T , the log-likelihood
function for the Kalman filter can be specified as follows:

f(y; F, R, A, B, Q, H) =
T∑
t=1

(
− T

2
log 2π − 1

2
log|BPt|t−1BT + H|

− 1

2
(yt − Axt − Bŝt|t−1)T (BPt|t−1BT + H)−1(yt − Axt − Bŝt|t−1)

)
(4.28)

The values of ŝ1|0 and P1|0 are initialized as suggested in (4.25) and (4.26).
The log-likelihood is computed by iterating the Kalman filter and computing
the parts of the sum in (4.28). Then, all the terms are summed, and the final
value of the log-likelihood is returned. This procedure is combined with any
optimization algorithm to maximize the function value with respect to the
parameter matrices F, R, A, B, Q, H. Most optimization algorithms require
the analytic derivatives of the log-likelihood function in Equation 4.28. These
can be computed recursively via the Kalman filter iterations [41]. When the



CHAPTER 4. METHODS 79

MLE of the matrices is found, it is equivalent to finding the ARMA co-
efficients of the specified model. The optimization procedure used in the
experimental part of this thesis for the dynamic harmonic regression coef-
ficient estimation is Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
which gives the best results in training.

4.3.2.3 Hyperparameter Selection

As noted above, it is important that the error part of the dynamic har-
monic regression procedure is stationary. A lot of work has been tradition-
ally focused on the procedures to determine if the time series is stationary
or not. Statistical unit root tests such as Dickey-Fuller [21] and Phillips-
Perron [63] can be applied to the time series to determine if it is a unit-
root process, or trend-stationary. However, these procedures lack statistical
power if the tested process is nearly unit root [81]. In order to solve this
problem, Kwiatkowski et al. [54] proposes a new statistical test, known as
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, to determine the presence
of a unit root as an alternative to the trend-stationarity. Using the notation
from Section 2.3.1:

H0 : Time series is stationary around the deterministic trend

H1 : Time series is non-stationary with a unit-root

KPSS is a right-tailed hypothesis test. We use it to determine the nec-
essary number of differences for the dynamic harmonic regression. We first
apply the OLS regression to the original time series, and then use the KPSS
test with the significance level of 5% to check if the residuals require differ-
encing. If they do, then the residual sequence is differenced, and we try the
KPSS test once more. This 2-step procedure is applied repeatedly until the
residual series is stationary as indicated by the test (null hypothesis is not
rejected), or the upper limit on differences is reached, which is 2 for all the
sales time series. Durbin and Koopman [23] note in their textbook that very
often real time series cannot be transformed into stationary form with differ-
encing, and it is important to decide when the order of differencing is ”good
enough”, rather than stationary. Thus, we choose the maximum number of
differences as 2 which proves to be an excellent choice. Let us denote the
number of differences indicated by the KPSS test as dkpss. Since different
folds in the cross-validation can have different dkpss, the KPSS test is run for
each training part of the 53 folds, and the maximum dkpss is selected as the
minimum order of differencing.

The dynamic harmonic regression has 3 hyperparameters: p, d, and q. We
treat the number of differences d = {dkpss, dkpss + 1} as a hyperparameter
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with 2 values in order to detect if the KPSS test made a type 2 error, and
more differences would result in a better fit. The ARIMA part modelling
involves also the selection of the AR and MA orders p and q. Hyndman [48]
suggests that Akaike’s Information Criterion (AIC) is suitable for this task.
However, AIC is inappropriate when ARIMA models with different orders d
are compared [48]. Thus, the procedure of choice is cross-validation, which
can help select both the AR and MA terms, as well as the differencing term
d. The hyperparameter space for the cross-validation is specified on the
grid. The set of available hyperparameter combinations of ARIMA(p, d, q),
where P = {0, .., 7}, Q = {0, .., 7}, andD = {dkpss, dkpss + 1}, is specified as a
Cartesian product P ×D ×Q. Thus, 128 combinations of hyperparameters
are tried in cross-validation. The four best ARIMA models are selected based
on MAE, RMSE, MAPE, and MdAPE for each time series.

4.3.3 Poisson Regression with Elastic Net

The majority of sales histories in the dataset are time series of counts, that
can be modelled with Poisson regression. Poisson regression is a GLM which
has the Poisson distribution as its random component, and the log-link func-
tion. The Poisson distribution can be rewritten in the exponential family
form defined in (2.17) as follows

f(y;λ) =
1

y!
e

log(λ)y
1
−λ (4.29)

where log(λ) is the canonical parameter for the Poisson class of distributions,
and the dispersion parameter is simply 1. Since the logarithm appears in the
canonical parameter, logarithmic link is a canonical link function. It means
that the log-likelihood of the Poisson regression can be efficiently maximized
with the Newton’s method.

Given a data point (xt, yt), where xt is a feature vector, and yt is a label,
the Poisson regression model for one data point can be specified as follows:

fYt|Xt(yt|xt) =
e−e

βT xteytβ
Txt

yt!

where β denotes the vector of GLM coefficients. The mean of the conditional
Poisson distribution is E

[
Yt |Xt = xt

]
= eβ

Txt . The log-likelihood of the
Poisson regression for T data points (xt, yt), where it is assumed that yt|xt
are i.i.d., is presented as follows:

L(β) =
T∑
i=1

(
ytβ

Txt − eβ
Txt − log(yt!)

)
(4.30)
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One common concern when applying Poisson regression is the violation
of the assumption that the mean of the distribution equals its variance. In
the context of Poisson regression, overdispersion means that the variance of
the data is larger than what would be expected under the model assumption
of the equal mean and variance, and underdispersion is a smaller variability
in the data than the model expects. Therefore, Poisson regression is not
an optimal model for overdispersed or underdispersed data. In practice, the
overdispersion is encountered much more often than the underdispersion, and
there exist tests to detect it [17]. However, small amounts of overdispersion
do not influence the efficiency of the maximum likelihood estimation, so the
model can be applied with minor assumption violations [17].

In the case of overdispersion or underdispersion, a specific kind of esti-
mator called Poisson quasi-likelihood function introduced by Wedderburn is
often used [74]. The quasi-likelihood function is generally not a likelihood
function, but in the case of a single parameter Poisson distribution, the quasi-
likelihood function is equal to the log-likelihood of the Poisson GLM [74]. The
quasi-likelihood effectively deals with overdispersion and underdispersion, if
the variance is proportional to the mean, which is usually a reasonable as-
sumption. One beautiful fact about the quasi-likelihood estimates of Poisson
regression coefficients β is that they are identical to the standard maximum
likelihood estimates of the Poisson GLM [28, 74]. It is important to note
that the estimated coefficient confidence intervals differ [28]. However, in
this work we are only interested in the best predictions of the Poisson GLM
model, and disregard the confidence bounds on the estimate of the regression
coefficients β. Therefore, the Poisson maximum log-likelihood estimation on
over- or underdispersed data gives the same results as the estimation of coef-
ficients with the Poisson quasi-likelihood function. Since the quasi-likelihood
should deal with the violation of the mean-variance equality assumption out
of the box, the prediction quality of the Poisson GLM is not influenced by
the overdispersion or underdispersion in the time series if the variance is
proportional to the mean which we readily assume further.

In Equation 4.6 we introduced the count transform for the time series with
real numbers. We note, that when the random variable is scaled with some
coefficient α, its mean changes linearly as E

[
αX
]

= αE
[
X
]
, while its variance

is scaled by the square of the multiplier, Var
(
αX
)

= α2Var
(
X
)
. Unless the

variance was α times larger than the mean before the transformation, the
output time series is most probably underdispersed. However, we still assume
that the variance is proportional to the mean. Under this assumption, we
use the result about the Poisson quasi-likelihood, which says that even if
the time series is underdispersed, the estimate of the coefficients β with the
Poisson GLM log-likelihood will still be appropriate for prediction. Thus,
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we can safely use the count transformation to convert the fractional number
time series into the count time series. In terms of the original problem, it
means we are trying to predict the demand in batches of 10 grams instead
of some fraction of a kilogram.

The sales time series have a large number of outliers, and very often the
patterns are erratic and likely to be influenced by some unknown factors.
At the same time, we would like to reduce the model complexity so that
it does not adjust to the noise too much. For this purpose, a specific type
of regularizer called elastic net is introduced [83]. The elastic net regular-
ization combines the L2 and L1 penalties defined in Equations 2.22 - 2.23,
and inherits the properties of both: it drives the regression coefficients to
zero as in the ridge regression, and tries to create a sparse representation of
the coefficient vector β as in the LASSO. In addition, the elastic net has a
very useful grouping property such that highly correlated predictors are set
to zero or used in the prediction simultaneously [83]. The log-likelihood of
Poisson regression model with elastic net regularization can be specified as
follows:

L(β) =
T∑
i=1

(
ytβ

Txt − eβ
Txt − log(yt!)

)
− λ
(
α‖β‖2 + (1− α)

S∑
i=1

|βi|
)

(4.31)

where the parameter λ controls the strength of the regularization, T is the
number of data points, S is the size of vector β, and the parameter α ∈ (0, 1)
specifies the share of the regularization provided by the L2 penalty. These 2
parameters are selected manually.

4.3.3.1 Model Training

The demand yt is dependent on the vector of features xt which includes the
temperature, wind speed, stockout and campaign indicators, as well as the
seasonal Fourier terms on date t. In order to model the time dependency
of sales observations, the sales history preceding the date t (autoregressive
terms) is included in the feature vector. The number of the autoregressive
terms (window size) in xt can range from 1 to 60. The window size p is tuned
as a hyperparameter. Table 4.3 demonstrates how a full data point at t can
be presented as a vector of features and a related label.

The feature vector ct is a section of xt which contains the regressors
for the date t, and can include from 6 to 10 Fourier terms, depending on
the number of seasonalities in the time series as described in Section 4.2.4.
The feature names in Table 4.3 follow the convention introduced earlier in
Section 4.3.2.
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Autoregressive Features Current Features Label

yt−p yt−p+1 .. yt−2 yt−1 ct yt

ct
campaign temperature wind speed stockout

w-cos1 w-sin1 w-cos2 w-sin2

w-cos3 w-sin3 y-cos1* y-sin1*

hy-cos1* hy-sin1*

Table 4.3: Full data point for Poisson regression.

Suppose that the forecast has to be produced for 7 days forward starting
at date s. The real sales values are from ys to ys+6. The training portion of
the time series ends right before the time step s. If the model window size
is p and the time series starts at t = 1, then for each t ∈

[
p + 1, s − 1

]
we

create a feature vector xt and its label yt. In order to create a training data
point at index t, we take the previous sales values from t−p to t−1 inclusive
(autoregressive features), and concatenate them with the features ct at time
t as shown in Table 4.3. The label for this feature vector is yt. Thus, the
training set for the model which predicts the fold at time step s will consist
of s − p − 1 data points. The procedure is illustrated in Figure 4.7. In the
picture, the constituent parts of the training data point at the time step s−1
are illustrated with the dashed border: p autoregressive terms are gathered
in the left rectangle, while the features cs−1 are in the right vertical rectangle
with the label ys−1. The time series section used to prepare the training set
is colored green, while the test fold is colored red.

Figure 4.7: Training set preparation for Poisson GLM.

After the training set has been created, the model parameter estimation
can take place. The regularization hyperparameters λ and α must be se-
lected in advance. The model is trained with respect to the vector β using a
two-step optimization procedure implemented in the R package glmnet [43]
which is a non-standard implementation of the Newton’s method using a
quadratic log-likelihood approximation and coordinate descent optimization
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algorithm [30]. In order to use this procedure, the maximum likelihood func-
tion in Equation 4.31 is redefined as a loss function:

L(β; X) = − 1

T
LQ(β) + λ

((1− α)

2
‖β‖2 + α

S∑
i=1

|βi|
)

(4.32)

where X is the training set features and labels, and LQ(β) stands for the
quadratic expansion around the Poisson log-likelihood function in Equa-
tion 4.30. The log-likelihood approximation LQ is divided by the number
of the training examples T . The parameter α corresponds to the share of the
LASSO regularization in the elastic net. The complete optimization routine
for a given λ can be specified as a combination of two steps as follows [30]:

1. Perform a quadratic expansion of the Poisson log-likelihood function in
Equation 4.30 as described in Equation 2.18

2. Append the elastic net penalty to the quadratic log-likelihood approx-
imation to form Equation 4.32 and run the coordinate descent to opti-
mize for the β until convergence

These 2 steps together represent one iteration of the Newton’s method as
described in Equation 2.19. The step-size is not controlled in the implemen-
tation [30], and it might influence the estimation negatively. However, in the
experimental part it was noticed that the algorithm always converges well.
The coordinate descent procedure is conceptually similar to the gradient de-
scent, except that at each iteration only 1 parameter is updated with its
partial derivative (full gradient is not computed), while the other parameters
have to wait their turn. This specification severely limits the coordinate de-
scent since it cannot be effectively parallelized (one coordinate update has to
be done sequentially with other coordinate updates), and sometimes it can
circle around the optimum without convergence. However, this optimization
method is preferred for the Poisson GLM with elastic net since the resid-
ual vectors in the loss function minimization become sparse, and far fewer
parameters have to be updated, which makes the coordinate descent much
faster in estimation than all other alternatives [30].

After the model has been trained, the fold test values should be compared
to the model predictions. Suppose that the dates s + a, a ∈ {0, .., 6}, cor-
respond to the test fold. The test day value ys is easy to forecast given the
training portion of the time series since all immediate autoregressive terms
are known. However, for a > 0, we need the values ys, ys+1, .., ys+a−1, that
are not known in advance. One way to solve this problem is to forecast re-
cursively from s to s + 6, while substituting the forecasts ŷs+a for the real
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values ys+a, where 0 ≤ a < 7. Thus, the autoregressive part of the fea-
ture vector xs+a will include all known time series values up to time step s,
while the forecasts ŷs+a are substituted for the real values ys+a which are not
known beforehand. Using this technique, the Poisson GLM with elastic net
produces the multistep forecasts.

4.3.3.2 Hyperparameter Selection

Poisson GLM with elastic net has three important hyperparameters:

1. Regularization strength parameter λ

2. LASSO share α in the total elastic net penalty

3. Window size p, or number of autoregressive terms in the feature vectors

The cross-validation with the grid search is used to choose the best hyper-
parameters. The windows size p is an integer from 1 to 60, defined as a set
W = {1, 2, .., 59, 60}. The parameter α is selected from 6 possible options,
A = {0, 0.2, 0.4, 0.6, 0.8, 1}. In the case α = 1, only the L1 penalty is used,
and if α = 0, only the L2 penalty is used. Thus, the ridge and LASSO reg-
ularization procedures are just two specific cases of the more general elastic
net penalty.

Hyperparameter Range

λ
{λ|λ = es, s = i ∗ l + log(0.00001), 0 ≤ i ≤ 20}

where i ∈ Z and l = log(10)−log(0.00001)
20

α {0, 0.2, 0.4, 0.6, 0.8, 1}

p {1, 2, 3, .., 58, 59, 60}

Table 4.4: Elastic net Poisson GLM hyperparameter ranges for the grid
search.

The regularization strength parameter λ can be anywhere from 0.00001
to 10. However, the values in the lower range are as important to check as
the values larger than 0.1. In fact, we cannot simply divide the parameter
range into n equidistant points, since it will only check the lambdas in the
range above 0.4, while the optimal regularization strength parameter values
are often below 0.1. In order to solve this problem, the logarithm is applied
to the upper and lower limits of the range of λ. As a result, the range of
λ on the logarithmic scale extends from 2.30259 to −11.51293. We pick 20



CHAPTER 4. METHODS 86

equidistant points log(λ) from this interval such that the whole logarithmic
range is covered. Then the sample points are converted back to the normal
range with exponentiation. We denote this set of suggested λ values as Λ.
The hyperparameter ranges are summarized in Table 4.4. The grid search
produces W × A × Λ hyperparameter combinations to try. The parameter
estimation in the Poisson GLM with elastic net using glmnet is very fast,
and the grid search procedure for hyperparameter selection is not prohibitive.

4.3.4 Deep Neural Networks

In the past, the applied research in time series forecasting traditionally used
neural networks with shallow architectures. With the advent of deep learn-
ing, new NN models with multiple layers and recurrent connections are now
applied to time series forecasting too. In this work we investigate the effec-
tiveness of deep MLP (two hidden layers) and LSTM (two stacked layers)
architectures applied to demand forecasting in grocery retail. The seasonal
features are modelled with Fourier terms. However, we also separately test
the MLP and LSTM models with completely deseasonalized time series. In
the work of Chu and Zhang [15] it was found that the deseasonalization works
better than trigonometric modelling in neural networks. We would like to
verify this claim. Thus, the number of the evaluated neural network models
is 4: MLP and LSTM-based models with Fourier seasonal modelling, as well
as MLP and LSTM-based models with deseasonalized time series.

4.3.4.1 Seasonal Decomposition

As suggested in Section 4.2.4, we preprocess the time series data to create
new seasonality features represented by a set of trigonometric components.
This is the basic mode of MLP and LSTM evaluation. We also create 2
separate models: one additional MLP and LSTM model. They work with
the time series without Fourier features. The seasonality is subtracted from
the log-transformed time series before processing. After the model makes the
predictions, the seasonal component is added on top of them to produce the
final forecast.

The seasonal decomposition (described in Equation 2.14) is done with the
moving averages. If the test fold in cross-validation starts at step s of the
time series {yt}t>0, then the seasonal component is estimated from the time
series part before s. We compute the moving averages with the window size
of 7 days. For each point in the time series from t = 4 to t = s − 4, the
averages ωt = 1

7

∑3
i=−3 yt+i are computed. The offsets are needed since there

are no values beyond t = 0 or t = s− 1, and the full moving average window



CHAPTER 4. METHODS 87

centered on the border cannot be estimated. After the averages ωt have been
computed, they are subtracted from the time series to form a new sequence
y′t = yt−ωt. If 0 < t < 4 and s > t > s− 4, then y′t = yt. To form a seasonal
component C, we compute the averages of the new series y′t for each day of
the week 1 ≤ j ≤ 7 with a skip of length 7:

Cj =
1

b s−1−j
7
c

b(s−1−j)/7c∑
i=0

y′j+7∗i (4.33)

The floor operator is applied to the result of the division to find the
number of full weeks after the first occurrence of day j. The seasonal com-
ponent C is a vector of length 7. The final deseasonalized time series is
produced by subtracting the estimated seasonal component C from the time
series {yt}0<t<s. The deseasonalized time series {ynoseason

t }0<t<s can also be
converted back to the original time series by applying the reverse operation.
The equations are as follows:

ynoseason
t = yt − C(t−1)%7+1 (4.34)

yt = ynoseason
t + C(t−1)%7+1 (4.35)

where % denotes the modulo operation. The MLP and LSTM models that
operate on the deseasonalized time series {ynoseason

t }t∈T do not need the
Fourier features anymore. If the forecasts for the test fold from s to s + 6
are needed, then the NN model is trained on the deseasonalized time series
{ynoseason

t }0<t<s, and the fold predictions ŷnoseason
k , s ≤ k ≤ s+6 are produced.

Then Equation 4.35 is applied to the predictions ŷnoseason
k which gives the fi-

nal demand forecast, which is compared against normal sales values yk in the
cross-validation.

4.3.4.2 Multilayer Perceptron

The basic neural network model for demand forecasting is multilayer per-
ceptron discussed in Section 2.6. MLP is a very popular tool for time series
forecasting implemented in many packages and often mentioned in research.
In order to forecast future sales, we use an MLP with 2 hidden layers as
shown in Figure 4.8. This is a deep learning architecture since it uses 2
hidden layers in comparison to a shallow architecture with 1 hidden layer.

In Figure 4.8, the number of neurons in the first hidden layer is denoted
as a, and the number of neurons in the second hidden layer as b. The ac-
tivation function in both hidden layers is the leaky rectifier as described in
Equation 2.43. The output layer activation function is linear, and requires
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Figure 4.8: MLP architecture for the 7-day demand forecasting task.

the log-transformation of the sales feature as described in Equation 4.5. The
rectifier activation function (2.42) for the output is a more natural choice,
since the demand is always non-negative. However, the rectifier is not used
by default since it causes the dying ReLU problem in some time series, which
is discussed further.

We apply the batch normalization after each hidden layer. The leaky rec-
tifier and the batch normalization applied after it are denoted with the LR
abbreviation for each respective neuron in Figure 4.8. The batch normaliza-
tion is used in our 2-layer MLP architecture because it improves the training
times for the sales time series dramatically. At the same time, ReLUs are
a popular choice for deep neural networks (especially in image recognition
and computer vision) since they allow NNs to achieve the best performance
without unsupervised pretraining [37]. This likely happens due to the ability
of ReLUs to create sparse representations of input data. However, rectifiers
also reduce the model capacity [37].

One common problem of the rectifier activation function is dying Re-
LUs [57]. The neurons with the rectifier activation are considered dead if
at some point during training their linear response a becomes negative for
every possible training batch. The negative linear response means that the
output of the rectifier activation is always zero, and its derivative is zero too.
In turn, zero derivative means that the backpropagation routine will not up-
date the neuronal weights past the ReLU with the negative linear response
anymore. Dying ReLU is a type of the vanishing gradient problem. When a
ReLU dies, it automatically reduces the model capacity: a few dying ReLUs
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can have negligible influence, while many will result in unsatisfactory perfor-
mance. The dying ReLU issue is usually encountered when the learning rate
is too large. In terms of the sales time series examined in this work, the time
series with artifacts depicted in Figure 4.9 cause the dying ReLU situation.
The characteristic property of such a time series is that the number of sales
is usually moderate, but sometimes the outliers occur. These outliers result
in large forecast errors during training, that set the linear response of the
ReLUs negative in backpropagation. The problem can be avoided by using
a much smaller learning rate. However, the training is not efficient in that
case since too many epochs are needed to reach convergence.

Figure 4.9: An example of time series causing the dying ReLU.

In our architecture the dying ReLU problem is solved by using leaky
ReLUs instead of normal ReLUs. Leaky rectifier activation functions allow
to preserve the better convergence property of the rectifier activation func-
tion [79], but do no cause the dying ReLU phenomenon since the gradient is
never zero for the negative neuronal linear response.

Our MLP architecture produces the multistep forecast ŷs - ŷs+6 in one
forward pass through the network. This is achieved by designating 7 neurons
as the output layer of the MLP as shown in Figure 4.8. The input vector of
the MLP consists of 2 parts: the autoregressive part, and the future regressor
part. Since the prediction is obtained for the whole forecast horizon at once,
the input vector should contain the regressors for all 7 future days. The length
of the autoregressive part (window) is determined by the cross-validation
procedure. Suppose that the forecast is made for 7 days forward starting from
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date s. Denote the external regressors for date t as xt. If we use the Fourier
seasonal modelling, the vector xt consists of the following features: campaign
and stockout binary indicators, weather variables, and from 6 to 10 features
corresponding to the available seasonalities as described in Section 4.2.4. If
we use the deseasonalization as described in Section 4.3.4.1, then the number
of features in the regressor vector xt is 4. The MLP is trained and evaluated
for both types of seasonality modelling as two separate models. However,
there is no architectural difference between the two MLPs except for the
input layer size.

Given the test fold at step s and the window size p, the sales values from
ys−p to ys−1 are taken as the autoregressive part of the input vector. Next,
we take the seven vectors of external regressors corresponding to the future
demand forecast, xs to xs+6. They are packed into 1 vector by concatenation.
The resultant vector xs:(s+6) is joined with the vector of the autoregressors
ys−p - ys−1. The parts of the MLP input vector are illustrated in Figure 4.10.
In the picture, the red values indicate that the respective components are not

Figure 4.10: Input vector values parsed out from the time series before the
fold forecast.

used, blue background emphasizes that the component gets concatenated into
the input vector, and the green colour denotes the fold values for which the
forecasts have to be produced.

The training set of the MLP model is composed of the input vectors which
are produced as described above, as well as the labels which are the vectors
of length seven. Given that the window size is p and the test fold starts at
s, the training set will contain s − p − 7 data points. The parameter p is
subtracted since the first training input has to start at t = 1, which means
that the effective start of the first label will be at p+ 1. The forecast horizon
is 7, so the last label vector will start at index s−7. The training data points
are produced for all t, p + 1 ≤ t ≤ s − 7. The procedure can be presented
as a window of size p + 7, which is moved along the training part of the
time series, cutting out the input vectors at each stop, until the test fold is
reached.

The MLP model can easily overfit given sufficiently long training times,
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and the regularization is required. We use the dropout in the second hidden
layer, and the early stopping. We choose the dropout over the L1 or L2 regu-
larization, since all three methods produce comparable results, but it is easier
to find the right regularization strength for the dropout since its hyperparam-
eter ranges from 0 to 1. The use of the cross-validation complicates the use
of early stopping, since it can indicate a different number of epochs for each
fold. In order to solve this problem, we predetermine the maximum number
of epochs in training for all folds during the model selection cross-validation.
Every 50 epochs, we measure the test performance of the MLP in each fold,
and record this value. At the end of the cross-validation, we have the records
of errors across all folds that correspond to a specific number of epochs. We
average the fold errors across all folds for each number of epochs separately,
and select the number of epochs which corresponds to the lowest average
error. This number of epochs is used further on the test set to evaluate the
model. Thus, the number of epochs is treated as a hyperparameter.

The tuned hyperparameters for the multilayer perceptron are the size
of the sliding window (number of autoregressive terms p), the number of
neurons in the first hidden layer, the number of neurons in the second hidden
layer, the slope of the leaky rectifier in the two hidden layers, the dropout
regularization strength in the second hidden layer as well as the number of
epochs in training. The ranges of these hyperparameters are summarized in
Table 4.5.

MLP Hyperparameter Range/Set

Window size (ws) {3, 7, 14, 28}

Neurons, first hidden layer from (ws + 84) to 2× (ws + 84)

Neurons, second hidden layer from b(ws + 84)/2c to (ws + 84)

Slope of the leaky rectifier {0.1, 0.3, 0.5}

Dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

Number of epochs in training {200, 250, 300, 350, 400, 450, 500, 600}

Table 4.5: Two layer MLP hyperparameter ranges used in cross-validation.

4.3.4.3 Long Short-Term Memory

Another model particularly suitable for sequence processing is LSTM. The
traditional LSTM cell as presented in Section 2.6.2 can be thought of as a
neural network with one layer. Even though an RNN like LSTM can be
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unwrapped through time and presented as an infinitely deep neural network
depending on the length of the processed sequence, the purpose of its layers
is to introduce memory, while in conventional deep learning the layers serve
the purpose of processing the inputs hierarchically [44]. In fact, the tradi-
tional LSTM learns through time what bits of input to keep, and which to
discard. The deep learning on the contrary is concerned with hierarchical
input representations learned by the neural network in between layers, which
is not done in one-layer LSTM. Thus, we use a two-layer LSTM design which
satisfies the criteria of a deep learning LSTM architecture [61]. The archi-
tecture is presented in Figure 4.11, where the horizontal direction is aligned
with the time.

Figure 4.11: Two-layer LSTM architecture for sales forecasting.

In Figure 4.11, the first LSTM layer is denoted with the code LSTM 1
(green color), and the second layer with the code LSTM 2 (blue color).
Each layer is a separate LSTM which has been unwrapped through time
as described in Section 2.6.2. The LSTM in each layer has two recurrent
connections: the memory cell, or internal state, and the output. The LSTM
internal state is denoted with the dotted line, while its output is drawn with
a solid black line. From the figure it is clear that the outputs ot (colored
green too) of the first layer are fed into the second LSTM layer. The purpose
of the LSTM in the first layer is to transform the original input sequence
into a higher level sequence of representations which are easier to digest for
the second layer LSTM.

On top of LSTM 2, there is a Dense layer. The Dense layer is a
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single neuron with the linear activation function to transform the output
of the LSTM 2 at the last time step into the right form. As shown in
Figure 2.9, the output of the LSTM has the same dimensionality as the
LSTM cell, and each vector entry has the range from -1 to 1 due to the tanh-
transformation applied to the cell state right before the output. The Dense
layer can reduce the dimensionality of the output as well as change the range
of the LSTM 2 output values. The Dense layer does not serve any other
meaningful purpose, and can be thought of as a part of the LSTM output
channel. The time series sales variable has to be log-transformed before this
model can be applied to it.

The LSTM in the second layer does not produce an output at each time
step. In the case of our deep LSTM architecture, we forecast sales only 1 day
forward for a given sequence. If the forecast is required for the day s, the
output of the neural network in Figure 4.11 is denoted as ŷs. Only the last
output of the second layer is accepted as a forecast. The second LSTM layer
has its training exclusively through the memory cell, and the equations in the
gradient descent procedure do not involve intermediate outputs ŷt|t<s. The
first layer LSTM unit is trained with all input-output pairs in the sequence,
where at each time step the error is backpropagated from both the future
and the upper layer LSTM.

The input of the two-layer LSTM network at time t is the sales value of the
previous time step yt−1 and the vector of regressors xt, which consists of the
two weather variables (wind speed, temperature), as well as campaign and
stockout indicators: 5 basic features altogether. If the seasonality is modelled
using the Fourier series, then 6 to 10 seasonal sine/cosine terms are added to
xt as described in Section 4.2.4. We define the input vector for the LSTM at
time step t as ξt = (yt−1,xt), a concatenation of the sales value yt−1 and the
regressors xt. In order to predict ys, we need to provide a sequence of inputs
for the LSTM-based NN, so that the cells in both LSTM layers can remember
the values ξt|t<s, and produce the forecast ŷs. Therefore, the forecast value
ys is the label, while its features are a two dimensional array, or matrix,
where one of the dimensions is the features ξt, while the other dimension
is the time steps t. The data point for a 2-layered LSTM is demonstrated
in Table 4.6. By using the previous day sales record yt−1 in each input ξt,
the presented LSTM architecture can process external regressors without the
need to bridge it with an MLP construct, or duplicate features.

Even though the training set can theoretically contain a single input ma-
trix which is equal to the whole multivariate time series up to time s, LSTM-
based architectures have severe limitations in terms of the sequence length
due to the speed of backpropagation optimization. A more traditional ap-
proach is to split the time series {yt−1,xt}t<s into subsequences with a sliding
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Feature Matrix Label
ys−p ys−p+1 .. ys−2 ys−1 ysxs−p+1 xs−p+2 .. xs−1 xs

Table 4.6: Two layer LSTM data point: subsequence feature matrix and its
label.

window of length p. Define the size of ξ as d. Suppose that the time series
fold starts at index s. For each time step t ∈ (p+1, s−1), we create a feature
matrix such that yt is taken as a label, and its corresponding feature matrix
with dimension d × p is formed from the stacked (ξt−p+1, ξt−p+2, .., ξt−1, ξt).
The 3-dimensional training set is made from these multivariate subsequences,
and has the dimension of (s−p−1)×d×p, where the first dimension specifies
the number of subsequences made with a sliding window from the whole time
series up to the point s.

The specified procedure can produce a 1-day forward forecasts given that
the previous p sales values y and external regressors x are known. However,
the required forecast horizon is seven days. Suppose that the forecast starts
at time step s, it should end at time s+ 6 inclusive, and the last known sales
value is ys−1. We assume that the future external regressors xs to xs+6 are
known in advance. In order to produce a multistep forecast, we use the same
approach as with the GLM: we substitute the forecast ŷs for ys when we
form the input feature vectors ξs+1:s+6. For the first time step s, the input
vector contains the values ξs−p+1 to ξs, since the last vector ξs is simply a
concatenation of the past sales value ys−1, and a vector of external regressors
xs, which is known in advance. For the step s+1, the input has to contain all
vectors ξs−p+2 to ξs+1. However, in the vector ξs+1, the sales ys is not known
beforehand. Thus, we replace the sales history value ys with its forecast from
the previous step ŷs to form a vector ξ̂s+1, which replaces the vector ξs+1.
We continue in this manner until the full required multistep forecast (7 days
in our experiments) is collected.

The regularization is important for the presented deep LSTM architecture
since this NN tends to overfit for some product-location sales time series
within a small number of epochs. The regularization is done as in the case of
MLP with both the dropout and early stopping. The dropout is applied to
the output of the LSTM 2 cell before the Dense layer. The early stopping
is applied to all folds during the hyperparameter selection CV procedure in
the same way as with the two-layer MLP neural network in Section 4.3.4.2.
Thus, the number of epochs is selected like a hyperparameter. The two-
layer LSTM architecture presented here also has a large number of other
important hyperparameters which have to be tuned in cross-validation: the
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LSTM Hyperparameter Range/Set

Window size (ws) {3, 7, 14, 28}

Neurons, LSTM 1 cell from b1.5× (ws + 13)c to b2.5× (ws + 13)c

Neurons, in the LSTM 2 cell from b(ws + 13)/2c to b1.5× (ws + 13)c

Dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

Number of epochs in training {150, 200, 250, 300, 350, 400}

Table 4.7: Two layer LSTM hyperparameter ranges used in cross-validation.

sliding window size (number of look-back vectors ξt), the size of the LSTM 1
cell, and the size of the LSTM 2 cell. The hyperparameters for this deep
LSTM are conveniently summarized in Table 4.7.

4.3.4.4 Optimization in Neural Networks

Previously we described two heuristics for improving the mini-batch gradi-
ent descent procedures: momentum updates (Equation 2.51) and RMSprop
updates (Equation 2.53). In our MLP and LSTM implementations we use
the MBGD procedure that combines the momentum updates with RMSprop,
called Adam. The Adam equations can be presented as follows [51]:

mt = β1mt−1 + (1− β1)
(
∇θ̂t−1

L(Xm)
)

(4.36)

vt = β2vt−1 + (1− β2)
(
∇θ̂t−1

L(Xm)
)2

(4.37)

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(4.38)

θ̂t = θ̂t−1 − α
m̂t√
v̂t + ε

(4.39)

where the parameters β1, β2 ∈ [0, 1) regulate the first and second moment
updates, α is the learning rate, and ε is a vector of small constants to pre-
vent the division by zero. The gradient of the loss function computed for
the mini-batch Xm is denoted as ∇θ̂t−1

L(Xm). The subscript of the gradient

∇θ̂t−1
means that it is evaluated at the point θ̂t−1. The vectors m0 and v0

are conveniently initialized to zero at the beginning of the Adam optimiza-
tion, which means that initial algorithm updates are biased towards zero.
Equations 4.38 are needed to remove this initialization bias.

The authors suggest that Adam initial optimization parameters should
be chosen as follows: β1 = 0.9, β2 = 0.999, εi = 10−8, and α = 0.001 [51].
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Surprisingly, these initial parameters work very well for the MLP and LSTM
architectures introduced before. The most important property of the algo-
rithm is that due to the moment updates vt and mt, the speed of the gradi-
ent descent procedure can increase or decrease even though the learning rate
stays the same, which allows to explore the loss function surface with greater
precision under fewer restrictions. Due to the first and second moment nor-
malization, the Adam optimization procedure is very robust against the noise
and dramatic gradient direction changes introduced by the mini-batches [51].
Since the sales data is very noisy, and the mini-batches are supposed to be
very diverse, Adam is the method of choice for the optimization in the MLP
and LSTM models presented above. In the literature and in the neural net-
work applications, Adam is considered to be an algorithm of choice for many
problems. However, the most recent research suggests that Adam might be
inferior to SGD with some state-of-the-art deep learning models in its gener-
alization capability [77]. Based on the preliminary investigation for our sales
dataset, the Adam optimization routine outperforms SGD, steepest gradi-
ent descent and RMSprop in demand forecasting due to its faster speed of
convergence, while demonstrating comparable out-of-sample performance.

In order to train both the MLP and LSTM-based models, we use the
mean squared loss function defined in Equation 2.1. For a specific batch of
size M , label y, and NN output ŷ, the mean squared error can be written as

L(y1:M , ŷ1:M) =
1

M

M∑
i=1

(yi − ŷi)2 (4.40)

We train the two-layer MLP and the two-layer LSTM models with the batches
of size 64. All the neural network weights in both architectures are initialized
with the help of Glorot uniform sampling, also known as Xavier uniform
initialization. This initialization strategy is particularly useful in deep neural
networks, since it preserves the gradient variances for initial layers, where the
gradients usually diminish due to the backpropagation [36]. In this scheme,
the weights of the neurons in layer i are drawn from the uniform distribution

Uniform
(
−

√
6√

ni−1 + ni
,

√
6√

ni−1 + ni

)
(4.41)

where ni is the number of neurons in the layer i. For the LSTM 1 cell,
the number ni−1 is equal to the input ξt size, while for the LSTM 2 cell,
it equals the size of the LSTM 1’s internal state. The number of neurons
ni in both LSTM layers is equal to the size of their respective memory cells.
All biases are initialized with zeros.
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4.3.4.5 Hyperparameter Tuning

As mentioned in the previous sections, both the deep MLP and deep LSTM
have a large number of hyperparameters to tune. The hyperparameters of
these models significantly influence their generalization capability in demand
forecasting. The most important MLP hyperparameters are presented in
Table 4.5. The hyperparameters of the two-layer LSTM model are presented
in Table 4.7.

In order to select the hyperparameters, we use the time series cross-
validation as discussed in Section 4.2.1. However, the training in neural
networks is very slow, and the time series is split into a smaller number of
folds during model selection in comparison to the Poisson GLM and dynamic
harmonic regression. As described earlier, the validation portion of the time
series contains 53 weeks overall. For the deep MLP, each fold in the hy-
perparameter cross-validation contains 7 weeks which corresponds to 8 folds
overall. In the deep LSTM hyperparameter cross-validation each fold con-
tains 11 weeks, which amounts to 5 folds. The model evaluation CV which
is run on the test part of the time series remains the same for the neural
network models as for the Poisson GLM and dynamic harmonic regression:
all the 53 folds are of weekly length.

The number of folds influences the model evaluation and hyperparameter
selection. As described above, the neuronal weights in both architectures are
initialized using Glorot uniform sampling. Depending on the initialization,
the neural network model can produce different results, which can influence
the model selection. An obvious solution would be to always start training
from the same initial values. However, this approach is discouraged in prac-
tice, since when choosing an arbitrary initialization for the neural network,
there is no guarantee that it is not a bad starting point. Therefore, evaluating
the neural network with multiple parallel weight initializations, and finding
the average of these is the golden standard [7]. However, we do not have the
computational resources in NN demand forecasting to perform the model
training for multiple random seeds. Instead, we initialize new weights with
Glorot sampling for each fold. Thus, the bagging of models with random
initial weights takes place across folds.

Another problem in neural networks is how the hyperparameter candi-
dates are chosen. Traditional approaches to this problem include the grid
search, random search, and coordinate descent [7]. We use the grid search
procedure for both the dynamic harmonic regression and Poisson GLM. How-
ever, this procedure is too slow to use in our MLP and LSTM architectures,
since the number of suggested combinations is too large. In the MLP model,
the grid search suggests around 3.25 millions of hyperparameter sets. As for



CHAPTER 4. METHODS 98

the LSTM, the number of suggested hyperparameter combinations is around
128 thousands for both types of seasonal modelling. This number of combi-
nations is impossible to test within the cross-validation framework. Another
problem of the grid search is that it splits the hyperparameter space into
multiple factors, where each factor can be viewed as an axis of the grid. The
number of suggested hyperparameter combinations is solely determined by
the grid granularity, and specified only through the grid axes. For example,
if the required number of the hyperparameter suggestions is a prime number,
then the grid search has to be replaced with another procedure. In order to
solve these problems, we introduce a procedure that combines the grid search
and a low-discrepancy sequence called the Halton sequence.

To explain the concept of low-discrepancy sequences we first introduce
the concept of star discrepancy presented by Niederreiter [60]. Given an
s-dimensional half-open cube Is = [0, 1)s, s ≥ 1, a sequence of N points
x1, x2, .., xN , where xi ∈ Is, and a subinterval J of the cube Is, we can define
the discrepancy D as follows:

D = sup
J
|A(J ;N)

N
− V (J)| (4.42)

where A(J ;N) denotes the number of points xi in the subinterval J , V (J) is
the volume of J , and the supremum is extended over all half-open subintervals
J =

∏s
j=1[0, uj] of Is. The goal of the low-discrepancy sequence is to minimize

the star-discrepancy [19]. In simpler terms, the sequence can be considered
low-discrepancy, if the proportion of sequence points falling within any region
of some space S is roughly equal to the ratio of this region volume to the
whole S-space volume. An interesting property of such sequences following
from the discrepancy definition is that these sequences seem to be random due
to their distribution in space, even though they are completely deterministic.
The Halton sequence is one example of a low-discrepancy sequence.

Suppose that we need to generate a sequence of n quasi-random m-
dimensional points. We represent each of the m dimensions with a sepa-
rate prime number. Given a prime number b for one of the dimensions, we
can find one-dimensional Halton sequence numbers hi, 1 ≤ i ≤ N . In order
to do this, we express the index i of the number hi in terms of the prime
number b as its base. For example, given b = 3, we convert each index into
the ternary numerical system where 1 = 13, 2 = 23, 3 = 103, 4 = 113, while
for the prime number 7, the index i = 10 would be 10 = 137. Next we
write the prime-base index representations in reverse order, and put them
after the decimal point in the prime-base. For a ternary sequence, it would
become 1 → 0.13, 2 → 0.23, 3 → 0.013, 4 → 0.113, etc., and for the base 7,
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the decimal index i = 10 → 0.317. After all the indices i have been con-
verted into their respective prime-base, and inverted as described above, we
rewrite them back in the decimal format, where each index i, converted back
to the decimal form, will be the number hi of the Halton low-discrepancy se-
quence [19]. Each prime number b has its own Halton sequence. To produce
a multidimensional Halton sequence, we simply combine Halton sequences
from the different prime numbers.

The main benefit of the Halton sequence is that any number of points
can be generated from it, and they will cover the search space evenly. The
produced numbers will be in the range from 0 to 1. In the case the hyperpa-
rameters have a different range, we simply multiply the number in the Halton
sequence by the hyperparameter range and add it to the lowest hyperparam-
eter bound. For example, given a hyperparameter i range from ai to bi, and
a Halton number hi ∈ [0, 1), we transform hi as follows:

h′i = a+ (b− a)× hi (4.43)

With m hyperparameters, we produce an m-dimensional Halton sequence
as described above, and convert each Halton number hi into its respective
hyperparameter range with Equation 4.43. If the hyperparameter is an in-
teger, the generated Halton number is first converted with (4.43), and then
rounded to the closest integer with the floor operator.

A feasible alternative to the Halton sequences is the random search. The
random search is capable of exploring the hyperparameter space efficiently,
often giving better solutions than the manual or grid-search strategies [10].
However, the random search can produce the hyperparameter sets which are
clamped to each other as demonstrated in Figure 4.12. The areas outlined
in red demonstrate the clamping phenomenon. It is easy to notice, that the
Halton sequence of points is much more evenly distributed than that of the
random search. If the number of sampled points from the hyperparameter
space is very large, then the random search can give comparable or better
results than the Halton sequence, since the latter is still a determinate search
on a nonlinear grid. However, if the number of sampled hyperparameter sets
is small, the random search does not explore the hyperparameter space as
well as low-discrepancy sequences do.

For each MLP and each LSTM model separately, the hyperparameter
search is conducted using 3 loops: outer, middle, and inner loop. In the
outer loop, we try all window sizes one by one. For each window size, an m-
dimensional (m equals the number of hyperparameters for the model without
the window size and epochs) Halton sequence is generated, which determines
the middle loop. 30 points of the Halton sequence are sampled for the both
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Figure 4.12: The Halton sequence points compared to the points produced
by the random search in the hyperparameter space.

MLP models, and 20 Halton sequence points are sampled for the both deep
LSTMs. We sample more points for the MLP, since it has more hyperpa-
rameters to tune. For each point in the Halton sequence, we run the model
cross-validation. The early stopping technique, which iterates through the
epochs in each fold in cross-validation as described before, can be viewed as
the inner loop.



Chapter 5

Implementation

In order to select and evaluate fast-moving product demand forecasting mod-
els, we use a grid of 4 processors, which amounts to 176 threads. We evaluate
each model class (baseline naive method, dynamic harmonic regression, Pois-
son GLM with elastic net, two-layer MLP and two-layer LSTM with Fourier
seasonality modelling, two-layer MLP and two-layer LSTM with deseasonal-
ized sales time series) independently in succession. All product-location time
series are evaluated in parallel in their own threads.

The computation code is written in R. In order to create the Fourier
seasonality terms, we use the TSA (periodogram) and forecast (sine/cosine
term creation) R packages. The weekly seasonality is removed with the
function decompose from the stats package in R. The dynamic harmonic
regression models are fit using the arima function in the stats package. For
the Poisson GLM with elastic net, we use the glmnet-package in R. The
deep learning NN models are created and trained within the Keras library
interface in R with the Tensorflow backend. Halton sequences are produced
with the help of randtoolbox package.

The overview of the model comparison procedure for demand forecasting
is given in Figure 5.1. The sales data is read and preprocessed during the
initialization. At this stage, all the hyperparameter ranges are initialized
(Section 4.3.2.3 for dynamic harmonic regression, Table 4.4 for the elastic net
Poisson GLM, Table 4.5 for the two types of the two-layer MLP, Table 4.7
for the two types of the two-layer LSTM). Next, the initialization procedure
creates 100 threads: one for each sales time series. Given a model class,
everything related to a particular product-location demand forecasting is
done in 1 thread.

The model selection stage involves trying various hyperparameters gen-
erated with the grid search or Halton sequences, and selecting the 4 best
models for each product-location time series based on MAE, RMSE, MAPE,
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Figure 5.1: Demand forecasting model comparison procedure.

and MdAPE. This stage is performed with the CV on the validation part of
the time series. The seasonal naive method does not have any hyperparame-
ters to tune. The model selection procedure can be conveniently summarized
with the following steps:

1. Preprocess the data for all time steps

Before the model can be selected, we add the stockout variables as
described in Section 4.2.5 to each date, and scale the weather regressors
as explained in Section 4.2.3.

2. Generate a sequence of hyperparameter vectors

At this stage, the hyperparameter space Ξ (defined in Section 2.2.2) is
created with the grid search (Section 4.3.2.3 for dynamic harmonic re-
gression, Section 4.3.3.2 for Poisson GLM) and Halton sequences (only
for MLP- and LSTM-based models, as described in Section 4.3.4.5).

3. Produce cross-validation folds for model selection

For each product-location, split the sales time series validation part
into 53 cross-validation folds as described in Section 4.2.1. A list of 53
consecutive fold start indices begins 106 weeks before the end of the
times series. These indices are exactly one week apart from each other.

4. Preprocess the fold data

Given a fold start index, model-specific time series preprocessing is
done. Log-transformation (Equation 4.5) is done for all models except
the Poisson GLM. For the Poisson GLM with elastic net we convert
the floating-point sales quantities into integers with Equation 4.6.
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5. Model seasonality

Create the seasonal Fourier features as described in Section 4.2.4, or
remove the seasonality altogether as described in Section 4.3.4.1.

6. Train the model

A specific model is created from a set of hyperparameters ξi ∈ Ξ sup-
plied to a model class, and trained for each test fold. The trained model
produces a 7-day forecast for the folds. Each forecast is converted back
to the original scale by undoing transformations done in step 4.

7. Evaluate the error metrics

Given the forecasts from the step 4, evaluate the error metrics MAE,
RMSE, MAPE, and MdAPE for all 53 weeks of the time series valida-
tion part as described in Section 4.2.2.1. Skip all the days with zero
sales as mentioned in Section 4.2.5. For each error metric, check if it is
smaller than the same metric evaluated so far for other sets of hyper-
parameters ξj ∈ Ξ, j < i. If it is, save the new set of hyperparameters
ξi as the best one so far.

8. Select the next set of hyperparameters

Select the next set of hyperparameters ξi+1 from the list Ξ until all
hyperparameter vectors have been tried. Go back to step 3.

9. Output the best set of hyperparameters

After all the options in the hyperparameter space Ξ have been ex-
hausted, the best hyperparameter sets for the 4 error metrics determine
the 4 best models, one for each error metric. The best models for MAE,
RMSE, MAPE, and MdAPE are passed to the model evaluation stage.

The model evaluation stage has the same steps as presented above, ex-
cept that the steps 2 and 8 are skipped. The hyperparameter space is
not created at the model evaluation stage: the best set of hyperparame-
ters passed from the model selection stage is used for the single round of
cross-validation. In step 3, the folds are created over the last 53 weeks of
each product-location time series, unlike the penultimate year in the model
selection cross-validation. In the error evaluation step 7, the best vector of
hyperparameters is not tracked. The output step 9 of the model evaluation
stage produces the 4 error metrics that are finally written to a file for further
analysis.



Chapter 6

Experimental Results

The performance of the best models from 7 model classes (dynamic harmonic
regression, Poisson GLM with elastic net, two-layer MLP or LSTM with
Fourier seasonality modelling or deseasonalization, seasonal naive method)
in demand forecasting of 100 fast-moving product-locations is measured with
the MAE, RMSE, MAPE, and MdAPE metrics. We further refer to a model
class as simply model. For each error metric, we summarize the model
performance in terms of its rank. Each model has a rank from 1 to 7 for a
particular product-location in relation to the other models according to each
forecast error metric in the cross-validation. The rank 1 corresponds to the
smallest error among all models, while the rank 7 means that the model has
the largest error for a given product-location. The final rank of a model for a
particular error metric is the average of its ranks across all product-locations.
We conveniently summarize these results in Table 6.1

MAE RMSE MAPE MdAPE

DHR 1.39 1.91 1.66 2.16

GLM 3.92 2.57 5.83 3.94

MLP-F 3.91 3.72 3.66 3.92

MLP-D 3.65 3.92 2.88 3.74

LSTM-F 4.65 4.85 4.21 3.93

LSTM-D 3.52 4.13 3.25 3.35

Baseline 6.96 6.9 6.51 6.96

Table 6.1: Model ranks across 100 product-locations for each error metric.
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In Table 6.1, DHR stands for dynamic harmonic regression, GLM refers
to the Poisson GLM with elastic net, and baseline means the naive sea-
sonal forecasting model. The 2-layer MLP and LSTM models that operate
on the time series with Fourier seasonality terms have an F-suffix in their
name, or MLP-F and LSTM-F respectively. The same models operating
on deseasonalized time series have the suffix D, and are called respectively
MLP-D and LSTM-D. This naming policy is used further.

In Table 6.1, the dynamic harmonic regression shows the best re-
sults in terms of all 4 error metrics, while the baseline model is consis-
tently the worst one in all metrics which was expected. GLM performs very
well with respect to RMSE, but is considerably worse than other models
for MAE, MAPE and MdAPE. MAPE and MdAPE of each model for all
product-locations are presented separately in Figure 6.1 (MAPE) and Fig-
ure 6.2 (MdAPE).

Figure 6.1: MAPE boxplot for each type of model.

The boxplots follow the definition by Tukey [31], where the box spans
from the 1st quartile (Q1) to the 3rd quartile (Q3). The interquartile range
(IQR) is specified as IQR = Q3 − Q1. The upper whisker extends from Q3

to min(Q3 + 1.5∗ IQR, obsmax), and the lower whisker ranges from max(Q1−
1.5∗IQR, obsmin) to Q1. The points marked with asterisks outside of whiskers
represent outliers. In the MAPE boxplot, GLM has a very large outlier at
1068%. For convenience, it is labelled in red, and moved to the y coordinate
which corresponds to the MAPE of 190%. The mean MAPE and MdAPE of
each model are marked with the red dots inside the boxes.
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Figure 6.2: MdAPE boxplot for each type of model.

The boxplots indicate that DHR seems to perform better than the al-
ternatives. The baseline forecasting method is clearly the worst. Neural
network models have very close results, and it is not at once clear which
one is the best. GLM performs the second worst: its 3rd quartile is higher
than those of neural networks for MdAPE, while for MAPE, its 1st and 3rd
quartiles as well as the median are worse than other models’ respective sum-
maries except for baseline. Moreover, GLM has the largest outliers out of
all models.

The full sample of ranks corresponding to all product-locations for all
models and error metrics is presented with a bar chart in Figure 6.3. Fig-
ure 6.3 is divided into 4 horizontal blocks, where each block represents one
error type. Each block has the model categories on the left. For each error
metric, a model always has 100 ranks which correspond to 100 product-
location sales histories. The ranks of each model are encoded with the color
scheme, which allows to easily deduce from the graph how well the model per-
forms across all product-locations with respect to some metric in comparison
to other models.

From Graph 6.3, we can notice that the baseline model is consistently
the worst one across all error metrics: it rarely scores better than the last
place. On the other hand, DHR is consistently getting the best ranks across
all error metrics. It is the only model that never gets beaten by the naive
seasonal forecasting method. GLM model performs well only in RMSE, and
is better than only LSTM-F in MAE and MdAPE. GLM MAPE is the
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Figure 6.3: Full rank distributions for each type of model and error.
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worst after the baseline model. The latter has better MAPE than GLM
in 25% of product-location demand forecasts. Surprisingly, the baseline
method manages to achieve the second rank in MAPE in a few time se-
ries. The deseasonalized NN models perform relatively better than their
Fourier seasonality counterparts. In MAE and RMSE, MLP-D, LSTM-D,
and MLP-F seem to perform equally well. However, deseasonalized mod-
els seem to have better ranks than Fourier seasonal models in MAPE and
MdAPE. In MAPE, MLP-D seems to outperform LSTM-D a little, while
in MdAPE, LSTM-D oftener has better ranks than MLP-D. LSTM-F
has considerably worse ranks than LSTM-D and MLP models in all error
metrics except for MdAPE, where it is comparable to MLP-D.

We further investigate the effects of Fourier seasonality modelling against
seasonal decomposition in neural networks. In Figure 6.4, we plot the number
of product-locations where a particular rank from 1 to 7 for each error metric
was achieved either with Fourier seasonal modelling or deseasonalization in
MLP. A similar bar chart is produced for LSTM in Figure 6.5.

Figure 6.4: MLP rank results for each type of seasonality modelling and error
metric.

Seasonal decomposition in neural networks shows generally better results
than Fourier seasonality modelling in all error metrics as evidenced by the
taller red bars for smaller ranks of the bar charts. In order to summarize this
observation more thoroughly, we perform a sign hypothesis test [22] on the
rank results for each NN model as described in Section 4.2.2.2. We compare
the model MLP-D against MLP-F, and LSTM-D against LSTM-F. For
each error metric, we use the paired sign test, since the ranks (rD

i , r
F
i ) of

the two models D and F are dependent for a product-location i, but inde-
pendent from the pair (rD

j , r
F
j ), i 6= j, where D-F means MLP/LSTM-D
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Figure 6.5: LSTM rank results for each type of seasonality modelling and
error metric.

against MLP/LSTM-F respectively. The null hypothesis is that for a given
product-location, the tested error metric is as likely to be lower for the de-
seasonlized version of the model, as for the Fourier-version of the model.
Given our observation of graphs (6.4) and (6.5), we have a strong suspicion
that the deseasonlized NN models are better than their Fourier-term counter-
parts. Thus, the alternative hypothesis is that the NN models working with
deseasonalized time series consistently have lower ranks. Due to this prior
assumption, we select the right-tailed version of the test, with a significance
level of 5%. For any product-location i, we restate the paired sign test for
the model ranks as follows:

H0 : θM = PM(rD
i < rF

i ) = 0.5 (6.1)

H1 : θM > 0.5 (6.2)

where θM is the probability that the model D is better than the model F for
the error metric M , or alternatively the model D has a higher probability of
achieving a lower rank than the model F. We run the paired sign test for all
error metrics. The main assumptions are stated in Section 4.2.2.2. The rank
paired sign test is the only option to compare MAE and RMSE errors since
they are scale dependent, which means the differences are not sampled from
the same continuous distribution. Other tests can be used for MAPE and
MdAPE. Nevertheless, the use of the t-tests and median comparison with
Wilcoxon rank tests with MAPE and MdAPE is precluded by the significant
asymmetry of the observed errors, and their paired differences. The p-values
for the sign test of MLP-D against MLP-F, and LSTM-D against LSTM-
F for all error metrics are presented in Table 6.2. In the table, we present the
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alternative hypothesis that the first model is better than the second model
(θM > 0.5) with the < - sign.

Sign test p-values

MAE RMSE MAPE MdAPE

MLP-D <MLP-F 0.30865 0.86437 0.00009 0.18410

LSTM-D <LSTM-F 0.000006 0.0009 0.00002 0.01760

MLP-F <MLP-D 0.75794 0.18410 0.99996 0.86437

Table 6.2: Comparison of Fourier seasonal modelling against deseasonaliza-
tion: sign test p-values for MLP and LSTM.

From the review of Table 6.2, we assume that the model LSTM-D per-
forms consistently better than LSTM-F for all error metrics. For MLP, the
situation is not as clear: only the null-hypothesis for the MAPE error metric
is rejected. For MAE, RMSE and MdAPE we keep the null-hypothesis that
MLP-F is not inferior to MLP-D. Next, we reverse the comparison, and
test if the model MLP-F is better than the model MLP-D for MAE, RMSE
and MdAPE. According to the p-values, we do not reject the null-hypothesis
either. From these tests and Figure 6.4 we know that for MAPE MLP-D
is better, while in the other metrics it is non-inferior to MLP-F. Therefore,
a conclusion is made that MLP-D is at least as good as MLP-F. As for
LSTM-D, it is strictly superior to its Fourier seasonality counterpart.

We use the fact that MAPE and MdAPE errors are scale-free to find
the mean of the model pair differences of these errors for each product-
location. The model pairs are (MLP-D, MLP-F) and (LSTM-D, LSTM-
F). Suppose that the model A produces an error eAi , while the model B
produces an error eBi for the time series i. We define a difference sample
to be the set of differences SA−B = {eAi − eBi |1 ≤ i ≤ 100}. The mean
of the differences, or the difference mean A − B can be computed on
the difference sample SA−B. Then the bootstrap is used to construct the
confidence bounds for the difference mean as described in Section 2.3.2. The
results are presented in Table 6.3. In the table, both 95% confidence intervals
for the difference means are produced with 1000 bootstrap samples from the
respective difference samples. The minus sign in the row labels specifies the
order of subtraction of the paired error observations. Bootstrap assumes that
the difference sample observations are i.i.d. This assumption is true, since
MAPE and MdAPE metrics are scale-free, and model performance on one
time series does not affect its performance on the other time series.
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MAPE MdAPE

µ̂ µ̂2.5% µ̂97.5% µ̂ µ̂2.5% µ̂97.5%

MLP-D – MLP-F -1.19 -1.91 -0.38 -0.15 -0.50 0.18

LSTM-D – LSTM-F -2.22 -3.31 -1.03 -0.77 -1.17 -0.37

Table 6.3: Bootstrap confidence bounds on the mean of the difference of
deseasonalization against Fourier seasonal modelling in MLP and LSTM.

From Table 6.3, we conclude that MLP-D is on the average better than
MLP-F by 1.19% in MAPE. The MdAPE difference mean of MLP-D
against MLP-F has the lower confidence bound of -0.5% and the upper
confidence bound if 0.18%, which confirms the results of the sign test, which
hints that the models are equally good in this metric. The LSTM-D model
is better than LSTM-F model by 2.22% in MAPE, and by 0.77% in MdAPE.
These results suggest that NN models that work with deseasonalized product-
location sales time series are generally better, or at least non-inferior to the
Fourier seasonal models in the case of MLP. Based on these results, we re-
strict our attention to LSTM-D and MLP-D in further discussion.

Sign test p-values

MAE RMSE MAPE MdAPE

DHR <GLM 10−12 0.006 8× 10−29 10−5

DHR <MLP-D 3× 10−24 6× 10−12 8× 10−9 2× 10−9

DHR <LSTM-D 2× 10−17 1× 10−16 1× 10−12 4× 10−5

GLM <MLP-D 0.933 9× 10−8 1 0.903

GLM <LSTM-D 0.903 2× 10−6 1 0.956

MLP-D <GLM 0.097 0.999 10−21 0.136

LSTM-D <GLM 0.136 0.999 10−20 0.067

Table 6.4: Sign test p-values for DHR, GLM, MLP-D, and LSTM-D in pair-
wise comparisons for all error metrics.

We run pairwise one-sided paired sign tests on the error metric ranks of 4
models: DHR, GLM, MLP-D, and LSTM-D. The results of these paired
sign tests are presented in Table 6.4. The DHR ranks are compared to the
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ranks of all other models first, since we have a suspicion from Figure 6.3
and boxplots (6.1) and (6.2), that DHR is superior to all other models for
fast-moving product demand forecasting. GLM is compared to the neural
network models, where the alternative hypothesis is that the deseasonlized
NN models are better than GLM. Finally, we compare MLP-D and LSTM-
D in both ways (MLP-D < LSTM-D, and LSTM-D < MLP-D).

The sign test significance level is 5%. In Table 6.4 the pairwise com-
parisons of MLP-D and LSTM-D have been omitted, since none of them
reject the null hypothesis for any of the error metrics. From the sign test
p-values, we can see that DHR is clearly superior to all 3 alternatives in all
error metrics, since the null-hypothesis has been rejected at 5% level for all
related tests. This result was expected due to the prior investigation of the
boxplots and Figure 6.3. As for GLM, this model was clearly superior to
neural network models in RMSE. The p-value computed for the test statistic
was less than 10−6 for the both comparison tests. However, both MLP-D
and LSTM-D are better than GLM in MAPE with a very small p-value.

Next we compute the difference means in MAPE and MdAPE for different
model pairs, and find the confidence intervals for them, as was done before
in the comparison of seasonality modelling strategies. The results of these
calculations are presented in Table 6.5.

MAPE MdAPE

µ̂ µ̂2.5% µ̂97.5% µ̂ µ̂2.5% µ̂97.5%

DHR – GLM -22.13 -43.41 -10.91 -2.53 -3.38 -1.80

DHR – MLP-D -3.87 -4.83 -2.85 -1.51 -1.90 -1.16

DHR – LSTM-D -4.97 -6.32 -3.88 -1.27 -1.77 -0.80

LSTM-D – GLM -17.15 -37.76 -6.11 -1.26 -1.97 -0.58

LSTM-D – MLP-D 1.10 -0.04 2.33 -0.24 -0.62 0.13

MLP-D – GLM -18.25 -39.29 -7.10 -1.02 -1.71 -0.30

Table 6.5: Bootstrap confidence bounds on the mean of the difference of
DHR, GLM, LSTM-D, and MLP-D compared pairwise.

In the table we clearly see that DHR model outperforms all other models
by a large margin. In MAPE, DHR is better than NN models by more
than 3.87%, and better than GLM by 22%. In MdAPE, DHR consistently
outperforms its competitors by more than 1.27% on the average. All DHR
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difference means have 95% upper confidence bounds less than zero. It implies
that its prediction errors in MAPE and MdAPE are highly likely to be lower
than the same errors of competing models. Both LSTM-D and MLP-D
outperform GLM by at least 17% in MAPE, and 1% in MdAPE on the
average. The examination of error means of LSTM-D and MLP-D does
not reveal the superiority of any model. Given the confidence bounds, we
hypothesize that MLP-D can be 1% better than LSTM-D in MAPE metric,
while we cannot make any decisive conclusion about the model performance
between LSTM-D and MLP-D in MdAPE due to the difference mean being
too close to zero. These and prior results suggest that DHR is a superior
model for demand forecasting in fast-moving products.

Next, we limit our attention to product-location sales histories with large
outliers. Since almost all product-locations have outliers, we find the sales
time series with the largest proportion of them. First, we subtract the weekly
seasonality from all the time series using the moving averages method intro-
duced before, with the window size of 7. We define the outliers using the
interquartile range IQR. A deseasonalized sales observation can be consid-
ered an outlier, if it satisfies the condition:

yout > Q3 + 3× IQR (6.3)

where Q3 is the 3rd quartile. This definition is different from the one used in
boxplots! We define the outliers only on one side, since the sales are always
positive. Next we select the 25 sales histories which have the most points
that satisfy Equation 6.3. We investigate how the models DHR, GLM,
MLP-D, and LSTM-D compare in these unpredictably fluctuating time
series. We depict the ranks of these models in highly fluctuating time series
relative to each other. These results are presented in Figure 6.6.

From Figure 6.6, it is clear that DHR is even better for sales time series
with large frequent outliers. It achieves the first rank in more than 75% of
tested product-locations (from 25 overall), and the second rank for the rest.
It also has the best ranks for MAPE and MdAPE. For RMSE, GLM shows
the same performance as DHR. GLM shows the worst performance out of 4
models in MAE, MAPE, and MdAPE. MLP-D is considerably better rank-
wise than LSTM-D in MAPE, while both models show similar performance
in terms of MdAPE. LSTM-D is the worst model in RMSE, and second
worst in MAE. Given these ranks, we conclude that for fast-moving product-
locations with many outliers, DHR is the best type of model. It is followed
by MLP-D in terms of performance, since this NN model does well in MAE,
MAPE, and MdAPE, while RMSE, where MLP-D is the third, is not as
important as the other metrics.
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Figure 6.6: Rank distributions of DHR, GLM, MLP-D, and LSTM-D in
highly fluctuating time series for each type of error metric.
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Next we perform bootstrap sampling to estimate the mean error differ-
ence of every pair of the 4 models in terms of MAPE and MdAPE. The boot-
strapping is done as before: 1000 samples, and 95% confidence interval on the
mean of differences using the percentile method. The results are presented
in Table 6.6. From the table, it is evident that DHR is better than other
models in terms of MAPE by at least 3.5%, and 1.6% in terms of MdAPE.
The confidence interval for the mean of differences is always negative which
indicates a high certainty about the superior performance of DHR in sales
time series with large fluctuations. MLP-D is clearly better than LSTM-D
in terms of MAPE, outperforming it by 4.5%. Both neural network models
are equal in terms of their MdAPE metric results in highly fluctuating time
series. NN models outperform GLM by at least 9% in MAPE, and 3% in
MdAPE for this subset of sales histories.

MAPE MdAPE

µ̂ µ̂2.5% µ̂97.5% µ̂ µ̂2.5% µ̂97.5%

DHR – GLM -17.96 -22.21 -14.51 -4.67 -6.56 -2.87

DHR – MLP-D -3.56 -5.16 -2.01 -1.68 -2.42 -0.88

DHR – LSTM-D -8.16 -11.49 -5.61 -1.60 -2.45 -0.70

LSTM-D – GLM -9.80 -14.73 -3.96 -3.07 -4.96 -1.32

LSTM-D – MLP-D 4.59 1.51 8.37 -0.08 -0.97 0.83

MLP-D – GLM -14.39 -17.29 -11.40 -2.99 -4.84 -1.52

Table 6.6: Bootstrap confidence bounds on the mean of the difference of
DHR, GLM, LSTM-D, and MLP-D errors compared pairwise in product-
locations with high fluctuation.

Next, we examine only the product-location sales time series with the
most stable demand. The seasonalities of the sales history are removed with
the moving averages as before. We find a deseasonalized sales value yobs
stable, if it satisfies the following inequality

yobs < Q3 + 3× IQR (6.4)

where IQR is the interquartile range, and Q3 is the third quartile. We se-
lect 25 product-locations with the highest number of sales observations that
adhere to Equation 6.4. We compare the ranks of DHR, GLM, MLP-D,
and LSTM-D on this subset of product-location sales histories. The model
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Figure 6.7: Rank distributions of DHR, GLM, MLP-D, and LSTM-D in the
25 most stable time series for each type of error metric.
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ranks are presented in Figure 6.7. From the figure, we can notice that DHR
is better than other models in terms of MAE, and MAPE. However, GLM is
at least as good as DHR in terms RMSE, and might be better that DHR in
terms of MdAPE. GLM is the worst model in terms of MAPE. Interestingly,
LSTM-D is better than MLP-D for MAE, MAPE and MdAPE. Both neu-
ral network models perform almost the same rank-wise in RMSE. We perform
1000 bootstrap samples for all pairs of models to find how much the model
performance differs in terms of MAPE and MdAPE error difference means.
The results are presented in Table 6.7.

MAPE MdAPE

µ̂ µ̂2.5% µ̂97.5% µ̂ µ̂2.5% µ̂97.5%

DHR – GLM -8.44 -11.36 -5.58 -0.51044 -1.38 0.23

DHR – MLP-D -2.98 -5.73 -0.59 -1.17 -1.83 -0.48

DHR – LSTM-D -2.61 -4.95 -0.30 -0.26 -0.93 0.40

LSTM-D – GLM -5.83 -7.29 -4.39 -0.24 -1.20 0.64

LSTM-D – MLP-D -0.37 -1.33 0.67 -0.90 -1.51 -0.28

MLP-D – GLM -5.45 -7.04 -4.01 0.66 -0.28 1.66

Table 6.7: Bootstrap confidence bounds on the difference mean of DHR,
GLM, LSTM-D, and MLP-D errors compared pairwise in stable demand
product-locations.

From Table 6.7 we notice that DHR is still vastly superior to other
models in terms of MAPE. However, for stable-demand sales time series,
its MdAPE is similar to that of GLM and LSTM-D. Both NN models
outperform GLM in terms of MAPE, but are not superior to it in MdAPE.
Surprisingly, GLM is the second best model in MdAPE for stable demand
after DHR. In stable demand time series, LSTM-D is superior to MLP-D
in MdAPE by 0.9%, and has the same performance in MAPE.
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Discussion

The results demonstrated in Chapter 6 showed that some advanced statisti-
cal methods such as dynamic harmonic regression are non-inferior to neural
network models, such as MLP and LSTM with multiple layers, for multi-step
demand forecasting of fast-moving products on a daily level. NN models are
often selected as a default model to forecast complex data, like time series,
due to their capacity to approximate and forecast any possible pattern given
a sufficient number of neurons. However, this fact does not specify how the
training should proceed in order to learn the desired signal. Neural networks
are complex models, that require careful tuning to perform well, and even
with a good procedure to select necessary hyperparameters, there are no
guarantees that the best underlying hypothesis will be learned.

Our results with respect to NNs and dynamic harmonic regression are in
line with the results presented by Arunraj and Ahrens [6], who used SARI-
MAX and SARIMA-QR to forecast a single fast-moving product demand
and compared it to MLP. The authors reported that the linear time series
models with external regressors show better results in MAPE, while NNs are
better in RMSE. Our experimental results show that indeed DHR is a little
worse in RMSE relative to its own performance in other error metrics, where
it does equally well with GLM. In highly stable time series, DHR also has
much closer results in MdAPE with neural network models. At the same
time, our results directly contradict the results presented by Alon [4], who
stated that ANNs outperform linear models for any horizon. However, their
work used monthly forecasts which have much less noise, and the authors did
not explore more advanced linear models like dynamic harmonic regression.

In the experiments, we established that neural networks usually perform
better in terms of deseasonlized time series, instead of seasonalities encoded
by the Fourier terms. This is confirmed in LSTM-based models, while for
MLP-based models, it is not as clear. However, MLP-D is clearly better
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than MLP-F in MAPE, and non-inferior in other error metrics. In this
respect, our results coincide with the results of Chu and Zhang [15], who
mentioned that NN models work better with deseasonlized time series than
with Fourier-term encoded seasonalities. The authors mention that feature
engineering is very important for NN models, which seems to be true given
our results, and superiority of deseasonlized NN models over their Fourier
counterparts. However, Chu and Zhang arrive at a conclusion that nonlinear
models like ANNs are universally better for retail sales forecasting, which
our results contradict. The authors had their data aggregated on a monthly
level, which leads to sales time series with much less fluctuation than in our
experiments. Additionally, they did not assess the models in the presence of
external regressors.

One interesting result is that even though the most sales histories in the
dataset are count time series, the count-based model (GLM), introduced
specifically to tackle them, showed also the worst results after the Naive sea-
sonal forecasting model. This was especially pronounced in highly volatile
time series, where the difference in MAPE between the best model and GLM
was around 17% (versus 22% for the whole dataset), while for MdAPE this
difference was 4.6%. Moreover, for the highly volatile sales histories the
model consistently receives the worst metric ranks in MAE, MAPE, and
MdAPE. This indicates that GLM should not be used for forecasting de-
mand in time series with a lot of unaccounted variation and/or outliers.

At the same time GLM did very well in terms of RMSE metric, where it
consistently ended up to be the second best model. For the stable demand
time series, GLM was as good as DHR in terms of RMSE. The model
performance in terms of MAE is also good for stable demand time series.
However, this result is contradicting the performance of GLM in MAPE,
where this model is consistently the worst one. The probable reason for this
is that GLM often produces asymmetrically larger forecasts, which result in
a large GLM error in this metric.

The comparison of neural networks beyond seasonality modelling is not
simple, since these models perform almost equally well. Using all the data,
MLP-D and LSTM-D models have almost the same ranks in MAE, RMSE,
MAPE, and MdAPE, which is indicated by no paired sign test hypotheses
rejected in their rank comparisons. Comparing their MAPE and MdAPE
indicates slight superiority of MLP-D over LSTM-D in MAPE, and maybe
a slight advantage of LSTM-D over MLP-D in MdAPE. However, these
difference mean estimates have zeros falling within their confidence intervals,
so no definite conclusion can be made in terms of all fast-moving sales time
series.

Then we examine the performance of the NN models for the subset of sales
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time series with the highest fluctuation. In this subset, MLP-D is clearly
better than LSTM-D for MAE, RMSE, and MAPE. The MAPE is estimated
to be around 4.5% better with 95% confidence interval completely below zero.
For MdAPE the results are inconclusive. Thus, we conclude that MLP-D
should be preferred to LSTM-D in sales time series with high fluctuation.
However, the situations is completely reversed in sales time series with stable
demand. In these time series, LSTM-D clearly outperforms MLP-D in
all error metric ranks as indicated by Figure 6.7. The mean of MdAPE
differences between the two models in stable sales shows that LSTM-D is
better than MLP-D by 0.9% with the good negative confidence interval. For
MAPE, the confidence interval does not provide any evidence of LSTM-D
superiority. It is concluded that if the sales history does not have many
outliers, LSTM-D is superior to MLP-D for fast-moving product demand
forecasting.

The experiments suggest, that linear time series models are a viable ap-
proach to time series forecasting. Given rich sales histories of fast-moving
products, dynamic harmonic regression provides very good forecasts in sit-
uations where sales time series exhibit a lot of fluctuation, while the model
performance is still as good as NN model performance in product-locations
with the most stable demand. These results suggest that NN models are sen-
sitive to noise, even when thorough regularization is applied. Count-based
Poisson regression with elastic net performs best when used in fast-moving
product-locations with stable demand, where it shows very good results in
MAE, MdAPE, and RMSE. However, its performance severely deteriorates in
the presence of outliers. It is unclear why GLM performs very well in terms
of RMSE, but is the worst in MAPE across all groups of fast-moving product-
locations. This can possibly happen due to the asymmetry of MAPE, or some
non-linear dependence of variance and mean in the data, which should be
further investigated.

The above results are in contradiction with many research papers, and
there are multiple reasons why the presented results are observed. A large
amount of research is concentrated on univariate demand forecasting, while
our work concentrates on time series with covariates. Moreover, our forecasts
are multistep, and the models are trained on a daily level. Naturally, it is
very different from the monthly or weekly aggregated data used in many
demand forecasting experiments, which usually has much fewer fluctuations.
We have also noticed a recent heavy bias in literature towards the use of
ANN models, where the most recent results often compare neural networks
in time series forecasting to other neural networks, or simplistic linear models
without proper investigation of complex linear alternatives, such as dynamic
harmonic regression or advanced count-time series models.
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Conclusions

In this work, we described six models for fast-moving product-location de-
mand forecasting: dynamic harmonic regression, Poisson GLM with elastic
net, two-layer MLP and two-layer LSTM with Fourier seasonality modelling,
and the same NN models working with the deseasonalized sales histories.
These models were compared to each other in terms of the best multistep
daily demand forecasts. We showed how some specific issues in the sales time
series such as multiple seasonality and stockouts could be handled. In the
process, we introduced a Fourier seasonality modelling approach, and com-
pared it to forecasting the deseasonalized sales time series in ANN models.

We also devoted some space to the description of the theory, the assump-
tions, and the implementation of the compared models. We outlined the
most important details, and pitfalls that could be encountered during the
training and prediction in the suggested models. A lot of attention was paid
to the optimization methods in dynamic harmonic regression, Poisson GLM
with elastic net, and neural networks.

In this work, we outlined the whole process of model comparison for a
large number of sales time series. We used a 2-stage cross-validation, where
the model hyperparameters were selected in the first CV stage, and the mod-
els with the best hyperparameters were evaluated in the second CV stage.
We outlined the most important hyperparameters for all models, and the
procedures to select them. A new approach to model selection based on
Halton sequences was used in the MLP and LSTM models.

We presented the final results with the help of rank comparisons, boot-
strap confidence interval estimation, and hypothesis tests. We thoroughly
explained to the reader the results of our experimental part, which suggested
that advanced linear time series models, such as dynamic harmonic regres-
sion, could be a viable alternative to neural networks in fast-moving product
demand forecasting.
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