
Classification of Web Elements Using
Machine Learning

Erkka E. Virtanen

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 8.4.2019

Thesis supervisor:

Prof. Antti Oulasvirta

Thesis advisor:

D.Sc. (Tech.) Markku Laine

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Erkka E. Virtanen

Title: Classification of Web Elements Using Machine Learning

Date: 8.4.2019 Language: English Number of pages: 7+38

Department of Communications and Networking

Professorship: Human Computer Interaction

Supervisor: Prof. Antti Oulasvirta

Advisor: D.Sc. (Tech.) Markku Laine

Basic image segmentation is a fairly simple task for human beings and even young
children can accomplish it naturally, but for machines, this can be a burdensome
and difficult task. Segmenting large amounts of documents manually can be rather
labour-intensive exercise and many gains in productivity could be had if machines
could be automated to do the routine segmentation and classification tasks.
The website hosting company Suomen Hostingpalvelu Oy is transitioning from
their old web site builder software to a new in-house developed site builder and
they were faced with the problem of how to effortlessly allow users to move their
old websites from the old site builder to the new one. This thesis explores the
solution for this problem based on the fact, that the new site builder software uses
semantic building blocks to build a website. By identifying the given semantic
parts present on a given website through machine learning, we can provide the
corresponding building blocks for site transitioning in the new site builder.
In this thesis, a novel way of segmenting web pages to their semantic parts is
presented. This is accomplished by building a prototype which parses a given
web site, gathers all the relevant features of the site’s web elements and captures
images of each web element. The gathered data is employed to create a training
and testing data set which is used to train a machine learning model to classify
web site segments. Three different machine learning algorithms, random forests,
gradient boosting machines and a neural networks are examined and tested. After
cross-validation, the highest achieved classification accuracy score of the trained
machine learning model was a competent 81% allowing the prototype to be used
in production at Hostingpalvelu. Finally, we will explore ideas for future research
and for the improvement of the prototype.

Keywords: machine learning, classification, supervised learning, web element

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Erkka E. Virtanen

Työn nimi: Verkkosivuelementtien luokittelu koneoppimisen avulla

Päivämäärä: 8.4.2019 Kieli: Englanti Sivumäärä: 7+38

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Human Computer Interaction

Työn valvoja: Prof. Antti Oulasvirta

Työn ohjaaja: TkT Markku Laine

Kuvien jakaminen sen merkitseviin osiin on verrattain helppo tehtävä ihmisille ja
jopa pienet lapset osaavat sen luonnostaan, mutta koneille tämä voi olla hyvinkin
haastava tehtävä suoritettavaksi. Suurten tiedostomäärien käsin luokitteleminen
ja osiin jakaminen on aikaa vievää ja työteliästä ja jos tietokoneet voitaisiin
automatisoida tekemään nämä rutiinityöt, ihmiset voisivat ohjata työpanoksensa
merkitsevämpiin asioihin.
IT-alan yritys Suomen Hostingpalvelu Oy on siirtymässä pois vanhasta kotisivuko-
neestaan uuteen talon sisällä kehitettyyn kotisivukoneeseen ja heillä oli ongelmana
vanhojen kotisivujen siirto vanhasta kotisivukoneesta uuteen. Tämä diplomityö
käsittelee tämän ongelman ratkaisemista perustuen siihen, että uusi kotisivukone
käyttää semanttisia lohkoja sivujen rakentamiseen. Tunnistamalla vanhalla ko-
tisivukoneella tehdyistä sivuista niiden semanttiset osat, voidaan sivuston siirto
uuteen kotisivukoneeseen automatisoida.
Tässä diplomityössä esitellään uudenlainen lähestymistapa verkkosivun semantti-
seen jakamiseen osiksi. Tämä tehdään rakentamalla prototyyppiohjelma, joka ensin
jäsentää sille annetun verkkosivun, keräää jokaisen sivulla esiintyvän elementin omi-
naispiirteet ja ottaa niistä kuvat. Tästä datasta muodostetaan opetus- ja testidata,
jolla opetetaan koneoppimismallia luokittelemaan verkkosivun semanttiset osat.
Työssä esitellään kolme koneoppimisalgoritmia, random forests, gradient boosting
machine ja neuroverkot, joita testataan prototyypissä. Ristiinvalidoinnin jälkeen
korkein saatu luokittelutarkkuus oli 81%, joka on tarpeeksi korkea mahdollistaak-
seen prototyypin ottamisen tuotantokäyttöön Hostingpalvelulla. Lopuksi tutkimme
vielä ideoita tulevaisuuden tutkimukseen ja mahdollisia tapoja, jolla prototyyppiä
voitaisiin parantaa.

Avainsanat: koneoppiminen, luokittelu, ohjattu oppiminen, verkkosivuelementti

iv

Preface
I want to sincerely thank Professor Antti Oulasvirta and Dr. Markku Laine for all
the insight, advice and guidance that allowed me to finish this thesis and broadened
my academic vision. I want to thank Hostingpalvelu’s Jussi and Manu for allowing
me to work on this thesis one day a week and for believing in me in the first place
and giving me the chance to work in a fun company. I also want to thank my brother
Tuukka for his ceaseless support at home. Also, thanks to my loving girlfriend Petra,
without your endless love lifting me up this topic would have crushed me. I also
want to thank my parents Jaana and Kari, for like bedrock they stand by me, and
my good study friends Aku, Teemu, Jesse, Juha, Leo, Jaakko, Henri and Olli for
showing me the example on how to be a great engineer and a life-loving teekkari.

I would like to end this preface with a quote from a terrific author, who was a
hundred years ahead of his time, masterful with words and had a enough curiosity
to feed a lifetime of boredom. To me, his quote crystallizes my journey of writing
this thesis and the journey of life in general.

“But the man who comes back through the Door in the Wall will never be quite
the same as the man who went out. He will be wiser but less cocksure, happier
but less self-satisfied, humbler in acknowledging his ignorance yet better equipped
to understand the relationship of words to things, of systematic reasoning to the
unfathomable Mystery which it tries, forever vainly, to comprehend.”

-Aldous Huxley,
The Doors of Perception & Heaven and Hell

Otaniemi, April 8, 2019

Erkka E. Virtanen

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research question . 2

2 Background 3
2.1 Machine learning . 3

2.1.1 Supervised learning . 4
2.1.2 Unsupervised learning . 5
2.1.3 Reinforcement learning . 5

2.2 Algorithms . 6
2.2.1 Random forests . 6
2.2.2 Gradient boosting machine . 7
2.2.3 Multilayer feedforward neural network 7

2.3 Web technologies . 9
2.3.1 HTML . 9
2.3.2 Document Object Model . 9
2.3.3 Cascading Style Sheets . 10

2.4 Page segments . 10
2.4.1 Navigation . 11
2.4.2 Hero . 11
2.4.3 Gallery . 12
2.4.4 Story . 13
2.4.5 Contact . 13
2.4.6 Footer . 14

2.5 Related work . 15

3 Research material and methods 16
3.1 Goal of the prototype . 16

3.1.1 Parser . 17
3.1.2 Features . 17
3.1.3 Data set . 19
3.1.4 Classifier . 21

vi

4 Results 22
4.1 Random forest . 22

4.1.1 Cross-validation scores . 22
4.1.2 Most and least important features 22
4.1.3 Confusion matrix . 22
4.1.4 Duration . 24

4.2 Gradient boosting machine . 25
4.2.1 Cross-validation scores . 25
4.2.2 Most and least important features 25
4.2.3 Confusion matrix . 27
4.2.4 Duration . 27

4.3 Multilayer feedforward neural network 28
4.3.1 Cross-validation scores . 28
4.3.2 Most and least important features 28
4.3.3 Confusion matrix . 28
4.3.4 Duration . 30

4.4 Evaluation of the results . 31

5 Summary 32
5.1 Overview . 32
5.2 Discussion . 32
5.3 Case fit for Hostingpalvelu . 33
5.4 Future research . 33

References 35

vii

Abbreviations
CMS Content Management System
CSS Cascading Style Sheets
DOM Document Object Model
HTML Hypertext Markup Language
JSON JavaScript Object Notation

1 Introduction
Basic image segmentation is a fairly simple task for human beings and even young
children can accomplish it naturally, but for machines, this can be a burdensome and
difficult task depending on the situation and type of segmentation. But segmenting
large amounts of documents by hand can be rather labour-intensive and boring
exercise and many gains in productivity could be had if machines could be automated
to do the routine segmentation and classification tasks. Also, by combining automatic
segmentation with data mining of massive data sets, we could export more higher-
level information from the old data and we could create new innovations and find
new use-cases for them.

This thesis explores and tries to understand and develop an answer to a clear use
case for classification of web elements using machine learning methods. The goal of
this thesis is to segment web pages to semantic sections which can be understood by
humans. To achieve this goal, we will create a prototype and a data set, which will
be used to train a supervised learning algorithm to correctly categorize web page
segments. The approaches and algorithms available to segmentation and classification
are diverse, ranging from text classification[20] to neural networks[33] and graph
theory[13].

1.1 Motivation
The main motivation for this research came from the web hosting industry. For
the last year, I’ve been working as full-stack web developer for the Finnish hosting
company Suomen Hostingpalvelu Oy and they had been offering a website builder
for their customers for many years. This sitebuilder, called Web Presence Builder,
allowed customers to create their own websites from different ’blocks’ without the need
for programming knowledge. The sites produced by the sitebuilder were sufficient at
the time but lack certain aspects of the modern web like dynamic content, responsive
designs and overall a more stylish look. For this reason, Hostingpalvelu is developing
a brand new sitebuilder application in-house which I’ve had the opportunity to take
part in developing in a great team. We have created the new sitebuilder with the
same kind of ’block’ segment logic to allow creation of websites without the need for
programming similar to a Content Management System(CMS).

Hostingpalvelu has over two thousand sites hosted which are created with the
old sitebuilder. These sites look a bit outdated and would benefit from updating
their presentation by translating them to the new sitebuilder. Unfortunately, the
old and the new sitebuilder are built with different technologies and going through
all the old sites and translating them by hand is not a tempting proposition. From
this dilemma, the thesis research problem is formulated. This thesis tries to find
an answer to this problem by making the translation of these old sites to the new
sitebuilder automatic which then allows the users to update their website’s look and
feel effortlessly.

2

1.2 Research question
The main research question of this thesis is "How to classify HTML documents to
separate parts by their semantic function with machine learning". That is, given a
website as input, how can the site be automatically classified to semantic sections
like ”gallery”, ”blog post”, ”contact information” etc. utilizing machine learning
techniques. To answer this question, a prototype application was developed applying
the popular machine learning library h2o and a dataset of parsed web elements created.
This thesis focuses only on static websites which omit the JavaScript functionality.

3

2 Background
In this chapter, we briefly define machine learning, review the relevant machine
learning algorithms, define the related web technologies and page segmentation and
end with related research by others.

2.1 Machine learning
One way of defining machine learning is to say, that it’s the study of how a program
or an algorithm progressively improves it’s ability on a specific task based on previous
data without human intervention [7]. For example, when viewing and searching for
cat videos on YouTube, the service is collecting data on your behaviour and learning
what kind of videos you like to watch and it will recommend more similar videos
based on the viewing habits of other similar users and your past behaviour. Similar
machine learning methods are now used widely on a wide-range of services ranging
from Google to Facebook to enhance the user experience and to more accurately
target and display adds.

Today, almost all of world’s most valuable companies including Alphabet(Google’s
parent company), Amazon, Apple, Facebook and Microsoft are technology companies
[21]. All of these enterprises are currently developing, investing and advancing more
diverse machine learning applications and trying to find still uncovered niches to
utilize machine learning in. This is partly because of the easy availability of data,
which is now possible because of the mature state of the Internet infrastructure in
the developed nations and the current social culture, in which people are willing
and even want to share as much of their data as possible. These accruing large data
masses couldn’t be stored efficiently before the rise of affordable data-warehousing
and fast and available bandwidth and connectivity. These data masses, dubbed ”Big
Data”, are an essential part of large enterprises business plans in this new era in
the market [14], in which data is called the new oil. But this data is not valuable
without the insights from data mining and machine learning, as these new tools and
techniques help to uncover the value which inherently lies to be discovered in the
data centers’ servers hard disks.

The first mathematical insights for machine learning were developed in the 1960’s
but the knowledge was kept in the academic world until the 2000’s when newer
applications of the machine learning started to emerge and the raw computing
power and data requirements for modern algorithms were easier to meet. In the
present day, almost all of the largest software projects including self-driving cars
[8], artificial intelligence [2], social media feeds and speech-assistants [18] all utilize
machine learning to some degree. Machine learning in itself is not some kind of
”magic bullet” which automatically improves an existing service or an application, as
proper utilization of machine learning requires large amounts of good quality data
and expertise to be of value. These requirements can also speed up the accumulation
of machine learning expertise to the largest companies like Google and Apple which
have large enough user bases to be able to amass enough high quality data to utilize
machine learning techniques to their fullest potential.

4

Machine
learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Classification

Regression

Clustering

Deep learning

Reward-based
modeling

Figure 1: Machine learning concepts

2.1.1 Supervised learning

Supervised learning is a type of machine learning which utilizes large amount of data
to ”teach” the machine learning application how to operate on another set of similar
data [39]. These two data sets are called the training set and the testing set and
they should contain comparable data. Each training data sample is composed of the
vectorized sample data and a output goal value, which is also called the supervisory
signal. The machine learning algorithm will try to infer the classification function by
comparing the input output pairs of both data sets.

The raw training data is usually converted to a vector by a process called feature
extraction. In feature extraction, the raw sample data, for example a positive
comment on a website, is transformed into a vector by some chosen feature extraction
algorithm, for example the different word frequencies in a sentence(called Bag-of-
Words model). There are multiple choices to choose the actual learning algorithm
depending on the amount of training data, number of dimensions of the feature space
and computational speed among others. Learning algorithms used in supervised
learning include support vector machines, decision trees, random forests, gradient
boosting, deep learning, naïve bayes and linear regression algorithms.

5

2.1.2 Unsupervised learning

Unsupervised learning is a form of machine learning which doesn’t require large
training data sets with prelabeled classes as the problem of defining and finding the
classes from the data is left for the algorithm. For example, a unsupervised learning
algorithm can find and define specific clusters found in the data and label these as a
distinct class from other clusters. Algorithms used for unsupervised learning include
neural networks and k-means clustering.

2.1.3 Reinforcement learning

Reinforcement learning is the third paradigm of machine learning, which characterizes
how a computer program with agency should select it’s actions to maximize a
numerical reward signal [26]. In other words, how should a computer program behave
and map it’s actions to its surroundings to optimize cumulative reward? The two
important concepts of trial-and-error search and delayed reward are the characterizing
features of reinforcement learning.

For a computer program to survive it’s objective, it has to be able to do the three
following things. It has to be able to take in signals from it’s environment and to
evaluate them and take actions accordingly to it’s programming goals. The program
must be able to possibly adapt its sub goals to serve its master goal of maximizing
the cumulative reward over time. To model these three variables, the sensation, the
action and the goal, we can use incompletely-known Markov decision processes. [26]

Examples of reinforcement learning include video games, which are an uncompli-
cated platform for reinforcement learning applications, as internal goals of the game
can be used for the metrics of the application’s reward system. Then, increasing the
computer player’s score or skill level in the game, displays a direct improvement on
the performance of the model. Reinforcement learning has been used for example to
build chess playing artificial intelligence [43].

6

2.2 Algorithms
In this section we will detail the three relevant machine learning algorithms that will
be used by the prototype.

2.2.1 Random forests

Random forests algorithm functions by creating a forest of weak learners(decision
trees) which vote on the final classification class by majority vote. Thus, random
forests is an ensemble machine learning method. A formal definition of random
forests algorithm according to Breiman [11] is as follows:

A random forest is a classifier consisting of a collection of tree-structured classi-
fiers h(x, k), k = 1,... where the k are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x.

A single decision tree can suffer from high variance and can be susceptible to
noise, but as each tree is generated independently from a random subset of the data,
the majority voting on the multiple decision trees reduces variance and cancels out
potential errors in the model. In other words, random forests models are not prone
to overfitting [25] and are robust against missing data points, but at times it can be
difficult to interpret what features or choices the model made and why.

Majority
voting

Data set

Final Prediction

Tree 1

Prediction: Class A

Tree 2

Prediction: Class B

Tree n

Prediction: Class B

Figure 2: Random forests are comprised of multiple decision trees which vote on the
final class prediction

7

2.2.2 Gradient boosting machine

The gradient boosting machine model builds decision trees sequentially. It starts
by creating a simple model(one decision tree) and calculating its accuracy and
error. It then creates a model of the difference between the target function and the
prediction and combines this residual model with the current model. This process
is then repeated and with each repetition a new tree is added and the model tries
to minimize the residual by adjusting the weights for all previous decision tree
predictions. [37]

Gradient boosting is similar to the random forests algorithm in that they both
start with many weak learners(decision trees) that are combined to create one strong
learner [22]. Also, with random forest algorithm, each decision tree is independent
from one another, but in gradient boosting they are dependant as each consecutive
tree solves for the net error of prior trees. They are also a more prone to over fitting
and to noise than random forests.

Gradient boosting is used widely in many different domains with different imple-
mentations and variations. Most notable ones are XGBoost [15] and Adaboost [40].
For example, gradient boosting is used by the Yahoo! search engine [16].

Tree 1

+

Tree 2 Tree n

+ … +

Figure 3: The gradient boosting machine combines many weak learners and calculates
the difference between the target function and prediction after adding each new tree.

2.2.3 Multilayer feedforward neural network

Many different algorithms and implementations fall under the neural network term,
such as Convolutional Neural Networks and Recurrent Neural Networks, but here
we present the multilayer perceptron (multilayer feedforward neural network) as
implemented in h2o machine learning library.

The multilayer perceptron [38] always has at least three layers, the input layer,
the hidden layer and the output layer. First on the input layer we have the input
data and on the output layer we have the wanted output classes. Each layer has a
set amount of nodes which use tanh as the linear activation function.

The h2o implementation uses stochastic gradient descent as the back-propagation
method. This means looking at the desired output and what our current model
predicts, and if the prediction is wrong, we propagate the error backwards the hidden
layers calculating the gradients and adjusting the weights of all the nodes in the
hidden layers.

8

Today, the multilayer perceptron is one of the most common and straight forward
types of neural networks. The most common applications include speech recognition,
image recognition and machine translation [45]. The current state-of-the-art neural
networks are more intricate and complicated than a simple multilayer perceptron and
can produce results which rival even the human experts such as Google Deepmind’s
AlphaGo [42].

Z1

Input layer Hidden layer Output layer

a1
(1)

a1
(2)

a1
(3)

Y1

Z2 a2
(1)

a2
(2)

a2
(3)

Y2

Z3
a3
(1)

a3
(2)

a3
(3)

Y3

Z4
an
(1)

an
(2)

an
(3)

Y4

Figure 4: A neural network consisting of the input layer, three hidden layers and the
output layer.

9

2.3 Web technologies
A modern functional website, rendered in a browser with animations and dynamic
content, is comprised of several interlocked parts. As the basis we have the HTML
document and it’s Document Object Model(DOM), the appearance or styling of the
document with Cascading Style Sheets(CSS) and lastly ECMAScript(implemented
as JavaScript), the official scripting language of the HTML5 specification. A modern
dynamic website is usually making many calls to other servers for downloading
dynamic content like images and comments or just for applying specific tracker
scripts and utilities(for example Google Analytics tracker script). With JavaScript
the whole DOM and styling of the website can be changed dynamically according
to events and functions executed by the user. These modern dynamic websites are
in contrast to more traditional static websites which don’t make requests to other
servers. For the purposes of this thesis, we will focus only on static websites which
omit the JavaScript functionality.

2.3.1 HTML

Hyper Text Markup Language or HTML, is the standard language of internet websites.
It was first proposed by Time Berners-Lee in 1990 and today there exists over 1.5
billion websites [44]. HTML document describes the page semantically with different
semantic portions separated with angle brackets. These HTML elements can contain
for example images, text and interactive inputs.

When a user surfs the web and visits a domain to view a web page, a HTML
document is requested from a server. The document is then interpreted and rendered
by the web browser with the aid of the accompanying style definitions and executable
code. When the browser interprets the received HTML document, it reconstructs
the document in its internal presentation to a Document Object Model, which the
user then interacts with through the browser.

2.3.2 Document Object Model

The Document Object Model is a language agnostic specification for HTML doc-
uments, which underlies the structure of a website [46]. The DOM is comprised
of different elements, such as <body>, <h1>, <a> as specified in the HTML5
documentation. For example, the <p> tag, marks a paragraph on a website. The
DOM elements can be placed inside other elements producing a hierarchical structure
with parent and child nodes. The full representation of this hierarchical arrangement
is called the DOM tree. This logical and hierarchical structure of the DOM allows
for consistent parsing and rendering of the document. [19]

10

HTML

HEAD

TITLE META META

BODY

H1 P UL

A LI LI

Figure 5: Visualization of the hierarchical structure of the Document-Object-
Model(DOM) of a simple website.

2.3.3 Cascading Style Sheets

Cascading style sheets(CSS) is a style sheet language used to style and add animations
to web pages [31]. CSS defines the presentation of all aspects of a page’s web elements,
from their size to color and from their font families to animations.

CSS language is defined by rules made of selectors and declarations. The selector
part defines the scope of the rule and the declaration determines the wanted effect
or function. Selectors can be tags, pseudo-classes or classes, which are arbitrarily
defined strings appointed by the developer. The selectors can include logic rules to
scope the rules effectiveness. The declaration part of the rule specifies the desired
functionality, like the color or size of a text block.

The utilization of a separate styling language from the document’s structure(HTML
markup) allows for the separation of content and presentation. This enables the
effortless adjustment of a web site’s aesthetic without altering its functionality and
allows users to modify their web clients styling, improving the user experience. For
example, the user can change the browsers default styling to enhance the contrast or
to increase text size for readability and accessability. [32]

2.4 Page segments
Hostingpalvelu’s new sitebuilder website building logic is based on building blocks(called
”sections”) which comprise the whole website. At the moment of writing, the currently
implemented list of categories in the new sitebuilder is comprised of Hero, Gallery,
Story, Video, Map, Contact, Features, Products, Menu, Team, and Quote sections.
Next we will present and define the selected six segments for the prototype.

11

Navigation

Hero

Gallery

Footer

Navigation

Figure 6: Example of semantic segments of a page

2.4.1 Navigation

The navigation category comprises of different implementations of the classical
horizontal navigation bar, which holds the links to other parts of the website such as
contact or gallery pages. Vertical navigation bars are also included in this category.

Logo

Home Products Gallery About Contact

My Website

Figure 7: Example of the navigation category

2.4.2 Hero

Hero is a common term used in web development to describe the first eye-catching
element of a website which usually has the most important visual information that

12

showcases the main idea or products of the website. In this data set it usually
comprised of a large image with interlaced text and a call-to-action button.

Enticing Headline
Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore .

Call to action

Figure 8: Example of the hero category

2.4.3 Gallery

The gallery category encompasses different kinds of image galleries and carousel
elements commonly found on webpages. They are usually laid out in a grid formation
or on a carousel layout, which scrolls through images.

Gallery

Figure 9: Example of the gallery category

13

2.4.4 Story

The story category can be varied, but it usually contains a text block, explaining the
purpose of site, display latest developments on the site or showcase the products of a
given website. This can be text only block or contain an image in conjunction with
the text.

Heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit

anim id est laborum.

Figure 10: Example of the story category

2.4.5 Contact

The contact section displays the contact details, usually describing a phone number
or a street address or directions. Sometimes the contact section is paired with a
embedded Google Maps widget.

Contact

Address

Email

Phone

Map Widget

Figure 11: Example of the contact category

14

2.4.6 Footer

The footer section is at the bottom of the page and it usually displays the copyright
notice and navigation or links or an image.

Home Products Gallery About Contact

Copyright Notice Privacy Policy

Figure 12: Example of the footer category

15

2.5 Related work
When considering the previous related work on classification of web documents,
multiple different approaches have been studied. Some approaches have been based
on image recognition [30] [1], Natural Language Processing(NLP), DOM-parsing
and ensemble methods combining multiple techniques. The current state-of-the-art
implementations combine visual and DOM-parsing approaches to achieve the best
results.

A recent paper published by Bakaev et al. [4] implemented a vision based tool,
build on top of the computer vision library OpenCV [9], which takes a screenshot of
a webpage and produces a JSON file [10] as the output with all the human readable
interface elements. The upside of this completely visual-based implementation is that
what the machine learning algorithm sees is exactly the same as what the human user
sees. In contrast, a wholly DOM based approach in which the CSS and JavaScript
can arbitrarily change the visual appearance and location of elements of the original
DOM tree, can look quite different when the final page is rendered in the browser.
This makes the mapping of an element’s visual look and it’s data structure more
difficult for machine learning algorithms.

Other notable element classification research based on visual features include
VIPS, an algorithm which detects the websites layout from its visual representation
[12] and Bento algorithm [29], which is an ensemble approach used to transfer the
content from another website to another layout.

16

3 Research material and methods
To answer the research question of this thesis with a concrete solution, a working
prototype is required. This chapter will go through the different parts, theoretical
underpinnings and engineering choices that were chosen for the prototype.

3.1 Goal of the prototype
As outlined in the first chapter, the goal of the prototype is, given a HTML-document
as input, to be able to classify different parts of the website by their semantic function
using machine learning algorithms. This requires multiple steps. First, the prototype
program must be able to parse the relevant data from the HTML-document and
extract the relevant feature vectors from the data to create a training and testing
data sets. Then a supervised learning algorithm is taught with the training data set.
After adjusting and fine tuning the algorithm, the newly-trained classifier is tested
on the training data set and it’s accuracy is cross-validated. Once validated, the
program should be able to recognize and classify new HTML-documents as intended.

To achieve this goal, Python 3 [36] with Selenium [41] and h2o [23] were chosen
as the development tools for the prototype. Python is a widely used programming
language, Selenium is a widely used web automation tool and h2o is a multi-platform
machine learning library. The prototype is built from three parts, the parser, the
classification tool and the data set and the machine learning model implementation.
Next, we will go through each part detailing the engineering and design choices.

Web page

Human
effort

Classifier
Trained on the training

data, learns to predict the
class of a test data sample

Parser
Parses the DOM and
extracts features and

image of each web

element

Extracted data and

image of a web element

Sektionizer
Displays the extracted

data allowing effortless
manual classification

Data Image

Training
data

Test
data

Labeled data set

Prediction

Figure 13: Overview of the functions of the prototype

17

3.1.1 Parser

The first part of the prototype is the HTML document parser. This is achieved
using the Selenium, a widely used web automation tool. The prototype fetches the
desired website using Selenium and Google Chrome webdriver and creates a Selenium
Web Element abstraction of the underlying DOM tree. These elements can then
be accessed by their methods and properties to extract relevant feature data, such
as the size, location and styling of a web element. For each parsed web element, a
JSON file is generated which holds all the parsed feature data and which is later
used in the data set creation process.

The built parser prototype can take five to ten minutes to parse a given a website
with long nested DOM nodes. This can be made faster by restricting the parsing
depth. For example, the prototype can be adjusted to not parse a DOM node if it
has more than three levels of children for example. This is a justified engineering
choice, as our objective is to classify quite high-level and abstract categories like
”navigation”, which itself can contain many levels of nested elements. The lowest
three level of the elements children don’t provide more information than the highest
level, which already saves the number of different child elements.

3.1.2 Features

Choosing the correct features to extract from the data is a critical task for successful
classification, as web elements are presented in multitude of different colors, sizes,
contrasts and amounts of text and all of these variables contribute to the upper
level characteristic of a certain class. These different features are then distilled and
grouped to a feature vector, which represents all of the requested features of a single
data point [7].

Large number of feature vectors can be both favourable and unfavourable depend-
ing on the context. More feature vectors can increase the classification accuracy but
too many feature vectors will introduce the ”curse of dimensionality” [5] [27]. This
means, that as the number of feature vectors increase, the volume of the solution
space will increase in size exponentially, requiring very large data sets for the results
to be statistically significant.

Kumar et al. [29] identified many of these prominent web element feature vectors
as did Minukovich et al [34]. Based on their work and by selecting the most practicable
and computable features, the following features were chosen to be parsed by the
prototype:

18

Feature Explanation

Horizontal sidedness How far is the element from the horizontal centerline of the
webpage

Vertical sidedness How far is the element from the vertical centerline of the
webpage

Left sidedness How far is the element from the utmost left of the webpage

Top sidedness How far is the element from the top height of the webpage

Location X and Y position of the web element

Size Width and height of the web element

Aspect ratio Width of the web element divided by height of the element
the web element

Tag Type of the tag of the web element

Class CSS class or classes of the web element

Parent Parent element of the web element and its type of tag

Style Computed style of the web element, the relevant style prop-
erties of the web element

Text content The text content of the web element

Word count Number of words in the web element

Image count Number of images in the web element

Link count Number of links in the web element

Child count Number of div, p, ul, li, span, h1, h2 and h3 children of the
web element

Figure 14: Selected features for the prototype

19

3.1.3 Data set

One of the most important parts of any machine learning endeavour is the data set,
as a properly curated and procured data set will in part define the success of the
whole prototype. Because acquiring a decent data set is usually a laboursome and
demanding task, in general it’s good advice to use an external data set if possible.
Scouring different sources, the following possible data set was identified.

Rico [17], the largest mobile app data set to date. It contains data from over 9.7
thousand Android Apps and spans 27 different categories. Rico would have been
perfect to use in this project, have it not been a mobile only data set.

None of the other data sets were deemed not suitable for this research task, so a
new web element data set built from the ground up was needed. This process started
by researching the literature of web element classification and deciding whether to
use a only DOM based or visual based or a ensemble method. A hybrid approach was
decided, which parses the DOM and saves each element with its CSS styling and also
captures a picture of the element. This is accomplished by the the parser part of the
prototype. When parsing the document, each element’s data is saved as a JSON-file
containing all the feature vector data and a picture file taken from a particular element.

1 {
2 " depth ": 2,
3 "tag": "li",
4 "id": 67,
5 " class ": " normal navigation -item - expand ",
6 " location ": {
7 "x": 44,
8 "y": 340
9 },

10 "size": {
11 " height ": 32,
12 " width ": 273
13 },
14 " textContent ": "\n\t\t\t\n\t\t\t\n\t\t",
15 " aspectRatio ": 8.53125 ,
16 " numImages ": "0",
17 " numLinks ": "8",
18 " horizontalSidedness ": -0.9140625 ,
19 " verticalSidedness ": -0.11458333333333333 ,
20 " leftSidedness ": 0.04296875 ,
21 " topSidedness ": 1.5572916666666665 ,
22 " wordCount ": 3,
23 " style ": {
24 " bottom ": "auto",
25 "box - shadow ": "none",
26 " cursor ": "auto",
27 " float ": "none",
28 "font - family ": "Tahoma , sans -serif",
29 "font -size": "13px",
30 "font - weight ": "400",
31 " height ": "32px",
32 "justify - items ": " normal ",

20

33 "left": "auto",
34 "letter - spacing ": " normal ",
35 "line - height ": " 18.46 px",
36 "margin - bottom ": "4px",
37 "margin -left": "0px",
38 "margin -right ": "0px",
39 "margin -top": "0px",
40 "max - height ": "none",
41 "max -width ": "none",
42 "min - height ": "0px",
43 "min -width ": "0px",
44 "overflow -x": " visible ",
45 "overflow -y": " visible ",
46 "padding - bottom ": "0px",
47 "padding -left": "0px",
48 "padding - right ": "0px",
49 "padding -top": "0px",
50 "text - align ": "left",
51 "text - shadow ": "none",
52 "top": "auto",
53 " width ": "273 px",
54 "word - break ": " normal ",
55 "z- index ": "auto",
56 "align -items ": " normal ",
57 "flex - basis ": "auto",
58 "flex -grow": "0",
59 "flex - shrink ": "1",
60 "flex - direction ": "row",
61 "flex -wrap": " nowrap ",
62 "justify - content ": " normal ",
63 " order ": "0",
64 " transform ": "none",
65 "fill": "rgb (0, 0, 0)",
66 " opacity ": "1"
67 },
68 " count ": {
69 "div": "0",
70 "p": "0",
71 "ul": "2",
72 "li": "7",
73 "span": "16",
74 "h1": "0",
75 "h2": "0",
76 "h3": "0"
77 },
78 " parent ": {
79 "tag": "ul",
80 " class ": " navigation "
81 },
82 " label ": " navigation "
83 }

Listing 1: Example of a single parsed DOM element

21

After the parsing of a website is complete, the human part of the data set creation
begins with the manual classification of each web data element to the proper category.
For this purpose a data set building tool called Sektionizer was built with Python 3.
Sektionizer allows a user to input a web address and to start the parsing process,
which saves all the parsed web element JSON files and images into a single folder.
After parsing, the user can open the folder in Sektionizer and cycle through the
images while classifying the element by clicking the labeled class buttons. This tool
speeds up the manual process of parsing and labeling the data set and its graphical
user interface allows also non-technical users to grow the size of data set after teaching
the user the specifications of each class.

Also, as the parsing of a website can take five to ten minutes, a parse batching
utility was created. This tool inputs a list of sites to be parsed and starts parsing
through it. This saves time, as the batching utility can run its parsing during the
night and leave only the classification process left for the user.

Figure 15: Graphical user interface of the built Sektionizer prototype

3.1.4 Classifier

The final part of the prototype is the classifier. Its role is to create a machine learning
model based on the training data and a chosen algorithm and then it’s accuracy is
evaluated by cross-validating the model with the testing data set.

First version of the classifier was built with the scikit-learn machine learning
library [35], but ultimately, the java virtual machine based h2o [23] was chosen as
the implementation library, since it provides greater assortment of machine learning
algorithms and allows the random forest algorithm to work better with categorical
data.

Choosing the correct machine learning algorithm is of great importance, as it in
great part defines the accuracy of our prototype. Three different machine learning
algorithms were utilized with the prototype, random forests, multilayer feedforward
neural networks and the gradient boosting machine algorithm. The results of the
models built with these three algorithms are showcased in the next chapter.

22

4 Results
This chapter will first go through the results of the prototype utilizing the three
different machine learning algorithms described in the previous chapter and evaluate
them.

Variable Mean Standard Deviation Valid #1 Valid #2 Valid #3 Valid #4 Valid #5

Accuracy (%) 0.811 0.046 0.792 0.742 0.909 0.860 0.750

Error (%) 0.189 0.046 0.208 0.258 0.091 0.140 0.250

Log loss 0.966 0.288 0.828 0.794 0.450 1.087 1.672

Max per class error 0.720 0.243 1.000 0.313 0.286 1.000 1.000

Mean per class accuracy 0.830 0.054 0.794 0.848 0.964 0.807 0.734

Mean per class error 0.170 0.054 0.206 0.152 0.036 0.193 0.266

Mean squared error 0.200 0.036 0.232 0.250 0.131 0.144 0.242

R2 0.934 0.013 0.923 0.905 0.955 0.953 0.932

Root mean square error 0.443 0.042 0.482 0.500 0.362 0.380 0.492

Table 1: Cross-validation results for the random forest model

4.1 Random forest
4.1.1 Cross-validation scores

The random forest model was trained on a data set comprised of 309 web element
feature vectors which was split to 75% training and 20% testing sets. The model
was validated with k-cross-validation with k value of five.

The cross validation scores for the random forest algorithm are shown in Figure
16. The accuracy score mean is almost 81% which is an adequate result.

4.1.2 Most and least important features

The model identified the CSS style font-weight as the most important feature of the
model with a percentage weight of 13.4%. The five least important features were all
styling features with all of them having marginal or no importance.

4.1.3 Confusion matrix

From the confusion matrix we can see what classes are identified erroneously by the
model. There are some error with classifying the footer as the story section and also
with story and hero, as they can also have similar characteristics such as position
and image in conjunction with text.

23

Variable Relative importance Scaled importance Percentage

styleFontWeight 3483.298 1.000 0.134

styleTop 2014.869 0.578 0.078

class 1691.500 0.486 0.065

verticalSidedness 1287.124 0.370 0.050

textContent 1265.136 0.363 0.049

— — — —

styleFontSize 17.124 0.005 0.001

styleMaxHeight 13.552 0.004 0.001

styleOrder 12.239 0.004 0.000

styleTextAlign 10.362 0.003 0.000

styleFill 9.602 0.003 0.000

Table 2: The five most and least important features identified by the random forest
model

24

Figure 16: Confusion matrix for the random forests model

4.1.4 Duration

On a Macbook Pro of 2014 with a 2.6 GHz Intel Core i5 and 8 GB 1600 MHz DDR3
the model took 44.2 seconds to train.

25

Mean Standard deviation Valid #1 Valid #2 Valid #3 Valid #4 Valid #5

Accuracy (%) 0.738 0.037 0.729 0.677 0.795 0.800 0.688

Error (%) 0.262 0.037 0.271 0.323 0.205 0.200 0.313

Log loss 2.075 0.681 2.424 3.324 0.960 0.939 2.726

Max per class error 0.780 0.192 1.000 0.400 0.500 1.000 1.000

Mean per class accuracy 0.763 0.070 0.752 0.810 0.888 0.776 0.589

Mean per class error 0.237 0.070 0.248 0.190 0.113 0.224 0.411

Mean squared error 0.228 0.043 0.238 0.300 0.162 0.155 0.284

R2 0.924 0.016 0.921 0.885 0.945 0.949 0.921

Root mean square error 0.473 0.046 0.488 0.548 0.402 0.393 0.533

Table 3: Cross-validation results for the gradient boosting model

4.2 Gradient boosting machine
The results for the gradient boosting machine model.

4.2.1 Cross-validation scores

The gradient boosting machine model was trained on a data set comprised of 309
web element feature vectors which was split to 75% training and 20% testing sets.
The model was validated with k-cross-validation with a k value of five.

The cross validation scores for the gradient boosting machine model are shown
in Figure 17. The mean accuracy score is 73.8% which is the lower compared to the
random forest model but on the same level as the neural network model.

4.2.2 Most and least important features

The model chose the styleFontWeight as the most important feature with importance
weight of 49.5%, so it is a very significant feature for this model’s classification
process. Then is the vertical location, web element’s parent class, the height of the
web element and the textual content of the element. These feature vectors seem very
intuitive to a web developer as these features are widely set in the web elements and
a they have lot of communicative power to affect the website’s look.

The five least important values are the stylePaddingLeft, styleTextAlign, style-
WordBreak, styleOrder and lastly styleFill. All of them shared the value of zero.
One explanation for this could be, that these style attributes are used so widely that
their visual value might not convey enough information in this classification, or that
the training set didn’t have enough examples of these values being set.

26

Variable Relative importance Scaled importance Percentage

styleFontWeight 333.498 1.000 0.495

locationY 59.549 0.179 0.088

parentClass 41.565 0.125 0.062

height 38.692 0.116 0.057

textContent 34.202 0.103 0.051

— — — —

stylePaddingLeft 0.000 0.000 0.000

styleTextAlign 0.000 0.000 0.000

styleWordBreak 0.000 0.000 0.000

styleOrder 0.000 0.000 0.000

styleFill 0.000 0.000 0.000

Table 4: The five most and least important features identified by the gradient boosting
model

27

4.2.3 Confusion matrix

The confusion matrix for the gradient boosting model is quite similar to the deep
learning model. They both have quite fairly results with identifying the same type of
classes, but with this model the miss labeled predictions are spread out more evenly
over multiple classes. Still, the largest error is with classifying the footer class as the
story class and the hero class with the story classes as was with the random forest
model.

Figure 17: Confusion matrix for the gradient boosting machine model

4.2.4 Duration

On a Macbook Pro of 2014 with a 2.6 GHz Intel Core i5 and 8 GB 1600 MHz DDR3
the model took 26.9 seconds to train, which is significantly faster than the random
forest model and within similar level of the neural network model.

28

Mean Standard Deviation Valid #1 Valid #2 Valid #3 Valid #4 Valid #5

Accuracy (%) 0.738 0.046 0.646 0.677 0.795 0.760 0.813

Error (%) 0.262 0.046 0.354 0.323 0.205 0.240 0.188

Log loss 1.332 0.333 2.240 1.013 0.928 1.218 1.263

Max per class error 0.802 0.174 1.000 0.438 0.571 1.000 1.000

Mean per class accuracy 0.778 0.055 0.661 0.797 0.904 0.764 0.766

Mean per class error 0.222 0.055 0.339 0.203 0.096 0.236 0.234

Mean squared error 0.228 0.049 0.348 0.268 0.169 0.180 0.177

R2 0.923 0.019 0.884 0.898 0.942 0.941 0.951

Root mean square error 0.473 0.050 0.590 0.518 0.411 0.424 0.420

Table 5: Cross-validation results for the neural network model

4.3 Multilayer feedforward neural network
4.3.1 Cross-validation scores

The multilayer feedforward neural network model was trained on a data set comprised
of 309 web element feature vectors which was split to 75% training and 20% testing
sets. The model was validated with k-cross-validation with k value of five.

The cross validation scores for the neural network model are shown in Figure 18.
The accuracy score mean is almost 73.8% which is adequate and matched by the
gradient boosting model’s performance but less successful than the random forest
model.

4.3.2 Most and least important features

The model identified the web element wordCount as the most important feature of
the model with a percentage weight of 0.002%. Similar to other models, the bottom
most important features are styling or missing tag features, which affect the models
decisions marginally not at all. The deep learning model’s reasoning behind these
feature choices are difficult to analyze, but wordCount, width and height seem like a
intuitively reasonable features for classifying web elements.

4.3.3 Confusion matrix

The model had the largest challenge at identifying the story class by confusing it
with contact, footer and hero classes. This can be explained by the comparable
features of these classes, as they all have text and can contain images and can be
placed on similar locations on the web page.

29

Variable Relative importance Scaled importance Percentage

wordCount 1.000 1.000 0.002

countP 0.913 0.913 0.002

countSpan 0.874 0.874 0.002

width 0.869 0.869 0.002

height 0.830 0.830 0.002

— — — —

styleMarginBottom.5px 0.597 0.597 0.001

styleTop.958.547px 0.597 0.597 0.001

stylePaddingLeft.50px 0.586 0.586 0.001

tag.missing(NA) 0.000 0.000 0.000

parentTag.missing(NA) 0.000 0.000 0.000

Table 6: The five most and least important features identified by the neural network
model

30

Figure 18: Confusion matrix for the neural network model

4.3.4 Duration

On a Macbook Pro of 2014 with a 2.6 GHz Intel Core i5 and 8 GB 1600 MHz DDR3
the model took 23.5 seconds to train, which is the smallest duration of the three
models and almost two times faster than the random forest model.

31

4.4 Evaluation of the results
Comparing the results of all the three shown models, the random forest with 81%,
the gradient boosting model with 74% and the multilayer feedforward neural network
with 74%, the highest accuracy was scored by the random forest model. The random
forest model accuracy is the highest with a seven percent margin and the gradient
boosting and the neural network scored a matching accuracy score. The result is
not such a surprise, as the random forest models have been shown to be particularly
effective in sorting mostly categorical data.

The neural network model’s choices for the most important features were not
easily interpreted intuitively, so it’s hard to say what kind of rules the neural network
model ”learned”. Both the random forests and gradient boosting models chose the
font weight and the vertical location on their top five most important features. These
seem more intuitive and logical, as they both contribute greatly to a web element’s
look and semantics.

From these results the best model to use in our prototype is the random forest
model. The random forest model also had the largest duration for the model training,
but as the durations still are quite small(44.2s vs 23.5s), the computational load isn’t
that too large of a significance.

We can now investigate the accuracy score results other known approaches in
the web element classification research. For comparison, there exists VIPS [12] by
Microsoft Research, which is a vision based page segmentation algorithm. By their
performance testing, it classified the semantic content with a 93% accuracy. The
accuracy of the developed prototype and the accuracy of VIPS give some general
insight to their predictive power, but for a direct comparison to be made, access to
the same training data VIPS utilized would be required.

Accuracy Error LogLoss Mean per class accuracy Mean per class error Training duration

Random forest 0.811 0.189 0.966 0.830 0.170 44.2

Gradient boosting machine 0.738 0.262 2.075 0.763 0.237 26.9

Neural network 0.738 0.262 1.332 0.778 0.222 23.5

Table 7: Comparison of the results of the three models

32

5 Summary
This chapter will overview the thesis research question, discussion and the results,
the feasibility of the build prototype in production use and ideas for future research.

5.1 Overview
This thesis started with the research question of ”How to classify HTML-documents
to separate parts by their semantic function with machine learning” and we have
looked at the background of machine learning in general, the machine learning
algorithms and their functionality, the document object model, the development of
the prototype, and showcased the results of three different machine learning models.

Chapter three detailed the building of the prototype, which is separated into
three parts. First is the parser, which parses the given website into discrete web
elements and creates a data file containing the relevant features and an image file
of the element. Secondly is the data set, which was built with the Sektionizer tool
by manually classifying the parsed data by their semantic function. And lastly, the
machine learning models, which classify the given web elements according to the fed
training and testing data sets.

The prototype achieved a five-fold cross validated accuracy rating of 81%, which is
an adequate result for production usage at Hostingpalvelu, though the final production
tool will possibly require some added heuristics and adjustments.

5.2 Discussion
How to improve the accuracy of the prototype? One answer is to improve the data
sets. By gathering a larger data set we can cover more edge cases which help the
machine learning model separate between harder to distinguish sections such as
”Hero” and ”Story” classes. Other possibility could be adding more features to the
parsed data, but the currently incorporated features already implement the ones
found in literature.

One possible improvement to the prototype could be the addition of a natural-
language-processing(NLP) machine learning model. As the encompassing text of each
web element is already collected, the textual data could be further fed to a specifically
taught machine learning model, possibly utilizing the bag of words-model with a
support vector machine or a naïve bayes algorithm to gain additional information
from the text to help the classification of the segment.

Trying different machine learning algorithms could also improve the accuracy. The
current state-of-the-art deep learning neural network models use massive amounts of
data coupled with large server clusters utilizing ensemble techniques incorporating
many different models sequentially. These require a high-level of expertise to be
tuned properly to avoid over fitting and bias. But even with the created prototype,
fine-tuning of the parameters and improving the size and quality of the training data
we could see an improvement in the accuracy score.

33

To enable faster creation of new data sets, the parser’s speed of parsing a website
could be improved from the current five to ten minutes. This could be done by
identifying the most time-consuming parts of the parser’s functions and seeking
known faster alternative programming maneuvers.

5.3 Case fit for Hostingpalvelu
The research question for this thesis came from the web development industry, so it
is important to asses the built prototype’s feasibility in production use.

At Hostingpalvelu, the prototype will be used to translate customer’s websites
built with the older site builder tool Web Presence Builder to Hostingpalvelu’s new
in-house developed site builder Oidom. An automation tool will be built on top
of the research presented in this thesis, which will automatically offer users a new
Oidom website based on data from their old web site. The new tool will run the
prototype’s machine learning model on the old web site and output the semantic
sections which are present on the site. It will then offer these identified sections as
already filled in building blocks on the new site builder.

The prototypes accuracy result of 81% is precise enough to be competent, but
will probably require some added heuristics and possibly building a larger data set to
cover more edge cases and to improve the classifier accuracy when used in production.

Also, in the future, the prototype could be adapted to work with websites created
with other site builders. This would allow the customer to transition from a different
hosting provider’s sitebuilder tool Oidom. This would require teaching the machine
learning algorithm with a different training data, data which is parsed from sites
generated with a particular tool. This would massively boost the usefulness of the
prototype.

5.4 Future research
To improve the prototype further some questions remain to be answered by future
research. Firstly, how would adding a image recognition classifier in conjuction with
the current DOM data based approach improve the results of the classification? As
we already have captured the images of each web element by the current parser,
the image data for this concept is already collected. This could be done with a
convolutional neural network model, which are widely used in image recognition and
can achieve high accuracy [28].

To gain a better understanding of the underlying classification process, a better
explanation of the choices a machine learning model made is required. What reasons
made the machine learning model classify this as a ”navigation” rather than a ”hero”
class? For example, the random forest model’s most and least important features
seem logical to a web developer, but the corresponding features for the deep learning
neural network are non-intuitive for humans. This acknowledged machine learning as
a black box problem [6] is a massive dilemma in different domains utilizing machine
learning from medical [24] to financial industries [3] and can cause wrong decision to

34

be made, endangering lives and creating unjust situations where decisions can’t be
backed by sound and logical step-by-step reasoning.

One arduous part of this project was the data set generation. Could this process
somehow be made more effortless or the prototype be converted to work on mobile
data set like Rico? Supervised learning models do always require the learning signal
or label to be taught, but there are ways to bypass the manual process of labeling
each data point by hand. For example, one could create a tool which generates real
looking web layouts at random with the given labeling inherently built-in into the
layout creation process and then teach the machine learning model with it. This
approach could bypass the manual labour in classifying each element, but the results
and accuracy are not know. It is an idea worth exploring, as the data set building
process can be very laborious and time-consuming.

35

References
[1] Anton Akusok, Alexander Grigorievskiy, Amaury Lendasse, Yoan Miche, T Vill-

mann, and FM Schleif. Image-based classification of websites. Machine Learning
Reports, 2:25–34, 2013.

[2] Itamar Arel, Derek C Rose, Thomas P Karnowski, et al. Deep machine learning-
a new frontier in artificial intelligence research. IEEE computational intelligence
magazine, 5(4):13–18, 2010.

[3] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. Using
neural network rule extraction and decision tables for credit-risk evaluation.
Management science, 49(3):312–329, 2003.

[4] Maxim Bakaev, Sebastian Heil, Vladimir Khvorostov, and Martin Gaedke. Hci
vision for automated analysis and mining of web user interfaces. In International
Conference on Web Engineering, pages 136–144. Springer, 2018.

[5] R. Bellman, Rand Corporation, and Karreman Mathematics Research Collection.
Dynamic Programming. Rand Corporation research study. Princeton University
Press, 1957.

[6] José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. Are artificial
neural networks black boxes? IEEE Transactions on neural networks, 8(5):1156–
1164, 1997.

[7] Christopher M Bishop. Pattern recognition and machine learning (information
science and statistics) springer-verlag new york. Inc. Secaucus, NJ, USA, 2006.

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[9] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[10] Tim Bray. The javascript object notation (json) data interchange format.
Technical report, 2017.

[11] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[12] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Vips: a vision-based
page segmentation algorithm. 2003.

[13] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic
approach to webpage segmentation. In Proceedings of the 17th international
conference on World Wide Web, pages 377–386. ACM, 2008.

[14] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks
and applications, 19(2):171–209, 2014.

36

[15] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016.

[16] David Cossock and Tong Zhang. Statistical analysis of bayes optimal subset
ranking. IEEE Transactions on Information Theory, 54(11):5140–5154, 2008.

[17] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology, pages 845–854.
ACM, 2017.

[18] Li Deng and Xiao Li. Machine learning paradigms for speech recognition: An
overview. IEEE Transactions on Audio, Speech, and Language Processing,
21(5):1060–1089, 2013.

[19] Terence Eden, Shwetank Dixit, Scott O’Hara, Bruce Lawson, Xiaoqian Wu,
Sangwhan Moon, and Patricia Aas. HTML 5.3. W3C working draft, W3C,
October 2018. https://www.w3.org/TR/2018/WD-html53-20181018/.

[20] Sébastien Eskenazi, Petra Gomez-Krämer, and Jean-Marc Ogier. A compre-
hensive survey of mostly textual document segmentation algorithms since 2008.
Pattern Recognition, 64:1–14, April 2017.

[21] Forbes. The world’s most valuable brands. https://www.forbes.com/
powerful-brands/list/, 2018. [Online; accessed 13-March-2019].

[22] Jerome H Friedman. Stochastic gradient boosting. Computational statistics &
data analysis, 38(4):367–378, 2002.

[23] H2o. An open source artificial intelligence platform. https://www.h2o.ai/,
2019. [Online; accessed 27-February-2019].

[24] Anna Hart and Jeremy Wyatt. Evaluating black-boxes as medical decision
aids: issues arising from a study of neural networks. Medical informatics,
15(3):229–236, 1990.

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc., New
York, NY, USA, 2001.

[26] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[27] Eamonn Keogh and Abdullah Mueen. Curse of Dimensionality, pages 314–315.
Springer US, Boston, MA, 2017.

37

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[29] Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and Scott R Klemmer.
Bricolage: example-based retargeting for web design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 2197–2206.
ACM, 2011.

[30] Leonardo Espinosa Leal, Kaj-Mikael Björk, Amaury Lendasse, and Anton
Akusok. A web page classifier library based on random image content analysis
using deep learning. In Proceedings of the 11th PErvasive Technologies Related
to Assistive Environments Conference, PETRA ’18, pages 13–16, New York,
NY, USA, 2018. ACM.

[31] Håkon Wium Lie and Bert Bos. Cascading style sheets, level 1. W3C
recommendation, W3C, September 2018. https://www.w3.org/TR/2018/SPSD-
CSS1-20180913/.

[32] Hakon Wium Lie, Bert Bos, C Lilley, and I Jacobs. Cascading style sheets.
Pearson India, 2005.

[33] Pikakshi Manchanda, Sonali Gupta, and Komal Kumar Bhatia. On the auto-
mated classification of web pages using artificial neural network. IOSRJCE,
ISSN, pages 2278–066, 2012.

[34] Aliaksei Miniukovich and Antonella De Angeli. Computation of interface
aesthetics. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pages 1163–1172, New York, NY, USA,
2015. ACM.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[36] Python. A general purpose programming language. https://www.python.
org/, 2019. [Online; accessed 27-February-2019].

[37] Greg Ridgeway. The state of boosting. Computing Science and Statistics, pages
172–181, 1999.

[38] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC
BUFFALO NY, 1961.

[39] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

38

[40] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52.
Springer, 2013.

[41] Selenium. A web browser automation tool. https://www.seleniumhq.org/,
2019. [Online; accessed 27-February-2019].

[42] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484, 2016.

[43] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[44] Internet Live Stats. Total number of websites. http://www.
internetlivestats.com/total-number-of-websites/, 2019. [Online; ac-
cessed 29-March-2019].

[45] P. D. Wasserman and T. Schwartz. Neural networks. ii. what are they and why
is everybody so interested in them now? IEEE Expert, 3(1):10–15, Spring 1988.

[46] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion,
Scott Isaacs, Ian Jacobs, Gavin Nicol, Jonathan Robie, Robert Sutor, et al.
Document object model (dom) level 1 specification. W3C recommendation, 1,
1998.

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Motivation
	Research question

	Background
	Machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Algorithms
	Random forests
	Gradient boosting machine
	Multilayer feedforward neural network

	Web technologies
	HTML
	Document Object Model
	Cascading Style Sheets

	Page segments
	Navigation
	Hero
	Gallery
	Story
	Contact
	Footer

	Related work

	Research material and methods
	Goal of the prototype
	Parser
	Features
	Data set
	Classifier

	Results
	Random forest
	Cross-validation scores
	Most and least important features
	Confusion matrix
	Duration

	Gradient boosting machine
	Cross-validation scores
	Most and least important features
	Confusion matrix
	Duration

	Multilayer feedforward neural network
	Cross-validation scores
	Most and least important features
	Confusion matrix
	Duration

	Evaluation of the results

	Summary
	Overview
	Discussion
	Case fit for Hostingpalvelu
	Future research

	References

