
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Joni Väyrynen

Ensuring Availability of a Server-Side
Rendered React Application: A Case
Study

Master’s Thesis
Espoo, April 1, 2019

Supervisors: Casper Lassenius
Advisor: Ville Kauppi

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/199295303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Joni Väyrynen

Title:
Ensuring Availability of a Server-Side Rendered React Application: A Case Study

Date: April 1, 2019 Pages: 68

Major: Software and Service Engineering Code: SCI3043

Supervisors: Casper Lassenius

Advisor: Ville Kauppi

Service availability is an essential factor for service providers affecting customer
satisfaction and the business of the service providers. This thesis presents meth-
ods to ensure availability of the service under high load as a case study for
Iltalehti, one of the two largest online newspapers in Finland.

The main techniques to ensure availability found in the literature review were
the use of load balancing, content delivery networks (CDNs), auto-scaling and
improving the performance of server-side rendered React application. Load bal-
ancing ensures that all server instances are not affected if one availability zone
suffers from failures such as power outage or hardware fails. Content delivery
networks lessen the load on the server by caching popular content and therefore
improve server performance.

To improve the server performance action research was used where each action
research cycle aimed to improve the performance. During each cycle, changes
were evaluated by stress testing the test server. The results show that server
performance was increased by about a hundred times. Some of the performance
increase was achieved by adding more computing power to servers. However, the
technical solutions that improved the performance most were client-side rendering
fallback, upgrades for Node.js and React versions and reductions of DOM content
rendered on the server. Especially, client-side rendering fallback provided great
results by improving server performance by slightly over eight times.

Keywords: availability, action research, stress testing, server-side render-
ing, Node.js, React

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Joni Väyrynen

Työn nimi:
Palvelimella renderöidyn React-sovelluksen saatavuuden varmistaminen: tapaus-
tutkimus

Päiväys: 1. huhtikuuta 2019 Sivumäärä: 68

Pääaine: Software and Service Engineering Koodi: SCI3043

Valvojat: Casper Lassenius

Ohjaaja: Ville Kauppi

Palvelun saatavuus on tärkeä tekijä palveluntarjoajille vaikuttaen asiakkaiden
tyytyväisyyteen ja palveluntarjoajien liiketoimintaan. Tämä diplomityö esittelee
tapoja varmistaa palvelun saatavuus korkean kuormituksen alla. Työ on tapaus-
tutkimus Iltalehdelle, joka on toinen Suomen kahdesta suurimmasta Internetissä
toimivasta uutispalveluista.

Kirjallisuuskatsauksen aikana löydetyt tärkeimmät tekniikat saatavuuden var-
mistamiseen ovat kuormituksen tasaaminen, sisällönjakeluverkot, automaattinen
skaalaus ja palvelimella renderöidyn React-sovelluksen suorituskyvyn parantami-
nen. Kuormituksen tasaus varmistaa, että ainakin osa palvelininstansseista toi-
mii, vaikka yksi saatavuusalue kärsisi ongelmista, kuten esimerkiksi sähkökatkosta
tai laitteistoviasta. Sisällönjakeluverkot vähentävät kuormaa palvelimella ja pa-
rantavat palvelinten suorituskykyä tallentamalla suositut sisällöt muistiinsa ja
jakamalla niitä suoraan muististaan.

Työssä tehtiin toimintatutkimusta ja jokaisen toimintatutkimussyklin tarkoi-
tus oli parantaa palvelun suorituskykyä. Jokaisen syklin aikana tehdyt muu-
tokset evaluoitiin kuormitustestaamalla testipalvelinta. Työn tulokset osoitta-
vat, että palvelun suorituskyky parani lähes satakertaisesti. Osa suoritusky-
vyn parannuksesta tuli palvelinten laskentatehon lisäyksestä. Tekniset ratkaisut,
jotka paransivat suorituskykyä eniten, olivat selainrenderöintivarasuunnitelma,
päivitykset Node.js ja React-versioihin sekä palvelimella renderöitävän sisällön
vähentäminen. Erityisesti selainrenderöintivarasuunnitelma toi hyvät tulokset pa-
rantamalla suorituskykyä kahdeksan kertaisesti.

Asiasanat: saatavuus, toimintatutkimus, kuormitustestaus, palvelimella
renderöinti, Node.js, React

Kieli: Englanti

3

Abbreviations and Acronyms

API Application Programming Interface
AWS Amazon Web Services
CDN Content Delivery Network
CPU Central Processing Unit
DDoS Distributed Denial-of-Service
DOM Document Object Model
HTML Hyper Text Markup Language
SEO Search Engine Optimization
SSR Server Side Rendering

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7

2 Background 9
2.1 Availability . 9
2.2 Content Delivery Networks . 11
2.3 Load Balancing . 12
2.4 Auto-Scaling . 13
2.5 React Application Optimization 15
2.6 Load, Performance and Stress Testing 17

3 Case Organization 18
3.1 Organization Overview . 18
3.2 Technology Overview . 19
3.3 Risk Analysis . 24
3.4 Objectives . 24

4 Methods 26
4.1 Research Questions . 26
4.2 Action Research . 27

4.2.1 Diagnosing . 28
4.2.2 Planning and Taking Action 28
4.2.3 Evaluation . 28

5 Results 32
5.1 Cycle 1: Initial Performance 32
5.2 Cycle 2: More Computing Power 33
5.3 Cycle 3: Node.js Clusters . 35
5.4 Cycle 4: Reducing the Amount of DOM Nodes 37
5.5 Cycle 5: Upgrading to React 16 39

5

5.6 Cycle 6: Fixing Memory Problems and Upgrading to Node.js
Version 8 . 40

5.7 Cycle 7: Another Node.js Cluster Test 44
5.8 Cycle 8: Upgrading the Instance Type 45
5.9 Cycle 9: Client-Side Rendering Fallback 47
5.10 Cycle 10: Auto-Scaling . 49
5.11 Summary of the Results . 52

6 Discussion 54
6.1 RQ1: How to Ensure Availability of the Service Under High

Load? . 54
6.2 RQ2: How to Improve Server-Side Rendering Performance of

a React Application? . 56
6.3 RQ3: How to Auto-Scale Quickly Once High Load Starts? . . 57

7 Conclusions 59

A Gatling Stress Test Simulation Code 65

B An Example of a Gatling Stress Test Report 67

6

Chapter 1

Introduction

Failures are inevitable at some point in cloud computing. [8] Failures can
be caused by, for example, hardware fails, power outages, software defects,
high traffic peaks or distributed denial-of-service attacks. These failures can
affect service response times by slowing them or service availability by making
service completely inaccessible.

Shortcomings in availability can cause significant harm to users and ser-
vice providers. Availability issues can prevent users from using the services
they need. For service providers, availability problems can cause reputation
loss and economic harm. As the business of internet services frequently focus
on either users using the money to buy goods or users viewing advertisements,
both of those are affected if service is not available.

This thesis presents a case study of ensuring availability on the website
of Iltalehti—one of the two biggest online newspapers in Finland. With tens
of thousands of concurrent users on the Iltalehti website, a failure in service
availability could cost Iltalehti a lot. The primary business model of Iltalehti
website is to display advertisements for users and if the site does not work
advertisements cannot be shown.

The technology stack of the Iltalehti website was renewed at the end of
2017 and mid of 2018. The new website was made using React JavaScript
library. Before the launch of the website, there were shortcomings in server
performance which were feared to cause availability issues for the new web-
site. To ensure high availability of the new Iltalehti website, the following
research questions are set for this study:

• RQ1: How to ensure availability of the service under high load?

• RQ2: How to improve server-side rendering performance of a React
application?

7

CHAPTER 1. INTRODUCTION 8

• RQ3: How to auto-scale quickly once high load starts?

The structure for the remainder of this thesis is as follows: Chapter 2
contains a literature review explaining the concept of availability, techniques
to improve availability and finally methods to test availability. Chapter 3
presents the case organization Iltalehti, technologies used by case organiza-
tion and the objectives from the case organization for this thesis. Chap-
ter 4 introduces the research questions and the research method—action
research—used for the study. Next, Chapter 5 presents the results of the
empirical research in the form of action research cycles. Then, Chapter 6
contains a discussion of the results. Lastly, Chapter 7 concludes the study.

Chapter 2

Background

This chapter takes a look at the concept of availability and techniques to
improve it in cloud computing. Section 2.1 defines availability and other
concepts closely related to it. Sections 2.2, 2.3 and 2.4 introduce techniques
to improve availability in means by cloud computing. Section 2.5 presents
means to improve the performance of React application. Lastly, Section 2.6
presents methods to measure availability with load and stress testing.

2.1 Availability

Failures are inevitable at some point in cloud computing. [8] Two dimen-
sions can measure the service failures: extent (how many users or operations
are affected by failure) and duration (how long the failure took). If service
failure is brief (lasting only a few seconds), users usually retry requesting
the resource and availability metrics are not impacted. However, if failure
continues for more than a few seconds, users will judge the website being
down and probably abandon the service. Therefore, availability metrics are
impacted.

Service availability metric can be calculated per uptime and downtime as
follows: [8]

Availability =
Uptime

Uptime−Downtime
(2.1)

Uptime is not often calculated since it would require constant monitoring.
Therefore, another method to calculate availability is to use total service time
and downtime:

Availability =
TotalInServiceT ime−Downtime

TotalInServiceT ime
(2.2)

9

CHAPTER 2. BACKGROUND 10

Number
of 9’s

Service
Availability
(%)

System Type Monthly
Down
Minutes

Practical Meaning
(down per year)

1 90 Unmanaged 4,383.00 5 weeks

2 99 Managed 438.30 4 days

3 99.9 Well managed 43.83 9 hours

4 99.99 Fault tolerant 4.38 1 hour

5 99.999 High availability 0.44 5 minutes

6 99.9999 Very high
availability

0.04 30 seconds

7 99.99999 Ultra availability - 3 seconds

Table 2.1: Service Availability and Downtime Ratings [8]

TotalInServiceTime is the time that service is expected to be running
during a period, for example, the sum of minutes in a month, and downtime
is minutes the service has been unavailable during the same period. For
example, using Equation 2.2 with a period of one month (43200 minutes)
and downtime 30 minutes, availability would be:

Availability =
43200 − 30

43200
= 99.93% (2.3)

Service availability ratings are often defined by a number of nine’s in ser-
vice availability as seen in Table 2.1. Therefore, in the example Equation 2.3
above, the value of availability has three nine’s and would qualify in the well-
managed system type. Different services aim for different system type based
on the criticality of the service. For example, banks should strive to very
high availability rating. On the other hand, services with a large number of
users risk losing much more from downtime compared to smaller services due
to missing the chance of showing adverts to users, for instance.

Service reliability is a concept very close to service availability. Service
reliability represents an ability to provide correct responses in an acceptable
time. Whereas availability measures the time that the service has been avail-
able, reliability measures portion of the successfully delivered request. Reli-
ability can be calculated similarly to availability as shown in Equation 2.4.
[8]

CHAPTER 2. BACKGROUND 11

Reliability =
SuccessfulResponses

TotalRequests
(2.4)

All failed transactions are not necessarily unsuccessful responses in terms
of reliability. [8] For example, a server may return 404 Not Found when
a user navigates to a web page that does not exists and is not even sup-
posed to exist, or 403 Forbidden when a user tries to visit on a page
they are not authorized to view. In these examples failed transactions are
successful responses. However, if the server returns responses such as 500
Server Internal Error or 503 Service Unavailable, responses
are clearly failures and unsuccessful. Also, if the request timeouts (504
Gateway Timeout) or the request takes longer than acceptable response
time requirement, responses count as failures.

Service response time is an essential factor concerning availability and
reliability. Terms response time and latency are often used interchangeably
and inconsistently in the literature. In this thesis we will use a definition
by Jamae [18]: Latency is the time a request travels across the network.
Processing time is the time the server uses processing the request. Thus
the time difference between the moment the server received the request and
the moment it served to request. Response time is the total time it takes
from the moment the user sends the request to the moment they received the
response. Therefore, response time is a sum of latency and processing time.

2.2 Content Delivery Networks

Content Delivery Networks (CDNs) improve the quality of service in many
ways. CDNs bring an extra layer to client-server communication. With CDN
instead of making a request directly to a server, the request is routed first
to CDN. If CDN does not have the requested resource in its memory, CDN
requests the resource from the server. When CDN receives the resource from
the server, it delivers the resource to the client and saves the resource to
its memory. Next time the same resource is requested CDN can deliver it
straight from its memory. [24]

CDNs improve content delivery speed in two means. Firstly, a typical
CDN consists of multiple edge servers distributed around the world. There-
fore, there should always be a CDN close to the user. As the origin server
is likely located farther away from the user, it takes less time to deliver con-
tent from CDN [24]. Secondly, the processing of the resource (HTML for
instance) on the origin server may take some time. Therefore, delivering
content directly from CDN is faster.

CHAPTER 2. BACKGROUND 12

CDNs can also improve the reliability and availability of the service [24].
As popular resources are cached in the memory of CDN, they can be delivered
from CDN even if the origin server would be down. In case the origin server
is not working, CDN will not help with the new resources, but it can still
deliver the popular—although not updating—content such as a front page of
the web service.

CDNs also reduce the amount of load on origin servers since content
already cached can be delivered directly from CDN. Reduced load on server
leads to better availability through server being able to serve more unique
requests. Reduced load also means that server capacity may be lowered
resulting lower server costs.

While using CDN may lower server costs, the use of CDN itself brings
extra costs [24]. In addition to the price, another disadvantage or at least
difficulty with CDNs is cache expiration. When serving static non-changing
content—such as images—from CDN, caching is not an issue as static con-
tent can stay cached practically forever. However, caching becomes more
challenging when handling content that may change, such as HTML pages.

The content freshness is especially crucial to media companies. As Dunn
and Crosby [14] point out, news articles may receive dozens of modification
during the first hours after publication. During that time article HTML
cannot stay cached in CDN for too long otherwise readers will not see updates
on the article fast enough. On the other hand, news websites may have high
traffic peaks due to flash news, such as natural disasters or terrorist attacks,
when the use of CDN is necessary to handle the number of increased requests.

CDNs improve availability and reliability, but the protection they offer
against distributed denial-of-service (DDoS) attacks is not flawless even with
long content cache times. [30] CDNs consist of multiple edge servers and
if the requested resources do not exist in the cache of the edge server, the
resources have to be requested from the origin server. Therefore, by making
requests through all globally distributed edge servers, the attacker may create
high traffic on the server. Query strings are another possible attack vector
through CDNs. If query strings are allowed, each request to a resource with
different query string is forwarded to the origin server.

2.3 Load Balancing

Cloud server outages can have a considerable impact on the availability of
cloud systems. Outages may be results from failing software or hardware,
power outage or denial of service attacks. [9] As outages may be related to
just one location, running more than one server in distributed locations can

CHAPTER 2. BACKGROUND 13

improve service availability.
Load balancing refers to the process of distributing the workload across

the distributed servers. A load balancer serves as a single point of entry for
all requests and then forwards them to the instances [10]. If one instance of
the distributed system is offline, the load balancer can route all the traffic
to the other servers. Therefore, it ensures that the service is all the time
available to users. [9]

Load balancing also improves resource utilization and response times by
aiming to equalize workload across instances of the system. [2] Load bal-
ancing algorithms can be divided into two categories based on whether they
take the current system state into account when deciding to which instance
request is routed: static and dynamic algorithms. Dynamic load balancing
algorithms take the current system state into account. Therefore, they are
more probable to provided steadier load to instances and thus better avail-
ability.

Load balancing is also the underlying technique enabling the auto-scaling.

2.4 Auto-Scaling

Auto-scaling is a process of changing the server capacity—usually adding or
removing computing power or memory—based on need. As explained in the
earlier section, a load balancer serves as a single point of entry for all requests
and then forwards them to the instances [10]. All instances are running an
identical version of the application, and the load balancer aims to keep their
load equal. The load balancer has information of all its instances, and when
the auto-scaler adds or removes instances, the load balancer will start or stop
forwarding requests to them [20].

The main problem with auto-scaling cloud computing environments is to
choose the right amount of resources [20]. Lorido-Botran et al. point out that
the scaling itself is not difficult; it is difficult to identify how much resources
are needed to answer the demand while keeping costs low.

Resource scaling can be divided into two groups—horizontal and vertical.
In horizontal scaling, resources are the amounts of instances, and instances
are added or removed based on the demand. In vertical scaling resources are
the hardware of the instance, for example, CPU power or memory. Based
on the need more CPU power or memory is added to or removed from the
instance. However, common operating systems do not allow changes on the
machine without rebooting them which is why cloud companies usually pro-
vide only horizontal scaling. [20]

Each auto-scaler faces problems with provisioning. Provisioning problems

CHAPTER 2. BACKGROUND 14

can be divided into under-provisioning, over-provisioning, and oscillation. In
under-provisioning, the server is not able to handle requests in reasonable
time due to a too low amount of resources. On the other hand, in over-
provisioning server has more resources than needed to handle the number
of current requests. Over-provisioning causes unnecessary costs, especially
if the instances are running on low load, but it is better for the end users
as it ensures that the service keeps working. Oscillation is a combination
of both unwanted events where scaling is done too quickly before seeing the
impact of the previous scaling action. Therefore, for example momentarily
under-provisioning may lead to over-provisioning. [20]

The four different phases of the auto-scaling process are monitoring, anal-
ysis, planning, and execution. [20] To scale correctly, the auto-scaler needs
data of system state from a monitoring system. The decisions made by the
auto-scaler are based on the performance metrics provided by the monitoring
system. Ghanbari et al. [16] presented an extensive list of possible perfor-
mance metrics divided to seven groups based on what and where is being
measured: hardware, general OS process, load balancer, web server, applica-
tion server, database server, and message queue.

In the next phase, analysis, the metrics collected in the monitoring phase
are analyzed. Auto-scalers may either take direct actions based on the ana-
lyzed data or make predictions of the future state of the application. Antic-
ipating the future may lead to better results since there is typically a delay
in the actions of the auto-scaler. [20]

Once the current state of the system is analyzed or the future predicted,
the auto-scaler will plan its actions. The decision made in the planning
phase can be to add or remove instances or even to do nothing. Lastly,
in the execution phase, the decisions made in the previous phase are being
carried out. [20]

Lorido-Botran et al. [20] divide the auto-scaling techniques into five
groups based on their underlying theory or technique used to build them:
threshold-based rules, reinforcement learning, queuing theory, control theory,
time series analysis. In this thesis, we focus only on threshold-based rules as
Elastic Beanstalk provides only threshold-based rules for auto-scaling.

In threshold-based rules scaling decisions are made based on the selected
performance metric. Also, the scaling action (add or remove instances),
the upper and the lower thresholds and durations, and the cooldown period
must be defined. [20]. For instance, the selected performance metric could be
CPU usage, the scaling action adding or removing two instances, the upper
threshold 70% and the lower threshold 30%, both durations two minutes and
the cooldown period four minutes. In this case, if CPU usage stays over 70%
for over two minutes, two new instances will be added, and then no actions

CHAPTER 2. BACKGROUND 15

will be taken for the next four minutes.

2.5 React Application Optimization

React is a JavaScript library for building user interfaces developed and main-
tained by Facebook. Although React was published already in 2015, hardly
any literature of the server-side performance of React exists. The main per-
formance issue of server-side rendered (SSR) React is its renderToString func-
tion which creates the string presentation of HTML to be sent to a client.
The renderToString function is slow due to being synchronous and single-
threaded [25].

The most articles of server React improvements [28] [25] offer just simple
tips of using the production mode of Node.js and running the minified ver-
sion of React. Rangel [25] claims that the production mode of Node.js makes
React up to 400% faster compared to the development mode as in the devel-
opment mode React performs lots of error checking which slows React down.
According to Rangel, the minified version of React improves performance up
to 30%. While these tips promise massive performance improvements, their
value is quite low as it could be argued that it is self-evident to use those
settings.

However, some articles and blog posts provide more valuable instructions
for SSR React. One of those is a blog post of React version 16 [11]. React 16
includes an improved version of the renderToString function. According to
Aickin [1] it is 3.8 times faster than the same in React 15 when using Node.js
version 8.4 and three times faster when using Node.js version 6. Aickin’s
performance tests also show that the newer version of Node.js is an excellent
performance improvement: in his tests with React 16, server-side rendering
with Node.js version 8.4.0 was almost twice as fast as with Node.js version
6.11.3. Arkwright [7] had similar even if not quite as beneficial performance
results in his tests: upgrading from Node.js 6 to Node.js 8 while using React
15 yielded 30% performance improvement and upgrading from React 15 to
React 16 while using Node.js 8 brought 25% improvement.

Arkwright also presents other interesting techniques to improve the per-
formance of server rendered React applications. The first of those is the
use of isomorphic (also known as universal) rendering. While, in traditional
React applications all pages are rendered on a client and with server-side
rendering on the server, with isomorphic rendering the first page is rendered
on the server and following pages on the client. Therefore, with isomorphic
rendering, as Arkwright points out, a session including 5 page views causes
only one request to the server and the rest of the pages are only rendered on

CHAPTER 2. BACKGROUND 16

the client. This causes 80% less load for the server compared to traditional
server-side rendering. [7]

The second interesting performance improvement presented by Arkwright
is a client-side rendering fallback. The idea behind it is to skip the rendering
on the server if the load is too high [7]:

1. On the server set up a request queue length counter.

2. When a request is received, increase the value of the counter by one
and when a request is served decrease the value of the counter by one.

3. If the queue length is less than the selected value X, proceed as normal.

4. If the queue length is more than the selected value X, skip rendering
on the server and let the browser handle rendering based on the data
in state management library Redux store.

Arkwright reports around eight times better performance in his bench-
marks with the client-side rendering fallback. However, as Arkwright points
out, with the client-side rendering fallback all users and search engines will
not receive server rendered content and will miss its benefits. On the other
hand, eight times better capacity during traffic peaks is a great benefit.

As the rendering components on server is relatively slow, multiple [17]
[26] [7] blog posts present techniques to cache rendered component on the
server. The idea behind component caching is that most websites have the
same components—for example, header, navigation, and footer—repeated
on all pages. Therefore, it is a waste of computing resources to re-render
them on all requests. Many third-party libraries such as electrode-react-ssr-
caching [17] and react-component-caching [26] offer techniques to cache all or
selected components and returning those components from the cache instead
of rendering them on the following requests.

Grigoryan [17] reports up to 70% performance improvement and Ark-
wright [7] up to 40% improvement with component caching. The performance
gained with component caching is not a static percentage but depends on the
number of elements being cached. However, using component caching is not
issue free. The third-party component caching libraries rely on the private
APIs of React and make changes on them. Therefore, a change in React
private API with a new React version may break the component caching of
third-party libraries.

CHAPTER 2. BACKGROUND 17

2.6 Load, Performance and Stress Testing

To ensure that service works and is available under high load, the service
must be tested against a high load. This can be achieved by using load,
performance or stress testing.

Load, performance and stress testing are system evaluation techniques
where synthetic workload are sent to the system being tested [19]. All the
terms are frequently used interchangeably in the literature, but some differ-
ences can be found. Load and performance testing aims to simulate a realistic
workload. Performance testing focuses on system performance metrics such
as response time and availability whereas load testing evaluates how long
does it take to complete predefined tasks. The biggest difference in stress
testing compared to the other two is that load generated during a stress test
puts the system under test at or beyond its capacity. [13]

Load, performance and stress testing for websites are based on a load
generator which mimics a user using a browser. The load generator creates
virtual users who then send requests to the system under the test. The load
generator records each request and can tell the response time or status (suc-
cessful or failed) for each request. [21] The analysis of system performance
and availability can be made based on response times and their statuses. If
some requests failed during the test, the service would not have been avail-
able to all users under a similar load as during the test. Also, if requests took
too long, users might stop waiting and deem that service is not available.

Chapter 3

Case Organization

This chapter takes a look at the case organization Iltalehti. Section 3.1 in-
troduces the company, history of the Iltalehti website and website analytics.
Section 3.2 dives deeper into the technology choices and our server architec-
ture. Section 3.3 defines risks which our site may face and which need to be
taken into account. Finally, Section 3.4 sets objectives for the thesis for the
organization point of view.

3.1 Organization Overview

Iltalehti is a Finnish news and lifestyle media owned by Alma Media Suomi
Oy. Iltalehti consists of multiple different topics such as news, sport, en-
tertainment, videos, health, traveling, tech, cars, and fashion. The story of
Iltalehti originates back to 1912 and Uusi Suometar newspaper, but regularly
Iltalehti tabloid has been published since 1980. Today tabloid newspaper is
published on weekdays and Saturdays. The tabloid newspaper and its elec-
tronic replica edition had 234,000 daily readers at the end of 2017.

The first Internet version of Iltalehti was published in 1995. At first, on-
line news was only released once per day. Later, the news was also published
during significant events and since 2005 news has been published around the
clock. In 2013 mobile web version (m.iltalehti.fi) was published alongside
the desktop site (www.iltalehti.fi) to provide a better user experience for
mobile phone users. Since the start, both mobile and desktop versions of
the Iltalehti website had been static websites serving static HTML files. In
autumn 2016 we started the project to renew the technology of our website.
The new version of the mobile website was published in November 2017. The
new website was designed to be responsive, and it was released to desktop
users in May 2018 after which the same responsive website was delivered to

18

CHAPTER 3. CASE ORGANIZATION 19

both mobile and desktop users.
In 2017 Iltalehti.fi was the second biggest Finnish website according to

TNS Metrix behind the main competitor Ilta-Sanomat [29]. In 2017 we had
the total of 5.4 billion page views (14.9 million per day on average) and
1.4 billion sessions (3.9 million per day on average) across on all our online
platforms according to our Google Analytics statistics. In addition to mobile
and desktop websites, our online platforms also include native applications
to all most important mobile operating systems: Android, iOS, Windows
Phone.

In 2017 page views were almost even among the all three platforms the
percentages of desktop, mobile and applications being 33%, 32%, and 35%
respectively. However, these percentages may vary daily. For example, the
portion of mobile page views was 39% on the 18th of August 2017, which was
the biggest news day of 2017 with 21.5 million page views. At most, we had
48,278 page views during one minute during that day, which is 804 page views
per second on average. 69% of page views came from mobile and desktop
sites, so on average, they had 555 page views per second. Unfortunately,
Google Analytics only offers page view data in one minute interval, so we do
not have exact data of the most page views per second. However, considering
some variation, it could be estimated that we had at least 600 page views
per second on our websites at some point.

3.2 Technology Overview

Our renewed website is made with React JavaScript library. React is a
component-based user interface library which does not make assumptions of
other parts of application such as application state management, routing,
and API interactions [15]. For state management, we are using Redux and
for routing Universal Router which means that our website uses isomorphic
rendering. Isomorphic rendering is a combination of traditional client-side
rendering and server-side rendering where the first page is rendered on the
server and following pages only on the client as explained in Section 2.5.

On the client-side, our website acts as a single page application meaning
that after the first page load the site will not make any requests to the server
but dynamically changes the content on the page. When a user navigates on
the website, the client side JavaScript code determines which API requests
the browser has to make to show wanted content to the user. For instance,
when a user clicks a link to an article, the client-side code will request the
article with specific id from the Iltalehti API and based on the data received
from the API, the React code can change the content on the web page and

CHAPTER 3. CASE ORGANIZATION 20

show the article to the user.
On the server-side, we run our React code on Node.js JavaScript runtime.

When the server receives a request, it behaves just as a browser making same
API requests but instead of rendering content for the browser, the server uses
the renderToString function of React. The renderToString function, as the
name suggests, creates a string presentation of the HTML, which then can
be served for the browser. As the document sent to the browser already
contains the HTML presentation of the page, the browser can view content
faster for the user compared to client-side rendering where browser first has
to load JavaScript code, then make the API request and only then render
the content.

In addition to being able to view requested page faster for the user, server-
side rendering provides search engine optimization (SEO) benefits. While
the biggest search engines, such as Google, can nowadays crawl client-side
rendered content, we had issues with only client-side rendered pages with
some other engines we were using while developing our new website. The
biggest drawback of the server side rendering is its cost as explained later in
this thesis.

As discussed in Section 2.5, isomorphic rendering reduces server load since
only the first page view generates a request to the server. According to our
Google Analytics data, our users viewed 3.55 pages per session in 2017. It
can be argued that during each session one request is made to the server—the
rest of the page views are processed on the client. Therefore, from the earlier
estimated 600 page views per second, only about 170 would cause a request
to the server because of the use of isomorphic rendering.

Our website’s server infrastructure is run on Amazon Web Services (AWS).
For this thesis, the most relevant parts of AWS that we are using are EC2,
Elastic Beanstalk, CloudFront and CloudWatch. EC2 (Amazon Elastic Com-
pute Cloud) provides a variety of different type and size cloud computing
instances on which servers are run. The instance types vary from general
purpose to compute optimized, memory optimized, storage optimized and
accelerated computing. During the research for this thesis, we used both
general purpose (T2) and computed optimized (C4 and C5) instances. Ta-
ble 3.2 presents the on-demand prices for the selected T2, C4, and C5 EC2
instances.

Elastic Beanstalk is a combination of AWS services aimed to make deploy-
ing and running web application easy. Elastic Beanstalk uses EC2 instances
but also offers load balancing, auto-scaling and monitoring by default. [6]
The load balancing solution of Elastic Beanstalk works well for us out of the
box. We are always running at least two instances on two different avail-
ability zones to ensure better availability in case one of the zones becomes

CHAPTER 3. CASE ORGANIZATION 21

Instance Type
Number
of vCPU

Memory
(GB)

Price per
hour (e)

Price per
30 days (e)

t2.nano 1 0.5 0.0063 4.54
t2.micro 1 1 0.0126 9.07
t2.small 1 2 0.0250 18.00
t2.medium 2 4 0.0500 36.00
t2.large 2 8 0.1008 72.58
t2.xlarge 4 16 0.2016 145.15
t2.2xlarge 8 32 0.4032 290.30

c4.large 2 3.75 0.1130 81.36
c4.xlarge 4 7.5 0.2260 162.72
c4.2xlarge 8 15 0.4530 326.16

c5.large 2 4 0.0960 69.12
c5.xlarge 4 8 0.1920 138.24
c5.2xlarge 8 16 0.3840 276.48

Table 3.1: On demand prices of the selected T2, C4 and C5 EC2 instances
at the end of 2018. [5]

unavailable. However, the default auto-scaling solution scales instances only
based on network usage, which does not meet our needs as network usage
does not always linearly correlate with the load on the server.

In addition to Elastic Beanstalk monitoring, we are also using Amazon
CloudWatch as a monitoring service. CloudWatch supports more metrics
compared to Elastic Beanstalk monitoring and allows us to send additional
metrics as well. In CloudWatch we can draw different kind of charts from se-
lected metrics. We mostly use line charts and Figure 3.1 presents an example
of charts we are using. We also use CloudWatch to monitor other services
than Elastic Beanstalk, for example, CloudFront. In addition to monitoring,
we are using CloudWatch to send alarms if specific terms are fulfilled, for
example, if request amount to our servers becomes higher than expected.

We use Amazon CloudFront as our content delivery network (CDN). De-
pending on the page we cache responses for 10-60 seconds in CloudFront.
When the page is cached on the CloudFront, a request for the page does not
cause a request to the server as the page is just delivered from the memory
of CloudFront. Considering the behavior of our users, most of the requests
are delivered from the CDN. In 2017 the front page of our website was the
landing page for 61% of our users. Therefore, the front page was almost

CHAPTER 3. CASE ORGANIZATION 22

Figure 3.1: An example of a CloudWatch chart plotting memory and CPU
utilization during stress tests

always delivered from CDN.
There is a lot more variation for the rest of the landing pages. The second

most visited landing page in 2017 was the front page of the news section
(iltalehti.fi/uutiset) being the landing page for only 1.7% users. However,
when we examine daily data, we see that just a small amount of page views
have a unique landing page or cause a request to the server. For example, on
8th of February 2018, an average news day with 14.9 million page views on all
platforms, which of 4.9 million on mobile, Google Analytics shows that there
were 23,164 different landing pages on the mobile website. Our CloudWatch
data shows us that on the same day we had 614,000 requests on the server of
the mobile site which means that only 12.5% of page views caused requests
to the server on that day. This combined to use of isomorphic rendering
reduces the number of requests to the server to a low number. Out of the
estimated 600 page views per second it can be estimated that only 20-40
cause a request to the server.

Figure 3.2 summarizes the server architecture of the Iltalehti website and
the data flow when a user requests a page, for example, an article. The
request goes first to CloudFront, and if the HTML of the requested article
is in the cache of CloudFront, it is delivered directly from there. Otherwise,
CloudFront requests the page from the server. The request is then routed to
the load balancer which requests the page from a selected instance. Within
the instance, the request is directed to Nginx process running on a chosen
CPU core. Nginx works as a proxy, and in case of an article page, it routes
the request to Node.js process running the React application. The React
application requests the article data from the Iltalehti API and once all

CHAPTER 3. CASE ORGANIZATION 23

needed data is received React application creates the HTML of the page
which is then routed through CloudFront to the user.

The Iltalehti API plays a crucial role in the availability of Iltalehti website.
If the API does not work, then also the site will not be able to display any
content. However, in this thesis, we focus on the other aspects affecting the
availability of the Iltalehti website and expect the API to work correctly.
Nonetheless, many findings of this thesis also apply to the Iltalehti API as
well.

Figure 3.2: Summary of the server architecture of the Iltalehti website

CHAPTER 3. CASE ORGANIZATION 24

3.3 Risk Analysis

Considering the earlier analytic statistics, in a normal situation, we can serve
a high amount of pages with a very low load on the server side. However,
we also have to have some capacity on the server to deal with the situation
where something goes wrong. We can identify three possible threats to our
server which are a failure in the client-side React JavaScript code, a failure
in CloudFront cache and a distributed denial-of-service (DDoS) attack.

A failure in the client-side React code could mean that the JavaScript
code does not get executed at all or breaks at some point which means that
all page changes would cause a request to the server. This failure could
multiply the number of requests to the server by two or three, but as long as
CloudFront cache works, the impact to the server performance would be quite
low. The more significant impact would be on client-side user experience as
all features would not work, and to the financial side, as we would not be
able to display advertisements. The probability to JavaScript error is quite
low as the error should go unnoticed through all our development instances.
Even if the error went to the production, we would be able to revert to the
earlier error-free version within a few minutes.

At worst a failure in CloudFront could mean that our whole website would
not work. Our domain name system points to CloudFront address, and if
CloudFront would not work and retrieve data from our server, the user would
not get their requested content, and the website would not work. Another
possible failure in CloudFront, which would have an impact on our servers,
could be an error caching requests and retrieving them all from the server.
Considering the earlier estimation of how much CloudFront reduces requests
to the server, this could make server load almost ten times higher.

CloudFront protects against DDoS attacks in certain situations. For ex-
ample, if an attacker makes requests to a single URL, most of the requests
are returned from CloudFront. Since we are not caching per query strings,
adding them does not help the attacker. However, when an object expires
from the cache, CloudFront lets all request through to the server until the
server responses with the new object which CloudFront then caches and
serves for following requests. CloudFront also does not help if the attacker
keeps making requests to new URLs.

3.4 Objectives

Our primary objective is to have as close as possible to 100% uptime on
our website with reasonable costs. While 100% availability might usually be

CHAPTER 3. CASE ORGANIZATION 25

impossible to achieve, availability should at least be closer to 99.99%. If the
costs were not a limitation, we would be able to accomplish that by simply
using an almost infinite amount of server capacity and not to take concern for
anything else. However, as we want to do that as economically as possible,
we need to take into account other aspects as well.

Considering the risks explained in the previous section, we concluded that
our server must be able to serve at least 1,000 requests per second at any
time. With that performance, our server would remain responsive during the
biggest news day of the year with over 600 requests per second even though
both client-side rendering and CloudFront stopped working as expected.

Performance of 1000 requests per second is also a decent buffer against
a DDoS attack even if in most cases it will not be enough. Therefore, our
server performance must be able to scale based on traffic. However, selecting
the right amount of resources to scale is hard. After a discussion, we decided
to set an objective that our server must be able to serve 3000 requests per
second—three times more than in the normal state—within 5 minutes from
the start of the high request rate.

To achieve these objectives, we have to first optimize our server perfor-
mance so that the server can handle as much traffic as possible. Secondly,
we need to use auto-scaling to adapt to the changing amount of traffic and
not to run an excessive amount of servers close to the idle state when the
amount of traffic is low.

Chapter 4

Methods

This chapter presents the chosen research method for the study. The main
objective of this study is to ensure the availability of service under high load.
Section 4.1 introduces research questions. Section 4.2 presents used research
method: action research.

4.1 Research Questions

The main objective of this study is to ensure the availability of the Iltalehti
website under the high load. The other objectives we set in Section 3.4 were
that at any time our server must be able to serve at least 1000 requests per
second and that within five minutes of the start of high load the server must
be able to serve 3000 requests per second, thus trebling its performance.
Based on these objectives we formulated the following three research ques-
tions:

• RQ1: How to ensure availability of the service under high load?

• RQ2: How to improve server-side rendering performance of a React
application?

• RQ3: How to auto-scale quickly once high load starts?

RQ1 aims to find answers to our primary objective and is already dis-
cussed to some extent in Chapters 2 and 3. RQ2 and RQ3 can be considered
as subquestions of RQ1 as their answers increase the performance of the sys-
tem and thus also the availability. RQ2 and RQ3 also search for answers to
our other two objectives.

26

CHAPTER 4. METHODS 27

4.2 Action Research

From the start, it was clear to us that our research would be an iterative and
cyclical process where each step taken would aim to increase the performance
of our server and thus its availability under the high load. Therefore, we chose
to use action research.

Action research cycles are defined in multiple different ways in the litera-
ture. For example, Susman and Evered [27] present five phases: diagnosing,
action planning, action taking, evaluating and specifying learning. We, how-
ever, chose to follow the model of the action research cycle by Coghlan and
Brannick [12] as presented in Figure 4.1.

Figure 4.1: The action research cycle by Coghlan and Brannick [12]

The only small change we did to Coghlan’s and Brannick’s model was
combining planning and taking action in our results reporting. Our research
included both steps, but they are reported as one to reduce repetition since
frequently taking action would have just included words: ”Execute actions as
planned.” Therefore, the action research cycle steps presented in this research
are:

1. Diagnosing

2. Planning and taking action

3. Evaluating

The following subsections describe the above steps in our research.

CHAPTER 4. METHODS 28

4.2.1 Diagnosing

The main issue through our research was that our server was not able to
serve enough requests per second. The main reason for this was that the
performance of the server side rendering of React was too low. The main
diagnosis did not change during the research as there was not much we could
do to change the server-side rendering function of React.

However, on each cycle, we also tried to find other smaller issues and fix
those to improve the overall performance. On some cycles diagnosis came
from the results of the previous cycle where the actions made did not yield
the expected results.

4.2.2 Planning and Taking Action

The planning of action for each cycle was made either based on the smaller
issues found during diagnosing or on the performance improvement ideas
invented by us or found in the literature. During the planning, we also made
assumptions of how changes should improve the performance.

The acting included making the planned changes to the code or the server
settings. Once the changes had been made and tested locally, they were de-
ployed to an EC2 instance running on Elastic Beanstalk and then evaluated.

4.2.3 Evaluation

Evaluation of actions was done by stress testing the test server. We used the
Gatling Load Testing tool to conduct our stress tests. We chose Gatling as
we had already used it to stress test our other products. We installed Gatling
to the EC2 instance from which we ran the load to the test server deployed
on taking action step.

In Gatling, each stress test is a simulation which consists of three main
parts: HTTP configuration, scenario definition, and user injection. The
URL of the target website with the desired request headers are defined in
the HTTP configuration. The wanted HTTP method (we only used the GET
method), and the path or paths of the pages under the test are specified in
the scenario definition.

We used a scenario with a list of different paths which were requested
in order repeatedly. The list contained paths for 10000 different articles
(our article path format was at the time /section/article id, for example
/kotimaa/201802042200718691). Even though we ran the load straight to
Elastic Beanstalk (we bypassed CloudFront) we wanted to simulate a situa-
tion where the server gets a large number of different requests. In production,

/section/article_id
/kotimaa/201802042200718691

CHAPTER 4. METHODS 29

if the same article is requested repeatedly, it will be returned from the cache
of CloudFront.

The virtual users who make the actual requests are generated in the user
injection part of the Gatling simulation. As we wanted to run stress tests
with different amount of requests per second, we injected a large number of
users to the simulation and then throttled them. In throttling, we defined
the number of requests per second, how many seconds it should take for
the simulation to reach the selected amount of requests and for how many
minutes we wanted to hold desired request amount. Unless otherwise stated,
we kept ramp-up time in 30 seconds and ran each test for 3 to 5 minutes.
Our Gatling simulation code is presented in Appendix A.

Until the auto-scaling tests, each stress test was run against a single
instance. We used only one instance to lessen the amount of load needed to
bring the server to the edge of its capacity and to make monitoring of server
status easier. Also for monitoring purposes, we kept the requests per second
rate for each stress test constant. We could have done a test scenario where
the requested amount kept steadily increasing but finding the performance
limit of the server would have been harder and the results less reliable.

We got results from the stress tests from two sources: from the Gatling
simulation report and by monitoring the CPU and memory usage of the
server. Once Gatling has run the simulation, it provides an HTML doc-
ument presenting the results of the stress test. An example of simulation
results is presented in Appendix B. At the top of the results page is a bar
chart showing a number of requests divided to four bars: requests below 800
milliseconds (green bar), requests between 800 and 1200 milliseconds (yellow
bar), requests over 1200 milliseconds (orange bar) and lastly failed requests
(red bar). This bar chart shows quickly whether simulation was successful or
not. If all requests were below 800 milliseconds, the system was performing
correctly. If most requests were below 800 milliseconds but some between
800 and 1200, the system is running close to its limit. Further, if there were
a significant number of requests above 1200 milliseconds or some even failed,
it indicates that there was too much load for the system to handle.

Following the bar chart, the result page has two tables. The first table,
statistics, presents response statuses and response time percentiles for each
requested paths. As we are making requests to up to 10000 different pages,
this information is not very usable. However, the top line of the table has
response time percentiles for all requests and shows, for example, that 50%
of requests were delivered in over 5 seconds. The top line gives us more
information on how long requests took compared to the earlier bar chart
which only tells that requests took more than 1200 milliseconds. The second
table shows the error codes and their counts and has little use for us since

CHAPTER 4. METHODS 30

we already see from the bar chart if some requests failed.
There are more charts below the tables. The line chart of active users

along the simulation provides not useful information for us. The next chart,
a bar chart of response time distribution, gives us similar information as the
response time percentiles for all requests from the statistics table but just
from a slightly different angle. Below that is an area chart of response time
percentiles over time during the simulation. This chart tells us whether the
responses took a long time during the whole simulation or was there just one
peak during which response times were long.

The last two charts present the number of requests and the number of
responses per second. If the simulation went well, the number of requests per
second was just straight lines after the first 5 seconds (the time to reach the
desired requests per second rate). However, it seemed that if the load was
way over the capacity of the server, Gatling started to throttle the number of
requests it made. On the other hand, responses per second line usually had
some small variation (plus or minus 10%) compared to requests per second,
especially if the server was running on high load.

All in all, our analysis made based on the results of Gatling followed
the following pattern: if all requests were below 800 milliseconds, the server
was able to handle that load, and therefore we added more requests per
second and ran another stress test. If we saw some requests between 800 and
1200 milliseconds, we knew that the system was running close to its limit.
We still added some more requests to see if responses went then over 1200
milliseconds. Further, if response times were mostly over 1200 milliseconds,
we started to analyze what was the time percentile for the worst half of
requests. Also, we inspected the response time percentiles chart to see if
there was just a short period during the simulation when results were poor.

With Gatling, we were able to find the limits of the current system setup,
but we did not get any information of why the system reached to its limit or
when the limit was not reached, how close to the limit the system was. To
analyze each stress test further, we needed information on systems CPU and
memory utilization. We monitored those with two different ways.

During the first stress tests, we connected to the instance via ssh and
monitored the CPU and memory utilization using the Linux Top command.
The problem with the Top command is that it only displays the current CPU
and memory usage. Therefore, we constantly had to keep watching their
statuses during the simulations. However, we at least got some information
on the CPU and memory statuses even if the method for obtaining the data
was not ideal.

We wanted instances automatically log CPU and memory usage data
to be able to analyze their behavior during the simulation. We found out

CHAPTER 4. METHODS 31

that Beanstalk has enhanced health reporting option which allows us to log
additional metrics to CloudWatch. Supported metrics include application
latency percentiles, number of requests (total and by response code) and
CPU usage with different states: CPUIrq, CPUUser, CPUIdle, CPUSystem,
CPUSoftirq, CPUIowait, CPUNice. While the other states only use up to a
few percents of CPU time, we monitored CPUUser since that told us how
much processing power our code was using. Therefore, if the CPUUser value
was around 95%, it meant that the CPU was under full load.

The enhanced health reporting of Elastic Beanstalk provided us data
of CPU usage but not memory usage which Beanstalk does not offer out
of the box for some reason. However, AWS provides separate CloudWatch
monitoring scripts that allow users to log memory utilization of EC2 instance
to CloudWatch [3]. So, when creating a new instance, we also had to install
those monitoring scripts to get memory logs of the instances.

CloudWatch presents us the data collected from the instances as line
charts. By plotting the CPU and memory utilization data to the same chart,
we were able to conclude their correlation and by repeating stress tests to see
how the system recovered from the earlier load. Unfortunately, CloudWatch
only collects the average CPU and memory usage data once a minute, so we
were not able to compare the CPU and memory usage data to for example
response time percentiles over time chart of Gatling. However, it provided
us valuable data, for example, to explain anomalies in repeated stress tests.

Chapter 5

Results

This chapter presents the results of our research. A summary of the action
research cycle steps taken during each cycle are presented at the end of each
section. Sections 5.1-5.9 (Cycles 1-9) aim to answer RQ2 whereas Section 5.10
(Cycle 10) looks answers for RQ3. Finally, Section 5.11 summarizes the
results from Cycles 1-9.

5.1 Cycle 1: Initial Performance

The first step was to evaluate the initial amount of requests our website was
able to serve per second. At this point, we were running our server on an
EC2 t2.micro instance, which is the second cheapest and the least powerful
instance of all EC2 instances. The t2.micro instance has only one virtual
CPU and just 1GB of memory. We never even planned to run our servers
on an as weak instance in the production but that was the instance type we
used during the development.

Nevertheless, we did not expect as bad results as what we got. We started
with a low amount of 10 requests per second and as Figure 5.1 shows about
90% of requests took more than 1.2 seconds. Furthermore, half of the requests
took more than 4.5 seconds.

Ten requests per second were indeed way below our needs, but we still
wanted to find the initial limit of our system. Next, we tested with only five
requests per second, and the server was able to handle that load reasonably
well serving 99% of requests below or at 455 milliseconds. Still, even with
five requests per second CPU utilization was over 80%. With eight requests
per second couple of percent of requests took more than 800 milliseconds.
However, with nine requests per second for only 40% of requests response
time stayed below 800 milliseconds. Therefore, the initial limit of the server

32

CHAPTER 5. RESULTS 33

Figure 5.1: Response time distributions for the first stress test of 10 requests
per second

was eight requests per second which meant that we would need 125 t2.micro
instances to achieve the desired performance of 1000 requests per second.
Running 125 t2.micro instances would cost 1133 euros per month which is
more than we wished to pay.

5.2 Cycle 2: More Computing Power

The first problem we were able to identify was obviously the use of weak in-
stance type. While upgrading the instance type would not decrease the costs,
since doubling the computing powers also doubles the costs, it would make
the server more manageable by running less amount of instances. Therefore,
we upgraded the instance type from t2.micro to t2.medium, which has two
virtual CPUs and 4GB of memory—twice and four times more respectively
compared to the t2.micro instance type.

Considering that we doubled the amount of virtual CPUs, we also ex-
pected to double the performance. However, that was not the case as Fig-
ure 5.2 displaying response times shows. The t2.micro instance in the previ-
ous test set was able to serve eight requests per second, but the t2.medium
instance with double amount of virtual CPUs was not able to serve 15 re-
quests per second with reasonable response time. Almost 95% of requests
took more than 1.2 seconds and 50% even more than 26 seconds.

Decreasing request amount to 12 per second did not change much other

CHAPTER 5. RESULTS 34

Figure 5.2: Response time distributions for the t2.medium instance with 15
requests per second

than now 50% of requests took more than 9.5 seconds. On the other hand,
with ten requests per second, almost all requests were served below 800
milliseconds. So, by doubling the CPU power and having four times more
memory, the server was able to serve only two more requests per second being
only 25% increase when we were expecting 100% increase.

Table 5.1 summarizes the steps taken in this cycle.

Cycle Step Action

Diagnosing The t2.micro instance is the second weakest instance type of
all EC2 instances.

Planning and
taking action

Upgrade instance type from t2.micro to t2.medium which
has two CPUs instead of one. This should double the server
performance.

Evaluating The server performance was only increased by 25% instead
of expected 100% increase.

Table 5.1: The action research cycle steps for Cycle 2

CHAPTER 5. RESULTS 35

5.3 Cycle 3: Node.js Clusters

There were some problems within our system as doubling the CPU capacity
did not double the performance, and we wanted to find a reason for that. We
repeated the previous stress test with 15 requests per second while monitoring
server health status from the health overview of Elastic Beanstalk. The
health overview showed us that during the test the maximum CPU utilization
was only about 53%. Therefore, almost half of the CPU capacity was not
even in use.

The Linux Top command showed similar results on the server compared
to the health overview. The total CPU utilization was slightly over 50%
during the test as seen in Figure 5.3 (52.4% at the time of the screenshot).
Interestingly, there was only one Node.js process running at 103.8% of the
capacity of the one CPU core. Therefore, it seemed like the server was able
to run only one Node.js process which could only use the capacity of one
CPU core.

Figure 5.3: The Top command on the server during a stress test

It turned out that by default Node.js can use only one CPU core [23]. To
be able to divide the load to multiple CPU cores, one must start a cluster
of Node.js processes. Listing 5.1 presents an example of how we used the
Node.js cluster module. When the server starts, the cluster code creates a
new Node.js process until there are as many processes as there are CPU cores
in the system. For example, in the case of the t2.medium instance, which
has two CPU cores, the cluster module creates two processes.

CHAPTER 5. RESULTS 36

1 // Other server imports:

2 // ...

3 import cluster from ’cluster ’;

4 import os from ’os’;

5 const numCPUs = os.cpus().length;

6
7 if (cluster.isMaster) {

8 for (let i = 0; i < numCPUs; i++) {

9 cluster.fork();

10 }

11 } else {

12 // Server code here

13 // ...

14 }

Listing 5.1: The usage of the Node.js cluster module

We implemented the cluster module to our server code and moved on to
evaluate changes by running more stress tests. As the system running on the
t2.medium instance had managed to serve ten requests per second with only
one Node.js process, we first tested the cluster of processes with 20 requests
per second.

Figure 5.4: Response times and status for the first cluster test with 20 re-
quests per second

However, as Figure 5.4 shows the server was able to serve only 15% of re-
quests below 800 milliseconds. It is understandable that the server could not
double its performance even with two CPU cores being able to run Node.js
processes. Although the first CPU core was running Node.js process on full

CHAPTER 5. RESULTS 37

load, the other processor was not idle. The other CPU core still had to run
the system and Nginx, for example. Now, with two cores running Node.js,
both cores still had to run the system and two Nginx processes and not to
dedicate all the computing power to Node.js alone.

We next tested with 15 requests per second, and the server managed that
smoothly. With 17 requests per second, about 5% of requests took more
than 800 milliseconds. With 18 and 19 requests per second for 25% and
40% of requests, response time was more than 800 milliseconds. Therefore,
the limit of the t2.medium instance running with as many Node.js processes
as there were CPU cores was 16-17 requests per seconds, which doubles the
performance compared to the t2.micro instance.

We also wanted to test what would be the optimal amount of Node.js
process compared to the number of CPU cores. Therefore, we deployed a
version running with the double amount of Node.js processes compared to
the number of CPU cores—4 processes in the case of t2.medium instance.
First, we repeated the earlier 17 requests per second test, and the server
managed to serve all requests below 800 milliseconds. With 19 requests per
second, 13% of requests took more than 800 milliseconds, so the limit of the
system was 18-19 requests per second.

As the limit the server was able to serve was two requests higher with
the instance running with double amount of Node.js processes compared to
the number of CPU cores, we decided that doubling the amount of process
provided better performance and did the following tests with that setup.
However, our conclusion of the best amount of Node.js processes was wrong
as explained later in Section 5.7.

Table 5.2 summarizes the steps taken in this cycle.

5.4 Cycle 4: Reducing the Amount of DOM

Nodes

Until this point, we had not improved the performance of the application
itself but only increased the amount of computing power. As explained ear-
lier in Section 2.5 issues with server-side rendering of React come from the
renderToString function which is relatively slow at processing content. For
that reason, as also discussed in Section 2.5, some have developed libraries
that cache rendered components on the server.

Based on this we came up with an idea of reducing content rendered on the
server. By giving renderToString function less content to render we expected
it to run faster. Therefore, the server should be able to serve more requests

CHAPTER 5. RESULTS 38

Cycle Step Action

Diagnosing Doubling the amount of CPUs did not double the perfor-
mance as by default Node.js process runs only on a single
CPU core.

Planning and
taking action

Implement Node.js cluster module to spawn a cluster of pro-
cesses each of which can be assigned to its own CPU core.
Test with an equal amount of clusters as CPUs and double
amount of cluster compared to CPUs.

Evaluating With two clusters (same amount as CPUs) the server perfor-
mance was now doubled compared to an instance with only
one CPU. Four clusters provided slightly better performance
the server being able to serve two requests more than a server
running only two clusters.

Table 5.2: The action research cycle steps for Cycle 3

per second. Earlier, we had been rendering precisely the same content on
both server-side and client-side. This meant rendering plenty of content that
the users did not see until they started to scroll on the page. Therefore, we
were causing unnecessary load for the server by rendering content that could
have been only rendered on the client.

We selected five random articles and calculated the amount of DOM
(Document Object Model) nodes rendered on server by running the following
code in console of the browser with JavaScript disabled:

document.getElementsByTagName(’*’).length;

We disabled JavaScript because we wanted only to count the number of
nodes rendered on the server and not additional DOM content generated
by advertisements, for instance. The average amount of DOM nodes in the
selected five articles was 670.

Next, we reduced the amount of server-side rendered content. We short-
ened the list of latest articles on the right column from 40 articles to 15,
removed social media content, and removed the list of most read articles
from the bottom of the article. The average amount of the DOM nodes for
the same five articles was 362 after the content reduction. Therefore, the
amount of DOM nodes was reduced by 46%.

We repeated the earlier stress test, and the server had no issues to serve
20, 25 and 30 requests per second. However, 35 and 32 requests per second

CHAPTER 5. RESULTS 39

put response times for the most requests above 1.2 seconds. The limit of the
server with reduced DOM content was 30 requests per second. Therefore,
by reducing the amount of DOM nodes by 46%, we were able to increase
the limit of the server from 19 requests per second to 30 which was 58%
improvement.

Table 5.3 summarizes the steps taken in this cycle.

Cycle Step Action

Diagnosing Server side rendering is slow.

Planning and
taking action

Reduce the amount of DOM content by shortening article
lists and removing the content on the bottom of articles on
the server. This should make server-side rendering faster.

Evaluating By reducing the content rendered on the server by 46% in-
creased the server performance by 58%.

Table 5.3: The action research cycle steps for Cycle 4

5.5 Cycle 5: Upgrading to React 16

On September 26th, 2017 Facebook released React 16 which promised about
three times better performance for server-side rendering compared to React
15 while using Node.js 6. [11] However, they pointed out in the blog post that
performance upgrade might not be the same in real-world systems compared
to their benchmarks. By this point, we had been using Node.js 6 with React
15.

In the end, upgrading to React 16 provided a relatively small improvement
for the server performance. We ran the first stress test with 35 requests per
second, and 2% of requests took more than 800 milliseconds. That was the
limit of the server as with 37 requests per second 85% of requests took more
than 1.2 seconds and 5% even failed. Therefore, React 16 increased the
performance by only 17% compared to the earlier limit of 30 requests per
second.

Table 5.4 summarizes the steps taken in this cycle.

CHAPTER 5. RESULTS 40

Cycle Step Action

Diagnosing Server side rendering is slow.

Planning and
taking action

Upgrade to React version 16 which reportedly could make
server side rendering performance up to three times better.

Evaluating React 16 improved performance just by 17%.

Table 5.4: The action research cycle steps for Cycle 5

5.6 Cycle 6: Fixing Memory Problems and

Upgrading to Node.js Version 8

Since the performance of 35 requests per second was still way below our
objectives, we next upgraded our instance type to c4.xlarge. It has four
virtual CPUs and 7.5 GB of memory compared to 2 virtual CPUs and 4 GB
of memory on the previously used t2.medium instance. In addition to having
more CPUs, the processors of the C4 instance family are more advanced than
the ones on the T2 instance family.

During the stress tests of the new instance type we noticed inconsistencies
in the stress test results. When we ran the same test repeatedly without
restarting the server, the results became increasingly worse. When we ran
the same stress test (40 requests per second) five times in a row, we received
some alarming results as seen in Figure 5.5.

Figure 5.5: Response times and status for the first test (left), the third test
(middle) and the fifth test (right) with each 40 requests per second

The first two tests gave good results where all response times were under
800 milliseconds. However, on the third test around 10% requests took 800-
1200 milliseconds and 20% over 1.2 seconds. Results got even worse on the
following attempts as on the fifth stress test about 80% of requests took more
than 1.2 seconds (most of them took actually over 20 seconds) and even 11%

CHAPTER 5. RESULTS 41

of requests failed. Therefore, after the fifth test, we would have concluded
that the server was not able to handle the load even if after the first stress
test conclusion would have been opposite.

By connecting to the server with SSH, we were able to detect that the
memory utilization was relatively high after the stress tests even if there
was no load on the server. Because monitoring memory and CPU usage on
the server did not work very well, we started logging those to CloudWatch
as described in Section 4.2.3. Once the CloudWatch logs were enabled, we
rebooted the server and repeated the previous five stress tests.

Figure 5.6: CPU and memory utilization during and after five stress tests
with each 40 requests per second

As seen in Figure 5.6 the memory usage did not recover to the previ-
ous levels after each test. During the load memory utilization increased as
expected, but once the load on the server stopped, memory utilization de-
creased only slightly. Given some more time, about 5 minutes for the first
stress test and about 20 minutes for the second, memory utilization decreased
some more, but it was still higher than before starting each test.

Still, memory usage never reached 100%. At highest it was 61.8% during
the fifth stress test. Therefore, the reason for poor performance was not in
the running out of memory. For some reason, as seen in Figure 5.6, the CPU
usage was higher, the more memory was used. During the first test memory
usage peaked at 20% and CPU usage was 61%. On the second test memory
usage increased to 29% and CPU usage to 72%. On the third test memory
usage peaked at 41% and CPU usage was 94%. During the third test, we
started to see significantly slower response times. On the last two test CPU
usage was 100% on both times and memory usages were 56 and 61%.

So far, we had been running our server using version 6.11.1 of Node.js.

CHAPTER 5. RESULTS 42

We had already updated our React version to 16 earlier and React blog [11]
promised ”about a 3x performance improvement in Node.js 6” compared to
React 15. The blog also said that you would get ”a full 3.8x improvement in
the new Node.js 8.4 release”. Therefore, we repeated the tests running the
server with Node.js 8.4.0.

Figure 5.7: CPU and memory utilization during and after five stress tests
with server running Node.js 8.4.0

Using Node.js 8.4.0 improved the performance as Figure 5.7 shows. For
the first four stress tests, memory usage increased only by few percents com-
pared to the memory usage before the stress test. This result was a significant
improvement compared to the tests run on Node.js 6.11.1 where each test
increased the memory usage by around 10%. Still, even with the upgraded
Node.js version, memory usage kept increasing after each test, and during
the fifth test it peaked at 51%, and CPU was on full load.

A week after our Node.js 8.4.0 tests, AWS started providing Beanstalk
platform which supported new Node.js version 8.8.1. We repeated once again
the same five stress tests as earlier with the latest Node.js version, and the
results were significantly better than before as Figure 5.8 presents.

After the same five tests as before (40 requests per second) memory usage
increased from 8.2% before tests to 9.5% after all tests. Also, during the tests
memory usage was a lot lower compared to the same tests that were run on
Node.js 8.4.0. With Node.js 8.4.0 memory usage peaked at 17% even during
the first test and during the fifth test it increased up to 51%. With Node.js
8.8.1 the highest amount of memory being used was 13.2% during the fifth
test while during the first test memory usage was about 1% lower. Due to
significantly lower memory consumption, CPU usage also stays much lower
being at most 41% under the load.

CHAPTER 5. RESULTS 43

Figure 5.8: CPU and memory utilization during and after five stress tests
with server running Node.js 8.8.1

With the huge performance increase with Node.js 8.8.1, the next step was
to find new request limit the c4.xlarge instance type was able to serve. We
used the same stress test profile as before (ramp up to the wanted amount
of requests in 30 seconds and hold that for three minutes) but increased the
number of requests.

Figure 5.9: CPU and memory utilization with 70, 80 and 90 requests per
second

The server handled 70 requests per second without any issues and re-
sponse times stayed below 800 milliseconds while CPU usage was about 80%
as seen in Figure 5.9. However, with 80 requests per second, the server
started to hit the limit. Nearly half of the requested took more than 1.2
seconds although all requests were still served under 4 seconds. CPU started

CHAPTER 5. RESULTS 44

to hit max load during the test.
Therefore, it comes with no surprise that 90 requests per second were

much more than the server could serve in a reasonable time. Almost 90%
of requests took more than 1.2 seconds. Furthermore, 50% of requests took
even more than 12 seconds and 2% of requests also failed. What was even
more alarming was that memory usage did not recover to the level before
the test. After the first two tests (70 and 80 requests per second) memory
usage was only about 1% higher than before the tests being at 10%. After
the third test (90 requests per second) memory usage stayed at around 14%
and did not get any lower over time. So even with Node.js 8.8.1 we still had
some memory problems when the server was under higher load than it was
able to handle.

Table 5.5 summarizes the steps taken in this cycle.

Cycle Step Action

Diagnosing Memory usage does not revert back to previous levels after
each stress test. The higher the memory usage the higher
CPU usage and the worse server performance.

Planning and
taking action

Upgrading Node.js to version 8 should provide better per-
formance compared to Node.js 6. Upgrade first to Node.js
8.4.0 and then to Node.js 8.8.1.

Evaluating With Node.js 8.4.0 memory usage increment after each stress
test was lesser than with Node.js 6. With Node.js 8.8.1 mem-
ory consumption did not increase almost at all.

Table 5.5: The action research cycle steps for Cycle 6

5.7 Cycle 7: Another Node.js Cluster Test

All stress tests after the earlier Node.js cluster test done in Cycle 3 had
been run with twice as many Node.js processes as there where CPU cores.
However, considering the memory issues with Node.js 6.11.1, the earlier tests
might have been biased due to higher memory usage than expected. There-
fore, we repeated the stress test with 80 requests per second twice with still
running double amount of Node.js process compared to CPU cores. Then we
reduced the amount of Node.js processes to equal the number of CPU cores
and repeated the same test.

CHAPTER 5. RESULTS 45

As the Figure 5.10 shows, there was an improvement in both CPU and
memory utilization when running an equal amount of clusters compared to
CPUs. Whereas memory consumption was 15% during the first two tests, it
was only about 10% during the third and fourth tests. This also reflected
CPU usage which stayed at around 90% instead of 100% and furthermore to
response times which all stayed below 800 milliseconds.

Figure 5.10: 80 requests with twice as many clusters compared to CPUs
(peaks 1 and 2); 80 requests with equal amount of clusters compared to CPUs
(peaks 3 and 4); and 90 requests with equal amount of clusters compared to
CPUs (peaks 5 and 6)

We also run tests with 90 requests per second to the server running the
same amount of Node.js processes as CPU cores (the fifth and sixth tests in
Figure 5.10). This load was again too much for the server to handle, but the
results were still slightly better compared to the previous test on the server
running double amount Node.js processes. None of the responses failed, and
50% of requests were served in below 7.5 seconds compared to 12 seconds
with the double amount of Node.js processes. All in all, running the same
amount of Node.js processes as CPU cores gave better results compared to
running a double amount of processes.

Table 5.6 summarizes the steps taken in this cycle.

5.8 Cycle 8: Upgrading the Instance Type

In November 2017 AWS published a new C5 instance family [4]. Reportedly,
C5 instances had better processors than C4 instances and included more
memory (8GB instead of 7.5 GB for the xlarge model, for example). In

CHAPTER 5. RESULTS 46

Cycle Step Action

Diagnosing The earlier Node.js cluster test might have been biased due
to memory issues.

Planning and
taking action

Stress test two servers one running equal amount of clus-
ters compared to CPUs and other running double amount of
clusters.

Evaluating On the contrary to the earlier Node.js cluster stress test, the
equal amount of clusters provided better results.

Table 5.6: The action research cycle steps for Cycle 7

addition to better computing power, the C5 instances cost about 17% less
than the C4 instances. Considering better computing power combined with
a lower price, we were eager to test the new instance type.

We changed the instance type from c4.xlarge to c5.xlarge and ran two
stress tests with 80 requests per second. As Figure 5.11 shows the CPU
utilization was at most at 69% during the tests (the first two peaks of Fig-
ure 5.11). That is considerably lower compared to the same test run on
c4.xlarge instance where CPU utilization was at 88%. During the next two
tests with 90 requests per second CPU utilization was at most at 80% but
still, the server was not able to serve all requests.

Figure 5.11: CPU and memory utilization for c5.xlarge instance (80, 80, 90
and 90 requests per second)

This behavior was strange as we had expected that CPU power was our
only limiter since we also had no issues with memory usage. We went through

CHAPTER 5. RESULTS 47

our system logs and found many following warnings from the Nginx error log:

1024 worker_connections are not enough

It turned out we had to increase the amount of worker connections in the
Nginx config to allow more connections and also increase the ulimit values of
Linux system [22]. With the increased values, the server was able to serve 90
requests per second with 15% requests taking over 800 milliseconds. With 95
requests per second, 6% of requests took more than 1.2 seconds. Therefore,
the limit of a single c5.xlarge instance was slightly over 90 requests per second
which is around 10% more compared to c4.xlarge.

Table 5.7 summarizes the steps taken in this cycle.

Cycle Step Action

Diagnosing The new c5.xlarge instance was not able to response to all
requests even if CPU usage was at most 80% due to too low
Nginx worker connections and system ulimit values.

Planning and
taking action

Increase the values of Nginx worker connections and system
ulimit.

Evaluating With increased values c5.xlarge instance was able to serve
slightly over 90 requests per second within acceptable re-
sponse times.

Table 5.7: The action research cycle steps for Cycle 8

5.9 Cycle 9: Client-Side Rendering Fallback

Nearly 100 requests per second per instance were already a decent amount
of requests, but we still wanted to improve that. To reach our objective
of 1000 requests per second with the current performance we would need 11
instances and the costs would be high. One exciting way to increase the num-
ber of requests a single instance can handle was client-side rendering fallback
presented by Arkwright [7]. As explained in Section 2.5, if the number of
requests were high on the server, the server would skip rendering and render-
ing of the page would only happen in the browser. To make this happen, the
server needs to keep the count of request it has not yet served. Therefore,
whenever a request comes to the server, the server needs to increase request
queue length counter by one and when server responses, decrease the counter

CHAPTER 5. RESULTS 48

by one. Then, if the request queue length counter is above the selected limit,
the server skips the content rendering part.

We took Arkwright’s idea even a bit further. Arkwright’s setup included
fetching data on the server and passing it as the initial Redux state in HTML,
but we skipped that as well. If the counter was above the limit, we only
rendered HTML containing the React JavaScript bundle script tags, few
other necessary scripts, and the style sheets. Also, we saved that HTML to
memory and for the following requests we were able to serve the HTML string
straight from memory, which further increased performance of the system.

We tested different request queue limits and ended up to 15. As a
c5.xlarge instance has four virtual CPUs that resulted in a total of 60 re-
quests in the queue before we skipped server-side rendering (SSR). We ran
tests with a constant load for five minutes increasing the number of requests
for each test and monitoring CPU usage and the number of requests rendered
on the server. With 60 requests per second, all requests were rendered on the
server as expected. With 70 requests per second, SSR was skipped for one
percent of requests and the average CPU usage was 85%. With 80 requests
per second, SSR was skipped for 12% of requests and average CPU usage
was 95%. All in all, by setting the total request queue limit to 60 requests
resulted in being able to server-side render about 70 requests per second.

Next, we tested how many requests server was able to handle in total
with the client-side rendering fallback. We started with 100 requests per
second and already during that test CPU was running on full load. For 7%
of requests, response time was over 1.2 seconds and the maximum response
time was slightly below 4 seconds. Earlier, without the client-side rendering
fallback, we would have judged that as an unacceptable result and increasing
the number of requests per second would have provided increasingly worse
results. However, this time as we kept increasing the amount of requests
response times increased only slightly as Table 5.9 presents.

Up to the 800 requests per second at most 10% of requests took more
than 1.2 seconds, which, considering the significant request increment, is an
excellent result. With 900 requests per second response times started rising
and with 1000 requests per second for 70% of requests responses from server
took over 1.2 seconds and 2% of requests even failed. Therefore, the accept-
able limit for one c5.xlarge instance was about 800 requests per second with
the client-side rendering fallback. That is about eight times more compared
to the earlier state without the client-side rendering fallback and a similar
result as in Arkwright’s [7] tests.

Considering that a single c5.xlarge instance can handle up to 800 requests
per second in reasonable time, two c5.xlarge instances can handle together up
to 1600 requests which is already clearly past our objective of 1000 requests

CHAPTER 5. RESULTS 49

Requests
per second

Server-side rendered
requests (%)

Requests with response
time over 1200 ms (%)

100 71 7
200 34 10
300 22 10
400 16 7
500 13 7
600 10 6
700 9 6
800 8 8
900 7 19
1000 6 70

Table 5.8: SSR request percetages and latencies

per second. Running two c5.xlarge instances costs 276 euros per month which
is four times less than what running the initial system—being able to run 1000
requests per second—would have cost. By running three c5.large instances
instead of two c5.xlarge instances would have made the costs cheaper while
still reaching our objective but we are happy to pay little extra to be able to
serve more server-side rendered content.

Table 5.9 summarizes the steps taken in this cycle.

Cycle Step Action

Diagnosing Server-side performance is not high enough.

Planning and
taking action

Skip rendering on the server if server is receiving a large
number of requests.

Evaluating Client-side rendering fallback made server able to serve 8
times more requests per second.

Table 5.9: The action research cycle steps for Cycle 9

5.10 Cycle 10: Auto-Scaling

After achieving our first objective of being able to serve 1000 requests per
second, the next step was to reach our next goal of being able to serve three
times more requests within five minutes of the start of high load. Although we

CHAPTER 5. RESULTS 50

would only need to double the instance count from two c5.xlarge instances
to four c5.xlarge instances to reach the performance of 3000 requests per
second, we wanted auto-scaling to triple the count of instances.

We considered three metrics from the auto-scaling trigger options of
Elastic Beanstalk: latency, request count and CPU utilization. The other
options—network in/out, disk write/read or healthy/unhealthy host count—
were not suitable metrics for our use case. From the three that we considered,
we first dismissed the latency metric. While increasing latency usually in-
dicates that the system is not working correctly under the load, that was
not the case due to our use of client-side rendering fallback. Principally, we
would want to serve each request with the complete HTML content. If we
scaled based on latency, the scaling action might not occur as the average
latency might stay low even while serving hundreds of requests per second as
when the server skips rendering, the response is served from memory which
happens quickly.

After dismissing the latency option, we tested auto-scaling with the re-
quest count metric. However, whichever scaling option combination we se-
lected, we could not get auto-scaling work with request count as a trigger
option. We tried it with different units of measurement (count and count/sec-
ond), different trigger statistics (average and sum), very low upper scaling
thresholds and ran a high load to the server but Elastic Beanstalk still would
not scale the instance count.

Therefore, we ended up using CPU utilization as our scaling metric. For
the statistic, we chose the average CPU utilization instead of the maximum
as we did not want to scale if the CPU usage peaked just for a second within
consecutive minutes. The CPU unit we measured was a percentage and the
initial upper and lower thresholds 75% and 35% respectively. The scale-up
increment and scale down decrease were both set to one instance. The period
between metric evaluations was set to one minute which is the lowest possible
value in Beanstalk. Since the goal for scaling was to happen as quickly as
possible, the breach duration was set to two minutes.

To focus on scaling, we used c5.large instances to lessen the number of
requests needed to keep server over 75% threshold. We ran a stress test with
300 requests per second and as the Figure 5.12 presents it took 15 minutes to
increase the number of instances from two to six once the load on the server
started. This result was way below our goal to triple the server capacity
within five minutes of the time when the load started.

There were two clear options of how to speed up our scaling: decrease
the time between scaling iterations or scale up more than one instance at
the time. With our initial scaling setup scaling iteration took about three
minutes—two minutes for the scaling cooldown and the two metrics evalu-

CHAPTER 5. RESULTS 51

Figure 5.12: CPU utilization and number of instances during the first auto-
scaling test

ations and then about 40 seconds to add a new instance. We considered
decreasing the number of evaluations before scaling triggers from two to one
but decided against it, as if increased traffic lasted under one minute, scaling
would be unnecessary.

Therefore, we tested scaling with the scale-up increment of two instances
instead of one. As Figure 5.13 shows, it took 7 minutes to scale to six running
instances.

Figure 5.13: CPU utilization and number of instances with scaling increment
of two instances

Even though scaling cooldown was set to just one minute, the second
scaling took one minute more than the first one. The reason for this, as
Figure 5.13 shows, is that during the scale up the average CPU usage dropped
below 75% because while booting up new instances their CPU usage stayed
low. As we could not get the scale up increment of two instances to triple
instance count within five minutes, the only option left was to scale up with
four instances as presented in Figure 5.14.

CHAPTER 5. RESULTS 52

Figure 5.14: CPU utilization and number of instances with scaling increment
of four instances and scale down decrease of two instances

For some reason, this time the first scale up took four minutes which still
meets our objective. After another four minutes, the auto-scaler added an-
other four instances meaning that within eight minutes we had ten instances
running. Also, as can be seen in Figure 5.14, even though we set the scale-up
increment to four instances, we kept the scale down decrease in two instances.
We figured that it would make sense to avoid risks while scaling to both ways
and rather scale too much upwards and less downwards.

Table 5.10 summarizes the steps taken in this cycle.

Cycle Step Action

Diagnosing Auto-scaling is not fast enough with scale up increment of
one instance.

Planning and
taking action

Test auto-scaling with scale up increment of two and four
instances.

Evaluating Server capacity was tripled within required five minutes with
scale up increment of four instances.

Table 5.10: The action research cycle steps for Cycle 10

5.11 Summary of the Results

Table 5.11 summarizes the performance improvement results from Cycles 1-
9. It does not include results from Cycle 10 as the results from auto-scaling
cannot be compared to the results from performance increments made for a
single instance.

CHAPTER 5. RESULTS 53

Cycle Requests
per second

Performance
improvement

Actions taken

1 8 Initial performance

2 10 25% Double the computing power

3 19 90% Use Node.js clusters

4 30 58% Reduce amount of content rendered on
the server

5 35 17% Upgrade to React 16

6 70 100% Upgrade to Node 8.8.1 and use more
powerful instance type

7 80 14% Use equal amount of Node.js clusters
compared to the amount of CPU cores

8 90 13% Upgrade instance type

9 800 789% Skip rendering on the server if load is
high

Table 5.11: Summary of actions taken and their performance improvements
for Cycles 1-9

As Table 5.11 shows by far the most significant performance improvement
came from Cycle 9 where we implemented the technique to skip rendering on
the server if the load is high. The second most significant improvement came
from Cycle 6. However, during Cycle 6 we took two actions that improved
performance as we upgraded the Node.js version from 6.11.1 to 8.1.1 and
upgraded the instance type from t2.medium to c4.xlarge.

According to Table 5.11, the third most significant improvement came
from Cycle 3 where we implemented the use of Node.js cluster module. How-
ever, Node.js clusters themselves do not improve performance—they allow
us to take full computing power out of each instance as by default Node.js
runs only on a single CPU core. The last significant improvement is from
Cycle 4 where the reduction of the content rendered on the server improved
performance by 58%. For the rest of the cycles, performance improvements
were less significant. However, it is worth to point out that Cycle 5 improved
performance by 17% just by upgrading React version.

Chapter 6

Discussion

This chapter contains a discussion of the results of the research. The chap-
ter is dived into three sections for each research question. The results are
reflected against our own experience and the results found from literature.

6.1 RQ1: How to Ensure Availability of the

Service Under High Load?

The primary objective of this thesis was to ensure the availability of our
website under high load. The empiric research of this thesis focused on RQ2
and RQ3, which are part of the bigger picture pursued by RQ1.

Of the four techniques improving availability presented in Chapter 2,
improvements from auto-scaling is discussed further in Section 6.3 and im-
provements from React application optimization in Section 6.2. Of the other
two techniques, availability improvements of load balancing are mostly in-
visible. We are always running our server on at least two instances on two
different availability zones in case another availability zone becomes unavail-
able. The role of load balancing as a technique to ensure availability cannot
be dismissed as it is the technique which also allows auto-scaling to add more
instances to the server infrastructure.

Content delivery network—Amazon CloudFront in our case—plays a crit-
ical role in our service availability. Our CloudFront logs show that at the start
of 2019 only 7% of requests were not delivered from CloudFront cache. The
logs also include application scripts served from CloudFront which increases
CloudFront hit percent as the scripts are nearly always delivered from the
cache. However, the logs show that the cache hit percent for most popular
articles and the front page is over 80%. Therefore, CloudFront reduces the
number of request to our servers considerably.

54

CHAPTER 6. DISCUSSION 55

Availability of our website has been great mostly due to CloudFront since
the end of May 2018 when the new site was also published for desktop users.
The Iltalehti website has been unavailable only once for an hour and just for
the part of our users. Unavailability was due to our actions, as we accidentally
changed our CloudFront to point the wrong origin server. Therefore, no
requests went from CloudFront to our server for an hour. However, only 5%
of requests failed as CloudFront was able to serve old content from its cache.
Therefore, our website worked for most of the users although users received
old content on their first page loads which certainly was not desired effect.
Still, CloudFront cache saved us from an even bigger accident.

Another incident since the launch of our responsive website was a dis-
tributed denial-of-service (DDoS) attack at the start of August 2018. During
the attack, CloudFront received roughly 20 times more requests than usual.
The attack lasted about 40 minutes, but the availability of our website was
not affected. Response times on the server increased but not dramatically as
for the top 10 percent of requests response times were over 2 seconds.

The DDoS attack happened early in the morning, and no one reported
any issues during it. The whole incident was accidentally noticed one week
after it happened. Since then we have improved our alarms to get notified
right away once high traffic starts. During the attack, most of the traffic
came from Asia and the United States. If we had received alarms of the high
traffic, we could have blocked the traffic from those countries by using the
geographic restrictions of CloudFront. Geo-blocking would mean that real
users from affected countries could not access our website. We would still
rather block those users if it meant that our service availability would be
great in the rest of the countries and especially in Finland. According to our
Google Analytics data, almost 96 percent of our traffic comes from Finland.
Therefore, ensuring that our website works in Finland is the most crucial
objective.

In our opinion, we have reached our main objective well. So far within the
ten months, our service availability for all users has been 99.98% considering
one-hour downtime for some users. Our service availability was not affected
by a DDoS attack, and we have prepared for upcoming attacks with better
notifications and Geo-blocking setup. We have also improved our server
performance as discussed in the next section and our server auto-scaling as
explained in the section after next.

CHAPTER 6. DISCUSSION 56

6.2 RQ2: How to Improve Server-Side Ren-

dering Performance of a React Applica-

tion?

Our second objective was that our server could serve at least 1000 requests
per second at any time. We knew we could reach that by simply multiplying
our server capacity. However, we did not want just to pay more for increased
capacity but also find other, more cost-efficient, solutions to our performance
issues.

During our research, we managed to increase the performance of a single
instance from the initial eight requests per second to 800 requests per second.
Some of the performance increase was achieved by upgrading the instance
type from t2.micro to c5.xlarge. The price of running a single c5.xlarge in-
stance is about 15 higher compared to the t2.micro instance but still, the
cost (276 euros per month) of running two c5.xlarge instances was accept-
able for us. We could have reached our objective by running three c5.large
instances instead of two c5.xlarge instances and save 70 euros per month,
but we instead decided to pay some extra and have some additional buffer
in our server performance.

The most significant technical solutions that increased our server perfor-
mance were client-side rendering fallback, upgrades for Node.js and React
versions and reductions of DOM content rendered on the server. The DOM
content reduction was our idea invented based on the concept of component
caching libraries. It provided even surprisingly good results as reducing con-
tent rendered on the server by nearly 50% increased server performance by
over 50%. The only small drawback of the technique is that now the client
needs to first re-render server content, and then render again to show the
whole content.

Upgrading Node.js and React versions were recommended by many blog
posts [11] [1] [7]. The upgrade of the React version did not yield us as good
results as reported by others. Our server performance was only increased by
17% whereas for example, Arkwright [7] reported 25% improvement. Still,
those results are closer to each other compared to three times faster server
rendering reported by Aickin [1]. Then, server-side rendering and server
performance do not mean the same thing, as the server also does other cal-
culations in addition to rendering, although in our case rendering takes the
biggest CPU time.

Due to memory issues and the upgrade of instance type, we do not have
the exact percentage of how much Node.js version upgrade increased our

CHAPTER 6. DISCUSSION 57

server performance. However, we can estimate that upgrading from Node.js
6.11.1 to 8.8.1 almost doubled our server performance as with Node.js 6.11.1
the server could not serve 40 requests per second on the fifth stress test, and
with Node.js 8.8.1 the server was able to serve closer over 70 requests per
second with acceptable response times. This was even bigger performance
improvement than what Arkwright [7] and Aickin [1] reported. At least a
part of the bigger performance increase comes from our use of Node.js 8.8.1.
Arkwright and Aickin both did their tests using Node.js 8.4.0, and we saw a
big performance increase between versions 8.4.0 and 8.8.1 in our tests.

Client-side rendering fallback—the idea presented by Arkwright [7]—
gave us by far the most significant performance increment. It increased
the number of requests our server was able to serve by slightly over eight
times. The result was very similar to Arkwright’s, as Arkwright reported
eight times higher performance in his benchmarks. The client-side render-
ing fallback comes with a price as skipping server-side rendering slows the
first page load and disables some search engines from crawling our website.
However, the client-side rendering fallback is only meant to be a temporary
solution to keep the site running under high load, and we can pay the price
of missing SEO benefits and slowing first page load if it takes that to keep
the website functional.

Out of the React optimization techniques presented in Section 2.5, we
are utilizing all but component caching. Even though some [17] [7] reported
significant performance improvements from the component caching and our
website could have significantly benefited from it—as our site has same con-
tent repeated on all pages (for instance header, navigation, and footer)—we
decided not to pursue component caching. We considered that third-party
libraries changing the React private APIs are too high risk for future devel-
opment as changes made by the libraries may not be compatible with newer
versions of React. That would have left us to the situation where we waited
for the third-party libraries to be updated or where we made changes to them
ourselves or where we did not upgrade React at all. All these options would
slow our development, and therefore, we did not even try to use component
caching.

6.3 RQ3: How to Auto-Scale Quickly Once

High Load Starts?

Our third objective was that our server must be able to scale to serve three
times higher amount of request than it usually can within 5 minutes from the

CHAPTER 6. DISCUSSION 58

start of high load. Out of the considered auto-scaling trigger options, only
CPU utilization turned out to be suitable. Latency was not an appropriate
trigger option as due to the client-side rendering fallback average latency
does not correlate with the load on the server. We were also unable to
get Beanstalk to scale based on request count. On the other hand, CPU
utilization is a more flexible trigger option than request count as with request
count we should have estimated how many requests our server can handle
before we need to add more capacity. Then we should update that number
as the performance of the server changes.

We did not find any reason to change the chosen statistic (average CPU
utilization) or the upper and lower thresholds (75% and 35% respectively)
as they worked well through the auto-scaling tests. The period between
metric evaluations was set to one minute which is the lowest possible value
in Beanstalk. As the breach duration was set to two minutes, scaling up
might take almost three minutes if the first metric evaluation was made just
before the start of the increased traffic. We were slightly disappointed in
scaling being that slow, but as the time between evaluations could not be
shortened, the only option would have been to decrease the breach duration
to one minute. As we were evaluating average CPU utilization, scaling after
one minute could have been reasonable, but we still feared that it could cause
too many unnecessary scale-ups.

In the end, we only ended up changing the number of instances added
or removed during each scaling event. As the trigger action could take up
to three minutes and adding instances about 40 seconds, the only way to
triple server capacity within five minutes was to directly triple the number
of instances on the first scale up event. In our case, we had to add four
new instances in addition to the two already running. Adding four new
instances could risk over-provisioning, but as the costs of running instances
for a short time are low, as presented earlier in Table 3.2, it makes sense
for us to pay some extra to improve performance, and thus availability. For
example, running ten c5.xlarge instances for an hour costs only about 2 euros.
Therefore, running even 100 instances for a short time would be reasonable
if it takes that to keep the site running during an extremely high load.

Chapter 7

Conclusions

Availability of the Iltalehti website is a significant concern for Iltalehti. The
primary objective of this thesis was to ensure availability of Iltalehti website
under the high load. Reflecting on the results and the discussion, it can be
concluded that the objective was reached well. The four main techniques to
ensure and improve availability for case Iltalehti were load balancing, content
delivery networks, auto-scaling and enhancing the performance of server-side
rendered React application. All were researched with literature review and
auto-scaling and server performance also through empirical research.

The availability improvement provided by load balancing is the least vis-
ible of the four. Balancing the load to different availability zones protects
from instance hardware failures and power outages. If an error occurs on a
certain availability zone, load balancer directs traffic to instances running on
the other zones.

For a website serving mostly static content, content delivery network
(CDN) is an essential tool improving availability. As most requests are made
to specific resources—such as the front page—those resources can almost
always be returned from the cache of the CDN. CDN also provides some
protection against DDoS attacks as requests to the same resource do not
cause a request to the server. Availability is also improved by CDN being
able to serve old, cached content in case the server does not respond.

Improvement of server performance improves service availability as the
server can serve more request before becoming overwhelmed. The server
performance of a single instance was increased from 8 requests per second
to 800 requests per second during the study. The improvement was a result
of both upgrading to the more powerful instance and improvements in the
React application. The most significant improvement techniques related to
React were the client-side rendering fallback, upgrades for Node.js and React
versions and reductions of content rendered on the server. Especially the

59

CHAPTER 7. CONCLUSIONS 60

client-side rendering fallback—a technique where server-side rendering was
skipped, if the request rate was over the selected limit—provided significant
performance improvement as it enabled the server to serve eight times more
requests per second.

Auto-scaling allows cost-effectively to run only server capacity that is
needed. The auto-scaling process to add more instances has to happen
quickly once the load starts increasing. During this research, an auto-scaling
process in Elastic Beanstalk took 3-4 minutes. To reach the objective of tre-
bling server capacity within five minutes, the auto-scaler had to add three
times more instances in a single scaling process.

One interesting topic for further research would be the use of serverless
architecture instead of the traditional server architecture. The serverless
architecture could improve availability as the computing power of the server
would not be a bottleneck. Each request would be handled on its own, and
there would be no need to configure auto-scaling as serverless can handle any
number of requests. However, the costs of running serverless, logging and
monitoring would need to be studied further before changing to technique.

Bibliography

[1] Aickin, S. What’s new with server-side rendering in react 16, 2017.
WWW blog post of Sasha Aickin: https://hackernoon.com/whats-new-

with-server-side-rendering-in-react-16-9b0d78585d67. Accessed 17
Sep 2018.

[2] Alakeel, A. M. A guide to dynamic load balancing in distributed
computer systems. International Journal of Computer Science and In-
formation Security 10, 6 (2010), 153–160.

[3] Amazon Web Services. Monitoring memory and disk metrics for
amazon ec2 linux instances, 2017. WWW page of the AWS Elas-
tic Beanstalk: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

mon-scripts.html. Accessed 12 Dec 2017.

[4] Amazon Web Services. Amazon ec2 c5 instances, 2018. WWW page
of Amazon Web Service: https://aws.amazon.com/ec2/instance-types/

c5/. Accessed 5 Aug 2018.

[5] Amazon Web Services. Amazon ec2 pricing, 2018. WWW
page of Amazon Web Service: https://aws.amazon.com/ec2/pricing/

on-demand/. Accessed 15 Dec 2018.

[6] Amazon Web Services. Aws elastic beanstalk features, 2018.
WWW page of Amazon Web Service: https://aws.amazon.com/

elasticbeanstalk/details/. Accessed 5 Aug 2018.

[7] Arkwright. Scaling react server-side rendering, 2017. WWW page
of Arkwright: https://arkwright.github.io/scaling-react-server-

side-rendering.html. Accessed 29 Feb 2018.

[8] Bauer, E., and Adams, R. Reliability and availability of cloud com-
puting. John Wiley & Sons, 2012.

61

https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://hackernoon.com/whats-new-with-server-side-rendering-in-react-16-9b0d78585d67
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/mon-scripts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/mon-scripts.html
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/elasticbeanstalk/details/
https://aws.amazon.com/elasticbeanstalk/details/
https://arkwright.github.io/scaling-react-server-side-rendering.html
https://arkwright.github.io/scaling-react-server-side-rendering.html

BIBLIOGRAPHY 62

[9] Chaczko, Z., Mahadevan, V., Aslanzadeh, S., and Mcder-
mid, C. Availability and load balancing in cloud computing. In In-
ternational Conference on Computer and Software Modeling, Singapore
(2011), vol. 14.

[10] Chieu, T. C., Mohindra, A., Karve, A. A., and Segal, A.
Dynamic scaling of web applications in a virtualized cloud computing
environment. In E-Business Engineering, 2009. ICEBE’09. IEEE In-
ternational Conference on (2009), IEEE, pp. 281–286.

[11] Clark, A. React v16.0, 2017. WWW blog post of Andrew Clark:
https://reactjs.org/blog/2017/09/26/react-v16.0.html. Accessed 17
Sep 2018.

[12] Coghlan, D., and Brannick, T. Doing action research in your own
organization. Sage, 2014.

[13] Di Lucca, G. A., and Fasolino, A. R. Testing web-based applica-
tions: The state of the art and future trends. Information and Software
Technology 48, 12 (2006), 1172–1186.

[14] Dunn, J., and Crosby, B. What your cdn won’t tell you: Optimizing
a news website for speed and stability. In LISA (2012), pp. 195–201.

[15] Facebook Inc. React, 2018. WWW www page of Facebook Inc.:
https://reactjs.org/. Accessed 17 Oct 2018.

[16] Ghanbari, H., Simmons, B., Litoiu, M., and Iszlai, G. Explor-
ing alternative approaches to implement an elasticity policy. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on (2011),
IEEE, pp. 716–723.

[17] Grigoryan, A. Using electrode to improve react server side
render performance by up to 70 WWW blog post of Alex Grigo-
ryan: https://medium.com/walmartlabs/using-electrode-to-improve-

react-server-side-render-performance-by-up-to-70-e43f9494eb8b.
Accessed 17 Sep 2018.

[18] Jamae, J. Response time vs. latency, 2005. WWW blog post of
Javid Jamae: http://www.javidjamae.com/2005/04/07/response-time-

vs-latency/. Accessed 10 Oct 2018.

[19] Krishnamurthy, D., Rolia, J. A., and Majumdar, S. A synthetic
workload generation technique for stress testing session-based systems.
IEEE Transactions on Software Engineering 32, 11 (2006), 868–882.

https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://reactjs.org/
https://medium.com/walmartlabs/using-electrode-to-improve-react-server-side-render-performance-by-up-to-70-e43f9494eb8b
https://medium.com/walmartlabs/using-electrode-to-improve-react-server-side-render-performance-by-up-to-70-e43f9494eb8b
http://www.javidjamae.com/2005/04/07/response-time-vs-latency/
http://www.javidjamae.com/2005/04/07/response-time-vs-latency/

BIBLIOGRAPHY 63

[20] Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A. A
review of auto-scaling techniques for elastic applications in cloud envi-
ronments. Journal of grid computing 12, 4 (2014), 559–592.

[21] Menascé, D. A. Load testing of web sites. IEEE Internet Computing
6, 4 (2002), 70–74.

[22] Nelapati, Y. Scaling up with nginx, 2011. WWW page of Yash
Nelapati: https://yashh.com/scaling-up-with-nginx. Accessed 29 Mar
2018.

[23] Node.JS. Cluster — node.js v6.15.1 documentation, 2018. WWW
documentation of Node.JS: https://nodejs.org/docs/latest-v6.x/api/
cluster.html. Accessed 28 Jan 2018.

[24] Pallis, G., and Vakali, A. Insight and perspectives for content
delivery networks. Communications of the ACM 49, 1 (2006), 101–106.

[25] Rangel, F. 4 practical tips for drastically improved server-side
rendering in react, 2016. WWW blog post of Freddy Rangel: https:

//medium.com/react-university/4-practical-tips-for-drastically-

improved-server-side-rendering-in-react-2df98555a26b. Accessed
17 Sep 2018.

[26] ReactCC. Speedier server-side rendering in react 16 with component
caching, 2018. WWW blog post of ReactCC:
https://medium.com/@reactcomponentcaching/speedier-server-side-

rendering-in-react-16-with-component-caching-e8aa677929b1.
Accessed 17 Sep 2018.

[27] Susman, G. I., and Evered, R. D. An assessment of the scientific
merits of action research. Administrative science quarterly (1978), 582–
603.

[28] Tarvainen, J. The performance cost of server side rendered react on
node.js, 2017. WWW blog post of Jani Tarvainen: https://malloc.fi/

performance-cost-of-server-side-rendered-react-node-js. Accessed
17 Sep 2018.

[29] TNS Metrix. Suomen web-sivustojen viikkoluvut, 2017. WWW
www page of TNS Metrix: http://tnsmetrix.tns-gallup.fi/public/.
Accessed 27 Feb 2018.

https://yashh.com/scaling-up-with-nginx
https://nodejs.org/docs/latest-v6.x/api/cluster.html
https://nodejs.org/docs/latest-v6.x/api/cluster.html
https://medium.com/react-university/4-practical-tips-for-drastically-improved-server-side-rendering-in-react-2df98555a26b
https://medium.com/react-university/4-practical-tips-for-drastically-improved-server-side-rendering-in-react-2df98555a26b
https://medium.com/react-university/4-practical-tips-for-drastically-improved-server-side-rendering-in-react-2df98555a26b
https://medium.com/@reactcomponentcaching/speedier-server-side-rendering-in-react-16-with-component-caching-e8aa677929b1
https://medium.com/@reactcomponentcaching/speedier-server-side-rendering-in-react-16-with-component-caching-e8aa677929b1
https://malloc.fi/performance-cost-of-server-side-rendered-react-node-js
https://malloc.fi/performance-cost-of-server-side-rendered-react-node-js
http://tnsmetrix.tns-gallup.fi/public/

BIBLIOGRAPHY 64

[30] Triukose, S., Al-Qudah, Z., and Rabinovich, M. Content de-
livery networks: protection or threat? In European Symposium on
Research in Computer Security (2009), Springer, pp. 371–389.

Appendix A

Gatling Stress Test Simulation
Code

1 import scala.concurrent.duration._

2 import io.gatling.core.Predef._

3 import io.gatling.http.Predef._

4 import io.gatling.jdbc.Predef._

5
6 class Falconfttest extends Simulation {

7
8 val httpProtocol = http

9 .baseURL("https :// stresstest.iltalehti.fi/")

10 .acceptEncodingHeader("gzip , deflate , sdch")

11 .acceptLanguageHeader("fi-FI,fi;q=0.8,en-US;q=0.6,en;

q=0.4")

12 .userAgentHeader("Mozilla /5.0 (Macintosh; Intel Mac

OS X 10 _12_6) AppleWebKit /537.36 (KHTML , like

Gecko) Chrome /57.0.2987.98 Safari /537.36")

13
14 val headers_1 = Map(

15 "Accept" -> "text/html ,application/xhtml+xml ,

application/xml;q=0.9, image/webp ,*/*;q=0.8",

16 "Accept -Encoding" -> "gzip , deflate , sdch , br",

17 "Connection" -> "keep -alive",

18 "Upgrade -Insecure -Requests" -> "1")

19
20 val rps = Integer.getInteger("rps", 20)

21 val reachInSec = Integer.getInteger("reachInSec", 60)

22 val holdForMin = Integer.getInteger("holdForMin", 2)

23 val urlFeed = System.getProperty("urlFeed", "urls.csv")

24 println("==

")

25 println(s"Running Falcon test with feed: $urlFeed")

26 println(s"$rps requests per seconds")

65

APPENDIX A. GATLING STRESS TEST SIMULATION CODE 66

27 println(s"Reach in $reachInSec seconds")

28 println(s"Hold for $holdForMin minutes")

29 println("==

")

30 /* Usage example:

31 export JAVA_OPTS ="-DurlFeed=broken_article_urls.csv -Drps

=30 -DreachInSec =30 -DholdForMin =1"

32 sudo bin/gatling.sh

33 */

34
35 val feeder = csv(urlFeed).circular

36
37 val scn = scenario("FalconSimulation")

38 .feed(feeder)

39 .exec(http("${urls}")

40 .get("${urls}")

41 .headers(headers_1))

42
43 setUp(

44 scn.inject(

45 constantUsersPerSec (1000) during (10 minutes)

46)

47).throttle(

48 reachRps(rps) in (reachInSec seconds),

49 holdFor(holdForMin minutes)

50).protocols(httpProtocol)

51 }

Listing A.1: Gatling stress test simulation code

Appendix B

An Example of a Gatling Stress
Test Report

67

APPENDIX B. AN EXAMPLE OF AGATLING STRESS TEST REPORT68

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Availability
	2.2 Content Delivery Networks
	2.3 Load Balancing
	2.4 Auto-Scaling
	2.5 React Application Optimization
	2.6 Load, Performance and Stress Testing

	3 Case Organization
	3.1 Organization Overview
	3.2 Technology Overview
	3.3 Risk Analysis
	3.4 Objectives

	4 Methods
	4.1 Research Questions
	4.2 Action Research
	4.2.1 Diagnosing
	4.2.2 Planning and Taking Action
	4.2.3 Evaluation

	5 Results
	5.1 Cycle 1: Initial Performance
	5.2 Cycle 2: More Computing Power
	5.3 Cycle 3: Node.js Clusters
	5.4 Cycle 4: Reducing the Amount of DOM Nodes
	5.5 Cycle 5: Upgrading to React 16
	5.6 Cycle 6: Fixing Memory Problems and Upgrading to Node.js Version 8
	5.7 Cycle 7: Another Node.js Cluster Test
	5.8 Cycle 8: Upgrading the Instance Type
	5.9 Cycle 9: Client-Side Rendering Fallback
	5.10 Cycle 10: Auto-Scaling
	5.11 Summary of the Results

	6 Discussion
	6.1 RQ1: How to Ensure Availability of the Service Under High Load?
	6.2 RQ2: How to Improve Server-Side Rendering Performance of a React Application?
	6.3 RQ3: How to Auto-Scale Quickly Once High Load Starts?

	7 Conclusions
	A Gatling Stress Test Simulation Code
	B An Example of a Gatling Stress Test Report

