
Lauri Suihko

Migrating Windows Sales Configurator Application To Web Based
Application

Master’s Thesis
Espoo, March 28, 2019

Supervisor: Professor Petri Vuorimaa
Advisor: M.Sc. (Tech.) Mikko Halttunen

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Lauri Suihko

Title:
Migrating Windows Sales Configurator Application To Web Based Application

Date: March 28, 2019 Pages: 60

Major: Software Technology Code: T-220

Supervisor: Professor Petri Vuorimaa

Advisor: M.Sc. (Tech.) Mikko Halttunen

Sales configrator is a key component of a home builder ERP system. In a typical
sales meeting the home buyer sits down with a sales representative to select
where the home should be build, what kind of home will be build and what extra
options will be selected. The configurator needs to be able to calculate correct
prices, enable/disable options based on rule sets and store the selections to a
permanent storage. Traditionally this meeting has been organized at the home
builder’s premises using a desktop computer but further flexibility is often needed.

It is a general trend that traditional platform dependent applications have
been migrated to web applications. There are several benefits for the users to
be able to run applications in a web browser on most of the devices they might
use without the need to install any application on their devices. The continuous
development of different web framework technologies have made this possible
and easier than ever before.

The goal of this thesis is to migrate an old Windows native sales configu-
rator to a web application and to find out what benefits such migration is
expected to yield and what kinds of obstacles need to be overcome. This thesis
presents one possible way to create a web application UI using React web
development framework and the back-end server access using ODATA web API.
This thesis also presents two different ways (code quality measurements and
performance evaluation) to measure the success of an application migration
from Windows native C# WebForms application to a JavaScript based web
application.

Keywords: Web-Application Windows-Application Migration Analysis
Implementation

Language: English

i

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Lauri Suihko

Työn nimi:
Windows-pohjaisen myyntikonfiguraattorin muuntaminen web-pohjaiseksi sovel-
lukseksi

Päiväys: 28. maaliskuuta 2019 Sivumäärä: 60

Pääaine: Ohjelmistotekniikka Koodi: T-220

Valvoja: Professori Petri Vuorimaa

Ohjaaja: Diplomi-insinööri Mikko Halttunen

Myyntikonfiguraattori on tärkeässä roolissa omakotitalorakennuttajille suunna-
tuissa toiminnanohjausjärjestelmissä. Tyypillisesti myyntitapahtumassa kodin
ostaja istuu välittäjän kanssa konfiguraattorin äärellä ja valitsee, minkälaisen
talon hän haluaa, mihin se tulee rakentaa ja minkälaisia lisävalintoja ostaja
mahdollisesti haluaa. Konfiguraattorin tehtävä on laskea talolle oikea hinta,
näyttää/piilottaa valinnat niihin liittyvien sääntöjen perusteella ja tallettaa
asiakkaan valinnat johonkin pysyvään tietokantaan. Perinteisesti tämä tapaa-
minen on järjestetty talonrakennuttajan tiloissa pöytäkoneen äärellä, mutta
nykyään tapaaminen usein halutaan järjestää joustavammin asiakkaan ehdoilla.

Nykysuuntauksen mukaisesti ohjelmistoja kehitetään usein suoraan web-
sovelluksiksi tai vanhoja alustariippuvaisia sovelluksia muunnetaan web-
sovelluksiksi. Kyvyssä ajaa sovellusta selaimessa on useita hyötyjä kuten se, että
web-sovelluksia voi ajaa eri laitteilla eivätkä ne vaadi käyttäjää asentamaan
mitään niihin. Erilaisten web-kehitystekniikoiden kehitys on tehnyt monimut-
kaisten web-sovellusten tekemisestä mahdollista ja helpompaa kuin koskaan
aikaisemmin.

Tämän diplomityön tavoitteena on muuntaa vanha Windows-pohjainen myynti-
konfiguraattori web-sovellukseksi sekä samalla tutkia, mitä hyötyjä muuntami-
sesta on ja minkälaisia haasteita muuntamiseen sisältyy. Tämä diplomityö esittää
yhden mahdollisen toteutustavan käyttäen React web-kehitysympäristöä sekä
ODATA web-ohjelmointirajapintaa. Tässä työssä esitetään myös kaksi eri tapaa
(koodin laadun estimointi ja suorituskyvyn evaluointi), joilla tämänkaltaisen
muunnostyön onnistumista voi arvioida ja mitata.

Asiasanat: Web-sovellus, Windows-sovellus, Migraatio, Analyysi, Imple-
mentaatio

Kieli: Englanti

ii

Acknowledgements

This project was done along the ongoing process of making the Sapphire
Home Building ERP more modern and user-friendly tool for production home
builders. I want to thank the initiator of this project and thesis, Jouko
Väkiparta, former CEO of Kova Finland OY, who regrettably succumbed to
an illness during the writing of this thesis.

I want to thank my supervisor professor Petri Vuorimaa for guidance, feed-
back and patience during this long project. I also want to thank M.Sc. Mikko
Halttunen for being very involved, interested and eager to help with his tech-
nical expertise throughout the project. I’m grateful for the support (read:
pressure) provided by the closely knit Kova Finland OY development team.

Last, but definitely not least, I want to thank my family and friends for
being role models and pushing me to finish this. I owe special gratitude to
my fiancée Jenni for providing support, encouragement and gentle pushes all
the way from the start to end - without which this thesis wouldn’t have been
finished.

Helsinki, March 28, 2019

Lauri Suihko

iii

Abbreviations and Acronyms

AJAX Asynchronous JavaScript And XML
API Application Programming Interface
CSS Cascading Style Sheets
DBA Database Administrator
DOM Document Object Model
DNS Domain Name System
ERP Enterprise Resource Planning
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
MVC Model-View-Controller
QoS Quality of Service
REST Representational State Transfer
RIA Rich Internet Application
SQL Structured Query Language
UI User Interface
URL Uniform Resource Locator
W3C World Wide Web Consortium
XSS Cross Site Scripting

iv

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Research Questions . 1
1.2 Sapphire Build . 2
1.3 Production Home Building . 2
1.4 Options . 3
1.5 Structure of the Thesis . 3

2 Web Applications 4
2.1 Web Application Quality Attributes 4
2.2 Web Application Architecture 6

2.2.1 Tier Architecture . 6
2.2.2 Quality Attributes and Tiers 6
2.2.3 MVC Architecture . 8

2.2.3.1 Model . 9
2.2.3.2 View . 9
2.2.3.3 Controller . 10
2.2.3.4 Benefits of MVC 10
2.2.3.5 MVC and N-Tiered Web applications 10

2.3 Rich Internet Applications . 11
2.3.1 RIA Technologies . 11
2.3.2 Adobe Flash . 12
2.3.3 Silverlight . 12
2.3.4 Java Applets . 12
2.3.5 HTML5 And Related Technologies 13

2.3.5.1 HTML5 . 13
2.3.5.2 JavaScript . 13
2.3.5.3 CSS . 14
2.3.5.4 React . 14

v

3 Evaluating Code Quality 16
3.1 Code Quality of the Sales Configurator 16
3.2 Software Quality and Code Quality 16
3.3 Code Quality Issues . 17
3.4 Code Quality Metrics . 18
3.5 Problems with Quality Metrics 20
3.6 Code Quality Evaluation Tools 20

3.6.1 Tool Inspection Scopes 21
3.6.2 C# Analaysis with Visual Studio 21
3.6.3 JavaScript Analysis . 22

4 Web Application Performance 23
4.1 Application Performance in General 23
4.2 Acceptable Performance . 24
4.3 Web Application Performance 25

4.3.1 Load Balancing . 26
4.3.2 Web Application Performance Testing 27

5 Current Sales Configurator 28
5.1 Home Option Configurators In General 28
5.2 Origins . 28
5.3 How Is Sales Configurator Used 29
5.4 Sapphire Build Option/Option Rule Setup 30

5.4.1 Relevance to the migration project 33
5.5 Sapphire Build Price Setup . 33

5.5.1 Relevance to the migration project 34
5.6 Used Technologies . 34

5.6.1 Problems . 34

6 Methods 35
6.1 Used Web Development Technologies 35
6.2 Technical Challenges . 35
6.3 Evaluating success . 36

6.3.1 Performance . 36
6.3.2 Code Quality . 36

7 Implementation 37
7.1 ODATA Web API . 37

7.1.1 Authentication and Security 39
7.2 React.JS User Interface . 39
7.3 Proof of concept UI . 39

vi

7.3.1 Customer Panel . 41
7.3.2 Main Panel . 41
7.3.3 Sales Office Panel . 43
7.3.4 Output panel . 43

8 Evaluation 45
8.1 Overall success of the migration 45

8.1.1 General . 45
8.1.2 User Interface . 45

8.2 Performance measurement results 46
8.2.1 Start up performance 46
8.2.2 Changing Community 46
8.2.3 Load Option Data . 47
8.2.4 Changing Options . 49

8.3 Code quality measurement results 49
8.3.1 Measuring JavaScript Code Quality 50
8.3.2 Measuring C# Code Quality 50
8.3.3 Comparing The Results 51
8.3.4 Results . 51

9 Discussion 53
9.1 Migration Insights . 53
9.2 Future Work . 54

10 Conclusions 55

vii

Chapter 1

Introduction

Goal of this thesis to study and implement the best possible way to migrate
Windows native Sales Configurator application to a web based application.
Sales Configurator is a part of the Sapphire Build ERP software suite [19].
The main functions of the configurator are to register customer information,
select the preferred community and lot, select the desired options, and submit
a sales worksheet to a back-end server. In additions to the core functionality
the sales configurator can be used to, e.g., handle sales contingencies, custom
options, print and digitally sign sales documents and draw redlines, but they
are out of the scope of this thesis. The main focus is on the option configura-
tor part since it is the most complicated and performance-wise most difficult
piece of the sales configurator.

1.1 Research Questions

This thesis will cover three main research questions. Firstly, this thesis will
investigate what kind of fundamental differences there are between Windows
native applications and a Web applications and how to tackle the challenges
caused by the differences. These differences include but are not limited to,
for example, the different ways the state of the option selection process can
be stored, or how to make UI interface fluid regardless of Web service calls to
a back-end server. Also, it needs to be investigated, how great of a negative
impact will this migration cause to the back-end servers. After the migration,
a lot of the computing previously done by the native client (e.g., option rule
calculation) might need to be moved to the server.

Secondly, this thesis will cover different ways how to evaluate the success
of the migration. First is performance. Even though the web application
will have to overcome its own performance problems one of the main goals

1

CHAPTER 1. INTRODUCTION 2

of the migration is to try to enhance at least the user perceived performance
by reducing long load times that plague the configurator currently. The
second evaluation method will be code quality. We will investigate what
kind of methods are the best for evaluating success through code quality in
a situation where part of the code is rewritten completely and also migrated
to a fundamentally different technology.

Lastly, in this thesis it will be studied and formulated, what kind of
benefits there is to be expected when moving from Windows native client to
a Web application.

1.2 Sapphire Build

Sapphire Build is a ERP system originally developed by Finnish software
development company Evenflow OY. The complete Sapphire Build ERP
package is used mainly by production home builders building 100 to 2000
homes per year. The core ERP system is being developed as a web ap-
plication mainly using Microsoft .NET technologies. The web application
core is supplemented with some Windows native applications (e.g., the sales
configurator and a file sync tool) and iOS and Android native applications.
[19]

1.3 Production Home Building

Production home builder is a company that builds different kinds of hous-
ing (e.g., single-family homes, townhouses, apartment buildings) on a piece
of land they have previously acquired. This thesis will focus on production
builders that build single family homes on communities containing up to
several hundreds of homes. Usually, the builder offers a selection of different
kinds of home models from which the customer picks their favorite. Even
in large communities with 100+ homes typically only a handful, from 4 to
8, base models are offered. To satisfy the different needs and desires of cus-
tomers the builders give the customers the ability to customize their homes
using options. Production home builder companies vary greatly in size. The
usual metric to evaluate the size of the builder is the number of units the
company sells in a year. The smallest ones are run by just a few people and
can build less than 10 units per year. The biggest ones sell in the tens of
thousands per year and their revenue is in the billions (D.R. Horton 41,652
closings and 12,239,900,000 USD revenue in the 2016) [1]. [26]

CHAPTER 1. INTRODUCTION 3

1.4 Options

Options in the home building industry work in a similar fashion as with the
automotive industry. In home building, however the amount of available
options and their effect on the end product can be far greater. Home builder
can offer, e.g., cabinets or carpets in hundreds of different variations and
structural options (e.g., extra rooms, bigger garages, even extra floors) can
affect profoundly the layout of the finished home. Option rules control the
availability of the options - basement bathroom can be build and sold only
if basement is build and sold. Like in the automotive industry the offered
options are also an important source of revenue for the home builders and
therefore are eagerly marketed and sold for home buyers.

1.5 Structure of the Thesis

The first chapters form the theory part of this thesis. The first part of the
theory portion covers the general characteristics, most common technologies
and most common architecture designs of web applications. The second part
is about common technologies and techniques to evaluate code quality. In
the last theory part, this thesis will cover different ways to evaluate web
application performance and which aspects of application performance are
specifically important and critical for web applications. The last chapters
of this thesis cover what techniques were chosen for the implementation as
well as how successful the migration was from the perspective of code quality
evaluation and performance metrics.

Chapter 2

Web Applications

Web application is a software application, which is built using web devel-
opment techniques and the user interface is accessed using a web browser.
They differ from web sites in that they usually have some functional pur-
pose such as sending emails whereas regular web sites are usually more static
and content oriented although the distinction is not completely clear always.
E.g., one could argue that a news site that offers the users the possibility
to prioritize the content that is primarily offered to them falls somewhere
between a web application and a web site.[57][53]. In the recent years, the
development of the web application development techniques, browser sup-
port, faster Internet connections and mobile devices have made it possible
to create more complicated web applications that are responsive, easy to use
and are more or less platform independent.

2.1 Web Application Quality Attributes

Web application share a lot of the most important quality attributes as gen-
eral applications but because of their different nature often are emphasized
somewhat differently. Commonly listed quality attributes and their most
important aspects with regards to web applications are[32][47]:

1. Scalability

• User count for a web application can rise up rapidly and it is not
uncommon for one to reach millions of concurrent users. Allowing
this requires great care when designing the underlying architec-
ture.

2. Performance

4

CHAPTER 2. WEB APPLICATIONS 5

• Poor performance is a guaranteed way to ruin the user experience
of an application and web applications are no exceptions. Web ap-
plications also have to cope with additional performance affecting
challenges like poor network conditions and request timeouts.

3. Availability

• Web applications are usually expected to be functional 24/7 merely
based on the fact that user can access them from anywhere around
the globe.

4. Security

• Since web applications are often accessible through open Internet,
they are common targets for malicious hackers. Many of the major
data leaks that have made public have been done through some
kind of web application.

5. Reliability

• Users expect web applications to function correctly and have low
tolerance for failures since they often have other options just by
typing a different URL.

6. Maintainability

• The software technologies have been changing and developing rapidly
and users expect web applications - arguably more than applica-
tions in general - to be able to keep up with the development. Five
year old web application can feel outdated already.

7. Usability

• Web applications, more often than regular applications, are ac-
cessed by general public with no technical background and need
to have intuitive user experience. Similarly to reliability, if users
aren’t happy they have low threshold to switch to another provider.

This is not a complete list and other attributes can and have been pro-
posed but arguably they are the most relevant ones with regards to web
applications.

CHAPTER 2. WEB APPLICATIONS 6

2.2 Web Application Architecture

Web applications are by nature always client-server applications where a user
operated web browser is usually the client[53]. Beyond that however, for a
web applications developer there are multiple different architectural patterns
and technologies to choose from[37].

Web application architecture defines the structure of the application as
well as how the different parts of the web application interact with each
other. It’s important to design and implement a suitable architecture for a
specific application need and the architecture design is critical to be able to
score high with regards to the quality attributes.

2.2.1 Tier Architecture

Web applications like all applications can be categorized by how many tiers
they utilize. The number of tiers is the number of layers the desired informa-
tion will have to pass to get from the data source to the presentation tier[35].
1-tiered application would be a lone program running on a single machine
using local data, and therefore web applications by nature are at least two-
tier applications, one for back-end server and one for the presentation piece
of the applications, usually rendered in a web browser. Usually however,
modern web applications are at least 3-tiered applications.

1. Presentation Layer, e.g., HTML5 rendered in a browser

2. Logic Layer, e.g., ASP.NET application running on top of IIS

3. Data Layer, e.g., Microsoft SQL server running on a Windows Server

The distinction between layers isn’t always clear and the layers can be
further divided down to more fine-grained parts, e.g., logic layer and data
layers can be divided to a separate business logic, data access and data layers.
Web applications that are divided to more than three or more tiers are also
called n-tier web applications. Dividing web applications brings multiple
benefits that have to do with the overall quality of the web application[47].
Figure 2.1 below shows an example information flow on a 3-tier architecture.

2.2.2 Quality Attributes and Tiers

Tiered web applications are better equipped to meet most of the quality
attributes that can be used to evaluate overall quality of web application.
Separate tiers can help tackle scalability and performance by allowing the

CHAPTER 2. WEB APPLICATIONS 7

Figure 2.1: Information flow on a 3-tier application.

application to be deployed to separate virtual of physical machines, and thus,
e.g., a slow database server will not grind the whole application to a halt.
Furthermore, it’s easier to replicate logically separate layers to increase the
throughput of a web application by, e.g., using load balancing [25] to repli-
cate the logic layer and still use a single database layer. Similarly, just the
database layer can be replicated if that is causing problems with performance
or scalability or the combination of the two can be used. Similar techniques
can be used to ensure the availability of the web application.

Separate tiers are useful also from the perspective of reliability and main-
tainability. Generally speaking smaller software project are easier to manage
from initial planning and development to testing and development. Break-
ing bigger projects to smaller and logically separate entities is no exception.

CHAPTER 2. WEB APPLICATIONS 8

When web applications are separated to layers the developers working on
a single layer don’t need to have expertise on all of the technologies used
in the complete application but can focus on the technologies used in their
part of the application, e.g., SQL expert DBAs working on the data layer,
HTML, CSS and JS expert web designers working on the presentation layer
and back-end developers working on the logic layer[47]. The maintainability
of the application is improved by the distinction of tiers also because it easier
to upgrade, update or even rewrite a single tier versus the whole application.
As we will see later in this chapter, the web applications technologies - even
ones backed up by big players like Oracle, Adobe and Microsoft - have lost
popularity and have been deprecated relatively quickly, and therefore it’s
important to keep that flexibility in mind when designing web application
architecture. Also, tiered approach allows developing different interoperable
versions of a specific layer, e.g., the usage of different presentation layers
based on the kind of device that the web application is accessed.

Also, security aspects of a web applications can be addressed better using
separate layers. The separate layers can be utilized to create separate secu-
rity layers all of which the attacker should breach to gain full access to the
system[47]. The logic layer can be e.g. used to filter and recognize malicious
HTTP requests with XSS (cross site scripting) or SQL injection attacks[55].
The client side part of the presentation layer is not a safe place to sanitize
user input since it is run on the client’s environment and usually is easily
modified. The logic layer run on the back-end server, however, is the correct
and safe place to do that.

2.2.3 MVC Architecture

MVC or Model-View-Controller architectural paradigm was not designed
originally having web applications in mind, but was developed for the pro-
gramming language Smalltalk in the late 70s in the Xerox Palo Alto Research
Laboratory (PARC). Norwegian computer scientists Trygve Reenskaug has
often been credited as being one the major innovators behind MVC[50].
Decades later the MVC went through a renaissance when many of the promi-
nent web development frameworks recommended using the MVC paradigm,
and therefore it deserves a special mentioning when speaking of web applica-
tions. According to HotFrameworks.com - a web site that measures popular-
ity of web frameworks based on how many GitHub project starts there are
for specific framework as well as how many times the framework has been
tagged on Stack Overflow questions - many of the currently most popular
frameworks implement the MVC pattern[9]. Figure 2.2 below visualizes an
example information flow on the MVC pattern.

CHAPTER 2. WEB APPLICATIONS 9

Figure 2.2: Information flow on the MVC pattern.

2.2.3.1 Model

The definition of a model is very flexible. A model represents some data and
the means to modify the data[50]. Originally a model could be as simple as a
single integer or a string[38] or at least, nowadays more likely, a single object
- object as an instance of a class in a object oriented programming language.
In a web application, the object would likely represent a database table, a
file, session data or cached data[28]. Model is the most independent of the
MVC parts. In the purest MVC form, it doesn’t need to know anything
about the views nor the controllers[41].

2.2.3.2 View

Each model has one or more views assigned[50]. Views request data from
their models and represent that in some graphical way. Sometimes models
also need to have a way to trigger updates on their views if models can
be acted upon through separate procedures, e.g., periodically run internal
operations[28]. A view allows user to interact with the data, but only through
controllers.

CHAPTER 2. WEB APPLICATIONS 10

2.2.3.3 Controller

Controllers tie the user, models and views together. Users use controllers to
manipulate data using some input device, e.g., mouse or a keyboard [38] and
calling the data manipulation methods provided by the models.

2.2.3.4 Benefits of MVC

MVC architectural pattern provides similar benefits to what tiered architec-
ture can offer and tackles especially the scalability, reliability and maintain-
ability aspects of the web application quality attributes presented earlier[28][32][47].
More specifically MVC claims to provide the following:

1. Less Coupling

2. Higher cohesion

3. Flexibility

4. Design Clarity

5. Maintainability

6. Greater scalability

2.2.3.5 MVC and N-Tiered Web applications

The n-tier and MVC architectures are fundamentally different. The focus
of the n-tier architecture is in describing how information flows behave and
how different parts can be separated to different (often physically separated)
layers. Also, the n-tier architecture is strictly hierarchical, the presentation
layer is never directly in contact with the data layer. The MVC architecture
is more flexible in its definitions and the separation of its are parts is more
conceptual in nature. This flexibility and the multitude of different interpre-
tations makes the MVC also arguably harder to grasp and more difficult to
define. Often it is not trivial to determine whether a framework of specific
software project implements MVC or not.

MVC and n-tiered architecture styles are not mutually exclusive but of-
ten can be used together. There are multiple different ways they can be
implemented simultaneously. Sometimes all of the MVC parts are located
completely in the presentation layer which is the recommended way to use
e.g. the Angural.JS front-end web development framework. The ASP.NET
MVC takes a completely different approach to utilize MVC. In the ASP.NET
MVC the view would be live partly on the presentation layer and partly on

CHAPTER 2. WEB APPLICATIONS 11

the logic layer. The models and controllers are represented by classes run on
the server, or the logic layer, side.

2.3 Rich Internet Applications

The goal of this thesis to migrate a fairly complex windows native applica-
tion to a web application. Such application can be called a RIA or Rich
Internet Application [48]. It is critical to decide a suitable RIA platform into
which to start the migration process. There are multiple aspects to consider
when selecting the web development technology. First of course you have
to find out if the potential technology will have the technical capabilities
you require. After that is settled, you need to consider the ease of devel-
opment, browser support, is the technology well documented, does it have
a virile developer community, does the technology have a future and so on.
It is especially important to consider the future of the potential technology
since many potential candidates will eventually fade into obscurity which has
happened before even to technologies backed up by big corporations.

2.3.1 RIA Technologies

In the early days of web applications, the standard technologies supported
by the browsers of the day were poorly suitable to meet the requirements
of a software application. They were more focused on serving static con-
tent and couldn’t provide, e.g., video playback or a smooth UI experience.
JavaScript developed by Netscape in 1995 gave developers some means to
make interactive UIs, but to supplement the capabilities multiple additional
techniques were developed. Common to these technologies were that they
often required installing a 3rd party plug-in to the Internet browser and they
run native code, which at least some years ago was performance-wise more
efficient[48]. The performance of JavaScript engines has since been enhanced
and the gap has narrowed [34]. Also, common for these technologies is that
they have each been slowly deprecated and replaced by the HTML5 and the
related technologies. The major browser vendors have dropped or are about
to drop the support for all of three different RIA technologies described below
and the distributors of the technologies have announced the discontinuation
of them as well.

CHAPTER 2. WEB APPLICATIONS 12

2.3.2 Adobe Flash

From the perspective of RIAs, the most important version of the Flash was
the fifth version released in the year 2000. Flash 5 introduced the Action-
Script language, which helped transition Flash from being merely a playback
platform for audio and graphics to a full-blown RIA platform. In 2017, Adobe
announced that it is planning to end Flash. They say they will stop updat-
ing and distributing Flash in 2020. Adobe is also endorsing HTML5 and
recommending the existing developers to migrate existing Flash applications
to HTML5 based applications[22].

2.3.3 Silverlight

Silverlight was Microsoft offering to the RIA frameworks. The first version
was released in 2007. Like the Flash and Java Applets, Silverlight requires an
addition browser plug-in. Early Silverlight versions had the same emphasis
on media playback the Flash had. The second version released in 2008 offered
a limited support for .NET framework and moved the focus of the Silverlight
to full-blown RIA framework[43]. Like Adobe did to Flash, Microsoft has
stated the they will not support Silverlight in the future and recommend
that existing Silverlight applications will be migrated to other technologies
including HTML5 and the related technologies[54].

2.3.4 Java Applets

Java Applet is an application that is run on a JVM (Java Virtual Machine)
in a Web browser. Like the Flash applications, Java Applets require an
installation of a browser plugin. Java applets are usually written in Java,
but can be written in any language that can be compiled to ByteCode. In
2016 Oracle announced they will deprecate the Java browser plugin as part
of the JDK 9 update[56]. Unlike the Adobe with Flash and Microsoft with
Silverlight, Oracle is not recommending migrating Java applet applications to
HTML5 based applications, but recommends developers to migrate existing
applets to use Java Web Start technology, which doesn’t require a separate
browser plugin. Java Web Start is a technology that allows Java applications
to be installed and run from a single click on the web browser, but the
application itself is run outside the browser[12].

CHAPTER 2. WEB APPLICATIONS 13

2.3.5 HTML5 And Related Technologies

All of the technologies listed above have been more or less made obsolete by
the HTML5 standard and the related tools that moderns browser support
out-of-box. The technologies most commonly used with HTML5 to develop
RIAs are CSS and JavaScript.

2.3.5.1 HTML5

HTML5 is the latest standard of the HTML. It was published by World
Wide Web Consortium on 28.10.2014 [10]. It was long waited since the
version before that, HTML 4.01, was published already in 1999. From the
start, one of the main goals of HTML5 standard was to facilitate the creation
of rich internet applications by adding native browser support for features
that previously required an add-on. These included audio/video playback,
scalable vector graphics (SVG), drag-and-drop and many more[10].

2.3.5.2 JavaScript

JavaScript is a scripting language developed by Netscape Communication
Corporation originally to allow front-end developers to make static HTML
pages more dynamic. The first version was published in December 1995 and
was supported by the Netscape Navigator 2.0, then a popular browser. In
the original press release, the publishers of JavaScript state that the design
of JavaScript is to be [15]:

• designed for creating network-centric applications

• complementary to and integrated with Java

• complementary to and integrated with HTML

• open and cross-platform.

Also, easy of use was emphasized since the target users were seen as web
page designers with limited software development experience. They aimed
to create a simple and easy-to-learn language like Visual Basic. How well
they succeeded is arguable. JavaScript has been criticized for getting popular
before the language was finished and polished leaving some obvious flaws in
the language syntax and design[27]. Also, JavaScript is loosely typed, which
on the other hand gives the language flexibility, but on the other hand makes
it more error prone especially for inexperienced developers or developers used
to writing strongly typed code [30]. TypeScript developed by Microsoft is one

CHAPTER 2. WEB APPLICATIONS 14

attempt to make writing complex JavaScript applications more manageable.
The TypeScript syntax allows, e.g., static types and better support for object-
oriented program design.

Despite all this, JavaScript is nowadays extremely popular, and it is esti-
mated that around 94.5 percent of the 10 million most popular web pages use
it to some extent. Especially its use along with AJAX reduces the amount
of full page reloads needed on a web application, which results in a more dy-
namic, more desktop application like, user experience. Usually, it is not used
as is (so called vanilla JavaScript), but along with some JavaScript libraries
or frameworks such as the immensely popular jQuery or AngularJS.

2.3.5.3 CSS

Cascading Style Sheets is language used to define the presentation of a HTML
page. Like the JavaScript, CSS is extremely common and used in almost all
modern web sites. CSS allows web designers to more easily define a layout
and specific look for a web page or application. Previously the web page
presentation was defined usually within the HTML components. E.g., each
link in the document had to have inline style declarations. CSS allows web
designers to create multiple feels of the same page based on the user prefer-
ences and perhaps more importantly, allows the same HTML mark-up to be
used with different user devices (e.g., desktops, mobile devices or tablets) by
only changing the CSS rule declarations. CSS rules consist of a selector and
a declaration block[52]. The selector tells the web browser, which document
objects are to be affected by a specific rule and the declaration block defines
which style declarations are to be applied to said objects. The basic selectors
of CSS are used to target specific types of objects (type selectors), objects
with specific attribute or class (id, attribute and class selectors). There is
large amount of more complicated selectors that can be used to target objects
with all kinds of rules.

2.3.5.4 React

React is one of the more modern javascript based UI web framework and
is one of the strongest candidates to be used in the front-end part of the
migration. In the MVC paradimg, React would cover the View portion[36].
Jordan Walke, a software developer for Facebook, is credited to be the origi-
nal author of React. Later it was published as on open source library under
the MIT license and is nowadays developed by Facebook, Instagram and a
community of developers.

CHAPTER 2. WEB APPLICATIONS 15

React is at its best when used in Single-Page-Applicaions, i.e., web appli-
cations where the application is loaded in one single full page load and after
that is run on the client side. If additional data is needed from the server it is
fetched using techniques like AJAX that don’t need a full page reload. One
of the innovations utilized by react is its Virtual Document Object Model.
Browsers handle HTML documents as tree structures and offer a Document
Object Model interface for making changes to the HTML structure. Changes
in DOM require the browser to re-render the current view which in some sce-
narios can be slow. Instead of manipulating DOM directly React operations
first affect only the virtual DOM and only later are imposed on the actual
DOM in a process they call reconciliation[20]. React is often used with a
JavaScript extension called JSX. It is used to describe the UI layout but also
makes it possible to directly attach functionality to the UI components by
writing JavaScript along with the UI declarations.[11]

Chapter 3

Evaluating Code Quality

3.1 Code Quality of the Sales Configurator

One of the most important reasons for this desktop application to web ap-
plication migration is to at the same time improve the code quality of the
sales configurator. During the life span of the configurator, the specification
requirements have changed significantly, technologies have been obsoleted
and improved, lot of the enhancements and bug fixes have been poorly doc-
umented and the original architecture was not flexible enough resulting in
a severe code bloat. Developers involved in the development of the current
configurator are often frustrated because of these reasons and hence a special
focus on the code quality was in demand.

3.2 Software Quality and Code Quality

There a multiple ways to define software quality. Most of the quality at-
tributes defined web applications in mind on the previous chapter apply to
application in general as well so they don’t need to be repeated in detail
- most important ones being scalability, performance, availability, security,
reliability, maintainability and usability.

It’s important to note that here poor code quality doesn’t mean functional
problems in the code (which potentially could be automatically highlighted
using various testing methods) but problems in the structure of the code
itself. In this sense, code quality indirectly affects all of the quality attributes
but in this case we are most interested in its effects on the maintainability
aspect.

Research suggests that different code quality issues and design flaws in-
deed are useful indicators of poor maintainability. Maintainability can be

16

CHAPTER 3. EVALUATING CODE QUALITY 17

divided in sub categories[49] - modifiability, testability and understandabil-
ity - and different code flaws affect each category differently. Also, some code
flaws are more useful than other when assessing the overall maintainability
of a code base.[58].

It is not always trivial to decide, whether code quality in some specific
code fragment or architecture is good or bad. To emphasize the vagueness
of code quality Kent Beck and Martin Fowler coined the term code smell[31]
that is sometimes used to describe specific aspects of a piece of code that
probably are symptoms of low code quality.

3.3 Code Quality Issues

Code quality issues or smells are features of the code which generally are
regarded as being bad practice, should be avoided and eventually can have
reverse effects on the software quality. Below is a list of some the most
common code quality issues[31][45]. The list is divided to two categories or
scopes. Line-level issues and design level issues. Line-level issues are issues
that occur on a single line (or at most couple of lines) and design issues are
issues that are caused by bad design practices either at the method, class or
program level.

• Line Level Issues:

1. Magic numbers and string literals

– Magic number are numbers embedded in the code where it is
not clear where that number is derived from. Magic number
can be used, e.g., in arithmetic operations, indexes or condi-
tion statements

2. Fragmented Conditions/Too Complicated Conditions

– Condition statements that could be combined logical opera-
tors (e.g., OR/AND) are written as separate conditions state-
ments, or on the hand, statements are combined to form ex-
tremely complex and unreadable long statements

3. Uninformative variable/method names

4. Unused method parameters and variables

5. Long method parameter lists

• Design Level Issues:

CHAPTER 3. EVALUATING CODE QUALITY 18

6. Interruptions in the code flow

– E.g., goto statements and return statements that interrupt
the natural flow of the code

7. Duplicated Code

– Code that is exactly the same as well as code that is function-
ally the same, e.g., only variable names have changed

8. Unused Code - Code that is not executed in any execution path

9. Excessive use of method or operator overloading

10. Large Classes/Methods

– Large classes (sometimes called god classes) and methods
have too much functionality included in single package, which
makes their testing, reading and development difficult

11. Small Classes/Methods

– Classes or methods that have so little functionality they un-
necessarily obfuscate code. E.g., classes that don’t have any
methods - ”data classes”

12. Deeply nested loops and condition statements

– Code containing deep loop or condition statement structures
is hard to read in general. Also, deep loop structures can
cause performance problems that are non-trivial to recognize
from code

Design level issue list could be expanded further to include even more high-
level code issues, but it gets increasingly hard to evaluate whether the chosen,
e.g., deep class inheritance architecture style is an issue or a justified design
decision. We still may want to be aware of such structures in the code so we
can evaluate their validity. This is where Code Quality Metrics are useful.

3.4 Code Quality Metrics

Code quality metrics measure some line-level or architecture level feature of
the code which is useful in evaluating code quality. Here only metrics that
are easily automatically calculated are included, leaving out for example
analysis of the usefulness of variable names. Some metrics are specifically
designed, e.g., for object-oriented programming languages, some focus on
the code quality at a line level, other try to evaluate the higher level design
decisions[45].

CHAPTER 3. EVALUATING CODE QUALITY 19

Quality metrics can measure the prevalence of code issues and hence be
easily interpreted (e.g., high value can be regarded as good and low bad), but
that is not always the case. Code quality metrics also can measure aspects
of the code where careful investigation of the measurements is needed in
order to achieve a comprehensive understanding whether some measurement
is indication of poor design decisions. They are in any case good starting
points to find potential code quality issues. Following is a list of some of
the more commonly used code quality metrics. For each of the listed issues
there already are multiple tools that can be used to automatically evaluate
the existing sales configurator code base[21][23]. The list also references the
code quality issues whose prevalence it may reveal (if any).

1. Cyclomatic Complexity

• Measurement of the complexity of the code. Code with multi-
ple execution paths will get a high cyclomatic complexity score.
(issues 2/12)

2. Halstead Volume

• Measurement of the complexity of the code. Measures the amount
of distinct operators/operands used in the code as well as the
overall use count of the distinct operators (issues 10/11)

3. Lines of Code

• Can be used to evaluate whether a class or method is too small/large.
Can be counted not from the source code but the compiled code
to avoid obfuscating the result by coding styles. (issues 10/11)

4. Depth Of Inheritance

• DoI is a measurement of how far down in the class inheritance tree
some class is. High number indicates potential unnecessary com-
plexity in the class hierarchy, low number may indicate underuse
of the OO-paradigm

5. Coupling Between Classes

• Classes are considered coupled if a class calls methods of another
class. High value of coupling affects negatively the modularity of
the design and makes testing harder since changes in one class will
affect the behavior of one or more other classes

CHAPTER 3. EVALUATING CODE QUALITY 20

There are dozens more different metrics that can be used to evaluate code
quality and different metrics can be combined to endless amounts of different
weighted averages[39]. E.g., Maintainability index is a combination of the
Cyclomatic Complexity, Halstead Volume and the number of code lines and
Weighted Methods Per Class is the average of the Cyclomatic Complexity
values for methods in a class.

3.5 Problems with Quality Metrics

How well these metrics actually reflect code quality and eventually software
quality attributes is arguable. Studies have found that different tools that
claim they use some specific metric, can still give different results for the
same code. Code analysis tools create a model that represents the code in
some, from their perspective, useful way. The algorithms the tools most
likely are the same, but the way the tools construct the model out of code
seems to vary resulting in the conflicting results[39]. This seriously compli-
cates analyzing code quality metrics, e.g., in a migration project where the
technologies (programming language, frameworks, etc...) might change and
different tools would be needed.

Also, typically using static code analysis (quality metrics and/or finding
code issues) is an imperfect indicator of general maintainability. Studies
have investigated how well metrics/issues recognize maintainability issues
that were pointed out by expert analysis. The results suggested that some
metrics are more useful than others and many of the serious issues cannot
be reliably recognized by static code analysis. [58]

[39][58]

3.6 Code Quality Evaluation Tools

Some code quality issues or metrics are hard to evaluate using automatic
tools (e.g., poor naming conventions), but for most of the items covered in
the above lists, automatic tools can be utilized.

Vast amounts of different tools and algorithms have been developed,
which can be used to recognize and enhance poor code quality[23]. Differ-
ent tools target different issues, programming languages and programming
paradigms. Common for all of them is that they in some way utilize static
code analysis (the code is analyzed without executing it) when calculating
different metrics or finding specific code quality issues. In contrast, dynamic
code analysis involves executing the code. Static code analysis tools can

CHAPTER 3. EVALUATING CODE QUALITY 21

evaluate code directly or compiled intermediate language[40].

3.6.1 Tool Inspection Scopes

Similarly to the way we can categorize code issues based on scope they af-
fect the program, we can categorize tools based on the scope of the issues
they aim to recognize. The object management group (OMG) together with
the Consortium of IT Software Quality (CISQ) have defined three scopes or
levels[33]:

1. Unit Level Analysis

• Analysis that covers a single unit of code, i.e., method, function
or even a program

2. Technology Level Analysis

• Analysis that covers a collection of related code unit written in
the same programming language. Can cover multiple programs
within an application

3. System Level Analysis

• Analysis that covers all code units, different technology layers and
programs on the entire integrated application

Tools covered in thesis will all fall under the first two levels.

3.6.2 C# Analaysis with Visual Studio

Visual Studio IDE by Microsoft provides various built-in code inspection
tools. Out-of-box Visual Studio can calculate five different quality metrics,
Maintainability Index, Cyclomatic Complexity, Depth of Inheritance, Class
Coupling and Lines of Code. Maintainability index is a number ranging from
0 to 100 and is calculated the following way:

• MAX(0,(171 - 5.2 * ln(HV) - 0.23 * (CC) - 16.2 * ln(LoC))*100 / 171)

– HV = Halstead Volume

– CC = Cylcomatic Complexity

– LoC = Lines Of Code

CHAPTER 3. EVALUATING CODE QUALITY 22

Microsoft claims that maintainability index of 20-100 is good, 10-19 is average
and 0-9 is poor. In addition to quality metrics Visual Studio has a tool for
recognizing duplicated code. Visual Studio also has static code analysis tool
that uses specific set of rules for identifying vast variety of different design,
performance, security etc. issues. The rules are not modifiable, but the users
can define which rules they want to use. [21]

3.6.3 JavaScript Analysis

There are multiple tools for analyzing JavaScript with different focuses. ES-
Lint is a open source JavaScript analysis tool created by C. Zakas. ESLint is
a tool that statically analyses the JavaScript code and gives warning based
on the rule set defined for the ESLint. Rules are configurable, new rules can
be added and existing ones can be disabled. The rules mainly target specific
code issues but also an upper limit for cyclomatic complexity can be set[2].

Multiple open source tools that calculate different code quality metrics
exists as well. E.g., tool called escomplex can calculate multiple metrics
from JavaScript code including lines of code, cyclomatic complexity, Halstead
metrics, maintainability index [8].

Chapter 4

Web Application Performance

Performance is one of the main software quality attributes described in the
earlier chapters. Poor performance degrades user experience and this can
be specially devastating for a web application since often there are plenty of
options and the switch can be easy. This chapter focuses on different ways
performance of a web application can and should be evaluated.

4.1 Application Performance in General

Software application performance is not trivial to define. Performance is
a combination of different metrics of which some are subjective in nature.
It can be argued that software performance is often a perceived attribute.
Software performs well when users aren’t irritated by the application and
the user experience feels smooth and snappy[44]. Of course there are more
scientific approaches for defining application performance. The following
characteristics can be measured using various testing methods and are often
the staring point for any performance measurement setup[44][42]:

• Availability/Uptime

– Measure of how often the application is available. Application is
unavailable when it’s completely out of reach (e.g., server failure)
or simply when it so overloaded that new requests time out and
are never handled

• Concurrency

– How many concurrent users the application can facilitate without
suffering from severe performance degradation. Can be a measure

23

CHAPTER 4. WEB APPLICATION PERFORMANCE 24

of maximum number of simultaneous users or the maximum num-
ber of users that can use the application during a time period,
e.g., an hour

• Throughput

– Closely tied to concurrency. Instead being of measure of con-
current users throughput is the number of some operations the
application can handle in some time period

• Response Time

– Response time is the time it takes for the application to give a
complete reply for some user request. Complete reply here means
that the requested operation has been successfully completed, not
just, e.g., showing a loading bar

Resource utilization is also often listed as one of the basic metrics and for
web application it makes sense to divide it into two parts:

• Network utilization

– Measure of the strain the application casts on the network. Takes
into account the total data transfer as well as the peak transfer
rates

• Server utilization

– The traditional resource utilization metrics. Takes into account
the CPU utilization, memory utilization and I/O utilization (typ-
ically network and disk utilization)

4.2 Acceptable Performance

End-users typically are only interested in the aspects of performance that di-
rectly affect them. Users most likely are not interested in how much network
and server resources an application consumes as long as the availability and
response time are at an acceptable level. Acceptable availability for a web
application is usually 24/7 with some occasional down-time for updates and
server maintenance. Acceptable response time is more complicated.

Acceptable response time is very much dependent on the specific use-
case, more specifically what kind of operation the user is trying to perform.

CHAPTER 4. WEB APPLICATION PERFORMANCE 25

Acceptable response time is very different for a complicated building mate-
rial calculation operation, than it is for the simple operation of viewing the
results. The former can take multiple minutes, but viewing the result should
take less than couple of seconds.

Studies show that response times more than 15 seconds are only accept-
able for complex queries or business operations, but even then users tend to
find other things to do while they are waiting for the response. Response
time greater than 4 second makes conversation hard and makes data input
frustrating. 2-4 seconds is cutoff point, where users start to struggle with
concentration intense operations, or operations, where they have to keep
something specific in their shot-term memory. Only at one second delays
users feel that their flow of thought has not been interrupted. Also at the
one second point, users typically no longer require feedback about initiation
of the operation. With response times longer than that, users start to initi-
ate processes multiple times wondering whether the first one really started.
Still at one second point, users feel the lag and this is unacceptable e.g. in
a document editing software. Decisecond response times for humans feel
instantaneous. [46][44]

4.3 Web Application Performance

All the general principles of software performance apply to web applications
as well. Some characteristics of web application, however, warrant some
specific metrics that are especially useful. Typically, these special metrics are
some kind of special case of the general performance metrics. The following
web application specific metrics have been proposed[24]. Here are the most
relevant ones from

• Time To Title

– Time it takes for browser of the client to show the title of the
web application. Important from the user’s perspective since it
informs the user that the web page is actually responding

• Time to First Byte

– Time it takes for the first bytes to reach the client’s browser.
Order of the sent data is important. Generally data containing
functionality should precede static contents, e.g., images

• Time to Last Byte

CHAPTER 4. WEB APPLICATION PERFORMANCE 26

– Time it takes for the last byte of the web application initial screen
to arrive to the browser of the client

• Time To Interact

– Time it takes for the user to be able to start interacting with
the web application. Doesn’t mean that the web application has
necessarily fully loaded

• Overall Weight

– The overall data that gets sent to the client’s browser during a
sessions using the web application

• Overall Asset Count

– The overall number of different assets (typically in different files)
the application needs. Assets consists of JavaScript files, CSS files
and image files - anything that requires a separate HTTP request
to get.

4.3.1 Load Balancing

Since web applications typically need to be available around the globe, need
to be up 24/7/365 and can have even millions of simultaneous users, often
web applications cannot be run on a single web server. Some method of
load balancing is often needed. Load balancing is a method to distribute
the load induced by a web application across multiple physical or virtual
servers. There are several techniques how load balancing can be utilized, but
the main goal is always either increase performance, availability or typically
both.

First we need a way to divert the traffic from the client machines to
different load balanced servers and there are several ways how this can be
achieved. One way is do the balancing on the Domain Name System (DNS)
level. DNS load balancing can by achieved by assigning multiple IP ad-
dresses to same host name and utilizing some kind of randomizing method
(e.g., round-robin) for assigning different requests to different servers. Other
method is to utilize DNS delegation to assign different servers to same host
name based on different geographical locations[18][25]. The benefit of the
DNS approach is that it can be invisible both to the client-side application
as well as the back-end servers.

CHAPTER 4. WEB APPLICATION PERFORMANCE 27

Other way is to handle the load-balancing at the client side. The client
side application has information about the back-end server and makes in-
dependent decisions on which server to connect to. The decision can be
random but also have logic behind it, e.g., selecting the server that has per-
formed best in the recent requests[29][25]. One problem with the client side
load-balancing is that typically we want to have more control on the incom-
ing requests due to possible malicious users and also it requires developing
special logic to the client-side application.

Finally, we can handle the load balancing at the server side. Typically, we
would have a dispatcher server that all incoming requests initially go into and
they then get redirected to separate back-end servers by some logic defined at
the dispatcher. Again, the logic can be random assignment, round-robin or
something more complex.[25]. The benefit here is that this is invisible to the
client-side application and the dispatcher can have very detailed information
about the currently available servers. They can report the dispatcher their
current load, currently active connections and so on allowing more complex
and effective algorithms for assigning the incoming connections for suitable
servers.

4.3.2 Web Application Performance Testing

There are several different tools for evaluating web application performance
with varying focuses. When evaluating or testing web application perfor-
mance there is always three things to consider. The performance of the
client-side application, the performance of the back-end server and the effec-
tiveness of the the network traffic. It doesn’t help that the client side and
the servers are lightning fast if users using the web application with poor
Internet connections suffer from ineffective data transfer between the client
and the server. Unless not specifically monitored, unnecessarily large data
transfer are easily missed during development when network latencies are
minimal.

Simplest performance evaluating tools would be ones that measure pa-
rameter of a single web application operation. They measure, time, network
traffic, number of HTTP requests for a single operation. Developer tools
found in any modern web browser would be an example of such tool.

Typically, more complex performance testing tools allows complicated
simulations to be run which try to mimic real life conditions to their best
ability. Example of a such tool would be JMeter, a performance evaluating
tool with focus on web applications developed by Apache Software Founda-
tion.

Chapter 5

Current Sales Configurator

5.1 Home Option Configurators In General

One of the integral and most complicated parts of the Sales Configurator
is the Option Configurotor. Different kinds of option configurators have
been developed to ease the option selection process for customers of the
home builders. Compared to, e.g., car industry option configurators home
option configurators usually have greater variety of options and also need to
give support for custom options[51]. If a customer is willing to pay for an
extra room, many home builders are willing to give them that option. The
focus of the options configurators differs. Some option configurators focus
on graphical presentation like 3D graphics[51], others are more data and rule
driven. Sapphire Build falls into the latter category. Sapphire Build Option
Configurator is designed to handle a fairly complex rule setup and a simple
graphical representation of the effects structural options on the floorplan of
the home.

5.2 Origins

The development of the Sales Configurator application was started in the
2005. In that time, the developers came in to the conclusion that even though
the Sapphire Build was mainly based on web technologies the functionality
requirements of the sales configurator couldn’t be met with the web develop-
ment technologies of the time. The sales configurator could be used on the
model homes on the communities with poor mobile internet connections.

28

CHAPTER 5. CURRENT SALES CONFIGURATOR 29

5.3 How Is Sales Configurator Used

Sales configurator is typically used when a sales representative meets up with
a customer who is willing to buy a home in some specific community. This
often happens at a local sales office at the community. Later the same cus-
tomer can meet multiple times with another sales persons to make additional
changes to the outcome of the first meet, e.g., contractual changes or changes
to the selections made on the initial meet.

Sales configurator has a lot of functionality that will be out of scope of this
migration project. It allows, e.g., typing in mortgage information, managing
contingencies, creating custom options, redlining floor plans, it visualizes
effects on a structural options on the floor plan of a house, facilitates deposit
management and supports electronic signatures so the sales worksheets can
be ratified on the spot.

Not all sales configurator users use all of the functionality listed above
but all use the following functionality. The most important features, that we
will call here ”core functionality”, include the ability pick the community,
lot and a model, pick desired options and submit the selections back to the
Sapphire Build ERP system. The steps in detail are:

• Pick Community/Lot/Model

Figure 5.1: Community/Lot/Model Picker

This control allows first selecting the community, then selecting lot
and the model. The available lots, as well as the available models,
are filtered based on the community selection. Below the dropdown
selectors is a ”community lot map” where user can pick the desired lot

CHAPTER 5. CURRENT SALES CONFIGURATOR 30

by clicking the lot location on the screen. To the right is an alternative
graphical model picker showing an elevation image for each model.

• Select Options

Figure 5.2: Options with two different visualizations (dropdown and radio
button) of multiple choice options and a binary option

Options are grouped either by their categories (e.g., cabinets, plumbing,
exterior) or by their locations (e.g., garage, master bedroom, living
room). Options can be quantity options (e.g., how many extra sockets),
binary options (e.g., window above oven) or multiple choice options
(e.g., 1-car garage, 2-car garage or 3-car garage).

Availability of the options and the prices of options are affected by
other option selection, the selected community/lot/model (and by other
factors as well).

• Print contract and submit to Sapphire build

Finally, when the community/lot/model has been picked, the selections
have been made, and other required information has been typed to the
sales configurator, a sales worksheet can be printed and submitted to
Sapphire Build ERP system.

5.4 Sapphire Build Option/Option Rule Setup

When describing the option rule and option setup here, a simplified version
of the actual functionality is used but this is detailed enough for this context.

CHAPTER 5. CURRENT SALES CONFIGURATOR 31

Sapphire Build support three kinds of options, binary, quantity and at-
tribute (or multi-select) options. Options setup consists of option selection
and option values. The option selection is the option itself, e.g., garage
configuration and the option values would be the available selection in the
option, e.g., 2-car garage or 3-car garage. Binary option and quantity op-
tion don’t have option values. Available values in a selection can vary based
on multiple different attributes. E.g., 3-car garage can be offered only for
some models, some communities or even only at some lots. The option setup
(available option selections and their values) is calculated by the Sapphire
Build back-end when the configurator tells it which model and lot the cus-
tomer wants to pick. In addition to this static option setup control, option
rules allow dynamic control for available options.

One of most important and also more complicated feature of the sales
configurator is the option rule engine. That allows builders to setup their
options in a way where the sales representatives cannot sell impossible homes
(e.g., a house with two floors and three floors) or homes that they for what-
ever reason don’t want to sell because of unnecessary complications and/or
profit margin issues (e.g., different type of floor tiles in every room).

Options rules can target option groups (categories or locations), option
selections (e.g., garage selection) or option values (available selection values
in a option selection, e.g., 2-car or 3-car garage). Option rules consists of a
condition statement, condition items, operation and target statement (can
contain wildcards).

Here’s an example option rule statement from a Sapphire Build customer.
The name of the rule is ”Disable AutoCourt with Deck Size and Sunroom
Bradford”.

• Condition Statement: (STR-EXT-EXT:dek-1418 OR STR-EXT-EXT:dek-
1420) AND STR-MRM-MRM:mrm-sunr

• Condition Items: STR-EXT-EXT:dek-1418, STR-EXT-EXT:dek-1420,
STR-MRM-MRM:mrm-sunr

• Operation: Hide

• TargetStatement: STR-GAR-LOC:gar-aut1

This translates to: If the ”14 x 18 Deck” or the ”14 x 20 Deck” value is
selected on the ”Deck/Patio First Floor Arrangement” option and the ”Sun-
room” value is selected on the ”Morning Room Arrangement” option, the
system will hide the ”3-Car Auto Court” value from the ”Garage Location”
option. There are several types of option rule operations that can be defined,
they are:

CHAPTER 5. CURRENT SALES CONFIGURATOR 32

• The standard operations: Disable, Enable, Show, Hide, Disable And
Hide, Enable And Show

• Add Quantity

– Affects (adds or subtracts) the value of a quantity option. E.g.,
adding an extra room can affect the default amount of electrical
sockets needed

• Auto Select

– When the option rule condition is met the target option value is
auto selected. E.g., require porch with upgraded elevation

• Auto Select Once

– Same as above but instead of being a requirement Auto Select
Once is more like a suggestion. The auto selected option can be
deselected

• Match Condition

– Force option value at the target to match the value at the con-
dition. E.g., force match the kitchen cabinet style to match the
living room cabinet style

• Match Condition Once

– Same difference between as with Auto Select and Auto Select Once

• Control Values

– A special case of the Match Condition Rule. Defines that the
available option values in the target are defined by the values se-
lected in (multiple) condition options. E.g., require that bathroom
cabinets are the same as in the kitchen or in the living room

• Option Cut-Off

– Can be used to define restrictions on option selections based on the
building progress of the house. E.g., if framing has been started
structural options (options that affect the structure of the house
e.g., extra rooms) are disabled.

CHAPTER 5. CURRENT SALES CONFIGURATOR 33

5.4.1 Relevance to the migration project

Some of the Sapphire Build users have very complicated option and option
rule setup. Typically option visibility can be filtered based on the model
and the building site (community or lot). Although not encouraged, the
model/community/lot option filtering can be substituted to some degree by
model/community specific option rules for controlling the overall visibility
of the option or option value. This results in a situation where the option
rule engine needs to evaluate possibly thousands of the option rules against
thousands of option values every time an option change in made on the
configurator. Also, option rules can have cascading effects, e.g., auto selecting
some option can trigger the applying of some other option rule. Currently,
this logic is run on the Windows native sales configurator application, and
it’s still cause for some performance concerns with some data setups taking
up to several seconds for each option change, but with the web application
migration some other approach is needed.

5.5 Sapphire Build Price Setup

Another extremely important responsibility the sales configurator has is the
correct calculation of the prices for the selected lot, model and additional
options. Again, like with the option setup, the price logic actually is more
nuanced than described here but is sufficiently precise to understand the
basic functionality.

Lots in a community can have different prices, e.g., cul-de-sac or corner
lots can have an extra price called lot premium in the Sapphire Build. Models
have a base price, which is the price of the basic model without extra options.
This is complicated by the fact that Sapphire allows different base option
setups, i.e., different option values can be included in the base model price
in, e.g., in different communities. E.g., in a high-end community the base
price might be higher but high priced cabinets are included in the base price.
If lower level cabinets are selected (if available), a discount is given to the
customer. Also, other option selection affect the prices. E.g., upgraded door
knobs can be given free-of-charge if upgraded doors are selected. Each option
selection or option value is assigned a set of prices that are valid. When
multiple prices are valid, the most relevant is selected. This means that
community specific price, e.g., for upgraded doors trumps the company wide
price, price with option condition trumps the one with no condition and so
on. All in all the price of a option is determined by the date when selections
are made, the selected community, selected model and other selected options.

CHAPTER 5. CURRENT SALES CONFIGURATOR 34

5.5.1 Relevance to the migration project

Again, the final processing of prices is done by the sales configurator. The
back-end sends the sales configurator the relevant prices based on the lot, date
and model selection but the sales configurator is responsible for applying the
correct price based on the selected options. This process is not as heavy as
the applying of option rules but preferably wouldn’t require a round trip to
server every time the prices need to be updated.

5.6 Used Technologies

The sales configurator uses the Microsoft .NET technologies. The UI utilizes
Windows Forms (or WinForms), which is a GUI library part of the .NET.
The source code is written in C#. Sales configurator uses the Microsoft click-
once technology, which allows the user to start the Windows native program
by just clicking a link on a web page[4]. The problem is that only Internet
Explorer and Edge support this out-of-box. Other browsers have to have a
3rd party add-on installed. The click-once smart client communicates with
the back-end server using web service calls and gets the initial configuration
parameters through query parameters in the click-once download link.

5.6.1 Problems

The main functions of sales configurator were originally planned to work also
on an off-line environment. The necessary data was downloaded from a local
database and local binary data. In a very simplistic use-case, the user (sales
representative) started the configurator with the home buyer present and in
the end a sales contract with a specific lot, model, options and prices was
printed. This, however, lead to performance problems when the sheer size of
the required data grew and the data was moved to a centralized server, but
still most of the data was loaded in huge chunks, which then manifested in
long load times.

Chapter 6

Methods

6.1 Used Web Development Technologies

It was decided ReactJS will be utilized as the UI framework for the front-end
part of the Sales Configurator. ReactJS was already used in some other parts
of Sapphire Build ERP system and there is an ongoing effort to rewrite the
current complete ERP web UI with ReactJS so it was a natural pick. The
ReactJS front-end communicates with the back-end through OData (Open
Data Protocol) RESTful web service API. OData is a protocol that stan-
dardizes practices how business objects are fetched, modified, added and
removed through RESTful APIs originally created by Microsoft[16]. Again,
other parts of the Sapphire Build ERP system already offer communication
through OData APIs, so it was a natural to utilize and expand current func-
tionality.

6.2 Technical Challenges

Originally it was planned that the price and option rule logic would be run on
the server side so that after each option change the changed option set would
be sent to server for evaluating the changes in prices and other options. The
main reason for this was that the current logic is written in C# and could
be run on the server as is. This approach was expected to cause problems
with the server load and unwanted delays for the option changes. The time
it takes to calculate the option rules and option prices is too high even with
the Windows native sales configurator with some more problematic option
rule/price setups. The approaches to tackle this problem involved either us-
ing a separate server instance just to run the option change calculations (not
to kill the main ERP system performance) or somehow port the price/rule

35

CHAPTER 6. METHODS 36

C# code to JavaScript. Unfortunately, the logic is quite complex due to
actual complexity of the problem but also due to poor quality of the current
C# code that handles that.

6.3 Evaluating success

It was decided that project is successful if the three main functions (pick lot
and model, select options, submit contract) of the sales configurator were
migrated to a web application so that:

• Sales Configurator can be used on any desktop (not just Windows PCs)
and mobile devices with large screens, i.e., tablets

• The Sales Configurator load times are significantly reduced

• The usability is enhanced by more intuitive and modern UI and the
overall user experience is ”snappier”

Evaluating the last one in a standardized manner is out of the scope of
this thesis. One of the reasons why this migration is done is to separate the
UI and back-end completely and give our customers who have the expertise
to do so, the possibility to modify the UI to their liking.

6.3.1 Performance

The main complains on performance of the current sales configurator usually
revolve around its long initial load times and the slowness of the option
change operation and hence the performance measurements will focus on
these.

6.3.2 Code Quality

The code quality metrics mentioned in the previous chapter will be utilized
to get an estimate of the code quality and a small expert review will be
conducted. Special interest is given on the correlation between the expert
review and code quality metrics since assumably it is difficult to compare code
quality metrics between completely different technologies and frameworks
(C# WinForms application vs. JavaScript ReactJS application).

Chapter 7

Implementation

As previously stated the technologies selected for the migration projects was
a React.JS user interface that communicates on top of a ODATA web API
running on a IIS. This chapter that explains the implementation and is di-
vided in two parts. First chapter describes the back-end ODATA API and
the second part focuses on the React.JS user interface.

7.1 ODATA Web API

Sapphire Build portal already had an ODATA interface in place to allow
some customers to develop their own custom functionality on top of the
portal default functionality. The Sapphire Build ODATA interface allows
users to fetch any system objects using the default ODATA syntax. To get
a single object (e.g., GET webroot/Communities(’Community1’)) or to get
all objects (e.g., GET webroot/Models) or to get some of the objects based
on filter statements (e.g., webroot/Lots?$filter=CommunityRID eq 1). The
default ODATA functionality was appended with custom functions to for
example fetch option, option rule and option price data on one call. The
most important custom functions were:

• POST webroot/Models(1)/SBEntities.GetOptContext

– Takes community identifier, lot identifier and possibly sales work-
sheet identifier as parameters

– Returns a JSON object with following information

∗ Model: name, ID, base price

∗ Lot: name, lot premium price

37

CHAPTER 7. IMPLEMENTATION 38

∗ Option Context: option selections, available values, type, name,
category/location assignment,

∗ Base Option Values: values of the option selections that are
included in the model base price

∗ Default Option Values: Values of the option selections that
are selected by default

∗ Rules: option rules translated to JavaScript code that can be
evaluated on the client

∗ Floorplans: Information necessary to render a dynamic floor-
plan on the configurator

• POST webroot/SlsWsh(1)/SBEntities.SaveOptSelections

– Submits the selected options and customer information to the
back-end server

– Takes the following as parameters

∗ List of selected options

∗ The Customer information

∗ The Sales Worksheet information

∗ Selected community, lot and model

– Returns the following

∗ Flag indicating whether save was successful

∗ Updated (e.g., updated database identifiers) Customer and
Sales Worksheet information.

• POST webroot/Community(1)/SBEntities.LotsWithModelsForCommunity

– Takes community identifier as parameter

– returns a JSON object with following information

– Lots: an array of ”LotWithModels” containers

– Models: an array of ”ModelWithLots” containers

– LotWithModels maps lots to available models

– ModelWithLots maps models to available lots

– Both LotWithModel and ModelWithLots contains the lot and
model metadata (e.g., model image url, lot and model names and
statuses)

CHAPTER 7. IMPLEMENTATION 39

7.1.1 Authentication and Security

When the new web based sales configurator is launched from within the
Sapphire Portal, an authentication token is created and delivered to the
client application. The created token is then added to the ODATA web API
calls in the REACT.js UI and verified on the back-end for each API call. The
token is tied to a specific user in the system and the operations available one
ODATA API are filtered based on the permissions of that user. User could
for example have the right to view old sales worksheets, or play around with
the options (if the web sales configurator would be made available for the
home buyers) but not save any changes, i.e., submit sales worksheets.

7.2 React.JS User Interface

A root react component typically defines an element tree[17] and that was
the paradigm used in this migration as well. The diagram 7.1 describes the
high-level architecture of the web sales configurator.

The high-level components described in the diagram have been further
divided to smaller pieces. Material UI[14] React components were used to
get a consistent and modern look for the web configurator. Material-UI is a
React library that contains UI elements that implement the Material Design
look developed by Google[13]. Also, users are often already familiar with the
Google styled user interface components which helps to make the configurator
intuitive to use. Material-UI contains dozens of different ready-to-use React
components of which we utilized switches, dropdowns, tabs, menus, time
pickers, dividers and many others.

The React UI architecture was developed using a top-down approach.
First, a graphical mockup of the desired configurator was created. That was
then recreated using HTML after which the used HTML elements (mainly
div-elements) were divided into logical entities and were converted to React
components.

7.3 Proof of concept UI

The UI at this point of the sales configurator development was divided to four
main level tabs. The final sales configurator will have extra functionality and
controls (e.g., for mortgage, contingency and deposit management) whose
layout hasn’t been decided yet but they will be either added as extra tabs
to the main level tabs or as sub-tabs to existing main-level tabs. Also, the

CHAPTER 7. IMPLEMENTATION 40

Figure 7.1: High-level architecture of the React element tree

CHAPTER 7. IMPLEMENTATION 43

Model can be picked by clicking on the image.

7.3.3 Sales Office Panel

This panel represents the option selector part of the sales configurator. This
view shows the available options for the selected lot and model and provides
the controls to select the options. Behind the UI runs a Javascript based
option configurator engine that evaluates the availability of the options based
on the option rule setup and calculates the prices for the options based on
the option price setup.

The left pane shows the available option locations and categories. Each
option in Sapphire Build portal is part of one category and location. Cat-
egories group the options by similarity e.g., grouping them to plumbing,
electrical and cabinet categories. Locations group the options by their loca-
tion in the house, typically locations loosely correspond with available rooms
(e.g., living room or master bedroom).

The middle pane shows the total price of the selected model/lot and the
price of the options. As described before there are four different kinds of
option selections, binary selections, quantity selections and multi-select op-
tions. Binary selections use Material UI Checkboxes, quantity selections use
Material UI TextFields, multi-select options use Material UI RadioButtons
or Selects (dropdowns).

The right pane of the Sales office panel renders a dynamic floorplan of
the model with selected options. This allows the sales agent and customer to
see immediately the effects of structure affecting options on a floorplan. This
dynamic floorplan is also printed to sales order later on the process when the
options selections and the sales order are printed and saved.

7.3.4 Output panel

This panel provides the user the ability to save the selected lot/model/option
combination to the server. The page will also have the possibility to print
a sales contract (with the selected options and prices) which the sales agent
can print and have the customer sign. The Windows configurator currently
supports electronic signing through DocuSign. That will be left for later
phases in this project.

Chapter 8

Evaluation

8.1 Overall success of the migration

8.1.1 General

In this phase one of the migration process, the desired core functionality
was achieved and tested to be functional. However, lot of the non-critical
functionality of the sales configurator was left for later phases. This makes
some of the code quality and performance measurements hard to interpret.
However, overall the new configurator seems to perform better than the old
one. It seems snappier and less clunky than the old one and the performance
measurements support that feeling. Also, there’s less time when the config-
urator is unresponsive because the heavy background processes are better
handled asynchronously or are significantly faster. On the old configurator
some of the heavy operations (e.g., the option change) were much slower
and run on the UI thread, which resulted the configurator being completely
unresponsive at times. Also, the code base is better organized, functionality
is better distributed into separate classes and files. In the old configurator,
significant parts of the UI elements were handled in a single god-class and
the class/file structure had nothing to do with the UI control hierarchy.

8.1.2 User Interface

The user interface is functional, but not in any way polished. Also, using the
Material UI library was not the best choice for this fairly complex application
that presents lot of data at single views and also is typically used with desktop
browsers. It is clear that Material UI is mainly intended to be used with
mobile browsers. The elements in Material UI the Material UI elements
take way more space than, e.g., .NET WinForms elements. Luckily the

45

CHAPTER 8. EVALUATION 46

architecture allows changing the UI library fairly easily and that is something
that will happen in later phases.

8.2 Performance measurement results

Even though the web based configurator is still lacking in functionality, the
performance measurement results are good estimates of the actual perfor-
mance enhancement of the migration. Since most of the time is spent, both
in the original and the web based sales configurator, when running the core
functionality of the configurator (initial fetching of option configuration in-
formation, selecting options and eventually saving the selected options to a
sales order).

Previously, users have reported long wait times during the launch of the
configurator, when changing community/model and rendering the commu-
nity map, fetching lot and model specific option information, changing se-
lected options and saving the selected options.

The measurements were made using two different client environments
(different databases and static image files stored on the file system of the
server) since from experience it was known that the data setup could dras-
tically affect the performance of the sales configurator. Event triggers were
added to both the old and new configurator to get exact load times for each
operation.

8.2.1 Start up performance

Start up performance was known to be much better for the new configurator
since it is much lighter - only approximately 3 megabytes of static resources
(of which the actual application JavaScript file is only 2.1 megabytes) need to
transferred to show the start screen of the web sales configurator. The Win-
dows native sales configurator on the other hand is more that 90 megabytes.
No measurable differences were found between client environments. The
measurements were made on an environment where the background server
and the clients were running on same physical machine. If the measurements
were made over the Internet, the differences would presumably have been
greater. Figure 8.1 has the measurements.

8.2.2 Changing Community

Changing the community (and rendering the community map) is relatively
heavy operation since for each community the configurator needs to fetch

CHAPTER 8. EVALUATION 47

Figure 8.1: Start Up Load Time

the information required to render the community map, fetch all available
lots and models (and model images) for the selected community. The load
time is heavily dependent on the community that gets selected and therefore
10 random communities were picked for this test and the load times were
measured on both configurators. The chart shows the average load times.
Figure 8.2 has the measurements.

8.2.3 Load Option Data

This was expected to be the heaviest of all the operations. Here the configu-
rator loads all of the available option data from the server. The data includes
available options, option rules, prices, option categories, option locations and
much more. This was the only category where the old configurator outper-
formed the web sales configurator. This isn’t a cause for great concern since
it is expected that the server calls that fetch this data have plenty of room for
improvement in the form of performance optimizations and simplifications.
Work is already on the way, which is expected to make the option data
loading much faster than it currently is. Figure 8.3 has the measurements.

CHAPTER 8. EVALUATION 48

Figure 8.2: Community Change Load Time

Figure 8.3: Option Data Load Time

CHAPTER 8. EVALUATION 49

8.2.4 Changing Options

Depending on the data setup this can be fairly heavy operation and unique
compared to the others since in a typical scenario dozens of option changes
can be done in a single session. Also, of all of the operations measured here,
option change is the one, which users expect to be fast. This was known
to be heavily dependent on the option rule data setup and the option rule
engine running on the Windows native configurator was knwon to be slow
and unnecessarily complicated. The average load times for the web sales
configurator (66 and 120 milliseconds) fall very near or below the decisecond
threshold which users generally feel are instantaneous. The data setup of the
client A was deliberately selected as one the test environments since it was
known that their extremely complicate option rule setup was causing perfor-
mance problems on the option selector part of the configurator. Luckily, it
seems that the new configurator engine is able to handle them much better
than the old one. Figure 8.4 has the measurements.

Figure 8.4: Option Data Load Time

8.3 Code quality measurement results

The code quality measurements were trickier to compare. First of all at
least with the Windows native sales configurator it’s not trivial to say where

CHAPTER 8. EVALUATION 50

the sales configurator ends and the back-end Sapphire build portal starts.
They share lot of the same DLLs (even DLLs containing business logic) and
it isn’t in that sense a typical client-server software whereas the web sales
configurator is. Also, the fact that at the moment the web sales configurator
is missing a lot of the secondary functionality compared to the Windows
native configurator made the comparisons difficult. It doesn’t make sense,
e.g., to compare the total code line count from both projects since the new
configurator is lacking lot of the non-core functionality. A lot of manual work
had to be done in order to identify the code base from the old configurator
that is responsible for creating roughly the same functionality as the new
configurator has.

8.3.1 Measuring JavaScript Code Quality

Typically React is written using JSX, a JavaScript extension that allows
React developers to utilize HTML-like elements to describe UI within the
JavaScript application logic. While great for the development, it proved to
be a drawback when looking for tools that can calculate code quality metrics
for JavaScript code. There seems to be only few tools that can calculate
quality metrics out of JSX code directly.

First, a tool called complexity-report [6] was used to measure the JavaScript
code quality metrics but like many other tools, this was unable to measure
JSX code. To get the complexity report generated JavaScript compiler Ba-
bel [3] was first used to compile the .JSX files to .JS files and only then the
complexity-report was run. This compilation naturally altered the files and
even though they still were logically equivalent, e.g., the line count increased
very significantly (up to 3 times the line count of the original .JSX file) due to
this conversion. Using alternative code analysis tools and manual analysis it
was noticed that the code quality metrics weren’t applicable after the Babel
compilation.

Another tool called es6-plato [7] is able to calculate code quality metrics
directly from JSX files and was deemed to be better suitable for analyzing
a React project. Plato calculates, file by file cyclomatic complexity values,
total lines of code and an average maintainability index which happens to
be by default comparable to the Windows-style maintainability index that is
also capped at 100.

8.3.2 Measuring C# Code Quality

The original sales configurator has been developed using various Microsoft
Visual Studio versions and Visual Studio also has decent build-in code qual-

CHAPTER 8. EVALUATION 51

ity measurement tools. Visual studio can out-of-box generate a code quality
report which includes maintainability index, cyclomatic complexity, depth-
of-inheritance, class coupling and lines of code metrics. The reports has these
values calculated at the function, class and namespace level. The measure-
ments for this thesis were generated by the Visual Studio 2017 Enterprise
edition.

8.3.3 Comparing The Results

As stated before, the problem was how to confine the scope of the files that
should be included in the report to get comparable results. A lot of manual
code inspection was needed to get a source file set that as best as possible
represents the current web sales configurator functionality. A C#-attribute
”GeneratedCodeAttribute” can be used to identify computer generated code
but also one of the side-effects the attribute has, is that the code flagged
with that attribute is ignored when Visual Studio calculates code quality
metrics. That attribute was used to flag methods and classes in the old sales
configurator that contain functionality that was not yet migrated to the web
sales configurator.

The measurements on both web and Windows native configurator focused
on code that can be considered either UI representation logic or data model
logic since that was the biggest and the most significant change between the
two. Especially in the UI representation logic, it was clear that the WinForms
code is significantly more complex and requires a lot more code lines.

8.3.4 Results

The result chart shows the average maintainability index of the included
classes in the metrics calculation, the total sum of the cyclomatic complexity
indexes and the total sum of the lines of code.

The biggest surprise was how much more complex (according to cyclo-
matic complexity) the C# code was compared to JSX code even when taking
the increase in code line into account. The discrepancy was so big that there
was doubt that the algorithms between Visual Studio and Plato differ some-
how. Some C# code was manually converted to JavaScript to verify that the
calculation logic is indeed the same.

Not surprisingly the maintainability index was also improved during the
migration. The surprise was that according to maintainability index, even
the old configurator was considered to be fairly well maintainable. Accord-
ing to Microsoft, maintainability index values above 20 get a ”green” rating

CHAPTER 8. EVALUATION 52

[5]. That is from the developers’ experience known not to be the case. Dif-
ferent metrics and manual reviews would be needed to find other problems
in the configurator biggest of which are considered the messy architecture,
complicated information flow and at times extremely poorly named variables
and WinForm controls. A special tool was at one point developed where a
developer can hover over the WinForms control to find out the name and id
of that control - example name could be Label45.

Lines of code reduce was expected from the start. In JSX code you
can in a single line define a user control type (e.g., a Dropdown), define its
name, define its attributes and location in the UI. All of this in WinForms
C# code requires, depending on the control, up to dozens of rows. Ideally
this would be automatically generated code that would be generated by the
Visual Studio WinForms designer functionality and could be excluded from
the code calculation metrics but in the old configurator that is not always
the case. The old sales configurator was in the early stages developed this
way but the functionality available in the designer was deemed insufficient at
the time and some of the designer generated code was then manually edited
which gave flexibility but also was and is tedious.

The below chart has the results of the metrics calculation:

Version Maintainability Cyclomatic Complexity Lines Of Code

Orig. Sales Conf. 55 4231 13245
Web Sales. Conf 70 420 3492

Chapter 9

Discussion

9.1 Migration Insights

The migration process all-in-all can be considered a success. The new web
application compared to the old configurator is lighter, performs generally
better and is platform independent - all features that one would expect to
get out of this kind of migration project. The structured performance mea-
surements gave additional confidence in that the migration went and is going
in the right direction. The benefits of the code quality measurements are
harder to evaluate. Based on this project I think that code quality metrics
can be useful tool when trying to enhance any existing project but are diffi-
cult to use as a tool for comparing two different projects - especially if they
are using different technologies.

React as the chosen UI framework seems to be the good choice for this kind
of project. It is well documented, well supported and popular which gives
confidence in its future. Generally, great care should be given when choosing
the UI platform since there are dozens frameworks to choose from and new
ones spawn and old ones fade away constantly.

The UI architecture and the top-down methodology how it was created
proved to be a good way to come up with a React element architecture from
scratch. The resulting hierarchy seems to be flexible for future enhancements
and that will be put to a test when the rest of the UI functionality starts to
get migrated.

Greater consideration should have been given for selecting the UI control
library. The Material-UI was deemed not be the greatest choice for this kind

53

CHAPTER 9. DISCUSSION 54

of application that mimics a full Windows native desktop application. While
the intention is that the web sales configurator will be usable with a touch-
screen, by far the more common use-case, at least for the moment, will be
with a mouse and a traditional high-resolution large screen. The Material-UI
can be configured to be more suitable for this scenario, but it probably is
easier to find a library that is a better fit out-of-box.

9.2 Future Work

The web sales configurator is still in early phases of the development. Even
though the core functionality was successfully migrated, great development
effort is still needed to have all of the existing functionality migrated. As
the sales configurator have been developed for more than a decade there’s
also a lot of functionality that is no longer needed and can be excluded from
migration process since the customer requirements have changed. Figuring
out, which functionality can be left out won’t be a small task either.

The back-end functionality still needs revision and enhancement. Like the
web UI, the back-end has still a lot of missing functionality and also was
causing the slowdowns that made the web sales configurator lose to the old
configurator in the option data load measurements. Improvements are on
the way and it is believed that contrary to the old configurator there are
still a lots of obvious performance bottlenecks that are easy resolve and thus
enhance the performance.

The old configurator didn’t have really any kind of unit test, but now the
intention is to write unit tests at least for the core functionality. Since the
configurator deals with prices and customer selection it is critical that the
configurator produces correct results. Some automated test scripts were cre-
ated for the old configurator but they covered only parts of the functionality
and were difficult to setup. Automated test for the React UI should be easier
to develop and maintain.

Chapter 10

Conclusions

This thesis aimed at designing and developing a web based sales configu-
rator from a Windows native configurator. It touches on the reasons why
such migration is a good idea and what drawbacks it entails. This thesis
also includes a brief summary of different web application technologies, what
kind of architectures are typically used and how web application quality and
performance can be evaluated. Since the Windows native configurator was
known to be suffering from poor code quality, part of this thesis focuses on
ways how to evaluate and better the code quality.
The first step when designing a windows native application to a web applica-
tion migration is to select suitable technologies for the client side as well as
for the back-end server side. While the client-side framework selection was
a success, more emphasis should have been aimed at selecting a suitable a
UI library for the selected web development framework (in this case React).
The selected web development framework React was found to be easy to un-
derstand, easy to develop and support resources easy to find.

The selected back-end technology (ODATA web API running on ASP.NET)
was found to be a good match with the React - at least for this project. Even
though at this point of the migration the ODATA capabilities were not used
to their full extent, it is very likely that in the future the standard ODATA
functionality will prove to be useful and make the further development of the
configurator easier and quicker.

The code quality measurements gave some indication of the success of
the migration but the results were hard to compare and somewhat indefinite.
Better approach probably would have been to run the code quality metrics
throughout web application development to catch possible issues early and
give less focus for the final application comparison.

55

Bibliography

[1] 2017 housing giants rankings. https://www.probuilder.com/

2017-housing-giants-rankings Accessed 31.8.2017.

[2] About eslint. https://eslint.org/docs/about/ Accessed 21.03.2018.

[3] Babel js. https://babeljs.io/ Accessed 22.02.2019.

[4] Clickonce security and deployment. https://msdn.microsoft.com/

en-us/library/t71a733d.aspx Accessed 13.05.2018.

[5] Code metrics ? maintainability index. https://blogs.msdn.microsoft.
com/zainnab/2011/05/26/code-metrics-maintainability-index/

Accessed 22.02.2019.

[6] complexity-report. https://www.npmjs.com/package/

complexity-report Accessed 22.02.2019.

[7] es6-plato. https://www.npmjs.com/package/es6-plato Accessed
22.02.2019.

[8] escomplex. https://www.npmjs.com/package/escomplex Accessed
02.04.2018.

[9] Hotframeworks. http://hotframeworks.com/#rankings Accessed
22.10.2017.

[10] Html5 is a w3c recommendation. https://www.w3.org/blog/news/

archives/4167 Accessed 13.02.2018.

[11] Introducing jsx. https://reactjs.org/docs/introducing-jsx.html Ac-
cessed 20.03.2018.

[12] Java web start. http://docs.oracle.com/javase/8/docs/technotes/

guides/javaws/ Accessed 18.10.2017.

56

BIBLIOGRAPHY 57

[13] Material design - introduction. https://material.io/design/

introduction/# Accessed 11.08.2018.

[14] Material-ui - react components that implement google’s material design.
https://material-ui.com/ Accessed 11.08.2018.

[15] Netscape and sun announce javascript, the open, cross-platform
object scripting language for enterprise networks and the inter-
net. http://tech-insider.org/java/research/1995/1204.html Ac-
cessed 12.02.2018.

[16] Open data protocol. http://www.odata.org/ Accessed 17.06.2018.

[17] React components, elements, and instances. https://reactjs.org/

blog/2015/12/18/react-components-elements-and-instances.html

Accessed 11.08.2018.

[18] Rfc 1794: Dns support for load balancing. https://tools.ietf.org/

html/rfc1794 Accessed 13.05.2018.

[19] Sapphire build enterprise management suite. http://www.

kovasolutions.com/.

[20] Virtual dom and internals. https://reactjs.org/docs/faq-internals.
html#what-is-the-virtual-dom Accessed 20.03.2018.

[21] Code metrics values, 2017. https://docs.microsoft.com/en-us/

visualstudio/code-quality/code-metrics-value Accessed 12.03.2018.

[22] Adobe. Flash and the future of interactive content, 2017. https:

//blogs.adobe.com/conversations/2017/07/adobe-flash-update.html

Accessed 4.10.2017.

[23] Arcelli, F., Braionea, F. P., and Zanonia, M. Automatic de-
tection of bad smells in code: An experimental assessment, 2011.

[24] Arsenault, C. 14 important website performance metrics
you should be analyzing, 2017. https://www.keycdn.com/blog/

website-performance-metrics/ Accessed 17.06.2018.

[25] Cardellini, V., Colajanni, M., and Yu, P. S. Dynamic load
balancing on web-server systems, 1999. May/Jun 1999, IEEE Internet
Computing, pages 28-39.

BIBLIOGRAPHY 58

[26] Craven, J. What is a production home builder? https://www.

thoughtco.com/what-is-a-production-home-builder-175921 Accessed
24.5.2016.

[27] Crockford, D. Javascript: The good parts, 2008.

[28] Diana M. Selfa, Maya Carrillo, M. d. R. B. A database and
web application based on mvc architecture, 2006.

[29] Dykes, S. G., Robbins, K. A., and Jeffrey, C. J. An empirical
evaluation of client-side server selection algorithms, 2000.

[30] Flanagan, D. Javascript: The definitive guide, 2006.

[31] Fowler, M. Refactoring: Improving the design of existing code, 2002.

[32] Gorton, I. Software quality attributes, 2011. Essential Software Ar-
chitecture, Chapter 3.

[33] Group, O. M. How to deliver resilient, secure, efficient, and easily
changed it systems in line with cisq recommendations, 2006.

[34] Hoetzlein, R. C. Graphics performance in rich internet applications,
2012.

[35] Homer, A. Components and web application architecture, 1999. https:
//msdn.microsoft.com/en-us/library/bb727121.aspx Chapter 13 from
Professional Active Server Pages 3.0 Accessed 8.10.2017.

[36] Honkanen, J. Reactjs, 2017.

[37] Kemp, J., Appelquist, D., Malhotra, A., and Raman, T. Web
applications architecture, 2010. https://www.w3.org/2001/tag/2010/

05/WebApps.html Accessed 8.10.2017.

[38] Krasner, G. E., and Pope, S. T. A description of the model-
view-controller user interface paradigm in the smalltalk-80 system, 1988.
Journal of object oriented programming.

[39] Lincke, R., Lundberg, J., and Löwe, W. Comparing software
metrics tools, 2008.

[40] Louridas, P. Static code analysis, 2006. Jul/Aug 2006, IEEE Software,
pages 58-61s.

BIBLIOGRAPHY 59

[41] Masoud, F. A., Halabi, D. H., and Halabi, D. H. Asp.net and
jsp frameworks in model view controller implementation, 2006.

[42] Meier, J., Farre, C., Bansode, P., Barber, S., and Rea, D.

Performance testing guidance for web applications, 2007.

[43] Microsoft. Microsoft silverlight release history. https:

//www.microsoft.com/getsilverlight/locale/en-us/html/Microsoft%

20Silverlight%20Release%20History.htm Accessed 8.10.2017.

[44] Molyneaux, I. The art of application performance testing, 2009.

[45] Mukherjee, S. Source code analytics with roslyn and javascript data
visualization, 2016.

[46] Nielsen, J. Response times: The 3 important limits. https://

www.nngroup.com/articles/response-times-3-important-limits/ Ac-
cessed 23.04.2018.

[47] Offut, J. Quality attributes of web software applications, 2002.
March/April 2002, IEEE Software, pages 25-32.

[48] Piero Fraternali, Gustavo Rossi, F. S.-F. Rich internet appli-
cations, 2010.

[49] Pizka, M. How to effectively define and measure maintainability, 2012.

[50] Reenskaug, T. The original mvc reports, 1979.

[51] Renee Puusepp, T. L., and Kivi, K. Enabling customer choice in
housing, 2016.

[52] Schmitt, C., Dominey, T., Li, C., Marcotte, E., Orchard, D.,

and Trammell, M. Professional css: Cascading style sheets for web
design, 2008.

[53] Shklar, L., and Rosen, R. Web application architecture - principles,
protocols and practices, 2009.

[54] Smith, J. Moving to html5 premium media. https://blogs.

windows.com/msedgedev/2015/07/02/moving-to-html5-premium-media/

Accessed 8.10.2017.

[55] Sonewar, P. A., and Thos, S. D. Detection of sql injection and xss
attacks in three tier web applications, 2016.

BIBLIOGRAPHY 60

[56] Topic, D. Moving to a plugin-free web. https://blogs.

oracle.com/java-platform-group/moving-to-a-plugin-free-web Ac-
cessed 8.10.2017.

[57] Vora, P. Web application design patterns, 2009.

[58] Yamashita, A., and Moonen, L. Do code smells reflect important
maintainability aspects?, 2012. 2012 28th IEEE International Confer-
ence on Software Maintenance.

