
Huber Loss Reconstruction in
Gradient-Domain Path Tracing

Henrik Dahlberg

School of Science

London 19.12.2018

Supervisor

Jaakko Lehtinen

Advisor

Markus Kettunen

Copyright © 2018 Henrik Dahlberg

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Author Henrik Dahlberg

Title Huber Loss Reconstruction in Gradient-Domain Path Tracing

Supervisor Jaakko Lehtinen

Advisor Markus Kettunen

Date 19.12.2018 Number of pages 108+21 Language English

Abstract
The focus of this thesis is to improve aspects related to the computational synthesis

of photo-realistic images. Physically accurate images are generated by simulating

the transportation of light between an observer and the light sources in a virtual

environment. Path tracing is an algorithm that uses Monte Carlo methods to solve

problems in the domain of light transport simulation, generating images by sampling

light paths through the virtual scene.

In this thesis we focus on the recently introduced gradient-domain path trac-
ing algorithm. In addition to estimating the ordinary primal image, gradient-domain

light transport algorithms also sample the horizontal and vertical gradients and solve a

screened Poisson problem to reconstruct the final image. Using L2 loss for reconstruc-

tion produces an unbiased final image, but the results can often be visually unpleasing

due to its sensitivity to extreme-value outliers in the sampled primal and gradi-

ent images. L1 loss can be used to suppress this sensitivity at the cost of introducing bias.

We investigate the use of the Huber loss function in the reconstruction step of

the gradient-domain path tracing algorithm. We show that using the Huber loss

function for the gradient in the Poisson solver with a good choice of cut-off parameter

δ can result in reduced sensitivity to outliers and consequently lower relative mean

squared error than L1 or L2 when compared to ground-truth images.

The main contribution of this thesis is a predictive multiplicative model for

the cut-off parameter δ . The model takes as input pixel statistics which can be

computed on-line during sampling and predicts reconstruction parameters that on

average outperforms reconstruction using L1 and L2.

Keywords computer graphics, rendering, path tracing, gradient-domain

Preface
First of all, I would like to express my deepest appreciation and sincerest thanks to my

supervisor and advisor for their guidance and encouragement during this thesis; Jaakko

Lehtinen, who invited me to conduct my work as an exchange student in a great team of

rendering researchers, offering me the best support and supervision I could ask for; and

Markus Kettunen, who continuously has devoted his time and made himself available

around the clock, often at a moment’s notice to answer my uneducated questions by

delivering explanations and derivations and running render tasks in the computer cluster.

I want to thank Miika Aittala for fruitful discussions in the early stages of the project

around the reconstruction problem and the solver implementation.

My thanks also go to Aalto University for their financial support and for allowing the

use of the Triton supercomputer.

Finally, I would like to express my heart-felt gratitude for my friends and loved-ones,

and most of all for my brother Christian, my sister Liv, my mother Vivian and my father

Urban and thank them for their unwavering love and continuous support.

London, 19.12.2018

Henrik Dahlberg

Contents

Abstract 3

Preface 5

Contents 7

List of Figures 10

1 Introduction 13
1.1 Background . 13

1.1.1 Light Transport and Global Illumination 13

1.1.2 Gradient-Domain Rendering . 15

1.1.3 Choice of Reconstruction Loss . 17

1.1.4 Main Goal of the Thesis . 17

1.2 Thesis Overview . 18

2 Light Transport Theory 23
2.1 Scene Representation . 24

2.1.1 Geometry . 25

2.1.2 Material Appearance . 27

2.1.3 Participating Media . 27

2.2 The Rendering Equation . 27

2.2.1 The Measurement Equation . 29

2.2.2 Path Integral Formulation . 30

2.3 Monte Carlo Simulation . 31

2.3.1 Monte Carlo Integration . 32

2.3.2 Markov Chain Monte Carlo . 34

2.4 Light Transport Algorithms . 37

2.4.1 Random Walks . 37

2.4.2 Path Tracing . 39

2.4.3 Bidirectional Path Tracing . 43

2.4.4 Metropolis Light Transport . 46

3 Gradient-Domain Light Transport 47
3.1 Mathematical Formulation . 48

3.2 Poisson Reconstruction . 49

3.2.1 The Poisson Equation . 49

3.2.2 Accounting for the Primal Image 50

7

3.3 Sampling of Gradients . 51

3.3.1 Gradient-Domain Metropolis Light Transport 52

3.3.2 Gradient-Domain Path Tracing 54

3.3.3 Other Extensions . 57

3.4 Advantages and Limitations . 58

3.4.1 Problems Related to the Reconstruction 58

4 Huber Loss Reconstruction 61
4.1 Motivation . 61

4.1.1 The Huber Loss Function . 62

4.1.2 Reduction of Bias . 63

4.1.3 Huber Loss in Practice . 63

4.2 Data Set Structure and Notation . 64

4.3 Selecting the Parametric Model . 65

4.4 Training the Model Parameters . 66

4.4.1 Data Generation . 66

4.4.2 Model Configurations . 70

4.4.3 Designing the Cost Function . 71

4.4.4 Finding Cost-Minimizing Model Parameters 73

4.5 Improving Model Stability . 75

4.5.1 Bootstrap Aggregating . 77

4.6 Estimating Generalization Performance 78

4.6.1 Exhaustive Cross-Validation . 78

4.6.2 Non-Exhaustive Cross-Validation 78

4.7 Final Model Training . 79

5 Results 83
5.1 Effect of Regressors on Model Performance 83

5.1.1 Altering the Brightness Constraint 84

5.1.2 Including Skewness and Kurtosis Regressors 84

5.1.3 Excluding Variance Regressors 85

5.1.4 Invariance to Brightness Scale . 87

5.2 Selecting the Model Configuration . 87

5.3 Bias Reduction . 87

5.4 Model Parameters . 90

5.5 Final Model Performance . 92

5.5.1 Measured Performance . 92

5.5.2 Visual Performance . 92

6 Conclusion 99
6.1 Future Work . 100

References 103

A Standardized Central Moments 109

8

B Visual Comparison of α Parameter 113

C Reference Images 119

9

List of Figures

1.1 Shadows and diffuse inter-reflection . 14

1.2 Volumetric and caustic effects . 15

1.3 Difficult lighting scenario. 16

1.4 Display of gradient rendering base and offset path pair. 17

1.5 Buffers generated through gradient-domain rendering 19

1.6 Drawbacks of current reconstruction methods 20

1.7 The Huber loss function at different cut-off values. 21

2.1 Illustraion of the solid angle . 24

2.2 Illustration of a virtual scene . 25

2.3 Polygon mesh of the Utah teapot . 26

2.4 Examples of material properties . 28

2.5 Noisy images generated by Monte Carlo integration 33

2.6 Path sampled with camera and emitter random walks 38

2.7 Paths generated by PT, NEE and BDPT 41

2.8 Bidirectional connection strategies . 45

3.1 Sampled components in gradient-domain rendering 47

3.2 Offset path generation for G-MLT and G-BDPT 53

3.3 Offset path generation for G-PT . 54

3.4 Visual effect of multiple importance sampling in gradient rendering . . . 56

3.5 Problems with traditional reconstruction methods 58

4.1 Shapes of L1, L2 and Huber loss functions. 62

4.2 Performance of Huber loss reconstruction for different δ 63

4.3 Behaviour of δ -relMSE curves after re-scaling image brightness. 65

4.4 Difference between reconstructed image and reference 68

4.5 Anatomy of our cost function. 72

4.6 Fitting the analytic loss functions φj to measured relMSE. 74

4.7 Performance of individual model parameters versus their mean. 76

4.8 Bootstrap aggregating schema. 77

4.9 Estimation of bootstrap aggregated model parameter performance. . . . 80

5.1 Effect of brightness regressor on model performance. 84

5.2 Effect of skewness and kurtosis regressors on model performance. 85

5.3 Effect of variance regressors on model performance. 86

5.4 Behaviour of model on brightened reconstruction problems. 88

5.5 Estimation of reconstruction bias. 89

5.6 RelMSE plot of reconstruction bias estimation. 90

5.7 Distributions of bagged model parameters. 91

5.8 Performance of trained model versus L1 and L2. 93

5.9 Visual model performance versus L1 and L2 (A). 94

10

5.10 Visual model performance versus L1 and L2 (B). 95

5.11 Visual model performance versus L1 and L2 (C). 96

5.12 Visual model performance versus L1 and L2 (D). 97

B1 α comparison for the Bookshelf scene 114

B2 α comparison for the Cornell Box scene 115

B3 α comparison for the Crytek Sponza scene 116

B4 α comparison for the Kitchen 1 scene 117

B5 α comparison for the Kitchen 2 scene 118

C1 Reference: Bathroom 1 . 120

C2 Reference: Bathroom 2 . 120

C3 Reference: Bathroom 3 . 121

C4 Reference: Bookshelf . 121

C5 Reference: Classroom . 122

C6 Reference: Crytek Sponza . 122

C7 Reference: Kitchen 1 . 123

C8 Reference: Kitchen 2 . 123

C9 Reference: Living Room 1 . 124

C10 Reference: Living Room 2 . 124

C11 Reference: Sponza . 125

C12 Reference: Staircase 1 . 125

C13 Reference: Veach Door . 126

C14 Reference: Cornell Box . 127

C15 Reference: Staircase 2 . 128

11

1 Introduction

1.1 Background
Rendering is a sub-field of computer graphics concerned with synthesizing images of

virtual scenes. Depending on the area of application, different methods with varying

degrees of physical correctness and computational intensity are employed in order to

reach the ultimate goal of visual realism and fidelity in the resulting images. Images are

formed using a sensor to measure the interaction of light emitted from light sources with

other matter. Images are represented as a regular grid of pixels each with an associated

color, and we need to compute these colors.

Computer games, mobile applications and other interactive media typically demand

real-time performance at high frame rates, and commonly have to sacrifice some degree

of realism as a result of the time limitation when producing images. Applications in less

interactive areas such as film, animation and architectural visualization are often less

time-constrained while expecting a higher level of realism. Regardless of application

domain, the demand for results of increasing quality delivered in the shortest frame of

time possible remains a constant motivation behind research in rendering.

1.1.1 Light Transport and Global Illumination
A core part of creating images in a movie production pipeline is to generate the virtual

scene. Modellers, texture painters and groom artists generate geometry of objects in the

scene and layout artists and animators dictate the movement and placement of said objects.

FX artists generate fluid and smoke simulations. Look development artists design material

networks and assign shaders to the different objects and virtual characters. Lighting

artists design the lighting setup of the shots to achieve the look and feel requested by

the director and visual effects supervisor. Light transport algorithms are needed in order

to generate the image that results from the virtual scene with camera and light sources

that has been set up by the artists - the scene acts as an input to the renderer, and the

renderer simulates the resulting light transport and generates an image.

The field of light transport studies the interactions of light with objects and materials as

it travels from an emitting light source towards an observer in a virtual setting. Rendering

algorithms aimed at solving the light transport problem are known as global illumination
techniques. This collection of algorithms captures many of the important lighting effects

needed to produce realistic images, such as shadows and diffuse inter-reflection (Figure 1.1)

and volumetric and caustic effects (Figure 1.2).

Historically, artists have had to spend disproportionate amounts of time and effort in

devising tricks and workarounds to successfully achieve these effects, since the renderers

of days past did not capture realistic light transport automatically. Modern rendering

13

Figure 1.1: Shadows and diffuse inter-reflection. The color of the walls are reflected onto
the white diffuse spheres.

techniques are moving towards exclusive usage of models based on physical laws however

which capture many of these effects inherently, giving industry professionals more artistic

freedom (Christensen, Jarosz, et al. 2016). These physically basedmethods sample how the

light travels through a virtual scene and depend on computationally intensiveMonte Carlo

simulations. Sampling light paths in a virtual environment using Monte Carlo simulation

is known as path tracing, and is a core component of physically-based rendering.

The difficulty in solving global illumination lies in the fact that many virtual scenes

represent complicated lighting scenarios where out of all the possible ways for the light

to propagate, only a small portion actually carries light that contributes to the image.

Figure 1.3 illustrates such a scenario. Not seldom a scene can be lit solely from light

sources that are obscured by windows or glass objects or seen only indirectly via mirrors

or other metallic or glossy materials, which means that the contributing light paths often

are very narrow and their contribution to the image difficult to sample.

Physically-based methods have only in recent years been made available for feasible

use in production environments thanks to the steady increase in computational resources

and algorithm development over the last decades. There is currently a wealth of different

rendering algorithms, but despite being capable of solving many problems in the field and

seeing widespread use in industry, no method stands out as being capable of solving all

problems at higher efficiency than any other method. It is therefore important to invent

new algorithms and frameworks as well as improving and extending existing ones in

14

Figure 1.2: Volumetric and caustic effects. The volumetric medium and glass spheres

scatter and bend the light rays.

order to produce images faster and simulate more complex lighting scenarios.

1.1.2 Gradient-Domain Rendering

In this work we focus our efforts on an aspect of a recently introduced family of global

illumination methods, namely gradient-domain light transport algorithms. In addition to

sampling the image itself, henceforth referred to as the primal image, these algorithms

obtain an estimate of the gradient of the image directly during sampling. The rationale

behind this approach comes from the observation that natural images tend to be piecewise

smooth (Gunturk and X. Li 2012). It is well known that derivatives help in the reconstruc-

tion of smooth functions; hence, by estimating how pixel intensities change from pixel

to pixel by measuring finite differences, we hope to produce high-quality images faster

than the direct approach. Estimates of the changes in pixel intensities are generated by

sampling regular base paths, shifting them deterministically and taking finite differences,

illustrated in Figure 1.4. The details of how paths are sampled and offset will be discussed

in Chapters 2 and 3.

Normally, the pixel intensities I of the final image are estimated directly. Instead

of doing only this, we also estimate the horizontal and vertical gradients dI/dx and

dI/dy, and combine these estimates to recover a better estimate of I . It turns out that the
procedure of combining these estimates involves integrating the gradient estimates by

15

Light source
Camera

Figure 1.3: A difficult lighting scenario that is representative of common production

settings. The camera is obscured by a glass window, and is facing a table with

glossy and metallic objects that exhibit a large portion of specular scattering

properties. The light source illuminating the scene is covered by glass. In

order to produce an image, the light has to be transmitted through the glass

cover, scattered from the complicated objects and then transmitted through

a window before reaching the camera. Light paths similar to this are difficult

to sample for rendering algorithms.

solving a screened Poisson partial differential equation. If we denote p as the estimate

of the image intensities I and д as the estimate of the image gradients (dI/dx , dI/dy),
finding the solution to the screened Poisson equation and thereby recovering the sought

after final image estimate can be formulated as the following optimization problem

I = argmin

ϕ
Lp(α(ϕ − p)) + Lд(∇ϕ − д). (1.1)

Here, α is a scale parameter and Lp and Lд are loss functions. The choice of the loss

functions influence the characteristics of the final image I ; the image I is selected as

the candidate image ϕ that minimizes the error metric related to the sampled p and д in

the right hand side of (1.1). Finding the final image using this procedure is henceforth

referred to as the reconstruction, and our main goal is to improve the reconstruction step

so that an image of a given quality can be produced with less computational effort.

16

Base path
Offset path

Figure 1.4: A gradient estimate sample is formed by sampling a base path, offsetting the

base path and taking the finite difference. The base path is sampled using a

Monte Carlo estimator such as path tracing and the base path is then offset

using a deterministic shift mapping.

1.1.3 Choice of Reconstruction Loss

The optimization of the reconstruction is driven by measuring the loss of the candidate

image compared to the measured primal and gradient images. One loss function Lp is
used to measure the candidate image’s goodness of fit to the measured primal image,

and another loss function Lд to the measured gradient image. Current implementations

typically use L2 loss for the primal part and either L1 loss or L2 loss for the gradient part.

Using the L2 loss as error metric for the gradient part produces an unbiased image, but this

choice is sensitive to extreme-value outliers in the gradient image pixels caused by the

intrinsic variance in the sampling process. This sensitivity manifests itself as undesired

dipole-shaped artifacts in the resulting image. Choosing L1 loss for the gradient part is

effective in alleviating this sensitivity issue since it gives less punishment to outliers, but

this comes at the cost of introducing statistical bias in the reconstructed image, visible

sometimes as darkening. These drawbacks are especially noticeable for low sample

counts, one such case being shown in Figure ??.

1.1.4 Main Goal of the Thesis

We investigate the use of Huber loss as error metric for the gradient part when recon-

structing the final image in gradient-domain path tracing. Huber loss combines L1 loss

and L2 loss by smoothly joining a parabolic function with a linear function at a position

specified by a cut-off parameter. We denote this parameter δ . The shape of the Huber
loss function varies depending on the choice of this parameter as illustrated in Figure 1.7.

The value chosen for the δ -parameter during Poisson reconstruction influences the

resulting final reconstructed image from the optimization procedure and it is therefore

important to choose δ wisely. The influence of the δ -parameter on the Huber loss function

17

is illustrated in Figure ??. Larger values of δ bring the characteristics of the Huber loss

function closer to those of the L2 loss, while a value of δ approaching zero suppresses the

gradient’s importance in the optimization, often leading to poor performance. Somewhere

in between the case of a too small or too large value for δ there is an optimal value δ ∗

that leads to the best reconstruction for a particular scenario. This optimal value varies

between different reconstruction cases and it is in general not possible to know what this

value is without having a reference render at hand to compare the reconstructed image

against.

This thesis aims to develop a method for choosing the δ -parameter used in Huber loss

reconstruction that produces final images of quality as close as possible to the quality of

the final images produced when performing reconstruction using the optimal value δ ∗.
Our main contribution is a multiplicative model for the δ -parameter, capable of predicting

a desirable value of δ to be used in the reconstruction. The model parameters are trained

using statistics computed on-line in the gradient-domain path tracing algorithm. We

show that reconstruction using Huber loss with δ produced by our model outperforms

the use of L1 loss and L2 loss in a wide range of scenarios. Additionally, we show that

reconstruction using Huber loss introduces considerably less bias in the final image

compared to L1 loss.

1.2 Thesis Overview
For the reader who is not familiar with the field of light transport simulation, Chapter 2

gives an introduction to the fundamentals of light transport theory and defines the

problem to be solved in order to produce photo-realistic images. The mathematical tools

and algorithmic frameworks used to solve the light transport problem is also introduced.

We present the area of gradient-domain light transport in Chapter 3, giving an account of

why and when these methods can solve the light transport problem at a higher efficiency

than traditional methods and an overview of algorithms utilizing gradient sampling and

integration. The reader who is well-versed in the field of computer graphics applied to

photo-realistic imaging may comfortably skip ahead to Chapter 4, where we describe the

methods employed in this thesis to predict values for the Huber loss parameter δ . The
results of our work are given and discussed in Chapter 5. We reflect upon the implications

of our results and findings in Chapter 6, where we also discuss potential venues of future

work.

18

(a) Regular pixel colors.

(b) Horizontal finite differences.

(c) Vertical finite differences.

Figure 1.5: Buffers generated through gradient-domain rendering. The horizontal (b)
and vertical (c) finite difference images give information about how the

regular pixel colors (a) vary across the image plane.

19

(a) L1 reconstruction darkens the image.

(b) L2 reconstruction introduces dipole artifacts.

(c) Reference image.

Figure 1.6: Drawbacks of current reconstruction methods. L1 reconstruction generates

a smooth image that is biased to be too dark. The brightness of the image

generated through L2 reconstruction is closer to the reference image, but

instead introduces undesirable dipole shaped artifacts.

20

y

L1

L2

δ1

y

L2

LH

δ2

y

L2

LH

Figure 1.7: Illustration of L1, L2 and Huber loss at different values for the cut-off param-

eters. The value chosen for δ influences the loss a candidate is given. The

smaller the value the more candidates will be treated as outliers and be given

less consideration in the optimization procedure.

21

2 Light Transport Theory

The synthesis of photo-realistic images through computer simulation, known as rendering,
has its foundations in light transport theory. The main concern is to generate images in

various applications that contain effects that would be difficult, prohibitively expensive or

impossible to achieve with other methods. With a description of the scene environment

and its virtual camera viewpoint, geometric objects and the scattering properties of

materials and other entities such as fluids and smoke, light transport algorithms simulate

the physics of this environment that are relevant to generate accurate images.

There are multiple areas of application that benefit from advances in light transport

simulation. In areas such as product and architectural design, accurate light transport

simulation functions as a pre-visualization tool that can predict how an object looks in a

variety of different lighting conditions prior to manufacturing. In applications such as

film production where the generation of images with realistic lighting is the main focus,

there has historically been a heavy artistic burden to carefully position the light emitters

in the virtual scene environment. Lights had to be positioned to account for refractions

and reflections in the scene, since it was difficult to simulate indirect lighting correctly

before global illumination algorithms became computationally viable. The study of light

transport has therefore been and continues to be important in order to inherently and

correctly capture the visual aspects of digital objects.

Correctly simulating the virtual environment as in the real world would require a

physically accurate description of the scene and a complete description of the physical

laws that govern the world. To the best of our knowledge this is impossible, since

the physical laws of our world is not completely known and the digital storage and

computational power required would be astronomical. A complete simulation is not

required to capture the visuals of a scene however, and we can make many simplifications

to both the scene geometry and the physical laws at virtually no cost.

Light transport simulation for the described purposes has its roots in neutron transport

theory, radiative transfer theory and the geometric optics model (Chandrasekhar 1950).

Geometric optics is a simplified idealistic model of light interaction but accurate to a

high degree and adequate for realistic image synthesis. Under the adoption of this model,

phenomena such as diffraction, iridescence and fluorescence that can be described by a

more complex quantum or wave optics model are not captured automatically (Grimaldi

1665; Guilbault 1990; Kinoshita, Yoshioka, and Miyazaki 2008). These effects are often

left to be added through various hacks and manual model augmentations. To simulate

iridescence for instance, it is common to manually tint the highlights of a material in

various ways or add the effect using digital compositing (Porter and Duff 1984).

Before we define the fundamental physical quantity for rendering, we here introduce

the concept of solid angle. Solid angle, denoted σ , is a measure of the amount of the

field of view from some particular point p that a given object covers, and is defined as a

23

Figure 2.1: Illustration of the solid angle. An element with differential area dA subtends

a differential solid angle dσ on a unit sphere centered at the apex point p.

pyramid or a cone. The point p from which the object is viewed is called the apex of the

solid angle. The size of the solid angle is determined by the area subtended by the object

on a unit sphere centered at p. The differential solid angle dσ is thus the differential cone

or pyramid subtended by a differential surface dA from the apex point p. An illustration

of a the differential solid angle is shown in Figure 2.1. The unit for solid angle is steradian

[sr].

The physical quantity of interest in the presentations to come is radiance. Radiance is
defined as the amount of energy arriving per second from a direction ω at a differential

surface area dA at a surface point x aligned perpenticularly to ω, and is written as L(x,ω).
Expressed differently, it is defined as the flux per unit solid angle and per unit projected

area. Its unit is [W/m
2
sr]. We will also use the incident and exitant radiance Li(x,ω) and

Lo(x,ω), the former being the radiance arriving at a surface point x from direction ω and

the latter being the radiance leaving it. We refer the interested reader to the work by

Arvo (1995) for a more rigorous treatment of radiance and radiometry in the context of

light transport.

2.1 Scene Representation

Computer generated images are created by capturing a digital environment using a

virtual camera analogous to how physical cameras capture real environments, the renderer

essentially simulates the photography process in a digital setting. The virtual environment

is commonly refered to as the scene and a typical scene with its basic components is

illustrated in Figure 2.2. In addition to a sensor in the form of a virtual camera, its position

and viewpoint, the scene description contains information about scene geometry such

24

Figure 2.2: Illustration of a virtual scene in light transport simulation. Light from the

emitters interact with the scene geometry and the radiance arriving into the

camera aperture is measured in the camera sensor to generate an image.

as floors, walls, furniture, foliage or any other objects that constitutes the scene and the

materials of the objects. It also describes which objects emit light, such as a lamp or a

distant sun-like object, and the properties of the light they emit. The renderer is fed the

scene description and simulates the transportation of light from the emitters in the scene,

computing the interaction of light with the scene geometry on its way to the camera.

For the intents and purposes of this work, a thin lens, pinhole camera model is sufficient,

and this thesis will therefore not delve into the area of modelling lenses or other internal

camera components. The interested reader is referred to the works by Kolb, D. Mitchell,

and Hanrahan (1995) and Wu et al. (2011).

2.1.1 Geometry

Geometry in virtual environments need to be defined in such a way that the renderer can

determine the location at which light interacts with the object. Analytic shapes such as

spheres, ellipsoids, cones and splines are often used for simple objects and to model thin

details such as hair. Objects that can not be described analytically, which are the most

common, are described using polygon meshes. These meshes, such as the quadrilateral

mesh in Figure 2.3, are point clouds of vertices where each vertex defines a coordinate in

space.

The shape of the geometry meshes are often modified further through the use of

normal and displacement mapping to achieve higher detail. Normal mapping modifies

the geometry by changing the direction of the surface normal of the triangles in the

mesh, and displacement mapping changes the position of the triangle surfaces. Both

these techniques change how the light interacts with the object, at what position and

25

Figure 2.3: Polygon mesh of the Utah teapot. The vertices of the model are collected

into quadrilateral polygons. Triangle meshes are also common.

26

angle the light strikes the object’s surface, ultimately changing how it looks. Texture

mapping is used to change various material parameters across the surfaces, such as the

albedo color, the amount of normal and displacement mapping or the surface roughness,

and to control the variation of other material parameters such as roughness.

2.1.2 Material Appearance
The appearance of a virtual object is decided entirely by how it is defined to interact with

light through its scattering properties. Materials can exhibit diffuse, specular, glossy and

transmissive properties to name a few.

The scattering properties of a material is described by a function known as the bidi-
rectional scattering distribution function, abbreviated as the BSDF (Nicodemus 1965). It

is defined as ratio of the differential reflected radiance leaving the surface point x in a

direction ωo and the radiance arriving at the surface point from direction ωi through a

differential solid angle dσ (ωi). Explicitly, it is defined as

fr (x,ωi → ωo) =
dLo(x,ωo)

Li(x,ωi) cosϑx,ωidσ (ωi)
(2.1)

where ϑx,ωi is the angle between the incident direction ωi and the surface normal at the

point x and dσ (ωi) is the solid angle measure.

The BSDF describes how light arriving at a surface point should be scattered from the

material and together with surface position, normals and textures captures entirely the

properties that dictate its visual appearance.

2.1.3 Participating Media
So far we have only described how surface components of the scene is modeled and

how light interacts with these entities, but volumetric effects such as smoke and fire are

naturally a central component of producing accurate images. Such effects are commonly

called participating media in the context of rendering. Simulations of these components in

light transport for realistic image synthesis are based on the work in radiative transfer by

Chandrasekhar (1950). Volumetric rendering is also of key importance when simulating

light interactions with skin and fluids.

We will not cover the interaction of light with volumetric components here and instead

refer to work by Jarosz (2008) for a thorough overview of participating media rendering.

2.2 The Rendering Equation
To render images we first need a mathematical framework through which we describe

the transportation of light from one place to another in the scene. We here give a cursory

overview of the rendering equation, the measurement equation and its path integral

formulation that constitute the foundation of recent advances in the field of light transport.

For a rigorous derivation of this machinery we direct the reader to the seminal work

by Veach (1998). The interested reader may also review extensions of the path integral

formulation by Jakob (2013) to the context of volumetric rendering.

27

(a) Diffuse. (b) Dielectric.

(c) Smooth conductor. (d) Rough conductor.

Figure 2.4: Examples of various material properties. (a) shows a perfectly diffuse object,

scattering light rays equally in all directions. The dielectric material in (b)
acts like glass, refracting and transmitting rays through the object. (c) and (d)
show metallic conductor materials of different roughness, giving the objects

varying levels of glossiness.

28

LetM denote the union of all the surfaces in the scene. M can be thought of as the set

of all points that lie on any surface in the scene geometry. Note that while the surfaces of

the scene lie in a three dimensional space,M is a two dimensional manifold. We begin

by defining the outgoing radiance at a surface point x ∈ M as the sum of the inherently

emitted radiance at the point, and radiance that has been scattered away after arriving at

the point from other parts of the scene.

Lo(x,ωo) = Le(x,ωo) + Ls(x,ωo) (2.2)

The emitted radiance Le(x,ωo) describes the emissive properties at the surface point x
and allows for the modelling of emitters such as lamps and other light sources. If the

object at x is not emissive, this term is zero.

The scattered radiance Ls(x,ωo) at a point x in the outgoing direction ωo is found

by integrating the differential outgoing radiance over all incident directions on the

hemisphere S2

Ls(x,ωo) =

∫
S2

dLo(x,ωo). (2.3)

From one point of view, the emitted radiance Le(x,ωo) can be seen as the integration

constant to the above integral. Note that the differential outgoing radiance in the integrand

above is the numerator of Equation 2.1 for the BSDF fr . After rearranging and substituting
we can write the scattered radiance as

Ls(x,ωo) =

∫
S2

Li(x,ωi)fr (x,ωi → ωo) cosϑx,ωidσ (ωi). (2.4)

The integral is computed over all incoming directions ωi on the hemisphere at the surface

point x and gives the outgoing scattered radiance in the outgoing direction ωo .

We now have an expression for the scattered part of the outgoing radiance at a surface

point, and by combining Equation 2.2 with Equation 2.4 we get

Lo(x,ωo) = Le(x,ωo) +

∫
S2

Li(x,ωi)fr (x,ωi → ωo) cosϑx,ωidσ (ωi). (2.5)

Note that the unknown radiance quantity appears on both sides. To know the outgoing

radiance Lo at the surface point x we must know the incoming radiance Li which is the

outgoing radiance from some other surface point in the scene, hence this is an integral

equation. This balance equation for radiance was introduced by Kajiya (1986) and is

known as the rendering equation. The light transport problem is defined as the problem

of solving this equation.

2.2.1 The Measurement Equation
Having described how light interacts with the scene, we also need to describe how to

make measurements of radiance. We do this by defining and modeling a virtual camera

which just like physical cameras has an aperture through which light can enter, and a

sensor that can measure radiance. Indeed, images are formed by measuring the sensor

29

response in cameras to the light that enters its aperture and translating the measurements

into pixel values.

The camera aperture is modeled as a surface in the scene and is therefore part ofM.

To generate an image ofM pixels, every pixel j ∈ {1, 2, . . . ,M} is associated with a sensor

element of the camera sensor, each capable of making measurements on radiance. The

camera sensor is modeled as a regular grid of smaller sensor elements each corresponding

to a pixel.

The response of the camera sensor with respect to the position at which the sensor is

struck by the incident light and the incident direction is described through the importance
functionWe(x,ω). The importance models the ratio of sensor response per unit of power

arriving along a ray of light at position x on the camera aperture from direction ω.
Each pixel value in the image is a measurement of incident radiance by its associ-

ated sensor element. The measurement Ij of the j-th pixel is computed through the

measurement equation

Ij =

∫
M

∫
S2

hj(x,ω)We(x,ω)Li(x,ω) cosϑx,ωdσ (ω)dA(x) (2.6)

where hj(x,ω) is the pixel filter. Where the importance functionWe dictates the response

of the entire sensor grid to incoming radiance, the pixel filter hj dictates how much of

this response is attributed to the j-th sensor element. A simple example of a pixel filter is

the box filter, which has a value of one if the ray of light entering through the aperture at

point x from direction ω strikes the sensor element associated with the pixel, and zero

if it does not. Other common filters in image processing are the Gaussian, Lanczos and

Mitchell-Netravali filters (D. P. Mitchell and Netravali 1988; Turkowski 1990).

Importance Transport

Just as emitters in the scene emit radiance, the sensors of the scene can be viewed as

emitting importance. This is a reciprocity property of light transport and is the reason

for the e-subscript of the importance function. We will not go into detail about the

consequences of reciprocity but we note that it lies at the foundation of certain light

transport algorithms such as bidirectional path tracing which simulates two propagation

and scattering processes simultaneously; importance transport in addition to regular

radiance transport.

2.2.2 Path Integral Formulation
To find an explicit expression for the value of the measurement, we can express the

measurement Equation 2.6 as an integral over path space. To define path space, we first

define a path, which can be seen as the route the light propagates along through the

scene. A path x of length k is a series of k + 1 vertices

x = x0x1 . . . xk , (2.7)

where the vertices xi ∈ M for all i ∈ {0, 1, . . . ,k}. As such, each path x of length k lies

in the Cartesian product space Ωk =Mk+1
. This space contains all paths of length k , and

30

path space which is the space of all paths of arbitrary length is defined naturally as the

union of these spaces

Ω =
∞⋃
k=1

Ωk . (2.8)

The derivation of the path integral formulation now comes down to expanding the

measurement equation repeatedly and rearranging it into an infinite sum of integrals,

one sum for each path length. This sum can be rewritten as a single integral over path

space Ω

Ij =

∫
Ω
hj(x)f (x)dµ(x) (2.9)

where dµ(x) =
∏k

i=1
dA(xi) is the area product measure. This is the path integral formu-

lation of the measurement equation.

The integrand is the contribution of a path x to the measurement at the j-th pixel;

f (x) is known as the measurement contribution function and describes the throughput

carried by a path x to the entire camera sensor, and hj(x) is once again the pixel filter.

The measurement contribution function f (x) is a product over the vertices in the path x
and takes surface emission, visibility and scattering properties through the BSDF into

account. The task of rendering algorithms is to estimate this integral by computing values

of the measurement contribution function.

It is common to combine the contribution to the camera sensor and the pixel filter to

instead describe the contribution of a path to a specific measurement by a sensor element

tied to a pixel. The contribution to the measurement for the j-th pixel is then written as

fj(x) = hj(x)f (x).

2.3 Monte Carlo Simulation
The problem of rendering images has now been formulated. The virtual camera is

modeled as an aperture through which light can enter and strike a sensor array. Each

sensor element makes measurements of the radiance carried by the incident light to form

pixel values for the image through the integral in Equation 2.9.

The remaining portion of this chapter is now dedicated to the computation of this

integral. Universal analytic solutions to the integral have yet to be found as the integrand is

ridden with discontinuities and other ill-behaved properties caused by complex geometry

and scattering functions. We therefore use numerical methods to solve the integral

through computational means.

One-dimensional integrals can be computed using various interpolation techniques

based on quadrature rules, such as those of the Newton-Cotes family. To compute multi-

dimensional integrals, one strategy is to use Fubini’s theorem (Fubini 1907) to reformulate

the multi-dimensional integral as a repetition of one-dimensional integrals and apply

quadrature methods to compute these. Unfortunately, as the number of dimensions of

the integral increases, this approach requires the number of function evaluations to grow

exponentially, a problem known as the curse of dimensionality (Bellman 1957).

31

Since the integral problem we are interested in is an integration over the infinite-

dimensional path space Ω, quadrature based methods are not an option and we therefore

resort to computing the integral using Monte Carlo methods which do not suffer from

the curse of dimensionality.

2.3.1 Monte Carlo Integration
The use of Monte Carlo methods is becoming the industry standard in any field related

to light transport simulation. The work on distributed ray tracing by Cook, Porter, and

Carpenter (1984) was the first usage of Monte Carlo sampling in the context of rendering.

Kajiya (1986) employed Monte Carlo methods to solve the rendering equation.

The idea behind computing the measurement integral using Monte Carlo integration

is to reformulate it as an expected value that can be computed as a Monte Carlo estimate.

To this end, we view each path x as a realization of a random variable X and path

space Ω as the set of possible outcomes of this random variable. Let π (x) denote the
probability density function (pdf) of X . The integrand in the path integral formulation

of the measurement equation can now be rewritten slightly, and we can immediately

identify the integral expression for the j-th pixel measurement as an expected value

Ij =

∫
Ω
fj(x)dµ(x) =

∫
Ω

fj(x)

π (x)
π (x)dµ(x) = E

[
fj(X)

π (X)

]
. (2.10)

This means that the pixel value Ij can be seen as an estimator of the expectation above.

Let x1, . . . ,xn be n independent and identically distributed realizations of X . A Monte

Carlo estimate of the pixel value can then be computed as

I (n)j =
1

n

n∑
t=1

fj(xt)

π (xt)
(2.11)

By the law of large numbers we have limn→∞ I (n)j = Ij , and if we can generate paths xt and
compute their throughputs fj(xt) and pdfs π (xt) we have a way to compute an estimate

of the pixel value Ij . No matter how many samples we add to form the estimate however,

for a finite number of samples n the estimate I (n)j will always deviate from the true value

Ij by a certain amount. This deviation, the error, can be estimated by the sample variance

of the estimator in Equation 2.11.

Var

[
I (n)j

]
= Var

[
1

n

n∑
t=1

fj(X)

π (X)

]
=

1

n
Var

[
fj(X)

π (X)

]
=

1

n
σ 2

n . (2.12)

As long as the sequence {σ 2

1
, σ 2

2
, σ 2

3
, . . .} is bounded, this variance decreases asymptoti-

cally to zero as we add more samples and we can form an arbitrarily accurate estimate.

The rate at which the noise diminishes as more samples are added is dictated by how

large the variance of the Monte Carlo estimator is.

In the context of rendering, the error of the Monte Carlo estimator manifests itself as

noise in the image, demonstrated in Figure 2.5.

32

Figure 2.5: Images generated through Monte Carlo integration are noisy since we can

never get an infinite number of path samples. The noise is reduced as we add

more samples. This is illustrated above where the image becomes cleaner as

we move from 4 samples per pixel (top) through 16 samples per pixel (middle)

to 64 samples per pixel (bottom).

33

Variance Reduction

Since the ever present error of aMonte Carlo estimator is tied to its variance, it is important

to design the Monte Carlo sampler in a way that minimizes the variance of said estimator.

We cannot form an exact estimate, so we want to design the sampling strategy allows

our estimate to come sufficiently close to the true value with as few samples as possible.

Controlling the sampling strategy in this manner is called variance reduction.
From Equation 2.12 we see that if we could sample paths from a probability distribution

that was proportional to the measurement contribution function, i.e. π (X) = afj(X) for

some positive scalar a, the variance of our estimator would be zero.

1

n
Var

[
fj(X)

π (X)

]
=

1

n
Var

[
fj(X)

afj(X)

]
=

1

n
Var

[
1

a

]
= 0 (2.13)

Sampling from a distribution proportional to the target function is unfortunately not

possible. Any probability distribution must integrate to one over the probability space,

therefore we have ∫
Ω
π (x)dµ(x) = a

∫
Ω
fj(x)dµ(x) = 1. (2.14)

For this to hold we see that the scalar a must be the reciprocal of the integral we were

looking for in the first place. This example nevertheless highlights a detail that is impor-

tant for variance reduction; if we can sample from a distribution that is similar to the

target function, we have an opportunity to improve the convergence rate of the estimator

even if its variance will never be zero.

This technique of sampling from a distribution that is similar to the function we are

interested in is known as importance sampling. Even though it is not possible to sample

directly from the measurement contribution function fj , it is a product of many terms and

it is often possible to importance sample some of its factors, for instance those related

to material BSDFs. Importance sampling is a core part of efficient algorithm design in

rendering.

2.3.2 Markov Chain Monte Carlo
We now describe a family of algorithms that are designed to generate samples from prob-

ability distributions. The samples generated from these simulations can be used to form

Monte Carlo estimates, and are useful for more complex probability distributions when

generating samples by using simpler methods such as inversion sampling or rejection

sampling is not possible.

Markov chain Monte Carlo (MCMC) methods are a collection of algorithms designed to

generate samples from probability distributions by simulating a series of random events

known as a Markov chain (Gilks, Richardson, and Spiegelhalter 1995). A Markov chain

is a stochastic process X1,X2,X3, . . . with the property that the probability of the next

event in the process depends only on the current state

Pr (Xi+1 |X1,X2, . . . ,Xi) = Pr (Xi+1 |Xi). (2.15)

34

The right hand side describes the probability of moving from a state Xi to a state Xi+1

and it dictates the evolution of the Markov chain. We call this the transition density and

write it as

q(xi → xi+1) = Pr (Xi+1 = xi+1 |Xi = xi). (2.16)

A core concept for MCMC simulation is the stationary distribution of the Markov chain.

A distribution ϱ is said to be stationary if the detailed balance equation is satisfied.

q(x → x′)ϱ(x) = q(x′ → x)ϱ(x′) (2.17)

This means that the distribution fromwhich theMarkov chain assumes values has stopped

evolving and reached a stationary state. The idea behind MCMC sampling is to construct

a Markov chain whose stationary distribution is proportional to some target function we

are interested in sampling from. Indeed, if the Markov chain reaches this stationarity

and evolves according to the target distribution, then each state x it visits is a realization

of the random variable we are trying to simulate and we can register each visited state

as a sample. MCMC algorithms are designed in such a way that the transition density q
ensures this behaviour of the Markov chain.

Another important concept is that of ergodicity. A Markov chain X1,X2,X3, . . . with
stationary distribution ϱ is called ergodic if, regardless of the initial distribution, the chain
forgets its initial distribution and converges towards ϱ as the chain evolves. This is only

true in the limit however, and unless the initial distribution coincides with the target

distribution, the samples generated from the chain will never behave exactly as desired

given a finite simulation time. This is known as start-up bias. It is therefore important to

carefully choose the initial distribution to minimize this bias or eliminate it entirely to

ensure that the Markov chain generates samples from the desired distribution.

The Metropolis-Hastings Algorithm

There are many MCMC sampling algorithms, one of the most prominent being the

Metropolis-Hastings algorithm (Hastings 1970; Metropolis et al. 1953). The Metropolis-

Hastings algorithm is an MCMC algorithm that aims to generate samples from a target

distribution f by generating a Markov chain that has f as stationary distribution. This is

achieved by starting from the detailed balance equation (Equation 2.17) and splitting the

transition probability q into a proposal and acceptance step

q(x → x′) = r (x → x′)α(x → x′). (2.18)

The idea is to sample a candidate state x′ from a proposal kernel r (x → x′) and accepting
or rejecting the candidate state with probability α(x → x′). Either the chain will accept

the new state x′ or stay in the current state x . Inserting Equation 2.18 into Equation 2.17

and rearranging the terms gives

α(x → x′)

α(x′ → x)
=
r (x′ → x)ϱ(x′)

r (x → x′)ϱ(x)
. (2.19)

35

To satisfy this relationship and set f as the targeted stationary distribution, the acceptance
probability is defined as

α(x → x′) = min

(
1,

f (x′)r (x′ → x)

f (x)r (x → x′)

)
. (2.20)

In its entirety, the Metropolis-Hastings algorithm thus constists of repeatedly sampling a

new proposal state from the proposal kernel, computing the acceptance probability and

then either accepting or rejecting the new state.

The acceptance probability in the Metropolis-Hastings algorithm is contructed from

two fractions that both have a natural role in deciding the transition density so that the

resulting Markov chain generates samples from the target distribution f .

• f (x′)/f (x) suggests:

– accept candidate x′ if it is more likely under f , i.e. f (x′)/f (x) ≥ 1

– accept candidate x′ with probability f (x′)/f (x) < 1 if it is less likely under f

• r (x′ → x)/r (x → x′) suggests:

– the easier it is to reach x′ from x , the larger the denominator r (x′ → x) will
be and will reduce the acceptance probability.

– the easier it is to return to x from x′, the larger the numerator r (x → x′) will
be and will increase the acceptance probability.

The states visited by the resulting Markov chain from the Metropolis-Hastings algorithm

are all registered as samples, regardless of if the new proposed states was accepted or

rejected, and can later be used to form Monte Carlo estimates.

MCMC algorithms benefit from proposal kernels that approximate the target function

well, just as in the case of importance sampling, and the design of good proposal kernels

is at the core of designing MCMC algorithms for rendering.

Measurement Integration Using Markov Chains

In the context of rendering and light transport simulation, most interesting is how to

compute integrals of the target function using Markov chains. To generate an image, we

need to compute measurement integrals for each pixel

Ij =

∫
Ω
fj(x)dµ(x). (2.21)

Instead of driving a Markov Chain with the per-pixel measurement contribution function

fj as stationary distribution for each pixel, MCMC algorithms in rendering target the

contribution function to the entire sensor f , so that the Markov chain generates samples

that contribute to all measurements of the image simultaneously

Ij =

∫
Ω
hj(x)f (x)dµ(x). (2.22)

36

Using the Metropolis-Hastings algorithm, we can drive a Markov chain with path space Ω
as its state space and the visited states x1,x2, . . . ,xn are paths guaranteed to be distributed
proportionally to the target contribution function f . In other words, the probability

distribution function of the random variable for each state can be written as a scalar

multiple of the target function, π (x) = af (x). The estimate of the measurement integral

is then

Ij ≈
1

n

n∑
t=1

hj(xt)f (xt)

π (xt)
=

1

n

n∑
t=1

hj(xt)f (xt)

af (xt)
=

1

n

n∑
t=1

hj(xt)

a
. (2.23)

The remaining task is to compute the proportionality constant

a =

∫
Ω
f (x)dµ(x). (2.24)

This might seem impossible at first glance, but since this constant is shared among all the

M pixels in the image, whereM usually is a large number, it is feasible to approximate

this constant using a secondary integration technique such as some other Monte Carlo

estimator.

2.4 Light Transport Algorithms
When discussing integration of the measurement integral in Section 2.3.1, we noted

that if we can generate paths x and compute their probabilities π (x), we have a way

to estimate the pixel values. The design of light transport algorithm comes down to

creating a machinery that samples paths, and it is the implemented sampling scheme

that single-handedly determines what the probability distribution functions for the paths

are. We are thus entirely free to choose π , the only restriction we have is that, for the law

of large numbers to hold, π must be non-zero and positive whenever the measurement

contribution function fj is non-zero and positive.

We also mentioned the concept of variance reduction and came to the conclusion that if

the probability density functions of the generated paths are similar to the target function,

the variance of the estimator is lower. It is therefore important to design the sampling

scheme so that the resulting pdfs π approximate fj to a high degree, and it is the degree

to which different light transport algorithms achieve this that differentiates them.

2.4.1 RandomWalks
In general it is not possible to sample directly from the space of light carrying paths

and therefore the paths that we want to sample in order to form measurement integral

estimates are built successively by using random walks through the scene. A randomwalk

is a stochastic process that consists of a succession of random steps in some mathematical

space, in our case path space Ω.
A sampler can build paths by generating a random walk that starts either from the

sensor or an emitter, and there are techniques that do both simultaneously and then

connect the two paths for higher efficiency. As previously we write a path as a series

37

Figure 2.6: Path sampled with random walks originating from both the camera and and

the emitter.

of vertices x = x0x1 . . . xk , and we write xci for vertices belonging to a path sampled

from the camera and xei for vertices belonging to a path sampled from the emitter to

distinguish between the two. A full path can be a combination of sub-paths generated

through random walks that start from the camera and emitters; for instance, the path

x = xc
0
xc

1
xc

2
xe

0
depicted in Figure 2.6 is a path with three vertices sampled from the camera

and one sampled from the emitter.

Propagation and Scattering

Regardless of where the first path vertex was sampled from, generating the rest of the

random walk consists of a series of propagation and scattering events until the random

walk terminates. Given a path vertex xi and outgoing direction ωi for the ray of light

originating at xi , the next vertex on the path xi+1 is the nearest point in the scene geometry

in the ray direction. This point is found through ray casting. The ray casting function is

defined as

rM(x,ω) = x + ωdM(x,ω) (2.25)

where dM(x,ω) = min{d ∈ R | x + ωd ∈ M, d > 0} returns the distance to the closest

point in the geometry in the ray direction. If the ray misses the scene geometry entirely,

rM(x,ω) returns infinity. With this definition we find the next vertex in the random walk

as xi+1 = rM(xi ,ωi).

When the ray arrives at a new vertex along the path being generated by the random

walk, a scattering event occurs and a new outgoing direction is determined. Arriving at

a vertex xi , the next outgoing direction ωi depends on the material of the geometry at

the vertex point, which is described by the bidirectional scattering distribution function.

Efficient selection of the outgoing direction thus depends on importance sampling the

BSDF fr (xi ,−ωi−1 → ωi), where the current incoming direction ωi−1 is the outgoing

direction of the previous path vertex xi−1 from which the ray came from. The negation

in this incoming direction stems from the fact that the BSDF is defined using directions

pointing outward from the surface point. When importance sampling for scattering, it is

also important consider the term cosϑxi ,ωi that affects the throughput.

38

Termination

The sampling of a path cedes when the random walk process terminates. This can happen

when a ray being propagated exits the scene, for instance when the scene depicts and

outdoor environment and the ray scatters into the open air towards the sky.

If the scene is completely enclosed however, the ray would propagate and scatter

through the environment indefinitely and the random walk would continue forever and

the rendering algorithm using the paths to generate an image would be prohibited from

doing so. We can solve this by setting a maximum path length, but this has the problem

of introducing bias into the measurement contribution of the paths since we no longer

have a non-zero probability of sampling the entire path space.

A better way is to terminate the ray probabilistically. At each path vertex xi , the
idea is to select a continuation probabilitywi and thus terminate the random walk with

probability 1 −wi . This way there is still a non-zero probability of sampling all paths,

but the random walk will terminate in finite time ifwi is chosen properly. If the random

walk continues from vertex xi , the probability distribution function of the resulting path

is multiplied by wi to ensure that the Monte Carlo estimator remains unbiased. This

technique is known as Russian roulette (Arvo and Kirk 1990), and normally you start this

procedure after a certain number of vertices has been sampled along a path. Russian

roulette increases the variance of integral estimator however and one must thereful be

careful in choosing the termination probability.

After the randomwalks terminate, the resulting paths have ameasurement contribution

throughput that depends on the emission and the materials it has interacted with, and an

associated probability distribution function that describes the probability with which the

path was sampled. These quantities are then used to form a Monte Carlo sample for the

path that will contribute to integral estimates. The probability distribution function of a

path x is

π (x) = π (x0x1 . . . xk) = π (x0)

k∏
i=1

π (xi |xi−1, xi−2, . . . , x0). (2.26)

The path may very well carry no light and the throughput consequently be zero, as is the

case if none of the constituent path vertices are situated on an emissive surface.

2.4.2 Path Tracing
One of the simplest methods for simulating global illumination is path tracing (PT). While

it is simple it is also the method that is the most central component of all light transport

algorithms in that more advanced algorithms build upon it in one way or another. Path

tracing was introduced by Kajiya (1986) as a technique to solve the rendering equation,

and builds upon the mechanics of simulating particle transport withMonte Carlo methods

as explained by Carter and Cashwell (1975).

In the standard path tracing algorithm also known as unidirectional path tracing, we

sample paths from one direction. The algorithm consists of generating a random walk

starting from the sensor, resulting in a path xc = xc
0
xc

1
. . . xc

k
, with xc

0
lying on the camera

aperture. At each vertex along the path, we sample a new direction by importance

39

sampling the BSDF of the material. While we are tracing the path through the scene,

we may encounter many emitting surfaces that all contribute to the image. From the

series of k + 1 vertices constituting the path we can construct k different paths xc
0
. . . xci ,

i = 1, . . . ,k , and their aggregate contribution to the measurement integral estimate is

F =
k∑
i=1

f (xc
0
. . . xci)

π (xc
0
. . . xci)

(2.27)

where π (xc
0
. . . xci) is the pdf of the i-th sub-path.

Since we are naively tracing paths in the hope of eventually hitting an emitting light

source by chance, this technique is often called naive path tracing. Figure 2.7a shows an

illustration of how a path is sampled in naive path tracing.

Next Event Estimation

While generating paths, importance sampling the material BSDFs is not always the best

option to reduce variance. If the scene consists of mainly diffuse surfaces and a few small

light sources that are responsible for the majority of the illumination in the scene, then

naively bouncing rays around may result in very few hits on the emitters and many paths

will not carry any light. A way to work around this is to use a technique called next event
estimation (NEE). Next event estimation importance samples the emitters of the scene

and is for this reason also known as direct light sampling (Shirley and Wang 1994).

Paths that just terminate without hitting an emitter and thus contributing to the image

is wasted computational work and we want to avoid that. Next event estimation samples a

vertex xe
0
on an emitting light source and sends a shadow ray from the i-th path vertex for

each of the k sub-paths towards the sampled point on the emitter to check for visibility,

resulting in k paths xc
0
. . . xci x

e
0
, i = 1, . . . ,k , where as before xc

0
lies on the camera

aperture. The contribution of these paths are then

F =
k∑
i=1

f (xc
0
. . . xci x

e
0
)

π (xc
0
. . . xci)π (x

e
0
)

(2.28)

where π (xe
0
) is the pdf of the sampled emitter vertex.

Explicitly connecting the camera paths to a light source in this way can reduce the

variance of the measurement integral estimate enormously when the light sources are

small and not easily encountered by chance when tracing naively. There are cases when

it can reduce efficiency however. The light source may be large and clearly visible, but if

the BSDF of the material at the vertex preceding the the emitter is very sharp and scatters

light in very specific directions, as is the case with specular and near-specular objects,

the path connecting to the emitter may carry very little or no throughput at all. In these

cases there is little point in importance sampling the emitter and it is often better to

importance sample the BSDF. Figure 2.7b shows an illustration of how a path is sampled

with next event estimation.

40

(a) Naive/unidirectional path tracing.

(b) Next event estimation.

(c) Bidirectional path tracing.

Figure 2.7: Illustration of paths generated by naive path tracing, next event estimation

and bidirectional path tracing. (a) Naive PT initiates a random walk from

the camera in the hopes of reaching the emitters of a scene by chance. (b)
NEE connects vertices of the camera paths to the light sources directly. (c)
BDPT connects paths generated from both the camera and the emitters.

41

Multiple Importance Sampling

As separate techniques in isolation, the performance of naive path tracing and next event

estimation is good in some cases and worse in others. Because of this we can use both

techniques at the same time and get the best of both worlds by combining and weighting

together paths that were sampled by regular path tracing where we just scatter and

propagate the ray naively, and paths that were sampled by using next event estimation to

importance sample emitters. This technique is called multiple importance sampling (MIS)

which stems from the fact that we are importance sampling in multiple ways instead of

choosing one way.

Consider the general case when we want to estimate an integral∫
Ω
f (x)dµ(x) (2.29)

and have ns different sampling techniques, where we draw ni samples for the i-th strategy
and we have n =

∑
ni samples in total. Denoting the j-th sample from strategy i by xij ,

we can then form the multi-sample estimator of the integral as

F =
ns∑
i=1

1

ni

ni∑
j=1

wi(xij)
f (xij)

πi(xij)
. (2.30)

The estimator above contains weighting functions wi for each sampling strategy that

allows the samples to be weighted differently depending on which technique they were

sampled from. F is also unbiased given some weak conditions imposed on the weighting

functions, such as that they must form a partition of unity. Designing these weighting

functions intelligently can result in variance reduction.

There is great freedom in choosing the weighting functions. A good alternative is to

choose the weights according to the balance heuristic (Veach and Guibas 1995b)

wi(x) =
niπi(x)∑ns

k=1
nkπk(x)

. (2.31)

The balance heuristic is a natural way to extend the standard Monte Carlo estimator to

the case of multiple sampling strategies. To see this, define the ck = nk/n as the fraction

of samples coming from the k-th sampling strategy with pdf πk , and insert the balance

heuristic weights into the multi-sample estimator. We get

F =
ns∑
i=1

1

ni

ni∑
j=1

(
ni

πi(xij)∑
k nkπk(xij)

)
f (xij)

πi(xij)

=
1

n

ns∑
i=1

ni∑
j=1

f (xij)∑
k ckπk(xij)

=
1

n

ns∑
i=1

ni∑
j=1

f (xij)

π̃ (xij)

(2.32)

42

wherewe have used the combined sample density to highlight the similarity to the standard

Monce Carlo estimator

π̃ (x) =
ns∑
k=1

ckπk(x). (2.33)

The combined sample density functions as a weighted average of the probability distribu-

tion functions for the different strategies.

With the multi-sample estimator we can combine next event estimation and unidirec-

tional path tracing. Any fully connected path from the camera to an emitterx = x0x1 . . . xk
can be sampled by both path tracing, xPT = xc

0
xc

1
. . . xc

k
where the camera path has encoun-

tered the emitter by chance, and next event estimation, xNEE = xc
0
xc

1
. . . xc

k−1
xe

0
where the

vertex on the emitter was sampled explicitly. With this perspective in mind, regardless of

x was actually sampled, we can view the two alternatives xPT and xNEE as two sampling

strategies that can be combined in the MIS framework.

In this simple case, we have two sampling strategies, NEE and PT. The samples for

the two strategies xNEE and xPT are the same path x and we will drop the subscript for

brevity. The multi-sample estimate of the path contribution with weights according to

the balance heuristic is then

F = f (x)

(
wNEE(x)

πNEE(x)
+
wPT(x)

πPT(x)

)
=

f (x)

(πNEE(x) + πPT(x))/2

. (2.34)

Here we can intuitively see the effect that the MIS scheme has on the contribution

estimate. Dividing by the average of the two probability distribution functions of the

sampling strategies instead of choosing one or the other, we are less prone to variance in

either of the two.

2.4.3 Bidirectional Path Tracing
Combining sampling strategies with MIS in a multi-sample estimator can be extended

beyond unidirectional path tracing and next event estimation. Bidirectional path tracing
(BDPT) is a light transport algorithm that extends this framework into a larger more

generalized family of sampling strategies (Lafortune and Willems 1993; Veach and Guibas

1995a).

As the algorithm name suggest, bidirectional path tracing samples paths by random

walking both from an emitter and from the camera, and combines many ways to connect

the resulting camera and emitter paths at some or all of the vertices in both paths. Each

such way to connect the two paths is a connection strategy, and the different connection

strategies that are considered are weighted in a multiple importance sampling scheme.

Figure 2.7c shows an illustration of the many ways that the emitter and camera subpaths

can be connected in bidirectional path tracing.

Let kC and kE denote the number of vertices of the sampled camera and emitter paths

respectively. BDPT samples the emitter and camera paths

xe = xe
0
xe

1
. . . xekE

xc = xc
0
xc

1
. . . xckC

(2.35)

43

and uses these to construct full transport paths

xs,t = xe
0
. . . xes−1

xct−1
. . . xc

0
. (2.36)

Here, s and t are the number of vertices used from the camera and emitter sub-paths

respectively to make the connection and build the full path, and the tuple (s, t) is the
connection strategy representing this specific number of vertices from the two. For full

paths of length k = s + t there are k + 2 connection strategies, and BDPT employs an

MIS scheme to form an estimator that takes all these strategies into account.

Note here that in the connection strategy where s = 0, there are no emitter vertices

and we refer to the case when the path was sampled entirely from the camera and hit

the emitter by chance. This is exactly the case for naive path tracing. The connection

strategy where t = 0 is almost identical conceptually, but here we instead refer to a

scenario where the path was sampled entirely from the light source and hit the camera

aperture by chance, like naive path tracing in the opposite direction.

One-Bounce Strategies

We proceed to show some examples of sampling strategies (s, t) in a simple scenario and

illustrate how naive PT and NEE belong to a subset of the bidirectional sampling strategies.

Consider the case of a transport path with three vertices; one vertex at the camera and

emitter each and one vertex between the camera and emitter where a bounce occurs. The

available sampling strategies are illustrated in Figure 2.8 where their individual behaviours

are also explained. It is easy to see how the number of available sampling strategies

grows combinatorially as the full transport paths become longer in more complicated

scenarios.

Optimally Combining Strategies

The multi-sample estimator for the throughput is formed by considering and weighting

all the different available connection strategies (s, t) that a full path could be connected

with from the emitter and camera sub-paths xe and xc sampled by BDPT. The estimator

is

F =
kC∑
s=0

kE∑
t=0

ws,t (xs,t)
f (xs,t)

πs,t (xs,t)
(2.37)

where the weightsws,t are chosen according to some combination strategy such as the

balance heuristic.

The different connection strategies all have strengths and weaknesses and perform at a

varying degree for different path types. Similarly to how next event estimation combines

importance sampling of light sources and BSDFs, bidirectional path tracing can increase

efficiency substantially by combining the strengths of the different sampling techniques.

This can lead to a significant variance reduction when the illumination in the scene is

governed by complex light transport paths such as specular and caustic chains between

the sensor and the scene emitters. There are cases when a simpler unidirectional path

tracing algorithm is to be preferred, where the variance reduction achieved by using a

bidirectional sampler is not large enough to warrant the added computational cost.

44

(a) (s, t) = (0, 3): A camera vertex and di-

rection is sampled and the camera ray

is propagated and scattered once. The

camera path finds the emitter by chance.

This is the naive PT strategy.

(b) (s, t) = (1, 2): A camera vertex and di-

rection is sampled and the camera ray is

sent out into the scene to find the next

vertex on the camera path. One emitter

vertex is sampled on the emitter to which

the camera path is connected. This is the

NEE strategy.

(c) (s, t) = (2, 1): An emitter vertex and di-

rection is sampled and the emitter ray

is propagated to the next hit. One cam-

era vertex is sampled to which the emit-

ter path is connected. This strategy is

similar to NEE, but instead of directly

sampling the light source and connect-

ing to the camera path vertices, the cam-

era aperture is directly sampled and con-

nected to the emitter path vertices.

(d) (s, t) = (3, 0): An emitter vertex and di-

rection is sampled and the emitter ray is

propagated and scattered once. The emit-

ter finds the camera aperture by chance.

This strategy is analogous to naive PT,

with the modification that the random

walk starts from the emitter instead of

the camera.

Figure 2.8: Bidirectional connection strategies for paths involving one scattering event.

45

2.4.4 Metropolis Light Transport
Metropolis light transport (MLT) was introduced by Veach and Guibas (1997) and is a

Markov chain Monte Carlo technique that samples paths using the Metropolis-Hastings

algorithm.

MLT is initialized by estimating the integration constant a across the image using

bidirectional path tracing. The samples from this estimation are then also used as initial

distribution of the Markov chain. BDPT is unbiased and produces paths distributed

according to the contribution function f , which therefore ensures that the Markov chain

will have f as stationary distribution and will visit states distributed according to f
exactly as it evolves and not be plagued by start-up bias. MLT initialized by an unbiased

Monte Carlo integrator is therefore also unbiased.

More paths for the measurement integral estimator are then sampled from the distri-

bution by evolving the chain according to the Metropolis-Hastings algorithm, where new

states are accepted or rejected depending on the contribution ratio of the new and old

state and the ratio of proposal probabilites. The proposal kernel r proposes changes to
the paths that can be partitioned into perturbation and mutation strategies. Perturbations

are small changes to the state of the Markov chain that explore the neighbourhood of the

path by changing the path vertices by small amounts, and mutations are larger changes to

the chain that can change the path structure by for instance adding or removing vertices.

MLT is a highly efficient algorithm to simulate complex light transport involving light

source occlusion and long specular path chains, but sometimes has a problem with chains

getting stuck in narrow areas of path space associated with high contribution, resulting

in firefly artifacts in the image. There are extensions to the traditional MLT algorithm

that devise different techniques to alleviate this issue and increase the stratification of

the states visited by the Markov chain and consequently the samples generated by the

algorithm. For a more thorough review of light transport algorithms based on MCMC

simulation, we refer to expositions in the introductory chapters of works by Bitterli (2015)

and Jakob (2013).

46

3 Gradient-Domain Light Transport

This chapter introduces the field of gradient-domain rendering (Lehtinen et al. 2013).

Algorithms of this category not only try to estimate the image but also how the image

changes, and reconstruct the final image at a higher level of efficiency by using additional

information. The change in the image can refer to how the color varies over the image

plane or over time if generating image sequences. To calculate the change in the image

these algorithms extract information about the image gradient. The key to the success of

these algorithms is the ability to do so in a correlated fashion, resulting in a pixel color

estimator with lower variance than usual. The components that are estimated in this

process is illustrated in Figure 3.1. Gradient rendering works best in scenarios where the

frequency spectrum of the contribution function is such that there is more energy for low

frequencies than high frequencies, which is often the case in light transport integrands

and natural images (Ruderman 1994; Simoncelli and Olshausen 2001).

Applications in computer graphics has found different uses of gradients such as irradi-

ance caching and image editing (Pérez, Gangnet, and Blake 2003; Ward, Rubinstein, and

Clear 1988). Previous work commonly uses closed form approximations of the derivative

which can not be used during reconstruction to form an unbiased estimation of the final

image. Gradient-domain light transport algorithms therefore perform gradient related

calculations in an unbiased fashion, allowing the reconstruction of unbiased final images.

In the following we begin by giving a mathematical formulation of the gradients that

are estimated, and continue by explaining how the estimated gradient information in the

image can be used to retreive the final conventional image through Poisson reconstruc-

tion. We further explain how the aforementioned gradients are sampled and present an

Primal image Horiz. gradient component Vert. gradient component

Figure 3.1: Components sampled in the generation of images through gradient-domain

rendering. A gradient-domain rendering algorithm computes coarse esti-

mates of the primal image, and horizontal and vertical gradient images, and

uses the three parts to reconstruct the final image using a Poisson solver.

Crop from the Bathroom 3 scene, 512spp.

47

overview of how the shift mapping used to generate offset paths for finite differencing is

implemented for a range of gradient-domain rendering algorithms. Finally we mention

advantages while drawing attention to problems and limitations of current sampling

strategies and reconstruction methods.

3.1 Mathematical Formulation

Rendering in the gradient domain relies on the efficient estimation of finite differences,

so let us first define the finite difference ∆i,j between two pixels i and j. It should be

computed as the difference between the two pixel values Ii and Ij , hence we have

∆i,j = Ii − Ij =

∫
Ω
hi(x)f (x)dµ(x) −

∫
Ω
hj(x)f (x)dµ(x). (3.1)

Here, Ω is the space of all paths (path space), hj is the pixel filter of pixel j , x ∈ Ω is a path

of arbitrary length k consisting of a sequence of vertices x0, . . . , xk , f (x) is the image

contribution function describing the amount of light reaching the sensor through a given

path x , and dµ(x) is the area product measure

∏k
i=0

dA(xi).
Rather than computing these integrals separately and taking their difference, wewish to

reformulate the expression to a single integral over path space that computes the gradient.

The reason for this is that the quality of the image that is ultimately reconstructed from the

gradient information depends on how similar the base and offset paths are (Kettunen et al.

2015). We want the base and offset paths to be as similar as possible, and to achieve this

we defineTij as a shift mapping that deterministically shifts a base path x to an offset path

Tij(x) = x̃ . Using this shift mapping we can rewrite the second integral corresponding to

pixel j as

Ij =

∫
Ω
hj(x)f (x)dµ(x)

=

∫
Tji (Ω)

hj(Tij(x))f (Tij(x))dµ(Tij(x))

=

∫
Ω
hj(Tij(x))f (Tij(x))

����dTij
dx

����dµ(x)
=

∫
Ω
hi(x)f (Tij(x))

����dTij
dx

����dµ(x).
(3.2)

Here, in the second row, we have shifted the integration variable x using the shift mapping

Tij defined above, and correspondingly shifted the domain of integration Ω in the other

direction using the inverse of the shift mapping Tji = T −1

ij . Following this shift, in the

third row, we have performed a change of integration variable from inversely shifted

paths to the original path space Ω, hence the appearance of the Jacobian determinant

|dTij/dx |. The final row is obtained by noting that hj(Tij(x)) = hi(x), which follows from

properties of pixel filters when shifting paths exactly by a unit pixel distance.

48

The gradient can now be written as one integration over path space as desired,

∆i,j =

∫
Ω
hi(x)

(
f (x) − f (Tij(x))

����dTij
dx

����)dµ(x)
=

∫
Ω

(
fi(x) − fi(Tij(x))

����dTij
dx

����)dµ(x). (3.3)

Each path x that is sampled can now be shifted deterministically using the shift mapping,

forming correlated sample pairs which can be used in the single integral in Equation 3.3

to estimate gradients.

The challenge in the implementation of a sampler for this new integrand by extending

a conventional rendering algorithm is to design the shift mapping function. The goal

is to construct the shift mapping so that the generated path pairs are similar and close

to each other in path space, leading to small differences in the throughput they carry

and consequently lower variance in the gradients. Another challenge when building the

algorithm is to compute the Jacobian determinant of the designed shift mapping. Current

algorithms that sample gradients in this way use shift mapping functions that generate

horizontal and vertical offset paths from the base path, that allows for the estimation of

horizontal and vertical image gradients to be used in the final image reconstruction step.

We will review some of the current gradient rendering algorithms in Section 3.3.

To recover the final image by integrating the gradients in the image reconstruction

step is the sole purpose of devising a way to sample the gradients in the first place, and

we thus continue by describing this reconstruction step below.

3.2 Poisson Reconstruction
The technical details behind how the gradients are sampled may vary depending on

the gradient rendering algorithm used and is often tied to the underlying conventional

sampling algorithm. Once the primal and gradient image estimates are formed however,

the process of reconstructing the final image by solving a screened Poisson equation is

common to every method.

Before giving an account on how shift mappings are implemented and gradient image

estimates are formed in practice, which is specific to the type of gradient-domain rendering

algorithm chosen, we decribe the basic principle on which gradient rendering relies; that

of utilizing the information contained in the gradients to obtain the final image through

integration.

3.2.1 The Poisson Equation
We start by formulating the traditional Poisson equation. Consider the scenario where

we have measurements д = (дx ,дy) of a gradient field. In the context of this thesis, дx
and дy are the horizontal and vertical image gradients that we have access to, given that

a rendering algorithm capable of sampling gradients is available. A natural question to

ask is what the potential function ϕ that would produce the gradient field д is, so that

∇ϕ = д. (3.4)

49

Specifically in the area of image synthesis, we ask what the image that corresponds to

the measured horizontal and vertical gradients is. This question is answered through

integration. We are ultimately interested in finding this final image andwish to investigate

how to do so through the use of sampled gradients. Consider also the divergence of the

gradient field

∇ · д =
∂дx
∂x
+
∂дy

∂y
= v . (3.5)

Combining 3.4 and 3.5 we can produce a scalar equation for ϕ to find the integral whose

derivatives we had

∇ · ∇ϕ = ∇2ϕ = v . (3.6)

This is the continuous non-screened Poisson equation and its solution gives the potential

function matching the gradient field.

3.2.2 Accounting for the Primal Image
From another point of view, the minimizing solution I of all candidate solutions ϕ is

the function that minimizes the L2 distance from the measured gradient data, or more

explicitly written as

I = argmin

ϕ
∥∇ϕ − д∥2. (3.7)

That is, the resulting image I from the optimization is the best match to the measurements

in the least squares sense. Note now that if you have at hand the derivative of an

unknown function and you successfully integrate this derivative without any additional

information, the function can only be retreived up to an unknown constant term. This

has the implication that if we only integrate measured image gradients, we will have no

information about the absolute color and brightness of the image, only how the image

varies over the image coordinates. Hence we wish to augment the Poisson equation

with a screening term that accounts for and considers measurements of the primal image

values. These primal image values are the regular noisy estimates p of the final image I
from a conventional rendering algorithm. Instead of evaluating the right hand side of

Equation 3.7, we find the solution as

I = argmin

ϕ
(∥α(ϕ − p)∥2 + ∥∇ϕ − д∥2) (3.8)

whereα is a reconstruction parameter that decides the relative importance of the screening

term when finding the minimizing image I .
In the continuous case, it is possible to prove through variational calculus that the

solution 3.8 satisfies the screened Poisson equation

α2ϕ − ∇2ϕ = α2p −v . (3.9)

50

The same result can be derived in the discrete case, and what you get there is the exact

discrete analogy of this. Consider the following system of equations

Aϕ = b . (3.10)

Here, b consists of the measured primal samples and horizontal and vertical gradient

samples, and A is a block matrix with the following structure

A =

⎡⎢⎢⎢⎢⎣
α
∆X
∆Y

⎤⎥⎥⎥⎥⎦ . (3.11)

The top matrix is a diagonal matrix with α on the diagonal, and the middle and bottom

matrices perform finite differencing in the horizontal and vertical directions respectively.

Then, the pseudo-inverse solution to the system of equations 3.10 takes the measured

data in b to evaluate α2p−v , after which it multiplies this vector by the matrix [α2−∇2]−1
.

Ergo, the pseudo-inverse solves the discrete screened Poisson equation to recover I , the
best image candidate ϕ whose gradients correspond to д, after screening the solution

with the primal measurements p weighted by α .

Loss Functions in the Optimization Problem

Equation 3.8 formulates the Poisson reconstruction optimization problem, which consists

of two quantities that we aim to minimize; the respective loss functions related to the

primal and gradient measurements.

Changing the loss functions in the optimization problem generally produces a different

resulting image I . Changing the loss function related to the primal part has shown to

give bad results. In general, we write the Poisson reconstruction optimization problem as

I = argmin

ϕ

(
∥α(ϕ − p)∥2 + Lд(∇ϕ − д)

)
(3.12)

where Lд is some loss function that is used for the gradient part.

In our work, we will change the loss function of the gradient part and compare the

results to the previously used L1 and L2 reconstruction methods where Lд(·) = ∥·∥1 and

Lд(·) = ∥·∥2 respectively.

3.3 Sampling of Gradients
So far we have introduced the concept of a shift mapping function that allows the gener-

ation of offset paths from base paths to generate path pairs. The path pairs can then be

used to compute the integral that constitutes a gradient sample to generate horizontal

and vertical gradient images, which are then used in conjunction with the primal image

to reconstruct the final image after solving a screened Poisson equation. We have not

however explained how the shift mapping and gradient sampling is implemented in

practice, and aim to do this next.

51

Implementing algorithms that can succesfully sample the integrand in Equation 3.3

comes down to designing the shift mapping operator to be used in conjunction with

a conventional Monte Carlo based sampler. Most implementations currently extend a

conventional algorithm to generate offset paths that differ from the base path only in the

first few path vertices. The shift mapping is designed to offset the base path so that it

intersects the screen at an integral number of pixel distances away from the base path

in the horizontal or vertical direction apart, trace the offset path through the scene as

usual and reconnect it to the base path as soon as possible. A typical simple path pair is

illustrated in Figure 1.4.

In the text to come we present an overview of some algorithms designed to sample

path pairs using a shift mapping on top of the conventional sampler in order to estimate

gradients.

3.3.1 Gradient-Domain Metropolis Light Transport
The first algorithm to utilize gradient sampling for rendering was introduced by Lehtinen

et al. (2013). They introduce gradient-domain metropolis light transport (G-MLT), which

is an extension of regular MLT where the sampler is driven to concentrate its efforts

in regions that contribute highly to the gradient of the image rather than areas where

the regular throughput integrand is of high magnitude. The Metropolis sampler used to

mutate base paths is driven by a target function that considers both regular throughout

and gradient throughput.

G-MLT samples base paths using a regular MLT mutator and computes gradients by

shifting the base path in the horizontal and vertical direction simultaneously. This is done

by driving a single Markov chain, randomly selecting whether to compute the gradient

by shifting in the positive or negative direction. To this end, G-MLT uses an extended

definition of path space that includes bits to denote the direction of the shift, denoted as

Ω′ = Ω × {(+1, 0), (−1, 0), (0,+1), (0,−1)}. (3.13)

The elements of the extended path space Ω′
contain a regular base path and a horizontal

and vertical shift direction bit. The conventional Metropolis sampler generates extended

base paths from Ω′
, and offset paths are then generated from the base path using the shift

mapping function, in the directions specified by the shift direction bits.

Similarly to Veach andGuibas’ lens mutator (1997), the shift mapping is implemented by

shifting the base path deterministically so that it intersects the screen one pixel distance

away from the base path’s intersection. After the shift, the path is propagated in the new

direction before it is reconnected to the remaining unperturbed part of the base path. To

increase the efficiency of the reconnection strategy in the case of specular-diffuse-specular

scattering, the offset path is propagated deterministically using Jakob and Marschner’s

manifold perturbation to stay on the light-carrying part of the specular manifold (2012).

A specular manifold is defined as a set of path vertices that satisfy the constraints imposed

by positions and directionality of light sources and reflective or refractive surfaces. This

case is illustrated in Figure 3.2. Shifting only until the first non-specular vertex hit as in

the conventional lens mutation strategy is inefficient since the path will carry no light

when reconnected to the next specular vertex that follows.

52

Base path
Offset path

Figure 3.2: Illustration of the manifold perturbation based shift for G-MLT and G-BDPT.

The shift is performed such that the path stays on the specular manifold and

reconnects to the first diffuse vertex encountered in the case of a specular-

diffuse-specular chain.

53

Base path
Offset path

Figure 3.3: Illustration of the half vector preserving shift used in G-PT that propagates

the offset path along the first specular chain and reconnects to the base path

as soon as the current offset vertex and the next two consecutive base vertices

are classified as diffuse. The shift is performed such that the half vectors

(blue arrows) are preserved along the first specular chain.

Improved Sampling Strategies

Manzi et al. (2014) bring improvements to the gradient-domain Metropolis framework

in the form of better weighting strategies to combine sampling techniques, a modified

symmetric shift mapping operator that reduces variance and the occurence of singulari-

ties in the gradients, and structure adaptive gradient sampling that can obtain sparser

gradients by taking scene features such as geometric discontinuities and texture edges

into account.

3.3.2 Gradient-Domain Path Tracing

Kettunen et al. (2015) showed that it is possible to extend the gradient sampling framework

to non-Metropolis based Monte Carlo samplers such as path tracing as well, and proceed

to introduce gradient-domain path tracing (G-PT). The method employs a simpler shift

mapping than the one used for G-MLT, giving an advantage to G-PT in terms of ease

of implementation. The shift is half-vector preserving for the first specular chain, and

reconnects to the base path as soon as the current offset vertex and both the current and

next base vertices are classified as diffuse, illustrated in Figure 3.3. For each base path,

the algorithm generates an offset path for each four neighboring pixels and outputs four

gradient images and one primal image used to reconstruct the final image.

To ensure the correct computation of pixel differences during sampling, G-PT builds

on the symmetric shift mapping operator introduced by Manzi et al. (2014). The method

further extends this shift mapping to allow for a multiple importance sampling scheme,

leading to a significant reduction in variance. The gradient is computed as a sum of two

54

integrals, one using the forward mapping and one its inverse.

∆i,j =

∫
Ω
hi(x)wij(x)

(
f (x) − f (Tij(x))

����dTij
dx

����)dµ(x)+∫
Ω
hj(x)wji(x)

(
f (x) − f (Tji(x))

����dTji
dx

����)dµ(x) (3.14)

where the MIS weights wij and wji add upp to one and account for shifts that are not

invertible, such as when the reconnection from the offset path to the base path fails.

Shift mapping functions cause a change in path densities, and the Jacobian determinant

accounts for this transformation. When shifting a path towards a region of path space

that is sampled with much higher density by the underlying sampler, commonly close

to concave edges and corners in the scene geometry, this can lead to arbitrarily large

Jacobians, resulting in clearly visible artifacts in the final image. To avoid this the MIS

scheme interprets the forward and inverse mappings Tij and Tji as two ways to sample

a base path x ; either by sampling it directly, or sampling an offset path x̃ = Tij(x) and
generating the base path from the offset path through the inverse mapping x = Tji(x̃).
This yields the MIS weight

wij(x) =
π (x)

π (x) + π (Tij(x))|dTij/dx |
(3.15)

where π is the probability density for paths generated by the sampler. Taking the mag-

nitude of the Jacobian determinant into account, the MIS technique combines different

ways of generating the path pairs used for gradient estimation which turns out to be

highly efficient in suppressing the problems caused by the change in path densities from

the shift, as shown in the bottom row of Figure 3.4.

Bidirectional Sampling for G-PT

As an extension to gradient sampling with unidirectional path tracing, Manzi et al. (2015)

introduce gradient-domain bidirectional path tracing (G-BDPT). Just as when comparing

the performance of standard path tracing to its bidirectional counterpart, G-BDPT is

generally more efficient than G-PT when the additional computational overhead of a

more expensive bidirectional path sampler is warranted, often in difficult light transport

scenarios involving caustics or small, occluded light sources that are difficult to solve

using unidirectional methods.

Because the individual number of sampled paths from a bidirectional path tracer is

large, using the same shift function as as the one employed in G-PT that naively applies

the half vector preserving shift mapping to each sampled path would be prohibitively

expensive. G-BDPT therefore selectively removes some of the conventional bidirectional

connection strategies to circumvent this and reduce the cost of offset path generation. The

algorithm removes sampling strategies that include a specular vertex as the connecting

vertex between light and eye subpaths, since connections with non-specular vertices

contribute little to the throughput and allow for cheaper computation of the shift mapping

function and its Jacobian.

55

G
-
B
D
P
T

G
-
P
T

Without gradient MIS With gradient MIS

Figure 3.4: The multiple importance sampling scheme that takes the magnitude of the

Jacobian determinant of the shift mapping into account is highly efficient

in removing artifacts caused by the change in path densities from the shift.

Rendered images from Kettunen et al. (2015) and Manzi et al. (2015).

56

For each gradient sample, G-BDPT combines the gradient-MIS technique employed by

G-PT with the regular MIS technique from BDPT by considering both gradient sampling

strategies and bidirectional path sampling strategies. The MIS weights are

wij;st (x) =
πs,t (x)

s+t∑
k=0

πk,s+t−k(x) + πk,s+t−k(Tij(x))|dTij/dx |

(3.16)

where s , t are the usual BDPT sampling strategies. Similarly to the G-PT case, the

combined MIS is efficient in reducing sampling artifacts in the gradients close to concave

sections in the scene geometry, illustrated in the top row of Figure 3.4.

In contrast to G-PT, G-BDPT uses the shifting strategy based on manifold perturbation

as in G-MLT since conventional BDPT too is expressed naturally in a surface position

based path parametrization. The shifted offset path is always reconnected to the base

path at the second diffuse vertex (not counting the camera vertex) whereas G-PT requires

two consecutive diffuse vertices, as mentioned above. The shift employed by G-BDPT

therefore generally produces offset paths that are more similar to the base path than than

the offset paths generated by the G-PT shift mapping. Practically, shifting a base path to

generate an offset path is done by offsetting pixel by a unit pixel distance, re-trace the

first specular chain to the first diffuse vertex hit, then reconnecting back to the second

diffuse vertex hit on the base path along the second specular chain through manifold

perturbation.

3.3.3 Other Extensions
To improve temporal coherence when rendering animation sequences, Manzi, Kettunen

and collaborators (2016) extends the gradient sampling framework to the temporal domain.

In their temporal gradient-domain path tracing (T-GPT) algorithm, they sample temporal

gradients across animation frames and mixed second order spatio-temporal differences

in addition to the regular spatial gradients sampled in the gradient-domain rendering

algorithms presented above. The final frames are recovered by solving a three-dimentional

spatio-temporal screened Poisson equation. They also achieve variance reduction through

adaptive sampling, and through the use of motion vectors that take the movement of

scene and camera into account when computing gradients. T-GPT has the advantage

of leveraging temporal correlation between consecutive animation frames to render

sequences at a higher efficiency than ordinary methods which normally render frames

individually and blend the frames in a post-processing step.

Other conventional algorithms such as photon mapping (Jensen 2001) and vertex con-

nection and merging have also been extended to implement shift mapping strategies in

order to sample gradients. Hua et al. (2017) introduces gradient-domain photon density
estimation (G-PM) as an extension to stochastic progressive photon mapping (Hachisuka

and Jensen 2009), and gradient-domain vertex connection and merging (G-VCM) was sim-

ilarly introduced as an extension to vertex connection and merging by Sun et al. (2017).

It is likely that more extensions to the gradient-domain will develop as conventional

rendering methods are improved and that new techniques for sampling correlated path

pairs at higher efficiency will emerge in the future.

57

3.4 Advantages and Limitations
The key factor for the success of gradient-domain rendering methods is the ability to

perform gradient estimation with shift mappings that produce highly correlated path

pairs of base and offset paths. Rather than computing finite differences between two sums

of random adjacent paths that are uncorrelated, gradients are estimated by integrating the

difference between these correlated path pairs. Typical image contribution functions in

rendering contexts representing natural images are typically dominated by low frequency

energy. Taking finite differences between path pairs that are in close proximity in path

space removes much of the energy from the signal, which is exploited in the Poisson

reconstruction. Kettunen et al. (2015) show both empirically and through Fourier analysis

how gradient sampling and Poisson reconstruction combines information from the primal

image and gradient images by recovering low frequency details using regular rendering,

and utilizing the low variance of the sampled gradients to reduce high frequency noise.

Conversely, these rendering methods can perform at a lower efficiency than desired if

the shift mapping fails to generate path pairs with high enough correlation to warrant the

additional computational overhead. When rendering hair, foliage or other high-frequency,

sub-pixel detail, there is less correlation between the base paths and their corresponding

shifted paths that constitute the gradient samples since the base paths and offset paths

take different routes in path space more often. Reconnection of offset paths to the base

path may also fail more often when rendering scenes containing geometry with high-

frequency details. The design of more intelligent shift mappings and the development of

other means to utilizing correlated sampling with control variates is an active area of

research (Rousselle, Jarosz, and Novák 2016). This venue of work towards improvement

is orthogonal and complementary to the investigations conducted in this thesis.

3.4.1 Problems Related to the Reconstruction

L1 L2 Reference

Figure 3.5: Problems with traditional reconstruction methods highlighted in a 16 spp

render of the Bookshelf scene. (Left) L1 reconstruction supresses outliers

well but introduces bias, resulting in a darker image. (Middle) L2 reconstruc-

tion is unbiased but introduces dipole-shaped artifacts. (Right) Reference
image.

Figure 3.5 illustrates some problems with previous reconstruction approaches. Recon-

struction using the L2 loss for the gradient part produces an unbiased image, but it is

58

sensitive to outliers in the gradient image samples, resulting in undesired dipole-shaped

artifacts in the final image L1 reconstruction suppresses this issue at the cost of introduc-

ing visible bias. This opens up a direction for further development and an incentive to

investigate alternate, improved reconstruction schemes for gradient-domain rendering.

As an example, Manzi, Vicini, and Zwicker (2016) developed a reconstruction approach

that uses scene normals, texture values, depth and ambient occlusion in addition to the

sampled horizontal and vertical gradients to achieve better results.

Motivated by the benefits to be gained from the potential improvements in the recon-

struction step, the remainder of this thesis is dedicated to developing a new reconstruction

method using a different loss function, which could lead to improved final reconstructed

image results.

59

4 Huber Loss Reconstruction

Until this point we have introduced the reader to the field of light transport simulation,

and have specifically given an introduction to the theory and thought process behind

extending conventional simulation in rendering to the gradient domain. After highlighting

the current state of this sub-group of the field and pointing out problems in the Poisson

reconstruction step common to all gradient rendering methods, we are now ready to

develop a new reconstruction approach in an attempt to alleviate those issues for gradient-

domain path tracing in particular.

This chapter gives an overview of the method developed in this thesis. A motivation

behind the use of Huber loss reconstruction for gradient-domain path tracing is given by

emphasizing potential benefits while pointing out the necessary obstacles to overcome.

We proceed to present and motivate the choice of model family, how our data was

generated, how the model was trained and how its ability to generalize to new data was

estimated.

4.1 Motivation
In current implementations of gradient-domain light transport algorithms, it is either

the L1 loss or the L2 loss that is used for the gradient loss part when solving the Poisson

reconstruction problem. Using L1 for the primal loss results in strong bias and is therefore

avoided. In the Poisson reconstruction process we are performing maximum likelihood

estimation under the following assumptions:

• There exists an unknown final image I that we are trying to recover by integrating

its estimated gradients д.

• The sampled primal image p is the unknown final image I corrupted by i.i.d. noise

with a known variance.

• The sampled gradient images д = (дx ,дy) are the gradients of the unknown final

image ∇I corrupted by i.i.d. noise with a known variance, not necessarily the same

as the variance of the sampled primal image.

Using the L1 error, one assumes Laplace distributions for the noise in the primal

and gradient images, whereas Gaussian distributions are assumed when using the L2

error. These assumptions are simplifications and unrealistic to a degree as they assume

stationarity of noise, independence between primal image noise and gradient image

noise, fixed distributions and more. Indeed, for a given pixel, individual samples from the

simulation are distributed in a way which can not in general be described as Gaussian.

61

y

L1

L2

δ
y

L2

LH

Figure 4.1: Shapes of the compared loss functions. (Left) L1 loss and L2 loss functions.

(Right) Huber loss retains the quadratic shape of L2 for y < δ and behaves

like L1 for larger y.

The colors in the image pixels do not consist of single samples however but are rather

averages of a number of individual samples by virtue of Monte Carlo sampling. The

noise at any given pixel thus tends toward a Gaussian distribution as the sample count

is increased, by the central limit theorem. For this reason it is justifiable to assume a

Gaussian distribution for the noise and consequently use the L2 error in the maximum

likelihood estimation, as long as the sample count is sufficient. That being said, the sample

count considered sufficient depends strongly on how well-behaving the distribution of

the individual samples is. It is evident empirically that such a sufficiency is not reached

in general at reasonable sample counts, as more complicated parts of the image can

commonly result in high-magnitude outliers, especially in the gradients.

4.1.1 The Huber Loss Function
The Huber loss function is plotted compared to L1 and L2 in Figure 4.1. The function can

be defined piecewise (Huber 1964) as

LH (y,δ) =

{
y2, |y | ≤ δ
2δ |y | − δ 2, |y | > δ .

(4.1)

Huber loss is quadratic for small values of y and linear for large values. It combines L1

loss and L2 loss by smoothly extending a parabola by a straight line at a cut-off parameter

δ . We want to use Huber loss for the gradients in order to properly treat well-behaving

samples and give less importance to extreme-value outliers in the sampled gradient

images, while keeping the optimization process of the Poisson reconstruction convex.

Using Huber loss for the primal part does similar to L1 introduce too much bias to produce

satisfying results.

By the reasoning above, we assume a Gaussian distribution for small-magnitude noise

and a Laplace distribution when the noise deviates strongly. The Huber loss function (4.1)

satisfies these assumptions as it behaves like the L2 loss function near the center and the

62

0 0.15

δ ∗
δ ∗

L1

L2

δ

ρ

Measured relMSE

Figure 4.2: Performance ofHuber loss reconstruction for differentδ . (Left) Characteristic
log-log plot of measured relMSE ρ resulting from Huber loss reconstruction

with differentδ on a typical scene from our data set. Reconstructionwith large

δ approaches the L2 solution. Using too small δ from the shaded area gives

poor performance and should be avoided. (Right) Distribution of the optimal

parameter δ ∗ for different scenes. The variation in ρ over different δ and the

variation in δ ∗ over different scenes highlights the need for a method capable

of selecting which δ should be used for a given reconstruction scenario.

L1 loss function toward the tails, which means that high magnitude outliers will be taken

less into consideration while still being unbiased for the rest of the noise.

4.1.2 Reduction of Bias
L1 loss can suppress outliers efficiently compared to L2 loss att the cost of introducing bias

in the reconstructed image. For a successful application ofHuber loss to the reconstruction

problem it would be preferrable if Huber loss could suppress outliers efficiently without

the added downside of introducing as much bias as L1.

4.1.3 Huber Loss in Practice
Unfortunately, using Huber loss reconstruction is not simply a matter of choosing an

arbitrary cut-off parameter and instantly receive better results. In the right plot of

Figure 4.2 we see that some scenes have their optimal Huber loss parameter higher than

others, and in the left plot we see that using a value that is too low compared to the

optimum gives poor results. The Huber loss parameter should therefore be variable and

selected per scene.

We want the solution to reduce to the L2-solution when there are no outliers present

in the gradient image and therefore choose to keep the choice of α = 0.2 which has

been proven to work well by Lehtinen et al. (2013). We support this choice by showing

reconstructed images for different α in Appendix B. There is still the problem of choosing

the cut-off parameter δ however, the goodness of which is dependent on the rendering

scenario.

63

Figure 4.2 shows the performance of Huber loss reconstruction for different cut-off

parameters δ for a given scene, and the distribution of optimal cut-off parameters δ ∗

over different scenes. For most scenes, there is an interval for δ where Huber is a better

choice with regard to relMSE than L1 or L2, but using values that stray too low from

the optimal value can produce very poor results. In addition to this, the distribution of

optimal parameters δ ∗ varies from scene to scene, so that an optimal value in one scene

may be a horrible choice for another scene. Since it is not possible to know which value

will be optimal for a certain rendering scenario a priori, it is important to devise a method

for predicting δ -values based on metrics that can be extracted during rendering in order

to use Huber loss reconstruction effectively. We achieve this through an optimization

approach to model parameter estimation. In the coming sections we thus set out to:

• Select a parametric model with desirable properties to predict δ .

• Generate data with statistics from different rendering scenarios.

• Measure how well different δ perform depending on rendering scenario.

• Design a cost function to be minimized when training the model parameters.

• Estimate the trained model’s ability to generalize to unseen scenarios.

Poisson Reconstruction with Alternate Loss Functions

When solving the minimization problem specified in Equation 3.8 using some other loss

function than L2, the solution can no longer be found as the pseudo-inverse solution

to a sytem of equations. Furthermore, the minimizing solution no longer satisfies the

screened Poisson equation exactly; instead we are solving an equation that is as similar

as possible while attempting to suppress gradient outlier sensitivity.

For this reason when we are using L1 or Huber loss for the gradient part, we use the

ProxImaL solver which is based on iteratively reweighed least squares implementing the

Chambolle-Pock algorithm (Chambolle and Pock 2011; Heide et al. 2016).

4.2 Data Set Structure and Notation
When describing our method in the coming sections, we will refer to components of our

data set and therefore begin by defining its structure and notation here. A sample or
rendering scenario is defined as the data we get from rendering a scene at a certain sample

count or spp. We denote these samples y and refer to them as samples or rendering

scenarios interchangably, and each y contains the measurements we have made for that

scenario. The sample with label s is denoted ys . These samples should not be confused

with the pixel throughput samples that are averaged to form a measurement of the pixel

color through Monte Carlo integration. Rather, the ys contain information about which

scene, camera angle, lights and render settings are used to produce the image in each

case. For the remainder of this thesis however, it suffices to see the samples ys as labels
to idenfity each rendering scenario that we will make certain measurements on.

64

δ ∗ ζδ ∗

ρ

Figure 4.3: Behaviour of δ -relMSE curves when scaling the brightness of the sampled

primal and gradient images. The curves have the same shape after scaling

the brightness by a factor ζ = 100 while the optimal δ has shifted and been

scaled accordingly by the same factor, indicating that a predictive model for

δ should scale its output accordingly when exposed to scaled input data.

In the following text wewill refer to these measurements on the samples ys as regressors,
andwill denote them βs . Here, the s subscript is used to indicate that the regressor contains
measurements from sample ys .
The set of all our samples is denoted Y . We denote the number of scenes in the data

set as N , the number of spp configurations per scene as S , and let N ′ = N · S denote the

total number of samples in the data set Y . In other words, Y consists of N ′
samples ys ,

s ∈ {1, 2, . . . ,N ′} where the samples come from N different scenes each rendered at S
different spp.

4.3 Selecting the Parametric Model
The thought process behind selecting a model for the prediction of the Huber loss param-

eter δ is based on dimensionality analysis, a desire to achieve invariance to the brightness

scale in the scenes, and on heuristic arguments about the feasibility of a certain type of

model.

Brightness invariance in the predictive model is important. It is desirable for the model

to generalize as much as possible and work across a wide array of brightness levels in

the scenes. If our model would work well only for limited levels of brightness, the model

would not be very useful in general.

When an image’s brightness is multiplied by a scalar factor ζ , the relMSE remains

unchanged when measured against the similarly scaled reference image and the optimal

Huber parameter δ ∗ is shifted accordingly by the same factor ζ , as shown in Figure 4.3.

This happens because the difference between the noisy and reference images is a factor ζ
larger, and so scaling the Huber parameter by ζ will give the same optimization problem

as before the multiplication. In order for the model we aim to build to make sense, it

needs to behave in the same way and scale the output accordingly when an input is

scaled.

Based on the above it is much more believable that a multiplicative model would be a

good fit than a linear model which cannot be made to stand dimensionality analysis and

65

simultaneously scale correctly as a function of brightness. The model chosen to predict

the Huber loss parameter δ can thus be written as

H (βs ;θ) = exp

(∑
u

θ (u) · log βs(u)
)
. (4.2)

Here, βs is a vector containing the measured regressors of rendering scenario ys , θ is a

vector of model parameters corresponding to those features and u is the regressor index.

In other words, θ (u) indicates the response of the model to regressor βs(u).
In the rest of the chapter, we will describe how the regressors βs are measured when

we generate data. This data consisting of the regressors will then be used to estimate or

train the unknown model parameters θ . Then, for a rendering scenario ys with index s ,
if we have a set of estimated model parameters θc and regressors βs computed from ys ,
this model will produce predictions for the Huber loss parameter as

δs = H (βs ;θc). (4.3)

Later we will describe how model parameters are estimated in different rounds using

slightly varying data sets, and we therefore use the subscript c on the model parameters

θ to distinguish between these.

4.4 Training the Model Parameters
With a choice of the parametric model H for the Huber loss parameter δ at hand, we turn

to the problem of estimating the model parameters θ . We want our model to represent the

connection between features in a given rendering scenario and a Huber loss parameter δ
that wouldworkwell in said scenario. Given a set of observations that contain information

about the scene features - the computed regressors βs - and a measure of how good or

bad different δ -values are, the goal is to train the model parameters so that the model

learns these relationships and can reliably predict δ that would produce desirable results

for future, not yet encountered rendering cases. We therefore gather data with which we

associate a tailored cost function and set out to find model parameters θ that produce

cost-minimizing δ -values.
In the following we explain the kind of data that is gathered and computed during

rendering, how it is passed as input to the model, how the cost function is designed and

subsequently how the cost function is minimized as part of the parameter estimation

procedure.

4.4.1 Data Generation
In order to train our parametric model H to serve as a predictor for δ , we need infor-

mation about how features and metrics from different rendering scenarios relate to the

performance of different δ -parameters used in Huber loss reconstruction. The necessary

data generation is thus two-fold, we need to:

1) Render images of scenes and measure feature statistics relevant to the model

66

2) Reconstruct the images for a range of δ and measure the performance in relMSE

by comparing the results to reference images

This gives us a way to tell the model whether or not it is doing a good job at predicting

values for δ with its current parameters, and more importantly how the parameters need

to change in order to come closer to an optimal solution.

We compute relMSE according to the following formula that is commonly used through-

out rendering research and literature. The per-pixel relMSE ρj for each pixel j is computed

and summed over the three color channels R, G and B of the image I , after which the

average is taken across allM pixels in the image

ρ =
1

M

M∑
j=1

ρj

=
1

M

M∑
j=1

(IRj − IR
j,ref

)2 + (IGj − IG
j,ref

)2 + (IBj − IB
j,ref

)2

(1

3
(IRj + I

G
j + I

B
j))

2 + ϵ
,

(4.4)

where we use ϵ = 0.001. Per-pixel relMSE values are visualized in Figure 4.4, and the

relMSE ρ for a rendered image is computed as the average of that relMSE-image.

During light transport simulation, the renderer is gathering sample measurements of

color throughput that are used to form the primal and gradient estimates. The number of

pixel samples n that is simulated is the samples per pixel. If n pixel samples are gathered

for each pixel in every output buffer from the renderer such as primal and gradients,

each measurement zt , t ∈ {1, 2, . . . ,n} is a random variable, assumed independent of and

identically distributed to the others. The estimates of the primal and gradient images

consist of an average value of the n pixel samples, the sample mean random variable

z̄ =
1

n

n∑
t=1

zt . (4.5)

In the selected model we are thus interested in statistics of the sample mean random

variable z̄ related to the mean measurements of primal or gradient colors in the pixels;

the value we get after taking the mean of our n samples zt for each pixel.

Forming the Regressor Vector

The per-pixel statistics that are computed on-line during rendering is used to form the

vector of regressors βs with features from a scenario ys . These regressor vectors are
used as input along with model parameters θ to the predictive model H in Equation 4.2

which if designed properly takes the information contained in the regressor features and

produces a suitable parameter δ for Huber loss reconstruction.

Let pj and дj be primal and gradient colors for pixel j respectively. Naturally, pj and дj
are formed by taking the mean of the n samples associated with pixel j as in Equation 4.5.

The statistics are first computed on a per-pixel basis, and then the mean or variance over

all the pixels in an image is measured and used as feature regressors in the model.

67

H
u
b
e
r

R
e
f
e
r
e
n
c
e

R
e
l
a
t
i
v
e
M
S
E

Figure 4.4: The performance of a reconstruction method is measured by its ability to

produce results close to a reference image. (Top) 8spp image reconstructed

using Huber loss. (Middle) Reference image. (Bottom) RelativeMSEmeasured

between the reconstructed image and the reference image, darker areas

indicating a lower value.

68

For our model, we choose to gather metrics and feature statistics such as the variance,

skewness and kurtosis of the samples that give indicative information about the com-

plexity and behaviour of the light transport in a given rendering scenario. We refer the

reader to statistics literature such as Mood (1950) for an introduction to central moments

and other statistical measures.

The elements of the regressor vector are thus

β(1) = C, C ∈ R

β(2) = Mean[Var[pj]]

β(3) = Mean[Var[дj]]

β(4) = Var[Var[pj]]

β(5) = Var[Var[дj]]

β(6) = Mean[pj]

β(7) = Mean[Skew[pj]]

β(8) = Mean[Skew[дj]]

β(9) = Mean[Kurt[pj]]

β(10) = Mean[Kurt[дj]].

(4.6)

One such regressor vector is computed for each rendering scenario, in other words we

have a vector βs computed for each ys . In our study we compare different variants of

the model H where each variant can incorporate any or all of the listed regressors and

therefore some of the features in vector β may be excluded. If for instance it was found

that the skewness regressor added no predictive power to the model, these elements of

the feature vector β would not be used.

Regressor Formulas

To generate the regressor vector described in Equation 4.6 we have to compute standard-

ized central moments for the sample mean random variable z̄ during rendering in an

on-line fashion. On-line formulas compute a running value for the entity of interest as

opposed to storing all samples and performing computations post-simulation and are a

necessity to circumvent storage limitations. Algorithms and formulas for the on-line com-

putation of the variance of a random variable such as zt have long been available (Chan,

Golub, and LeVeque 1982, 1983). These algorithms have been extended to not only en-

compass variance calculation but abritrary order moments too (Pebay 2008; Terriberry

2008).

These formulas can compute central moments for a sample random variable zt , while
in our model we want to incorporate the aforementioned feature statistics of the sample

mean random variable z̄, the pixelwise primal estimates pj or gradient estimates дj . For
this we derive arbitrary-order formulas in Appendix A. The derived formulas can be used

to compute the variance, skewness and kurtosis of the sample mean random variable z̄

69

which we list here for reference

Var[z̄] = µ̄2 =
µ2

n

Skew[z̄] = γ̄3 =
nµ3

(nµ2)
3/2

(4.7)

Kurt[z̄] = γ̄4 =
nµ4

(nµ2)
2
,

where µk is the k :th central moment of the individual zt .

Renderer and Render Settings

All of the rendering was done using a custom version of the Mitsuba renderer (Jakob 2015).

The reference images were rendered using the unmodified bidirectional path tracing

implementation, and the images constituting our data set were rendered with an extended

gradient-domain path tracing implementation, where the sampler was instrumented to

compute the per-pixel second, third and fourth order central moments µ2, µ3 and µ4 for

the primal and gradient images in an on-line fashion, and store them in buffers along

with the regular renderer output. The computed per-pixel central moments are then used

in the formulas 4.7 to compute the statistics for z̄. For this thesis, all of the data was
generated using the uniform sampler and box filter in the settings of the renderers.

Data was generated for N = 15 different scenes and each scene was rendered S = 8

different spp setups; at 4, 8, 16, 32, 64, 128, 256 and 512 spp. Our data set thus consists

of N ′ = N · S = 120 rendering scenarios ys , s ∈ {1, 2, . . . , 120}. The scenes are a mix

of commonly used scenes in rendering research and scenes depicting plausible real-

life scenarios. Information about the scenes used, their origin and reference renders is

displayed in Appendix C.

4.4.2 Model Configurations
The regressor β(6) in Equation 4.6 is the average brightness in the sampled primal image.

This is included in the model parameters in order to achieve invariance to the brightness

scale in the models we investigate. It is computed from the other parameters so that the

δ predicted by the model has the correct unit. Explicitly, the response of this regressor -

the model parameter θ (6) - is calculated from the rest of the parameters as

θ (6) = 1 − 2θ (2) − 2θ (3) − 4θ (4) − 4θ (5). (4.8)

Constraining the brightness parameter in this fashion is essentially the same as normal-

izing the rendered image’s brightness, predicting δ for this normalized image and then

multiplying the solution by the original brightness.

To decide which statistical features the final model should incorporate we wish to

measure how the performance of the model is affected if a certain regressor is added

or removed. It is also of interest to see how the model performs when exposed to

reconstruction problems of different brightness if the model parameters are constrained

to be invariant to brightness scale or if they are unconstrained.

The tested configurations of the model are

70

1: β(1), β(2), β(3), β(4), β(5), β(6) (constrained brightness parameter)

2: β(1), β(2), β(3), β(4), β(5), β(6) (free brightness parameter)

3: β(1), β(2), β(3), β(4), β(5)

4: β(1), β(2), β(3), β(4), β(5), β(6), β(7), β(8), β(9), β(10)

5: β(1), β(2), β(3), β(6)

6: β(1), β(4), β(5), β(6).

The rationale behind these model selections is to start with a model that uses basic

statistical measures such as the mean and variance, and then make modifications by

adding or removing higher order moments to see if the model performance is improved.

We also want to see if the brightness constraint in Equation 4.8 helps with scale invariance.

For our baseline, we therefore start with model 1 that incorporates regressors β(1)-β(6).
In our investigation we perform modifications to the baseline model and analyze what

happens to the performance. We investigate modifications to the brightness consideration

of the model by either keeping the feature parameter unconstrained, or by dropping it

entirely. We also consider adding complexity to the model by considering the skewness

and kurtosis features β(7)-β(10). Lastly, we investigate simplifications from the baseline

by either dropping the variance of variance features β(4)-β(5) or the mean variance

features β(2)-β(3).

4.4.3 Designing the Cost Function
In order to optimize the model parameters θ we need to decide how to give a score that

indicates the goodness of a set of parameter estimates. The optimizer will search the

space of possible model parameters, and while doing this it needs a measure of how

good the current parameter set being explored is in order to know where to search for

improvements. Giving the optimizer this measure is done by choosing a cost function

which we denote J (θ). This cost function assigns a measure of performance to a set of

model parameters θ .
We write the cost function we have chosen as

J (θ) =
∑
s

φs(H (βs ;θ)). (4.9)

Here, H is our multiplicative model that generates δ , θ are the model parameters that we

want to optimize, βs is the measured regressors for rendering scenario ys and φs is a loss
function associated with rendering scenario ys .
A flowchart of how this function is evaluated is shown in Figure 4.5. Given a set of

model parameters θ , for each sample ys , we:

1) Take the measured statistics βs

2) Predict a Huber parameter δs = H (βs ;θ)

71

θc , β1
, . . . , βm

H (β
1
,θc) = δ1

∑
s

φs(δs) = J (θc)

φ1(δ1)

H (β
2
,θc) = δ2 φ2(δ2)

H (βm,θc) = δm φm(δm)

H (βs ,θc) = δs φs(δs)

Figure 4.5: The anatomy of the cost function J (θ). Given a training set Tc , the model

H (β ;θ) is used to predict a Huber parameter δs for each sample ys in the

training set. Regressors βs are passed to the model for each sample along

with a set of model parameters θc that we want to assess the performance

of. The goodness of each predicted parameter is measured by a custom loss

function φs for each sample. The sum of these loss functions constitute the

total cost function that we want to minimize.

72

3) Evaluate some function φs(δs)

after which all the evaluations are summed.

We have not yet said anything about the characteristics of φs . In order for it to be

suitable for use in the learning process of the model parameters, the only criteria we have

is that it should be differentiable and give a measure of how good a certain predicted δs is
at reconstructing the output in scenario ys generated with a gradient-domain rendering

method.

We could choose a loss function such as L2 or L1 centered around the optimal parameter

δ ∗ for all the φs , but looking at the measured relMSE curves such as in the left hand side

of Figure 4.2, we see that it is worse (the relMSE is higher) to choose a δ that is too low,

than it is to select a δ that is too high. In other words, the error from not selecting the

optimal parameter δ ∗ is not symmetrical, and we want the learning process to take this

into consideration.

Therefore, rather than selecting a regular symmetric loss function, we construct custom

asymmetric loss functions for φs using the measured relMSE data through the following

procedure, visualized in Figure 4.6:

a) The relMSE ρ is measured over a range of cut-off parameters δ for each rendering

setup ys .

b) We normalize the δ -ρ curves so that the interpolated relMSE from all configurations

are of similar weight and all samples ys are considered equally important. We also

perform logarithmic transformation.

c) We fit analytic functions to the measured data in logarithm space, on the left and

right side of the optimum, to ensure that we have a differentiable extension to

the estimated δ -ρ curves that does not flatten out completely. We fit a quadratic

function for values less than the optimal cut-off δ ∗, and a Charbonnier loss function
for values larger than the optimum (Barron 2017; Charbonnier et al. 1994).

d) The functions are transformed back to linear space.

Fitting the component functions φs of the total cost function J in this way helps the

learning process, since for an optimization scheme to work efficiently it is desirable to

have a cost function that is decreasing towards the optimum regardless of what parameter

values are explored in the process. One recurring theme throughout machine learning

and neural network design is that the gradient of the cost function must be large and

predictable enough to serve as a good guide for the learning algorithm. Functions that

saturate and become very flat undermine this objective because they make the gradient

become very small (Goodfellow, Bengio, and Courville 2016).

Parameters for the fitted functions are precomputed and stored for each sample with

no added computational cost during model training.

4.4.4 Finding Cost-Minimizing Model Parameters
With the cost function 4.9 selected the next step is to find parameters θ for the predictive

model H that minimizes J (θ). This is what is commonly known as training the model.

73

a) Measured δ -relMSE curve

for a typical sample. Our

model should predict δ that

minimizes the summed

relMSE over the training set.

b) We normalize the mea-

sured relMSE ρ by the op-

timal value ρ∗ and take the

logarithm in both axes. In

these units the curve exhibits

quadratic behaviour near the

optimum.

c) We then fit a quadratic

loss function for δ < δ ∗ and
a Charbonnier loss function

for δ > δ ∗ which is quadratic

near the optimum and ap-

proaches a linear function for

larger δ .

d) Exponentiating the fitted

functions and subtracting

by 1 gives us a loss func-

tion φ for the sample that is

well-defined for all δ with a

minimum value at δ ∗.

δ ∗

ρ∗

δ

ρ

log(δ ∗)

0

log(δ)

log(
ρ
ρ∗)

log(δ ∗)

0

log(
ρ
ρ∗)

log(δ ∗)

0

log(δ)

log(
ρ
ρ∗)

δ ∗

0

δ

ρ
ρ∗ − 1

Figure 4.6: Procedure used to fit functions to the measured δ -ρ curves for each sample.

These fitted cost functions φ are used in the total cost function minimized

during the optimization and ensures that we can guide the optimization

towards a minimum even if the model predicts δ outside of the measured

interval.

74

We want to find parameters θ for the model that produces high performing δ when used

in the Huber loss reconstruction. After reconstructing an image using the δ produced

by the trained model, the relMSE of the reconstructed image compared to the reference

should be as small as possible, ideally at the measured optimum.

From the complete data set, the set of all our rendering scenarios

Y = {y1, y2, . . . , ys , . . . , yN ′}, N ′ = 120, (4.10)

model parameters are trained on a subset T ⊂ Y known as the training set. The J (θ)
to be minimized is a sum of relMSE values interpolated from the pre-computed δ -ρ
curves associated with each sample in the training set T . The performance of the trained

parameters on unseen rendering scenarios are tested on the remaining subset V = Y \T
known as the validation set.
Samples from a scene are either included or excluded entirely in training to preserve

the isolation of the validation set from the training procedure. To clarify, the case is never

such that some of the spp configurations from a scene lies in the training set T while

the others lie in the validation set V , a scene is always put in one or the other. We want

to prevent information contained in the validation set to be available during training,

which would happen if we were to hold out only a part of the configurations at different

sample counts of a specific scene. If this was not done, testing against the validation set

would be a less effective indicator of generalization since the information contained in

the validation set would be partially included in training and the scenes in the validation

set would no longer be considered unencountered to the model.

The cost function is minimized using the trust-region-reflective algorithm (Branch,

Coleman, and Y. Li 1999; Byrd, Schnabel, and Shultz 1988;MATLAB Optimization Toolbox
2017), exploring 50 initial parameter values to reduce the probability of terminating at an

undesirable local minimum.

4.5 Improving Model Stability
The parameters resulting from a round of optimization on a certain training set may vary

and be heavily influenced by how the data was partitioned into training and validation

sets, as there are many ways to perform this segmentation. The optimization may also be

prone to overfitting. Ideally the training and validation sets should both be sufficiently

large and diverse to represent a wide range of scenarios occuring in the rendering context.

In our case, the size and diversity of the data is limited, partly constrained by the number

of modelled scenes publicly available, and partly by the computational cost of producing

renders of said scenes. These limitations are often present in general, and it is therefore

not always feasible to produce entirely satisfactory data sets when they are not readily

available from public sources.

With these considerations in mind, we aim to devise a model training schema that

attempts to supress the sensitivity to the underlying samples. In Figure 4.7 we can see that

the performance of the model parameters not only varies depending on the samples used

for training, but that taking the mean of many parameters trained on slightly different

training sets can yield vastly better results. This empirical observation suggests that an

ensemble model may be suitable to achieve better robustness.

75

1

2

3

4

ys

ρ
/
ρ
∗

1

2

3

4

ys

Figure 4.7: Performance of individual model parameters versus their mean. (Left) The
parameters and their performance resulting from optimization on a single

training set can depend heavily on the composition of samples in the set that

was used for training. (Right) Taking the mean of many parameters that have

been trained on different training sets results in better and more consistent

performance. The improved performance of averaged parameters hints at

the use of an ensemble modelling approach to improve stability.

76

Tc

T (1)
c :

1

B

∑
r

θ (r)
c = θc

θ (1)
c

T (2)
c : θ (2)

c

T (B)
c : θ (B)

c

T (r)
c : θ (r)

c

Resampled data sets

Figure 4.8: Bootstrap aggregating schema. For a given training set Tc , we form B boot-

strap sample sets {T (1)
c ,T

(2)
c , . . . ,T

(B)
c } by resampling with replacement from

Tc . Training the model on a bootstrap sample set T (r)
c results in bootstrapped

model parameters θ (r)
c . The mean of the B bootstrapped parameters now

generates the bagging model parameters θc .

4.5.1 Bootstrap Aggregating
A common ensemblemethod is bootstrap aggregating, often referred to as bagging (Breiman

1996). The method works by performing the training procedure several times on using

data that has been bootstrapped from the training set, for instance by resampling from the

training set with replacement. For more information about the standard bootstrapping

technique, we refer to the work by Efron and Tibshirani (1994). The most suitable cases

for bootstrap aggregating are when small changes in the training set can result in large

changes in the model parameters, and the best enhancement can be seen when the model

instances vary heavily from eachother (Barutçuoğlu and Alpaydın 2003).

Given a partitioning of the data into training and validation sets Tc and Vc , we train an

ensemble model using bootstrap aggregating. Out of the samples from the 12 scenes in

the training set Tc we form B bootstrapped sample sets {T (1)
c ,T

(2)
c , . . . ,T

(B)
c } by sampling

from the training set with replacement. In our work we select B = 50. Each of the

bootstrapped sample sets are then used to train a set of model parameters θ (r)
c , 1 ≤ r ≤ B

and the bagging model parameters are formed by taking the arithmetic mean of these B
bootstrapped model parameter sets

θc =
1

B

B∑
r=1

θ (r)
c . (4.11)

Bootstrapping the original training set introduces variation in the data since the resulting

bootstrapped sets will not be identical. The bagging procedure is visualized in Figure 4.8.

77

The model parameters resulting from the bagging procedure is less prone to overfitting

the training data.

4.6 Estimating Generalization Performance
The performance of a set ofmodel parameters on newdata is ultimately themost important

metric to describe the success of a model. Indeed, we are not interested in building a

model able to reproduce the results we already have at hand in our training data, but

rather to produce useful results in scenarios that fall within the same category but never

have been encountered before. The validation error measured on a validation set held

out during training is often used for this, but such an estimate can be sensitive to how

the validation and training sets were selected. We are therefore interested in producing

confidence intervals for our generalization estimate in order to receive some notion of

how accurate this estimate is.

To this end, we improve our assessment of the generalization ability of a model by

using cross-validation to produce confidence intervals. In cross-validation, the process of

splitting the data Y into training set V and validation set T are repeated multiple times

in what is known as cross-validation folds. In each round c of splitting, a set of model

parameters θc computed as in 4.11 is trained on the training set Tc using the bootstrap
aggregating procedure outlined in Section 4.5.1, and the performance of the model with

parameters θc is measured in relMSE against the validation set Vc .
There are many different ways to perform cross-validation and the different methods

can generally be categorized into exhaustive methods and non-exhaustive methods.

4.6.1 Exhaustive Cross-Validation
Exhaustive cross-validation methods train and measure validation error on all possi-

ble ways to partition the data into training and validation sets. One such method

is Leave-q-out cross-validation (Celisse and Robin 2008). For a data set of N scenes,

Leave-q-out cross-validation uses q scenes for the validation set Vc and the rest of the

samples for the training set Tc . The cross-validation procedure then consists of CN
q folds,

where

CN
q =

(
N

q

)
, 0 ≤ q ≤ N , (4.12)

i.e. one fold for each of the ways to select q scenes out of N to be used for validation.

Even for moderately large N and for values of q approaching N /2, Leave-q-out cross-
validation can become computationally infeasible due to the large number permutations.

A special case of Leave-q-out cross-validation is Leave-1-out cross-validation, frequently

abbreviated as LOOCV.

4.6.2 Non-Exhaustive Cross-Validation
Non-exhaustive cross-validation methods attempt to approximate their exhaustive coun-

terpart while trying to remain computationally feasible. Common examples are k-fold

78

cross-validation (Zhang 1993) and Monte Carlo cross-validation (Xu and Liang 2001).

k-fold cross-validation partitions the data into k equally sized folds, and performs training

and testing in k rounds. In each round, one of the k folds is selected as validation set and

the remaining k − 1 sets are used to form the training set. When k = N , k-fold cross-

validation becomes identical to LOOCV. Studies suggest that k-fold cross-validation may

outperform LOOCV (Kohavi 1995). Monte Carlo cross-validation randomly partitions the

data into training and validation set. An advantage of k-fold cross-validation over Monte

Carlo cross-validation is that all samples are guaranteed to be used both for training and

validation, and that each sample is used for validation exactly once. An advantage of

Monte Carlo cross-validation is that the relative size of the training and validation sets is

not dependent of the number of cross-validation folds.

Given the relatively small size of our data set by modern machine learning stan-

dards, using an exhaustive approach remains computationally feasible and an exhaustive

Leave-q-out cross-validation approach is therefore chosen to assess validation perfor-

mance. We choose q = 3 so that in each round of splitting, 20% of the total number of

scenes from the data set Y is used to form the validation set Vc and the remaining 80% is

used to form the training set Tc . There is no overlap between the training and validation

sets and together they cover the total data set, i.e. we have

Tc ∪Vc = X ,

Tc ∩Vc = �, ∀c ∈ {1, 2, . . . ,CN
q }.

(4.13)

An ensemble set ofmodel parametersθc is trained using the bootstrap aggregating schema

outlined in Figure 4.8 for each of the CN
q ways of splitting our data set into 80% training

and 20% validation samples.

Withq = 3 andN = 15, using this approachwill produceCN−1

q−1
= 91 values of validation

error for each sample. A histogram representing the distribution of these validation error

values for one sample is shown on the right hand side of Figure 4.9. These histograms

can be used to form confidence intervals of the validation error resulting from using

model parameters trained by our procedure to predict δ -values for each sample point.

The left hand side of Figure 4.9 shows a plot of the average validation error together

with one standard deviation confidence intervals produced by our procedure. These

asymmetric cross-validation intervals are formed by log-transforming the histograms,

computing the symmetric one standard deviation confidence intervals in logarithm space,

and exponentiating them back to linear space.

4.7 Final Model Training
The steps taken so far has been part of a procedure to compare different models and

assess their performance. During training we hold out portions of our data set to use as

validation, to estimate how the model would perform if exposed to new data. When a

model and training method is selected however, we naturally want to use all the data

available to us. To form the final model parameters, we can take the trained ensemble

model parameters from the different cross-validation rounds and use an approach known

79

1

1.5

2

2.5

3

ys

ρ
/
ρ
∗

1 1.2ρ/ρ∗

Figure 4.9: Cross-validation estimation of bootstrap aggregated model parameter perfor-

mance. The cross-validation routine performs boostrap aggregating onmodel

parameters trained on many training setsTc and estimates the model’s ability

to generalize by measuring the validation error against the corresponding

validation set Vc . This generates multiple values of validation error for each

sample ys ∈ Y . (Left) Mean validation error and one standard deviation con-

fidence interval computed from cross-validation results. (Right) Distribution
of validation error from different cross-validation rounds for a single sample.

80

as cross-validation aggregating (Barrow and Crone 2013). The final parameter estimate is

written as an aggregate of all bagged parameters from the cross-validation rounds.

θ =
1

CN
q

CN
q∑

c=1

θc =
1

CN
q

CN
q∑

c=1

1

B

B∑
r=1

θ (r)
c =

1

B ·CN
q

CN
q∑

c=1

B∑
r=1

θ (r)
c (4.14)

81

5 Results

The focus is now turned to presenting the results of the framework we have devised.

The methods depicted and motivated in Chapter 4 are used to train a predictive model H
(equation 4.2) for the Huber loss parameter δ and the model is investigated and bench-

marked here. Different variants of the model, each taking into account a different number

of scene feature statistics as regressors, are trained and their performance is compared.

We also investigate to which extent our goal of having a model invariant to brightness

scale is achieved. Additionally, the bias introduced by reconstruction using Huber loss

is estimated and this estimation is portrayed and compared against the state of the art.

We finally present the model parameters θ and their distributions from different cross-

validation rounds, of which we take the arithmetic mean to form the final parameter

values.

In the coming sections we will present results in the form of relMSE plots across all

of our scenes. The figures contain a plot of normalized relMSE on the vertical axis, and

rendering scenarios on the horizontal axis. The relMSE is normalized by the optimal

relMSE measured using Huber loss reconstruction; the relMSE achieved when using the

optimal δ parameter. Each point on the horizontal axis is a usual rendering scenario ys
in the form a scene-spp configuration, such as Crytek Sponza-64spp, and the plot will

show the normalized relMSE that was measured when this scene-spp configuration was

used as test data. The rendering scenarios on the horizontal axis is grouped by scene

and ordered within the scene group according to increasing spp count. The results are

always presented through validation performance, to assess generalization performance.

5.1 Effect of Regressors on Model Performance

The models labeled 1-6 listed in Section 4.4.2 each incorporate a different composition

of regressors and we wish to explore the most suitable model configuration. Out of the

regressors we have computed during the data generation, we wish to find a which of

these to take into consideration in the model to achieve high performance and stability,

and which of the regressors to leave out of the model. We therefore start off with the

baseline model that uses configuration 1 and set out to investigate how modifications

to this regressor setup in different regards affects the performance. For instance, we

are interested in determining if equal performance can be achieved with a less complex

model by removing some regressors from model consideration, or if higher performance

is possible by incorporating more regressors in a model of higher complexity than the

baseline.

83

B
a
t
h
r
o
o
m
1

B
a
t
h
r
o
o
m
2

B
a
t
h
r
o
o
m
3

B
o
o
k
s
h
e
l
f

C
o
r
n
e
l
l
B
o
x

C
l
a
s
s
r
o
o
m

C
r
y
t
e
k
S
p
o
n
z
a

K
i
t
c
h
e
n
1

K
i
t
c
h
e
n
2

L
i
v
i
n
g
R
o
o
m
1

L
i
v
i
n
g
R
o
o
m
2

S
p
o
n
z
a

S
t
a
i
r
c
a
s
e
1

S
t
a
i
r
c
a
s
e
2

V
e
a
c
h
D
o
o
r

1

1.2

1.4

1.6

1.8

2
ρ
/
ρ
∗

LH1

LH2

LH3

Figure 5.1: Effect of brightness regressor onmodel performance. The baselinemodel con-

figuration 1 is compared against model configuration 2 where the constraint

on the brightness parameter is removed and against model configuration 3

where the brightness regressor is excluded from the model. There is no sig-

nificant difference between the configurations while configuration 1 ensures

correct unit in the output δ .

5.1.1 Altering the Brightness Constraint

First we investigate the effect of the altering how the brightness regressor β(6) is consid-
ered in the models. The baseline configuration 1 is compared to configuration 2 where

the constraint on the brightness parameter is removed, and configuration 3 where the

brightness regressor is excluded entirely. Figure 5.1 shows relMSE plots of the different

configurations with cross-validation confidence intervals of one standard deviation. We

would like to keep the brightness regressor and its constraint to ensure unit correctness

in the output, and therefore investigate the impact of leaving either out.

From these plots we can see that for most scenes the difference between the configura-

tions is not significant enough to give preference to one over any other, and the overall

performance is mostly unaffected by the twomodifications to the parameter configuration

of the baseline model.

5.1.2 Including Skewness and Kurtosis Regressors

Next we want to investigate whether adding complexity to the model in the form of

incorporating more regressors can improve its performance. The baseline model is thus

84

B
a
t
h
r
o
o
m
1

B
a
t
h
r
o
o
m
2

B
a
t
h
r
o
o
m
3

B
o
o
k
s
h
e
l
f

C
o
r
n
e
l
l
B
o
x

C
l
a
s
s
r
o
o
m

C
r
y
t
e
k
S
p
o
n
z
a

K
i
t
c
h
e
n
1

K
i
t
c
h
e
n
2

L
i
v
i
n
g
R
o
o
m
1

L
i
v
i
n
g
R
o
o
m
2

S
p
o
n
z
a

S
t
a
i
r
c
a
s
e
1

S
t
a
i
r
c
a
s
e
2

V
e
a
c
h
D
o
o
r

1

1.2

1.4

1.6

1.8

2

ρ
/
ρ
∗

LH1

LH4

Figure 5.2: Effect of skewness and kurtosis regressors on model performance. The base-

line model configuration 1 is extended in configuration 4 with the addition of

the skewness and kurtosis regressors. The difference in model performance

is not significant enough to warrant the added complexity.

modified to include the higher order skewness and kurtosis regressors in Equation 4.6.

The model is benchmarked with and without this modification, i.e. we compare model

configurations 1 and 4, and the performance results is plotted in Figure 5.2.

The results show that there is not a significant increase in predictive power to be

gained by adding the regressors for skewness and kurtosis, and we therefore exclude

them from the final model seeing as they also require additional computations during

sampling that generally not performed in existing renderers.

5.1.3 Excluding Variance Regressors

Lastly, we are interested in investigating what the effects of simplifying the model are

on its performance. This investgation is done by excluding either the mean variance

regressors or the variance of variance regressors from the model and comparing against

the baseline. The results are plotted in Figure 5.3.

We see that for some scenes the model performance is reduced to an extent which is

not entirely dismissable compared to the baseline, giving an indication that the variance

in the pixels are an important measure when deciding how to treat outliers in the sampled

gradients through the Huber loss cut-off parameter.

85

B
a
t
h
r
o
o
m
1

B
a
t
h
r
o
o
m
2

B
a
t
h
r
o
o
m
3

B
o
o
k
s
h
e
l
f

C
o
r
n
e
l
l
B
o
x

C
l
a
s
s
r
o
o
m

C
r
y
t
e
k
S
p
o
n
z
a

K
i
t
c
h
e
n
1

K
i
t
c
h
e
n
2

L
i
v
i
n
g
R
o
o
m
1

L
i
v
i
n
g
R
o
o
m
2

S
p
o
n
z
a

S
t
a
i
r
c
a
s
e
1

S
t
a
i
r
c
a
s
e
2

V
e
a
c
h
D
o
o
r

1

1.2

1.4

1.6

1.8

2

ρ
/
ρ
∗

LH1

LH5

LH6

Figure 5.3: Effect of variance regressors on model performance. The baseline model

configuration 1 is simplified in configuration 5 by removing the variance of

variance regressors and in configuration 6 by removing the mean variance

regressors.

86

5.1.4 Invariance to Brightness Scale
In addition to simply testing how the brightness parameter and its dimensional constraint

affects model performance in terms of relMSE, it is interesting to see what its impact on

scalability across scenes of vastly varying mean brightness has. To test this we measure

the performance of model configurations 1, 2 and 3 on the regular scene set but also on

the same set where all the data from the renderer has been brightened by a factor of 1000.

The comparison is shown with relMSE measurements in Figure 5.4.

As previously stated, a model that is invariant to brightness scale should produce

δ that results in the same relMSE regardless of the absolute brightness value in the

rendering scenario. If the input is scaled, the output parameter from the model should

scale accordingly and perform equally well as before the input was scaled. We see

that this is clearly the case for the baseline model configuration that incorporates the

brightness regressor and has its parameter constrained to ensure the correct unit in the

output, whereas the other configurations fail to preserve the model performance under

the scaling operation.

5.2 Selecting the Model Configuration
Based on the performance and characteristics observed while testing the different model

configurations, it is not difficult to come to the conclusion that the baseline model using

configuration 1 is to be prefered. The model incoporates the primal brightness regressor

to ensure unit correctness in the output and as demonstrated is able to maintain constant

performance when the brightness of the input is modified. In addition to this, as we

have investigated, adding complexity to the model by including skewness and kurtosis

regressors did not lead to a significant improvement in the performance of the predictions.

Simplifications to the model by exluding variance regressors on the other hand did hurt

the performance to a degree. We can thus conclude that out of the configurations we

have tested, the baseline model is to be prefered.

5.3 Bias Reduction
Gradient-domain path tracing using L1 reconstruction is efficient in suppressing outliers

in the sampled gradients that lead to dipole shaped artifacts when using L2 reconstruction.

This benefit with L1 reconstruction comes at a cost of introducing bias in the reconstructed

image. We have claimed that Huber loss reconstruction should introduce less bias than

L1 and this claim will now be supported empirically.

We compare esimates of the bias introduced by Huber and L1 reconstruction and

inspect how close they come to L2 performance. To estimate the bias introduced from the

use of a specific loss function in the reconstruction, we render 100 images of the Kitchen

1 scene, reconstruct each image using the L1 and Huber loss functions and then take

the mean of the 100 rendered images in both cases. Comparing these averaged images

against the reference image then gives an estimate of the error resulting from statistical

bias in the reconstruction.

87

LH1 LH2 LH3

1

1.5

2

ρ
/
ρ
∗

1

1.5

2

ρ
/
ρ
∗

B
a
t
h
r
o
o
m
1

B
a
t
h
r
o
o
m
2

B
a
t
h
r
o
o
m
3

B
o
o
k
s
h
e
l
f

C
o
r
n
e
l
l
B
o
x

C
l
a
s
s
r
o
o
m

C
r
y
t
e
k
S
p
o
n
z
a

K
i
t
c
h
e
n
1

K
i
t
c
h
e
n
2

L
i
v
i
n
g
R
o
o
m
1

L
i
v
i
n
g
R
o
o
m
2

S
p
o
n
z
a

S
t
a
i
r
c
a
s
e
1

S
t
a
i
r
c
a
s
e
2

V
e
a
c
h
D
o
o
r

1

1.5

2

ρ
/
ρ
∗

Figure 5.4: Behaviour of model configurations 1, 2 and 3 when used on reconstruction

problems whose brightness has been scaled up. The dashed lines show perfor-

mance on unscaled data. The baseline model configuration 1 produces output

that scales in accordance with the underlying input, and the performance is

identical in both cases. On the other hand, configuration 2 that removes the

constraint on the brightness parameter and configuration 3 that excludes the

parameter entirely fails to scale well and behaves unpredictably.

88

L1 L2 LH

4
s
p
p

8
s
p
p

1
6
s
p
p

3
2
s
p
p

Figure 5.5: Estimation of the bias introduced by L1, L2 and Huber loss reconstruction.

An unbiased, fully converged image would appear completely black. The

Huber loss reconstruction comes considerably closer to the L2 solution than

the biased L1 reconstruction, indicating an improvement over L1 from a bias

perspective.

89

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

spp

r
e
l
M
S
E

L1

L2

LH

Figure 5.6: RelMSE plot of the estimated bias introduced during reconstruction. The

bias from L1 reconstruction is an order of magnitude larger in terms of

relMSE than the bias from Huber reconstruction which behaves closer to L2

reconstruction in this regard.

The images for visual inspection are shown in Figure 5.5. Here, a completely unbiased

and converged image would appear completely black. It should be noted that the fact

that the image of the L2 estimate is not completely black and shows a difference from the

reference image is due to unconverged noise and not bias, a consequence of the low spp

count in the individual renders that are averaged. It is evident from these images that

the bias introduced by L1 reconstruction is of higher magnitude than that introduced

through Huber loss reconstruction.

In addition to a visual inspection of the magnitude of the bias, a relMSE plot is shown

in Figure 5.6 from which we can conclude and reiterate that Huber loss reconstruction

comes significantly closer to L2 reconstruction in terms of the bias introduced.

5.4 Model Parameters
The exhaustive cross-validation schema that was used to estimate confidence intervals for

the performance of our model that we described in Section 4.6 results in multiple bagged

model parameters. We show histogram approximations of the parameter distributions in

Figure 5.7 and compute the final model parameters using Equation 5.1. The final model

parameters are formed by taking the mean of the parameter distributions. They are

plotted as the red vertical lines in the histograms and are listed below.

θ (1) = −2.58

θ (2) = 1.04

θ (3) = −0.86

θ (4) = −0.29

θ (5) = 0.53

θ (6) = −0.33

(5.1)

90

-5 θ (1) -1 0.4 θ (2) 2 -1.8 θ (3) 0

-0.9 θ (4) 0.1 0 θ (5) 1.2 -0.6 θ (6) 0

Figure 5.7: Histogram distributions of bagged model parameters from all the rounds

of the exhaustive cross-validation schema. The final model parameters are

formed by taking the mean of the histograms, the values at the red vertical

lines.

91

5.5 Final Model Performance
The most important result to present of all is that of the trained Huber loss model per-

formance versus the standard L1 and L2 reconstruction methods. Based on the previous

investigations, we use the baseline configuration as our final model and proceed to

show measured and visual results when the model is used to predict δ for Huber loss

reconstruction.

5.5.1 Measured Performance
In Figure 5.8 we present the performance of the trained final model using the baseline con-

figuration versus L1 and L2 from a relMSE point of view, with cross-validation confidence

intervals computed as described in Section 4.6.

It is apparent that Huber loss reconstruction with a cut-off parameter δ predicted from

the trained model produces reconstructions closer to the reference images in terms of

relMSE on average. There are cases such as in theClassroom scene howeverwhere the L1

reconstruction performs better than the measured theoretical optimum of reconstruction

with Huber loss, but their performance seems to come closer at higher spp where there

is less noise in the input to be outright suppressed in the reconstruction by L1 loss.

Note also that for most scenes, the computed relMSE from the predicted model is

relatively stable over cross-validation rounds. In other words, the computed standard

deviation is low and consequently the estimated confidence intervals narrow. This gives

strength to the approach we have employed in that it shows little sensitivity to the

underlying samples used to train the model parameters. With that said, the performance

in the Classroom, Staircase 2 and Veach Door scenes is less stable, and these are

dominated by many specular interactions and occluded light sources. For these scenes,

the confidence intervals are wider which means that the model performance was more

sensitive to the composition of the training set. If the training set is composed mainly

of scenes that do not represent the same sort of complex lighting scenarios, then the

resulting model parameters may perform poorly. To improve in these scenes it would be

benificial to perform the training using a data set that contains many more scenes with

the described complex properties. If this was done it is possible that incorporating other

regressors would give a more significant improvement to performance.

5.5.2 Visual Performance
In Figures 5.9-5.12 we show visual results of our trained model’s performance for most

of our scenes. The results of the reconstruction using Huber loss is shown next to the

corresponding images reconstructed using L1 and L2 loss.

As we also showed previously, Huber loss introduces considerably less bias than L1

loss. It is also apparent across most scenes that Huber loss suppresses the dipole artifacts

resulting from outliers when compared to L2 loss. Where L1 successfully suppresses

outliers at the cost of introducing bias, Huber loss suppresses outliers but inherits the

uneven blotches in the images from L2 loss instead of introducing bias. As the sample

count is increased, the three reconstruction methods naturally come closer to eachother;

92

Optimal Huber L1 L2 LH

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.2

1.4

1.6

1.8

Bathroom 1

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

2.5

3

Bathroom 2

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

2

3

4

5

Bathroom 3

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

Bookshelf

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

2

4

6

Cornell Box

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

Classroom

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

2.5

3

Crytek Sponza

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

2.5
Kitchen 1

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.02

1.04

Kitchen 2

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

2

3

Living Room 1

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.1

1.2

1.3

1.4
Living Room 2

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0.5

1

1.5

2

Sponza

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

Staircase 1

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.2

1.4

1.6

Staircase 2

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

1.5

2

Veach Door

Figure 5.8: Performance of our trained Huber model versus L1 and L2. The vertical axis

shows the error as a multiple of the optimal Huber parameter performance

for that scene. The trained model outperforms L1 and L2 in the majority of

the scenes, and often hits near optimal Huber performance.

93

Scene 4spp 8spp 16spp 32spp 64spp 128spp
B
a
t
h
r
o
o
m
1

L
H

L
1

L
2

B
a
t
h
r
o
o
m
2

L
H

L
1

L
2

B
a
t
h
r
o
o
m
3

L
H

L
1

L
2

Figure 5.9: Visual model performance versus L1 and L2 for the Bathroom 1, Bathroom

2 and Bathroom 3 scenes.

the bias in L1 loss is diminished and the spots in Huber loss gradually vanishes, and it is

not obvious which of these side-effects has less negative impact on the visual perception

of the image quality.

94

Scene 4spp 8spp 16spp 32spp 64spp 128spp

B
o
o
k
s
h
e
l
f

L
H

L
1

L
2

C
l
a
s
s
r
o
o
m

L
H

L
1

L
2

C
r
y
t
e
k
S
p
o
n
z
a

L
H

L
1

L
2

Figure 5.10: Visual model performance versus L1 and L2 for the Bookshelf, Classroom

and Crytek Sponza scenes.

95

Scene 4spp 8spp 16spp 32spp 64spp 128spp

K
i
t
c
h
e
n
1

L
H

L
1

L
2

K
i
t
c
h
e
n
2

L
H

L
1

L
2

L
i
v
i
n
g
R
o
o
m
1

L
H

L
1

L
2

Figure 5.11: Visual model performance versus L1 and L2 for the Kitchen 1, Kitchen 2

and Living Room 1 scenes.

96

Scene 4spp 8spp 16spp 32spp 64spp 128spp

L
i
v
i
n
g
R
o
o
m
2

L
H

L
1

L
2

S
p
o
n
z
a

L
H

L
1

L
2

V
e
a
c
h
D
o
o
r

L
H

L
1

L
2

Figure 5.12: Visual model performance versus L1 and L2 for the Living Room 2, Sponza

and Veach Door scenes.

97

6 Conclusion

In this thesis, we have presented an introduction to the underlying theory of direct gradi-

ent estimation using Monte Carlo sampling and have investigated a new reconstruction

method for gradient-domain path tracing.

To motivate this research, we reviewed the reconstruction methods that are used

traditionally and identified flaws with each method. We identify that the use of Huber

loss instead of L1 or L2 loss for the gradient part in the reconstruction step can yield

better results, if the cut-off parameter for the Huber loss function is chosen properly.

Additionally, we note that the optimal choice of this parameter varies depending on

which scene is being reconstructed, and that no choice of parameter works well across

all scenes.

We proceeded to develop a method to select the cut-off parameter δ for a rendering

scenario automatically. Specifically, we trained a multiplicative model that takes statistics

computed during rendering into account to predict a parameter that would work well

in the given scenario. The model generally performs better in terms of relMSE than

previous methods across our set of scenes, and is invariant to the absolute brightness of

the scene being rendered. The method is easy to implement as an extension to existing

gradient-domain renderers.

Visually we have shown that the results produced by Huber loss reconstruction using

parameters predicted by our trained model resemble the results from L2 reconstruction

with considerably less dipole artifacts. We have also demonstrated a significant reduction

in the bias introduced by Huber compared to L1 reconstruction.

The ability of the model trained by our method to generalize to unseen data was

estimated using an exhaustive cross-validation schema, where parts of the total data

set was held out from training and used as validation set. While the performance of

the model is mostly insensitive to how the training and validation sets were partitioned,

there are cases where the test performance is low. This indicates that, when the training

and validation sets have been partitioned in this specific way, the majority of the scenes

in the validation set are of different character than those used for training, indicating a

flaw in the size and diversity of our data set.

Our final model incorporates regressors calculated from absolute brightness and pixel

variances, and we have conducted an analysis on the effect of either adding regressors

calculated from higher order moments for a more complex model, or removing regressors

for a simpler model. We found that variance is a necessary characteristic of the scene to

capture in the regressors in order to predict good cut-off parameters, but that regressors

based on higher order standardized moments such as skewness and kurtosis added no

significant predictive power in our setting. This has the advantage of simple implementa-

tion in existing frameworks, often at no additional cost in cases where per-pixel variances

are computed for other features of a renderer.

99

In summary, the work conducted in this thesis has shown that even with a simple

model considering only basic mean statistics of a rendering scenario as regressors, it

is possible to predict and produce a cut-off parameter for the Huber loss function that

performs well in comparison to previous loss functions when reconstructing images in

gradient-domain path tracing.

6.1 Future Work

Our analysis on the optimal configuration of model regressors was made my selectively

adding or removing regressors to be considered from the model. There are more sophisti-

cated means of automatically adding and removing parameters to a model in the case

where many potential parameters are involved, which would be necessary to exhaust

more potential model configurations in our case.

The generation of large and diverse data sets for rendering relies on both computa-

tionally heavy simulations and demand on artistry to generate semi-realistic scenery.

There are many scenes available in online repositories, but it is often the case that they

need to be modified to work in a specific renderer or sampling algorithm when materials,

shapes or other scene components of the scene description have yet to be implemented

or defined. For these reasons the data set used in our work is very small in the context of

machine learning and parameter estimation, and it would be preferrable to continue our

analysis with a larger and more diverse data set to diminish the risk of overfitting and

bad generalization performance.

To thoroughly investigate the potential gain from using Huber loss over L1 loss for

image reconstruction, one would have to compare final renders of images from both

methods in more detail, and the renders need to be of a higher sample count than of

those used in our research. From our comparisons, it is easy to see that Huber introduces

less dipole artifacts than L2 but still has unevenness in the image for low sample counts,

and it would be interesting to analyze further if this is preferred visually over the bias

introduced by reconstruction using L1 loss. Production images are rendered using a

sample count that is larger than those used here, and for that reason a comparison at

higher spp is necessary.

The true performance comparison between our method and previous approaches needs

to consider the computational overhead of calculating and outputting regressors from

the renderer. This consideration has not been made in our analysis. As noted previously

however, pixel variances are often computed regardless for things like adaptive sampling,

and the computation time of even higher order moments should intuitively represent a

tiny portion of the total render time.

In order to check the generality of the trained model parameters and the model training

procedure, an investigation on the performance when using other gradient-domain

rendering methods such as G-MLT or G-BDPT needs to be made. It is possible and indeed

likely that the distributions of per-pixel primal and gradient samples differ between

different methods which may have an impact on the model performance. For the same

reasons it is also important to make the same investigation about the effect of using other

underlying sampling strategies such as low-discrepancy sampling, and other pixel filters

100

such as the Mitchell-Netravali filter.

Lastly, we note that a natural step for further research in this direction is to investigate

a deep learning approach to the image reconstruction problem using neural networks,

either to generate the final image from the input directly, to predict Huber loss parameters

or as a pre-conditioning step to other reconstruction methods.

101

References
Arvo, J. (1995): “Analytic methods for simulated light transport”. PhD thesis. Yale

University.

Arvo, J. and Kirk, D. (1990): “Particle transport and image synthesis”. ACM SIGGRAPH
Computer Graphics 24.4, pp. 63–66.

Barron, J. T. (2017): “AMoreGeneral Robust Loss Function”. arXiv preprint arXiv:1701.03077.

Barrow, D. K. and Crone, S. F. (2013): “Crogging (cross-validation aggregation) for

forecasting — A novel algorithm of neural network ensembles on time series sub-

samples”. Neural Networks (IJCNN), The 2013 International Joint Conference on. IEEE,
pp. 1–8.

Barutçuoğlu, Z. and Alpaydın, E. (2003): “A comparison of model aggregation meth-

ods for regression”. Artificial Neural Networks and Neural Information Processing —
ICANN/ICONIP 2003. Springer, pp. 76–83.

Bellman, R. E. (1957): “Dynamic Programming”.

Bitterli, B. (2015): Informed choices in primary sample space.

Bitterli, B. (2016): Rendering resources. url: https://www.benedikt-bitterli.me/
resources/.

Branch, M. A., Coleman, T. F., and Li, Y. (1999): “A subspace, interior, and conjugate

gradient method for large-scale bound-constrained minimization problems”. SIAM
Journal on Scientific Computing 21.1, pp. 1–23.

Breiman, L. (1996): “Bagging predictors”. Machine learning 24.2, pp. 123–140.

Byrd, R. H., Schnabel, R. B., and Shultz, G. A. (1988): “Approximate solution of the

trust region problem by minimization over two-dimensional subspaces”. Mathematical
programming 40.1, pp. 247–263.

Carter, L. L. and Cashwell, E. D. (1975): Particle-transport simulation with the Monte
Carlo method. Tech. rep. Los Alamos Scientific Lab., N. Mex.(USA).

Celisse, A. and Robin, S. (2008): “Nonparametric density estimation by exact leave-p-

out cross-validation”. Computational Statistics & Data Analysis 52.5, pp. 2350–2368.

Chambolle, A. and Pock, T. (2011): “A first-order primal-dual algorithm for convex

problems with applications to imaging”. Journal of mathematical imaging and vision
40.1, pp. 120–145.

103

https://www.benedikt-bitterli.me/resources/
https://www.benedikt-bitterli.me/resources/

Chan, T. F., Golub, G.H., and LeVeque, R. J. (1982): “Updating formulae and a pairwise

algorithm for computing sample variances”. COMPSTAT 1982 5th Symposium held at
Toulouse 1982. Springer, pp. 30–41.

Chan, T. F., Golub, G. H., and LeVeque, R. J. (1983): “Algorithms for computing the

sample variance: Analysis and recommendations”. The American Statistician 37.3,

pp. 242–247.

Chandrasekhar, S. (1950): “Radiative transfer”.

Charbonnier, P., Blanc-Feraud, L., Aubert, G., and Barlaud, M. (1994): “Two deter-
ministic half-quadratic regularization algorithms for computed imaging”. Image Pro-
cessing, 1994. Proceedings. ICIP-94., IEEE International Conference. Vol. 2. IEEE, pp. 168–
172.

Christensen, P. H., Jarosz, W., et al. (2016): “The path to path-traced movies”. Foun-
dations and Trends® in Computer Graphics and Vision 10.2, pp. 103–175.

Cook, R. L., Porter, T., and Carpenter, L. (1984): “Distributed ray tracing”. ACM
SIGGRAPH Computer Graphics. Vol. 18. 3. ACM, pp. 137–145.

Efron, B. and Tibshirani, R. J. (1994): An introduction to the bootstrap. CRC press.

Fubini, G. (1907): “Sugli integrali multipli”. Rend. Acc. Naz. Lincei 16, pp. 608–614.

Gilks,W. R., Richardson, S., and Spiegelhalter, D. (1995):Markov chain Monte Carlo
in practice. CRC press.

Goodfellow, I., Bengio, Y., and Courville, A. (2016): Deep learning. MIT press.

Grimaldi, F. M. (1665). Physico-mathesis de lumine, coloribus, et iride. Bononiæ. Re-
viewed in Philosophical Transactions of the Royal Society of London 6.79, pp. 3068–3070.

Guilbault, G. G. (1990): Practical fluorescence. Vol. 3. CRC Press.

Gunturk, B. K. and Li, X. (2012): Image restoration: fundamentals and advances. CRC
Press.

Hachisuka, T. and Jensen, H. W. (2009): “Stochastic progressive photon mapping”.

ACM Transactions on Graphics (TOG) 28.5, p. 141.

Hastings, W. K. (1970): “Monte Carlo sampling methods using Markov chains and their

applications”. Biometrika 57.1, pp. 97–109.

Heide, F., Diamond, S., Nießner, M., Ragan-Kelley, J., Heidrich, W., and Wet-
zstein, G. (2016): “ProxImaL: Efficient image optimization using proximal algorithms”.

ACM Transactions on Graphics (TOG) 35.4, p. 84.

Hua, B.-S., Gruson, A., Nowrouzezahrai, D., and Hachisuka, T. (2017): “Gradient-
Domain Photon Density Estimation”. Computer Graphics Forum. Vol. 36. 2. Wiley

Online Library, pp. 31–38.

Huber, P. J. (1964): “Robust estimation of a location parameter”. The Annals of Mathe-
matical Statistics 35.1, pp. 73–101.

104

Jakob, W. A. (2013): Light transport on path-space manifolds. Cornell University.

Jakob, W. A. (2015): Mitsuba renderer, 2010. url: http://www.mitsuba-renderer.
org.

Jakob, W. A. and Marschner, S. (2012): “Manifold exploration: a Markov Chain Monte

Carlo technique for rendering scenes with difficult specular transport”. ACM Transac-
tions on Graphics (TOG) 31.4, p. 58.

Jarosz, W. (2008): Efficient Monte Carlo methods for light transport in scattering media.
University Of California, San Diego.

Jensen, H. W. (2001): Realistic image synthesis using photon mapping. AK Peters, Ltd.

Kajiya, J. T. (1986): “The rendering equation”. ACMSiggraph Computer Graphics. Vol. 20.
4. ACM, pp. 143–150.

Kettunen, M., Manzi, M., Aittala, M., Lehtinen, J., Durand, F., and Zwicker, M.
(2015): “Gradient-domain path tracing”. ACM Transactions on Graphics (TOG) 34.4,
p. 123.

Kinoshita, S., Yoshioka, S., and Miyazaki, J. (2008): “Physics of structural colors”.
Reports on Progress in Physics 71.7, p. 076401.

Kohavi, R. (1995): “A study of cross-validation and bootstrap for accuracy estimation

and model selection”. IJCAI. Vol. 14. 2. Stanford, CA, pp. 1137–1145.

Kolb, C., Mitchell, D., and Hanrahan, P. (1995): “A realistic camera model for com-

puter graphics”. Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. ACM, pp. 317–324.

Lafortune, E. P. and Willems, Y. D. (1993): “Bi-directional path tracing”.

Lehtinen, J., Karras, T., Laine, S., Aittala,M., Durand, F., andAila, T. (2013): “Gradient-
domain metropolis light transport”. ACM Transactions on Graphics (TOG) 32.4, p. 95.

Manzi, M., Kettunen, M., Aittala, M., Lehtinen, J., Durand, F., and Zwicker, M.
(2015): “Gradient-domain bidirectional path tracing”. Proc. Eurographics Symposium
on Rendering. Vol. 1. 2, p. 3.

Manzi, M., Kettunen, M., Durand, F., Zwicker, M., and Lehtinen, J. (2016): “Tem-

poral gradient-domain path tracing”. ACM Transactions on Graphics (TOG) 35.6, p. 246.

Manzi, M., Rousselle, F., Kettunen, M., Lehtinen, J., and Zwicker, M. (2014): “Im-

proved sampling for gradient-domain metropolis light transport”. ACM Transactions
on Graphics (TOG) 33.6, p. 178.

Manzi, M., Vicini, D., and Zwicker, M. (2016): “Regularizing image reconstruction for

gradient-domain rendering with feature patches”. Computer graphics forum. Vol. 35. 2.

Wiley Online Library, pp. 263–273.

MATLAB Optimization Toolbox (2017). The MathWorks, Natick, MA, USA.

105

http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953): “Equation of state calculations by fast computing machines”. The journal of
chemical physics 21.6, pp. 1087–1092.

Mitchell, D. P. andNetravali, A.N. (1988): “Reconstruction filters in computer-graphics”.

ACM Siggraph Computer Graphics 22.4, pp. 221–228.

Mood, A. M. (1950): “Introduction to the Theory of Statistics.”

Nicodemus, F. E. (1965): “Directional reflectance and emissivity of an opaque surface”.

Applied optics 4.7, pp. 767–775.

Pebay, P. P. (2008): Formulas for robust, one-pass parallel computation of covariances and
arbitrary-order statistical moments. Tech. rep. Sandia National Laboratories.

Pérez, P., Gangnet, M., and Blake, A. (2003): “Poisson image editing”. ACM Transac-
tions on graphics (TOG) 22.3, pp. 313–318.

Porter, T. and Duff, T. (1984): “Compositing digital images”. ACM Siggraph Computer
Graphics. Vol. 18. 3. ACM, pp. 253–259.

Rousselle, F., Jarosz, W., and Novák, J. (2016): “Image-space control variates for ren-

dering”. ACM Transactions on Graphics (TOG) 35.6, p. 169.

Ruderman, D. L. (1994): “The statistics of natural images”. Network: computation in
neural systems 5.4, pp. 517–548.

Shirley, P. andWang, C. (1994): “Direct lighting calculation bymonte carlo integration”.

Photorealistic Rendering in Computer Graphics, pp. 52–59.

Simoncelli, E. P. and Olshausen, B. A. (2001): “Natural image statistics and neural

representation”. Annual review of neuroscience 24.1, pp. 1193–1216.

Sun, W., Sun, X., Carr, N. A., Nowrouzezahrai, D., and Ramamoorthi, R. (2017):
“Gradient-Domain Vertex Connection and Merging”.

Terriberry, T. B. (2008): Computing higher-order moments online.

Turkowski, K. (1990): “Filters for common resampling tasks”. Graphics gems. Academic

Press Professional, Inc., pp. 147–165.

Veach, E. (1998): “Robust monte carlo methods for light transport simulation”. PhD

thesis. Stanford University Stanford.

Veach, E. and Guibas, L. J. (1995a): “Bidirectional estimators for light transport”. Pho-
torealistic Rendering Techniques. Springer, pp. 145–167.

Veach, E. and Guibas, L. J. (1995b): “Optimally combining sampling techniques for

Monte Carlo rendering”. Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques. ACM, pp. 419–428.

Veach, E. and Guibas, L. J. (1997): “Metropolis light transport”. Proceedings of the 24th
annual conference on Computer graphics and interactive techniques. ACMPress/Addison-

Wesley Publishing Co., pp. 65–76.

106

Ward, G. J., Rubinstein, F. M., and Clear, R. D. (1988): “A ray tracing solution for

diffuse interreflection”. ACM SIGGRAPH Computer Graphics 22.4, pp. 85–92.

Wu, J., Zheng, C., Hu, X., and Li, C. (2011): “An Accurate and Practical Camera Lens

Model for Rendering Realistic Lens Effects”. Computer-Aided Design and Computer
Graphics (CAD/Graphics), 2011 12th International Conference on. IEEE, pp. 63–70.

Xu, Q.-S. and Liang, Y.-Z. (2001): “Monte Carlo cross validation”. Chemometrics and
Intelligent Laboratory Systems 56.1, pp. 1–11.

Zhang, P. (1993): “Model selection viamultifold cross validation”. The Annals of Statistics,
pp. 299–313.

107

A Standardized Central Moments

Let {z1, z2, . . . , zn} be a set of independent and identically distributed random variables,

zt ∼ z ∀t ∈ {1, 2, . . . , n}. In the context of this thesis, the set of random variables can be

thought of as the collection of samples that that contribute to the color of a pixel, zt being
one such color throughput sample. Define the weighted sample mean random variable as

z̄ =
∑
t

wtzt (A1)

where the weightswt form a partition of unity∑
t

wt = 1. (A2)

The purpose of this chapter is to derive formulas for standardized central moments.

Specifically, we want a formula for the standardized central moment of arbitrary order

k , for the sample mean random variable z̄. For instance, the skewness and kurtosis

of the sample mean is the third order and fourth order standardized central moments,

respectively.

The k :th standardized central moment for a random variable z is defined as the ratio

between the k :th central moment and the k :th power of the standard deviation

γk =
µk

σk
=

E
[
(z − µ)k

](
E
[
(z − µ)2

])k/2

, (A3)

where µ = E[z] is the true mean of z. Let γ̄k denote the standardized central moment of

the sample mean random variable of order k . To derive the formula for γ̄k , first note that
the expectation of z̄ is equal to the expectation of its constituent random variables z

E[z̄] = E
[∑

t

wtzt
]
=
∑
t

wtE[zt] =
∑
t

wtµ = µ
∑
t

wt = µ . (A4)

We then have

γ̄k =
µ̄k

σ̄k
=

E
[
(z̄ − µ)k

](
E
[
(z̄ − µ)2

])k/2

. (A5)

The expectation within the parenthesis of the denominator is the variance σ̄ 2
of the

sample mean random variable z̄ and a special case of the numerator with k = 2. We thus

109

proceed to evaluate the expectation in the numerator.

µ̄k = E
[
(z̄ − µ)k

]
= E

[(∑
t

wtzt − µ
)k]

= E
[(∑

t

wt (zt − µ)
)k]
. (A6)

Expanding the product in (A6) consisting of k sums and subsequently rearranging the

sums gives

E
[(∑

t

wt (zt − µ)
)k]

=E
[(∑

t1

wt1(zt1 − µ)
) (∑

t2

wt2(zt2 − µ)
)
· · ·

(∑
tk

wtk (ztk − µ)
)]

=E
[∑

t1

∑
t2

· · ·
∑
tk

{
wt1(zt1 − µ)wt2(zt2 − µ) · · ·wtk (ztk − µ)

}]
(A7)

Taking the expectation is a summation and we are therefore allowed to switch the order

of the expectation and the sums. By doing this and gathering the weights outside of the

expectation, (A7) becomes

E
[∑

t1

∑
t2

· · ·
∑
tk

{
wt1wt2 · · ·wtk (zt1 − µ)(zt2 − µ) · · · (ztk − µ)

}]
=
∑
t1

∑
t2

· · ·
∑
tk

{
wt1wt2 · · ·wtkE[(zt1 − µ)(zt2 − µ) · · · (ztk − µ)]

}
(A8)

Now, for all tu , tv where u, v ∈ {1, 2, . . . , k}, the random variables ztu and ztv are

identically distributed with expected value µ. They are also independent, which means

that

E[(ztu − µ)(ztv − µ)] = E[(ztu − µ)]E[(ztv − µ)]

= (E[ztu] − µ)(E[ztv] − µ)

= (µ − µ)(µ − µ)

= 0. (A9)

By this observation, the only surviving terms in the sum (A8) are those where u = v and

we get

µ̄k =
∑
t

wk
t E

[
(zt − µ)k

]
= µk

∑
t

wk
t . (A10)

We now have the formula for the k :th order standardized central moment of the weighted

sample mean random variable z̄ as

γ̄k =
µk

∑
t w

k
t(

µ2

∑
t w

2

t

)k/2

(A11)

110

In the common case where uniform weights are used for each sample zt when computing

the sample mean z̄, we havewt = n
−1 ∀t and (A11) becomes

γ̄k =
nµk

(nµ2)
k/2

. (A12)

In summary, we now have the variance, skewness and kurtosis of z̄ readily available as

Var[z̄] = µ̄2 =
µ2

n
(A13)

Skew[z̄] = γ̄3 =
nµ3

(nµ2)
3/2

(A14)

Kurt[z̄] = γ̄4 =
nµ4

(nµ2)
2

(A15)

111

B Visual Comparison of α Parameter
In the Poisson reconstruction step of gradient-domain rendering, α is a paramter that

controls the relative weight between primal and gradient samples. Lehtinen et al. (2013)

suggest the use of α = 0.2 which we have adopted in this work. We proceed to show

visual results of reconstructed images for a few select scenes that have been reconstructed

using a range of different α . For each α that was used, we used the cut-off parameter δ ∗,
the δ that produced the best result in terms of relMSE.

113

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

1
6
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

6
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

Figure B1: α comparison for the Bookshelf scene.

114

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

1
6
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

6
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

Figure B2: α comparison for the Cornell Box scene.

115

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

1
6
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

6
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

Figure B3: α comparison for the Crytek Sponza scene.

116

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

1
6
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

6
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

Figure B4: α comparison for the Kitchen 1 scene.

117

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

1
6
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

α = 0.9 α = 0.7 α = 0.5 α = 0.4 α = 0.3

6
4
s
p
p

α = 0.2 α = 0.1 L1 L2 Ref .

Figure B5: α comparison for the Kitchen 2 scene.

118

C Reference Images
This chapter is a collection of reference renders of the scenes used in this thesis. The

references are used to compare the results of a given method to the ground truth – the

goodness of the method is measured in terms of how little it deviates from the reference.

The samples in the data set used to train our model consists of renders of these scenes

with the same camera angles rendered using the gradient-domain path tracing algorithm

at different sample counts. All reference images shown in the following were rendered

using the Mitsuba implementation of bidirectional path tracing (Jakob 2015). Many of

the scenes were downloaded from Bitterli (2016).

Table C1: Scene sources.
Bathroom 1 Blend Swap user Mareck

Bathroom 2 Blend Swap user nacimus

Bathroom 3 Ported to Mitsuba by Tiziano Portenier

Bookshelf Ported to Mitsuba by Tiziano Portenier

Cornell Box Ported to Mitsuba by Wenzel Jakob

Classroom Blend Swap user NovaZeeke

Crytek Sponza Frank Meinl

Kitchen 1 Licensed from Evermotion

Kitchen 2 Blend Swap user Jay-Artist

Living Room 1 Blend Swap user Wig42

Living Room 2 Blend Swap user Jay-Artist

Sponza Marko Dabrovic

Staircase 1 Blend Swap user Wig42

Staircase 2 Blend Swap user NewSee2l035

Veach Door Miika Aittala, Samuli Laine, and Jaakko Lehtinen

119

Figure C1: Reference image of the Bathroom 1 scene, rendered at 1280× 720 resolution

and 32k spp.

Figure C2: Reference image of the Bathroom 2 scene, rendered at 1280× 720 resolution

and 32k spp.

120

Figure C3: Reference image of the Bathroom 3 scene, rendered at 1280× 720 resolution

and 40k spp.

Figure C4: Reference image of the Bookshelf scene, rendered at 1280 × 720 resolution

and 18k spp.

121

Figure C5: Reference image of the Classroom scene, rendered at 1280 × 720 resolution

and 32k spp.

Figure C6: Reference image of the Crytek Sponza scene, rendered at 1280 × 720 reso-

lution and 24k spp.

122

Figure C7: Reference image of the Kitchen 1 scene, rendered at 1280 × 720 resolution

and 32k spp.

Figure C8: Reference image of the Kitchen 2 scene, rendered at 1280 × 720 resolution

and 32k spp.

123

Figure C9: Reference image of the Living Room 1 scene, rendered at 1280×720 resolution

and 32k spp.

Figure C10: Reference image of the Living Room 2 scene, rendered at 1280 × 720

resolution and 32k spp.

124

Figure C11: Reference image of the Sponza scene, rendered at 1280 × 720 resolution

and 24k spp.

Figure C12: Reference image of the Staircase 1 scene, rendered at 720×1280 resolution

and 32k spp. Rotated 90° clockwise.

125

Figure C13: Reference image of theVeachDoor scene, rendered at 1280×720 resolution

and 32k spp.

126

Figure C14: Reference image of the Cornell Box scene, rendered at 960×960 resolution

and 12k spp.

127

Figure C15: Reference image of the Staircase 2 scene, rendered at 960 × 960 resolution

and 32k spp.

128

	Abstract
	Preface
	Contents
	List of Figures
	List of Figures

	1 Introduction
	1.1 Background
	1.1.1 Light Transport and Global Illumination
	1.1.2 Gradient-Domain Rendering
	1.1.3 Choice of Reconstruction Loss
	1.1.4 Main Goal of the Thesis

	1.2 Thesis Overview

	2 Light Transport Theory
	2.1 Scene Representation
	2.1.1 Geometry
	2.1.2 Material Appearance
	2.1.3 Participating Media

	2.2 The Rendering Equation
	2.2.1 The Measurement Equation
	2.2.2 Path Integral Formulation

	2.3 Monte Carlo Simulation
	2.3.1 Monte Carlo Integration
	2.3.2 Markov Chain Monte Carlo

	2.4 Light Transport Algorithms
	2.4.1 Random Walks
	2.4.2 Path Tracing
	2.4.3 Bidirectional Path Tracing
	2.4.4 Metropolis Light Transport

	3 Gradient-Domain Light Transport
	3.1 Mathematical Formulation
	3.2 Poisson Reconstruction
	3.2.1 The Poisson Equation
	3.2.2 Accounting for the Primal Image

	3.3 Sampling of Gradients
	3.3.1 Gradient-Domain Metropolis Light Transport
	3.3.2 Gradient-Domain Path Tracing
	3.3.3 Other Extensions

	3.4 Advantages and Limitations
	3.4.1 Problems Related to the Reconstruction

	4 Huber Loss Reconstruction
	4.1 Motivation
	4.1.1 The Huber Loss Function
	4.1.2 Reduction of Bias
	4.1.3 Huber Loss in Practice

	4.2 Data Set Structure and Notation
	4.3 Selecting the Parametric Model
	4.4 Training the Model Parameters
	4.4.1 Data Generation
	4.4.2 Model Configurations
	4.4.3 Designing the Cost Function
	4.4.4 Finding Cost-Minimizing Model Parameters

	4.5 Improving Model Stability
	4.5.1 Bootstrap Aggregating

	4.6 Estimating Generalization Performance
	4.6.1 Exhaustive Cross-Validation
	4.6.2 Non-Exhaustive Cross-Validation

	4.7 Final Model Training

	5 Results
	5.1 Effect of Regressors on Model Performance
	5.1.1 Altering the Brightness Constraint
	5.1.2 Including Skewness and Kurtosis Regressors
	5.1.3 Excluding Variance Regressors
	5.1.4 Invariance to Brightness Scale

	5.2 Selecting the Model Configuration
	5.3 Bias Reduction
	5.4 Model Parameters
	5.5 Final Model Performance
	5.5.1 Measured Performance
	5.5.2 Visual Performance

	6 Conclusion
	6.1 Future Work

	References
	A Standardized Central Moments
	B Visual Comparison of α Parameter
	C Reference Images

