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Abstract
Currently, the most prominent model for developing intelligent applications for IoT
devices is to have intelligence embedded into the application. This model is charac-
terized by strong coupling between application logic and intelligence implementations
in the code of the intelligent application. Alternatively, the intelligence can be taken
out of the application and turned into a cloud service that application logic can
utilize via standardized Web APIs. This model is characterized by weak coupling
between application logic code and intelligence implementation. Strong coupling
model makes lifecycle management of intelligence difficult. To update intelligence,
usually the whole application must be updated. Cloud based weak coupling model
also has multiple faults like the need for constant connectivity to the central cloud
or data privacy concerns.

In this thesis, local on-device weak coupling model for building intelligent ap-
plications and its prototype implementation are presented. The model is based on
the concept of intelligent layer. Intelligent layer is a layer between operating system
and application layer that provides intelligent services to the processes in application
layer. Presented prototype implementation is called intelligence layer service. It is
able to serve limited type of machine learning models represented by Open Neural
Network Exchange (ONNX) format.
Keywords Artificial Intelligence, Machine Intelligence, Machine Learning, IoT,

ONNX, PMML, Neural Networks, Machine Learning Model
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1 Introduction
The recent achievements of Artificial Intelligence (AI) [1] excited companies and
government agencies [2] to develop strategic initiatives of applying AI in different
domains, to create new types of intelligent systems, to provide new and improve
current services, enhance and automate processes, and extract value from the massive
amount of data that is being collected and stored in big datacenters all over the world.
Internet of Things (IoT) is not an exception to the trend, especially considering
massive amount of data that is forecasted by many to be produced by IoT devices
and systems.

1.1 What is IoT today?
By reviewing the literature on IoT, it is difficult to form a clear and definite under-
standing of what IoT represents, because the IoT concept is usually linked to some
of its building blocks and not to the complete system of all required building blocks.
Adding to the confusion are companies that are re-branding their products under
IoT name for marketing purposes. [3]

Based on the definition of IoT provided in [3], the building blocks that form a
conceptual framework of IoT are:

• Global connectivity infrastructure, like Internet network, that enables con-
nectivity and interoperability between computing devices.

• Physical objects or things, that are equipped with sensor and actuators, from
the environment around us or on us, like assembly line on a factory floor, power
grid, buses, cars, thermostats, light bulbs, mobile phones, watches, hearing
aid equipment or household appliances, and their virtual representation in the
cyber-space. These virtual representations are usually referred to as cyber-twins,
digital twins or device shadows.

• Technologies that enable autonomy and self-management of things. It is
expected that the thing will continue to operate in the sensible manner even
after connectivity to other things or global network infrastructure is lost or if
one of the objects will start to malfunction. Self-management is the form of
initial configuration and life-cycle management in terms of onboarding devices
and receiving software updates without end-user interaction.

• Effective human-to-thing and thing-to-thing interfaces that allow physical
things embedded with electronics to cooperate with other things, humans and
virtual things located in cloud.

• Solutions that enable the coexistence and cooperation of heterogeneous compute
devices and networking technologies.

• Services associated to things. For example, camera connected to Internet
providing intrusion detection service or thermostat proving a service of heating
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control and energy consumption optimization. The services might be combined
so that thermostat can communicate to intrusion camera to detect the presence
of the owner and adjust temperature accordingly. At the same time it might
monitor the geolocation of owner by requesting location from owner’s phone or
watch. This is an example of service composition in the application domain.

The use-cases of IoT are smart homes, smart factories [4], smart electrical grids,
smart cities and event smart labs [5]. IoT applied in the industrial or enterprise
environment is usually named Industrial Internet of Things (IIoT) to differentiate
it from consumer market IoT. Some of the use-cases have overlapping objectives.
For example, the energy consumption optimization is crucial service throughout the
domain of different human activities.

Tangible example of IoT related to smart city use-case are air quality monitoring
stations around Helsinki Metropolitan area Figure 1.1 (a). The information from
these sensors can be viewed by citizens during their subway trip to work or from the
Web using Web-Browser1. Another example, again from Helsinki Metropolitan area,
are open APIs provided by Helsinki Regional Transport Authority (HSL in Finnish
Helsingin Seudun Liikenne) that allow, among other things, to programmatically
track real-time geolocation and other information about public transport on the
roads in Helsinki Metropolitan area Figure 1.1 (b). By using these APIs it is possible
to write application that gathers traffic data or allows user of the application to
make real time decisions like choosing an optimal route to work2.

Staying with the smart-city use-case, major Finnish energy company Fortum is
installing small mobile phone size devices to the households in the city of Espoo
Finland that use AI based control system to ensure stable temperature in apartments
and make the heating more sustainable Figure 1.1 (c). The service provided by
Fortum also allows people, who have the device installed, to monitor humidity and
temperature in their apartments using a Web-Browser or mobile phone application.
All these activities are part of Fortum’s SmartLiving program.

One example of IIoT is open data access provided by Finnish national electricity
transmission grid operator FINGRID. Near real-time time grid operation measure-
ments are available in machine readable form. The list of all available open data is
long, next only two representative examples are mentioned: frequency of the power
system, power production from different source of energy like nuclear or hydro3.

Above real-world examples, that are in common use today, are all about collecting
and presenting data from sensors connected to the Internet. But, as it was mentioned
previously, IoT is not just a platform to collect and visualize data from different
sources. It is also about, of what to do with the collected data, extracting valuable
information out of it, using sensors measurements to achieve some goal and many
other things that are presented in the list above. Every example of the use-case
presented is prefixed with word smart, hinting that IoT systems are expected to be
embedded with intelligence.

1More information available at https://www.hsy.fi/en/residents/theairyoubreathe/
Pages/default.aspx

2More information about APIs is available at https://www.hsl.fi/en/opendata
3Open data sets and APIs are available at https://data.fingrid.fi/en/
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(b)
(c)

device

(a)

Figure 1.1: IoT use-cases around us: (a) Screen in the metro wagon showing air
quality report in Helsinki Metropolitan area. (b) Tracking of a bus in real-time.
Service provided by HSL. (c) Devices installed by Fortum as part of their SmartLiving
program, in apartment houses in the city of Espoo Finland.

1.2 Artificial Intelligence in IoT
One easy to understand application of artificial intelligence in IoT is Machine Learning
(ML) applied to automated data analysis, also known under the name of data mining
or big data. A challenging problem, that has a potential to be solved by IoT machine
learning is collection of heterogeneous data from many different sensors and devices,
all connected to the same global network connectivity infrastructure, turning data
into valuable information from which long-term knowledge and proactive decision
making can be deduced.

Until recently, the state-of-the-art approach of doing IoT machine learning was to
collect data from the IoT devices, forward it and process it in the central cloud, either
real-time or after data is collected. In other words, performing ML model training,
historical analytics or real-time analytics in the cloud where data and compute power
are highly available and distributed over many nodes. From the need to handle these
large amounts of data, not always produced by IoT devices, emerged software for
doing computation in such distributed systems like Hadoop and Spark and later
followed extensions to those systems that enable applying machine learning in these
highly distributed environments.

It was realized that the cloud approach is not applicable for use-cases where data-
privacy, real-time actuation response, intermittent connectivity to cloud, bandwidth
constrained data transport, are to be considered. Autonomous car would not send
data to cloud for processing to decide does it see a red light or not, the latency is
simply too high and will not allow the car to make a timely decision regardless of
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the connection quality to the cloud. Also, it would not make sense to send all of
the telemetry data generated by the car without any pre-processing, the volume
is simply too great, and the value of sending all the data is usually not enough to
justify bandwidth and storage capacity usage. That is the reason of why the current
state-of-the-art in IoT machine learning is to combine massive capabilities of the
cloud with the ability to pre-process the data already on the edge devices or do the
inference based on the measurements locally. It might also be the case that security
concerns or national regulation prohibit sending data for processing and storage to a
cloud, hence making edge processing the most acceptable option. [6]

The data analysis applications, that are using machine learning techniques, are
usually trained in the cloud or in the local computing infrastructure of developers
and data scientists. After training and tuning process, the application is deployed
to production environment, meaning edge device or a cloud compute instance using
cloud-based management system or by some other means, for example integrating
machine learning code into the application code.

How to distribute the intelligence so that it can be implemented in one environment
and then deployed to various other environments is import subject that will be studied
in this thesis.

1.3 Goals and Scope of the Thesis
In this thesis, the deployment of trained machine learning models to IoT devices
is explored. IoT devices that are considered in this thesis are at least capable of
executing Linux operating system. An example of such a device might be a mobile
phone, IoT board with Intel processor for embedded applications or even a personal
computer.

A prototype application was developed, in an attempt to decouple the code
responsible for application logic like user interface from implementation of intelligence.
The work is based on the concept of Intelligence Layer (IL) framework proposed in [7].
The prototype is called intelligence layer service. One of the tasks of intelligence layer,
as presented in [7], is to provide intelligence as a local service to the applications
that need it. The concept of IL is not restricted to just being a platform for
serving intelligence to client applications, but in this thesis machine learning models’
description and serving aspects of IL framework are explored.

Decoupled trained ML model can be represented by a programming code in the
form of a library or package for some specific programming language. Other approach
is to have a compute instance in a central cloud, executing model code on HTTP
request from the client program and replying with execution result. Third option
is to use standardized Intermediate Representation (IR) format to represent a ML
model. Special service will read a model file, turn it into runnable code and expose
it to client processes via some Interprocess Communication Protocol (IPC). In this
work, the third approach is explored.

Standardized IR format describes machine learning model in a library and platform
independent way. Two state-of-the-art platform-independent model description
formats are presented in Chapter 3. One of them is used for the IL service prototype.



14

The main benefits from decoupling the intelligence from application using stan-
dardized IR format, is to allow machine learning solution providers and data scientists,
to use any existing machine learning library, that supports the standardized format,
to develop their models and then export them in the standardized format to central
model repository.

Users wanting to integrate the intelligence into their IoT environment production
code, will be able to buy or download the model from the central repository and
use it in their IoT environment to perform intelligent tasks. The user can use any
machine learning library or runtime that is capable to translate standardized IR into
library’s or run-time’s native IR format and execute the computations on a target
device. This will allow the user to choose the computation platform that is most
suitable for his task and compute requirements.

This approach has also a potential to make a deployment of machine learning
models easier and democratize the machine learning space by not bounding model
producers and consumers into specific libraries, run-times or cloud services. The
approach can also allow model users to switch between different models and model
providers if they choose to do so, without major changes to their code.

The major contribution and goal of this work is to study the possibility of
decoupling the intelligence from applications and research state-of-the-art solutions
that enable this decoupling.

1.4 Structure of the thesis
Chapter 2 and Chapter 3 provide a general background information related to
machine learning. Chapter 2 covers the theory behind artificial intelligence and
machine learning. It also has as subsection covering the most frequently used machine
learning models in IoT data analyzing applications.

Chapter 3 presents practical aspects of machine learning like what state-of-
the-art libraries are used to create machine learning applications and two current
state-of-the-art formats for distributing machine learning models: Open Neural
Network Exchange (ONNX) and Portable Model Markup Language (PMML). Some
examples are provided showing how machine learning code, for simple ML problems,
looks like. It is assumed that reader is relatively familiar with Python and C++
programming language and examples are not explained in detail.

Chapter 4 describes a prototype implementation of IL machine learning model
serving concept. The software architecture of the IL service implementation is
presented and implementation details of the architecture are explained.

In Chapter 5 results of using IL service implementation from Chapter 4 for
serving computationally demanding image classification ML model are described. In
the chapter a quick comparison between PMML and ONNX IR formats is provided
and motivation for using ONNX as a model format for the prototype implementation
is explained. It is also explained, how ONNX model must be modified in order to
prepare it for successful provisioning to the device executing IL service.
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2 Machine Intelligence and Machine Learning
Machine learning is a subset of AI techniques and methods for building artificially
intelligent systems [8]. In recent years, one particular class of function-based ma-
chine learning methods called deep learning was used successfully to solve artificial
intelligence tasks that were difficult to solve using classical function-based machine
learning techniques or other traditional model-based AI methods, like rule based-
or represent-and-reason methods [9, 10]. Solutions to problems related to object
recognition and localization in images or natural speech recognition were improved
significantly by applying deep learning techniques, and new applications in different
domains emerge all the time [11]. Even more impressive are combination of model-
and function-based techniques as shown by current artificial champion AlphaGo in
the game of Go [10, 12]. These recent advances in AI created a lot of interest in
general public outside the scientific community, in research community, industry and
government to apply machine learning and AI to various application domains.

In this chapter, fundamental ideas related to artificial intelligence and machine
learning are presented. First, the concepts of machine intelligence and intelligent
agent are considered. After that, it is presented how to formally specify machine
learning problem. Some classical machine learning models and basic building blocks
of a deep learning models are also covered.

2.1 Machine Intelligence
The original big goal of AI was to create a machine that is capable of achieving
human level of intelligence, reaching the human’s level of performance in cognitive
tasks [10]. Machine Intelligence (MI) is limited AI. The objective of MI is not
to reach human level of intelligence, but to solve tasks that are considered intelligent.
Classifying a piece of text as a funny story can be considered as machine intelligence.
Many orders of magnitude more difficult task for a machine, of writing a funny story
is outside of the scope of machine intelligence. Automation of tasks currently done
by humans like controlling a vehicle in the real-world environment, doing customer
support via phone or chat are also examples of domains where machine intelligence
is in the process of being applied or is already part of the production service [13].

It is not easy to define machine intelligence precisely because definition of in-
telligence itself is difficult. The Oxford English Dictionary defines intelligence as a
faculty of understanding. The word faculty, in the context of intelligence, means
natural or acquired ability to do something. Expanding the definition by including
meaning of faculty one gets:

Intelligence is natural or acquired ability to understand.

If in front of the definition above word machine is added, then it is better to
replace word natural with intrinsic. There is nothing natural in computer program or
current state-of-the-art electronic computing hardware created by humans. Natural
things are created by nature. Things created by humans are artificial.
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Living beings act based on their reflexes and understanding to survive, spread
and achieve some objectives and machines can be programmed to do the same. Based
on presented chain of reasoning the machine intelligence can be defined as:

Machine Intelligence is an intrinsic or acquired ability of a computing machine or
a computer program to understand and carry out actions to achieve objectives and

goals of its creator.

In the definition above, creator is considered to be a person or a group of people
that designed and implemented machine intelligence. The intrinsic ability might be
represented by a model or function suitable for a specific problem. The process of
acquiring ability to understand is learning. Learning might represent fitting a curve
to available training data or finding model parameters. The learned model can be
used to perform an intelligent task.

The notion of intelligent agent is fundamental and useful mental tool for analysing
and designing systems with machine intelligence capability [14]. Next subsection
explains the notion.

2.2 Intelligent Agents
The term agent is used in many closely related areas of science and technology but
doesn’t have a single universally accepted definition [15]. In [15] two views of agency
are presented: a weak notion and a strong notion.

In a weak notion of agency, the agent is a software process or a combination of
software and hardware that has the following four properties [15]:

1. Autonomy: agents have control over their internal states and actions and can
operate without external interaction by other agents or humans.

2. Social ability: agents are capable of communicating with each other using some
common communication protocol.

3. Reactivity: ability to understand their environment and ability to react to
changes in the environment.

4. Pro-activeness: Agent can take an initiative and act preventively in order to
achieve their goals.

For a stronger notion of agency, in addition to the properties from the weaker
notion, agent is represented using concepts more applied to humans like knowledge,
believe, desire and intention [15]. The stronger notion of agency is nearer to the big
goal of AI as it was presented in the introduction to this chapter. Hence, for this
thesis, a weaker notion of agency provides suitable scope for the work.

One other important property that is treated in the context of agent systems is
rationality [15]. In popular university text book [14] about AI by Russell and Norvig,
authors base their presentation of AI systems on the notion of rational agent. The
general definition of an agent in [14] coincide with weaker notion of agency presented
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in [15]. According to [14] agent is expected to: act autonomously, apprehend their
environment, maintain persistency over its lifespan, adjust its behaviour according
to changes in the environment, create and achieve goals. The rational agent is an
agent as described in the previous sentence that acts to achieve its objective as well
as possible [14].

In [8] instead of the agent the concept of artificial intelligent system that acts
rationally is used. The system is rational if as a result of interaction with its
environment it can take actions to maximize a long-term return.

In the description of an intelligent agent general concept like: actions, interaction,
communication, environment, goals, objectives, long-term return were used. It is
important to understand that when these concepts are discussed on the conceptual
level, there is a lack of concreteness. For the specific machine intelligence problem,
all these concepts become very concrete.

Let’s consider an imaginary problem from domain of predictive maintenance in
petroleum industry, related to transporting gas over the pipelines lying deep on the
seabed. The task might be to predict leaks in pipes and malfunctions in the gas
pumping equipment to prevent natural disasters or to achieve a continuous operation
and delivery. The environment is composed by sea, pipes, gas, equipment that enables
operation of the whole system. The long-term objective of the agent is to prevent
natural disasters and maximize continuous delivery of gas. The agent perceives the
environment via the network of sensors scattered over gas delivery system. Actions of
an agent imply to communicate to the human operator via computer screen or other
digital means of communication that there is a high probability of an emergency
situation. One other possibility is to place intermediate agents between agent that
detect anomalies and human operators. One intermediate agent might suggest the
optimal set of action that might trigger actions of the other agent that is a robot.
The robot will go on-site to gather more information so that human operator can
choose the best series of actions to maximize performance or mitigate the risks in
timely manner. The agents must have a common protocol to communicate with each
other and to the human operator.

The main task of rational agent is to map precept sequence to actions effecting
environment in a way that maximizes performance measure. The percept sequences
are obtained from sensors and actions are applied to environment via actuators. The
agent is described mathematically via agent function. The agent function maps from
a set of percept sequences S to a set of actions A:

f : S → A

The actuators and sensors are not necessary things that effect physical world
directly. They might be buffers in computer memory or sockets in a network
connection. The full description of performance measure, environment, actuators
and sensors is called task environment. The machine intelligence problem is usually
approached by first specifying task environment. The software implementation of
agent function is called agent program. The computing devices with sensors, actuators
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and system level software that form and execution environment for an agent program
is called architecture. [14]

Currently the preferred method for creating agents is to create a learning agent [14].
One might even consider saying that it is impossible to implement machine intelligence
systems in complex task environment without machine learning [8].

2.3 Machine Learning
Machine learning is mostly concerned with fitting a mathematical model to data
and improving the model over-time using the observed evidence from the new data.
Every component of an intelligent agent can be improved or implemented by using
machine learning techniques [14]. The model might be represented by a function
mapping inputs to outputs. In the introduction to this chapter, this approach is
named the function-based machine learning. On the other hand, the model might
contain some prior knowledge about the environment represented by probability
distributions or general first-order logic. Probability theory and first-order logic are
formal languages for describing environments. Machine learning techniques that
utilize these formalisms are called model-based machine learning techniques. [8, 14, 10]
In this thesis, only function-based machine learning models are considered. For a
complete review of function- and model-based ML models reader can refer to classical
text on AI like [14] by Russell and Norvig.

There are three principal types of machine learning: supervised, unsupervised and
reinforcement [14]. The difference is best understood by considering three components
that are required to formally specify the ML problem [8]. These components are:

1. Raw data points, features extracted from raw data points and labels related to
data points.

2. Hypothesis space.

3. Loss function.

Data points are raw data precepted by an agent utilizing its sensors. The set
containing all possible values that can be assumed by a data point z is denoted by
letter Z. The labels are answers to questions or predictions that the model gives as
output. Domain of all label value y, sometimes word target is used instead of label,
is denoted by Y . Most often data points are pre-processed before they are given to
the model. As result of this pre-processing, data point is transformed into a vector
of features x, extracted from the data point. Symbol X is assigned to a space of all
the possible feature vectors. [8] Using the mathematical notation, the mapping from
data points to labels can be represented by the following expression:

f : Z → Y (1)

What is referred to as a model is usually a mapping m : X → Y , hence f in 1 can
be rewritten as f = fx ◦m where mapping fx : Z → X is a feature vector extractor.



19

The hypothesis space H is a set of all computationally feasible models that are
considered as candidates for the final model m. Hypothesis h, also called predictor
map, from H is usually a mapping from feature space X to label space Y . [8]

H = {h(i) : X → Y|h(i) is computationaly feasible} (2)

In order to choose an optimal hypothesis h that will be the final model m, from
hypothesis space 2, a measure of how good the model is performing is required. The
goodness of a hypothesis is evaluated using loss function l 3. The loss function is
mapping from set-cross product of sets X , Y , H to real numbers R. The hypothesis
h that minimizes the average loss function is considered optimal and it is chosen as
final model m to make inferences.

l : X × Y ×H → R (3)

In supervised learning problems labeled data points (z(i), y(i)) ∈ Z ⊂ Z ×Y are
provided by the hypothetical teacher. These labeled data points form a numerable
training set Z. The job of the model creator is to find the best possible model m ∈ H
that is consistent on training data and generalizes well on new data points that are
not in Z. Model is said to be consistent if it achieves near 100% accuracy over the
training set. Usually, it is not possible to achieve 100% consistency and get high
prediction accuracy on new unseen data points. If the model is predicting accurately
labels for data points that it has not used for training, it is said to generalize well to
new data. If the model is consistent but does not generalize well to new data, it is
said to suffer from over-fitting.

In unsupervised learning, only data points are provided z ∈ Z ⊂ Z. There are
no labelled data points available. The job of the model is to group the data points
based on some metric of similarity.

In reinforcement learning, the model or agent learns by receiving reinforcements
from the environment. Unlike in supervised learning, there is no teacher to provide
correct labels to the model. Based on the input received from the environment
model must decide how it should adjust itself in order to improve the performance.
AlphaGo, current artificial champion in the game of Go, is an example of applying
reinforcement learning problem to solve real world problem [12]. No human was able
to beat the AlphaGo to date. In this chapter, only supervised and unsupervised
learning models are considered.

Inputs and outputs of a model can be represented by quantitative or qualitative
variables. Quantitative variables are measurable quantities represented by real
numbers like pressure, voltage or velocity vector of a point. Note that quantitative
variables are not necessary scalars. For example, velocity vector of a point in an
open space is represented by three real number. Qualitative variables take values
from a finite countable set of distinct elements. Elements of the set define categories.
For that reason, qualitative variables are also called categorical. An example might
be a set of integer number from 0 to 9 representing decimal digits.
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The models outputting categorical labels are called classifiers and the models
with quantitative labels are called regression models or predictors. Models that have
both types of outputs are called mixed models [8].

For some machine learning classification problems that have by definition dis-
crete label space the hypothesis space might contain mappings which map input to
continuous variable. The final prediction is then made using a decision function
that maps the values returned by hypothesis to labels. If d is decision function, then
f from 1 can be rewritten as the following mapping composition:

f = fx ◦m ◦ d

One more distinction exists between the machine learning models. They can be
parametric or non-parametric. Parametric models are described using a finite
set of parameters. For example, if scalar value is predicted by the model that is
represented by polynomial function, then coefficients are parameters. Knowing the
coefficients, prediction can be calculated. Non-parametric models use feature vectors
obtained from the data points to do prediction or classification.

The loss function 3 averaged over available feature vectors from X is called
empirical risk, where X is defined by:

X = {(fx(z(i)), y(i))| (z(i), y(i)) ∈ Z} (4)

The empirical risk is usually defined so that the main objective of machine learning
algorithm is to minimize the risk. In mathematical terms empirical risk is a high
dimensional function. Machine learning algorithm finds the best possible function
from the hypothesis space, given observed data, that produces the global or local
minimum of the high dimensional empirical risk function.

Now, that the basic theory of ML is covered, some common machine learning
models used in IoT domain will be considered.

2.4 Machine Learning in IoT domain
The major use of machine learning in IoT domain is data analytics. In [16] an
extensive evaluation and literature review of most frequently used machine learning
techniques applied to data produced in the smart city environment was conducted.
The result of this work is presented in Table 2.1. The table is modified from its
original form. As can be seen from the table, most of methods can be used for both
classification and regression tasks and there are more supervised than unsupervised
methods. This reflects the fact that supervised learning techniques are much more
developed than unsupervised methods. Supervised methods are also more widely
used in applications.

The first column of Table 2.1 describes the name of the model. Second column
describes the type of machine learning: supervised or unsupervised. Third column
describes is model used for classification or regression tasks. Note that most models



21

Table 2.1: Common machine learning models for IoT.

Model Name Type Usage Parametrization
K-Nearest Neighbors Supervised Classification

Regression
Non-parametric

Naïve Bayes Supervised Classification Parametric
Support Vector Ma-
chine

Supervised Classification
Regression

Non-Parametric

Linear Regression Supervised Regression Non-parametric
Decision Trees Supervised Classification

Regression
Non-parametric

Bagging Supervised Classification
Regression

Depends on the
base model

Random Forest Supervised Classification
Regression

Non-parametric

K-means Unsupervised Classification Parametric
Principal Component
Analysis

Unsupervised Dimensionality
reduction
Feature
extraction

Parametric

Feed Forward Neural
Networks

Supervised
Unsupervised

Classification
Regression

Parametric

can be used of both tasks. Fourth column describes, is the model parametric or
non-parametric.

Table 2.2 shows typical feature space, label space and hypothesis space for
models presented in Table 2.1. Second column after the name column is for input
feature space. Third column describes output label space. Fourth column is a short
description of model with mathematical description of its hypothesis space or decision
function. Note that dimensions and elements of the spaces are picked randomly. The
space of real numbers can be replaced by any other metric space. Metric space is
set of elements that have a definition for a measure of distance between any two
elements from the set. The hypothesis spaces presented in Table 2.2 might not match
precisely with other formulation provided in the literature. Because neural networks
are currently among the most popular machine learning methods, they are covered
in more detail in next section. Next sections also shows how the concepts presented
in Machine Learning section apply to the most basic type of neural network.
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Table 2.2: Description of common machine learning models from Table 2.1.

Model Name Feature
Space
X

Label
Space Y

Description and hypothesis space

K-Nearest Neigh-
bors
Classification

x ∈ R2 y ∈ {a, b, c} ŷ = h(x, k,X) where is ŷ is predicted label, k is
number of neighbors and X is training set with
feature vectors extracted from raw data points and
labels as defined in 4. Using some metric like Eu-
clidean measure, distances between input vector x
and k nearest vectors from X are calculated and
label is assigned using majority vote. For example
if k = 3 and 3 nearest neighbors have labels a, a, b
then ŷ = a.

K-Nearest Neigh-
bors
Regression

x ∈ R2 y ∈ R For regression, label space is continuous and ŷ is
equal to the mean value calculated from the labels
of the k nearest neighboring points from training
set X.

Naïve Bayes x ∈ R2 y ∈ {a, b, c} The hypothesis space is parametrized by condi-
tional probability distributions of the elements of
feature vector conditioned on the label values and
the so called prior probability distribution of labels.
The decision function is:

ŷ = argmax
y∈Y

P (y)P (x1|y) ∗ P (x2|y)

The feature vector x is assumed to be random vari-
able and its elements x1 and x2 independent random
variables. This assumption of independence is the
reason why the method is called naive. Prior P (y)
is usually estimated by the frequency of occurrence
in training set. If size of the training set X is N
and point with label a occurs na times in X then
prior P (a) is estimated by P (a) = na

N
. Conditional

probability P (xi|y) is usually estimated by a prob-
ability distribution in the form of a function like
Gaussian or exponential probability distribution.
The parameters for chosen distribution, like mean
and variance are estimated from training data.
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Support Vector
Machine
Classification

x ∈ Rd y ∈ {−1, 1} Two class classification problem is provided as an
example. This model can be extended to multi-
ple classes using one-versus-rest formulation. The
classifier is defined by:

h(x) = sgn(
n∑
i

αik(xi,x) + b)

Here α are real numbers solved by the learning algo-
rithm using the training data. k is kernel function
defined by:

k(x,x′) = θ(x) · θ(x′)

Where θ is some vector valued function and · denote
vector dot product. Hence the classification func-
tion in hypothesis space depend on the choice of θ
and samples from training data. b is bias and sgn
signum function that returns 1 if input is positive
number and −1 if input is negative number. [17]

Support Vector
Machine
Regression

x ∈ Rd y ∈ R The hypothesis space for SVM regressor resembles
hypothesis for linear regression with feature vector
replaced by θ(x).

h(x) = w · θ(x) + b

w vector and intercept b are learned from training
data. [17]

Linear regression x ∈ R2 y ∈ R The most basic technique for machine learning and
a text book favorite. The hypothesis is defined by

h(x) = w · x + b = w1x1 + w2x2 + b

The model is parametrized by weight vector w ∈ R2

and intercept b ∈ R.
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Decision Trees
Classification
Regression

x ∈ R2

y ∈ R
y ∈ {0, 1, 2}

Decision tree learning algorithm partitions the fea-
ture space into non-overlapping subspaces, it strat-
ifies the feature space. For two-dimensional feature
space in this example, the partition is easy to visu-
alize with a figure. Figure I. below, shows recursive
binary splitting of a feature space restricted to a
unit square [0, 1]× [0, 1]. Points in Figure I. rep-
resent samples from the training set. Color and
shape of the points represent labels. Red circle is 0,
green diamond is 1 and blue square is 2. Areas in
each strata form subspaces Ri. The splitting lines
are defined by values ti. [18]

t1

t2

t3

t4

R1
R2

R3

R4

R5
x2

x1c1 = 0

c2 = 2

c3 = 2

c4 = 0

c4 = 0

Figure I.

For each region a simple model is fitted to the data.
In the case of regression, it is constant calculated
as a mean of all training samples inside the region.
For classification decision tree the most dominating
label among the training points in the region can be
chosen as a label for the whole region. In Figure I
classification problem is assumed. The dominating
labels are denoted by ci in the figure. [18]
The hypothesis space is composed of all possible
partitions of feature space or its subspace. The hy-
pothesis for the classifier and predictor estimating
continues values have identical equations. Equa-
tion 5 depicts hypothesis map for partition pre-
sented in Figure I. I is a function that returns 1 if
x is inside region Ri and 0 if it doesn’t belong to
the region. [18]

h(x) =
5∑

i=1
ciI(x ∈ Ri) (5)
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Decision Trees
Classification
Regression

x ∈ R2

y ∈ R
y ∈ {0, 1, 2}

The decision tree is grown by recursively splitting
the features space into non-overlapping regions.
The technique is called decision tree because the
hypothesis can conveniently be represented by a
tree structure. [18]

Bagging Bagging is also referred to as bootstrap aggrega-
tion. In bootstrap aggregation the prediction of a
hypothesis map of a base model is averaged over a
collection of bootstrap samples with goal of reduc-
ing the variance of estimation. [18]
If there is M bootstrap samples X∗b partitioning
the training set X, the base model is fitted to each
sample getting the optimal base hypothesis map
m∗b. The final prediction is an average over base
hypothesis maps [18]:

h(x) = 1
M

M∑
b=1

m∗b(x)

The above formula is for regression problem. For
classification problem for each class indexed by
integer k the proportion of models pk(x) predict-
ing class k is calculated for data point x. Bagged
classifier returns value that has the highest propor-
tion. [18]

Random Forest Random forest model is a modification to bagging
with a decision tree as a base predictor. It con-
structs a large collection of de-correlated trees and
then averages the predictions from them to calcu-
late final result like in bagging. The predictor map
is similar to what was presented for bagging. The
correlation is reduced by random selection of fea-
tures from a feature vector at each step of growing
a regression tree. [18].
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K-Means x ∈ R2 y ∈ 1, ..., k In k-means machine learning technique the algo-
rithm clusters the points from training set into k
clusters, calculating the centroid for each cluster,
using some similarity measure to determine which
point should belong to same cluster. k is hyper-
parameter representing the assumption about the
data. For the data points in R2 the similarity might
be Euclidean distance or the dot product of two fea-
ture vectors. This method doesn’t require labeled
data. Clustering can be interpreted as extreme case
of classification problem when labels for the data
points in training set are not available. [8]
The classifier function assigns a label to new input
data point based on what centroid is nearest to
the data point. The hypothesis space if formed by
all possible cluster assignments and the decision
functions might be:

h(x) = min(argmin
y∈Y

||x−my||)

Here, my are cluster centers. min functions picks
the class with minimal index. If distance be-
tween x and multiple centers is the same and
argmin||x−mk|| is a set that has more than 1
element then strategy is needed to choose only one
class, for that min is used. [8]

Principal Com-
ponent Analysis

x ∈ R13 y ∈ R2 Principal Component Analysis is used to reduce
the number of features in the high dimensional
feature vector that is fed to machine learning model
as input. Using high dimensional feature vectors
requires a lot of compute and memory resources to
execute the model. For some models using large
number of features might produce an overfitting
effect. Reducing the number of features to two
is sometimes useful to visually inspect data. For
these reasons reducing the number of feature is
beneficial. [8]
The hypothesis map for PCA is linear transforma-
tion define by matrix W. For our example this is
13 by 2 matrix. How this matrix is calculated is
out of scope for our work. Interested reader can
read [8] to find out more about PCA.
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Feed Forward
Neural Networks

x ∈ R2 x ∈ R A type of neural network without feedback loops.
The hypothesis space is defined by network topol-
ogy and a set of numerical parameters. The output
of a neural network is usually continuous. For
classification problem it can indicate the score or
probability of belonging to different classes in a
classification problem. Decision function for clas-
sification problem picks the class that has highest
probability.
Because of the current popularity of neural networks
they will be treated in more detail in section 2.5.

2.5 Neural Networks
The most fundamental building block of any computational neural network is Rosen-
blatt’s perceptron, named after a psychologist Frank Rosenblatt who published a
paper presenting it in 1958. The perceptron represents a single unit of computation,
that applies an affine mathematical operation and optional non-linear mathematical
function to one or more scalar inputs producing a single scalar output. The percep-
tron is a single neuron of a neural network, and a neural network is built out of such
neurons with connected inputs and outputs. [19]

x1

x2

.

.

.
xn−1

xn

v

b

φ y

w1

w2
wn−1

wn

v = w · x + b

φ(v)

Figure 2.1: Graph diagram of Rosenblatt’s perceptron.

Figure 2.1 illustrates Rosenblatt’s perceptron as a directed graph. Scalars xi,
where xi ∈ R, are inputs and can be thought of as components of m-dimensional
input vector x ∈ Rm. The directed arrows starting at inputs and converging at a
single point are called synapses and a scalar number assigned to each synapse is
called a synaptic weight. One other converging arrow with bias value b is not part
of the input and is internal to the perceptron, it can be thought of as a translating
component of an affine transformation. Using synaptic weights and bias perceptron
does affine transformation taking a dot product between input vector x and a vector
of synaptic weights w and adding bias b to the result. The result of affine operation
is called local field v. Formula for local v field is:
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v = w · x + b

The nonlinear operation can be any real valued function φ that takes local field as
input and produces final output of neuron. φ is also called activation function. Some
choices of activation function where found to be better than others for numerical
stability and theoretical inferences like mathematical proofs. In practice only, couple
of well-known and well-studied function are used for activation of a neurons. The
symbolic mathematical expression for the perceptron is simply:

y = φ(v) = φ(w · x + b) (6)

Rosenblatt’s perceptron can be trained to classify a linearly separable pattern in
a finite number of steps [19]. If a feature space is a subspace of R2 and a label space
consists of only two labels, the pattern is linearly separable if points belonging to
different classes can be separated by a line. In higher dimensional space the line is a
hyperplane.

Next, to highlight the basic concepts of machine learning presented in previous
sections, an example of a perceptron that does binary classification of a linearly
separable pattern in two-dimensional feature space is presented. It is assumed, that
the features are already extracted from the raw data and feature space is X = R2.
Usually the process of identifying how to extract features and what features are
import is quite involved process but it is skipped here, because it is a very domain
specific problem. The label space consists of two number Y = {−1, 1}, number 1
identifies belonging to class C1 and number −1 to class C2. The model is described
by a neuron with two inputs and activation function is an identity. The decision
function is a signum function that outputs positive one for positive value produced
by a neuron and respectively negative one for negative number. The hypothesis space
is parametrized by two weights and a bias values. For that reason, the hypothesis
space can be identified with R3.

At this point: feature space, label space, model, hypothesis space and a decision
function are defined. To train the model a loss function is needed, empirical risk and
training data. Discrete training set of N training samples is denoted by X. Elements
of this space are tuples (x(i), y(i)) where x(i) ∈ X and y(i) ∈ Y. The loss function
needs to be small when model classifies input feature vector correctly, indicating
the correct prediction and the value of the loss function needs to be large when the
model misclassifies the feature vector. For the example problem the following loss
function l can be used:

l((x, y), h) = ln (1 + e−yh(x)) (7)

This function is called logistic loss function. The hypothesis map h is as in
expression 6 with φ set to identity function. If the value of y is fixed to -1 and loss
function is plotted as function of h, it can can be seen the function has large values
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when h is positive indicating the error in classification and it is decreases rapidly
when h has negative values. If y is set to unity the effect is reversed. Plots for both
cases are presented in Figure 2.2.
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Figure 2.2: Logistic loss function 7 as a function of h for y = −1 in (a) and y = 1 in
(b).

The empirical risk EMR is an average of a loss function 7 over all samples from the
training set and can be expressed by the formula 8. In this formula the mathematical
expression is expanded showing explicitly dependence of EMR on elements of weight
vector w, bias b and training data from X.

EMR = 1
N

∑
(x(i),y(i))∈X

l((x, y), h) = 1
N

∑
(x(i),y(i))∈X

ln
(
1 + e−y(i)(w·x(i)+b)

)
(8)

= 1
N

∑
(x(i),y(i))∈X

ln
(

1 + e−y(i)(w1x
(i)
1 +w2x

(i)
2 +b)

)
(9)

Now that all three components of a machine learning problem are specified the
model can be trained on the available training data. The loss function 7 has a
special property. It is differentiable with respect to hypothesis h. Since h is also
differentiable with respect to its parameters from the theory of calculus it is known
that composition or sum of differential function is a differentiable function. Hence,
the loss function 7 and empirical risk 8 are differentiable functions.
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By minimizing the empirical risk with respect to parameters the best hypothesis,
that can be used for inference, is obtained. The parameters w and b that minimize
empirical risk are the ones that define the hypothesism that is used to make inferences
after training. Since EMR is differentiable function it is possible to find a critical point
of empirical risk function by equating is partial derivatives to zero as in equation 10.
Critical point can be local/global minimum, maximum or saddle point. Additional
investigation must be performed in order find out the type of critical point. For
function that are convex, like a parabola in two-dimensional Cartesian real space
opening towards positive y-direction, the critical point is minimum but not necessary
global minimum.

∂EMR
∂w1

= ∂EMR
∂w1

= ∂EMR
∂b

= 0 (10)

The author presented the most simple type of feed-forward neural network con-
sisting of only single neuron. Neural networks used for real world problems are much
more complex utilizing other types of neurons that express for example convolution
operation. These different types of neurons can form composite block called layer
and layers can still be connected further forming very deep topologies. The outer
layers are usually referred to as input and output layers, and inner layers are called
hidden layers because they are not directly visible to the user of the network. Having
many layers is the main reason why neural networks are called deep. Basically any
network that has more than one hidden layer is considered deep.

Although in practice networks can be much more complex, as was explained in
previous paragraph, the process of defining and training the network follows the
same steps as presented for Rosenblatt’s perceptron. In the example presented,
optimal weights and bias can be calculated analytically. For complex networks and
other types of machine learning algorithms, it is usually near impossible to solve
optimization problem of minimizing empirical risk analytically, that is why numerical
methods must be used.

If empirical risk is differentiable the most popular methods of solving for optimal
values are family of methods based on gradient descent. Gradient descent method
is an iterative algorithm utilizing gradient of empirical risk to iteratively, step by
step improve the estimate of a critical point. Gradient is vector field, the values of
its components are derivatives taken at some point on the surface of empirical risk
with respect to parameters and bias. Geometrically speaking empirical risk defines a
surface in high dimensional space similar to equation of a sphere in 3-dimensional
space. Being able to calculate derivatives is critical in utilizing gradient descent
method and most of software for creating and training neural networks implement
efficient data structures and algorithms for calculating gradients of complex function
representing neural networks.
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3 Machine Learning Libraries and Formats
In the beginning of this chapter two popular state of the art software libraries for
creating, training and executing machine learning algorithms are presented. After
that, two library independent formats for distributing machine learning models are
considered. Because of the recent achievements of deep learning models [1], the most
popular and hyped machine learning libraries are heavily specialized for creating,
training and executing, data and computing hungry, deep learning architectures.
Most of the libraries are available as open source software, but behind each popular
deep learning library stands one of the IT industry giants like Facebook, Google
or Amazon. Many deep learning libraries exist, only a few are mentioned next:
TensorFlow (Google) [20], Caffe2 (Facebook), PyTorch (Facebook) [21], MXNet
(Amazon) [22] and more exotic based on OCaml functional programming language
OWL [23].

One can classify deep learning libraries based on the programming model provided
for defining computations to a software developer and data scientist. Currently, two
programming models, also word paradigm can be used, exist: declarative approach
and imperative approach. In Caffe2 library, data scientists can only use the declarative
approach. In PyTorch, developers can only use the imperative programming model
for writing ML code. MXNet supports both paradigms and for that reason it will
be presented in this chapter, after the section about declarative and imperative
approaches.

In this chapter classical machine learning Python library scikit-learn is also
presented. scikit-learn library [24] is scientific computation environment for doing
machine learning and statistics calculations that can be considered a traditional
imperative library for doing data-analytics and creating machine learning applications.

Common, to almost all machine learning libraries, is that they are partially
written in C, C++ or Fortran4, that is so called back-end implementation of the
library, for efficiency, but APIs for the users of the library are usually exposed via
one or multiple other languages that are considered more convenient to use. Python
being the most popular interfacing language at the time of writing this thesis.

After understanding how ML models are created, formats for enabling interop-
erability between different machine learning libraries are covered. Interoperability
is to be understood as having a common format for sharing ML models between
different ML libraries. Two formats are presented: Open Neural Network Exchange
(ONNX) [25] and Predictive Model Markup Language PMML [26]. The ONNX
format will be used as a base for the proof of concept intelligence layer service
prototype in later chapters of this work.

3.1 Differences between declarative and imperative approaches
In most state-of-the-art deep learning libraries, neural networks are represented by
Directional Acyclic Graphs (DAGs) also called dataflow graphs. This is done to allow

4Mathematical libraries written in Fortran are still used for scientific calculations, especially
linear algebra e.g. LAPACK.
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efficient execution of neural network in training and inference and to make possible
efficient calculation of partial derivatives by reverse mode algorithmic differentiation.
As was described in Chapter 2, the calculation of partial derivatives is a necessary
step for stochastic gradient descent, main technique used for training neural networks
and other machine learning models when the loss function is differentiable.

In declarative approach to programming deep learning models, the compu-
tational graph is defined before any computations take place. After the graph is
defined, it is compiled into executable code and then used on every iteration either
for inference or training. The graph is static. The declarative approach is also often
described as define-and-run method or symbolic approach to machine learning.

Imperative approach can be characterized by the phrase define-by-run, no-
tice the by in the phrase. The graph is constructed dynamically on every iteration.
This allows developer to use familiar style of imperative programming for constructing
a graph, mixing construction of graph with control constructs of the host program-
ming language like conditionals: if, else and looping statements: for, while. It also
allows to get intermediate results of calculation much easier than with declarative
approach.

The imperative approach is more flexible than symbolic approach. It allows to
write and experiment with different deep learning parameter optimization techniques,
variation of stochastic gradient descent for example, and network typologies much
easier than with rigid static graphs. Declarative approach with static DAG allows
for more performant code that can be parallelized and optimized for faster execution
much easier than code written with imperative approach hence making training and
inference faster.

Some libraries combine two approaches to benefit from both. For example, OWL
and MXNet use both techniques. In the code Listings 3.1 and 3.2 the author presents
MXNet code for training a one neuron perceptron classifier with two inputs and a
logistic loss function. The code in Listing 3.2 is an example of imperative approach.
Code in Listing 3.1 is an example of declarative approach. Code for generating
synthetic training data is omitted from the listings.

Listing 3.1: Declarative MXNet code for training Rosenblatt’s perceptron with two
synapses, for a binary classification problem using gradient descent method.

1 import mxnet as mx
2 import training_data
3

4 # Symbol represents matrix of feature vectors from training set.
5 x = mx.sym.Variable('x')
6 # Symbol represents vector of labels from the training set
7 # corresponding to feature vectors from x.
8 l = mx.sym.Variable('l')
9 # Symbol represents synaptic weights of the perceptron.

10 w = mx.sym.Variable('w')
11 # Symbol represents bias to the perceptron.
12 b = mx.sym.Variable('b')
13

14 # Induced local field of perceptron.
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15 v = mx.sym.broadcast_add(mx.sym.dot(x, w), b)
16 # Logistic loss function.
17 loss = mx.sym.log(1 + mx.sym.exp(-v * l))
18 # Empirical Risk.
19 emr = mx.sym.mean(loss)
20 # Binding values from training data and initial values for synapses and ←↩

bias.
21 ex = emr.bind(ctx=mx.cpu(), args={'x': mx.nd.array(training_data.X),
22 'l': mx.nd.array(training_data.y),
23 'w': mx.nd.array([[1], [1]]),
24 'b': mx.nd.array([1])},
25 args_grad={'b': mx.nd.zeros(1), 'w': mx.nd.←↩

zeros((2, 1))})
26

27 learning_rate = 0.1
28 for epoch in range(100):
29 # Calculating empirical risk and derivatives.
30 ex.forward(is_train=True)
31 ex.backward(mx.nd.ones(1))
32 ex.arg_dict['w'] -= learning_rate * ex.grad_dict['w']
33 ex.arg_dict['b'] -= learning_rate * ex.grad_dict['b']
34

35 print("Synaptic Weights")
36 w_final = ex.arg_dict['w'].asnumpy()
37 print("w_1 = {:.3}, w_2 = {:.3}".format(w_final[0,0], w_final[1,0]))
38 print("Bias")
39 print("b = {:.3}".format(ex.arg_dict['b'].asnumpy()[0]))

3.2 MXNet
MXNet is a library for creating large-scale deep neural networks. It is possible to
do general mathematical computation with MXNet, but the library was designed
to help developers to utilize the full computational capabilities of multiple GPUs
and cloud compute infrastructure for creating neural networks. After-all, Amazon is
the main stakeholder for the project. Library offers device placement to allow the
developers to easily specify in what memory data structure used in computations are
stored. For example, if computations are executed on the GPU then data structures
must be in GPU’s memory and amount of copying between main memory and GPU
memory must be minimal to avoid high latency when chucks of memory are moved
via slow external buses5. It is possible to scale computation over multiple GPUs
or network clusters. Library also provides automatic differentiation for calculating
derivatives to optimize neural network’s parameters.

MXNet provides predefined neural network layers. These layers are optimized
for speed. They can help developers to create efficient deep neural networks out of
the ready-made building blocks without the need to write code for implementing
common computations. For example, MXNet has predefined layer for fully connected

5External to CPU cache, GPU memory and main memory. That is buses which allow to move
data between different memory types.
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layer where each neuron has synaptic connections to all outputs of a previous layer
of neural network to which it belongs.

Listing 3.2: Imperative MXNet code for training Rosenblatt’s preceptron with two
synapses for a binary classification problem using gradient descent method.

1 from mxnet import nd, autograd
2 import training_data
3

4 # NDArray contains matrix of feature vectors from training set.
5 x = nd.array(training_data.X)
6 # NDArray contains vector of labels from the training set
7 # corresponding to feature vectors from x.
8 l = nd.array(training_data.y)
9 # NDArray for synaptic weights.

10 w = nd.array([[1], [1]])
11 # Allocating memory for gradient
12 w.attach_grad()
13 # NDArray for bias
14 b = nd.array([1])
15 # Allocating memory for gradient
16 b.attach_grad()
17

18

19 learning_rate = 0.1
20 for epoch in range(100):
21 # Recording graph
22 with autograd.record():
23 v = nd.dot(x, w) + b
24 loss = nd.log(1 + nd.exp(-v * l))
25 emr = nd.mean(loss)
26 # Calculating gradient
27 emr.backward()
28 w[:] = w - learning_rate * w.grad
29 b[:] = b - learning_rate * b.grad
30

31 print("Synaptic Weights")
32 print("w_1 = {:.3}, w_2 = {:.3}".format(w[0,0].asscalar(), w[1,0].asscalar←↩

()))
33 print("Bias")
34 print("b = {:.3}".format(b.asscalar()))

3.2.1 MXNet Model Server

The implementation of intelligence layer service presented in Chapter 4 will be used to
serve ML models locally using some local inter process communication protocol that
enables communication between IL service and applications requesting intelligent
services. MXNet Model Server is part of the Apache MXNet project. It is software
for serving machine learning models using HTTP endpoints as services providing
endpoints. Hence, MXNet model server provides functionality that might seem
similar to IL at first, but there are some differences.
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MXNet model server is oriented more towards cloud environment compared to
IL that is supposed to run on device and utilize cloud service as extra functionality.
The way how models are provisioned, in the implementation of IL presented in this
work, are also very different. In MXNet model server, a model that is executed, is
represented by a Python program. Allowing for a lot of flexibility in terms of data
post- and pre-processing and libraries used to do inference. This approach adds work
for intelligence model provider to write additional code around the machine learning
model. Implementation of intelligence layer in this work is expecting just an ONNX
model file produced as an artefact during model training and development process.

It must be reminded to the reader that IL is not just about model serving [7].
But in this thesis, only the model serving aspects of IL are considered.

3.3 Scikit-learn
In the data science and machine learning community, scikit-learn machine learning
library is considered rightly, an entry point into the science of data analysis and
machine learning, because of its nice API design [27] and very comprehensive doc-
umentation. [24] In contrast to MXNet, scikit-learn has implementation for many
different classical machine learning models and its domain is medium-scale learning.
Scikit-learn is a Python library and it uses Numpy package’s ndarray for representing
low and high dimensional mathematical objects like scalars, vectors, matrices and
tensors. These two facts make the library beginner friendly and lower the entry
barrier into the machine learning world. In this subsection, the main features of
scikit-learn are highlighted without considering its details. Only one example of very
simple application will be provided. The interested reader can refer to extensive
scikit-learn’s online documentation to get more informative overview of the library.

The scikit-learn library supports supervised and unsupervised classical machine
learning models like generalized linear models, decision trees, support vector machines,
clustering, gaussian mixture models, fully connected multi-layer perceptron and many
more other models. It also supports model selection and validation techniques like
different metrics to evaluate model performance e.g. least mean square measure
and cross validation like k-fold cross validation. The transformation of the data like
dimensionality reduction or normalization are supported as well.

The main conceptual object of the scikit-learn library is an estimator. Estimators
are objects that can be trained from the data and used for predictions. Estimators
usually have fit method. For supervised learning, the parameters to the fit method
are an array of data points and array of labels that correspond to the data points. For
unsupervised learning estimators, only data points are provided. Most of estimators
have predict and score methods to generalize to new data points and evaluate
performance of the model. Transformers like PCA have transform method to
transform the data. Transformers and estimators can be combined into a composite
estimator by Pipeline objects.

The code in Listing 3.3 presents a simple machine learning application that is used
to predict the price of one crypto-currency based on the price of other crypto currency
using linear regression model. The machine learning algorithm is represented by
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a pipeline that first uses transformer to standardize, scale and move all the points
so that the mean and variance of the input data is 0 and 1 respectively, and then
applies linear regression to data. Part of the data is used for training and part for
testing the model. Note, that label data is also standardized.

Listing 3.3: Python code, showing how scikit-learn library can be used to train linear
model to predict closing price of Etherium crypto-currency based on the closing price
of Bitcoin crypto-currency.

1 from sklearn import linear_model
2 from sklearn.preprocessing import StandardScaler
3 import pandas as pd
4 from sklearn.pipeline import Pipeline
5

6 # Loading and reshaping data for the training set
7 # Closing prices for Ethereum and Bitcoin are stored in separate CSV files
8 df_bc = pd.read_csv("BTC-USD.csv", parse_dates=['Date'])
9 df_eth = pd.read_csv("ETH-USD.csv", parse_dates=['Date'])

10

11 bcv = df_bc.Close.values.reshape(-1, 1)
12 etv = df_eth.Close.values.reshape(-1, 1)
13

14 # Split the features into training and testing sets
15 X_train = bcv[:-20]
16 X_test = bcv[-20:]
17

18 # Split the labels into training and testing sets
19 y_train = etv[:-20]
20 y_test = etv[-20:]
21

22 scaler_for_labels = StandardScaler().fit(y_train)
23

24 pipe = Pipeline(steps=[('data_transformer', StandardScaler()), ('model', ←↩
linear_model.LinearRegression())])

25

26 # Training the model
27 pipe.fit(X_train, scaler_for_labels.transform(y_train))
28 # Testing the model
29 print(pipe.score(X_test, scaler_for_labels.transform(y_test)))

Scikit-learn has a very well designed APIs. It is reasonable to use Scikit-learn’s
API as a motivating example for designing APIs for model serving solutions like IL.

3.4 Formats for representing machine learning functions and
models

Machine learning libraries usually use their own internal data structures to represent
calculations or even multiple different data structures suitable for each machine
learning technique. These structures are usually expressed by Domain Specific
Languages (DSL) or native Intermediate Representations (IR) specific to a library.
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Different libraries might also support different programming languages for creating
machine learning applications.

The environment where ML model is developed and trained and where it is
supposed to be executed might be drastically different. The image recognition model
might be developed and trained in the cloud where computational resource can be
acquired on demand. But the deployment environment, where inference on local
data is performed, for the same image recognition model, might be a mobile phone or
IoT device like Raspberry Pi. These facts make it difficult to share models between
different libraries and deploy and integrate machine learning solutions into production
quality applications.

Because of the differences between ML model development and execution environ-
ment, it is important from performance and interoperability perspective to be able
to develop ML algorithms using one library and then execute or improve it using
another library. This requires having a common standardized IR for representing
ML models. ML library providers can use this common IR to write converters and
backends to enable interoperability with other frameworks. The job of the converter
is to translate from the library’s native IR to standardized open IR. Backend is
supposed to be able to read the model description in standardized IR and execute
it or provide the access to native IR format if the purpose is to improve the model
by training on different data or evaluating its performance. The standardized IR
for ML models might also be considered as standard that enables distribution and
provisioning of machine learning models. The aspects of distribution and provisioning
of machine learning models are a key theme of this thesis.

In this section two IR formats are considered. Those formats are listed in the list
below. Both of these formats are open. ONNX uses protocol buffers to define the
format and encode the models. PMML is based on XML. The model expressed with
ONNX is distributed as protocol buffer file and PMML model is distributed as an
XML file. Based on the study of these formats, one format is picked as base for the
prototype of intelligence layer.

• Open Neural Network Exchange (ONNX) format

• Predictive Model Markup Language (PMML) format

3.4.1 Protocol buffers

The Extensible Markup Language XML format used for representing PMML models
is a very common encoding for documents and data structures that is human readable
and machine readable. It will not be covered in this thesis. Readers who are not
familiar with XML can refer to [28] for more information about XML. Protocol
buffers are less well known. Protocol buffers are explained in this subsection.

Protocol Buffer (PB) is an alternative format to XML overcoming some of its
shortcomings. Protocol buffer format was developed internally by Google and made
available for general use as an open source project. [29] On the protocol buffer’s
project web page, PB is described as:
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Language-, platform-neutral extensible mechanism for serializing structured data
that is faster, smaller and simpler than XML.

PB is a format for serializing and deserializing data structures. It is used in
communication protocols, data storage and for other things. Use-case for this thesis
is: representing machine learning models.

The data structures are defined in the text files postfixed with proto or proto3
postfixes. The proto file contains message types. The messages define structure of
the data. Each message has a type and is defined by numbered name-value pairs,
as shown in code Listing 3.4. Value type can be integer, floating-point, boolean,
string, enumeration, raw bytes or other messages. The name-value pair can have a
qualifier in front: required, optional or repeated. The required pairs are required for
a message to be valid. Optional fields are as a name suggested optional. Repeated
fields are kind of arrays. The message can have zero or mores repeated fields. There
are two version of protocol buffer language used to define messages, that is reason
to have 3 in the proto3 prefix. The full description of PB language can be found
online at [30].

Listing 3.4: Snippet from protocol buffer definition of a ONNX Tensor. Used to show
basic constructs of PB message definition.

1 message TensorProto {
2 enum DataType {
3 UNDEFINED = 0;
4 // Basic types.
5 FLOAT = 1; // float
6 UINT8 = 2; // uint8_t
7 INT8 = 3; // int8_t
8 // Other types...
9 }

10

11 // The shape of the tensor.
12 repeated int64 dims = 1;
13

14 // For very large tensors, we may want to store them in chunks, in which
15 // case the following fields will specify the segment that is stored in
16 // the current TensorProto.
17 message Segment {
18 optional int64 begin = 1;
19 optional int64 end = 2;
20 }
21 optional Segment segment = 3;
22

23 repeated float float_data = 4 [packed = true];
24

25 // For int32, uint8, int8, uint16, int16, bool, and float16 values
26 // float16 values must be bit-wise converted to an uint16_t prior
27 // to writing to the buffer.
28 // When this field is present, the data_type field MUST be
29 // INT32, INT16, INT8, UINT16, UINT8, BOOL, or FLOAT16
30 repeated int32 int32_data = 5 ;
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31 }

As depicted in Figure 3.1 the messages definitions file is compiled into language
specific classes that can be used to serialize and deserialize data in the variety of data
streams. Protocol buffer supports many languages: C++, Python, Java and others.
That is, it provides compiler to compile proto files and produce native code for all
these languages.

msg.proto
Protocol Buffer

Compiler
protoc

msg.hpp

msg.cpp

C++ Compiler

Protcol Buffer
Library

Executable

main.cpp

mlmodel.onnx

Figure 3.1: Process of producing C++ code from protocol buffer definition file and
using it in a C++ program to read ONNX file that represents ML model.

Figure 3.1 depicts the process of compiling Protocol Buffer messages definition
into C++ classes that can be used to serialize and deserialize PB files. msg.proto
defines the messages. protoc compiles msg.proto to C++ code representing C++
classes that can be used to serialize/deserialize messages and access encoded data
via members provided by produced classes. Classes also have methods to view
textual representation of a message. In order to use the classes in the main program
represented by main.cpp, it is needed to include produced header and code files and
also link to protocol buffer C++ library. This is all done by C++ compiler that produces
Executable that is able to read and deserialize binary encoded mlmodel.onnx file.

The serialized PB message can be represented in the textual or binary format.
To get all benefits of protocol buffers the binary format must be used. Using binary
format reduces the size of the message that is transferred overt the wire and enables
really fast parsing compared to XML. One thing to note is that proto file is required
in order to serialize and deserialize data. Without the native code, produced from
proto file by the PB compiler the binary encoded message is meaningless. Now, that
the basic of protocol buffers are covered, it is possible to move on to considering
ONNX that uses protocol buffers to define the IR format for ML models.

3.4.2 ONNX

ONNX is an open source format used to represent trained machine learning models.
Trained ML models are ready to be used for inference. As was mentioned in the
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previous subsection the ONNX model files are binary encoded non-human readable
protocol buffer messages. It means that syntax for ONNX format is completely
specified in the proto files. To created and read ONNX models it is necessary to
have classes produced from ONNX proto files by PB compiler. In other words,
these classes are used to serialize and deserialize ONNX models. The latest proto
files describing the format are available at ONNX project’s GitHub repository [31].
ONNX format was released in 2017, making it a relatively new project.

The ONNX proto files have message definitions for representing machine learning
model’s meta-data, standard data types, computational graph, that is the DAG
mentioned in section 3.1, and built-in operators that are nodes of computational
graph. A snippet from ONNX proto file specification defining the ModelProto
message is provided on the left side of Figure 3.2. The ModelProto PB message is
a top-level container defining the model. It is container for meta-data related to
model and computational graph. An example of serialized model in textual format
is presented on the right-hand side of Figure 3.2. The model represents a linear
regression model that takes batch of two-dimensional floating point valued vectors as
feature vectors and returns a batch of predictions. Most of the fields of ModelProto
are self-explanatory. The list below, explains less important fields:

• ir_version is the version of the ONNX format. Since current version is 3.
This field has value 3.

• producer_name: is the name of the tool used to create the model. The model
from Figure 3.2 was created using scikit-learn library and exported using
onnxmltools Python package. For that reason the field has value OnnxMLTools.

• producer_version: indicates version of the tool from previous item. In our
case, version of onnxmltools package is as reported by pip Python package
manager.

• domain: Reverse domain name indicating name space of the model. Together
with model version and graph name, these fields are used to uniquely identify
model.

• model_version: used to define model version.

• doc_string: is a textual model description.

The more interesting fields of the ModelProto message are graph, opset_import
and meta_props. The graph defines computational graph and opset_import the
set of operators that can be used as nodes in the graph. meta_props can be used
to specify additional meta-data like for example authors of the model or more
interestingly some additional fields to describe semantic meaning of model’s inputs
and outputs. For example, an 3× 256× 256 input tensor T might represent color
image using T[0,0:255, 0:255] for red color channel, T[1,0:255,0:255] for green
channel and T[2,0:255,0:255] for blue channel. The type of opset_import filed
is an array of OperatorSetIDProto messages. The definition of the message is
provided in Listing 3.5.
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1 message ModelProto {
2 optional int64 ir_version = 1;
3
4 optional string producer_name = 2;
5
6 optional string producer_version = 3;
7
8 optional string domain = 4;
9

10 optional int64 model_version = 5;
11
12 optional string doc_string = 6;
13
14 repeated OperatorSetIdProto opset_import = 8;
15
16 optional GraphProto graph = 7;
17
18 repeated StringStringEntryProto metadata_props = 14;
19 };

ir_version: 3
producer_name: "OnnxMLTools"
producer_version: "1.2.2.0129"
domain: "onnxml"
model_version: 0
doc_string: ""
graph {
node {
input: "input"
output: "variable"
name: "LinearRegressor"
op_type: "LinearRegressor"
// Some fields are removed
domain: "ai.onnx.ml"

}
name: "linear_model_graph"
input {
name: "input"
type {
tensor_type {
elem_type: FLOAT
shape {
dim {
dim_param: "None"

}
dim {
dim_value: 1

}
}

}
}

}
output {
name: "variable"
type {
tensor_type {
elem_type: FLOAT
shape {
dim {
dim_param: "None"

}
dim {
dim_value: 1

}
}

}
}

}
}
opset_import {
domain: "ai.onnx.ml"
version: 1

}

Figure 3.2: Snippet from ONNX proto definition of a top-level model container.
Right side shows textual representation of complete deserialized ONNX model.

Listing 3.5: Definition of OperatorSetIDProto message, used to specify operator
set.

1 // Operator Sets
2 //
3 // OperatorSets are uniquely identified by a (domain, opset_version) pair.
4 message OperatorSetIdProto {
5 // The domain of the operator set being identified.
6 // The empty string ("") or absence of this field implies the operator
7 // set that is defined as part of the ONNX specification.
8 // This field MUST be present in this version of the IR when referring to←↩

any other operator set.
9 optional string domain = 1;

10

11 // The version of the operator set being identified.
12 // This field MUST be present in this version of the IR.
13 optional int64 version = 2;
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14 }

As can be seen, OperatorSetIDProto message is defined by two fields, domain
that is a string and version that is an integer. Each node in the graph must belong
to one of the domains with version specified in opset_import for the model to be
valid. In the example depicted in Figure 3.2 the operator domain is ai.onnx.ml.

Currently there exists two domains of operators. Domain for deep learning
model is called ai.onnx. If domain is not specified ai.onnx is assumed by default.
The domain of the model from Figure 3.2 defines set of operators for classical
machine learning models. Since ONNX has its focus on deep learning models the
ai.onnx domain has much larger set of operators than ai.onnx.ml. 133 operators
in ai.onnx domain against 18 operators in ai.onnx.ml domain. The set of operators
for both domains are provide in Appendix A and are also available on the Web at
project’s GitHub page. It must be noted that default domain also includes operators
representing common mathematical operations like addition or multiplication.

The operators set is not the only difference between classical and deep machine
learning models in ONNX. Operators that are nodes of the computational graph can
have multiple inputs and multiple outputs. For operators from default domain only
dense tensor types for inputs and outputs are supported. Classical machine learning
operators in addition to dense tensors, support sequence type and map type.

In ONNX code base, the proto files for base structures of the model are available
as regular textual files. For the operators, unfortunately, the case is different. They
are created programmatically, making adding additional operators or reviewing the
existing ones difficult. In theory it is possible to extended ONNX with the set of
custom operators by defining the new operator set domain. In practice, at the time of
writing this thesis there is no additional operator sets to ai.onnx and ai.onnx.ml.

For the machine learning library to support ONNX it must be able to export
and import ONNX models. Exporting means creating the ONNX file from model in
the library’s native format to ONNX format. Importing implies to load and parse
an ONNX file into library’s native format and using model in the native format
for inference. Currently, the libraries listed in Table 3.1 claim to have support for
ONNX.

Unfortunately, there is no systematic research done on how well each of the
libraries from Table 3.1 supports the ONNX and how fluent is the process of moving
model from one library to the other. The metric to evaluate the level of support
might be count of operators that are implemented or count of successful imports from
the ONNX Model Zoo [33]. Most of the libraries and converters libraries presented
in Table 3.1 are deep learning libraries.

The ONNX Model Zoo [33] is a collection of pretrained models available in ONNX
format hosted on GitHub. Again, the emphasis is on state-of-the-art deep learning
models related to image processing tasks like image classification. These models can
be used for testing purposes or as a source of machine intelligence models.

The set of utility tools were developed around ONNX. One useful utility is
onnxmltools package that provides converters for some of the libraries from Ta-
ble 3.1. It provides converters from Apple Core ML, scikit-learn, Keras and LightDBM
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Table 3.1: Libraries that claim to support ONNX format either internally or via
converters. [32]

Neural Network Libraries Classical ML libraries
Caffe2 Scikit-Learn
Chainer LibSVM

Cognitive Toolkit Apple ML Core
PyTorch dmlc XGBoost
CoreML
MATLAB

SAS
PaddlePaddle
TensroFlow

Keras
NCNN

to ONNX. The example provided on the right side of Figure 3.2 was created by con-
verting scikit-learn linear regression model to ONNX. While using these converters,
it must be understood that only limited subset of all libraries native capabilities are
usually exportable to ONNX. Although the development is rapid and converters are
being improved all the time.

Although an exporter for scikit-learn library exists there is no importer that is
capable to import ONNX model to scikit-learn. The author was able to find only
one software package that supports models created using ai.onnx.ml operator set.
The software is Windows Machine Learning or WinML for short [34]. The code
in onnxmltools package for converting scikit-learn models to ONNX format was
actually contributed to the project by Microsoft.

WinML [34] is a runtime that provides an inference engine to evaluate ONNX
models locally on the Windows device and allows Windows applications written in
C#, C++ or JavaScript to use ONNX models as embedded intelligence. This project
has similar goals to the IL when it comes to serving models locally. Decoupling the
machine intelligence from the application into a separate layer that is providing ML
models locally on device. Since the project is still in its infancy the information
about it is limited and the only reference the author is able to provide is a Web
Page [34].

The approach that is taken in WinML is different to the one used in prototype
presented in Chapter 4. In WinML, user has to deal with raw ONNX models
directly by loading them from the code. In author’s prototype implementation, the
intelligence layer is supposed to provide functionality of ONNX models to the user
via interprocess communication protocol. User might not be even aware that models
are provisioned using ONNX format.
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3.4.3 PMML

Predictive Model Markup Language is XML-based open standard for representing
data mining models and statistical models. The data mining term in the context of
IoT usually means predictive analytics or anomaly detection. The main goal of the
language is to allow data scientist who design the models and software developers
who write production code that utilizes the models, made by data scientists, to easily
share models between each other and between different application and platforms,
avoiding the incompatibility and proprietary issues that might arise when different
tools and libraries are used to design and integrate models into products. [26]

Header

Mining Build Task

Data Dictionary

Transformation Dictionary

Model Elements

Figure 3.3: Structure of PMML model’s XML document.

The XML file describing PMML model has a structure depicted in Figure 3.3.
The structure of PMML file maps well to the typical machine learning inference
problem as described in Chapter 2. The header describes meta-data related to the
model: when the model was created and what tool was used to create it.

Mining build task is an optional element and is not required. It can contain
any XML elements related to model creation or training. The information from this
element is primarily used for visualization and maintenance purposes.

In data dictionary, fields used by the mining models and the types and ranges
of those fields are defined. In PMML variables are called fields.

Transformation dictionary defines data transformation function that can be
used in any model that is part of PMML document. The function described in
transformation dictionary might represent calculation for feature extraction required
by machine learning model. One example of such operation is normalization of data
where the data is transformed to have zero mean and unity variance during the
training process and naturally same transformation must be applied when model is
used to make prediction on new data.

Next block in the structure of Figure 3.3 is a sequence of top level model
elements. The PMML document can have 0 or more models, also called top-
level models. Model elements describe the model. Each model is required to have
an attribute describing what kind of machine learning it performs: classification,
regression, clustering, time series analyzing, sequences analyzing, association rules
and mixed. The model also has an optional model name element. The consumer of
the model can select what model to use based on its name. If no name is specified,
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the default behaviour is to select first model from the sequence.
The model has child elements that are common to all the models and some model

specific elements. The common child elements are: mining schema, output, model
statistics, local transformations, verification. Fields used by the model are defined
in mining schema. Output element contains output field elements that define what
kind of values are returned from the model. Model statistics provides statistics
related to the fields of the model. Targets holds information on target values. Local
transformation define transformation, similar to transformation dictionary, that are
local to the model. Model verification elements define elements that can be used
by the model consumer to check that results generated by the model are accurate
regardless of the platform where the model is executed. Note that all elements except
mining schema might not appear in PMML model description element. It is model
dependent if they appear or not. The full list of supported models is provided in
Table 3.2.

Table 3.2: Models that are supported by PMML format. [35]

Association Rule Model
Bayesian Network

Baseline
Clustering

Gaussian Process
General Regression
k-Nearest Neighbors

Naive Bayes
Neural Network

Regression
Ruleset Model

Scorecard Model
Sequences

Text Models
Time Series

Trees
Vector Machine

Formally the structure and elements of PMML document are defined by XSD
(XML Schema Definition) document. The schema doesn’t define PMML document
completely. There are also field naming conventions that have to be followed in order
for PMML document to be valid, like requirement for fields in data dictionary and
transformation dictionary to be unique. The reason for this requirement is that fields
defined in these elements have global scope, they are visible to all models. If two
fields are named the same then a name collision happens, it will be impossible for
application to known what field to use. A snippet from PMML definition is provide
in Listing 3.6. The complete document description of the schema definition can be
found at [36].
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Listing 3.6: Snippet from XML Schema specification.
<xs:element name="PMML">
<xs:complexType>
<xs:sequence>
<xs:element ref="Header"/>
<xs:element ref="MiningBuildTask" minOccurs="0"/>
<xs:element ref="DataDictionary"/>
<xs:element ref="TransformationDictionary" minOccurs="0"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:group ref="MODEL−ELEMENT"/>

</xs:sequence>
<xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="version" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

The PMML format was first introduced as part of data mining toolkit called
Rattle (R Analytics Tool To Learn Easily). Later it was separated from Rattle into
its own R package. [26] Hence R has best support for PMML. It is also possible to
export some of the machine learning models from scikit-learn to PMML using
sklearn2pmml Python package. Some converters exist for other ML libraries but
they are usually one man prototype projects on GitHub lacking proper documentation
and capability description. Among notable ML libraries only Apache Spark has
official support for PMML but just for 5 models types. Major deep learning libraries
frameworks like TensorFlow, MXNet or PyTorch do not support PMML. Data
mining groups that is in charge of developing and extending PMML has recently, in
2015, introduced new standard called Predictive Format for Analytics (PFA) that
will most probably replace PMML [37].

Listing 3.7: PMML document representing linear model for predicting closing prise
of Ethereum cryptocurrency based on the price of Bitcoin cryptocurrency.
<?xml version="1.0" encoding="UTF−8" standalone="yes"?>
<PMML xmlns="http://www.dmg.org/PMML−4_3" xmlns:data="http://jpmml.org/jpmml−model/InlineTable" version="4.3">

<Header>
<Application name="JPMML−SkLearn" version="1.5.8"/>
<Timestamp>2019−01−03T11:40:57Z</Timestamp>

</Header>
<MiningBuildTask>

<Extension>PMMLPipeline(steps=[(’data_transformer’, StandardScaler(copy=True, with_mean=True, with_std=True)),
(’model’, LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
normalize=False))])</Extension>
</MiningBuildTask>
<DataDictionary>

<DataField name="y" optype="continuous" dataType="double"/>
<DataField name="x1" optype="continuous" dataType="double"/>

</DataDictionary>
<TransformationDictionary>

<DerivedField name="standard_scaler(x1)" optype="continuous" dataType="double">
<Apply function="/">

<Apply function="−">
<FieldRef field="x1"/>
<Constant dataType="double">2620.7572983006326</Constant>

</Apply>
<Constant dataType="double">3874.711285592038</Constant>

</Apply>
</DerivedField>

</TransformationDictionary>
<RegressionModel functionName="regression">

<MiningSchema>
<MiningField name="y" usageType="target"/>
<MiningField name="x1"/>

</MiningSchema>
<Output>

<OutputField name="predict(y)" optype="continuous" dataType="double" feature="predictedValue" isFinalResult="false"/>
<OutputField name="standard_scaler(predict(y))" optype="continuous" dataType="double" feature="transformedValue">

<Apply function="/">
<Apply function="−">

<FieldRef field="predict(y)"/>
<Constant dataType="double">−0.5806909030705703</Constant>

</Apply>
<Constant dataType="double">0.003634611081731621</Constant>

</Apply>
</OutputField>

</Output>
<RegressionTable intercept="−1.6963320349816126E−16">
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<NumericPredictor name="standard_scaler(x1)" coefficient="0.9145197468684679"/>
</RegressionTable>

</RegressionModel>
</PMML>

To end this subsection on PMML, the author presents an example of the lin-
ear regression model with input data standardization written in scikit-learn
and converted to PMML using sklearn2pmml package. The python code and
PMML document are provided in Listings 3.8 and 3.7. In order to port the model
from scikit-learn one must use PMMLPipeline class that is inherited class from
scikit-learn’s PipeLine class defined in sklearn2pmml package. The PMML
pipeline is converted to PMML XML document using skleran2pmml function.

Listing 3.8: Python code to convert linear regression model to PMML file presented
in Listing 3.7.

1 from sklearn import linear_model
2 from sklearn.preprocessing import StandardScaler
3 import pandas as pd
4 from sklearn2pmml import PMMLPipeline
5 from sklearn2pmml import sklearn2pmml
6

7

8 # Loading and reshaping data
9 # Closing prices for Ethereum and Bitcoin are stored in separate CSV files

10 df_bc = pd.read_csv("BTC-USD.csv", parse_dates=['Date'])
11 df_eth = pd.read_csv("ETH-USD.csv", parse_dates=['Date'])
12

13 bcv = df_bc.Close.values.reshape(-1, 1)
14 etv = df_eth.Close.values.reshape(-1, 1)
15

16 scaler_for_output = StandardScaler().fit(etv)
17

18 scaler_for_prediction = StandardScaler()
19 scaler_for_prediction.mean_ = -1.0 * scaler_for_output.mean_ / ←↩

scaler_for_output.scale_
20 scaler_for_prediction.scale_ = 1 / scaler_for_output.scale_
21

22 pmml_pipe = PMMLPipeline(steps=[('data_transformer', StandardScaler()), ('←↩
model', linear_model.LinearRegression())],

23 predict_transformer=scaler_for_prediction)
24 # Training the model
25 pmml_pipe.fit(bcv, scaler_for_output.transform(etv).reshape(-1,))
26 print('Learned parameters')
27 print(pmml_pipe.steps[1][1].coef_)
28 print(pmml_pipe.steps[1][1].intercept_)
29

30 # Testing prediction
31 print(pmml_pipe.predict([[1.0]]))
32 print(pmml_pipe.predict_transform([[1.0]]))
33

34 # Exporting Model to PMML
35 sklearn2pmml(pmml_pipe, 'etherium_price_redict_model.xml', with_repr=True)
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3.5 Intelligence Layer
Intelligence layer is a concept proposed in a paper [7] that came out off Ericsson
research team in Finland. One central idea of intelligence layer is to decouple as
much as possible the intelligence from application. Other important aspects are
composition of intelligence services and life cycle management related to intelligence,
such as intelligence setup and intelligence decomposition. But for this thesis, the
decoupling aspects are more relevant.

Currently intelligence is implemented as part of the application layer tightly
integrated into application’s source code. To update the intelligence usually the
whole application must be updated.

Another approach is to use intelligence as a cloud service. Whenever application
needs some intelligent function like image classification or text translation it makes
an HTTP request. The data required to do inference is sent to HTTP endpoint.
HTTP endpoints sends back the result as an HTTP reply. In this way the intelligence
is external to the application, but other difficulties arise:

• Intelligence is not owned by application.

• Sending data to cloud for evaluation and getting the result back might introduce
latency and high bandwidth usage.

• Costs related to using cloud service and network bandwidth.

• Privacy issues related to sending data to cloud.

• Availability of connectivity at all time for continuous operation.

These difficulties can be avoided by having intelligence locally available, only
connecting to cloud or Internet for updates or to get new intelligence. This concept
of local availability is one of the key aspects of intelligence layer framework. IL
platform captures many more other aspects of machine learning platform, interested
reader can review all the concepts in [7].
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4 Implementation
In this chapter a proof of concept implementation of the intelligence layer is presented.
The intelligence layer is implemented as an application D-Bus service running on
Ubuntu Linux operating system. D-Bus is Inter-Process Communication (IPC)
system that is used mostly on Linux based operating systems. The intelligence layer
service reads ONNX models from the disk and creates D-Bus object for each model.
User applications can access these objects via interfaces defined by the IL service
and call methods to execute the model and get back the results of inference. The
concepts of D-Bus, like: service, object, interface, and how the protocol is used to
create an intelligence layer service is explained in the next subsection.

To execute ONNX models representing neural networks the nGraph [38] software
library is used. nGraph is used for converting neural networks represented with library
specific format or library independent formats into nGraph’s format and performing
inference or training on the supported hardware backends. The hardware backend is
a processing unit like GPU, CPU or some other computational hardware designed
specifically for machine learning. For the prototype implementation, only inference
capabilities of nGraph are used. In principle some of the nodes from ai.onnx.ml
operator set is also possible to implement using nGraph’s native set of operators,
but it is left for future work.

4.1 Base Architecture
Diagram in Figure 4.1 represents the high-level architecture of intelligence layer
service when it starts. During the initialization process IL reads ONNX model files
from the special directory, each model is represented by single file with .onnx file
extension. The directory is given to the program as a command line parameter. The
process depicted in the diagram happens for every model found in the directory.

Model FilesParserInput/Output
Loader

Graph

Additional
Information

D-Bus
Object

D-Bus
Interface

Figure 4.1: Architecture of IL service daemon.

ONNX model file is deserialized and parsed. Three pieces of information are
crucial for creating an intelligent service out of deserialized ONNX model. The
graph that describes the actual computations that must be performed on input
data to produce a prediction or classification. The input and output loaders for
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converting data supplied by the user into presentation that can be fed to graph and
converters the do a reverse operation. That is, converting the result produced by
executing the graph on converted input data, to the format that can be sent back to
the user. Last piece of information is additional information like documentation
provided with the model, version and other information that is not directly related
to graph execution. These three pieces of information are represented in Diagram 4.1
by rounded rectangles with corresponding titles with arrows ending at the boxes and
diverging from parser rectangle.

As depicted in the diagram additional information and input/output information
is used to create a D-Bus object. Using terminology from Chapter 2 on intelligent
agent, D-Bus object represents actuators and sensors of an intelligent agent. The
intelligent agent can be identified with intelligent service that intelligent layer is
providing for users to utilize. In theory, one could consider other intelligent service
as a user of other intelligent service to achieve for example reinforcement learning.
But this topic is outside the scope of this thesis.

4.1.1 D-Bus IPC system

D-Bus is a system for local IPC [39]. It is built on top of AF_UNIX sockets introducing
interprocess communication concepts on the higher level of abstraction like buses,
services, clients, objects, interfaces, methods, signals and properties:

• A message bus is a source of services and an application that allows other
applications to communicate with each other. D-Bus system usually provides
two buses: system bus and user bus. System bus is for system services and
there is only one system bus on host Linux operating system. User bus is for
user services and each user has his own bus. The IL service runs on the user
bus.

• A service is a program that provides APIs to utilize the service on a bus. A
service has a unique name specified in reverse domain notation. APIs for IL
service are available at fi.ericsson.nomadiclab.IntelligenceLayer.

• A client is a user application that uses APIs provided by a service. The client
of IL service can view what intelligence services are available, query additional
information about selected service and provide service with input to get back
the result.

• An object is identified by an object path and it belongs to a service. Service can
have multiple objects that form directory tree like hierarchy. Object path looks
like a file system path. For example, an object path that is responsible for IL ser-
vice managment might have a path /fi/ericsson/nomadiclab/intelligence_layer.
And for each intelligence service an object is created forming a list of objects:
/fi/ericsson/nomadiclab/intelligence_layer
/fi/ericsson/nomadiclab/intelligence_layer/models/image_classification
/fi/ericsson/nomadiclab/intelligence_layer/models/face_recognition
/fi/ericsson/nomadiclab/intelligence_layer/models/health_monitoring
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• Each object has one or more interfaces. Interface is defined by its mem-
bers and provides APIs to utilize the object. A member can be a method, a
signal or a property. Interfaces are identified by reverse domain name nota-
tion. Interface for image classification model from previous example might be
fi.ericsson.nomadiclab.IntelligenceLayer.Classifier

• A method of an interface is a function that can take inputs and produce an
output. For example Classifier interface might have DoPrediction method
to classify input data. A set of parameters that a method takes and returns
is specified by method’s signature. The signature is encoded as a series
of characters. For DoPrediction method of Classifier interface, signature
might be s for input and as for output, telling the user of the method that
DoPrediction takes string as input and returns array of strings to the client
that invoked the method. Input string can represent a link to a resource, for
example a file system path to an image. Output might be an array of all
categories sorted in descending order starting with category with the highest
classification score.

• Methods are for one-to-one, request-response communication between a client
and a service. A signal can be used for one-to-many, or also one-to-one,
notifications. For example, IL service might send a signal to all the clients that
a new model is introduced or that one of existing models was updated to a
newer version. One can also imagine having intelligence service that do not
require an input from the client and just sends the result of some computation
based on data that it receives from the system.

• A property is just a variable. The type of property is defined with a signature
using the same syntax as for methods. Interface for intelligence service object
might have properties exposing meta information provided by ONNX model
like documentation string of a model and a model version.

The users of IL service, that are clients, can introspect which objects are available
under the model’s path and use interfaces provided by those objects to call methods
that execute the machine learning model and get back the result or examine properties
that contain description of the model and some additional information about the
model.

4.1.2 The Graph

The nGraph software library is used to extract the graph from ONNX model. nGraph
allows us to convert graph that is part of ONNX model to the graph represented by
nGraph’s IR format, compile the converted graph and execute produced code on the
hardware that nGraph supports.

nGraph can be used for training and inference [38]. Training means calcula-
tion of gradient with respect to neural network parameters. Four the prototype
implementation presented in this thesis only inference capability is used.
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In order to run inference code nGraph must be asked to allocate memory for
input and output. Then, fill memory reserved for input with data and apply the
graph to the input data. After the graph is applied to data, result can be read from
reserved memory and sent to client.

The D-Bus method call used by client for invoking inference execution might
have a signature specifying that client must supply raw data as a parameter to the
method call. The raw data is suitable, if model provides a purely computational
service. Array of numbers goes in and modified arrays of numbers is returned to
client.

Intelligence layer is assumed to support higher level data types. For example,
input data type might be a string, representing a link to a resource. Resource might
be a file system path, URL or path to the device. The IL must have capability to
extract raw data from the resource and write to memory allocated by nGraph for
input.

Current implementation only supports strings pointing to resources on a file
system. For example, a path to a location for image that client wants to classify.

4.1.3 Input and Output Loaders

In nGraph, computational graphs are represented by functions. Function takes as
input a multidimensional array filled with numbers. The data represented by an
array of numbers does not have any semantic meaning. To give semantic meaning
to data ONNX has an experimental feature called denotations. A tensor in ONNX
can have optional denotation represented by string literal. Intelligence layer uses
this denotation to use correct loaders to extract raw data, pointed to by resources
that are supplied by a calling client with a method call, and fill input memory of the
nGraph’s function.

After nGraph function is executed, the produced purely numerical data must be
translated into a sensible reply to user. For that again, an output tensor denotation
is used.

Denotations are also used to assign a correct interface to D-Bus object created
for a model. For example, if input tensor is denotated as image and output tensor is
denotated categorical then IL service adds classification interface to the model object
it creates. If denotation for input and output tensor are missing function interface is
created.

4.1.4 Other information

Client might be interested in a short description of a model or what kind of input
model expects. This information can be conveniently presented as properties of
D-Bus model object. The implementation of IL service in this work provides almost
all descriptive model information available in ModelProto protocol buffer message:

• Version of the ONNX IR

• Tool used to produce model
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• Version of the tool use to produce model

• Domain to which model belongs

• Name of the author if available

• Input Denotation

• Output Denotation

4.2 Software design
In order to deliver continuous operation and low latency the intelligent layer service
must be implemented as a concurrent program. It is assumed that IoT device
supports multithreading. In concurrent system different procedures are running on
multiple threads of execution. These procedures need to communicate with each
other and share different resources. An additional complication comes from using
C++ as implementation language that was chosen for implementing IL. C++ allows
to write efficient code with low overhead but it is regarded as a complex language,
requiring a lot of low level knowledge to create concurrent programs.

One way to implement concurrent program is to use raw threads and synchro-
nization mechanism like mutexes and conditional variables. Other approach, that
was chosen for the prototype implementation, is to use actor model [40]. In actor
model many system components can be represented as actors. Actors might be C++
objects that run on the same or different threads. Actors communicate with each
other by exchanging messages. Based on received messages actor react by sending
new message or doing some computations. Actors don’t share any state among each
other, hence making race condition that are common source of bugs in concurrent
programs less probable. All mechanism required to synchronize the message exchange
is handled by framework providing the implementation of the actor model.

In the prototype implementation for this thesis, SObjectizer C++ actor model
framework is used. It provides enough features to implement intelligence layer service
prototype. One restriction that SObjectizer has compared to some other actor
frameworks is that it doesn’t allow distributing actor among different computers
scattered over computer network. But for the prototype implementation presented,
this functionality is not required.

The more detailed diagram, based on the actor model, of architectural diagram
presented in Figure 4.1 is presented in Figure 4.2. The diagram in Figure 4.2
presents four different types of actors: model discoverer, model manager, dbusio
and model executor. Exactly one instance of actor exits for discoverer, manager
and dbusio. Zero or more instances of executor actor are dynamically created by
model manager when users make request to execute the model via dbusio actor.
After executing the nGraph model function and returning the result to dbusio, model
executors actors are destroyed.

Model discoverer scans the model repository periodically to detect changes. Model
might be added, removed or updated. When model discoverer detects change to the
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Model
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...executor executor

Model
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D-Bus
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remove_model
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new_object result

Figure 4.2: Actor model-based design of intelligence layer. Arrows represent message
sending. Dotted lines represent creation of executor actors by model manager. Dashed
lines represent access to external resource like file system and D-Bus user bus.

repository, it parses the ONNX model files if model was updated or added and sends
appropriate message to model manager. As is presented in the Figure 4.2 discoverer
can send three different messages:

• new_model to add new model to the model list of model manager.

• update_model to update existing model.

• remove_model to remove model from the list of model manger.

new_model and update_model messages contain all information required to exe-
cute the model: like model name, the types of input and output, nGraph function
and other information related to model like documentation string. For removing the
model all this information is not required and only name of model is attached to the
message.

When the model manager receives a new_model messages, it adds model to its
list of models and sends dbusio actor new_object message to create a D-Bus object
for the model. dbuisio exposes the appropriate interface of the object to clients
of IL service. The member invocations requested by clients are routed to model
manager. These invocations are represented by member request in Figure 4.2 but
they might be implemented by multiple different messages.

For the D-Bus object’s property requests or method calls that do not require any
computation model manager actor doesn’t create executor actor. If method request
requires execution of nGraph function then model manger creates executor actor
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potentionaly on a different thread of execution so that model manger can still handle
incomming messages while executor is doing computations. When executor is done,
it sends result message to dbusio actor to relay the result of model execution in
the reply to client that invoked the method.
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5 Results and Conclusions
Previous chapter presented the implementation details of IL service. In this chapter,
the test results and final conclusions of using IL service prototype implementation to
serve image classification ONNX model are presented.

First the test ONNX model is described then tools and hardware used for testing
the IL service are presented. The chapter ends with conclusions and feature work
sections.

5.1 Experimental setup and model preparation
To test the implementation an ONNX model was needed. The place where one can
find ready-made pre-trained ONNX models is called ONNX Model Zoo [33]. It is a
GitHub repository with the models that have been developed with some framework,
like MXNet, and then exported to ONNX format. Each model from the ONNX
Model Zoo has a descriptive Web-page. The Web-page contains information about
what framework was used to create the model, where the data that was used for
training came from, and how pre-process and post-process the raw data required and
produced by model execution process.

Version 2 of the ResNet [41] image classification neural network model was selected
for testing IL service prototype implementation. The model takes image as input
and outputs the class of the major object in the image. The model was trained on
the ImageNet dataset which contains images from 1000 classes. The largest available
model Resnet-152 was used. It is approximately 220 MB in size and is most accurate
among other Resnet models with fewer layers.

Image classification is an important use case for IoT. One can image camera
monitoring the production line for faulty products taking a snapshot image of a
product and requesting a prediction from intelligence layer service to classify the
product as good or bad.

The Resnet-152 model couldn’t be used as it was provided in ModelZoo. It was
assumed that pre-processing and post-processing procedures are done in code by
the user who imports the model in his or her code. Model was just expecting an
1× 3× 224× 224 dimensional tensor as input and produced 1000 dimensional tensor
as output.

According to Resnet model description, input tensor should contain data of a
color image and output tensor scores for each class. It is assumed that user of ResNet
ONNX model will know enough information about the model to load an image in
some specific format, for example PNG, extract pixel values for each channel using
some libraries and normalize pixel values to range [0, 1].

Similar assumptions were made for the output. It was user’s job to download the
file with all the names of categories and connect result output tensor with categories.

In order to fix these issues, the author had to add computational pre- and post-
processing nodes to the model. Pre-processing nodes to do data standardization
were added. Post-processing node to convert scores to probabilities with softmax
function was added.
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name: "input"
type {

tensor_type {
elem_type: FLOAT
shape {

dim {
dim_value: 1
denotation: "DATA_BATCH"

}
dim {

dim_value: 3
denotation: "DATA_CHANNEL"

}
dim {

dim_value: 224
denotation: "DATA_FEATURE"

}
dim {

dim_value: 224
denotation: "DATA_FEATURE"

}
}

}
denotation: "IMAGE"

}

key: "Image.BitmapPixelFormat"
value: "Rgb8"
,
key: "Image.ColorSpaceGamma"
value: "SRGB"
,
key: "Image.NominalPixelRange"
value: "Normalized_0_1"

Figure 5.1: Textual representation of input denotation for ResNet model’s input. Left
side is snippet that represents input of the graph. On the right side the key-value
pairs of the ModelProto meta_data field are presented related to the IMAGE type.

In order for intelligence layer to know that model expects an image prepared in a
particular way author had to denotate input tensor and all the dimensions of the input
tensor. Denotating dimensions was not necessary because prototype implementation
doesn’t support them yet, but it was done for completeness. Denotating means
giving semantic description to tensors, so that intelligence layer service or any
other application that consumes ONNX model can understand the meaning of a
tensor and use appropriate loader. The ONNX has an experimental proposal for
detonating tensors that is not part of the official format yet [42]. For that purpose,
TypeProto message has denotation field that is a string. Three types of denotation
are available: TENSOR, IMAGE, AUDIO, TEXT. Out of these four, only TENSOR and IMAGE
have a somewhat complete definitions. Tensor types do not require denotations. If
denotation is missing then tensor denotation type is assumed.

TypeProto is wrapper message around one of three possible types: Tensor, Se-
quence or Map. The type used is indicated by type field of TypeProto. For neural
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networks only Tensor type can be used. Tensor type and denotation type are two
different things and should not mixed.

For tensor type it is also possible to denotate dimensions. Tensor protocol buffer
message has shape field of type TensorShapeProto that is an array of Dimension
messages that have denotation field. The definition for dimension denotations are
not well formalized yet and only three denotation types are presented in ONNX
proposal: DATA_BATCH, DATA_CHANNEL, DATA_FEATURE.

The denotation for type and dimensions of input tensor of the modified ResNet
model are provided in Figure 5.1. As can be seen, model expects an IMAGE as an
input. The format of the image is specified on the right side of Figure 5.1. Using
this information intelligence layer will know that an image it suppose to pass to the
model has a specific pixel format, color space and that it should normalize pixel
values to range [0, 1] by scaling data from each color channel by 255. Dimensions are
also denotated, but current version for intelligence layer disregards them.

name: "reshape0"
type {

tensor_type {
elem_type: FLOAT
shape {

dim {
dim_value: 1000
denotation: "DATA_PROBABILITY"

}
}

}
denotation: "CATEGORICAL_PROBABILITIES"

}

key: "Category_0"
value: "tench, Tinca tinca"
,
key: "Category_1"
value: "goldfish, Carassius auratus"
,
.....
,
key: "Category_998"
value: "ear, spike, capitulum"
,
key: "Category_999"
value: "toilet tissue, toilet paper"

Figure 5.2: Textual representation of output denotation for ResNet model’s output.
Left side is snippet that represents input of the graph. On the right side the key-value
pairs in the meta_data field are presented related to CATEGORICAL_PROBABILITY
type.

The output tensor of the ResNet model represents probability distribution over
1000 different categories. ONNX doesn’t have denotation to represent tensor with
such semantic meaning. For that reason the author had to invent a new deno-
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tation type. It was named CATEGORICAL_PROBABILITY. To denotate a tensor as
CATEGORICAL_PROBABILITY one must set its denotation filed to CATEGORICAL_PROBABILITY
and add all the categories as map from category identifiers to category names in
meta_data of the ModelProto message. Textual representation of output tensor is
presented in Figure 5.2

The model was prepared for consumption by intelligence layer using Jupyter
Notebook. In the notebook, ONNX model was imported into MXNet and missing
operators were added for pre- and post-precessing. After this, model was exported
again to ONNX and then loaded again to denotate the input and output tensors.
For that onnx Python package was used that is part of official ONNX release.

5.2 Testing Implementation
The IL service implementation was tested by making it consume and serve the
modified Resnet-152 deep neural network image classification model described in
the previous section. The serving was tested by using two D-Bus debugging and
monitoring applications: busctl and D-Feet. busctl is command line tool and
D-Feet is graphical application.

Figure 5.3 shows a DoPrediction method call of a
fi.ericsson.nomadiclab.IntelligenceLayer.Classifier interface owned by
/ericsson/nomadiclab/intelligence_layer/resnet152v_copy1 object which is
part of fi.ericsson.nomadiclab.IntelligenceLayer service. The method call
takes string as input and produces string as output. The input string points to the
resource that in the case of Resnet is a path to the JPG image of a cat. The output
string contains predicted class. As can be seen from the Figure, intelligence layer
returns correct result.

Figure 5.3: Snippet from command line terminal showing the use of busctl and the
picture of cat that was used for testing.

D-Feet allows to list and introspect D-Bus services via the graphical user interface.
It can also be used to call methods of D-Bus objects and measure the time of a method
call. Figure 5.4 shows the invocation of a DoPrediction method on a Resnet-152v2
D-Bus object with the same image from the previous example. As can be seen from
Figure 5.4 the method call time is 0.6 seconds.
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The tests were executed on a commodity computing hardware. The testing
machine had the following specifications:

Ubuntu
Intel(R) Core(TM) i5-6600K CPU @ 3.50GHz, 3501 Mhz, 4 Core(s)

16 GB RAM

The test results proof the feasibility of using ONNX format for provisioning
machine learning models to device and serving them locally. Intelligent layer service
is different from other model serving solution which are usually HTTP end-points
and deployed in central cloud.

Figure 5.4: Using IL service with D-Feet.

Preparing ML model for such cloud-oriented ML model serving application usually
requires writing a program with the code to load a ML model, and code to transform
input and output data. In the approach proposed in this thesis, models are complete
and all the complexity for IO transformation and API serving is hidden behind
intelligence layer as long as creator of a model denotates the input and output tensors
correctly.

5.3 Conclusions
It is clear that ONNX at the moment is an appropriate and popular format for
representing neural network machine learning models intended for inference purposes.
Many state-of-the-art deep learning frameworks support ONNX to some extent and
new compilers and runtimes capable of executing ONNX NN models on variety of
compute hardware, ranging from general purpose hardware like CPUs and GPUs to
special purpose like Intel’s Nervana [38] chip designed to accelerate NN computations,
emerge all the time.
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The list, available at ONNX’s Web-page [32], of frameworks, run-times, compilers
that ONNX team claims to support ONNX format is getting updated frequently.
One recent development is the release of ONNX Runtime as an open source project
by Microsoft. ONNX Runtime is a software library for executing ONNX models. In
the Microsoft’s blog post [43] accompanying the release of the project it is claimed
that ONNX Runtime has full support for ONNX version 1.2 and later, including
ai.onnx.ml set of operators. ONNX Runtime is first runtime to support both sets
of operators ai.onnx and ai.onnx.ml.

ONNX Runtime would have been better solution compared to nGraph as a
model executor for the implementation that was presented in Chapter 4. But the
ONNX Runtime was released after the decision has been made to use nGraph for
the implementation and for that reason it was decided to continue with nGraph.

Comparing the lists of available operators from ai.onnx.ml domain in Appendix A
to the list of models in Table 2.1 one can see that lists have only four common models:
linear regression, SVM, decision trees and bagging. Bagging can be considered and
ensemble of trees. Most of the other operators of ai.onnx.ml domain are for data
pre-processing and data post-processing. On the other hand, it must be kept in
mind that, in theory, the operators from different domains can be mixed, if model
executor supports them both. Using operators from the default domain ai.onnx, it
is possible to express any computations that do not require back-loops. So it can
be hypothesized with high probability that most of the operators from Table 2.1
are implementable in ONNX, for example if training is not considered, PCA from
section 2.4 is just a matrix multiplication operation. Even if some operation is not
implementable with standard set of operators, ONNX can be extended with custom
domains of operators and then it will depend on the executor what operators it can
and can’t run.

On the other hand, if we look at Table 3.2 presenting models that are supported
by PMML we can see that it is more compatible with Table 2.1. One might think
that for that reason PMML is better format for representing machine learning models.
But it must be taken into account that PMML has been around since 1999, when
version 1 of the format was released, and until these days PMML is not widely
adopted especially from the tools used to create and execute neural networks. The
protocol buffer format used for ONNX is superior to XML used in PMML in terms
of size of serialized models and parsing speed. For that reasons, the author thinks
that ONNX is a better choice for representing also classical machine learning models
and not just neural networks.

The author of this thesis does realize that more systematic comparison of PMML
and ONNX must be conducted in order to decide which format is better, but it
would necessarily take more space and resource that are not available and hence
this study is left for feature work. Right now, it looks clearly that industry tends to
prefer ONNX over PMML with big corporations like Microsoft and Facebook driving
development of ONNX.
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5.4 Future Work
There are many things that can be improved in the prototype. Adding more
denotation types and testing more ONNX models. Allowing to use different executors
to execute ONNX models. Right now IL service uses nGraph and only supports
neural networks models. Next logical step would be to add ONNX Runtime support.

IL service was not tested on real IoT hardware. One good candidate for testing
is Intel’s IoT board with Intel atom processor.
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A Lists of ONNX Operators
In this appendix the list of ONNX operators from both standard and classical operator
sets are provided. First listing has the operators from ai.onnx set. Second listing
shows operators from ai.onnx.ml set.

1 ai.onnx (default)
2 Abs
3 Acos
4 Acosh
5 Add
6 And
7 ArgMax
8 ArgMin
9 Asin

10 Asinh
11 Atan
12 Atanh
13 AveragePool
14 BatchNormalization
15 Cast
16 Ceil
17 Clip
18 Compress
19 Concat
20 Constant
21 ConstantOfShape
22 Conv
23 ConvTranspose
24 Cos
25 Cosh
26 DepthToSpace
27 Div
28 Dropout
29 Elu
30 Equal
31 Erf
32 Exp
33 Expand
34 EyeLike
35 Flatten
36 Floor
37 GRU
38 Gather
39 Gemm
40 GlobalAveragePool
41 GlobalLpPool
42 GlobalMaxPool
43 Greater
44 HardSigmoid
45 Hardmax
46 Identity
47 If
48 InstanceNormalization
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49 IsNaN
50 LRN
51 LSTM
52 LeakyRelu
53 Less
54 Log
55 LogSoftmax
56 Loop
57 LpNormalization
58 LpPool
59 MatMul
60 Max
61 MaxPool
62 MaxRoiPool
63 MaxUnpool
64 Mean
65 Min
66 Mul
67 Multinomial
68 Neg
69 NonZero
70 Not
71 OneHot
72 Or
73 PRelu
74 Pad
75 Pow
76 RNN
77 RandomNormal
78 RandomNormalLike
79 RandomUniform
80 RandomUniformLike
81 Reciprocal
82 ReduceL1
83 ReduceL2
84 ReduceLogSum
85 ReduceLogSumExp
86 ReduceMax
87 ReduceMean
88 ReduceMin
89 ReduceProd
90 ReduceSum
91 ReduceSumSquare
92 Relu
93 Reshape
94 Scan
95 Scatter
96 Selu
97 Shape
98 Shrink
99 Sigmoid

100 Sign
101 Sin
102 Sinh
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103 Size
104 Slice
105 Softmax
106 Softplus
107 Softsign
108 SpaceToDepth
109 Split
110 Sqrt
111 Squeeze
112 Sub
113 Sum
114 Tan
115 Tanh
116 TfIdfVectorizer
117 Tile
118 TopK
119 Transpose
120 Unsqueeze
121 Upsample
122 Where
123 Xor
124 experimental ATen
125 experimental Affine
126 experimental Crop
127 experimental DynamicSlice
128 experimental GRUUnit
129 experimental GivenTensorFill
130 experimental ImageScaler
131 experimental ParametricSoftplus
132 experimental Scale
133 experimental ScaledTanh
134 experimental ThresholdedRelu

1 ai.onnx.ml
2 ai.onnx.ml.ArrayFeatureExtractor
3 ai.onnx.ml.Binarizer
4 ai.onnx.ml.CastMap
5 ai.onnx.ml.CategoryMapper
6 ai.onnx.ml.DictVectorizer
7 ai.onnx.ml.FeatureVectorizer
8 ai.onnx.ml.Imputer
9 ai.onnx.ml.LabelEncoder

10 ai.onnx.ml.LinearClassifier
11 ai.onnx.ml.LinearRegressor
12 ai.onnx.ml.Normalizer
13 ai.onnx.ml.OneHotEncoder
14 ai.onnx.ml.SVMClassifier
15 ai.onnx.ml.SVMRegressor
16 ai.onnx.ml.Scaler
17 ai.onnx.ml.TreeEnsembleClassifier
18 ai.onnx.ml.TreeEnsembleRegressor
19 ai.onnx.ml.ZipMap
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