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Abstract

The emissions of heavy-duty underground machinery endanger the health of human workers
and increase the overall maintenance cost of the underground mine due to ventilation
expenses. In addition, tightening emission standards for non-road vehicles are pushing
towards greener solutions, hence, fully electric powertrains are becoming a viable alternative
for many applications. An electric powertrain is not only local emission-free, but also
provides a better controllably and a superior energy efficiency compared to the conventional
diesel operated machines. The nature of such vehicles and their periodic duty cycles enable
energy optimization and a prospect of an improved efficiency.

The aim of the thesis was to reduce the energy consumption of an underground load-haul
dump mining loader. As most of the energy is consumed by the powertrain of the vehicle,
the traction motors are the focus of the optimization. An optimal speed profile was generated
by means of Bellman’s dynamic programming algorithm in MATLAB environment. The
simulation utilized dynamic asynchronous motor, battery and vehicle models built according
to a real-size experimental prototype. The algorithm had been designed to solve discrete time
problems; therefore, the model was discretized with adjustable dynamic accuracy where the
intermediate points were obtained by linear interpolation.

The optimal speed profile demonstrated a 9.1% decrease in energy consumption for a generic
duty cycle. Additionally, the asynchronous motors were operated at a higher efficiency area
generating less heat and in theory prolonging the lifetime of the powertrain components.

Keywords dynamic programming, load-haul-dump mining loader, electric powertrain,
energy consumption
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Symbols and abbreviations

Symbols

a acceleration

am motor acceleration

a,, wheel acceleration

E, force exerted by motor
E, rolling resistance

g acceleration of gravity ~ 9.81 [m/s?]
G,gy final step cost

H,hy intermediate step cost

I current

Lo motor inertia

Ji cost functional

In (x‘) cost-to-go function at x! node
kg drive gear ratio

ko belt drive gear ratio

m mass

N normal force

Prux auxiliary system power
Py battery power

Ppe maximum battery power
Py motor power

T resistance

T wheel radius

R" coordinate space with n dimensions
t time

Ty time step

T wheel torque

T motor toque

Timo motor drag torque

U voltage

u control signal

Uu control signal u boundaries

Vg vehicle speed

X state variable

X derivative of state variable x
X state variable x boundaries

a slope inclination

Ne Coulombic efficiency of battery
NMm motor efficiency

Uy rolling coefficient

U set of applied controls u

T control policy

I1 all available control policies



bn penalty function
W motor speed
Wy wheel speed

Abbreviations

BMS  battery management system
CAN  control area network

DAQ  data acquisition

DC/AC direct/alternating current
DDH  direct driven hydraulics

DP dynamic programming

ECU electronic control unit

EMI  electro-magnetic interference
HV high voltage

LHD  load-haul-dump (mining loader)
NRMM non-road mobile machinery
STO  safe torque off

VFD  variable frequency drive



1. Introduction

1.1. Background

Underground mines are one of the harshest work environments on the planet. Ensuring the
well-being of the mineworkers is one of the major issues for the mining industry.
Underground mines, as opposed to open-pit mines, do not possess a natural ventilation, thus
proper air conditioning and ventilation systems are essential to combat reduced oxygen
levels and elevated temperatures. As the new mines become deeper and hotter, more
complex ventilation systems are required. Therefore, the installation and the upkeep of the
ventilation systems become a large part of the underground mine maintenance. Despite huge
initial investments, the mining history shows that most disasters in underground mines are
caused by ventilation system failures — gas outbursts, dust explosions and windblasts (Brake,
2006).

Non-road mobile machinery (NRMM) is the main contributor to the emission levels as most
of the NRMM in underground mines are diesel-powered. A fully electric NRMM powertrain
is a proposed solution to improve working conditions in the underground mines and to limit
the ventilation expenses. The conventional diesel powertrains are a subject of stricter Tier V
regulations for non-road engines (Dieselnet, 2016). The tightening emission standards as
well as eventual fossil fuel depletion require greener approach to the problem. Even though
the conventional powertrains continue to dominate the market (Manzi, 2018), electric
powertrains are gaining popularity for both on-road and off-road applications. Electric-
powered NRMM is not only emission-free locally but also has a potential to increase work
and energy efficiency.

The electric powertrains have numerous advantages over the conventional powertrains. The
absence of local emissions provide a safer environment for the machine operators and it
reduces the complexity of required ventilation systems. The diesel engine for NRMM
applications is usually selected according to the highest load even though the duty cycle is
normally composed of short high-power peaks, which results in long idling periods. Electric
motors provide great controllability via variable frequency drives (VFD) and have favorable
torque-speed characteristics. An electric motor can produce a higher torque when starting
form a standstill and at lower speeds. In addition, an inherently lower energy efficiency of
an internal combustion engine makes it inferior to the electric motors. Electric motors can
be overloaded for almost twice the nominal torque for short amounts of time and they can
be operated at higher than nominal speed in the field-weakening region. Therefore, the motor
can be downsized, which makes the electric drivetrain more compact than the conventional
powertrain. However, the further electric powertrain development is bottlenecked by the
energy storage technology. Currently, even the most advanced battery systems cannot
compete with liquid fossil fuels in terms of energy density and refueling (recharging) time.

Load-haul-dump (LHD) mining loaders are utilized in 75% of all underground mines to
handle loose material during the excavation (Tatiya, 2013). LHD mining loader is type of
NRMM, which is similar to a front-end loader but developed for the roughest environments
with regard to productivity and safety. However, most LHD vehicles are powered by fossil
fuel, which is neither sustainable nor efficient. Electrification and subsequent automatization
of underground mines reduce the chance of human-error and introduce an opportunity for
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optimization. This thesis analyses a case study of an LHD mining loader and its powertrain
energy consumption optimization model.

The next subchapter elaborates on the electric powertrain benefits for underground mine
applications.

1.2. Economic, health and environmental factors

Hybrid NRMM are being introduced to the market as an alternative to conventional diesel-
only driven machinery (Komatsu, 2018, Innovative Vehicle Institute, 2019). This is an
economic based solution, which aims to reduce the maintenance of a LHD loader, while
avoiding the use of batteries as the only NRMM power source. Hybrid NRMM is less
polluting but does not remove the exhaust factor entirely as the diesel engine is still the main
power source of the hybrid powertrain. Despite the local emissions, the hybrid NRMM is
more energy and work efficient. Energy consumption simulation published in Lajunen’s
publication (2010) concluded that the hybrid loader has more than 60% better combined
efficiency when comparing to a conventional loader. While 60% is a significant increase
from energy point of view, a more significant performance measure for NRMM is tons of
material moved per hour (t/h). “The best work efficiency [...] is about 23 percent more than
with the conventional loader” — Lajunen states. This is a noticeable increase in work
efficiency, which sparked an interest with new products emerging like “Joy 22HD” hybrid
loader (Komatsu, 2018). The manufacturer claims that the work efficiency is increased by
30% and fuel consumption decreases by 20%, which corresponds to the results in the
aforementioned article. Nevertheless, the actual work efficiency still heavily depends on the
operator of the machine and the percentages have not been validated in an actual work
environment.

The fuel cost is only a small portion of the total LHD loader maintenance in an underground
mine. Naturally, the newer, deeper underground mines require more complex and expensive
ventilation and air-conditioning. To reduce these costs, Tuck (2011) suggests implementing
fully electric powertrains. The hourly cost of an electric mining loader taking into account
ventilation maintenance is 85 USD/h, which is 30% lower than the diesel powertrain (Jacobs,
2013). The cost sensitivity analysis concluded that the difference is even greater with an
increased fleet of mining loaders because more ventilation is needed to retain an acceptable
air quality. Furthermore, for every 0.1USD/I increase in diesel fuel price the costs of diesel
loaders increase by 2.6 USD/h/unit. The increase in the base cost of electricity actually
decreased the costs of electric mining loaders by 4.0 USD/h for every 0.01 USD/kWh
increase when comparing to diesel loaders. Overall, running a fully electric underground
mine is more economical.

The air quality and the personnel health safety are the major issues in underground hard rock
mines (Brake, 2006). Usually in mining applications, NRMM is employed to transport large
amounts of ore and other aggregates efficiently. Heavy machinery requires powerful engines
to drive them, causing more diesel particulate matter to be exhausted due to incomplete
combustion and the impurities of the fuel. There have been major developments in
understanding the risks of diesel particulate matter and its linkage to lung cancer and other
occupational diseases (IARC, 2012). Understanding and mitigating these risks is the key of
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securing the health safety of the mineworkers. As for now, diesel-electric hybrid technology
is already being adopted in underground mines due to increased work efficiency and fuel
economy. However, hybrid technology is not local emission-free. In that sense, electric
powertrains are more attractive than hybrid and other conventional solutions.

Furthermore, a regular LHD mining loader with a conventional internal combustion engine
can be as loud as 105dB (Jacobs, 2013). A mining loader equipped with an electric drive
operates at only 85dB (100 times less). The noise level of the conventional mining loader is
above the limits stated in the Official Journal of the European Union (2003). Therefore, the
operators must wear special hearing protection throughout the workday. However, even with
the hearing protection, an exposure to high noise levels may lead to an injury or a permanent
hearing loss. While short-term effects can disappear after leaving the noisy environment, an
occupational illness like tinnitus (ringing in the ears) will weary the regular workers. Hazards
like this are taken into consideration while planning the mining works which makes a strong
argument in favor of electric powertrains.

1.3. Objectives, scope of the research

The energy efficiency of an electric motor can reach up to 96% for NRMM applications
(Havells, 2016). However, this is the case only for a small region in the speed-torque
characteristic of the motor. An electric motor never operates at the maximum efficiency
during the whole operation — the speed and torque requirements always change. An electric
powertrain enables power regeneration during breaking and since the LHD mining loader is
a massive machine, there is a great potential to regenerate energy. Naturally, the faster the
LHD vehicle moves, the more power is consumed but the harder the vehicle breaks, the more
energy can be recovered.

On-road mobile vehicles normally have standard duty cycles, for instance Braunschweig
cycle for city busses. Unfortunately, a standard duty cycle for LHD mining loaders are
undefined, however, a generic duty cycle is formulated empirically. The automatization of
movement according to a generic duty cycle introduces an opportunity for an optimization
regarding the energy and work efficiency. Simultaneously increasing work efficiency and
energy efficiency is, however, contradictory. While the work efficiency increases, normally,
the energy efficiency decreases and vice versa. The proposed optimization method calculates
the optimal operation points for the best performance favoring the energy efficiency. A
proper work efficiency optimization, on the other hand, could be performed only for a
specific case taking into account various economic factors, thus this thesis mainly focuses
on energy consumption reduction.

The aim of the research is to reduce the energy consumption of the LHD powertrain traction
motors by utilizing an optimization algorithm developed by means of dynamic programming
(DP). It is realized by modeling the LHD powertrain in MatLab and applying the
optimization algorithm. The optimization code includes a generic work cycle simulation and
DP function that minimizes the consumed energy. The simulation generates an optimal speed
profile and calculates the total energy consumed and the total time elapsed. The energy
consumption results are compared with a profile of constant speed and constant acceleration
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(non-optimal velocity profile). By using the simulated optimal speed profile, an approximate
operation area is defined and overlaid with the electric motor efficiency map.

This study analyzes the energy consumed by the main LHD powertrain, i.e. the traction
motors that are powered by a central battery pack. Other subsystems of LHD, such as work
hydraulics and auxiliary systems, are excluded from the simulations or simplified to a
constant energy consumption level. In addition, the simulation omits the power consumed
by the steering motors for its high efficiency and low power consumption. Thus, the
simulation is realized as a movement on a one-dimensional path. The results will be
presented in a form of kWh/km (kilowatt-hours per kilometer), which describes the energy
efficiency, and time elapsed during the work cycle which corresponds to tons of material
moved power hour or work efficiency. This work provides an analysis of an optimization
algorithm in an underground mining application. It provides a well-commented MatLab code
for the future reference and improvement. Furthermore, it analyses the selection of traction
motors, making suggestions for future traction motor improvements for an electric LHD
mining loader.

This thesis is organized as follows. Subsection 1.4 contains the state of the art, giving a
broader overview of the topic, related research and recent developments. Section 2 defines
the laboratory setup of a real-world size LHD mining loader in Aalto University with a
detailed specification of the components. Section 3 introduces velocity optimization
algorithm, its origins and applicability to this case. Section 4 presents the results of the
simulation and discusses the potential application in the mining industry. Section 5 is
discussion describing the importance of the findings, probable technical issues and chapter
6 discusses the potential future works and the continuation of the research.

1.4. State of the art

Paraszczak (2014) lists three types of electric powertrains according to the main power
source. The drivetrain can be powered by overhead lines or rails, tethered trailing cables or
energy storage devices. All three variations are utilized in the industry to some extent. The
overhead line method is employed in underground mines that are operated for longer periods
because they require higher investment. The high maintenance costs and low adaptability
makes it highly unlikely to become the standard solution in the future. Trailing cables is
certainly the cheapest solution. However, it is characterized by low mobility and versatility
(Lajunen et al., 2016). In addition, the trailing cables introduce an increased chance of
failure. The powertrains equipped with a battery pack provide the greatest flexibility and
versatility. However, relatively low power capacity of the battery pack limits the operation
time of this sort of powertrain. While applications, such as concrete-spray machines with
lengthy idling periods, accommodate battery charging, continuous operations of loose
material transport require quick charging stations to keep the productivity high. Otherwise,
an interchangeable battery pack is necessary. Other alternatives such as hydrogen fuel cells
are available but the technology is still in its early development. Overall, despite all the
technical challenges, the battery-powered loaders are gaining popularity and more products
are expected to emerge in the near future.
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The development of a fully electric LHD mining loader is closely related to the battery
research. The battery is the weakest part of an electric powertrain when comparing to a
conventional powertrain equivalent. Relatively low energy density comparing to liquid fuels,
such as diesel or gasoline, and increased chance of battery management system failures are
the biggest issues in battery operation and development. Many different battery technologies
are being researched but currently, Li-ion technology holds the majority of the market and
for good reason. Li-ion has many distinct advantages over other types of batteries, which
includes high energy density, low maintenance, availability, and low self-discharge
(Buchmann, 2010). Certainly, the technology is not without its drawbacks such as protection
systems requirements, aging and transportation issues. Li-ion cells are not as robust as other
types of rechargeable batteries like NiCd or NiMH. Li-ion battery packs require complex
integrated protection systems to avoid overcharging or discharging the battery cell too
rapidly. The battery cells are connected in series to reach the required voltage levels.
Furthermore, the voltage of separate battery cells must be balanced during the operation
maintaining uniform charging and discharging. Therefore, rigid battery management
systems are necessary. The performance of li-ion batteries deteriorate over time, they have
limited operation time and the number of charge-discharge cycles. However, Li-ion
technology is the most compatible solution for heavy-duty NRMM due to advancing fast
and ultra-fast charging systems. The newest technologies can already charge energy capacity
of 75kWh in a matter of 5 minutes (Electrek, 2018). That would eliminate the need of a spare
battery set, significantly reducing the installation and maintenance costs. Advancements in
battery technology directly influences the research of the electric LHD powertrain, making
it a more viable alternative in mining applications.

According to Lajunen et al. (2016), NRMM electric powertrains are commercially viable in
all power classes. The low power electric vehicles (under 10kW) are the most
technologically viable and a variety of products is available on the market. Low power
electric NRMM solutions are especially attractive in the environments with low noise and
emission requirements. Mid-power class market displays little variety of products. Most
NRMM, including LHD mining loaders, utilize hydraulic power transmission for high torque
operations such as booms and buckets. The hydraulic power is also used for traction
purposes, as the slowly moving machinery currently have no alternatives available, which is
one of the incentives for this research. Finally, the high-power class (over 1MW) is
exceptionally driven by electromechanical powertrains since the electromechanical
transmission outperforms the hydraulic. The relevance of energy efficiency increases as the
overheating becomes an issue. LHD mining loaders are considered to be in mid-high power
category where the electrification of the powertrain is feasible. Large amounts of energy can
be saved because various optimization methods become viable in this power-range.

Dynamic programming (DP) is an optimization technique, based on Bellman-Ford algorithm
(1958), which solves the problem backwards in time and stores the relevant information on
the optimal trajectory to all intermediate points. It is based on breaking down a complex
problem into simple recursive sub-problems. “An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard from the first decision”- Bellman’s Principle of optimality.
Dynamic programming is applied in various fields from electrical engineering to logistics
and economics. Many algorithms use the concept of dynamic programming including
recursive least square method (Hayes, 1996), method of undetermined coefficient (Grimaldi,
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2000), word wrapping (Heninger, 2013) and many others. However, the most universal and
therefore, most widely used is the original Bellman’s algorithm.

Mensing (2013) presents a complex approach to Bellman’s optimization problem. The
author uses a 3-dimension optimization algorithm (3 state variables) to minimize the energy
consumption of road vehicles. However, a 3-dimension DP approach while providing extra
accuracy takes substantially more computing power and, consequently, is more time-
consuming. One of DP benefits is that it increases the computation time only linearly with
the increase of the nodes - the accuracy is cost effective. However, additional input or control
signals increase the computation time exponentially. Therefore, a single state — single control
method is chosen for this application as was done in Lajunen’s (2013) work for electric city
buses. The author applied a one-dimensional Bellman’s algorithm to minimize the energy
consumption of electric and diesel city buses. The method generated energy-optimal velocity
profiles for Braunschweig driving cycle (Dieselnet, 2013). The simulation yielded 17%
increase in energy efficiency for electric buses and 19% for diesel buses.

Fully electric powertrains are likely to drive the underground mining machinery in the future
due to environmental and health concerns. The electric powertrains are more efficient, emit
less noise and most importantly exhaust no local toxic emissions. While issues such as
battery charging are yet to be solved, the demand for such powertrains are increasing, making
it a viable field of research. This study concentrates on the energy and work optimization of
an LHD mining loader by means of dynamic programming. A real-size LHD mining loader
is analyzed as a platform for this research. The following chapter will describe the laboratory
setup in high detail.
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2. Description of research platform

2.1. Past projects

A 14-ton LHD mining loader with a 4-ton lifting capacity is available as a case study (figure
1). Currently, the machine is a part of the EL-Zon research project, whose twofold focus is
the development of direct driven hydraulics (DDH) and an electrification of NRMM
powertrain. A used LHD mining loader was acquired in 2008 for HybLab project in Aalto
University. The loader had been operated in an underground mine for 10000 work hours,
which is a half of its expected lifetime. Afterwards, the mining loader was taken over by
Tubridi project and EL-Zon following that. The goal of these projects were to develop DDH
and an electromechanical drivetrain for LHD mining loader.

The original hybrid concept is presented in figure 2. Due to high power of the powertrain,
the busbar voltage level was set to 650V. The busbars are protected by a brake chopper and
a brake resistor. In case of an overvoltage, the brake chopper sends a signal to the brake
resistor and connects positive and negative terminals through brake resistor. The brake
resistor dissipates the extra energy in a form of heat, thus a proper cooling system must be
installed for a normal application. Diesel-generator (gen-set) and both traction motors are
connected in parallel to the main busbars through DC/AC converters. The 362V battery is
connected to a choke inductor and a DC/DC converter. The choke is acts as a low-pass filter
to protect the battery against sharp voltage surges during the power regeneration period. The
DC/DC converter raises the voltage level from 362 to 650V. The steering circuit is also
connected to the main busbars, which is protected by charge and discharge circuits and
another brake resistor. The steering motors are connected mechanically to drive the steering
of the mining loader. More information about the individual components is presented in the
next subchapters.

Figure 1: A full-size LHD mining loader in Aalto University laboratory
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Figure 2: Electric schematic of the parallel hybrid powertrain concept

The following subchapters discusses the separate parts of the LHD mining loader laboratory
setup and their role in MatLab modeling and simulations.

2.1.1. Direct Driven Hydraulics

DDH is a hydraulic system that is directly controlled by several electric motors eliminating
the need of the central hydraulic circuit. Instead of using valves to regulate the pressure
inside the cylinders, electric motors with actuators are used. In recent years, the LHD mining
loader had its conventional work hydraulics replaced with DDH. The DDH circuitry and unit
components are presented in appendix 1. Numerous articles were published regarding DDH
demonstrating its benefits over the conventional hydrostatic hydraulics in terms of energy
efficiency and reliability (Minav, et al. 2016 and Lehmuspelto, et al. 2015). DDH as an
electrohydraulic actuator combines the benefits of electrical engineering and hydraulics. In
a system utilizing DDH, every hydraulic actuator is controlled independently by a dedicated
set of pumps driven by electric servomotors. This eliminates the need for a centralized tank
used in conventional systems, where all the work hydraulics are connected to a single
hydraulic circuit. Therefore, DDH requires less piping and valves, reducing the total volume
of the system. It reduces the losses and improves efficiency, eliminating the potential leakage
points as well. DDH operates on power-on-demand concept, which means that the DDH
drive is only driven when a function is required by a cylinder actuator. This, in turn, reduces
the cooling needs and saves energy. The power-on-demand concept is especially beneficial
for mining loaders, where the work hydraulics might be used only for a few seconds during
the loading/dumping work cycle.
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The work hydraulics of the mining loader consists of two main parts: a boom and a bucket.
Thus, two separate DDH units were designed and implemented for the loader. Certain
constraints were given for the dimensioning of the equipment. First off, the performance of
the original setup has to be achieved, this include the speed and the linear force of the boom
and bucket functions. In addition, the volumetric dimensions of the original hydraulic
cylinders have to be retained. The DDH units are powered by a 96 V battery. A single unit
has a motor plus inverter, gear and pump/motors (Lehmuspelto, et al. 2015). The DDH units
are identical except for the cylinder part: two double-acting cylinders were used for the
boom, whereas only one was used for the bucket.

Comprehensive DDH simulation is not included in MatLab simulation due to its high
efficiency and relatively low power consumption comparing to the main powertrain
(Turunen, 2018).

2.1.2. Battery

The 362V Li-ion battery (figure 3), designed in Aalto University, consists of 98 cells with
40Ah capacity which is capable of producing 200A. It results in 72kW at a nominal voltage
level and 15 kWh of total capacity (Table 1). The battery is equipped with DC fuses,
contactors, relays and a pre-charge resistor. The charging is controlled by a battery
managements system (BMS). Three hermetically sealed contactors rated at 350A and 750V
are the main safety feature of the battery module. The mains DC fuses are rated 400A and
550V, smaller fuses are used to protect BMS (30A) and the test leads for a circuit analyzer
(0.44 —2A). A pre-charge sequence is launched when the battery is connected to an external
energy source. The pre-charge resistor has 470 Q resistance and can handle 5S00W. The
battery is the main power source for traction and steering motors. Inherently it allows
recapturing kinetic power during the normal operation and storing it, lowering the overall
consumed power.
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Figure 3: 362V Li-ion Aalto battery pack

Table 1: Specifications of battery pack

Property Unit | Cell Pack
Nominal capacity Ah 40 40
Nominal voltage V 3.7 362.6
Max voltage \% 4.2 411.6
Cut-off voltage \% 2.7 264.6
Max charge current A 80 80
Cont. discharge current A 200 200
Peak discharge current A 400 400

Energy kWh | 0.15 14.5




The battery is modelled as the only power source for the powertrain. Figure 4 presents an
equivalent circuit of a linear model of the battery. The battery current limits are determined
by the maximum charge and discharge currents of the battery cells. Internal resistance is
determined by the battery state of charge and the number of battery modules. In case of
insufficient battery power, the simulation will use multiple battery packs to provide enough
current to drive the powertrain.

Figure 4: Battery model

2.1.3. Powertrain

During HybLab and Tubridi projects, the original hydraulic powertrain was replaced with a
fully electromechanical equivalent. Two traction motors were designed to drive front and
rear axles separately, with no mechanical connection in between them. The rear axle is driven
by an 85 kW Siemens asynchronous motor with a 1:2 synchronous belt drive and a 3-speed
transmission with electromechanical shifting actuators. Rated 3-phase 650V voltage is
supplied from a converter module and can provide a rated torque of 220Nm at nominal 142A
(530Nm when drawing maximum 300A current) and rated speed 4 000 rpm (max. 10 000
rpm). More information about the motors is provided in Appendix 2. The front axle is driven
by a 67kW Siemens asynchronous motor with a belt gear with a 1:3 speed reduction ratio
(1:1, 1:2.2, and 1:4.39). For the laboratory setup, the front motor was disconnected
mechanically for it is used as a traction assist when the rear wheels are slipping or are in
mid-air or when the gear is shifting.

20



Figure 5: Rack with converters installed onto the mining loader

Table 2: Table of AC/DC converter parameters (ABB, 2018)

ABB Oy c € Made in Finland
Type | HES880-104-0320A-5 184KVA IP67
Code | 3AUA0000160447 Serno | 12345678912345

Input Output
u 700 VDC U 3~...500 VAC
I N/P 258/388 ADC I N/P 213/320 AAC
f DC f 0...1000 HZ
lcc |6KA1s Date | 14.11.2014

The battery is connected to the motor through ABB HES880 DC/AC converter (table 2). It
can support an input voltage up to 700V DC, with nominal and peak DC input currents at
258 and 388A, respectively. Nominal and peak output currents rated at 230 and 320A AC,
respectively. Four frequency converters, brake chopper, brake resistor, choke inductor,
busbars and other electronics were combined into a rack seen in figure 5.

The mechanical parts of the drivetrain for the front and rear axle are similar, consisting of a
belt drive, differential gear and hub gears for the wheels. However, the rear axle has the
additional 3-speed gearbox. The drivetrain configuration is demonstrated in figure 6 and
CAD drawing in figure 7. The other major difference is the different gear ratios of the belt
drives for the rear and the front axle. The gear ratio for the differential gear is same for both
axles: 5.125 and the gear ratio of the hub gear is 6.0 for both axles. High gear ratios are
beneficial for providing high traction torque for the wheels at high engine speeds.
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Figure 6: Electromechanical drivetrain configuration. (Liljestrom, 2014)

Figure 7: CAD model of rear axle drivetrain, electric motor to wheel hubs (Liljestrom, 2014)

The rear axle motor is equipped with a KT84-130 type temperature sensor, which is a linear
semiconductor device with a positive temperature coefficient, i.e. higher the temperature,
higher the measured resistance. In addition to the temperature sensor, a 64-tooth wheel speed
encoder with two hall sensors is installed. The speed of the motor can be determined from
the frequency of the digital I/O signals and the direction of the rotation — from the sequence
of the two.

Articulated electromechanical steering is realized by a dual input slew drive with a 1:61 gear
ratio, which is installed on the pivot point of the loader. The mechanism has a high efficiency
and has no need for a cooling system. Both slew drives (manufactured by Bosch Rexroth)
have planetary reduction gears with 1:20 ratio. The drives are interconnected by worm gears
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granting a self-locking feature preventing external forces to alter the steering angle. The
mining loader has hydraulic parking brakes that are on by default. To relief the brakes
pressure needs to be supplied by either a manual pump or an automatic mechanism
controlled by a CAN (control area network) bus.

The belt drive features V-shape teeth, which provides a decent grip and requires no
lubrication. Although belt drives are not as common in NRMM as in automobiles, it is
gaining popularity for its simplicity and ability to dampen shock load. Furthermore, V-belts
tend to be the quietest of all the belt drives and much quieter than chain drives.

Since this work does not aim to analyze the mechanical design aspects of LHD loader, only
the major components, such as gears, wheels and battery, are simulated the Matlab
environment. In addition, several other simplifications are made to make the modelling more
reasonable. Due to high efficiency of the steering circuit, it is omitted from the simulation.
Therefore, the driving cycle of the LHD loader can be simulated as movement in one
dimension. The two traction motors are never loaded equally. The rear axle motor is primary
and provides the majority of the load and the other assists when the primary motor is not
available. However, that is problematic to simulate, thus the simulation uses two identical
equally loaded motors. Finally, the gearbox is not simulated and realized as a constant gear
ratio.

Other modelling details are presented in chapter 3. The rest of chapter 2 while not used in
simulations but it provides more in depth knowledge about LHD and technical difficulties
of such project.

2.1.4. CAN bus

The controller area network (CAN) bus is used in many modern automobile applications.
The CAN protocols allow communication between electronic control units (ECU) and
sensors without a central computer. It is a robust, low cost, message based control system.
Therefore, CAN bus based control was designed for this application as well. The mining
loader control schematic has many ECU’s (nodes) that would otherwise require complex
wiring. Advantages of CAN communication can be defined as follows (CSS electronics,
2018). Nodes communicate over a single CAN interface, providing low cost. The absence
of direct analogue signal lines reduces the chance of error, cost and weight. CAN bus allows
central error diagnosis and configuration across all nodes — it is a centralized system. The
system is more resilient towards EMI (electro-magnetic interference) making it robust
enough for mobile applications. CAN messages are ID prioritized, so that the most important
messages are not interrupted, contributing to the effectiveness of the system. ECU contains
a chip for receiving all transmitted messages and decide their relevance. This flexibility
makes it easy to implement new elements, which is especially important for a laboratory
setup. The original CAN bus control schematic is presented in figure 8.

23



dSpace MABX Il
Hybria Hybrid

ABB HES880 ABB HESEBO ABB HESSBD Ekithion BMS RM display Beckoff I/O
control CANopen traction rear traction front DC/DC generator ! 3‘;2\/ Aalto battery VW engine module
master Nid=0x11 Nid=0x12 [ Nid=0x13 [ Mid=0x14 read only) 1 Nid=0x16
4| CAN 1 CANopen 500kb/s , TKE CAN switch-10 0x7A
Steering Bucket EMP Cooling ABB HES820 Altaimavo
joystick Jjoystick pump generator 90V battery
nid=0x33 [~ nid=0x34 id=0x88 [~ | nid=0x8C n'lldiﬂxﬂi
w2
-]
|
4| CAN 2 J1939 250kb/s, TKE CAN switch-10 0x7B
Bosch Rexroth IFM Brake
VNaFdGLN_:C?P Steering master _l—mm pedals _,T‘
o Nid=0x20 Jave id=0x?? peds
4| CAN 3 CAMopen 500kb/s, TKE CAN switch-10 0x7C
Sevcon Gend Seveon Gend TKE COVD-10 Hydac HNT Parker Jumo Posital fraba
Lift pump Dump pump 0x41..0x45 2 level sensors 6 pressure sensors 2 temperature 2 distance sensors
22 [ w23 MAL-DXES 1 ox46.0xa7 [ 0x48.0x4D [ sensorsOx4E.OXAF [ Ox50.0xS1
—| CAN 4 CANopen 500kb/s, TKE CAN switch-10 0x7D

IFM

IFM 1/0 0x53 Inklinometer

0x52

Figure 8: CAN bus control schematic

2.1.5. The parking brakes

The mining loader is equipped with hydraulic parking brakes that are turned on by default.
The brakes are spring operated, and hydraulic pressure is needed to relieve them. There are
separate brakes for the front and rear axles, but both are connected to the same hydraulic
circuit. The parking brakes must be operational for the sake of safety and possible future
testing. The brakes can also be relieved by manually pumping oil with a hand pump that is
connected to the brake circuit. The pump is connected at the rear end of the mining loader.
The pressure required for relieving the brakes is approximately 120-130 bar. Pressures above
this range might cause damage to the rear or the front axle, but the system is able to handle
pressure peaks up to 180 bar. As no other mechanical brakes are operational, besides
breaking by the motor, the parking brakes can be used as an auxiliary breaking system.

The next subchapter concentrates on the present state of EL-Zon project.

2.2. Current state of the project

2.2.1. Electric powertrain

The drivetrain concept was simplified to a fully electric equivalent as seen in figure 9. The
front axle motor is not connected to the transmission and only the rear part is operational.
The power requirements for the systems were lower than initially planned, thus the busbar
voltage was reduced to 362V (the battery voltage). The battery is outdated and its ability to
function properly was under a question. Li-Ion battery pack requires a balanced voltage level
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across the cells, so the battery charging tests was from regenerative energy was omitted.
Therefore, the DC/DC converter and the choke inductor was unnecessary and the battery
was connected straight to the busbars. The diesel gen-set (engine and generator) was
removed from the setup to make place for the electrical components, as it was not used. DDH
and auxiliary (Aux.) component batteries are not connected to the main battery because they
are activated separately.
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Figure 9: Schematic of a fully electric powertrain

The completed laboratory setup can be seen in figure 10. The maximum current that the
motor can draw is around 300A so the cable diameter is at least 70 mm?>. The drive (on the
right) can operate in either scalar (speed) or direct torque control (DTC). DTC can provide
a very precise control of the torque even without a feedback device i.e. open loop control.
The actual feedback is the operator increasing or decreasing the torque reference. To operate
in open loop control the drive needs to know how the motor behaves. For that reason, some
type of ID run need to be performed. Most ABB drives have different ID run selections:
“standstill”, “partial” and “normal”. “Standstill” is the only one possible if the motor cannot
be disconnected from the load. This method will only magnetize the motor and will not
necessarily provide the best results. “Partial” torque ID run will cause the motor to rotate
slightly but it will not reach the rated speed and torque. The preferred type of ID run for most
applications is “Normal”. The motor has to be disconnected for this type of test. First, the
motor is at standstill while the drive is calculating the required magnetizing current, which
is an equivalent of a standstill ID run. Afterwards, the motor is accelerated to the full speed
in the forward direction, then given several different speed settings and torque pulses.
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“Normal” ID run was performed on the mining loader motor, as the transmission was
disconnected from the wheels. The motor ID run requires entering the motor parameters.
The traction motor parameters as seen by VFD is shown in table 3.

Figure 10: Laboratory setup of an electric powertrain

Table 3: Traction motor parameters as seen by VFD

Value Unit
Motor type Asynchronous motor -
Control mode DTC -
Nominal voltage 440 A%
Nominal frequency 133,7 Hz
Nominal speed 3920 rpm
Nominal power 85 kW
Nominal cos¢ 0,87 -
Polepairs 2 -
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2.2.2. The cooling system

The cooling system is designed for the DDH units and the electric components placed in the
rack and the traction motor. The main unit consists of two centrifugal pumps: one for the
DDH units and one for the electric components. The main unit is also equipped with a fan
and a radiator for cooling the circulating liquid. All of the cooling equipment is operated is
powered by 24 V, together with other auxiliary systems. The presence of a cooling agent in
the system is necessary for laboratory testing conditions because a similar traction motor had
been overheated in the past. Since the main electric circuit was modified, a cooling circuit
could also be simplified. The main unit, the converter, the rear traction motor were connected
in series. In addition, two pressure sensors were installed for the main unit: one for
monitoring the outlet pressure and the other for monitoring the pressure on the inlet. The
pressure sensors were used to confirm that the system pressure would not exceed 2.5 bar,
which is the maximum pressure for the motor; the maximum allowed pressure for the
inverter is higher. The system was filled up with water after the physical connections had
been made. The volume for the entire system was approximately 12 1. The Siemens motor
manual recommends using a 50/50 water-glycol mixture. However, only water was used to
test for any leakages. Water-glycol mixture is added later for an extended operation time.
This simple cooling system together with temperature sensors protects the traction motor
and other equipment from overheating.

2.2.3. Analog control joysticks

While CAN bus is used frequently in automobile industry it not without disadvantages: it is
difficult to debug and it is not always reliable. CAN bus control was a logical selection for
the original hybrid powertrain because many ECU’s need controlling. However, for a fully
electric drivetrain CAN bus is an overkill. The control of one traction motor and two DDH
units were realized as an analog control. The CAN joysticks were rewired to function as
analog controller (similar to potentiometer). Two joysticks were used: one was to control the
speed on the motor and the other for the hydraulics of the bucket and the boom. The joystick
has 2-axis control and a trigger button. The control was designed to be intuitive from the
driver’s point of view. One axis is used to control the speed of the motor, the trigger acts as
a safety feature (the motor runs if the button is pressed) and the other axis is left for a steering
control. The joysticks are places in their original positions at the driver’s seat.
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Figure 11: Installed joysticks

The actual validation can only be possible in the natural work environment i.e. an
underground mine. However, this chapter described the research platform for this thesis.
Thus, a MatLab model was developed based on the aforementioned case study of a
completed LHD mining loader. An optimization algorithm was applied for the model and
the duty work cycle. The model, the duty work cycle and the speed optimization algorithm
are described in detail in chapter 3.
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3. Speed optimization method

A control system is designed either by a trial-and-error process (tuning the parameters
manually) or by an optimization algorithm. While trial-and-error method does not require
profound control engineering skills, it can be very time consuming and the parameters
determined will not result in the best possible performance. The objective of the optimal
control is to determine the control signals which cause the process to minimize (or
maximize) some performance criterion at the same time satisfying the physical constraints.
Optimizing the work cycle of a mining loader is beneficial because it normally operates at
periodic duty cycles over its lifetime. The operation is highly energy consuming, so even a
small increase in energy efficiency, will result in many kWh saved. The speed control of the
mining loader is the subject of this study, which is formulated as an optimization problem.

The optimization method for this study is based on Dynamic Programing and Optimal
Control textbook (Bertsekas, 2005). The objective of the optimization is to minimize a
certain cost or mathematical expression of an undesirable outcome. The DP technique
captures a desire for a low present cost and a high future cost tradeoff. It is achieved by
ranking the decisions based on present cost and the expected future cost assuming the
optimal decision making (control policy) for the subsequent stages. DP can be utilized for a
broad variety of problems irrespective to the structure of the problem. An acceptable model
for an electric powertrain optimization is a dynamic system with a finite number of stages
(finite horizon). The model features a discrete time dynamic system, a cost function that is
additive over time and no stochastic input.

The DP technique relies on the principle of optimality, which suggests that an optimal
control policy can be constructed in piecewise fashion. It starts from the end of the problem
and calculates an optimal policy for the last segment sub-problem then extends the optimal
policy for the last two-segment sub-problem and continues in this manner until it constructs
an optimal control policy for an entire problem. The following subsection presents a
mathematical expression of a basic DP problem. The basic problem is very general and does
not require that the state or control parameters have finite values or belong to n-dimensional
vectors.

3.1. General mathematical expression of Bellman’s algorithm

The general idea behind DP is breaking down the problem into sub-problems, solving them
and reusing the solutions. The DP is a powerful tool for many applications such as finding
the shortest path, calculating a minimal cost of an industrial process or even solving hybrid-
energy management problems (Back, et at. 2004). It is occasionally called a “careful brute
force algorithm™ because it involves an exhaustive search in polynomial time. However, it
solves the optimization problem backwards in time omitting the redundant operations of a
basic recursion algorithm. This is especially important for the problems with many nodes
(variables) because it saves relatively more computation time. According to Demain, MIT
(2011), the DP is utilized by following these four steps. First, the problem is classified as a
dynamic programming problem and sub-problems are created with a possibility for
recurrence. Second, a state variable is decided. Third, the relation between the states is
formulated, and finally, memoisation is added. Therefore, even if the problem does not
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inherently deal with an optimization, it can be reformulated and used with a DP algorithm,
making it a very powerful and universal tool. Below is a general mathematical expression
for a DP algorithm.

The class of optimal-control problems, which can be solved using DP, is written in state
space equations [1]-[5]

x(t) € X(t) [1]
u(t) € U(t) [2]

The optimal-control problem in question is time-variant, thus, both the state x(t) and the
control u(t) depend on time t and they are defined within the sets of X (t) and U(t)
respectively.

x(t) = F(x(t),u(®),t) [3]

where x(t) is a derivative of state space x(t) and it is a function of the state space, the
control signal and time.

x(0) = xo [4]
x(tr) € [ min » Xf.max] [5]

The equation [4] defines the initial value of the state space and the equation [5] sets the final
state constraints.

The DP optimization goal is to minimize (or maximize) some criterion J(u(t)) by applying
the control u(t), i.e:

find minJ (u(®) [6]
which is also known as the cost functional. It is generally defined as follows

t
J(u®) =6 (x(tr)) + ;" HGe(®),u(®), O)at [7]
where G (x(tf)) is the final step cost and H (x(t), u(t), t) is the cost of an intermediate step.

To utilize DP MatLab function, the continuous time problem is discretized, thus, the state
variable is

X1 = F(xk,uk), k= 0,1, ,N -1 [8]

where N is the total number of nodes. Subscript k and lowercase letters (g and h) are used
to indicate the discrete domain.

Let the control policy  be a set of all applied controls uy:
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m = {uo, ul, "'luN—l} [9]

Then eq. [7] is discretized with the initial state

Ju(x0) = gnCen) + dn (o) + ZR23 hie (e wre () + i (i) [10]

where gy represents the final cost in [7] and ¢ is an additional penalty function which is
used to enforce the constraints of the final state [5]. hy is the cost for applying the control
Uy, at x;, and the state constraints [1] are enforced by ¢,.

The optimal policy 7° is the one that minimizes the J.

J°(xo) = min J(x,) [11]
mell

where I1 is all the available control policies.

Based on the principle of optimality, cost-to-go function Ji (x') is evaluated at every node
backwards in time in the discretized state. Thus the cost-to-go for the final step is

In(x) = gn(x") + o (xH) [12]

and the cost-to-go of any intermediate step:
In(x') = min {hic (' ) + de(xY) + Fear (Fe(xh ) )} [13]

The optimal control is defined by the argument u;, that minimizes the right-hand size of
equation [13] for each x! at the time index k. Jj, is evaluated on discretized points in the
state space and other points are determined by linear interpolation method. The output of the
algorithm is an optimal control signal map, which is then used to find the optimal control
signal during a forward simulation. In contrast to “brute-force” optimization methods,
increasing the number of nodes (accuracy) increases the simulation time linearly and not
exponentially. However, the complexity of the DP algorithm is exponential with respect to
the number of state and input variables. In this case, only one state and one input variable
are used, therefore the simulation time is relatively low. The following subchapter delves
into the specifics of MatLab function that is used for the modelling.

3.2. DPM function

This research was inspired by the results published in Lajunen’s (2013) work. The article
claims 17-19% energy consumption decrease for electric buses using a DP optimization
method. The electric bus and NRMM powertrains share certain similarities, thus a similar
optimization outcome can be expected. However, the electric bus was optimized for a rather
complex Braunschweig cycle, composed of many sub-cycles with rapid acceleration and
deceleration periods. The NRMM duty cycles, on the other hand, are either undefined or
rather simple, reducing the capacity for the optimization. The backbone Lajunen’s work and
this thesis is a DPM optimization function developed by O.Sundstrom and L.Guzzella
(2009). The DPM function is developed according to DP Bellman’s algorithm described in
the previous subchapter. The DPM enabled a broader use and easier approach to for DP
optimization algorithm. Figure 12 presents a flowchart of the algorithm.
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Set a=1
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b<N

YES

END

Figure 12: DPM flowchart

The algorithm consists mainly of two parts — searching for the optimal path backwards in
time by storing the indices and finding the optimal trajectory by retracing those indices
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forwards in time. The simulation backwards in time solves the problem from the end (a
certain position and speed by the end of the duty cycle) and finds the optimal control policy
for the second last state. The algorithm then saves the indices corresponding to the optimal
control policy for the “tail problem” and keeps adding nodes until it reaches the initial state.
For lengthy problems, the first loop is considerably more time consuming because the
algorithm calculates all the cost functions for the every possible control policy.

As mentioned before, the DPM function is a universal tool with a predefined structure. The
function requires five inputs - FUN, PAR, GRD, PRB, OPTIONS. FUN is a function handle
with a model description, which is described in the following subsections. PAR contains the
user defined problem parameters, including the time step, length of the problem, start time
index and a possible disturbance input (unused in this model). The function assumes equally
spaced grids and GRD defines the structure of the problem. It defines the initial state, number
of elements in the state and input grids (the accuracy of the simulation), state and input grid
boundaries (in this case, the minimum and maximum speed and position of the vehicle),
upper and lower final state constraints (the position of the vehicle by the end of the duty
cycle). According to the author, the DPM function works well for grid sizes with fewer than
5000 000 points. OPTIONS provides additional customization for the simulation such as
toggle waitbars and warnings, select discrete or continuous input, boundary method and
other.

The DPM function is an open source and it available online. It includes over 2400 lines of
code and is available online (ETH, 2018).

3.3. Powertrain model in MatLab

The LHD powertrain setup described in chapter 2 is simulated in MatLab environment. An
LHD powertrain is a complex piece of machinery so reasonable simplifications were made.
The powertrain includes everything in between the battery and the wheels. Components such
as transmission box and frequency converter are simulated with a constant efficiency factor.
The simulation only includes the energy consumed by the traction motors. The steering
circuit is omitted from the simulation because its power consumption is negligible
comparing to the traction motors. The DDH circuit is also not simulated and modelled as a
constant load. The work cycle is simulated as a linear motion in one-dimension. The load
pick-up is instant and steering of the vehicle is incorporated into the linear movement.

A more detailed explanation of separate component modelling is presented in the following
subchapters.

3.3.1. Duty work cycle

The standard duty cycles for most NRMM are undefined because of their vast variety and
specific applications. Lehmuspelto (2010) defined a generic duty cycle for an LHD mining
loader based on empirical data. The generic duty work cycle of an LHD mining loader is
presented in figure 12. The LHD mining loader with an empty bucket drives 80m 4% uphill,
205m 12% uphill and then 55m on flat ground. The bucket is loaded with an extra 4000 kg
at the loading place and the LHD vehicle drives back. The duty work cycle is realized as a
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discrete point system that consists of a position change, a reference speed profile, upper and
lower speed limits, the time elapsed and an inclination angle. This approach can be used for
other similar applications as the parameters can be easily changed.

The actual duty cycle definition as a MatLab code is provided in appendix 4.1. The length
of the total work cycle is 150 seconds with a time step of one second. The precision is high
enough not to cause inaccuracies in the simulation while limiting the computation time. The
experience shows that time increase depending on the simulation points is not exactly linear
hence too small grids should be avoided. For a DP simulation, a reference or original profile
is needed (providing an initial guess of the solution). The initial reference profile is defined
as a combination of constant speed (5 m/s) and constant acceleration (1 m/s?). To generate
an optimal velocity profile a minimum and maximum limits are defined, which are 2.5 and
10 m/s respectively. By defining the limits for the velocity profile, a “wiggle room” is
described, whose size also contributes to the total computation time. The total distance
covered is calculated as an integral of speed function with respect to time. Position change
at every second is required to run the DP function, which is defined in the duty cycle as well.
The slope vector is split into two parts: before and after the loading of the machine. One
fourth of the one-way distance the inclination is 0.04 rad, which corresponds to 4 % uphill.
Half of the distance an inclination of -0.1194 rad (-12%) and the last quarter is movement
on flat ground. The other half is symmetrical (flat — steep uphill — low downhill) as the LHD
mining loader moves the same path backwards. Finally, the function is initialized and the
motor efficiency values (appendix 3) are loaded. This model does not replicate the exact
generic cycle in figure 13 but the precision is high enough to analyze DP performance. The
duty cycle parameters are easily adjustable, making it suitable for different duty cycles.

Dumping
place

Duty cycle i

Empty bucket

Dumping
place

Loading
place

80m 4% slope

Full bucket

Loading
place

Total length of the cycle is 680m
55m flat

Figure 13: The duty cycle of the underground mining loader (Lehmuspelto et al., 2010)
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3.3.2. Vehicle

The vehicle is modelled as seen in Figure 14. The drag force is ignored due to low speeds.
The forces acting on the vehicle on a slope of a are shown according the 2" Newton’s law.

7

Figure 14: Vehicle model
N+F,+E +mgj=ma, [14]

where N is the reaction force, En) — the force exerted by the motor, ?r — the rolling resistance
force, m — the mass of the vehicle, g — accelaration of gravity, a — acceleration of vehicle.

The forces are projected to x and y axes

x: E, — F.—mgsina = ma [15]
y: N —mgcosa =0 [16]

The wheel torque T,, is the product of the acting force and the wheel radius r;,,. Wheel radius
Ty 18 0.62m (measured on the laboratory setup)

En =Ty/Tw [17]

The rolling resistance force F, is the product of the reaction force N and rolling resistance

My
F = uN [18]

The rolling resistance p, is assumed 0.01 in this case.

From equation [16]
N = mgcosa [19]

Equations [15] and [17] yield
T, /1w — W-mgcosa — mgcosa = ma [20]
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Solving for T,,:
T, = (mgu,cosa + mgsina + ma)r, [21]

where wheel speed in radians per second can be calculated as:

w,, = a

[22]
Wheel acceleration (rad/s?)
ay =< 23]

Tw

Equations [20]-[23] are implemented in simulation that can be seen in appendix 4.4,
“VEHICLE” section.

3.3.3. Motor

The performance of the electric traction motors is simulated as follows. Electric motor speed
in radians per second is defined as:

W = kg ky -0y [24]
here k, is final drive gear ratio and k., — motor belt drive gear ratio. (k; = 30.75, k;, = 2)
Electric motor acceleration (rad/s?)
Am = kg kpm - ay [25]
Electric motor drag torque:
Trmo = Imo " am [26]
where [, is motor inertia (I, = 0.094 as provided by the manufacturer)
Electric motor torque is calculated as:

Tw

T = e & To [27]

Here 14 is the total drivetrain efficiency. Electric motor efficiency 7,, is interpolated from
motor efficiency map provided by Siemens manufacturer. The full table of efficiency values
can be seen in Appendix 3.

Electric power consumption/regeneration is calculated as:

P, = wny Ty nm whendriving [28]
B, = w’;—Tm when breaking [29]
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The implementation of [24]-[29] can be seen in appendix 4.4 “MOTOR” section.

3.3.4. Battery
The battery is simulated as discussed in chapter 2.1.2, with a constant internal resistance
of r. The power provided by the battery:

Pye = Py + Pux [30]
where P,,,, 1s constant power required for auxiliary systems (constant 10kW in this case).

Battery current is calculated:

Py, = Ul —rI? [31]
U—/U2-471-Pp,
Iy = e - —— 2 [32]

where U is battery voltage and Coulombic efficiency when charging or discharging, n, =
0.98 assumed in this case.

Battery power consumption Py, is used a cost function in DP algorithm.
P,=1,"U [33]

Equations [30]-[33] can be seen in appendix 4.4 “BATTERY” section.

3.4. Selecting variables and control signals for the optimization

problem
The elapsed discrete time is selected as a state variable

X1 = f(xk,uk) + Xk, k = 0,1, ,N -1 [34]
With boundary conditions:
xO = 0, xmax = 167; X E [xOI xmax] [35]

Xmax 18 the length of the duty cycle following the reference speed profile in the final stage
of the simulations.

Uy, is the control variable which is used to determine the speed vy,.
u, €[0,1] [36]
Vi = Uk (Vmax — Vmin) + Vmin [37]

Umax = 10 m/s and v, = 2.5 m/s
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The goal is to minimize power from battery:

k

Ug€

N is a variable step allowing better dynamic accuracy. In this case, N = 167 for a time step
of 1 second.

To complete the modelling for debugging reasons, infeasibility matrix is defined and it
consists of three conditions:

e Torque at the given speed is within limits defined by torque speed map:

Tmin < T < Thnax [39]
e Battery current can only have real values (from equation [32]):

U2—4:1-P, >0 [40]

e The acceleration of the vehicle is limited, which is defined by the maximum torque
of the motor.

la] <3 [41]

This chapter defined the method used for this case study — a DP optimization algorithm to
minimize the energy consumption of the traction motors of an underground LHD mining
loader powertrain. The method includes the description of DP in a general mathematic
language, an application of a DPM tool developed for similar projects and a simplified model
of a powertrain based on the Aalto laboratory setup. This thesis aim to prove that DP
algorithm is a useful offline tool for NRMM energy consumption reduction. The results of
the simulation are presented in the following chapter.
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4. Results

This chapter will present several stages of LHD mining loader powertrain simulations results
and discuss the issues relating to them. The simulations will be presented in a chronological
order to show the process development. The simulations are rather time consuming and for
the first dummy simulation stages, the generated grid was larger than initially planned and
the duty cycle is slightly shorter than described in chapter 3.2.1. The first simulations were
needed for code and model debugging reasons and checking if the algorithm compatibility.
The final simulation is considered the actual results of this study.

The simulation consists of two optimization cycles. The first is the unloaded vehicle moving
to the loading place. Most of the path is downhill, thus a negative power consumption can
be expected for the first half-cycle. The second half is the loaded vehicle (4 tons added to
the vehicle mass) moving the same path backwards. Going uphill with a heavier vehicle will
result in a very high power consumption in the second half. The results are therefore split
into two parts. The first is going to the loading place and the seconds is going back. In
addition, the generated DP results are compared against a non-optimal speed profile
composed of constant acceleration and constant speed. The results will show the power
consumption per unit of distance (Wh/km) or energy efficiency and the total time elapsed
which can be interpreted as work efficiency. Finally, the simulation limits and total
simulation time are presented.

For each simulation, figures will present a velocity profile graph and motor efficiency map
overlaid with electric motor duty cycle. The graph will also include the original (reference)
velocity profile, the control variable u; [36], which drives the speed function, and the battery
system power, whose integral the DP function is trying to minimize. The efficiency map will
show the general electric motor operation area.

4.1. Initial simulations

The very first simulations with the LHD mining loader powertrain model described in
chapter 3.2 were unsuccessful. After a careful consideration, the main battery was concluded
to be unsuitable for this operation. The Aalto battery could not provide enough power to
drive 14-ton vehicle 12% uphill. Therefore, the model was changed to suit the simulation as
several changes/simplifications were made. The battery capacity was increased four-fold to
wield the traction motors enough power. In addition, the accurate simulations proved to be
rather time consuming, thus the first experimental simulations are carried out with only
approximate parameters for a shorter duty cycle.

The traction motors are assumed to be loaded evenly, whereas in real world applications,
one of the motors is primary taking up the majority of the load while the second motor is
auxiliary providing the torque in certain circumstances, for example, when the wheels slip
or the axle is in mid-air. The load pick-up is instantaneous, while normally it can take several
seconds. The hydraulic and steering circuit power consumption are not simulated and is
included into constant auxiliary load.
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The speed limit for most manned underground NRMM is 15 km/h =4.167 m/s. For the sake
of simplicity, the first simulations utilize 5 m/s speed limit and the duty cycle is shortened
to 120 s and 31 points grid, to reduce the computation time. Final minimum and maximum
half-cycle times are 50 and 72 seconds respectively (1.2 multiplier). The DP results are
presented in the tables 4 and 5 below.

Table 4: 1st simulation — energy consumption

Original results, DP results, Wh/km
Wh/km
1st half -2467.5 -2475.0
2nd half 9733.2 9676.9
Total 3632.9 3601.0
average

Table 5: 1st experimental simulation — time elapsed

Original DP results, s | Simulation time, s
results, s
1st half 60 57.77 28.94
2nd half 60 61.17 58.19
Total 120 118.94 87.13

The first of the duty cycle is mostly driving downhill, thus the energy consumption is
negative — the power is regenerated. For the second half, the loaded vehicle drives mostly
uphill and the energy consumed is much higher. The total energy consumption was reduced
from 3632.9 to 3601.0 Wh/km, only 0.89% decrease. The difference in the time elapsed,
which can be interpreted as a work efficiency, is also insignificant. The DP optimal speed
profile provide miniscule improvements for this scenario. The simulation time was tracked
in order to evaluate the possibility of real-time applications. However, even for a shortened,
less accurate duty cycle, the simulation time is too high. The DP algorithm is exceptionally
an off-line tool.

Figure 15 shows the optimal velocity profile in blue, which is almost identical to the
reference profile in black. The control function (black dots) ranges from 0 to 100, where 100
means the maximum change in the function and 50 — no change whatsoever. The dependence
is not linear, though, i.e. 75 does not result in half the maximum acceleration. Energy storage
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system (ESS) power is marked in red. ESS is the function that DP algorithm is trying to
minimize, while keeping other parameters, such as speed and acceleration, within the limits.
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Figure 15: 1% generation speed profile

Two half cycles are clearly seen in the figure. The first half stats with a slow low inclination
uphill movement followed by a lengthy downhill (power regeneration) movement and a
slight acceleration before an abrupt stop. The loaded vehicle then drives all the way back

consuming most power. The peak power demand is over 200kW, it is unsurprising that the
present battery failed to provide enough power.

The figure 16 shows the electric motor efficiency map. It is a high-speed electric motor and
has the best efficiency at the very high end of speed axis. However, due to low speed limits
the motor is unable to reach high speeds. The vehicle speed of 5 m/s correspond to the motor
speed of 4500 rpm with the current transmission configuration. The motor duty cycle (in
black) shows that the motor is not operating at the highest efficiency area. The next

generation simulations will attempt to provide better efficiency results by changing the limits
of the model and allowing the motor to reach its highest efficiency area.
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4.2. Simulation with an increased speed limit
In order to achieve better results and to present the full capacity of DP function, the upper
speed limit were increased up to 10 m/s and lower to 2.5 m/s. It allows more freedom for the
function to search for the better results. The final half-time restrictions are also lowered to
30 s and 90 s (multiplier 2). The grid size remained the same — 31 points. The results of the
second simulation are presented below.

Table 6: 2™ experimental simulation — energy consumption

9000

Original results,

DP results, Wh/km

Wh/km
1st half -2467.5 -2584.6
2nd half 9733.2 8391.5
Total 3632.9 2903.5
average
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Table 7: 2™ experimental simulation — time elapsed

Original DP results, s | Simulation time, s
results, s
1st half 60 40.7 33.21
2nd half 60 57.9 66.99
Total 120 97.6 100.20

Increasing the speed limit for the simulation yielded significantly better results. However,
figure 17 displays odd oscillations in ESS power and the validity of the choppy
characteristics is questionable. The resolution is very low and the speed profile should be
more precise in case of hidden oscillations.

0 50 100 150 200 250 300 350 400 450 500
Distance (m)

Figure 17: 2" generation speed profile

Figure 18 proves that the motor operates over the entire T/w map and reaches the its highest
efficiency areas. The DP program proved to be functional, thus the next simulation includes
the full duty cycle with an improved accuracy — a smaller grid.
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Figure 18: 2" generation motor duty cycle

4.3. Simulation with an improved accuracy
The 3™ generation simulations features the same speed restrictions as in the previous
simulations. The final half time restrictions 37.5 s and 150 s (multiplier 2). The grid size is

increased to 75 points and model runs for the full duty cycle with a maximum reference
speed of 5 m/s.

Table 8: 3 experimental simulation — energy consumption

Original results, DP results, Wh/km
Wh/km
1st half -228.7 -1682.8
2nd half 13706.3 7421.9
Total 3632.9 2903.5
average
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Table 9: 3™ experimental simulation — time elapsed

Original DP results, s | Simulation time, s
results, s
1st half 75 69.4 110.1
2nd half 75 75.9 229.2
Total 150 145.3 339.3

The results for the extended duty cycle are promising, the energy consumption decrease is
rather significant and even the work efficiency increase is noticeable. However, a previously
hidden oscillation appears during downbhill part of the cycle, as seen in figure 18. The other
parts of the parts profile are as expected. To deal with the oscillations, the next simulation
penalizes the acceleration and increases the accuracy even further. The reason behind the
oscillations is not perfectly clear. The DPM function does not have an elaborate error-

handling feature. Therefore, it is highly probable that an unknown error causes the control
function to reset to zero several times.
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Figure 19: 3 generation speed profile
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4.4. Simulation with a penalized acceleration

The 4" generation simulations features the same parameter restrictions as in the previous
simulations except the grid size was increased to 151 points (1 second time step) and a
penalization of acceleration is introduced. It is supposed to deal with the oscillations during
the power regeneration period. The acceleration is penalized in the cost function (see
appendix 4.4).

C{1} = Pb/1e6 + acc. [42]

The equation means that 1 m/s in change of speed is as costly as 100 kW in power. Equation
[42] does not have a physical meaning. It is a mathematical expression to minimize the total
change in speed in the final solution. The acceleration penalty eliminated the oscillations as
seen in figure 20. In addition, the accuracy of the simulation is enough to observe the trends
in every section of the cycle.
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Figure 20: 4™ generation speed profile

4.5. Final simulation

The previous simulations while not perfectly accurate, illustrated the method adaptability
and its underlying issues. Nevertheless, it proved to be a viable off-line energy optimization
tool. This subchapter will correct the minor modelling errors and present a comprehensive
comparison to a redefined original speed profile.

The previously mentioned reference duty cycle consisted of a constant acceleration of 1 m/s?
and a constant maximum speed of 5 m/s. However, is not entirely true for the case study
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described in the chapter 2. The maximum available acceleration on flat ground is 3.08 m/s?
and the maximum speed for underground load-haul-dump applications is 15 km/h or 4.166
m/s (Lehmuspelto, 2010).The definition of the duty cycle is clearer and can be seen in the
appendix 4.1 whereas the previous simulations utilized custom imported Excel spreadsheets
for every simulation.

Tables 10 and 11 present the simulation results. The simulated DP optimal speed profile is
compared with a reference profile.

Table 10: Energy consumption

Original results, DP results, Wh/km
Wh/km
1st half -839.6 -1066.0
2nd half 5516.9 5316.2
Total 2338.7 21251
average
Table 11: Time elapsed
Original DP results, s | Simulation time, s
results, s
1st half 83.5 81.6 49.7
2nd half 83.5 84.2 97.8
Total 167 165.8 147.5

The total average energy consumption decreased by 9.1%, which is a noticeable
improvement. The work efficiency increase, on the other hand, is miniscule but it is relevant
for the sensitivity study in the following chapter. The total simulation time, again proved to
be too long for any real-time applications.

Figure 21 visually represents the optimal DP speed profile and compares it with a reference
duty cycle.
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Figure 21: Optimal and reference speed profiles

The optimal speed profile in blue differs a lot from the reference profile in black. It starts
with a slower acceleration almost reaching the lower speed limit. When the vehicle starts
moving downbhill, the algorithm suggests higher speed to increase energy recovery and a
rather abrupt deceleration. This is defined by the actual coefficients of the acceleration
penalization. The penalization coefficients are discussed in detail in the next subchapter. The
second half cycle is less representative. The algorithm suggests slower acceleration and
slightly higher speeds at low inclination intervals.

In contract to the previous simulations, the control signal avoids sudden changes in its value.
The optimal speed profile is restricted by 36 km/h upper speed limit. However, the limit is
never reached. This means that driving above 25 km/h is not efficient at any point of the
duty cycle, thus increasing the limit would have no effect. The control signal never reaches
the value of 100 — the change is never maximum, that makes it less harmful for the whole
ESS. The figure illustrates the differences between the reference (red line) and DP optimal
duty cycles (green dots). Visually the area under the curve is smaller for the DP speed profile
for all sections except for part after the vehicle loading (340-385 on the distance axis) due
to a sudden spike at the very beginning of the second half-cycle.

Figure 22 shows a different representation of the results. The duty cycle is shown on a speed-
torque graph overlaid with the efficiency of the traction motors. The original duty cycle for
comparison is noted with red dots. The motors operated according to a DP optimal cycle are
operated at higher efficiency areas, decreasing the energy waste and theoretically reducing
the motor overheating chance.
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By applying DP algorithm, not only the energy efficiency significantly increased but also
the electric traction motors are applied in their full capacity. The operating point for electric
motors is moving all over the efficiency map, reaching the highest efficiency areas as seen
in figure 20. Furthermore, the motors do not operate in over-torque regions (over 250Nm),
which leaves a hefty safety margin for the calculation errors and an unexpected load increase
in real world underground mine applications.

The use of DP algorithms is another advantage of utilizing electric powertrains for NRMM
applications. Overall, with reasonable changes in limitations, DP can be a powerful tool to
improve NRMM work and energy efficiency. As the parameters can be easily changed, the
DP can be utilized for different duty cycles and even different types of powertrain, even a
diesel powered. However, the results would not be as significant because only electric
powertrains enable power regeneration, which is the key for improved energy efficiency.

4.6. Sensitivity analysis

The results of the simulations heavily depends on two variables that were inadvertently
selected — the number of simulation nodes and the penalization coefficients. The more the
simulation nodes, the more accurate the simulation is but it increases the simulation time.
167 simulation nodes were selected for the simulation, which corresponds to roughly 1
second time-step. The penalization was introduced to damp the sudden power spikes in the
DP optimal speed profile. To introduce the penalization coefficients, the equation [42] is
rewritten as:
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C{1} = aPyqs/10° + Ba [43]

4.6.1. Simulation nodes

The number of nodes in the DP problem increases the accuracy of the simulation. A more
accurate power consumption simulation comes at a cost of a longer simulation time as seen
in the figure 23. The total simulation time increases significantly with higher accuracy. After
a certain point the trade-off becomes inadequate and the higher accuracy — unnecessary.
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Figure 23: Simulation time dependency on the number of simulation nodes

Figure 24 presents the energy consumption dependency on the simulation nodes. The
simulation results show rather large dispersion with a downwards trend. There is an
oscillation in the simulation results. The red dot is excluded because it is counter-intuitive
and it clearly does not follow the trend. Overall, increasing the number of simulation nodes
does not provide significant improvement to the simulation.
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4.6.2. Acceleration penalization
The coefficients of equation [43] are normalized:
at+tp=1 [44]

and presented in figure 25 as an argument of energy consumption and duty cycle duration.
The increasing weight of a theoretically should increase the energy efficiency (black dots).
However, the results are highly dispersed and only a slight downwards trend is observed.
Therefore, the figure includes the duty cycle duration (brown dots) dependency on the
coefficients. The duty cycle duration is reduces significantly with the increase of . The
value of f is harder to evaluate and it depends heavily on the exact situation but its
involvement is necessary to avoid the oscillations displayed in the figure 19. Depending on
the focus of the optimization — whether that would be energy or work efficiency, the
coefficients can be selected accordingly. Introducing the penalization coefficients provides
more flexibility for the optimization. Nevertheless, @ = [ is an adequate mid-point and
represents this DP problem accurately.
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5. Discussion

5.1. Assumptions and conditions

NRMM celectric powertrains are attractive due to the absence of local emissions, high power
efficiency and compact size. The results of the chapter 4 presented another great advantage
of electric NRMM powertrains - viability for optimization. The optimization algorithms can
be applied for conventional powertrain models as well but it would be not nearly as effective.
Lajunen (2013) showed efficiency increase for conventional buses while using DP function
to optimize standard Braunschweig bus cycle. However, NRMM does not have standard
duty cycles and the ones that are defined are not nearly as complex as Braunschweig cycle
for city busses. Complex duty cycles with many acceleration-deceleration sub-cycles present
more room for improvement and the generic LHD duty cycle lacks the complexity thereof.
To deal with the simplicity of the cycle and to produce satisfactory results, the speed limit
was increased for LHD mining loader model. A speed limit increase up to 10 m/s is a huge
factor for work efficiency of material transportation. The results showed increased proposed
speed but it does not increase infinitely and settles at around 25 km/h in the final simulation.
Overall, the implementation of optimal DP velocity profiles require some level of mine
automatization because a human vehicle operator is unable to follow the velocity profile
closely. The speed limit is specified for the human workers safety, in other words — to
minimize the chance of human error. Hence, semi-automatized approach is necessary for
this study, which allows the changes in speed limit and therefore a successful
implementation of DP velocity profiles.

Although the DP algorithm focuses on energy efficiency optimization, the results of the 3rd
generation simulation presented a possibility for an increased work efficiency as well. By
changing the cost function accordingly, prioritizing the cycle time, the work efficiency or
time elapsed for duty cycle can be optimized. Usually, work efficiency and energy efficiency
are inversely proportional — if the work efficiency increases, the energy efficiency decreases
and vice versa. Decision whether work or energy efficiency is the focus must be made
according to specific economic based studies. In any case, DP provides a choice for
optimization focus.

5.2. Model inaccuracies

A deterministic model of LHD mining loader was simulated to test the performance of DP
algorithm. However, as any other model, it involves certain simplifications and assumptions.
The speed drag is ignored in the simulation due to speeds under 10 m/s, thus it does not
create large inaccuracies (Beckman, 1991). However, other variables, not constant in the real
world, might have an effect on overall results. For example, the wheel-rolling coefficient
(0.01 in this case) is assumed constant throughout the work cycle. The roughness of the road
and rubble affect the grip of the tires. Thus, it is impossible to simulate the motion with a
perfect accuracy. The grip of the tires is a major factor on power consumption. Nevertheless,
both optimal and non-optimal profiles operate in the same circumstances, so the comparison
between the two is fair.

The over torque area is also needed for taking into account the load pick-up period. The
machine operators usually ram into the rubble to slide the bucket under the rocks to pick up
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the load. While it not very time-consuming, the traction motors are strained heavily. In
addition, the pick-up is not always exactly 4 tons, which would result in more obscurity in
the work efficiency estimations. In addition, the powertrain energy consumption heavily
depends on the load size because of the movement uphill, which is the most consumption-
heavy periods of the duty cycle.

Other simplifications, already mentioned in previous chapters, includes the traction motor
loading and the battery capacity. Both traction motors are considered evenly loaded, even
though in the real world applications, the primary motor is usually loaded more than the
secondary. Thus, the actual duty cycle of the primary motor would be slightly higher than
the simulated. The simulation leaves a large margin for the operational torque region and as
an electric motor can be overloaded for short amount time, proving the simplifications to be
well reasoned. The extra battery packs were not accounted for in the simulation. Extra five
battery packs could weigh as much as 500kg.

The gearbox was not simulated as it is normally operated by the vehicle driver and the DP
algorithm is unable to simulate the gear switches. VFD were simulated with a constant
coefficient of 98%, although it can drop as low as 91% for the lowest motor speed (Appendix
3). Nonetheless, the motor is operated at higher speeds, where the VFD efficiency is not a
deciding factor. Overall, the results are satisfactory and it makes a strong argument in favor
of electric powertrains.

The importance of energy efficiency for electric motors does not only lay in electricity
consumed (kWh). The cost of electrical power is much lower than the price of fossil fuels
and while extra savings are desirable, an electric powertrain will have cheaper power
consumption than conventional powertrains even without an optimal velocity profile. An
increased overall motor efficiency provides indirect maintenance savings. It prolongs the
battery lifetime and minimizes the charging cycles per work completed (material moved). In
addition, if the electric motor is less efficient, due to the laws of thermodynamics, the more
unused energy is converted into heat. High temperatures increase the risk of failures and
might require advanced cooling systems, which, in turn, would increase the initial
investment costs.

Despite the model inaccuracies and the necessary assumptions, the simulation provides
sufficient results to analyze the performance of an electric powertrain of an LHD mining
loader. Electric powertrains allow duty cycle automation, which enables the use of DP
algorithms as DP proved to be a useful tool to increase the energy efficiency over a specified
duty cycle.

5.3. Technical difficulties

The unearthed HV electric systems are potentially dangerous. Since there is no actual
connection to the ground (earthing), the negative potential is floating with respect to the
actual ground. Thus, a potential difference might exist between the chassis of the vehicle
and the earth. For this reason, a Bender isometer is used for EL-Zon project case study. An
1someter is a device that measures the resistance between the life parts of the setup (busbars)
and the chassis. It measures the leakage currents every time the VFD is enabled and it is a
part of the protection system.
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Another part of the protection system is the safe-torque-off (STO) circuit. STO disables the
VFD if the electric motor (or other spinning parts) are uncovered. The parts that should be
included in the protection circuit include the traction motors, the belt drive and the main
power shaft. Although all the spinning parts are covered or not moving when the vehicle is
stationary, STO implementation is highly recommended (ABB communication, 2018).

The battery mains are protected by DC fuses and a set of contactors. However, if the battery
is partially discharged, in case of a failure, short circuit current might fail to blow the DC
fuse. In addition, li-ion batteries are susceptible to sudden voltage changes especially during
charging. Large inertia of LHD loader creates sudden voltage surges that might damage the
battery. Therefore, brake chopper and brake resistor is needed. Normally the battery packs
require a uniform charging voltage, the energy regeneration might prove to be difficult and
serious power electronics are needed for this case.

The battery is the most vulnerable part of the powertrain. Moreover, electric powertrain
development is heavily dependent on the battery research. Recently developed fast and ultra-
fast charging systems are necessary for electric LHD powertrains. Otherwise, a spare battery
set is needed to run the machine continuously. Nevertheless, that is not the case for all
NRMM because they are constructed very differently and have varying duty cycles. For
example, an underground concrete spraying machine has a very different duty cycle from
LHD loaders. They tend to be stationary for long times (around 30 minutes), which can be
used for battery charging while the machine sprays the concrete.

5.4. Specialized LHD powertrain motors

Currently there is no specialized motor for the LHD traction applications. Manufacturers
choose the traction motors from the ones available in the market but there is no optimal
choice. “GHH Fahrzeuge” (2018) employs a three-phase asynchronous motor with a rated

Efficiency Nominal_PM_MctorMode_E ffMap2

35000

30000 —
250.00

20000 —

Torque [NewtonMeter]

15000 —

100.00 —

5000 —

i

000

,//_/__-’—"

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
0.00 1000 00 200000 3000.00 4000.00 5000.00 6000.00
Speed [rpm]

Figure 26: Efficiency map of a three-phase internal permanent magnet motor (Ansys blog, 2018)
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speed of 1480 rpm. It is the same type of electric motor that is used in this case study.
However, the nominal speed is lower, thus the gear ratio has to be increase to provide the
same amount of torque. “Artisan vehicles” (2018) applies a synchronous permanent magnet
three-phase electric motor with 4000 rpm rated speed. In comparison to the Aalto case study,
motors have similar rated speeds but the types are fundamentally different. While
synchronous machines are considered more efficient overall, they are more expensive and
require an additional DC power source for energizing the rotor winding. A typical efficiency
map of permanent magnets are significantly different from asynchronous motors, as seen in
figure 21.

The permanent magnet motor is the most efficient at lower speeds, while induction motor,
used in a case study, is the most efficient at high speeds. The permanent magnet motor has
a rather large uniform maximum efficiency area but outside it, the efficiency drops
significantly. Thus, the motor use in high speed and high speed is limited. The DP simulation
with permanent magnet traction motors would yield entirely different results. The algorithm
would try to remain at lower speeds as the efficiency is greater there. In addition,
synchronous electric machines perform better as generators. During the power regeneration
period, the voltage surges would be smoother and the inrush current would be lower.

56



6. Conclusions and future work

6.1. Conclusions

This thesis discovered an application of the DP algorithm — the energy consumption
reduction of an LHD mining loader powertrain. An energy-optimal speed profile
demonstrated a 9.1% decrease in energy consumption for a generic duty work cycle.

This thesis addressed the issue of harsh working conditions in the underground mines.
Globally, the air quality improvement is enforced by tightening emission standards for
NRMM. This paves the way for an influx of electric powertrains in underground mines for
their numerous advantages including no local emissions and low noise levels. The viability
of electric powertrains is based on health, environmental as well as economic factors. While
alternatives such as hybrid powertrains are available, the economic incentive is greater for
the fully electric LHD vehicles. The efficiency of the LHD electric powertrains was further
improved by utilizing the DP algorithm. It was realized by creating a model of a real-size
LHD vehicle prototype in MatLab and defining its empirical duty cycle. As the major part
of the energy is consumed by the traction motors, the optimization algorithm causes them to
be operated at a higher efficiency area, reducing the overall energy consumption.

DP algorithm is a powerful and universal offline tool for energy optimization. By presenting
successful results, this thesis prompts many potential research topics relating to DP
applications and further development of the LHD mining loader case study.

6.2. Future work

The MatLab simulation discussed in chapters 3 and 4 concentrates on minimizing the
average power consumption for the duty work cycle. Occasionally, the energy consumption
is not as relevant as work efficiency, especially considering low electric power prices. The
work efficiency optimization can be achieved by changing the cost function and prioritizing
the time elapsed over the energy consumption. To further improve the optimization process,
certain coefficients could be introduced to calculate energy efficiency and work efficiency
tradeoff, i.e. what is more important and by how much. These calculations would be based
on the economic aspect and the unique application of NRMM in question. However, the duty
cycle and the model of NRMM must be improved and adjusted accordingly.

In addition, the modelling process can be improved, which could include air drag simulation
for an increased accuracy, steering and work hydraulics simulation, traction motors load
simulation and a gradual change in inclination change in duty cycle description. The gearbox
mechanics were not simulated as well, as it is normally operated by the vehicle driver. The
current DP algorithm is unable to simulate gear switches. Conditional “if’s” would be
possible to simulate the gear switch when the required load reaches a certain torque value,
the operation area is too inefficient, or the motor is overloaded for too long. However, it
would not contribute significantly to already existing results. Nevertheless, it could be a
great platform for an implementation of artificial intelligence based on neural networks. The
gear switching could be based on driver’s preferences as well as maximum efficiency.
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This thesis is based on the case study where all the equipment is preselected. A future study
could select a different mining loader setup with different type of traction motors and gears.
Since permanent magnet electric machines are more suited to operate as generators, the
energy regeneration could be improved. In addition, the DP optimization can be used for
conventional NRMM solutions. A recent study by Heikkild (2018) applies exactly the same
DP optimization method described in this thesis for NRMM hydraulics i.e. booms and
buckets. That approach can be applied for the direct driven hydraulics of the LHD mining
loader.
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i

Component
Electric motor
B-side pump
A-side pumps
Pump pressure relief valve
Anti-cavitation valve
Safety valves
Hydraulic cylinder
Motor controller

Lithium-titanate battery

Appendix 1: Models of DDH bucket and boom units.

Model
Motenergy ME1304
HYDAC PGI100
HYDAC PGI100
HYDAC DB10P-01
HYDAC RV12A-01
HYDAC WS16ZR-01
EJC90 original
Sevcon Gen 4

Altairnano 96V
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SIEMENS
Drive Motor 1PV5138-4WS24

Appendix 2: datasheets of traction motors

Type AC Induction Motor
Cooling Media Water-Glycol
Rated Voltage DC 650 V
Rated Power 85 KW
Rated Torque 220 Nm
Max. Torque 530 Nm @ 300A
Rated Current 142 A
Max. Speed 10,000 rpm
Weight 120 kg
Dim. (LxWxH) 510 x 245 x 245 mm
Ambient Temperature | -30°Cto70°C
Degree of Protection IP 65/ 9k
Torque and Power vs. Speed of Motor 1PV31384WS24-W12 @ 300 A,/ 140A/ 685V DC
—— Mmax [Nm] - - - -Mcont [Nm] —— Pmax [kW] - - - - Pcont [kW] I
600 Nm 180 KW
550 Nm 165 KW
500 Nm —_ 150 KW
450 Nm N N 135 KW
400 Nm VA e e 120 KW
350 Nm £ e = 105 KW
300 Nm 7 \\ %0 KW
250 Nm / . - e - 175 KW
el ......./...........,... i \\ M
150 Nm Pl e e = 45 KW
100 Nm /f‘-‘ e =130 KW
50 Nm /, i 15 KW
0 Nm £E——— - : : : - - . - 0 KW
0 Wmin 1000 2000 3000 4000 5000  GOO0 7000 8OO0 9000 10000
Ufmin Uimin Uimnin Uimin Udmin Wimin Wimin Uimin Uimin Wimin
Esiemens ®2011

Industry Sector DT LD T HD, 03/2011

DS_Comp_AM....ppt

The information provided in this brochure contains merely general descriptions or characteristics of performance, which in
actual case of use do not always apply as described or which may change as a result of further development of the
products. An cbligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.




SIEMENS
Drive Motor 1PV5135-4\WS28

Type AC Induction Motor

Cooling Media Water-Glycol

Rated Voltage DC 650 V

Rated Power 67 KW

Rated Torque 160 Nm

Max. Torque 360 Nm @ 250A
430 Nm @ 300A

Rated Current 124 A

Max. Speed 10,000 rpm

Weight 90 kg

Dim. (LxWxH) 425 x 245 X 245 mm

Ambient Temperature | - 30 °Cto 70 °C

Degree of Protection IP 65/ 9k

Torque & Power vs. Speed (1PV51354WS28 @ 300 A/ 124A / 650 V)
——Mmax [Nm] — Mcont [Nm] === Pmax [kW] —— Pcont [kW]
500 Nm 150 KW
450 Nm 135 KW
400 Nm )>\ 120 KW
__ 350 Nm \ ~ 105 KW
£ 300 Nm Y 90 KW
© 250 Nm AN 75 KW
= / e
S 200 Nm / e S 60 KW
-
150 Nm y / 45 KW
100 Nm / /’ 30 KW
-—\\‘
50 Nm 15 KW
0 Nm 0 KW
0 U/min 2000 4000 6000 8000 10000
U/min U/min U/min U/min U/min
Speed [1/min]
©Siemens ®2011
Industry Sector DT LD T HD, 03/2011 DS_Comp_AM....ppt

The information provided in this brochure contains merely general descriptions or characteristics of performance, which in
actual case of use do not always apply as described or which may change as a result of further development of the
products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.




Appendix 3: Traction motor efficiency supplied by the

manufacturer
n M Pmech |ETAmot [ETAumr |ETAges 4000 15 6.28 84 97.2 81,6
[min-1] [Nm] [[kW] |[%] [%] [%] 4000 30[ 1257 88.7 97.6 86,6
4000 45| 18.85] 90.7] 9s.1 88.9
1000 15] 157 76,5 21 69,6 4000 60| 25,13 91,6 98,2 90
1000 30] 314 78 93.1 72,6 4000 75| 3142 92| 983] 905
1000 45| 471 78.8 941 74,2 4000 90| 37.7] 922 984] 907
1000 60| 6.28] 795 947 753 4000] 105| 43.98 92| ©985| 906
1000 75 7.85] 799 95.1 76 4000] 120 s0.27] 921 98.6] 908
1000 90| 942 805 953] 767 4000] 135 86.55] 921 98.6] 908
1000] 105 11 80,7 955 77.1 4000 150 62.83] 92.1 98.7] 9038
1000 120] 1257 80.8 957 773 4000[ 185[ 69.12 92| 987| 9038
1000]  135| 14.14 80.8 958] 774 4000{ 180] 754 92| 987| 908
1000]  150[ 15,71 80,8 95,9 774 4000) 195] 81.68 92 98.7 90,8
1000 165| 17.28 80.7 95.9 77.5 4000 210| 87.96 919 98.7 90.7
1000 180 18.85 806 96 77.3 4000 225| 94,25 91,8 98,7 90,6
1000  195] 2042 803 98] 771
1000] 225| 23,56| 79.9| 961 7638 S000f 30| 15.71] 90.6] 981 88.9
1000] 240 25.13| 79.7] 96.1| 76,56 50001 45| 2356] 919 983[ 904
1000] 255| 267] 79.4| 96| 763 Ul G| S| el BG4 S
T000] _270] 2827 79 e5.1]  75.9 gggg gg 3??2 :g‘g :g'g 915;1
1000 285] 2985 788 96,1 75.8 5000] 105 5498] 924] 987 912
| ol S0ed|  ple 96 1 I 5000]  120] 6283] 925 988 913
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T T BT TR 5000] 135 7069 925| 988 91.3
: 2 5000] 150| 7854] 924] 988 913
1000| 345 36.13] 777 962 747 5000 16s5| Be30| 923 9s8| 911
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1000 420] 43,98 75,9 96,2 s 5000 60 37.7 926 98,6 91,3
1000 435| 45,55 75,6 96,2 727 6000 75| 47.12 927 98,7 91,5
1000] 450 47.12] 753 962 724 5000 90| 5655 927| 988 915
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2000] 135 2827 88,1 97.7 86,1 7000 75| 5498 927 988 916
2000 150] 3142 883] 97,7 863 7000f 90| 6597) 92.7) 988 91.8
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3000] 210] 8597 911 984| 897
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Appendix 4.1: Cycle1.m

o

]

Defines the work cycle for them

clear

B=150;

t = [0:1:B]"';

A(1:B/2-10)=5;

speed = [01 2 3 4 A 43210

01234A432100]";
acceleration and constant speed

spd min = speed*0.5;
spd max = speed*2;
distance = cumtrapz (t, speed) ;

of speed function

distance diff =
distance diff

diff (distance) ;

second
slope = zeros (length(t),1);
slope(l:floor(B/8),1) = 0.07;

(
slope (floor (B/8+1) :floor (3*B/8),1
slope (floor (5*B/8+1) : floor (7*B/8)
slope (floor (7*B/8+1) :ceil (B)+1,1)
the cycle

veh data.time ref=t;

veh data.dist ref=distance diff;
veh data.spd ref=speed;

veh data.spd lim=[spd min spd max
veh data.slope ref=slope;

to data file

load('Eff map');
tmp.etam = [Efficiencymap/100];

= [0; distance diff];

mining loader

Q

5 length of cycle in seconds
time vector

maximum reference speed

o
°

o\

o)

°

speed reference as constant

o

minimum speed limit
maximum speed limit
distance as an integration

o

o

°

o

°

change in distance at every

)
/1)

-0.209;
= 0.209;
-0.07;

o

°

slope at every second of

17

o

°

flushing work cycle data

o

o

load motor efficiency map
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Appendix 4.2: DP_data.m

% Defines vehicle parameters for mining

loader

o0 |l oo

Vehicle

Il oo
Il

[}

% General vehicle data

veh data.wh radius = 0.62; % wheel radius
veh data.wh inertia = 10; % wheel inertia
veh data.veh air density = 1.23; % air density
veh data.veh FA = 6.2; % vehicle frontal area
veh data.veh CD = 0; % drag coefficient
veh data.veh mass = 14000; % vehicle mass
veh data.load = 4000; % mined rock load
veh data.veh gravity = 9.8066; % g
veh data.wh 1st rrc = 0.01; % rolling resistance
veh data.amb tmp = 25; % ambient temperature
veh data.acc pwr = 10000; % constant auxiliary power
% Transmission data.
veh data.fd ratio = 1*5.125%6; % final drive gear ratio 1;2.2;4.39
veh data.gb eff = 0.98; % efficiency, includes final drive and
axle
% Electric motor data
veh data.mc_inertia = 0.094; % motor inertia
veh data.mc_gear ratio = 2; % motor gear ratio
% motor speed list (rad/s)
veh data.wm list = [0 1000 2000 3000 4000 5000
6000 7000 8000 9000 10000]/60*6.28;
% motor torque list (Nm)
veh data.Tm list = [0 15 30 45 60 75 90 105 120 135

150 165 180 195 210 225
360 375 390 405 420 435

% motor maximum torque (Nm)
veh data.Tmmax = [465 465
135 105 90 751%*2;

)

% motor minimum torque
veh data.Tmmin =
% motor efficiency map
veh data.etam = tmp.etam';

% Battery data

240 255 270 285 300 315 330 345
450 465];
2 motors

465 315 225 180 150

(indexed by speed list)
-veh data.Tmmax;
(indexed by speed list

and torque list)

veh data.batt _ah = 40; % battery capacity

veh data.batt nom dis _c = 200; % nominal discharging current

veh data.batt max dis c = 400; % maximum discharging current

veh data.batt max chg ¢ = 80; % maximum charging current

veh data.batt mods = 17*6; % battery modules, 1 battery was not
powerful enough
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veh data.batt packs =1 % battery packs

veh data.batt mod mass = 7.7; % battery module mass

veh data.batt mod cp = 750; % J/kgK average heat capacity of module
veh data.batt th res = 0.20; % K/W module thermal resistance

veh data.batt mod airflow = 0.03; % kg/s cooling air mass flow rate

across module

Q

% state-of-charge list

veh data.soc list = 0:0.1:1;
% open circuit voltage (indexed by state-of-charge list)

veh data.V oc = [24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2

24.2]*veh data.batt mods;

Q

% discharging resistance (indexed by state-of-charge list)

veh data.R dis = ones(size(veh data.soc list))*0.0175*veh data.batt mods;
% charging resistance (indexed by state-of-charge list)
veh data.R _chg = veh data.R _dis;

% battery initial state of charge
veh data.init soc = 0.8;

[}

% Post processing excluded
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Appendix 4.3: RunDP_loader.m

[}

% Runs dynamic programming optimization for mining loader

tic
plot on = 1;
% Initialization

Il o
|
|
|
|
|

% vehicle data

o

veh data.veh file = 'DP data';

()
<
j\)]
=

(veh data.veh file)

o\
Il oe

o° |l oe
I

DP initialization data

t step = 0.5; % Default value 0.5,

results!
fprintf ('\n");

disp(['Time grid: ' num2str(t step)])

values produce inaccurate

o° |l oe
I

create grid

c=2;
load and one without
for i k = 1l:c

)

% set initial state

cyc_time = veh data.time ref (end)/c;
grd.Xn{l}.hi = cyc time*1.02;

the state grid

grd.Nx{1l} = ceil(grd.Xn{1l}.hi/t step/10)*10;

in the state grid
grd.Xn{l}.lo = 0;

time range of the subcycle.
grd.Nu{l} = grd.Nx{1};

in the input grid
grd.Un{l}.hi = 1;

the input grid (always 1)

grd.Un{l}.1lo = 0;

the input grid (always 0)

grd.X0{1} = 0;

grd.XN{1}.hi = cyc time*1.5;
constraint

grd.XN{1l}.lo =
constraint

cyc _time/1.5;

)

% 2 cycles, one with

% length of the cycle

o)

% upper boundary of

o)

% number of elements

o)

% minimum value of the

o)

% number of elements

[

% upper boundary of

o)

% lower boundary of

oe

initial state

Q

% final state upper

[

$ final state lower
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same size as state grid
Maximum allowed speed.

Minimum allowed speed.

This is the second control par,

grd.Nx{2} = grd.Nx{1l}; %
grd.Xn{2}.hi = 10; %
grd.Xn{2}.1lo = 0; %
grd.Nu{2} = 1; %
grd.Un{2}.hi = 5;

grd.Un{2}.1lo = 0;

grd.X0{2} = 0; % Initial speed.
grd.XN{2}.hi 0; %

grd.XN{2}.1lo = 0; %

unused.

Maximum allowed speed at the end of the cycle.
Minimum allowed speed at the end of the cycle.

Q

% cycle precision

veh data.cyc dt = 1;
if 1 k==

start = 1;

stop =
else

start =

stop =
end
% reference speed
prb.W{l} = veh data.
% minimum speed
prb.W{2} = veh data.
% maximum speed
prb.W{3} = veh data.
% distance
prb.wW{4}

veh data.dist ref(start:

)

% elevation,
prb.W{5} veh data.

)

% step size
prb.Ts = 1;
prb.N

(defines the

)

% DP options
options dpm () ;
options
options
options

(where I=1)
options.Iter 5;

when inverting model
options.InputType

. SaveMap
.MyInf

length (prb.
problem length)

.BoundaryMethod =
1;
1000; %

ceil(size(veh data.time ref,1)/c);%

% Start time of the cycle.

o)

ceil (size(veh data.time ref,1)/c)+1;
ceil (size(veh data.time ref,1));

spd ref (start:veh data.cyc dt:stop,1);

spd lim(start:veh data.cyc dt:stop,1);

spd lim(start:veh data.cyc dt:stop,2);

veh data.cyc dt:

slope ref (start:

W{l})*1/prb.Ts;

'none';

o

T AT .
c 5

stop, 1) *veh data.cyc dt;

veh data.cyc dt:stop,1);

time step

oo o

o°

o°

Tai BoundaryMethod

oe

End time of the cycle.

number of time steps in problem

load dpm options structure

on/off to save cost-to-go map

a big number for infeaible states

o)

% maximum number of iterations

c -continuous input, d - discreet
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o©

0;
1;

options.FixedGrid
options.Minimize

oo

% dynamic programming solver

[res, dyn]
backwards with given model

[res fwd] DP_run_ fwd(prb,
with optimal policy

veh data);

dpm (@DP_model, veh data,

defined or adjustable grid
1 - minimizing 0 - maximizing

o)

grd, prb,options) ; s runs

o

°

dpm

runs forward
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Appendix 4.4: DP_model.m

function [X, C, I, out] =

DP_model (inp, par)

oo ||
o |

spd = inp.U{l}.* (inp.W{3}-inp.

%$redefine variables

vehicle

o

W{2})+inp.W{2}; speed

dt = inp.W{4}./spd; % W{4} is distance

dt (~isfinite(dt)) = 0;

X{1l} = dt+inp.X{1}; % time

X{2} = spd; % speed

acc = (X{2}-inp.X{2})./dt; % vehicle acceleration

acc(~isfinite(acc)) = 0;

ina = (acc > 3) + (acc < =-3); % define infeasible
acceleration

wv = spd ./ par.wh radius; % Wheel speed (rad/s)

dwv = acc ./ par.wh radius; % Wheel acceleration
(rad/s”2)

Tw0 = 0; % Wheel drag torque

% Wheel torque (Nm)

Tv =

(0.5*par.veh air density*par.veh FA*par.veh CD*spd.”2+

par.veh mass*par.veh gravity*par.wh 1lst rrc*cos (inp.W{5})+par.veh mass*ac

c+

par.veh mass*par.veh gravity*sin(inp.W{5})).*par.wh radius+Tw0;

inp.W{5} is road inclination

(rise per distance).

o
°

o° || oo
oo ||

o

Electric motor speed (rad/s

nwg =
% Electric motor acceleration
dwg =
% Electric motor drag torque
TmO = par.mc_inertia.*dwg; %
% Electric motor torque (Nm)
Tm = (Tv>0)

+ (Tv<=0)
TmO ;

% Electric motor efficiency

par.fd ratio*par.mc gear ratio

.* Tv ./ par.mc_gear ratio ./ par.fd ratio
.* Tv ./ par.mc_gear ratio

)

par.fd ratio*par.mc gear ratio

LKWy

(rad/s”2)
L*odwv;

(Nm)

./ par.fd ratio

./ par.gb_eff...
.* par.gb eff +
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e mc = (mwg~=0) . x
interp2 (par.Tm list,par.wm list,par.etam,abs(Tm),mwg.*ones (size(Tm)))
(mwg==0) ;

% Summarize infeasible, only this causes infeasible solutions.

inm = (isnan (e _mc)) + (Tm<0) Lx (Tm <
interpl (par.wm list,par.Tmmin,mwg, 'linear*', 'extrap')) +...

(Tm>=0) L x (Tm >
interpl (par.wm list,par.Tmmax,mwg, 'linear*', 'extrap'));

% Calculate electric power consumption

Pm = (Tm<0) .* mwg.*Tm.*e mc + (Tm>=0) .* mwg.*Tm./e mc;
% Total required power (W)
Ptot = Pmtpar.acc pwr;

Pbe = Ptot;

% Battery efficiency
e = (Pbe>0) + (Pbe<=0) .* 0.98; % % coulumbic efficiency (0.98 when
charging)

o°

Battery internal resistance

r = (Pbe>0) Lx interpl (par.soc_list, par.R dis,
0.8, 'linear*"', 'extrap')...

+ (Pbe<=0) .* interpl (par.soc_list, par.R chg, 0.8, 'linear*', 'extrap');
% SOC constant 0.8 (or 80%). (This line calculates battery resistance.)

o\

Battery current limits
im = (Pbe>0) .* par.batt max dis c*par.batt packs + (Pbe<=0) X
par.batt max chg c*par.batt packs;

% Battery voltage
v = interpl (par.soc_list, par.V_oc, 0.8, 'linear*', 'extrap');

% Battery current
Ib = e .* (v-sqgrt(v.”2 - 4.*r.*Pbe)) ./ (2.%r);

% Battery power consumption
Pb = Ib .* v;
% Battery loss power
P loss = abs (Pb-Pbe); Sr.*Ib."2;
% Efficiency
bt = abs(Pb) ./ (abs(Pb)+P loss); %not used
Power cost
Pcost = abs (Pb-Tm.*mwqg) /le6;% (Pb./(1./spd))/3.6e6;%

% Update infeasible
inb = ((v.”2 < 4.*r.*Pbe) + (abs(Ib)>im));

o° (D

Q

% Set new state of charge to real values
X{1} = (conj (X{1})+X{1})/2;

X{2} (conj (X{2})+X{2})/2;

Pb (conj (Pb) +Pb) /2;
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Ib

o oo

=

o°

= (conj (Ib)+Ib)/2;

COST
Summarize infeasible matrix
= (ina+inb+inm~=0) ;

Calculate cost matrix (energy losses)

C{1l} =Pb/le6+acc;

oo

o°

store relevant signals in out [excluded]
DPM and forward simulation excluded
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