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Abstract

Cryptographic models are intended to represent an adversary’s capabilities when attacking
encryption schemes. Models often err on the side of caution by over-estimating the power
of adversaries. However, several recent attacks reported in the literature demonstrate
that measuring an adversary’s potential is a difficult task. This thesis will view the
cryptographic landscape from the perspective of an adversary and the implementer.

We study how an adversary can take advantage of leaked information about a private
key. The particular scenario we study is the cold boot attack whereby an adversary can
procure a noisy version of the key (i.e. the extracted data will contain errors) from a
computer’s main memory. Such an attack is not traditionally modelled by the standard
security games. We show how the adversary might recover the original secret key, and
hence compromise security, for some lattice-based schemes such as NTRU and BLISS, as
well as the signature scheme Rainbow, which is based on multivariate polynomials over
a finite field, and finally the McEliece crypto-system, which is a code-based asymmetric
encryption scheme.

We mount our attacks against specific real-world implementations of each of these schemes.
For each scheme, we will study it and review at least one real-world implementation of
the scheme. Moreover, for each implementation of a particular scheme, we will concern
ourselves with acquiring knowledge of and evaluating each of the formats used to store the
scheme’s private key in memory, and then propose specific algorithms for key recovery in
the cold boot attack setting.

Our approach to key recovery is general and based on the combination of key enumeration
algorithms and other techniques. Basically, an original secret key is seen as a concatenation
of multiple chunks, each of which has a fixed number of bits and takes multiple values.
These chunks then are combined to produce candidates for the secret key. These key
enumeration algorithms have been already used in other side-channel scenarios with a
variety of different approaches being used to solving the problem.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Associated Publications . . . . . . . . . . . . . . . . . . . . . . . . 16

In this chapter we provide motivation for this thesis, and we provide a roadmap of the

results we shall present.

1.1 Motivation

The research on cryptographic algorithms has been developing gradually in recent decades,

evolving from an application of human creative skill and imagination to a systematic

study of the structure and behaviour of such cryptographic algorithms. During this time

there has been a gradual divergence between the theoretical and practical cryptographic

aspects found in the literature. A serious and considerable difference materialises when

attempting to evaluate or estimate the nature, abilities, influence or power associated

with an adversary. When designers attempt to design a cryptographic scheme, these

designers commence modelling the powers or abilities that an adversary may have to

attack their scheme, and then demonstrate their scheme is secure against any adversary

having the modelled powers. However, these models may not suffice because there is

an intrinsic problem with them, i.e., the designers may not be able to accurately assess

all possible cunning actions an adversary can perform with the purpose of undermining

their cryptographic algorithms. As a consequence of this issue, various schemes have been

proved to be secure according to certain models, but these schemes may be easily broken

by attacks that fall out of the scope of these models. Such unexpected failures have taken

place in the real world frequently [14, 42, 46, 64, 73, 74].

13



1.1 Motivation

In this thesis we will study algorithms by which an adversary might reconstruct a private

key of a particular cryptographic scheme when the adversary is able to obtain a leakage

function of the private key. Traditional security models do not allow an adversary to

have access to such deliberate disclosure of confidential information, and hence various

cryptographic schemes may become insecure when an adversary is given access to such

undisclosed information. In practice such information could be obtained, although with

some effort on the attacker’s part, by gathering data leaked from the physical effects caused

by the functioning of the cryptographic scheme’s implementation [46]. In particular, the

adversary could procure data from a computer’s main memory via a cold boot attack [28].

This attack’s idea originates in taking advantage of the fact that modern computer mem-

ories continue to have data for a portion of time after the computer’s power has been

interrupted. Hence, an attacker with physical access to a machine might be able to re-

cover, for example, cryptographic key information as a result of this effect. Unluckily for

such an adversary, after the computer’s power has been interrupted, the bits in memory

will be subject to a gradual degradation. Therefore, any data extracted by an adversary

from the computer’s main memory will probably be altered in a number of random bits,

i.e. any retrieved data will likely differ from the original data. So the logical question that

becomes apparent is: Once an attacker has obtained a noisy version of a cryptographic

key, is it possible for the attacker to reconstruct the original key?

This question has already been addressed for broad classes of classical cryptographic

schemes, both symmetric and asymmetric, so we will instead focus on that question for

several post-quantum cryptographic schemes. Our work can be seen as a continuation

of the tendency towards developing cold boot attacks for different schemes. But it can

also be seen as the beginning of the evaluation of the leading post-quantum candidates

against this class of attack. Such an evaluation should form a small but important part

of the overall assessment of schemes in the NIST selection process for post-quantum algo-

rithms. We concern ourselves with the reconstruction of private keys of some lattice-based

schemes, such as NTRU and BLISS, as well as the signature scheme Rainbow, which is

based on multivariate polynomials over a finite field, and the McEliece crypto-system,

which is a code-based asymmetric encryption scheme. Our study is aimed at specific im-

plementations of each of the cryptographic schemes. Indeed, for each of the schemes, we

will review at least a real implementation of the scheme with the purpose of learning on

its in-memory formats for the scheme’s private key and then propose specific algorithms

for key recovery in the cold boot attack setting.

14



1.2 Thesis Structure

1.2 Thesis Structure

Chapter 2 This chapter includes a brief background on some important concepts and

definitions in side-channel attacks, particularly those regarding cold boot attacks, that we

use throughout this thesis.

Chapter 3 In this chapter, we investigate the key enumeration problem. We give a

detailed description of some existing key enumeration algorithms and propose variants for

some of them. Furthermore, we make a comparison of the most important qualitative

features of these key enumeration algorithms.

Chapter 4 This chapter analyses the feasibility of cold boot attacks against the NTRU

public key encryption scheme. Our approach is first to review two specific implementations

to learn about the formats these implementations use to store the NTRU private key in

memory. The first implementation we review is ntru-crypto, which is a pair of C and Java

libraries developed by OnBoard Security. The second is tbuktu, which is also available

in C and Java languages. We propose a general key recovery strategy that is adapted to

each of the in-memory private key formats.

Chapter 5 This chapter studies the practicability of cold boot attacks against the BLISS

signature scheme. We review an implementation provided by the strongSwan project to

learn about the formats this implementation uses to store the BLISS private key. We

then propose a key recovery strategy based on combining key enumeration algorithms to

generate possible key candidates. Additionally, we establish a connection between the key

recovery problem for this particular case and a non-conventional instance of the Learning

with Errors Problem (LWE). We then explore other techniques based on the meet-in-the-

middle generic attack and lattices to tackle this instance of LWE.

Chapter 6 This chapter studies the achievability of cold boot attacks against the Rain-

bow signature scheme. By reviewing the reference implementation and the implementation

provided by the Bouncy Castle project, we learn about the in-memory formats these im-

plementations use to store a Rainbow private key. We then propose a key recovery strategy
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that exploits the structure of this signature scheme, allowing us to split the components

of a Rainbow private key into chunks. We then make use of key enumeration algorithms

to generate feasible candidates for each of these components and then proceed to combine

these candidates to obtain possible key candidates.

Chapter 7 In this chapter, we study the McEliece public key encryption scheme in the

cold boot attack setting. In particular, we focus on an implementation provided by the

Bouncy Castle project. For this implementation, we study its formats for storing a private

key for this scheme and propose a key recovery strategy that combines key enumeration

techniques with some linear algebra algorithms.

1.3 Associated Publications

In the course of my PhD, I have been fortunate to work on some diverse projects and some

results from them have already been published.

1. K. G. Paterson, R. Villanueva-Polanco R. Cold Boot Attacks on NTRU. In A. Pa-

tra, N. Smart, editors, INDOCRYPT 2017, volume 10698 of LNCS, pages 107–125,

Springer, Nov. 2017.
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In this chapter, we will include a brief background on some important concepts in side

channel attacks, particularly those concepts regarding cold boot attacks. We will also give

an overview about previous works carried out on cold boot attacks for some classical cryp-

tographic schemes.

2.1 Side Channel Attacks

A side-channel attack may be defined as any attack based on information obtained from

the implementation of a computer system, rather than weaknesses in the implemented

algorithm itself. When performing such attacks, an adversary procure extra information

from the implementation by exploiting any extra source of information, such as timing

information, power consumption, electromagnetic leaks or even sound, with the intention

of subverting cryptographic algorithms. There are various types of side channel attacks.

For example, cache attacks, timing attacks and data remanence attacks. When carrying

out a cache attack, the attacker has the capability to observe and check the progress of

cache accesses made by the victim over a period of time in a shared physical system as in

a virtualised environment or a type of cloud service [6, 13, 73, 74]. On the other hand,
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when carrying out a timing attack, the attacker has the capability to take measurements

of how much time various computations (such as, say, comparing an attacker’s given

password with the victim’s unknown one) take to perform [14, 15, 42, 63, 64]. Finally,

when performing a data remanence attack, the attacker is able to read sensitive data

from a source of computer memory after supposedly having been deleted (e.g. cold boot

attacks [28]). In all cases, the underlying principle is that physical effects caused by the

operation of a cryptographic scheme’s implementation (on the side) can provide useful

extra information about secrets in the system, for example, the cryptographic key, partial

state information, full or partial plain-texts and so forth [46].

2.2 Cold Boot Attacks

A cold boot attack is a type of data remanence attack by which sensitive data are read from

a computer’s main memory after supposedly having been deleted. This attack relies on

the data remanence property of DRAM to retrieve memory contents that remain readable

in the seconds to minutes after power has been removed. This attack was first described in

the literature by Halderman et al. nearly a decade ago [28] and since then it has received

significant attention. In this setting, an attacker with physical access to a computer is able

to retrieve content from a running operating system after using a cold reboot to restart

the machine. A running computer is cold-booted when the operating system is not shut

down in an orderly manner, skipping file system synchronisation and other activities that

would occur on an orderly shutdown. Therefore, after cold-rebooting the machine, such

an attacker may use a removable disk to boot a lightweight operating system, which is

then used to dump the contents of pre-boot physical memory to a file. Alternatively, such

an attacker may remove the memory modules from the original computer and quickly

place them in a compatible computer under the attacker’s control, which is then booted

to access the memory. Further analysis can then be performed against the data that

was dumped from memory to find various sensitive information, such as cryptographic

keys contained in it. This task may be performed by making use of various forms of key

finding algorithms [67, 28]. Unfortunately for such an adversary, the bits in memory will

experience a process of degradation once the computer’s power is interrupted. This implies

that if the adversary is able to retrieve any data from the computer’s main memory after

the power is cut off, the extracted data will probably have random bit fluctuations, i.e.,

the data will be noisy, or rather, be dissimilar from the original data.
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Internally, each DRAM cell is essentially a capacitor, i.e., a device used to store an electric

charge, consisting of one or more pairs of conductors separated by an insulator. So a cell

encodes a single bit by keeping a charge in it. Over time, this charge will leak out of the

capacitor and hence the cell will lose its state, i.e., it will decay to its “ground state”, either

0 or 1, depending on how the capacitor is physically connected internally. To forestall this

decay, the cells in a DRAM chip are refreshed periodically. So it is expected that after

power is lost, each DRAM cell will retain its value for a while and then will decay to

its “ground state”. The amount of time for which cell values are maintained while the

power is off depends on the particular memory type and the ambient temperature. In fact,

[28] reports results of multiple experiments in which representative memory regions were

filled with a pseudorandom pattern and then were read back after varying periods of time

without refresh and under different temperature conditions. Such results reveal that, at

normal operating temperatures (25.5◦C to 44.1◦C), there is little corruption within the

first few seconds, but this phase is then followed by a rapid decay. However, the period of

mild corruption can be prolonged by cooling the memory chips. For instance, according to

[28], in an experiment at −50◦C (which can be achieved by spraying compressed air onto

the memory chips) less than 0.1% of bits decay within the first minute. At temperatures

of approximately −196◦C (achieved by means of the use of liquid nitrogen) less than

0.17% of bits decay within the first hour. Notably, once power has been switched off, the

memory will be partitioned into regions, and each region will have a “ground state” which

is associated with a bit, 0 or 1. In a 0 ground state, the 1 bits will eventually decay to 0

bits, while the probability of a 0 bit switching to a 1 bit is very small, but not vanishing

(a common probability is circa 0.001 [28]). When the ground state is 1, the opposite is

true.

Furthermore, a single bit of a charge-based memory (DRAM) may spontaneously flip to

the opposite state, as a result of an electrical or magnetic interference inside a computer

system. This is normally referred to as a soft (or transient) fault since only the data-value

has been changed. Particularly, the majority of one-off errors in DRAM chips happen as

a result of background radiation, which may change the contents of one or more memory

cells or interfere with the circuitry used to read/write them [52]. This problem may be

mitigated by using redundant memory bits and additional circuitry that use these bits to

detect and correct soft errors. In most cases, the detection and correction are performed by

the memory controller, which uses the extra memory bits to calculate parity bits, enabling

missing data to be reconstructed by an error-correcting code (ECC) [52]. On the other
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hand, there are also faults that are hard or permanent, referring to faulty cells that may

not store any value reliably, as a result of manufacturing-time defects.

In practice, even though the content (with errors) of memory may be retained for a period

of time via cooling techniques, an attacker has yet to extract such content from mem-

ory before even considering reconstructing any relevant information from it. To extract

memory images, the attacker first has to take into account several possible issues that

may arise. For instance, when the target machine boots again, the system BIOS may

write portions of memory with its own code and data, although the affected portions nor-

mally are small. Also, in some machines, the BIOS may perform a destructive memory

check during its Power-On Self Test (POST) (however this test might be disabled or by-

passed in some machines). To handle these issues, the authors of [28] reported they used

tiny special-purpose programs (memory-imaging tools) that, when booted from either a

warm or cold reset state, produced accurate dumps of memory contents to some exter-

nal medium. These special-purpose programs used trivial amounts of RAM, and their

memory offsets were adjusted to some extent to ensure that data structures of interest

were unaffected. Additionally, the authors of [28] pointed out that if an attacker cannot

force a target system to boot memory-imaging tools, the attacker could physically remove

the memory modules, place them in a computer selected by the attacker and then dump

their contents. Note that removing the memory modules may allow the attacker to image

memory regions where standards BIOSes (or memory-imaging tools) load their own code

during boot.

Once the attacker extracts the memory content, the attacker has to profile this content to

gain knowledge about the regions of memory and the probabilities of both a 1 flipping to 0

and a 0 flipping to 1. According to the results of the experiments reported in [28], almost all

memory bits tend to decay to predictable ground states, with only a tiny fraction flipping

in the opposite direction. Also, the authors pointed out that the probability of decaying

to the “ground state” increases as time goes on, while the probability of flipping in the

opposite direction remains relatively constant and tiny (e.g. 0.001). These results suggests

that the attacker may model the decay in a region as a binary asymmetric channel, i.e.,

assuming the probability of a 1 flipping to 0 is some fixed number, while the probability

of a 0 flipping to a 1 is some other fixed number.

In practice, the attacker can determine the “ground state” of a particular region of memory
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rather easily in an attack by reading all the bits and determining how many of them are 0

bits and how many are 1 bits. Furthermore, the attacker may estimate the probabilities by

comparing any original content in such region with its respective noisy version. Another

significant challenge posed to the attacker once the attacker has obtained memory images

is extracting encryption keys from them. The authors of [28] presented algorithms to

locate AES keys and RSA keys in a memory image and, although such algorithms are

scheme-specific, their intrinsic idea may be employed for other schemes, since it relies on

determining identifying features of the formats for storing a scheme-specific key and using

such identifying features as markers to identify sequences of bytes, while searching over

decayed memory images. More specifically, the algorithm searches for sequences of bytes

with low Hamming distance to these markers and checks that the remaining bytes in a

candidate sequence satisfy some conditions.

Because only a noisy version of the original key may be retrievable from main memory

once the attacker discovers the location of the data in it, the adversary’s main task then

becomes the mathematical problem of recovering the original key from a noisy version of

that key. Additionally, the adversary may have access to reference cryptographic data

created using that key (e.g. cipher-texts for a symmetric key encryption scheme) or have a

public key available (in the asymmetric setting). So the focus of cold boot attacks after the

initial work pointing out their feasibility [28] has been to develop algorithms for efficiently

recovering keys from noisy versions of those keys for a range of different cryptographic

schemes, whilst exploring the limits of how much noise can be tolerated.

2.2.1 RSA Setting

Heninger and Shacham [30] focussed on the case of RSA keys, giving an efficient algorithm

based on Hensel lifting to exploit redundancy in the typical RSA private key format. This

work was followed up by Henecka, May and Meurer [29] and Paterson, Polychroniadou

and Sibborn [55], with both papers also focusing on the mathematically highly structured

RSA setting. The latter paper in particular pointed out the asymmetric nature of the

error channel intrinsic to the cold boot setting and recast the problem of key recovery for

cold boot attacks in an information theoretic manner.
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2.2.2 Discrete Logarithm Setting

Lee et al. [44] were the first that discussed these attacks in the discrete logarithm setting.

Their attack model assumed that an attacker only had access to the public key gx and a

noisy version of the private key x. Additionally, their model made the assumption that an

adversary knew an upper bound for the number of errors in the private key. Because this

latter assumption might not be realistic and the attacker did not have access to further

redundancy, their proposed algorithm would likely be unable to recover keys that were

affected by particularly high noise levels in the true cold boot scenario, i.e., only assuming

a bit-flipping model. This work was improved upon by Poettering and Sibborn [60]. In

their paper, they attempted to determine whether there were any in-memory private key

representations that contained redundancy that could be used to improve cold boot key-

recovery algorithms, in practical software implementations. Thus, they considered two

scenarios that were taken from two ECC implementations found in TLS libraries: the

windowed non-adjacent form (wNAF) representation used in OpenSSL, and the comb-

based approach used in PolarSSL. Through exploiting redundancies found in the respective

in-memory private key representations, they developed cold boot key-recovery algorithms

that were applicable to the true cold boot scenario.

2.2.3 Symmetric Key Setting

Other papers have considered cold boot attacks in the symmetric key setting, including

Albrecht and Cid [2] who focused on the recovery of symmetric encryption keys in the

cold boot setting by employing polynomial system solvers, and Kamal and Youssef [39]

who applied SAT solvers to the same problem. Further research on the development of

cold boot attacks for specific schemes can be found in [44, 37]. Cold boot attacks are also

widely cited in the theoretically-oriented literature on leakage-resilient cryptography, but

the relevance there is marginal because the cold boot attack scenario (direct access to a

noisy version of the whole key) does not really apply in the leakage-resilient setting.

2.2.4 Learning with Errors Setting

A recent research paper by Albrecht et al. [4] explored cold boot attacks on cryptographic

schemes based on the ring – and module – variants of the Learning with Errors (LWE)
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problem. In particular, they considered two cryptographic schemes: the Kyber key en-

capsulation mechanism (KEM) and New Hope KEM. They also considered two encodings

to store LWE keys. The first encoding stores polynomial coefficients directly in memory,

while the second encoding performs a number theoretic transform (NTT) on the key be-

fore storing it. This method is commonly used to improve efficiency in implementations.

They then developed an attack strategy exploiting the structure added by using an NTT

on the key. In particular, their strategy exploited the property that a 2n-dimensional

Fourier transform can be written in terms of two 2n−1-dimensional Fourier transform. So,

using this halving property, they split their cold boot NTT decoding problem into two

smaller cold boot NTT decoding problems, i.e. employing a divide and conquer approach.

As a result, they showed that, at a 1% bit-flip rate, a cold boot attack on Kyber KEM

parameters had a cost of 243 operations when the NTT-based encoding is used for key

storage, compared to 270 operations with the first encoding.

2.3 Cold boot Attack Model

Our cold boot attack model assumes that the adversary can obtain a noisy version of a

secret key (using whatever format is used to store it in memory). We assume that the

corresponding public parameters are known exactly (without noise). We do not consider

here the important problem of how to locate the appropriate area of memory in which the

secret key bits are stored, though this would be an important consideration in practical

attacks. Our aim is then recover the secret key. Note that it is sufficient to recover a

list of key candidates in which the true secret key is located, since we can always test a

candidate by executing known algorithms linked to the scheme we are attacking.

We assume throughout that a 0 bit of the original secret key will flip to a 1 with probability

α = P (0 → 1) and that a 1 bit of the original private key will flip with probability

β = P (1 → 0). We do not assume that α = β; indeed, in practice, one of these values

may be very small (e.g. 0.001) and relatively stable over time, while the other increases

over time. Furthermore, we assume that the attacker knows the values of α and β and

that they are fixed across the region of memory in which the private key is located. These

assumptions are reasonable in practice: one can estimate the error probabilities by looking

at a region where the memory stores known values (e.g. where the public key is located),

and the regions are typically large.
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2.4 Log Likelihood Statistic for Key Candidates

Suppose we have a secret key that is W bits in size, and let r = (b0, . . . , bW−1) denote

the bits of the noisy key (input to the adversary in the attack). Suppose a key recovery

algorithm constructs a candidate for the private key c = (c0, . . . , cW−1) by some means

(to be determined). Then, given the bit-flip probabilities α, β, we can assign a likelihood

score to c as follows:

L[c; r] := Pr[r|c] = (1− α)n00αn01βn10(1− β)n11 ,

where n00 denotes the number of positions where both c and r contain a 0 bit, n01 denotes

the number of positions where c contains a 0 bit and r contains a 1 bit, etc.

The method of maximum likelihood estimation1 then suggests picking as c the value that

maximises the above expression. It is more convenient to work with log likelihoods, and

equivalently to maximise these, viz:

L[c; r] := log Pr[r|c] = n00 log(1− α) + n01 logα+ n10 log β + n11 log(1− β).

We will frequently refer to this log likelihood expression as a score and seek to maximise

its value (or, equally well, minimise its negative).

2.5 Combining Chunks to Build Key Candidates

Let us suppose that the encoding of the true secret key r can be represented as a concate-

nation of W/w chunks, each on w bits. Let us name the chunks r0, r1, . . . , rW/w−1 so that

ri = bi·wbi·w+1 . . . bi·w+(w−1). Additionally, let us suppose that key candidates c can also

be represented by concatenations of chunks c0, c1, . . . , cW/w−1 in the same way.

Suppose further that each of the at most 2w candidate values for chunk ci (0 ≤ i < W/w)

can be enumerated and given its own score by some procedure (formally, a sub-algorithm

in an overall attack). For example, the above expression for log likelihood across all W

bits of secret key can be easily modified to produce a log likelihood expression for any

1See for example https://en.wikipedia.org/wiki/Maximum_likelihood_estimation.
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candidate for chunk i as follows:

L[ci; ri] := log Pr[ri|ci] = ni00 log(1− α) + ni01 logα+ ni10 log β + ni11 log(1− β), (2.1)

where the niab values count occurrences of bits across the i-th chunks, ri, ci.

We can therefore assume that we have access to W/w lists of scores, each list containing

up to 2w entries. The W/w scores, one from each of these per-chunk lists, can be added

together to create a total score for a complete candidate c. Indeed, this total score is

statistically meaningful in the case where the per-chunk scores are log likelihoods because

of the additive nature of the scoring function in that case. The question then becomes: can

we devise efficient algorithms that traverse the lists of scores to combine chunk candidates

ci, obtaining complete key candidates c having high total scores (with total scores obtained

by summation)? This is a question that has been previously addressed in the side-channel

analysis literature [69, 11, 48, 47, 18], with a variety of different algorithmic approaches

being possible to solve the problem. We will explore these approaches in detail in the next

chapter.
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In this chapter, we detail and investigate key enumeration algorithms. We propose vari-

ants for some existing key enumeration algorithms and make a comparison of the most

important features of these key enumeration algorithms.

3.1 Introduction

In this section, we will introduce the key enumeration problem.

3.1.1 Some Definitions

We define an array A as a data structure consisting of a finite sequence of values of a

specified type, i.e., A = [a0, . . . , anA−1]. The length of an array, nA, is established when

the array is created. After creation, its length is fixed. Each item in an array is called

an element, and each element is accessed by its numerical index, i.e., A[i] = ai, with

0 ≤ i < nA. Let A0 = [a00, . . . , a
0
n0−1] and A1 = [a10, . . . , a

1
n1−1] be two arrays of elements

of a specified type. The associative operation || is defined as follows.

[a00, . . . , a
0
n0−1] || [a

1
0, . . . , a

1
n1−1] = [a00, . . . , a

0
n0−1, a

1
0, . . . , a

1
n1−1].
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A list L is defined as a resizable array of elements of a specified type.1 Given a list

L = [e0, . . . , enl−1], this data structure supports the following methods.

• The method L.size() returns the number of elements in this list, i.e., the value nl.

• The method L.add(enl) appends the specified element enl to the end of this list, i.e.,

L = [e0, e1, . . . , enl ] after this method returns.

• The method L.get(j), with 0 ≤ j < L.size(), returns the element at the specified

position j in this list, i.e., ej .

• The method L.clear() removes all the elements from this list. The list will be empty

after this method returns, i.e., L = [].

3.1.2 Problem Statement

Let us assume that we have an encoding of a secret key r that is W bits in size and

that r can be represented as a concatenation of W/w chunks, each on w bits. Let us set

N = W/w and name the chunks as r0, r1, . . . , rN−1 with ri = bi·wbi·w+1 . . . bi·w+(w−1).

Similarly, we suppose there is a key recovery algorithm that constructs a key candidate

c = (c0, . . . , cW−1) for the encoding of the secret key by some means and that these key

candidates c can be represented by concatenations of chunks c0, c1, . . . , cN−1 in the same

way.

Let f be a function such that for a given candidate c, the function outputs a real value

f(c). This function f is called a scoring function. Moreover, if for a given c, we have

that f(c) =
∑N−1

i=0 f ′(ci), for some other scoring function f ′, then f is called an additive

scoring function. For instance, we may define an additive scoring function f from the

log-likelihood expression introduced in Section 2.5.

Assuming we have access to an additive scoring function f and can enumerate each of

the at most 2w values for chunk ci (0 ≤ i < N ) and give it its own score by using f ′,

then we can have access to N lists of chunk candidates, where each list contains up to

2w entries. A chunk candidate is defined as a 2-tuple of the form (score, value), where

the first component score is a positive real number (candidate score) while the second

component value is an array of w-bit strings (candidate value).

1A table T is also a resizable array of elements of a specified type.
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Let Li = [ci0, c
i
2, . . . , c

i
mi−1] be the list of chunk candidates for chunk i, 0 < mi ≤ 2w. Let

ci0j0 , . . . , c
in
jn

be chunk candidates, 0 ≤ i0 < · · · < in < N , 0 ≤ ji < mi. The function

combine(ci0j0 , . . . , c
in
jn

) returns a new chunk candidate c such that

c = (ci0j0 .score+ · · ·+ cinjn .score, c
i0
j0
.value || · · · || cinjn .value).

Note that when i0 = 0, i1 = 1, . . . , iN−1 = N − 1, c will be a full key candidate. We will

next state the key enumeration problem.

Definition 3.1.1 The key enumeration problem entails traversing the N lists Li, 0 ≤ i ≤

N−1, while picking a chunk candidate ciji from each Li to generate full key candidates c =

combine(c0j0 , . . . , c
N−1
jN−1

). Moreover, we call an algorithm generating full key candidates c

a key enumeration algorithm (KEA).

Note that the key enumeration problem has been stated in a general way, however there

are many other variants of this problem. These variants relate to the manner in which the

key candidates are generated by a key enumeration algorithm.

A variant consists in enumerating key candidates c such that their total accumulated

scores follow a specific order. For example, in many side-channel scenarios it is desirable

to enumerate key candidates c starting at the one having the highest score, followed

by the one having the second highest score and so on. In these scenarios, we need a

key enumeration algorithm to enumerate high scoring key candidates in decreasing order

based on their total accumulated scores. For example, such an algorithm would allow us

to find the top M highest scoring candidates in decreasing order, where 1 ≤ M � 2W .

Furthermore, such an algorithm is known as an optimal key enumeration algorithm.

Another variant consists in enumerating all the key candidates c such that their total

accumulated scores satisfy a defined condition rather than a specific order. For example,

we may need to enumerate all key candidates whose total accumulated scores lie in an

interval [B1, B2]. In this scenario, we need a key enumeration algorithm to enumerate key

candidates whose total accumulated scores lie in that interval. Such an algorithm may not

enumerate all the key candidates in a decreasing order, still it does need to ensure that

all of them will be generated once it has completed. This is, the algorithm only concerns

itself with generating all the key candidates whose total accumulated scores satisfy the
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condition in any order. Such an algorithm would allow us to find the top M highest

scoring candidates in any order if the interval is well-defined, for example. Moreover, such

an algorithm is commonly known as a non-optimal key enumeration algorithm.

Broadly speaking, optimal key enumeration algorithms [68, 69] tend to consume more

memory and be less efficient while generating high scoring key candidates, whereas non-

optimal key enumeration algorithms [11, 48, 47, 61, 18] are expected to run faster and

consume less memory.

3.2 Key Enumeration Algorithms

We will next present several key enumeration algorithms. These algorithms will be detailed

and analysed below.

3.2.1 An Optimal Key Enumeration Algorithm

We study the optimal key enumeration algorithm (OKEA) that was introduced in [69]. We

will firstly give the basic idea behind the algorithm by assuming the encoding of the secret

key is represented as two chunks, hence we have access to two lists of chunk candidates.

3.2.1.1 Setup

Let L0 = [c00, c
0
1, . . . , c

0
m0−1] and L1 = [c10, c

1
1, . . . , c

1
m1−1] be the two lists respectively.

Each list is in decreasing order based on the score component of its chunk candidates.

Let us define an extended candidate as a 4-tuple of the form C := (c0j0 , c
1
j1
, j0, j1) and its

score as c0j0 .score + c1j1 .score. Additionally, let Q be a priority queue [17] that will store

extended candidates in decreasing order based on their score.

This data structure Q supports three methods. Firstly, the method Q.poll() retrieves and

removes the head from this queue Q or returns null if this queue is empty. Secondly, the

method Q.add(e) inserts the specified element e into the priority queue Q. Thirdly, the

method Q.clear() removes all the elements from the queue Q. The queue will be empty

after this method returns. By making use of a heap, we can support any priority-queue
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operation on a set of size n in O(log2(n)) time [17].

Furthermore, let X,Y be two vectors of bits that grow as needed. These are employed to

track an extended candidate C in Q. C is in Q if only if both Xj0 and Yj1 are set to 1. By

default, all bits in a vector initially have the value 0.

Algorithm 1 outputs the next highest-scoring key candidate from L0,L1.

1: function nextCandidate()
2: (c0j0 , c

1
j1 , j0, j1)← Q.poll();

3: Xj0 ← 0;Yj1 ← 0;
4: if (j0 + 1) < L0.size() and Xj0+1 is set to 0 then
5: c0j0+1 ← L0.get( j0 + 1);
6: Q.add((c0j0+1, c

1
j1 , j0 + 1, j1));

7: Xj0+1 ← 1;Yj1 ← 1;
8: end if
9: if (j1 + 1) < L1.size() and Yj1+1 is set to 0 then

10: c1j1+1 ← L1.get(j1 + 1);
11: Q.add((c0j0 , c

1
j1+1, j0, j1 + 1));

12: Xj0 ← 1;Yj1+1 ← 1;
13: end if
14: return cj0,j1 = combine(c0j0 , c

1
j1); (the next key candidate).

15: end function

3.2.1.2 Basic Algorithm

At the initial stage, the queue Q will be created. Next the extended candidate (c00, c
1
0, 0, 0)

will be inserted into the priority queue and both X0 and Y0 will be set to 1. In order to

generate a new key candidate, the routine nextCandidate, defined in Algorithm 1, should

be executed.

Let us assume that m0,m1 > 1. First the extended candidate (c00, c
1
0, 0, 0) will be retrieved

and removed from Q and then X0 and Y0 will be set to 0. The two if blocks of instructions

will then be executed, meaning that the extended candidates (c01, c
1
0, 1, 0), (c00, c

1
1, 0, 1)

will be inserted into Q. Moreover, the entries X0, X1, Y0, Y1 will be set to 1, while the

other entries of X and Y will remain as 0. The routine nextCandidate will then return

c0,0 = combine(c00, c
1
0), which is the highest score key candidate, since L0 and L1 are in

decreasing order.

At this point, the two extended candidates (c01, c
1
0, 1, 0), (c00, c

1
1, 0, 1) (both in Q) are the only

ones that can have the second highest score. Therefore, if Algorithm 1 is called again, the

first instruction will retrieve and remove the extended candidate with the second highest
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score, say (c00, c
1
1, 0, 1), from Q and then the second instruction will set X0 and Y1 to 0.

The first if condition will be attempted, but this time it will be false since X1 is set to

1. However, the second if condition will be satisfied and therefore (c00, c
1
2, 0, 2) will be

inserted into Q and the entries X0 and Y2 will be set to 1. The method will then return

c0,1 = combine(c00, c
1
1), which is the second highest score key candidate.

At this point, the two extended candidates (c01, c
1
0, 1, 0), (c00, c

1
2, 0, 2) (both in Q) are the

only ones that can have the third highest score. To see why, we know that the algorithm

has generated c0,0, c0,1 so far. Since L0 and L1 are in decreasing order, we have that either

c0,0.score ≥ c0,1.score ≥ c1,0.score ≥ c0,2.score or c0,0.score ≥ c0,1.score ≥ c0,2.score ≥

c1,0.score. Also, any other extended candidate yet to be inserted into Q cannot have the

third highest score, for the same reason. Consider for example (c01, c
1
1, 1, 1): this extended

candidate will be inserted into Q only if (c01, c
1
0, 1, 0) has been retrieved and removed from

Q. Therefore, if Algorithm 1 is executed again, it will return the third highest scoring key

candidate and have the extended candidate with the fourth highest score placed at the head

of Q. In general, the manner in which this algorithm travels through the m0 ×m1 matrix

of key candidates guarantees to output key candidates in a decreasing order based on their

total accumulated score, i.e., this algorithm is an optimal key enumeration algorithm.

Regarding how fast the queue Q grows, let N s
Q be the number of extended candidates in

Q after the function nextCandidate has been called s ≥ 0 times. Clearly, we have that

N0
Q = 1, since Q only contains the extended candidate (c00, c

1
0, 0, 0) after initialisation. Also,

Nm1·m2
Q = 0, because after m1 ·m2 calls to the function, there will be no more key candi-

dates to be enumerated. Note that during the execution of the function nextCandidate,

an extended candidate will be removed from Q and two new extended candidates might be

inserted into Q. Considering the way in which an extended candidate is inserted into the

queue, Q may contain at most one element in each row and column at any stage, hence

N s
Q ≤ min{m0,m1}, for 0 ≤ s ≤ m1 ·m2.

3.2.1.3 Complete Algorithm

Note that Algorithm 1 works properly if both input lists are in decreasing order. Hence, it

may be generalised to a number of lists greater than 2 by employing a divide and conquer

approach, which works by recursively breaking down the problem into two or more sub-

problems of the same or related type, until these become simple enough to be solved

31



3.2 Key Enumeration Algorithms

R

N0,1,2

N0,1

L0 L1

L2

N3,4

L3 L4

Figure 3.1: Binary tree built from L0, L1, L2, L3, L4.

directly. The solutions to the sub-problems are then combined to give a solution to the

original problem [17].

To explain the complete algorithm, let us consider the case when there are five chunks as

an example. So we have access to five lists of chunk candidates Li, 0 ≤ i < 5, each of

which has a size of mi. We first call initialise(0, 4), as defined in Algorithm 2. This

function will build a tree-like structure from the five given lists (see Figure 3.1).

Algorithm 2 creates and initialises each node.

1: function initialise(i, f)
2: if f = i then
3: Li ← (null, null, null, null, null, Li);
4: return Li

5: else
6: q ← b i+f

2
c;

7: Ni,...,q ← initialise(i, q);
8: Nq+1,...,f ← initialise(q + 1, f);
9: c

i,...,q
0 ← getCandidate(Ni,...,q, 0);

10: c
q+1,...,f
0 ← getCandidate(Nq+1,...,f , 0);

11: Qi,...,f .add(ci,...,q0 , cq+1,...,f
0 , 0, 0);

12: X
i,...,f
0 ← 1;Yi,...,f0 ← 1;

13: Ni,...,f ← (Ni,...,q, Nq+1,...,f , Qi,...,f , Xi,...,f , Yi,...,f , Li,...,f )
14: return Ni,...,f

15: end if
16: end function

Each node Ni,...,f is a 6-tuple of the form (Ni,...,q, Nq+1,...,f , Qi,...,f , Xi,...,f , Yi,...,f , Li,...,f ), where

Ni,...,q and Nq+1,...,f are the children nodes, Qi,...,f is a priority queue, Xi,...,f and Yi,...,f are

bit vectors and Li,...,f a list of chunk candidates. Additionally, this data structure sup-

ports the method size(), which returns the maximum number of chunk candidates that

this node can generate. This method is easily defined in a recursive way: if Ni,...,f is a

leaf node, then the method will return Li,...,f .size(). Or else, the method will return
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Ni,...,q.size() × Nq+1,...,f .size(). To avoid computing this value each time this method is

called, a node will internally store the value once it has been computed for the first time.

Hence, the method will only return the stored value from the second call onwards. Fur-

thermore, the function getCandidate(Ni,...,f ,j), as defined in Algorithm 3, returns the j-th

best chunk candidate (chunk candidate whose score rank is j) from the node Ni,...,f .

Algorithm 3 outputs the j-th best chunk candidate from the node Ni,...,f .

1: function getCandidate(Ni,...,f , j)
2: if Ni,...,f is a leaf then
3: return Li,...,f .get(j)
4: end if
5: if j ≥ Li,...,f .size() then
6: Li,...,f .add(nextCandidate(Ni,...,f ))
7: end if
8: return Li,...,f .get(j)
9: end function

In order to generate the first N best key candidates from the root node R, with R :=

N0,...,5, we simply run nextCandidate(R), as defined in Algorithm 4, N times. This func-

tion internally calls the function getCandidate with suitable parameters each time it is

required. Calling getCandidate(Ni,...,f ,j) may cause this function to internally invoke

nextCandidate(Ni,...,f) to generate ordered key candidates from the inner node Ni,...,f on

the fly. So any inner node Ni,...,f should keep track of the chunk candidates returned by

getCandidate(Ni,...,f ,j) when called by its parent, otherwise the j best chunk candidates

from Ni,...,f would have to be generated each time such a call is done, which is inefficient.2

To keep track of the returned chunk candidates, each node Ni,...,f updates its internal list

Li,...,f (see lines 5 to 7 in Algorithm 3).

2This algorithm is inherently serial.
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Algorithm 4 outputs the next highest-scoring chunk candidate from the node Ni,...,f .

1: function nextCandidate(Ni,...,f )
2: (cxjx , c

y
jy
, jx, jy)← Qi,...,f .poll(); (x = {i, . . . , q},y = {q + 1, . . . , f}).

3: X
i,...,f
jx

← 0;Yi,...,fjy
← 0;

4: if (jx + 1) < Ni,...,q.size() and X
i,...,f
jx+1 is set to 0 then

5: cxjx+1 ← getCandidate(Ni,...,q, jx + 1);
6: Qi,...,f .add((cxjx+1, c

y
jy
, jx + 1, jy));

7: X
i,...,f
jx+1 ← 1;Yi,...,fjy

← 1;
8: end if
9: if (jy + 1) < Nq+1,...,f .size() and Y

i,...,f
jy+1 is set to 0 then

10: c
y
jy+1 ← getCandidate(Nq+1,...,f , jy + 1);

11: Qi,...,f .add((cxjx , c
y
jy+1, jx, jy + 1));

12: X
i,...,f
jx

← 1;Yi,...,fjy+1 ← 1;
13: end if
14: return combine(cxjx , c

y
jy

); (the next key candidate).
15: end function

3.2.1.4 Memory Consumption

Let us suppose that the encoding of a secret key is W = 2a+b bits in size, and we set

w = 2a, and so N = 2b. Hence, we have access to N lists Li, 0 ≤ i < 2b, each of which

has mi chunk candidates.

Suppose we would like to generate the first N best key candidates. So we first invoke

initialise(0,N − 1) (Algorithm 2). This call will create a tree-like structure with b+ 1

levels starting at 0.

• The root node R := N0,...,2
b−1 at level 0.

• The inner nodes NId := N
id
λ with Id = {id ·2b−λ, (id+1) ·2b−λ−1}, where λ, 0 < λ < b,

is the level and id, 0 ≤ id < 2λ, is the node identification at the level λ.

• The leaf nodes Li at level b, for 0 ≤ i < 2b.

So this tree will have 20 + 21 + · · ·+ 2b = 2b+1 − 1 nodes.

Let Mk be the number of bits consumed by chunk candidates stored in memory after

calling the function nextCandidate with R as a parameter k times. A chunk candidate at

level 0 ≤ λ ≤ b is of the form (score, [e0, . . . , e2b−λ−1]) with score being a real number and

el being bitstrings. Let Bλ be the number of bits a chunk candidate at level λ occupies in

memory.

First note that invoking initialise(0,N − 1) causes each internal node’s list to grow,
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since:

1. At creation of nodes Li (lines 2 to 4), Li is created by setting Li’s internal list to Li

and setting Li’s other components to null.

2. At creation of both R and nodes Nidλ , for 0 < λ < b−1 and 0 ≤ id < 2λ, the execution

of the function getCandidate (lines 9 to 10) makes their corresponding left child

(right child) store a new chunk candidate in their corresponding internal list. This

is, for 0 < λ ≤ b− 1, 0 ≤ id < 2λ, the N
id
λ ’s internal list has a new element.

Therefore, M0 =
∑b−1

λ=1 2λBλ +Bb(
∑2b−1

i=0 mi).

Suppose the best key candidate is about to be generated, then nextCandidate(R) will be

executed for the first time. This routine will remove the extended candidate (cx0 , c
y
0, 0, 0)

out of R’s priority queue. If it enters the first if (lines 4 to 8), it will make the call

getCandidate(N01, 1) (line 5), which may cause each node, except for the leaf nodes, of

the left subtree to store at most a new chunk candidate in its corresponding internal list.

Hence, retrieving the chunk candidate cx1 may cause at most 2λ−1 chunk candidates per

level λ, 1 ≤ λ < b, to be stored. Likewise, if it enters the second if (lines 9 to 13), it will

call the function getCandidate(N11, 1) (line 10), which may cause each node, except for the

leaf nodes, of the right subtree to store at most a new chunk candidate in its corresponding

internal list. Therefore, retrieving the chunk candidate c
y
1 (line 10) may cause at most

2λ−1 chunk candidates per level λ, 1 ≤ λ < b, to be stored. Therefore, after generating

the best key candidate, p
(1)
λ ≤ 2λ chunk candidates per level λ, 1 ≤ λ < b, will be stored

in memory, hence M0 ≤M1 = M0 +
∑b−1

λ=1 p
(1)
λ Bλ ≤ 2

∑b−1
λ=1 2λBλ+Bb(

∑2b−1
i=0 mi) bits are

consumed by chunk candidates stored in memory.

Let us assume that k−1 key candidates have already been generated, therefore Mk−1 bits

are consumed by chunk candidates in memory, with Mk−1 = M0 +
∑k−1

d=1

∑b−1
λ=1 p

(d)
λ Bλ.

Let us suppose the k-th best key candidate is about to be generated, then the method

nextCandidate(R) will be executed for the k-th time. This routine will remove the best

extended candidate (cxjx , c
y
jy
, jx, jy) out of the R’s priority queue. It will then attempt to

insert two new extended candidates into R’s priority queue. As seen previously, retrieving

the chunk candidate cxjx+1 may cause at most 2λ−1 chunk candidates per level λ, 1 ≤ λ < b,

to be stored. Likewise, retrieving the chunk candidate c
y
jy+1 may also cause at most 2λ−1
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chunk candidates per level λ, 1 ≤ λ < b, to be stored. Therefore, after generating the k-th

best key candidate, p
(k)
λ ≤ 2λ chunk candidates per level λ, 1 ≤ λ < b, will be stored in

memory, hence Mk = Mk−1 +
∑b−1

λ=1 p
(k)
λ Bλ = M0 +

∑k
d=1

∑b−1
λ=1 p

(d)
λ Bλ bits are consumed

by chunk candidates stored in memory.

It follows that if N candidate keys are generated, then

MN = M0 +

N∑
d=1

b−1∑
λ=1

p
(d)
λ Bλ =

b−1∑
λ=1

2λBλ +Bb(

2b−1∑
i=0

mi) +

N∑
d=1

b−1∑
λ=1

p
(d)
λ Bλ,

bits are consumed by chunk candidates stored in memory in addition to the extended

candidates stored internally in the priority queue of the nodes R and N
id
λ . Therefore, this

algorithm may consume a large amount of memory if it is used to generate a large number

of key candidates, which may be problematic.

3.2.2 A Bounded-Space Near-Optimal Key Enumeration Algorithm

We next will describe a key enumeration algorithm introduced in [18]. This algorithm

builds upon OKEA and can enumerate a large number of key candidates without exceeding

the available space. The trade-off is that the enumeration order is only near-optimal, rather

than optimal as it is in OKEA. We firstly will give the basic idea behind the algorithm

by assuming the encoding of the secret key is represented as two chunks, hence we have

access to two lists of chunk candidates.

3.2.2.1 Basic Algorithm

Let L0 = [c00, c
0
2, . . . , c

0
m0−1] and L1 = [c10, c

1
2, . . . , c

1
m1−1] be the two lists respectively and

let ω > 0 be an integer such that ω | m0 and ω | m1. Each list is in decreasing order based

on the score component of its chunk candidates. Let us set mmin = min{m0,m1}, and

define Rk0,k1 as Rk0,k1 = {0, . . . , k0 · ω − 1} × {0, . . . , k1 · ω − 1}, where k0, k1 are positive

integers. The key space is divided into layers layerωk of width ω. Figure 3.2 depicts each

layer as a different shade of the blue colour. Formally,

layerωk := {(c0j0 , c
1
j1) | (j0, j1) ∈ Rk,k \Rk−1,k−1},

for 1 ≤ k ≤ mmin
ω . The remaining layers are defined as:
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Figure 3.2: Geometric representation of the key space divided into layers of width ω = 3.

If m0 ≥ m1,

layerωk := {(c0j0 , c
1
j1) | (j0, j1) ∈ Rk,mmin

ω
\Rmmin

ω
,
mmin
ω
},

for mmin
ω < k ≤ m0

ω . Or else,

layerωk := {(c0j0 , c
1
j1) | (j0, j1) ∈ Rmmin

ω
,k \Rmmin

ω
,
mmin
ω
},

for mmin
ω < k ≤ m1

ω .

The ω-layer key enumeration algorithm: Divide the key-space into layers of width ω.

Then, go over layerωk , one by one, in increasing order. For each layerωk , enumerate its

key candidates by running OKEA within the layer layerωk . More specifically, for each

layerωk , 1 ≤ k ≤ mmin
ω , the algorithm inserts the two corners, i.e. the extended candidates

(c0(k−1)·ω, c
1
0, (k − 1) · ω, 0), (c00, c

1
(k−1)·ω, 0, (k − 1) · ω), into the data structure Q. The

algorithm then proceeds to extract extended candidates and insert their successors as

usual, but limiting the algorithm not to exceed the boundaries of the layer layerωk when

selecting components of candidates. For the remaining layers, if any, the algorithm inserts

only one corner, either the extended candidate (c0(k−1)·ω, c
1
0, (k− 1) · ω, 0) or the extended

candidate (c00, c
1
(k−1)·ω, 0, (k−1) ·ω), into the data structure Q and then proceeds as usual,

while not exceeding the boundaries of the layer. Figure 3.2 also shows the extended

candidates (represented as the smallest squares in a strong shade of blue within a layer)

to be inserted into Q when a certain layer will be enumerated.
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Figure 3.3: Geometric representation of the key enumeration within layer33.

3.2.2.2 Complete Algorithm

When the number of chunks is greater than 2, the algorithm applies a recursive decom-

position of the problem (similar to OKEA). Whenever a new chunk candidate is inserted

into the candidate set, its value is obtained by applying the enumeration algorithm to

the lower level. We explain an example to give an idea of the general algorithm. Let us

suppose the encoding of the secret key is divided into 4 chunks, then we have access to 4

lists of chunk candidates, each of which is of size mi with ω | mi.

To generate key candidates, we need to generate the two lists of chunk candidates for the

lower level L0,1 and L2,3 on the fly as far as required. For this, we maintain a set of next

potential candidates, for each dimension – Q0,1 and Q2,3, so that each next chunk candidate

obtained from Q0,1 (or Q2,3) is stored in the list L0,1 (or L2,3). Because the enumeration

is performed by layers, the sizes of the data structures Q1,2 and Q3,4 are bounded by 2ω.

However, this is not the case for the lists L0,1 and L2,3, which grow as the number of

candidates enumerated grows, hence becoming problematic as seen in Section 3.2.1.4.

To handle this, each layerωk is partitioned into squares of size ω × ω. The algorithm still

enumerates the key candidates in layerω1 first, then in layerω2 and so on, but in each layerωk

the enumeration will be square-by-square. Figure 3.3 depicts the geometric representation

of the key enumeration within layer33, where a square (strong shade of blue) within a layer

represents the square being processed by the enumeration algorithm. More specifically,

for given non-negative integers I, J , let us define SωI,J as

SωI,J := {(cjx , cjy) | I · ω ≤ jx < (I + 1) · ω, J · ω ≤ jy < (J + 1) · ω}.
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Algorithm 5 creates and initialises each node.

1: function initialise(i, f)
2: if f = i then
3: Li ← (null, null, null, null, null, null, null, Li);
4: return Li

5: else
6: q ← b i+f

2
c;

7: N
i,...,q
0 ← initialise(i, q);

8: N
q+1,...,f
0 ← initialise(q + 1, f);

9: N
i,...,q
1 ← initialise(i, q);

10: N
q+1,...,f
1 ← initialise(q + 1, f);

11: c
i,...,q
0 ← getCandidate(Ni,...,q0 , 0, 2);

12: c
q+1,...,f
0 ← getCandidate(Nq+1,...,f

1 , 0, 2);
13: Qi,...,f .add(ci,...,q0 , cq+1,...,f

0 , 0, 0);
14: X

i,...,f
0 ← 1;Yi,...,f0 ← 1;

15: Ni,...,f ← (Ni,...,q0 , Nq+1,...,f
0 , Ni,...,q1 , Nq+1,...,f

1 , Qi,...,f , Xi,...,f , Yi,...,f , Li,...,f )
16: return Ni,...,f

17: end if
18: end function

Let us set mmin = min{m0 ·m1,m2 ·m3}, hence

layerωk = Sωk−1,0 ∪ Sωk−1,1 ∪ . . . ∪ Sωk−1,k−1 ∪ Sωk−2,k−1 ∪ . . . ∪ Sω0,k−1,

for 1 ≤ k ≤ mmin
ω . The remaining layers, if any, are also partitioned in a similar way.

The in-layer algorithm then proceeds as follows. For each layerωk , 1 ≤ k ≤ mmin
ω , the

in-layer algorithm first enumerates the candidates in the two corner squares S = Sk−1,0 ∪

S0,k−1 by applying OKEA on S. At some point, one of the two squares is completely

enumerated. Assume this is Sk−1,0. At this point, the only square that contains the next

key candidates after Sk−1,0 is the successor Sk−1,1. Therefore, when one of the squares

is completely enumerated, its successor is inserted in S, as long as S does not contain a

square in the same row or column. For the remaining layers, if any, the in-layer algorithm

first enumerates the candidates in the square S = Sk−1,0 (or S0,k−1) by applying OKEA

on it. Once the square is completely enumerated, its successor is inserted in S, and so on.

This in-layer partition into squares reduces the space complexity, since instead of storing

the full list of chunk candidates of the lower levels, only the relevant chunk candidates are

stored for enumerating the two current squares.

Because this in-layer algorithm enumerates at most two squares at any time in a layer,

the tree-like structure is no longer a binary tree. A node Ni,...,f is now extended to an 8-

tuple of the form (Ni,...,q0 , Nq+1,...,f
0 , Ni,...,q1 , Nq+1,...,f

1 , Qi,...,f , Xi,...,f , Yi,...,f , Li,...,f ), where N
i,...,q
b

and N
q+1,...,f
b , for b = 0, 1, are the children nodes used to enumerate at most two squares
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Algorithm 6 outputs the j-th chunk candidate from the node Ni,...,f .

1: function getCandidate(Ni,...,f , j, sw)
2: if Ni,...,f is a leaf then
3: return Li,...,f .get(j)
4: end if
5: if sw = 0 then
6: restart(Ni,...,f );
7: else
8: if sw = 1 then
9: Li,...,f .clear();

10: end if
11: end if
12: j ← j mod ω
13: if j ≥ Li,...,f .size() then
14: Li,...,f .add(nextCandidate(Ni,...,f ))
15: end if
16: return Li,...,f .get(j)
17: end function

in a particular layer, Qi,...,f is a priority queue, Xi,...,f and Yi,...,f are bit vectors and Li,...,f

a list of chunk candidates. Hence, the function that initialises the tree-like structure is

adjusted to create the two additional children for a given node (see Algorithm 5).

Moreover, the function getCandidate(Ni,...,f , j, sw) is also adjusted so that each node’s

internal list Li,...,f has at most ω chunk candidates at any stage of the algorithm (see

Algorithm 6). This function internally makes the call restart(Ni,...,f ) if sw = 0. The

call restart(Ni,...,f ) causes Ni,...,f to restart its enumeration, i.e., after restart(Ni,...,f ) has

been invoked, calling nextCandidate(Ni,...,f ) will return the first chunk candidate from

Ni,...,f . Also, the function getHighestScoreCandidate(SωI,J) returns the highest-scoring

extended candidate from the square SωI,J . Note this function is called to get the highest-

scoring extended candidate from the successor of SI,J .3 Finally, Algorithm 7 precisely

describes the manner in which this enumeration works.

3.2.2.3 Parallelisation

The original authors of [18] suggest having OKEA run in parallel per square within a layer,

but this has a negative effect on the algorithm’s near-optimality property and even on its

overall performance since there are squares within a layer that are strongly dependent on

others, i.e., for the algorithm to enumerate the successor square, say, SI,J+1 within a layer,

it requires to have information that is obtained during the enumeration of SI,J . Hence,

this strategy may incur extra computation and also be difficult to implement.

3At this point, the content of the internal list of Nq+1,...,f
0 is cleared, if b = 0. Otherwise, the content of

the internal list of Ni,...,q1 is cleared, if b = 1.
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Algorithm 7 outputs the next chunk candidate from the node Ni,...,f .

1: function nextCandidate(Ni,...,f ).
2: (cxjx , c

y
jy
, jx, jy)← Qi,...,f .poll(); (x = {i, . . . , q},y = {q + 1, . . . , f}).

3: X
i,...,f
jx

← 0; Yi,...,fjy
← 0;

4: I ← b jx
ω
c; J ← b jy

ω
c; b = (I ≥ J) ? 0 : 1;

5: if SI,J is completely enumerated then
6: lastI ← N

i,...,q
0 .size()/ω − 1;

7: lastJ ← N
q+1,...,f
1 .size()/ω − 1;

8: if I = J or (I > lastJ and J = lastJ) or (J > lastI and I = lastI) then
9: if (jx + 1) < (lastI + 1) · ω then

10: cxjx+1 ← getCandidate(Ni,...,q0 , jx + 1, 1);

11: c
y
0 ← getCandidate(Nq+1,...,f

0 , 0, 0);
12: Qi,...,f .add((cxjx+1, c

y
0 , jx + 1, 0));

13: X
i,...,f
jx+1 ← 1; Yi,...,f0 ← 1;

14: end if
15: if (jy + 1) < (lastJ + 1) · ω then
16: cx0 ← getCandidate(Ni,...,q1 , 0, 0);
17: c

y
jy+1 ← getCandidate(Nq+1,...,f

1 , jy + 1, 1);

18: Qi,...,f .add((cx0 , c
y
jy+1, 0, jy + 1));

19: X
i,...,f
0 ← 1; Yi,...,fjy+1 ← 1;

20: end if
21: else
22: if no candidates in same row/column as Successor(SI,J) then
23: (cxk, c

y
l , k, l)← getHighestScoreCandidate(Successor(SI,J));

24: Qi,...,f .add((cxk, c
y
l , k, l));

25: X
i,...,f
k ← 1; Yi,...,fl ← 1;

26: end if
27: end if
28: else
29: if (jx + 1, jy) ∈ SI,J and X

i,...,f
jx+1 is set to 0 then

30: cxjx+1 ← getCandidate(Ni,...,qb , jx + 1, 2);
31: Qi,...,f .add((cxjx+1, c

y
jy
, jx + 1, jy));

32: X
i,...,f
jx+1 ← 1; Yi,...,fjy

← 1;
33: end if
34: if (jx, jy + 1) ∈ SI,J and Y

i,...,f
jy+1 is set to 0 then

35: if I = J then
36: c

y
jy+1 ← getCandidate(Nq+1,...,f

1 , jy + 1, 2);
37: else
38: c

y
jy+1 ← getCandidate(Nq+1,...,f

b , jy + 1, 2);
39: end if
40: Qi,...,f .add((cxjx , c

y
jy+1, jx, jy + 1));

41: X
i,...,f
jx

← 1; Yi,...,fjy+1 ← 1;
42: end if
43: end if
44: return combine(cxjx , c

y
jy

);
45: end function
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Figure 3.4: Geometric representation of the key enumeration by variant.

3.2.2.4 Variant

As a variant of this algorithm, we propose to slightly change the definition of layer. Here a

layer consists of all the squares within a secondary diagonal, as shown in Figure 3.4. The

variant will follow the same process as the original algorithm, i.e. enumeration layer by

layer starting at the first secondary diagonal. Within each layer, it will first enumerate the

two square corners S = Sk−1,0∪S0,k−1, by applying OKEA on it. Once one of two squares

is enumerated, let us say Sk−1,0, its successor Sk−2,1 will be inserted in S as long as such

insertion is possible. The algorithm will continue the enumeration by applying OKEA on

the updated S and so on. This algorithm is motivated by the intuition that enumerating

secondary diagonals may improve the quality of order of output key candidates, i.e., it

may be nearer to optimal. This variant, however, may have a potential disadvantage

in the multidimensional case, because it strongly depends on having all the previously

enumerated chunk candidates of both dimension x and y stored. To illustrate this, let us

suppose that this square Sk−2,1 is to be inserted. Then the algorithm needs to insert its

highest scoring extended candidate, (cx(k−2)·ω, c
y
ω, (k−2) ·ω, ω), into the queue. Hence, the

algorithm needs to somehow have both cx(k−2)·ω and c
y
ω readily accessible when needed.

This implies the need to store them when they are being enumerated (in previous layers).

Comparatively, the original algorithm only requires having the w previously generated

chunk candidates of both dimension x and y stored, which is advantageous in terms of

memory consumption.

3.2.3 A Simple Stack-Based, Depth-First Key Enumeration Algorithm

We next present a memory-efficient, non-optimal key enumeration algorithm that gener-

ates key candidates whose total scores are within a given interval [B1, B2] that is based on

the algorithm introduced by Martin et al. in [48]. We note that the original algorithm is
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fairly efficient while generating a new key candidate, however its overall performance may

be negatively affected by its use of memory, since it was originally designed to store each

new generated key candidate, each of which is tested only once the algorithm has com-

pleted the enumeration. Our variant, however, makes use of a stack (LIFO queue) [17]

during the enumeration process. This helps in maintaining the state of the algorithm.

Each newly generated key candidate may be tested immediately and there is no need for

candidates to be stored for future processing.

Our variant basically performs a depth-first search in an undirected graph G originated

from the N lists of chunk candidates Li = [ci0, c
i
2, . . . , c

i
mi−1]. This graph G has

∑N−1
i=0 mi

vertices, each of which represents a chunk candidate. Each vertex vij is connected to the

vertices vi+1
k , 0 ≤ i < N − 1, 0 ≤ j < mi, 0 ≤ k < mi+1. At any vertex vij , the algorithm

will check if cij .score plus an accumulated score is within the given interval [B1, B2]. If so,

it will select the chunk candidate cij for the chunk i and travel forward to the vertex vi+1
0 .

Or else, it will continue exploring and attempt to travel to the vertex vij+1. Otherwise, it

will travel backwards to a vertex from the previous chunk vi−1k , 0 ≤ k < mi−1, when there

is no suitable chunk candidate for the current chunk i.

3.2.3.1 Setup

We now introduce a couple of tools that we will use to describe the algorithm, using

the following notations. S will denote a stack. This data structure supports two basic

methods [17]. Firstly, the method S.pop() removes the element at the top of this stack and

returns that element as the value of this function. Secondly, the method S.push(e) pushes

e onto the top of this stack. This stack S will store 4-tuples of the form (score, i, j, indices),

where score is the accumulated score at any stage of the algorithm, i, j are the indices for

the chunk candidate cij , and indices is an array of positive integers holding the indices of

the selected chunk candidates, i.e., the chunk candidate ckindices[k] is assigned to chunk k,

for each k, 0 ≤ k ≤ i.
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Algorithm 8 outputs a key candidate in the interval [B1, B2].

1: function nextCandidate(S,B1,B2).
2: while S is not empty do
3: (aScore, i, j, indices)← S.pop();
4: if j < Li.size()− 1 then
5: S.push((aScore, i, j + 1, indices));
6: end if
7: uScore← aScore + cij .score;
8: if uScore ≤ B2 then
9: if i = N − 1 then

10: if B1 ≤ uScore then
11: indices← s.indices || [j];.
12: c← combine(c0indices[0], . . . , c

N−1
indices[N−1]);

13: break;
14: end if
15: else
16: S.push((uScore, i + 1, 0, indices || [j]));
17: end if
18: end if
19: end while
20: return c
21: end function

3.2.3.2 Complete Algorithm

Firstly, at the initialisation stage, the 4-tuple (0, 0, 0, []) will be inserted into the stack S.

The main loop of this algorithm will call the function nextCandidate(S,B1,B2), defined

in Algorithm 8, as long as the stack S is not empty. Specifically the main loop will call

this function to obtain a key candidate whose score is in the range [B1, B2]. Algorithm 8

will then attempt to find such a candidate and once it has found such a candidate, it

will return the candidate to the main loop (at this point S may not be empty). The

main loop will get the key candidate, process or test it and continue calling the function

nextCandidate(S,B1,B2) as long as S is not empty. Because of the use of the stack S, the

state of Algorithm 8 will not be lost, therefore each time the main loop calls it, it will

return a new key candidate whose score lie in the interval [B1, B2]. The main loop will

terminate once all possible key candidates whose scores are within the interval [B1, B2]

have already been generated, which will happen once the stack is empty.

3.2.3.3 Speeding up the Pruning Process

We here propose a small improvement to speed up the pruning process. This makes use of

two precomputed tables minArray[i](maxArray[i]). The entry minArray[i] (maxArray[i])

holds the global minimum (maximum) value that can be reached from chunk i to chunk

44



3.2 Key Enumeration Algorithms

N − 1. In other words,

minArray[i] = min {
N−1∑
j=i

c
j
kj
.score : c

j
kj
∈ Lj}, 0 ≤ i < N ,

maxArray[i] = max {
N−1∑
j=i

c
j
kj
.score : c

j
kj
∈ Lj}, 0 ≤ i < N ,

minArray[N ] = maxArray[N ] = 0.

When each list of chunk candidates Li = [ci0, c
i
1, . . . , c

i
mi−1], 0 ≤ i < N is in decreasing

order based on the score component of its chunk candidates, we can compute the entry

minArray[i] (maxArray[i]) simply by computing

minArray[i] =
N−1∑
j=i

c
j
mj−1.score,

and

maxArray[i] =
N−1∑
j=i

c
j
0.score.

Algorithm 8 is sped up by computing maxS (minS), which is the maximum(minimum)

score that can be obtained from the current chunk candidate, and then checking if the

intersection of the intervals [minS, maxS] and [B1, B2] is not empty. Algorithm 9 shows the

improved enumeration algorithm.

3.2.3.4 Memory Consumption

We claim that at any stage of the algorithm, there are at most N 4-tuples stored in the

stack S. Indeed, after the stack is initialised, it only contains the 4-tuple (0, 0, 0, []). Note

that during the execution of a while iteration, a 4-tuple is removed out of the stack and

two new 4-tuples might be inserted. Hence, after s while iterations have been completed,

there will be N s
S = 1 + (−1 + l1) + (−1 + l2) + (−1 + l3) + (−1 + l4) + · · · + (−1 + ls)

4-tuples, where 0 ≤ lr ≤ 2, for 1 ≤ r ≤ s.
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Algorithm 9 outputs a key candidate in the interval [B1, B2].

1: function nextCandidateI(S,B1,B2).
2: while S is not empty do
3: (aScore, i, j, indices)← S.pop();
4: if j < Li.size()− 1 then
5: S.push((aScore, i, j + 1, indices));
6: end if
7: uScore← aScore + cij .score;
8: maxS← uScore + maxArray[i + 1];
9: minS← uScore + minArray[i + 1];

10: if maxS ≥ B1 and minS ≤ B2 then
11: if uScore ≤ B2 then
12: if i = N − 1 then
13: if B1 ≤ uScore then
14: indices← indices || [j];
15: c← combine(c0indices[0], . . . , c

N−1
indices[N−1]);

16: break;
17: end if
18: else
19: S.push((uScore, i + 1, 0, indices || [j]));
20: end if
21: end if
22: end if
23: end while
24: return c;
25: end function

Suppose now that the algorithm is about to execute the k-th while iteration during which

the first valid key candidate will be returned. Therefore, Nk−1
S = 1 + (−1 + l1) + (−1 +

l2) + (−1 + l3) + (−1 + l4) + · · · + (−1 + lk−1) ≤ N . During the execution of the k-th

while iteration, a 4-tuple will be removed and only a new 4-tuple will be considered for

insertion in the stack. Therefore, we have that Nk
S = Nk−1

S − 1 + lk ≤ N − 1 + lk ≤ N ,

since 0 ≤ lk ≤ 1. Applying a similar reasoning, we have Nn
S ≤ N for n > k.

3.2.3.5 Parallelisation

One of the most interesting features of the previous algorithm is that it is parallelizable.

The original authors suggested as a parallelisation method to run instances of the algorithm

over different disjoint intervals [48]. Although this parallelisation method is clearly effec-

tive and has a potential advantage as the different instances will produce non-overlapping

lists of key candidates with the instance searching over the first interval producing the

most-likely key candidates, it is not efficient, since each instance will inevitably repeat

a lot of the work done by the other instances. We here propose another parallelisation

method that partitions the search space to avoid the repetition of work.

Suppose that we want to have t parallel, independent tasks T1, T2, T3, . . . , Tt to search over
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a given interval in parallel. Let Li = [ci0, c
i
2, . . . , c

i
mi−1] be the list of chunk candidates for

chunk i, 0 ≤ i ≤ N − 1.

We first assume that t ≤ m0, where m0 is the size of L0. In order to construct these tasks,

we partition L0 into t disjoint, roughly equal-sized sublists L0
j , 1 ≤ j ≤ t. We set each

task Tj to perform its enumeration over the given interval but only considering the lists

of chunk candidates L0
j , L

1, . . . , LN−1.

The previous method can be easily generalised for m0 < t �
∏N−1
k=0 mk. Indeed, first

find the smallest integer l, with 0 < l < N − 1, such that
∏l−1
k=0mk < t ≤

∏l
k=0mk.

We then construct the list of chunk candidates L0,...,l as follows. For each (l + 1)−tuple

(c0j0 , c
1
j1
, . . . , cljl), with ckjk ∈ Lk, 0 ≤ jk < mk, 0 ≤ k ≤ l, the chunk candidate cj0,...,jl

is constructed by calculating cj0,...,jl .score =
∑l

k=0 c
k
jk
.score and setting cj0,...,jl .value =

[c0j0 .value, . . . , c
l
jl
.value], and then cj0,...,jl is added to L0,...,l. We then partition L0,...,l

into t disjoint, roughly equal-sized sublists L0,...,l
j , 1 ≤ j ≤ t, and finally set each task Tj

to perform its enumeration over the given interval but only considering the lists of chunk

candidates L0,...,l
j , Ll+1, . . . , LN−1. Note that the workload assigned to each enumerating

task is a consequence of the selected method for partitioning the list L0,...,l.

Additionally, both parallelisation methods can be combined by partitioning the given

interval [B1, B2] into ns disjoint sub-intervals and searching each such sub-interval with

tk tasks, hence amounting to
∑ns

k=1 tk enumerating tasks.

3.2.3.6 Threshold Algorithm

Algorithm 9 shares some similarities with the algorithm Threshold introduced in [45],

since Threshold also makes use of an array (partialSum) similar to the array minArray

to speed up the pruning process. However, Threshold works with non-negative integer

values (weights) rather than scores. Threshold restricts the scores to weights such that

the smallest weight is the likeliest score, by making use of a function that converts scores

into weights [48].

Assuming the scores have already been converted to weights, Threshold first sorts each

list of chunk candidates Li = [ci0, c
i
1, . . . , c

i
mi−1], 0 ≤ i < N in ascending order based

on the score/weight component of its chunk candidates. It then computes the entries of
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partialSum by first setting partialSum[N − 1] = 0 and then computing

partialSum[i] = partialSum[i+ 1] + ci0.score for i = N − 2,N − 3, . . . , 0.

Threshold then enumerates all the key candidates in a range of the form [0,Wt), where

Wt is a parameter. To do so, it performs a similar process to Algorithm 9 by using its

precomputed table (partialSum) to avoid useless paths, hence improving the pruning pro-

cess. This enumeration process performed by Threshold is described in Algorithm 10.

Algorithm 10 enumerates all key candidate in the interval [0,Wt).

1: function threshold(i, w, K,Wt, L).
2: for j = 0 to mi do
3: newW ← w + cij .score;
4: if newW + partialSum[i] > Wt then
5: break;
6: else
7: if i = N − 1 then
8: Ki ← j;
9: c← combine(c0K[0], . . . , c

N−1
K[N−1]);

10: L← L.add(c);
11: else
12: Ki ← j
13: L← threshold(i + 1, newW,K,Wt, L)
14: end if
15: end if
16: end for
17: return L;
18: end function

According to its designers, this algorithm may perform a non-optimal enumeration to a

depth of 240, if some adjustments are made on how the candidate keys (L) are stored.

However, its primary drawback is that it must always start enumerating from the most

likely key. Consequently, whilst the simplicity and relatively strong time complexity of

Threshold is desirable, in a parallelised environment it can only serve as the first enumer-

ation algorithm (or can only be used in the first search task). Threshold therefore was

not implemented and hence is not included in the comparison made in Section 3.3.

3.2.4 A Score-Based Key Enumeration Algorithm

In this subsection, we will describe a non-optimal enumeration algorithm based on the

algorithm introduced in [11]. This algorithm differs from the original algorithm in the

manner in which this algorithm builds a precomputed table (iRange) and uses it during
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execution to constructing key candidates whose total accumulated score is equal to a cer-

tain accumulated score. This algorithm shares similarities with the stack-based, depth-first

key enumeration algorithm described in Section 3.2.3, because both algorithms essentially

perform a depth-first search in the undirected graph G. However, this algorithm controls

the pruning by the accumulated total score that a key candidate must reach to be ac-

cepted. To achieve this, the scores are restricted to positive integer values, which may be

derived from a correlation value in a side-channel analysis attack.

This algorithm starts off by generating all key candidates with the largest possible accu-

mulated total score S1, and then proceeds to generate all key candidates whose scores are

equal to the second largest possible accumulated total score S2,
4 and so forth, until gener-

ating all key candidates with the minimum possible accumulated total score SN . To find

a key candidate whose score is equal to a certain accumulated score, this algorithm makes

use of a simple backtracking strategy, which is efficient because impossible paths can be

pruned early. The pruning is controlled by the accumulated score that must be reached

for the solution to be accepted. To achieve a fast decision process during the backtracking,

this algorithm precomputes tables for minimal and maximal accumulated total scores that

can be reached by completing a path to the right, like the tables minArray and maxArray

introduced in Section 3.2.3.3. Besides the tables minArray and maxArray, this algorithm

also precomputes an additional table, iRange.

Given 0 ≤ i ≤ N and minArray[i] ≤ s ≤ maxArray[i], the entry iRange[i][s] points to a

list of integers L(i,s) = [k
(i,s)
0 , k

(i,s)
1 . . . , k

(i,s)
n ], where each entry represents a distinct index

of the list Li, i.e., 0 ≤ k
(i,s)
j 6= k

(i,s)
u < mi for j 6= u. The algorithm uses these indices to

construct a chunk candidate with an accumulated score s from chunk i to chunk N − 1.

In order to compute this table, we use the observation that for a given entry k
(i,s)
j of

iRange[i][s], the list iRange[i+ 1][cs], with cs = s− ci
k
(i,s)
j

.score, must be defined and be

non-empty. So we first set the entry iRange[N ][0] to [0] and then proceed to compute the

entries for i = N − 1, . . . , 0 and s = minArray[i], . . . , maxArray[i]. Algorithm 11 describes

precisely how this table is precomputed.

4S2 may not equal S1 − 1.
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Algorithm 11 precomputes the table iRange.

1: function PrecomputeIRange().
2: iRange[N ][0]← [0];
3: for i = N − 1 to 0 do
4: for s = minArray[i] to maxArray[i] do
5: L(i,s) ← [];
6: for k = 0 to mi − 1 do
7: cs = s− cik.score;
8: if iRange[i + 1][cs].size() > 0 then
9: L(i,s).add(k);

10: end if
11: end for
12: if L(i,s).size() > 0 then
13: iRange[i][s]← L(i,s);
14: end if
15: end for
16: end for
17: return iRange;
18: end function

3.2.4.1 Complete Algorithm

Algorithm 12 describes the backtracking strategy more precisely, making use of the pre-

computed tables for pruning impossible paths. The integer array tscores contains ac-

cumulated scores in a selected order, where an entry s ∈ tscores must satisfy that the

list iRange[0][s] is non-empty, i.e., iRange[0][s].size() > 0. This helps in constructing a

key candidate with an accumulated score s from chunk 0 to chunk N − 1. In particular,

tscores may be set to [S1, S2, . . . , SN ], i.e., the array containing all possible accumulated

scores that can be reached from chunk 0 to chunk N − 1.

Furthermore, the order in which the elements in the array tscores are arranged is im-

portant. For this array [S1, S2, . . . , SN ], for example, the algorithm will first enumerate

all key candidates with accumulated score S1, then all those with accumulated score S2

and so on. This guarantees a certain quality, i.e., good key candidates will be enumerated

earlier than worse ones. However key candidates with the same accumulated score will be

generated in no particular order, so a lack of precision in scores will lead to some decrease

of quality.

Algorithm 12 makes use of the table k with N entries, each of which is a 2-tuple of the

form (e1, e2) with e1 and e2 integers. For a given tuple k[i], the component k[i].e1 is an

index of some list iRange[i][s], with minArray[i] ≤ s ≤ maxArray[i], while k[i].e2 is the

corresponding value, i.e., k[i].e2 = iRange[i][s].get(k[i].e1). The value of k[i].e1 allows the

algorithm to control if the list iRange[i][s] has been traveled completely or not, while the
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second component allows the algorithm to retrieve the chunk candidate of index k[i].e2 of

Li. This is done to avoid re-calculating k[i].e2 each time it is required during the execution

of the algorithm.

We will now analyse Algorithm 12.

Suppose that s is set to S ∈ tscores, hence iRange[0][s].size() > 0. The algorithm

will then set k[0] to (0, e
(0)
2 ), with e

(0)
2 being the integer from the entry of index 0 of

iRange[0][s], and then set cs to s (lines 3 to 5). We claim that the main while loop (lines

6 to 23) at each iteration will compute k[i] for 0 ≤ i ≤ N − 1 such that the key candidate

c constructed at line 12 will have an accumulated score s.

Algorithm 12 enumerates key candidates for given scores.

1: function KeyEnumeration(tscores,iRange).
2: for s ∈ tscores do
3: i← 0;
4: k[0]← (0, iRange[0][s].get(0)); 2-tuple (e1, e2)
5: cs← s;
6: while i ≥ 0 do
7: while i < N − 1 do
8: cs← cs− cik[i].e2 .score;
9: i← i + 1;

10: k[i]← (0, iRange[i][cs].get(0));
11: end while
12: c← combine(c0k[0].e2 , . . . , c

N−1
k[N−1].e2

);

13: Test(c);
14: while i ≥ 0 and k[i].e1 ≥ (iRange[i][cs].size()− 1) do
15: i← i− 1;
16: if i ≥ 0 then
17: cs← cs + cik[i].e2 .score;
18: end if
19: end while
20: if i ≥ 0 then
21: k[i]← (k[i].e1 + 1, iRange[i][cs].get(k[i].e1 + 1));
22: end if
23: end while
24: end for
25: end function

Let us set cs0 = s. We know that the list iRange[0][cs0] is non-empty, hence for any entry

e
(0)
2 in the list iRange[0][cs0], the list iRange[1][cs1] is non-empty, where

minArray[1] ≤ cs1 = cs0 − c0
e
(0)
2

.score ≤ maxArray[1].

Likewise, for any entry e
(1)
2 in the list iRange[1][cs1], the list iRange[2][cs2] is non-empty,

where

minArray[2] ≤ cs2 = cs1 − c1
e
(1)
2

.score ≤ maxArray[2].
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Hence, for 0 ≤ i < N , we have that for any given entry e
(i)
2 in the list iRange[i][csi], the

list iRange[i+ 1][csi+1] is non-empty, where

minArray[i+ 1] ≤ csi+1 = csi − ci
e
(i)
2

.score ≤ maxArray[i+ 1].

Note that when i = N − 1, the list iRange[i+ 1][0] = [0] is non-empty and csi+1 = 0.

Given k[0], k[1], . . . , k[j] are already set for some 0 ≤ j < N − 1, the first inner while loop

(lines 7 to 11) will set k[i] = (0, e
(i)
2 ), where e

(i)
2 holds the entry of index 0 of iRange[i][csi],

for 0 < j < i ≤ N −1. Therefore, once the while loop ends, i = N −1 and csi+1 = csN =

csi − ci
e
(i)
2

.score = 0, hence the key candidate constructed from the second components

k[i].e2 will have an accumulated score s. In particular, the first time k[0] is set, and so the

first inner while loop will calculate k[1], . . . , k[N − 1].

Since there may be more than one key candidate with an accumulated score s, the second

inner while loop (lines 14 to 19) will backtrack to a chunk 0 ≤ i < N , from which a

new key candidate with accumulated score s can be constructed. This is done by simply

moving backwards (line 15) and updating csi+1 to csi = csi+1 + ci
k[i].e2

.score until there

is an 0 ≤ i < N such that k[i].e1 < iRange[i][csi].size()− 1.

• If there is such 0 ≤ i < N , then the instruction at line 21 will update k[i] to

(k[i].e1 + 1, iRange[i][csi].get(k[i].e1 + 1)). This means that the updated value for

the second component of k[i] will be a valid index in Li, so ci
k[i].e2

will be the new

chunk candidate for chunk i. Then the first inner while loop (lines 7 to 11) will

again execute and compute the indices for the remaining chunk candidates in the

lists Li+1, . . . , LN−1 such that the resulting key candidate will have the accumulated

score s.

• Or else, meaning that i < 0, then the main while loop (lines 6 to 23) will end

and s will be set to a new value from tscores, since all key candidates with an

accumulated score s have just been enumerated.

3.2.4.2 Parallelisation

Suppose we would like to have t tasks T1, T2, T3, · · · , Tt executed in parallel to enumerate

key candidates whose accumulated total scores are equal to those in the array tscores.
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We then can split the array tscores into t disjoint sub-arrays tscoresi, and then set each

task Ti to run Algorithm 12 through the sub-array tscoresi. As an example of a partition

algorithm to distribute the workload among the tasks, we set the sub-array tscoresi to

contain elements with indices congruent to i mod t from tscores. Additionally, note

that if we have access to the number of candidates to be enumerated for each score in

the array tscores beforehand, we may design a partition algorithm for distributing the

workload among the tasks almost evenly.

3.2.4.3 Running Times

We assume each list of chunk candidates Li = [ci0, c
i
1, . . . , c

i
mi−1], 0 ≤ i < N , is in decreas-

ing order based on the score component of its chunk candidates.

Regarding the running time for computing the tables maxArray and minArray, note that

each entry of the table minArray (maxArray) can be computed as explained in Sec-

tion 3.2.3.3. Therefore, the running time of such an algorithm is Θ(N ).

Regarding the running time for computing iRange, we will analyse Algorithm 11. This

algorithm is composed of three while blocks. For each i, 0 ≤ i < N , the while loop from

line 4 to line 15 will be executed ri times, where ri = maxArray[i]− minArray[i] + 1.

For each iteration, the innermost for block (lines 6 to 11) will execute simple instructions

mi times. Therefore, once the innermost for block has finished, its running time will be

T3 ·mi + C3, where T3 and C3 are constants. Then the if block (lines 12 to 14) will be

attempted and its running time will be C2, where C2 is another constant. Therefore, the

running time for an iteration of the while loop (lines 4 to 15) will be T3 ·mi + C2 + C3.

Therefore, the running time of Algorithm 11 is
∑N−1

i=0 ri(T3·mi+C2+C3). More specifically,

N−1∑
i=0

(maxArray[i]− minArray[i] + 1)(T3 ·mi + C2 + C3).

This running time depends heavily on ri = maxArray[i] − minArray[i] + 1. Now the

size of the range [minArray[i], maxArray[i]] relies on the scaling technique used to get a

positive integer from a real number. The more accurate the scaling technique is, the more

53



3.2 Key Enumeration Algorithms

different integer scores there will be. Hence, if we use an accurate scaling technique, we

will probably get larger ri.

We will analyse the running time for Algorithm 12 to generate all key candidates whose

total accumulated score is s. Let us assume there are Ns key candidates whose total

accumulated score is equal to s.

First the running time for instructions at lines 3 to 5 is constant. Therefore, we will only

focus on the while loop (lines 6 to 23).

In any iteration, the first inner while loop (lines 7 to 11) will execute and compute the

indices for the remaining chunk candidates in the lists Li, . . . , LN−1, with i starting at

any number in [0,N − 2], such that the resulting key candidate will have the accumulated

score s. Therefore, its running time is at most C · (N − 1), where C is a constant, i.e., it

is O(N ). The instruction at line 12 will combine all chunks from 0 to N − 1 and hence its

running time is also O(N ). The next instruction Test(c) will test c and its running time

will depend on the scenario the algorithm is being run. Let us assume its running time is

O(T (N )), where T is a function.

Regarding the second inner while loop (lines 14 to 19), this loop will backtrack to a

chunk i with 0 ≤ i < N , from which a new key candidate with accumulated score s

can be constructed. This is done by simply moving backwards while computing some

simple operations. Therefore, the running time for the second inner while loop is at most

D · (N − 1), where D is a constant, i.e., it is O(N ).

Therefore, the running time for generating all key candidates whose total accumulated

score is s will be O(Ns · (N + T (N ))).

3.2.4.4 Memory Consumption

Besides the precomputed tables, it is easy to see that Algorithm 12 makes use of negligible

memory while enumerating key candidates. Indeed, testing key candidates is done on the

fly to avoid storing them during enumeration. However, the table iRange may have many

entries.
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Let Ne be the number of entries of the table iRange. Line 2 of Algorithm 11 will create

the entry iRange[N ][0] that points to the list [0]. Hence, after the instruction at line 2

has been executed, Ne = 1.

Let us consider the while loop from line 4 to line 15. For each i, 0 ≤ i < N , let Si

be the set of different values s in the range [minArray[i], maxArray[i]] such that L(i,s) is

non-empty. After the iteration for i has been executed, the table iRange will have |Si|

new entries, each of which will point to a non-empty list, with 0 < |Si| ≤ ri. Therefore,

Ne = 1 +
∑N−1

i=0 |Si| after Algorithm 11 has completed its execution.

Note that |Si| may increase if the range [minArray[i], maxArray[i]] is large. The size of this

interval relies on the scaling technique used to get a positive integer from a real number.

The more accurate the scaling technique is, the more different integer scores there will be.

Hence, if we use an accurate scaling technique, we will probably get larger ri, making it

likely for |Si| to increase. Therefore, the table iRange may have many entries.

Regarding the number of bits used in memory to store the table iRange, let us suppose that

an integer is stored in Bint bits and that a pointer is stored in Bp bits. Once Algorithm 11

has completed its execution, we know that iRange[i][s] will point to the list L(i,s), with

0 ≤ i ≤ N and s ∈ Si. Moreover, by definition we know that the list L(N ,0) will be the

list [0], while any other list L(i,s), 0 ≤ i < N and s ∈ Si, will have n(i,s) entries, with

1 ≤ n(i,s) ≤ mi.

Therefore, the number of bits iRange occupies in memory after Algorithm 11 has com-

pleted its execution is

Tb = Bint +Bp +
N−1∑
i=0

∑
s∈Si

(n(i,s) ·Bint +Bp). (3.1)

Since 1 ≤ n(i,s) ≤ mi, we have

Bint +Bp +

N−1∑
i=0

|Si| · (Bint +Bp) ≤ Tb ≤ Bint +Bp +

N−1∑
i=0

|Si| · (mi ·Bint +Bp).
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3.2.5 A Key Enumeration Algorithm using Histograms

In this subsection, we will describe a non-optimal key enumeration algorithm introduced

in [61].

3.2.5.1 Setup

We now introduce a couple of tools that we will use to describe the sub-algorithms used

in the algorithm of [61], using the following notations: H will denote a histogram, Nb will

denote a number of bins, b will denote a bin and x a bin index.

Linear histograms. The function Hi = createHist(Li, Nb) creates a standard histogram

from the list of chunk candidates Li with Nb linearly-spaced bins.

Given a list of chunk candidates Li, the function createHist will first calculate both the

minimum score min and maximum score max among all the chunk candidates in Li. It

will then partition the interval I = [min,max] into subintervals I0 = [min,min+ δ), I1 =

[min + δ,min + 2δ), . . . , INb−1 = [min + (Nb − 1)δ,max], where δ = max−min
Nb

. It then

will proceed to build the list LHi of size Nb. The entry 0 ≤ x < Nb of LHi will point

to a list that contains all chunk candidates from Li such that their scores lie in Ix. The

returned standard histogram Hi is therefore stored as the list LHi whose entries will point

to lists of chunk candidates. For a given bin index x, LHi .get(x) outputs the list of chunk

candidates contained in the bin of index x of Hi. Therefore, Hi[x] = LHi .get(x).size()

is the number of chunk candidates in the bin of index x of Hi. The running time for

createHist(Li, Nb) is Θ(mi +Nb).

Convolution. This is the usual convolution algorithm which computesH1:2 = conv(H1, H2)

from two histogramsH1 andH2 of sizes n1 and n2 respectively, whereH1:2[k] =
∑k

i=0H1[i]·

H2[k−i]. The computation of H1:2 is done efficiently by using Fast Fourier Transformation

(FFT) for polynomial multiplication. Indeed, the array [Hj [0], Hj [1], . . . ,Hj [nj−1]] is seen

as the coefficient representation of Pj = Hj [0] +Hj [1]x+ . . . Hj [nj − 1]xnj−1 for j = 1, 2.

In order to get H1:2, we multiply the two polynomials of degree-bound n = max{n1, n2}

in time Θ(n log n), with both the input and output representations in coefficient form [17].

The convoluted histogram H1:2 is therefore stored as a list of integers.
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Getting the size of a histogram. The method size() returns the number of bins of a

histogram. This method simply returns L.size(), where L is the underlying list used to

represent the histogram.

Getting chunk candidates from a bin. Given a standard histogram Hi and an index 0 ≤

x < Hi.size(), the method Hi.get(x) outputs the list of all chunk candidates contained

in the bin of index x of Hi, i.e., this method simply returns the list LHi .get(x).

3.2.5.2 Complete Algorithm

This key enumeration algorithm uses histograms to represent scores, and the first step of

the key enumeration is a convolution of histograms modelling the distribution of the N

lists of scores. This step is detailed in Algorithm 13.

Algorithm 13 computes standard and convoluted histograms.

1: function createHistograms(L0, . . . , LN−1, Nb).
2: H0 ← createHist(L0, Nb);
3: H1 ← createHist(L1, Nb);
4: H0:1 ← conv(H0, H1);
5: for i = 2 to N − 1 do
6: Hi ← createHist(Li, Nb);
7: H0:i ← conv(Hi, H0:i−1);
8: end for
9: return H = [H0, H1, . . . , HN−1, H0:1, . . . , H0:N−1];

10: end function

Algorithm 14 computes the indices’ bounds.

1: function computeBounds(R1,R2).
2: start← H0:N−1.size();
3: cntstart ← 0;
4: while cntstart < R1 do
5: start← start− 1;
6: cntstart ← cntstart + H0:N−1[start];
7: end while
8: xstart ← start;
9: while cntstart < R2 do

10: start← start− 1;
11: cntstart ← cntstart + H0:N−1[start];
12: end while
13: xstop ← start;
14: return xstart, xstop;
15: end function

Based on this first step, this key enumeration algorithm allows enumerating key candidates

that are ranked between two bounds R1 and R2. In order to enumerate all keys ranked
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between the bounds R1 and R2, the corresponding indices of bins of H0:N−1 have to be

computed, as described in Algorithm 14. It simply sums the number of key candidates

contained in the bins starting from the bin containing the highest scoring key candidates,

until we exceed R1 and R2, and returns the corresponding indices xstart and xstop.

Algorithm 15 performs bin decomposition.

1: function decomposeBin(H,csh,xbin,kf)
2: if csh = 1 then
3: x← H0.size()− 1;
4: while (x ≥ 0) and ((x + H1.size()) ≥ xbin); do
5: if H0[x] > 0 and H1[xbin − x] > 0 then
6: kf(0)← H0.get(x);
7: kf(1)← H1.get(xbin − x);
8: processKF(kf);
9: end if

10: x← x− 1
11: end while
12: else
13: x← Hcsh.size()− 1;
14: while (x ≥ 0) and ((x + H0:csh−1.size()) ≥ xbin) do
15: if Hcsh[x] > 0 and H0:csh−1[xbin − x] > 0 then
16: kf(csh)← Hcsh.get(x);
17: decomposeBin(H, csh− 1, xbin − x, kf);
18: end if
19: x← x− 1;
20: end while
21: end if
22: end function

Algorithm 16 processes table kf.

1: function processKF(kf)
2: i← 0;
3: I[i]← 0;
4: while i ≥ 0 do
5: while i < N − 1 do
6: i← i + 1;
7: I[i]← 0;
8: end while
9: c← combine(kf[0].get(I[0]), . . . , kf[N − 1].get(I[N − 1]));

10: Test(c);
11: while i ≥ 0 and I[i] ≥ (kf[i].size()− 1) do
12: i← i− 1;
13: end while
14: if i ≥ 0 then
15: I[i]← I[i] + 1;
16: end if
17: end while
18: end function

Given the list of histograms of scores H and the indices of bins of H0:N−1 between which

we want to enumerate, the enumeration simply consists of performing a backtracking over

all the bins between xstart and xstop. More precisely, during this phase we recover the

bins of the initial histograms (i.e. before convolution) that were used to build a bin of
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the convoluted histogram H0:N−1. For a given bin b with index x of H0:N−1, we have to

run through all the non-empty bins b0, . . . , bN−1 of indices x0, . . . xN−1 of H0, . . . ,HN−1

such that x0 + . . . + xN−1 = x. Each bi will then contain at least one and at most mi

chunk candidates of the list Li that we must enumerate. This leads to storing a table kf

of N entries, each of which points to a list of chunk candidates. The list pointed to by the

entry kf[i] holds at least one and at most mi chunk candidates contained in the bin bi of

the histogram Hi. Any combination of these N lists, i.e., picking an entry from each list,

results in a key candidate.

Algorithm 15 describes more precisely this bin decomposition process. This algorithm

simply follows a recursive decomposition. That is, in order to enumerate all the key

candidates within a bin b of index x of H0:N−1, it first finds two non-empty bins of indices

xN−1 and x − xN−1 of HN−1 and H0:N−2 respectively. All the chunk candidates in the

bin of index xN−1 of HN−1 will be added to the key factorisation, i.e., the entry kf[N −1]

will point to the list of chunk candidates returned by HN−1.get(xN−1). It then continues

the recursion with the bin of index x − xN−1 of H0:N−2 by finding two non-empty bins

of indices xN−2 and x − xN−1 − xN−2 of HN−2 and H0:N−3 respectively and adding all

the chunk candidates in the bin of index xN−2 of HN−2 to the key factorisation, i.e.,

kf[N − 2] will now point to the list of chunk candidates returned by HN−2.get(xN−2),

and so forth. Eventually each time a factorisation is completed, Algorithm 15 calls the

function processKF which takes as input the table kf. The function processKF, as defined

in Algorithm 16, will compute the candidate keys from kf. This algorithm basically

generates all the possible combinations from the N lists kf[i]. Note that this algorithm

may be seen as a particular case of Algorithm 12.

Finally, the main loop of this key enumeration algorithm simply calls Algorithm 15 for all

the bins of H0:N−1 which are between the enumeration bounds xstart, xstop.

3.2.5.3 Parallelisation

Suppose we would like to have t tasks T1, T2, T3, · · · , Tt executing in parallel to enumerate

key candidates that are ranked between two bounds R1 and R2 in parallel. We can then

calculate the indices xstart, xstop, and then create the array X = [xstart, xstart−1, . . . , xstop].

We then partition the array X into t disjoint sub-arrays Xi, and finally set each task Ti to

call the function decomposeBin for all the bins of H0:N−1 with indices in Xi.
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As has been noted previously, the algorithm employed to partition the array X directly

allows efficient parallel key enumeration, where the amount of computation performed by

each task may be well-balanced. As an example of a partition algorithm that could almost

evenly distribute the workload among the tasks is:

1. Set i to 0.

2. If X is non-empty, pick an index x in X such that H0:N−1[x] is the maximum number.

Or else return X0, X1, . . . , Xt.

3. Remove x from the array X and add it to the array Xi.

4. Update i to (i+ 1) mod t and go back to Step 2.

3.2.5.4 Memory Consumption

Besides the precomputed histograms, which are stored as arrays in memory, it is easy to

see that this algorithm makes use of negligible memory (only the table kf) while enumer-

ating key candidates. Additionally, it is important to note that each time the function

processKF is called, it will need to generate all key candidates obtained by picking chunk

candidates from the N lists pointed to by the entries of kf and process all of them im-

mediately, since the table kf may have changed. This implies that if the processing of

key candidates is left to be done after the complete enumeration has finished, each version

of the table kf would need to be stored, which again might be problematic in terms of

memory consumption.

Regarding how many bits in memory the precomputed histograms consumes, we will

analyse Algorithm 13.

First note for a given list of chunk candidates Li and Nb, the function createHist(Li, Nb)

will return the standard histogram Hi. This standard histogram will be stored as the list

LHi of size Nb. An entry x of LHi will point to a list of chunk candidates. The total

number of chunk candidates hold by all the lists pointed to by the entries of LHi is mi.

Therefore, the number of bits to store the list LHi is Bp · Nb + Bc ·mi, where Bp is the

number of bits to store a pointer and Bc is the number of bits to store a chunk candidate
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(score, [e]). The total number of bits to store all lists LHi , 0 ≤ i < N , is

N−1∑
i=0

(Bp ·Nb +Bc ·mi) = N ·Bp ·Nb +Bc ·
N−1∑
i=0

mi. (3.2)

Concerning the convoluted histograms, let us first look at H0:1 = conv(H0, H1). We

know that H0:1 is stored as a list of integers and that these entries can be seen as the

coefficients of the resulting polynomial from multiplying the polynomial P0 = H0[0] +

H0[1]x+. . . H0[Nb−1]xNb−1 by P1 = H1[0]+H1[1]x+. . . H1[Nb−1]xNb−1. Therefore, the

list of integers used to store H0:1 has 2Nb− 1 entries. Following a similar reasoning to the

previous one, we can conclude that the list of integers used to store H0:2 = conv(H2, H0:1)

has 3Nb − 2 entries. Therefore, for a given i, 1 ≤ i ≤ N − 1 , the list of integers used to

store H0:i = conv(Hi, H0:i−1) has (i+ 1)Nb − i entries. The total number of entries of all

the convoluted histograms H0:1, H0:2, . . . ,H0:N−1 is

N−1∑
i=1

((i+ 1)Nb − i) = (Nb − 1)
(N − 1)(N )

2
+Nb(N − 1).

As expected, the total number of entries strongly depends on the values Nb and N . If

an integer is stored in Bint bits, then the number of bits for storing all the convoluted

histograms is

Bint · (Nb − 1)
(N − 1)(N )

2
+Bint ·Nb(N − 1). (3.3)

3.2.5.5 Equivalence with the path counting approach

The stack-based key enumeration algorithm and the score-based key enumeration algo-

rithm can be also used for rank computation (instead of enumerating each path, the rank

version counts each path). Similarly, the histogram algorithm can also be used for rank

computation by simply summing the size of the corresponding bins in H0:N−1. These two

approaches were believed to be distinct from each other. However, Martin et al. in [49]

show that both approaches are mathematically equivalent, i.e., they both compute the ex-

act same rank when choosing their discretisation parameter correspondingly. Particularly,

the authors show that the binning process in the histogram algorithm is equivalent to the
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“map to weight” float-to-integer conversion used prior to their path counting algorithm

(Forest) by choosing the algorithms’ discretisation parameter carefully. Additionally, in

this paper, a performance comparison between their enumeration versions was carried out.

The practical experiments indicated that Histogram performs best for low discretisation,

and Forest wins for higher parameters.

3.2.6 A Quantum Key Search Algorithm

In this subsection, we will describe a quantum key enumeration algorithm introduced

in [50] for the sake of completeness. This algorithm is constructed from a non-optimal key

enumeration algorithm, which uses the key rank algorithm given by Martin et al. in [48]

to return a single candidate key (the rth) with a weight in a particular range. We will first

describe the key rank algorithm. This algorithm restricts the scores to positive integer

values (weights) such that the smallest weight is the likeliest score, by making use of a

function that converts scores into weights [48].

Algorithm 17 creates the matrix b.

1: function initialise(W1,W2)
2: i← N − 1;
3: b← [[0]W2 ]N

4: for w = 0 to W2 − 1 do
5: for j = 0 to mi − 1 do
6: if W1 − w ≤ cij .score < W2 − w then
7: bi,w ← bi,w + 1;
8: end if
9: end for

10: end for
11: for i = N − 2 to 0 do
12: for w = 0 to W2 − 1 do
13: for j = 0 to mi − 1 do
14: if w + cij .score < W2 then
15: bi,w ← bi,w + bi+1,w+cij .score

;

16: end if
17: end for
18: end for
19: end for
20: return b

21: end function

Assuming the scores have already been converted to weights, the rank algorithm first

constructs a matrix b with size of N × W2 for a given range [W1,W2) as follows. For

i = N − 1 and 0 ≤ w < W2, the entry bi,w contains the number of chunk candidates such

that their total score plus w lies in the given range. Therefore, bi,w is given by the number

of chunk candidates cij , 0 ≤ j < mi, such that W1 − w ≤ cij .score < W2 − w.
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On the other hand, for i = N − 2,N − 3, . . . , 0, and 0 ≤ w < W2, the entry bi,w contains

the number of chunk candidates that can be constructed from the chunk i to the chunk

N − 1 such that their total score plus w lies in the given range. Therefore, bi,w may be

calculated as follows. For 0 ≤ j < mi, bi,w = bi,w + bi+1,w+cij .score
if w + cij .score < W2.

Algorithm 17 describes precisely the manner in which the matrix b is computed. Once

the matrix b is computed, the rank algorithm will calculate the number of key candidates

in the given range by simply returning b0,0. Note that b0,0, by construction, contains the

number of chunk candidates, with initial weight 0, that can be constructed from the chunk

0 to the chunk N − 1 such that their total score lies in the given range. Algorithm 18

describes the rank algorithm.

Algorithm 18 returns the number of key candidates in a given range.

1: function rank(W1,W2)
2: b← initialises(W1,W2);
3: return b0,0;
4: end function

With the help of the rank algorithm, an algorithm for requesting particular candidate keys

is introduced. This “getkey” algorithm returns the rth key candidate with weight between

W1 and W2. Algorithm 19 describes precisely the “getkey” algorithm. Note that the

correctness of the function getKey follows from the correctness of b. Also, the algorithm

is deterministic, therefore given the same r, it will return the same key candidate k5.

Equipped with the “getkey” algorithm, the authors of [50] introduced a non-optimal key

enumeration algorithm to enumerate and test all key candidates in the given range. This

algorithm works by calling the function getKey to obtain a key candidate in the given

range, until there are no more key candidates in the given range. Also, for each ob-

tained key candidate k, it is tested by using a testing function T returning either 1 or 0.

Algorithm 20 precisely describes how this non-optimal key enumeration algorithm works.

Combining together the function keySearch with the techniques for searching over par-

titions independently, the authors of [50] introduced a key search algorithm, described in

Algorithm 21. The function KS works by partitioning the search space into sections whose

size follows a geometrically increasing sequence using a size parameter a = O(1). This

parameter is chosen such that the number of loop iterations is balanced with the number

of keys verified per block.

5The rth key candidate does not have to be the rth most likely key in the given range.
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Algorithm 19 returns the rth key candidate with weight between W1 and W2..

1: function getKey(b,W1,W2, r)
2: if r > b0,0 then
3: return ⊥;
4: end if
5: k← [0]N ;
6: w ← 0;
7: for i = 0 to N − 2 do
8: for j = 0 to mi − 1 do
9: if r < bi+1,w+cij .score

then

10: ki ← j;
11: w ← w + cij .score;
12: break j;
13: end if
14: r ← r − bi+1,w+cij .score

;

15: end for
16: end for
17: i← N − 1;
18: for j = 0 to mi − 1 do
19: v ← (W1 − w ≤ cij .score < W2 − w)?1 : 0;
20: if r ≤ v then
21: ki ← j;
22: break j;
23: end if
24: r ← r − v;
25: end for
26: return k;
27: end function

Algorithm 20 enumerates and tests key candidates with weight between W1 and W2.

1: function keySearch(W1,W2, T)
2: b← initialises(W1,W2);
3: r ← 1;
4: while True do
5: k← getKey(b,W1,W2, r);
6: if k =⊥ then
7: break;
8: end if
9: if T(k) = 1 then

10: break;
11: end if
12: r ← r + 1;
13: end while
14: return k;
15: end function
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Algorithm 21 searches key candidates in a range with a size of e approximately.

1: function KS(e, T)
2: W1 ←Wmin;
3: W2 ←Wmin + 1;
4: step← 0;
5: Choose We such that rank(0,We) is approx e;
6: while W1 ≤We do
7: k← keySearch(W1,W2, T);
8: if k 6=⊥ then
9: return k;

10: end if
11: step← step + 1;
12: W1 ←W2

13: Choose W2 such that rank(W1,W2) is approx astep;
14: end while
15: return k;
16: end function

Having introduced the function KS, the authors of [50] transformed it into a quantum

key search algorithm that heavily relies on Grover’s algorithm [26]. This is a quantum

algorithm to solve the following problem: Given a a black box function which returns 1

on a single input x, and 0 on all other inputs, find x. Note that if there are N possible

inputs to the black box function, the classical algorithm uses O(N) queries to the black box

function since the correct input might be the very last input tested. However, in a quantum

setting, a version of Grover’s algorithm solves the problem using O(N1/2) queries, with

certainty [26, 27]. Algorithm 22 describes the quantum search algorithm, which achieves

a quadratic speed-up over the classical key search (Algorithm 21) [50]. However, it would

require significant quantum memory and a deep quantum circuit, making its practical

application in the near future rather unlikely.

Algorithm 22 performs a quantum search of key candidates in a range with a size of e
approximately

1: function KQS(e, T)
2: W1 ←Wmin;
3: W2 ←Wmin + 1;
4: step← 0;
5: Choose We such that rank(0,We) is approx e;
6: while W1 ≤We do
7: b← intitialise(W1,W2);
8: f(·)← T(getKey(b,W1,W2, ·));
9: Call Grover using f for one or zero marked elements in range [W1,W2)

10: if marked element t found then
11: return getKey(b,W1,W2, t);
12: end if
13: step← step + 1;
14: W1 ←W2

15: Choose W2 such that rank(W1,W2) is approx astep;
16: end while
17: return k;
18: end function
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3.3 Comparison of Key Enumeration Algorithms

In this section, we will make a comparison of the previously described algorithms. We

will show some results regarding their overall performance by computing some measures

of interest.

3.3.1 Implementation

All the algorithms discussed in this chapter were implemented in Java. This is because the

Java platform provides the Java Collections Framework to handle data structures, which

reduces programming effort, increases speed of software development and quality, and is

reasonably performant. Furthermore, the Java platform also easily supports concurrent

programming, providing high-level concurrency APIs.

3.3.2 Scenario

In order to make a comparison, we will consider a common scenario in which we will run

the key enumeration algorithms to measure their performance. Particularly, we gener-

ate a random secret key encoded as a bit string of 128 bits, which is represented as a

concatenation of 16 chunks, each on 8 bits.

We use a bit-flipping model, as described in Section 2.3. We particularly set α and β to

particular values, namely 0.01 and 0.01 respectively. We then create an original key k

(AES key) by picking a random value for each chunk i, where 0 ≤ i < 16. Once this key k

has been generated, its bits will be flipped according to the values α, β to obtain a noisy

version of it, r. We then use the procedure described in Secion 2.5 to assign a score to

each of the 256 possible candidate values for each chunk i. Therefore, once this algorithm

has ended its execution, there will be 16 lists, each having 256 chunk candidates.

These 16 lists are then given to an auxiliary algorithm that does the following. For

0 ≤ i < 16, this algorithm outputs 2e, with 1 ≤ e ≤ 8, chunk candidates for the chunk i,

ensuring that the original chunk candidate for this chunk is one of the 2e chunk candidates.

This is, the secret key k is one out of all the 216·e key candidates. Therefore, we finally

have access to 16 lists, each having 2e chunk candidates, on which we run each of the key
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enumeration algorithms. Additionally, on execution, the candidate keys generated by a

particular key enumeration algorithm are not “tested”, but rather “verified” by comparing

them to the known key. Note that this is done only for the sake of testing these algorithms,

however, in practice, it may be not possible to have such an auxiliary algorithm and the

candidate keys have to be tested, rather than verified.

3.3.3 Results per algorithms

In order to measure the key enumeration algorithms’ overall performance, we simply gener-

ate multiple random instances of the scenario. Once a random instance has been generated,

each key enumeration algorithm is run for a fixed number of key candidates. For each run

of any algorithm, some statistics are collected, particularly the elapsed time to enumerate

a fixed number of key candidates. This was done on a machine with an Intel Xeon CPU

E5-2667 v2 running at 3.30GHz with 8 cores. The set of simulations are run by setting e

to 3. Therefore, each list has a size of 8 chunk candidates:

By running the optimal key enumeration algorithm (OKEA) from Section 3.2.1, we find

the following issues: it is only able to enumerate at most 230 key candidates; and its overall

performance decreases as the number of key candidates to enumerate increases. In partic-

ular, the number of key candidates considered per millisecond per core ranges from 2336

in a 220 enumeration, through 1224 in a 225 enumeration, to 582 in a 230 key enumeration.

The main reason for this is that its memory usage grows rapidly as the number of key

candidates to generate increases. Indeed, using terminology from Section 3.2.1.4, we have

W = 128 = 27, w = 8 = 23, so a = 3, b = 4, so this instance of OKEA creates a tree

composed of the root node R, the internal nodes N
id
λ , for 0 < λ ≤ 3, 0 ≤ id < 2λ, and the

leaf nodes Li, for 0 ≤ i < 16.

A chunk candidate is a 2-tuple of the form (score, value), where score is a float and value

is an integer array. Both a float variable and an integer variable are stored in 32 bits.

Now, at level 4, value has only an entry, therefore B4 = 32 + 32 = 64. At level 3, value

has 2 entries, therefore B3 = 32 + 2(32) = 96. At level 2, value has 4 entries, therefore

B2 = 5(32) = 160. And at level 1, value has 8 entries, therefore B1 = 9(32) = 288.

After N key candidates has been generated, the number of bits MN used to store chunk
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Figure 3.5: Running Times of Algorithm 13 of KEA
with histograms from Section 3.2.5,. The y-axis repre-
sents the running time (milliseconds), while the x-axis
represents Nb.

candidates by the algorithm will be

MN =
3∑

λ=1

2λBλ +B4(
15∑
d=0

8) +
N∑
d=1

3∑
λ=1

p
(d)
λ Bλ

=2 ·B1 + 22 ·B2 + 23 ·B3 + (15 · 8) ·B4 +

N∑
d=1

(p
(d)
1 ·B1 + p

(d)
2 ·B2 + p

(d)
3 ·B3)

=2 · 288 + 22 · 160 + 23 · 96 + 120 · 64 +
N∑
d=1

(p
(d)
1 · 288 + p

(d)
2 · 160 + p

(d)
3 · 96)

=9664 +

N∑
d=1

(p
(d)
1 · 288 + p

(d)
2 · 160 + p

(d)
3 · 96).

Since 1 ≤ p(d)λ ≤ 2λ, for 1 ≤ λ ≤ 3, 1 ≤ d ≤ N , then

9664 + 544 ·N ≤ 9664 +
N∑
d=1

(p
(d)
1 · 288 + p

(d)
2 · 160 + p

(d)
3 · 96) ≤ 9664 + 1984 ·N.

We also need to include the number of bits used to store extended candidates internally

in each priority queue N
id
λ .Q, for 0 < λ ≤ 3, 0 ≤ id < 2λ, and the priority queue R.Q.

Therefore, we conclude that, despite all the efforts made for implementing this algorithm

in an ingenious way, the algorithm’s scalability is mostly affected by its inherent design

rather than by a particular implementation.

On the other hand, the bounded-space key enumeration algorithm (BSKEA) with ω = 4,

described in Section 3.2.2, is able to enumerate 230, 233, 236 key candidates. However,

it has a dramatic decrease in its overall performance as the number of key candidates to
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Parameter Nb Number of bins of H0:N−1 Total number of key candidates for R1 = 1 and R2 = 230

10 145 1412497166

20 224 1310161019

30 305 1260927932

40 384 1228979005

50 464 1207956426

60 545 1191780722

70 625 1178891769

80 705 1169493889

90 784 1162092971

100 864 1156185368

Table 3.1: Variation of the number of key candidates in KEA with histograms (3.2.5).

enumerate increases, similar to OKEA’s behaviour. In particular, it is able to enumerate

about 4800 key candidates per millisecond per core on average in a 230 enumeration,

but this value drops to about 1820 key candidates on average in a 236 enumeration. The

possible reasons for this behaviour are its intrinsic design, its memory consumption and its

implementation. The variant of the bounded-space key enumeration algorithm, introduced

in Section 3.2.2.4, has the same problem as OKEA, i.e., its overall performance (hence

its scalability) is degraded by its excessive memory consumption and it is only able to

enumerate up to 230 key candidates.

Regarding the key enumeration algorithm using histograms from Section 3.2.5, we first

analyse its pre-computation algorithms, i.e., Algorithm 13 and Algorithm 14. These two

algorithms were run for Nb = 10, 20, . . . , 100, R1 = 1 and R2 = 230 for 100 times. We

notice that the running time increases as NB increases, especially for Algorithm 13 as

Figure 3.5 shows. On the other hand, Algorithm 14 shows some negligible variations

in its running time. Besides, as expected, we note that the parameter Nb makes the

number of bins of H0:N−1 increases, therefore setting this parameter to a proper value

helps in guaranteeing the number of key candidates to enumerate while running through

the enumeration bounds xstart, xstop will be closer to R2 − R1 + 1 = 230 = 1073741824.

Table 3.1 shows the number of bins of H0:N−1 and the total number of key candidates to

be enumerated between bounds xstart, xstop on average.

69



3.3 Comparison of Key Enumeration Algorithms

Parameter Nb Standard histograms Convoluted histograms Total number of bits

10 13312 39360 52672

30 23552 125760 149312

50 33792 212160 245952

70 44032 298560 342592

100 59392 428160 487552

Table 3.2: Number of bits for storing histograms in KEA with histograms (3.2.5).

Concerning the memory consumed by the arrays used to store histograms, we know that

the total number of bits to store all lists LHi , 0 ≤ i < 16 is given by Equation (3.2) from

Section 3.2.5.4. Therefore, we set Bp, which is the number of bits to store a pointer, to

32 bits and set Bc, the number of bits to store a chunk candidate (score, value),6 to 64.

Therefore,

N ·Bp ·Nb +Bc ·
N−1∑
i=0

mi = 16 ·Bp ·Nb + (128) ·Bc = 512 ·Nb + 8192. (3.4)

Now the number of bits for storing all the convoluted histograms is given by Equation (3.3)

from Section 3.2.5.4. We set Bint = 32, therefore

32 · (Nb − 1)
(15)(16)

2
+ (32 · 15) ·Nb = 3840 · (Nb − 1) + 480 ·Nb. (3.5)

Table 3.2 shows the number of bits for storing both standard histograms and convoluted

histograms for values Nb = 10, 30, 50, 70, 100.

We will describe results related to the enumeration algorithm of KEA with histograms,

i.e., Algorithm 15. To run this algorithm, we first set the parameter R1 to 1, R2 to 2z,

where z = 30, 33, 36, and Nb to 60. Once the pre-computation algorithms have ended

their execution, we then run Algorithm 15 for each index bin in the range calculated by

Algorithm 14. As a result, we find that this algorithm is able to enumerate 230, 233, 236

key candidates and that its enumeration rate is between 3500 and 3800 key candidates

per millisecond per core. Additionally, as seen, its memory consumption is low.

Concerning the stack-based key enumeration algorithm from Section 3.2.3, we first calcu-

6The array value only has an entry.
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late appropriate values for B1 and B2 by making use of the convoluted histogram H0:N−1

output by Algorithm 13. We then run Algorithm 9 with parameters B1 and B2, but

limiting the enumeration over this interval to not exceed the number of key candidates

to enumerate;7 this number is obtained from the previous enumeration. As a result, we

find that this algorithm is able to enumerate 230, 233, 236 key candidates and that its

enumeration rate is between 3300 and 3500 key candidates per millisecond per core.

Concerning its memory consumption, the stack-based key enumeration algorithm only uses

two precomputed arrays minArray and maxArray, both of which have N + 1 = 17 double

entries. Additionally, as pointed out in Section 3.2.3.4, at any stage of the algorithm, there

are at most 16 4-tuples stored in the stack S. Note that a 4-tuple consists of a double entry,

two int entries and an entry holding an int array indices. This array indices may have

at most 16 entries, each holding an integer value. Therefore, its memory consumption is

low.

Lastly, concerning the score-based key enumeration algorithm from Section 3.2.4, we first

run its precomputation algorithms, i.e., the algorithms for computing the tables minArray,

maxArray and iRange. As was pointed out in Sections 3.2.4.3 and 3.2.4.4, the size of

table iRange, hence the running time for calculating it, depends heavily on the scaling

technique used to get a positive integer from a real number (score). We particularly

use score · 10s with s = 4 to get an integer score from a real-valued score. We find

that the table iRange has around 15066 entries on average. Each of these entries point

to a list of integers whose number of entries is about 4 on average. Therefore, from

Equation (3.1) introduced in Section 3.2.4.4, we have that the number of bits to store this

table is 64 + (32 · 5)(15066) = 2410624 on average.8 Furthermore, we run Algorithm 12,

but limiting it to not exceed the number of key candidates to enumerate. As a result, we

find that this algorithm is able to enumerate between 2600 and 3000 key candidates per

millisecond per core.

3.3.4 Discussion

From our previous results, it can be seen that all key enumeration algorithms except for

the optimal key enumeration algorithm (OKEA) and the variant of BSKEA have a much

7Interval [B1, B2] may have more key candidates than the number of key candidates to enumerate.
8A pointer is stored in 32 bits.
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Algorithm Name Parallelizable Memory Consumption Scalabilty

Optimal KEA (3.2.1) No High Low

Bounded-space KEA (3.2.2) Yes, but loses near-optimality Moderate Moderate

Stack-based KEA (3.2.3) Yes Low High

Score-based KEA (3.2.4) Yes Low High

KEA with histograms (3.2.5) Yes Low High

Table 3.3: Qualitative and functional attributes of key enumeration algorithms.

better overall performance and are able to enumerate a higher number of key candidates.

In particular, we find that all of them are able to enumerate 230, 233, 236 key candidates,

while OKEA and the variant of BSKEA only are able to enumerate up to 230. Their poor

performance is caused by their excessive consumption of memory. In particular, OKEA

is the most memory-consuming algorithm, hence degrading its overall performance and

scalability. In general, scalability is low in optimal key enumeration algorithms [68, 69]

considering that not too many candidates can be enumerated, as a result of the exponential

growth in their memory consumption. However, by relaxing the restriction on the order

in which the key candidates will be enumerated, we are able to design non-optimal key

enumeration algorithms, having a better overall performance and scalability. In particular,

relaxing this restriction on the order allows for the construction of parallelizable and

memory-efficient key enumeration algorithms, as was evinced in this chapter and the

results previously described. Moreover, all the algorithms save OKEA [11, 48, 47, 61, 18]

as described in this chapter are non-optimal ones and their respective descriptions and

empirical results show that they are expected to have a better overall performance and

consume much less computational resources. Table 3.3 briefly summarises some quality

and functional attributes of the described algorithms.

3.4 Chapter Conclusions

In this chapter, we investigated the key enumeration problem, since there is a connection

between the key enumeration problem and the key recovery problem. The key enumeration

problem arises in the side-channel attack literature, where, for example, the attacker might

procure scoring information for each byte of an AES key from a power analysis attack and

then want to efficiently enumerate and test a large number of complete 16-byte candidates
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until the correct key is found.

In summary, we first stated the key enumeration problem in a general way and then

studied and analysed several algorithms to solve this problem, such as the optimal key

enumeration algorithm (OKEA), the bounded-space near-optimal key enumeration algo-

rithm, the simple stack-based, depth-first key enumeration algorithm, the score-based key

enumeration algorithm, and the key enumeration algorithm using histograms. For each

studied algorithm, we described its inner functioning, showing its functional and qualita-

tive features, such as memory consumption, amenability to parallelisation and scalability.

Furthermore, we proposed variants of some of them and implemented all of them on Java.

We then experimented with them and made an experimental comparison of all of them,

drawing special attention to their strengths and weaknesses.
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Cold Boot Attack on NTRU

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 NTRU Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Private Key Formats for NTRU Implementations . . . . . . . . 78

4.4 Mounting Cold Boot Key Recovery Attacks . . . . . . . . . . . 82

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 94

In this chapter, we analyze the feasibility of cold boot attacks against the NTRU public key

encryption scheme by reviewing two specific implementations: the first is ntru-crypto,

which is a pair of C and Java libraries developed by OnBoard Security. The second is

tbuktu, which is a pair of libraries developed by “Tim Buktu” and is available in ‘C’ and

Java languages. We propose a general key recovery strategy that is adapted to each one of

the in-memory private key formats.

4.1 Introduction

We examine the feasibility of cold boot attacks against the NTRU public key encryption

scheme [32, 31]. We believe this to be the first time that this has been attempted. Our

work can be seen as a continuation of the trend to develop cold boot attacks for different

schemes (as evinced by the literature cited in Chapter 2). But it can also be seen as

the beginning of the evaluation of the leading post-quantum candidates against this class

of attack. Such an evaluation should form a small but important part of the overall
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assessment of schemes in the NIST selection process for post-quantum algorithms.1 In

particular, this chapter evaluates what seems likely to be a leading candidate and lays

the groundwork for the later study of other likely candidates in the same broad family of

schemes that operate over polynomial rings (such as NTRUprime [7] and various recently

proposed ring-LWE-based schemes [3, 12]).

As noted earlier, the exact format in which the private key is stored is critical to devel-

oping key recovery attacks in the cold boot setting. This is because the attack depends

on physical effects in memory, represented by bit flips in private key bits, and the main

input to the attack is a bit-flipped version of the private key. For this reason, it is neces-

sary to either propose natural ways in which keys would be stored in memory in NTRU

implementations or to examine specific implementations of NTRU. We adopt the latter

approach, and we study two distinct implementations. The first, ntru-crypto, is a pair

of C and Java libraries developed by OnBoard Security, a spin off of Security Innovation,

the patent-holder for some NTRU technology.2 The second, tbuktu is a pair of libraries

developed by “Tim Buktu”, and is available in ‘C’ and Java languages.3 A fork of the

Java implementation is included in the popular Bouncy Castle Java crypto library.4

Each of these implementations stores its private keys in memory in slightly different ways.

For example, in Java, tbuktu supports a number of different formats, including a repre-

sentation where the key is stored as 6 lists of indices, each index being a 32-bit integer

representing a position where a certain polynomial has a coefficient of value +1 or −1.

Meanwhile, ntru-crypto’s C implementation uses a special representation of polynomial

coefficients by trits (three-valued bits), and then packs 5 trits at a time into octets using

base-3 arithmetic.

Each of these different private key formats therefore requires a different approach to key

recovery in the cold boot setting. In this chapter, we will focus on just a couple of the

more interesting cases, where there is some additional structure that we can exploit, or

where novel approaches are called for. Nevertheless, we will pose the problem of key

recovery in a more general way that makes it possible to see how to generalise our ideas to

1See http://csrc.nist.gov/groups/ST/post-quantum-crypto/ for details of the NIST process.
2See https://github.com/NTRUOpenSourceProject/ntru-crypto for the code and https://www.

onboardsecurity.com/products/ntru-crypto/ntru-resources for a list of useful resources related to
NTRU.

3See http://tbuktu.github.io/ntru/.
4See http://bouncycastle.org/.
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cover other cases. Specifically, each of our analyses involves splitting the (noisy) private

key into chunks, and creating log-likelihood estimates for each candidate value for each of

the chunks. Each such estimate can be regarded as a per chunk score. A log-likelihood

estimate (or score) for a candidate for the complete private key can then be computed by

summing the per chunk scores across the different chunks. Our problem then becomes one

of efficiently enumerating complete candidates and their scores based on lists of candidates

for chunks and per-chunk scores, so that each complete candidate can then be tested for

correctness (for example, by trial encryption and decryption). It makes sense to perform

the enumeration in decreasing order of score if possible, starting with the most likely

candidate. This is a problem that also arises in the side-channel attack literature, cf. [69,

11, 48, 47, 18], where, for example, one might obtain scoring information for each byte

of an AES key from a power analysis attack and then want to efficiently enumerate and

test a large number of complete 16-byte candidates in decreasing order of score until the

correct key is found, as was evinced in Chapter 3. We therefore are able to apply the key

enumeration algorithms described in Chapter 3 to solve the key recovery problem in our

context.

4.2 NTRU Encryption Scheme

In this section we briefly describe the NTRU public key encryption scheme and the NTRU

key recovery problem.

Let N, p, q ∈ Z+. We define three polynomial rings:

R = Z[x]/(XN − 1), Rp = Zp[x]/(XN − 1), Rq = Zq[x]/(XN − 1).

Thus, for example, elements of Rp can be represented as polynomials of degree at most

N − 1 with coefficients from Zp. They can also be represented as vectors of dimension N

over Zp in the natural way, and we will switch between representations at will.

Definition 4.2.1 Let a ∈ Rq The centred lift of a to R is the unique polynomial a′ ∈ R

satisfying a′ mod q = a whose coefficients all lie in the interval − q
2 < a′i ≤

q
2 .

Definition 4.2.2 Let r be a fixed integer and let Cr be the function that, given a ∈ R,

outputs the number of coefficients of a equal to r. Let d1, d2 ∈ Z+. We define T (d1, d2) =

{a ∈ R | C1(a) = d1, C−1(a) = d2, C0(a) = N − d1 − d2}. Note that |T (d1, d2)| =
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(
N
d1

)(
N−d1
d2

)
. An element a ∈ R is called a ternary polynomial if and only if a ∈ T (d1, d2)

for some d1, d2 ∈ Z+.

4.2.1 NTRU Public Key Encryption Scheme

The NTRU public key encryption scheme is a lattice-based alternative to RSA and ECC

with security that is (informally) based on the problem of finding the shortest vector in a

particular class of lattices. The scheme exists in several versions, offering different forms

of security (IND-CPA, IND-CCA). The details of the scheme’s operation matter less to us

than the format of private keys in implementations. However, for completeness, we give

an overview of NTRU. We follow the description in [31].

The scheme relies on public parameters (N, p, q, d) with N and p prime, gcd(p, q) =

gcd(N, q) = 1 and q > (6d+ 1)p.

Key generation:

1. Choose f ∈ T (d+ 1, d) that is invertible in Rq and Rp.

2. Choose g ∈ T (d1, d2) for some d1, d2 ∈ Z+.

3. Compute fp, the inverse of f in Rp.

4. Compute fq, the inverse of f in Rq.

5. The public key is h = pfq · g ∈ Rq; the private key is the pair (f , fp).

Encryption On input message m, which we assume to be a centre-lifted version of an

element of Rp, and public key h:

1. Choose a random r with small coefficients, in particular r can be chosen such that

r ∈ T (d, d).

2. Compute the ciphertext e as e = r · h + m ∈ Rq.

Decryption On input ciphertext e and private key (f , fp):

1. Compute c = f · e in Rq. (Note that this yields c = pg · r + f ·m over Rq.)

2. Centre-lift c modulo q to obtain a, and then compute fp · a ∈ Rp. Centre-lift the
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result modulo p to obtain m.

We omit the correctness proof for this description of the NTRU scheme. Note that fp can

be computed from f) on the fly, and so some implementations may only store f as the

private key.

4.2.2 The NTRU Key Recovery Problem

Given h, the task is to find two ternary polynomials, f , g, satisfying f · h = g mod q.

First note that this problem has no unique solution, because if (f ,g) is a solution, then

(xk · f , xk ·g) is also a solution for all 0 ≤ k < N . The polynomial xk · f is called a rotation

of f . A rotation xk · f is private key in the sense that yields the rotated plaintext xk ·m

If an attacker found a ternary polynomial f ′, then f ′ would be probably either f or a

rotation of f . To see this, we ask for the probability that some random f ∈ T (d + 1, d)

has the property that f · h is a ternary polynomial. Treating the coefficients of f · h as

independent random variables that are uniformly distributed modulo q, the probability

that any particular coefficient is ternary is 3
q , and hence the probability that every coef-

ficient is ternary is approximately (3q )N . Hence, the expected number of decryption keys

in T (d+ 1, d) is approximately equal to

Pr
(
f ∈ T (d+ 1, d) is a decryption key

)
· |T (d+ 1, d)| = (

3

q
)N
(

N

d+ 1

)(
N − d− 1

d

)
.

For example, for the standardised parameter set ees449ep1 targeting 128 bits of security,

we have N = 449, d = 134, q = 2048, hence the expected number of decryption keys is

( 3
2048)449

(
449
135

)(
304
134

)
≈ 9.856 × 10−1064. Therefore, it can be seen from previous calculation

that it is unlikely that there are any additional decryption keys beyond f and its rotations.

4.3 Private Key Formats for NTRU Implementations

In this section we explore the various private key formats in the two implementations we

will be working with.
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4.3.1 The tbuktu/Bouncy Castle Java Implementation.

In this implementation, there are four pieces of information that determine how the private

key is stored:

1. A variable t that points to a polynomial and from which variables corresponding to

the private key components f and fp are constructed.

2. A variable polyType that indicates the type of polynomial to use. This can hold

two values: SIMPLE or PRODUCT.

3. A boolean sparse that indicates if t is a sparse or dense polynomial. This variable

applies only if polyType has value SIMPLE.

4. A boolean fastFp that indicates the manner in which f is built from t. If fastFp =

true, then p = 3, f = 1 + 3t and fp = 1; otherwise f = t and fp = t−1 mod p. This

relates to an implementation trick for the case p = 3.

When polyType has the value SIMPLE, t will be either a dense ternary polynomial or a

sparse ternary polynomial, as determined by the value of sparse. In the dense case, t

is represented as an int array of length N whose entries have values from {−1, 0, 1}. In

memory, each entry is stored as a 32-bit signed integer, using two’s complement, i.e. +1 is

stored as the 32-bit string 000 . . . 01, 0 is stored as 000 . . . 00 and −1 is stored as 111 . . . 11.

Meanwhile, in the sparse case, t is represented as two int arrays, ones and negOnes,

where:

1. The array ones contains the indices of the +1 coefficients of t in increasing order

(so that the entries in the area are 32-bit representations of integers in the range

[0, N − 1]).

2. The array negOnes contains the indices of the −1 coefficients of t in increasing order

(with entries having the same bit representation as the entries of ones).

When polyType has the value PRODUCT, t will be a product form polynomial. In this

case, t is represented by three different sparse ternary polynomials f1, f2, f3 such that

t = f1f2 + f3. All three of f1, f2, f3 are stored in memory separately in sparse form. This

means that, when polyType has the value PRODUCT, then the private key is represented in

memory by a total of 6 int arrays fi.ones, fi.negOnes, 1 ≤ i ≤ 3.
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Note that the private key formats for the tbuktu C implementation are largely the same

as for the Java one, and so we do not detail them further here.

4.3.2 Reference Parameters for tbuktu

The tbuktu implementation includes 10 named reference parameter sets with a range of

choices for N and q, targeting different security levels and optimisations. These 10 sets

are detailed in the EncryptionParameters class.

For example, both APR2011 439 and APR2011 439 FAST parameter sets target 128 bits of

security. Both are included in the standardised parameter sets from IEEE 1363.1-2008 [75].

If the former set is selected, f = t, with t being represented as a sparse ternary polynomial

with df = 146 coefficients set to +1 and with df − 1 of them set to −1. If the latter set

is selected, then f = 1 + 3t, with t = f1f2 + f3; moreover f1 has df1 = 9 coefficients set to

each of +1 and −1, so f1 ∈ T (9, 9) (while df2 = 8 and df3 = 5 for f2 and f3, respectively).

In [34], security analyses are provided for the standardised product-form parameter sets

from IEEE 1363.1-2008.

4.3.3 The ntru-crypto Java Implementation

Here, the private key f is always of the form 1 + 3t where t is a ternary polynomial,

and we have p = 3 (so that fp = 1). In this implementation, f is stored directly in

memory as an array of short integers. That is, the coefficients f0, f1, . . . , fN−1 of f are

stored as a sequence of 16-bit signed two’s complement integers with f0 ∈ {−2, 1, 4} and

fi ∈ {−3, 0, 3}, for 1 ≤ i < N .

4.3.4 The ntru-crypto C Implementation

In this particular implementation, ntru crypto ntru encrypt keygen routine generates a

key pair. It generates f as either a product of polynomials (f1·f2+f3) or a single polynomial.

To represent f , a list, index-based representation, consisting of the concatenation of two

sublists: the sublist containing the indices of the +1 coefficients and the sublist containing

the indices of the −1 coefficients. Each entry is stored in an unsigned 16 bit integer. This

list is then used to construct a bit string following the exact format shown by Table 4.1.
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tag count OID OID packed pubkey [packed privkey]

Table 4.1: Format of private key blob in ntru-crypto C Implementation

In this bit string, byte 0 is a tag to represent the format being used to pack the private

key; byte 1 represents the number of bytes used for OID; bytes 2-4 hold the OID, which

is an identifier to get the parameter set. From byte 5 onwards, there is the packed public

key followed by the packed private key.

The private key is packed according to a parameter that takes two possible values:

I. The value NTRU ENCRYPT KEY PACKED TRITS: In this case f is a single, non-sparse

polynomial and so f is packed by converting f ’s index-based representation into a

coefficient-based representation, which is packed. Specifically, creating an array by

setting +1 at each index for which f has coefficient +1, setting 2 at each index for

which f has coefficient −1, and 0 otherwise. This array is packed by transforming

blocks of 5 consecutive values into a single value, treating a block as a base-3 number.

This new value is stored in an octet.

II. The value NTRU ENCRYPT KEY PACKED INDICES: In this case f is either in product

form or a single sparse polynomial. For each entry of f ’s index-based representation,

its value is extracted5 and appended to form a long bit string. This bit string is then

divided into octets.

4.3.5 Reference Parameters for ntru-crypto

The ntru-crypto implementation includes 12 named reference parameter sets with a

range of choices for N and q, targeting different security levels and optimisations. For

the Java implementation, these parameter sets are defined in the KeyParams class. The

values of N range from 401 to 1499, with p = 3 and q = 2048 throughout; the number of

+1’s and −1’s in f (resp. g), denoted df (resp. dg) depends on N ; for example, for the

parameter set ees449ep1 targeting 128 bits of security, we have N = 449, df = 134, and

dg = 149. Moreover, for the parameter set ees677ep1 targeting 192 bits of security, we

have N = 677, df = 157, dg = 225. Both parameter sets are included in the standardised

parameter sets from IEEE 1363.1-2008 [75]. Furthermore, security analyses are provided

5only the relevant bits out of the 16 bit string.
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for various parameter sets in [9].

4.4 Mounting Cold Boot Key Recovery Attacks

In this section we present our cold boot key recovery attacks on the implementations

and corresponding private key formats introduced in the previous section. First, we will

describe the general key recovery algorithm and secondly we consider the ntru-crypto

implementations. We will then consider the tbuktu Java implementation in which the

PRODUCT form of private key is used and such that fastFp = true, so that f = 1+3t with

t = f1f2 + f3 where all three of f1, f2, f3 are stored in memory in sparse form.

We continue to make the assumptions outlined in Section 2.3, and additionally assume

that all relevant public parameters and private key formatting information are known to

the adversary.

4.4.1 Key Recovery Strategy

Let r = (b0, . . . , bW−1) denote the bits of the noisy encoding of the key and let us name the

chunks r0, r1, . . . , rN−1 so that ri = bi·wbi·w+1 . . . bi·w+(w−1). Furthermore, the attacker

represents r as a concatenation of nb blocks, where each block consists of the concatenation

of nbj , with nbj > 0, consecutive chunks, such that N =
∑nb−1

j=0 nbj . Therefore,

r = b0||b1|| · · · ||bnb−1,

where

bj = rij ||rij+1|| · · · ||rij+nbj−1,

for 0 ≤ j < nb and some 0 ≤ ij < N . The attacker now proceeds as follows.

Phase I

• For each chunk ri, with 0 ≤ i < N , the attacker uses Equation (2.1) to compute a

log-likelihood score for each candidate ci for the chunk ri, viz.

L[ci; ri] = ni00 log(1− α) + ni01 logα+ ni10 log β + ni11 log(1− β),
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where the niab values count occurrences of bits across the i-th chunks, ri, ci. There-

fore, the attacker produces a list containing up to 2w chunk candidates, Lri .

• For each block bj , the attacker presents the lists L
rij
, . . . , L

r
ij+nbj

−1 as inputs to an

instance of OKEA, which was described in Section 3.2.1, to produce a list of the Mj

highest scoring candidates for the block bj , Lbj .

Once Phase I completes, the attacker then proceeds as follows.

Phase II

• The lists Lbj are given as inputs to an instance of a key enumeration algorithm,

regarding each list Lbj as a set of candidates for the block bj . This instance will

generate high scoring candidates for the encoding of the key. For each complete

candidate r′ output by the enumeration algorithm, it is given as input to a verifi-

cation function V to verify whether the candidate is valid or not. This function is

case-dependent.

In Phase II, non-optimal key enumeration algorithms would suit better, since they are

parallelisable and memory-efficient. Even though their outputs may not be given in the op-

timal order, the search can be customisable by either selecting a suitable interval in which

the outputs’ scores lie, e.g. the algorithm described in Section 3.2.3, or selecting a suitable

interval in which the outputs’ ranks lie, e.g. the algorithm described in Section 3.2.5.

4.4.2 The ntru-crypto Java Implementation

Recall from Section 4.3.3 that the coefficients of f are stored directly in memory as an

array of 16-bit, signed two’s complement integers, with f0 ∈ {−2, 1, 4} and fi ∈ {−3, 0, 3},

for 1 ≤ i < N . For simplicity, we assume that f0 is known (there are only 3 possible

values for f0 and the attack can be repeated for each possible value). The attacker then

receives a noisy version r = (r0, . . . , rW−1) of the array with entries f1, . . . , fN−1 which

is W = 16(N − 1) bits in size. In the terminology of Section 4.4.1, we set w = 16 and

partition the noisy key into W/w = N−1 chunks ri, each chunk corresponding to a single,

16-bit encoded coefficient fi+1.
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To apply the key recovery strategy in this case, we simply set any block to have only

a chunk, i.e., bi = ri. The first step of Phase I then uses Equation (2.1) to compute

log-likelihood scores L[ci; ri] for each chunk i and each candidate ci for the chunk. Note

that for each chunk i, there are only 3 possible candidates ci, since fi ∈ {−3, 0, 3} (in

the general formulation with w = 16 there could be up to 216 candidates per chunk).

Therefore, we obtain N − 1 lists of chunk candidates, each list containing 3 entries. The

second step of Phase I is then sort these lists in decreasing order based on their score

component.

The task of Phase II is to combine chunk candidates, one per chunk, to generate complete

private key candidates c with high scores, which can then be tested via trial encryption

and decryption. In order to generate complete private key candidates c with high scores,

we employ an algorithm that is closely based on that of [48]. Specifically, we use a variant

of the non-optimal key enumeration algorithm introduced in Section 3.2.3. This employs

a stack, with partial cumulative scores for candidates at “depth” i in the search being

computed by adding the chunk score at depth i to a cumulative score for the candidates

at “depth” i−1. Once “depth” N−1 is reached, and a complete candidate is generated, the

candidate can be filtered and then tested (in fact, the known restrictions on the number of

+3 and −3 coefficients in private keys for the standard parameters that we are attacking

can be used to perform early aborts on partial candidates). As described in Section 3.2.3,

we can restrict the search space to certain intervals of scores by appropriate pruning of

partial solutions and make use of parallelisation.

4.4.3 The ntru-crypto C Implementation

Now we turn our attention to the ntru-crypto C implementation. Recall from Sec-

tion 4.3.4 that there are two cases.

For the case I, the coefficients of f are stored in memory as an array of 8-bit unsigned

integers, where a single entry represents a block of 5 consecutive coefficients (they are

treated as a base-3 number). Let us suppose that the size of this array is Nr. Hence, the

attacker receives a noisy version r = (r0, . . . , rW−1) of the array of W = 8 ·Nr bits.

To apply the key recovery strategy in this case, the attacker simply sets each chunk ri to

be an 8-bit string and sets a block to have only a single chunk, i.e. bi = ri. Note that
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the candidates for any chunk are the integers in the interval [0, 242], since an entry in

the original encoding represents a 5-digit base-3 number and its range of values goes from

(00000)3 = 010 to (22222)3 = 24210. The attacker then uses Equation (2.1) to compute log-

likelihood scores L[ci; ri] for each chunk i and each candidate ci for that chunk. Therefore,

the attacker constructs Nr lists of chunk candidates, each list containing 243 entries. The

attacker then sort these lists in decreasing order based on their score component (second

step of Phase I).

Concerning Phase II, the task is then to combine chunk candidates, one per chunk,

to generate complete, high-scoring private key candidates c, which can then be tested

via a verification function. For this task, the attacker may employ a non-optimal key

enumeration algorithm, e.g. the algorithm of [48] described in Section 3.2.3. Regarding

the verification function, this simply unpacks the output candidate c and constructs a

polynomial f ′ from it. It then verifies if f ′ is a ternary polynomial by counting the number

of +1 coefficients and −1 coefficients. If so, a trial encryption/decryption with f ′ as private

key may be performed for correctness.

Regarding the case II, the coefficients of f are stored in memory as an array of 8-bit

unsigned integers, representing a sequence of indices. Let us suppose that this size of this

array is Nr. Hence, the attacker receives a noisy version r = (r0, . . . , rW−1) of the array

of W = 8 ·Nr bits.

To apply the key recovery strategy in this case, the attacker simply sets a chunk ri to

be an 8-bit string and sets a block to have only a chunk, i.e. bi = ri. Note that the

candidates for any chunk are the integers in the interval [0, 255]. The attacker therefore

uses Equation (2.1) to compute log-likelihood scores L[ci; ri] for each chunk i and each

candidate ci for that chunk. So the attacker construct Nr lists of chunk candidates, each

list containing 256 entries. Concerning Phase II, the attacker may employ a non-optimal

key enumeration algorithm, e.g. the algorithm of [48] described in Section 3.2.3. The

verification function V simply unpacks the complete array candidate and constructs a

polynomial f ′ from it. f ′ can be either a single, sparse polynomial or of the form f1 · f2 + f3.

A trial encryption/decryption with f ′ as private key may be performed for correctness.
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4.4.4 The tbuktu Java Implementation

Now we turn our attention to the tbuktu Java implementation in some of its more inter-

esting cases. Recall from Section 4.3.1 that when the PRODUCT form of private key is used

and when fastFp = true, then we have f = 1 + 3t with t = f1f2 + f3 where all three of

f1, f2, f3 are stored in memory in sparse form.

This means that we have 6 arrays of indices in memory fi.ones, fi.negOnes, 1 ≤ i ≤ 3. Each

array is of type int and each entry in each array stores the position of either a +1 or a −1

coefficient in one of the polynomials fi; moreover the entries should be in increasing order.

We assume the starting positions in memory, total sizes, and ranges of possible values in

each of these tables is known. We also know that for any pair fi.ones, fi.negOnes, the two

tables of values should be non-intersecting. We let Si denote the common length of the

two arrays fi.ones, fi.negOnes (this is determined by the parameters used to generate the

private key).

We now present the two-phase attack to generate complete private key candidates.

Regarding Phase I, we apply a modified version of the optimal key enumeration algorithm

introduced in Section 3.2.1. As in the description in Section 3.2.1, this algorithm takes as

input a collection of W/w lists of candidates, one list per chunk, and produces as output a

list of lsize complete candidates, each across all W bits. It uses a dynamic programming

version of a list merging strategy to generate complete candidates in decreasing order of

score. OKEA has the property that it is guaranteed to output the lsize highest scoring

(i.e. most likely) candidates across all the chunks (hence its optimality). It seems to be

particularly effective when W/w, the number of chunks being considered, is moderate (see

Section 3.3); additionally it was applied in the case of reconstructing 16-byte AES keys

from their bytes, with 16 chunks [69].

We perform this step for each of our 6 arrays as follows: we build W/w lists of candidates,

setting w = 32 and W = wSi so that we have Si chunks. Each chunk corresponds to

one int entry in the array, and each list is of size N (since, at the outset, every chunk

could take on any value between 0 and N − 1, these being the possible indices of a +1 or

−1 coefficient). The score for each entry in each list is obtained using our per-chunk log-

likelihood expression (Equation (2.1)). We modify the OKEA algorithm in such a way that
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it is guaranteed to output the top lsize candidates by score which additionally respect

our ordering requirement – that is, the entries in a candidate should be in increasing order

of size. This modification is done by adding an extra filtering step in each merge phase of

OKEA which removes candidates that do not respect the ordering constraint.

At the end of this step, then, we obtain 6 lists Lbi , 1 ≤ i ≤ 6, the entries of each list

comprising lsize high-scoring candidates for one of the 6 arrays fi.ones, fi.negOnes, 1 ≤

i ≤ 3.

Concerning the second phase of the attack, we present these 6 lists as inputs to a non-

optimal key enumeration algorithm as described in Section 4.4.1 above. In particular,

we perform a stack-based, depth-first search on the lists, regarding each list as giving a

set of candidates on one of 6 chunks. Each complete candidate (on 6 chunks) now gives

a candidate for fi.ones, fi.negOnes, 1 ≤ i ≤ 3, these being tables of the indices where

the component polynomials f1, f2, f3 have coefficients +1 and −1. We then apply the

constraint that the pairs of tables be non-intersecting (applying it earlier in the process is

not very efficient, since the probability of a collision of indices is small for the parameters of

interest). If a candidate survives this filter, we can construct the full private key f = 1+3t

with t = f1f2 + f3 and test it for correctness.

As before, Phase II is amenable to parallelisation and to searching over restricted score

intervals. Now the parameters are more akin to those studied in the prior work [48, 47] –

we have 6 chunks, and lsize candidates per chunk, with typical values for lsize in our

experiments being 256, 512 and 1024.

4.5 Experimental Evaluation

4.5.1 Implementation

All the algorithms discussed in this chapter were implemented in Java. We choose Java for

several reasons. First, the two implementations that we have studied in this chapter were

written in Java (as well as C). Second, our key recovery algorithm makes use of some of

the implemented key enumeration algorithms described in Chapter 3. Additionally, Java

platform provides classes and interfaces implementing commonly reusable collection data

structures and supports concurrent programming.
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4.5.2 Parallelisation

We made extensive use of parallelisation in our implementations, particularly for the stack-

based, depth-first search that is at the core of the attacks. We made use of the combination

of the two parallelisation methods described in Section 3.2.3.5. The first parallelisation

method involves splitting up the range of scores of interest into n disjoint, equal-sized sub-

intervals. The second method involves splitting the list of candidates for the first chunk

in our algorithm into m equal-sized sub-lists, and running the algorithm as a separate

task for each sub-list, thereby constraining solutions from each task to begin with a chunk

from the specified sublist for that task. These two approaches are combined to execute

mn threads in parallel. Of course, as soon as one of the threads completes and successfully

finds the private key, the others can all be aborted.

4.5.3 Search Intervals

Defining appropriate search intervals on which to run our algorithms is important in

guaranteeing the success of our attacks within a reasonable amount of running time.

Recall that, given a collection of lists as input, each list containing candidate for chunks

and their scores, our algorithms will consider all possible candidates with total scores in

any specified interval [a, b]. We considered two distinct classes of search interval:

1. Class I intervals are the form [µ −W,µ + W ], where µ is the average score of the

correct key and W is some real number that is tuned to the maximum running time

available. Here µ can be computed empirically by generating many private keys,

flipping their bits according to the error probabilities α, β, and then using the usual

log-likelihood scoring function. Using such intervals capture the intuition that it

might be better to examine key candidates that are situated around the average

score, since these are more likely to be correct. This of course violates the principle

of the maximum likelihood approach.

2. Class II intervals are of the form [max−W,max], where max is the maximum possible

score and W is again a real number that can be tuned. Here, the value of max is

easily calculated by summing across the highest scoring entries in each list. Searching

in such intervals better matches the approach of maximum likelihood estimation.
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4.5.4 Simulations

To simulate the performance of our algorithms, we generate a private key (according to

some chosen format), flip its bits according to the error probabilities α, β, and then run

our chosen algorithm with selected parallelisation parameters m,n and interval definition

[a, b]. We refer to such a run attempting to recover a single private key as a simulation.

For our experiments, we ran our simulations on a machine with Intel Xeon CPU E5-2667

v2 cores running at 3.30GHz; we used up to 16 cores. In order to run our simulations

concurrently, a pool of threads is initialised with a maximum number of threads given as

a parameter. When a simulation is to be run and tested, it generates its various tasks

according to the given parameters, each of which then is submitted to the main pool in

order. After it has finished, a thread outputs either the recovered private key or null

value (indicating failure to find the key) along with some statistics. Note that having

a pool created with a defined number of threads helps to avoid exhausting and reusing

computational resources, in contrast to creating a new thread per task.

4.5.5 Results for the ntru-crypto Java Implementation

Here, we only considered Class II intervals, i.e. intervals of the form [max−W,max].

To calculate suitable values for W , we used random sampling from the set of possible

candidates (by choosing chunks at random from each list) in order to estimate σ, the

standard deviation of the candidate scores. We then set W as rσ and experimented with

different values of r, the idea being that larger values of r would correspond to bigger

intervals, including more candidates and giving a higher chance of success at the cost of

more computation. We used 220 candidates in sampling to estimate σ.

After manual tuning, the number of tasks was set to 3, r was set to 0.01 and the number

of subintervals m was set to 1. Hence, in our experiments, searches were conducted over

the interval [max−0.01σ,max] with 3 tasks.

Figure 4.1a shows the success rate of our attack for the ees449ep1 parameters (N = 449,

df = 134, dg = 149, p = 3, and q = 2048). Figure 4.1b shows the success rate for the

ees677ep1 parameters(N = 677, df = 157, dg = 225, p = 3, and q = 2048).
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Figure 4.1: Success rate of our algorithm (y-axis) against β (x-axis) for a fixed
α = 0.001, using Class II intervals.

It can be seen from the two figures that the success rate is acceptably high for small

values of β, but rapidly reduces as β is increased in size. Increasing the size of r (and

therefore the search interval [max−rσ,max]) would improve the success rate at the cost

of increased running time. For r = 0.01, we saw running times on the order of minutes

to hours. There were a few simulations with very high running times; these were aborted

after 1 day of computation. We observed this behaviour in particular for high values of β.

In this case, the number of tasks, 3, the number of chunks, 400, and the nature itself of

what was considered a suitable candidate (number of 1’s and -1’s) made it hard to predict

the number of candidates in a given interval. So searching over a given interval is done

somewhat “blindly”, in the sense that searching over the interval [max−0.01σ,max] will

not behave in a consistent manner in terms of the number of candidates found (and hence

the running time needed).

4.5.6 Results for the tbuktu Java Implementation

Due to the additional structure of private keys compared to the ntru-crypto implemen-

tation, we focussed a greater experimental effort on the tbuktu Java implementation.

4.5.6.1 Counting Candidates and Estimating Running Times

Because of the nature of the log-likelihood function employed to calculate scores, each of

the six lists Lbi output by Phase I of the attack will have many repeated score values. This

enables us to efficiently compute the number of candidates that Phase II of the attack

will consider in any given interval [a, b]. To do this, we run a modified version of Phase
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II in which the lists Lbi are replaced by “reduced” lists which eliminate chunk candidates

having repeated score values, and include the counts (numbers) of such candidates along

with their common score. By simultaneously computing the sums of scores and products

of counts on these reduced lists, we can compute the total number of candidates that will

have a given score, over all possible scores in any chosen interval.

Because the size of each reduced list is less than 10 on average in our experiments (when

lisze is up to 1024), we obtain a very efficient algorithm for counting the number of can-

didates in any given interval that our Phase II search algorithm would need to consider.

We can combine this counting algorithm with the average time needed to generate and

consider each candidate to get estimates for the total running time that our algorithm

would encounter for a given choice of interval. We can then also compute the expected

success probability and estimated running time (for the given number of candidates or

given interval considered) without actually running the full Phase II search algorithm.

Note that this counting algorithm may be seen as a very special case of Algorithm 13

described in Section 3.2.5. In the sense that we may construct a “standard histogram”

Hi for each Lbi such that a bin of Hi contains all chunk candidates of Lbi with a common

repeated score. Then these “standard histograms” are given as inputs to Algorithm 13 and

so the resulting “convoluted histogram” H0:5 allows us to both efficiently count the number

of candidates whose scores lie in a given interval and efficiently construct an interval of

some given form such that the number of candidates whose scores lie in the interval is at

least a given value but the numerical difference with such given value may be minimised.

4.5.6.2 Parameters

The encryption parameters used for running the simulations are APR2011 439 FAST (N =

439, p = 3, q = 2048, df1 = 9, df2 = 8, df3 = 5, sparse = true, fastP = true so that

t = f1f2 + f3, and f1 ∈ T (9, 9), f2 ∈ T (8, 8), f3 ∈ T (5, 5)).

4.5.6.3 Results – Complete Enumeration

In our experiments, we set lsize to 2r for Phase I, for r = 8, 9, 10. Thus, six candidate

lists each of size 2r will be obtained from Phase I. Let pi denote the probability that

the correct candidate is actually found in the i-list; pi will be a function of r. It follows
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Figure 4.2: Expected success rate for a full enumeration for α = 0.001, 0.09. The y-axis
represents the success rate, while the x-axis represents β.

that the probability that our Phase II algorithm outputs the correct private key when

performing a complete enumeration over all 26r candidate keys is given by p =
∏6
i=1 pi.

This simple calculation gives us a way to perform simulations to estimate the expected

success rate of our overall algorithm (Phase I and Phase II) without actually executing

the expensive Phase II. We simply run many simulations of Phase I for the given value

of lsize (each simulation generating a fresh private key and perturbing it according to α,

β), and, after each simulation, test whether the correct chunks of the private keys are to

be found in the lists.

Figure 4.2 shows the success rates for complete enumeration for values of lsize = 2r for

r ∈ {8, 9, 10}. As expected, the greater the value of lsize, the higher the success rate

for a fixed α and β. Also, note that when the noise is high (for example α = 0.09 and

β = 0.09), the success rate drops to zero. This is expected since it is likely that at least

one chunk of the private key will not be included in the corresponding list coming out of

Phase I when the noise levels are high, at which point Phase II inevitably fails.

Note that each data point in this figure (and all figures in section) were obtained using

100 simulations. Note that the running times for Phase I are very low on average (≤ 50

ms), since that phase consists of calling the OKEA for each of the six lists with lsize in

the set {256, 512, 1024}.
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Figure 4.3: Success rate for enumeration with 240 keys over a Class I interval for
α = 0.001, 0.09, for different values of lsize. The y-axis represents the success rate,

while the x-axis represents β.

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2^30	enum	over	Class	I	Interval 2^30	enum	over	Class	II	Interval

2^40	eum	over	Class	I	Interval 2^40	enum	over	Class	II	Interval

Full	Enum

(a) α = 0.001.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2^30	enum	over	Class	I	Interval 2^30	enum	over	Class	II	Interval

2^40	eum	over	Class	I	Interval 2^40	enum	over	Class	II	Interval

Full	Enum

(b) α = 0.09

Figure 4.4: Success rates for full enumeration, and partial enumeration with 230 keys, 240

keys for α = 0.001, 0.09 and with lsize = 1024. The y-axis represents the success rate,
while the x-axis represents β.

4.5.6.4 Results – Partial Enumeration

Here, we exploit our counting algorithm to estimate success rates as a function of the total

number of keys considered, K. Specifically, given a value K, and an interval type (I or

II), we can set W accordingly so that the right number of keys will be considered. Since

we can easily estimate the speed at which individual keys can be assessed, we can also use

this approach to control the total running time of our algorithms.

Figure 4.3 shows how the success rate of our algorithm varies for different values of lsize,

focusing on Class I intervals. We observe the same trends as for full enumeration, i.e. the

greater is lsize, the higher is the success rate for a fixed α and β. Also, for larger values

of (α, β), the success rate drops rapidly to zero.
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Figure 4.4 shows the success rates for a complete enumeration and partial enumerations

with 230 keys and 240 keys, for both Class I and Class II intervals. As expected, the

success rate for a full enumeration is greater than for the partial enumerations (but note

that a full enumeration here would require the testing of up to 260 keys, which may

be a prohibitive cost). Note that the closest success rate to the success rate of a full

enumeration is achieved with partial enumerations with 240 keys over a Class II interval,

and that partial enumerations over Class I intervals perform poorly, in the sense that their

success rates are even dominated by the success rate of enumerations with 230 keys over

Class II intervals. The superiority of Class II intervals is in-line with the intuition that

testing high log-likelihood candidates for correctness is better than examining average

log-likelihood ones.

4.5.6.5 Running times

From our experiments, we find that our code is able to test up to 1200 candidates per

millisecond per core during Phase II. This value may vary in the range 700–1200 when

there are multiples tasks running. The reason for this variation may be the cost associated

with the Java virtual machine (particularly, its garbage collector). Using only a single

core, an enumeration of 230 (240) candidate keys will take about 14 minutes (10 days,

respectively).

4.6 Chapter Conclusions

In this chapter, we have initiated the study of cold boot attacks for the NTRU public key

encryption scheme, likely to be an important candidate in NIST’s ongoing post-quantum

standardisation process. We have proposed algorithms for this problem, with particular

emphasis on two existing NTRU implementations and two private key formats. We have

experimented with the algorithms to explore their performance for a range of parameters,

showing how algorithms developed for enumerating keys in side-channel attacks can be

successfully applied to the problem. Our attacks do not exploit the underlying mathe-

matical structure of the NTRU scheme. It would be interesting to explore whether our

techniques can be combined with other approaches, such as lattice-reduction, to further

improve performance. Even though we focused mainly on the two available Java imple-

mentations, we expect to get similar results for the C implementations.
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Cold Boot Attacks on BLISS
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In this chapter, we analyse the feasibility of cold boot attacks against the BLISS signature

scheme. We first review the in-memory format for the private key of the implementation

provided by the strongSwan project. We then propose a key recovery strategy based on key

enumeration algorithms and then establish a connection between the key recovery problem

in this particular case with an instance of Learning with Errors Problem (LWE). We

also explore other techniques based on the meet-in-the-middle generic attack to tackle this

instance of LWE.

5.1 Introduction

In this chapter, we examine the feasibility of cold boot attacks against the BLISS signature

scheme [22], a member of the broad family of schemes that operate over polynomial rings.

We believe this to be the first time that this has been attempted, however there are very

recent studies attempting other side channels on this signature scheme [13, 24, 58]. Our

work is the continuation of the trend to develop cold boot attacks for different schemes
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as revealed by the literature cited in Section 2.2. But it is also the continuation of the

evaluation of post-quantum cryptographic schemes against this class of attack. Such an

evaluation should form a small but important part of the overall assessment of these

schemes. This scheme, however, has not been submitted as candidate to the ongoing

NIST standardisation process of post-quantum signature schemes.

As noted previously, when developing key recovery attacks in the cold boot setting, it is

important to know the exact format used to store the private key in memory. The reason

for this is that this attack depends on the physical effects in memory, which causes bit

flips in the binary representation of the private key. Also, the main input to this attack

is a bit-flipped version of the private key. Therefore, it is necessary to either propose

natural formats in which a private key would be stored in memory or review specific

implementations of this scheme. As in the previous chapter, we adopt reviewing existing

implementations, and so we study the BLISS implementation provided by the strongSwan

project, an OpenSource IPsec implementation. This implementation particularly stores

its private key in memory in an interesting way therefore requiring novel approaches to

key recovery.

In this chapter, we will present various approaches to key recovery. We first analyse the

key recovery problem in this particular case via key enumeration, and so propose different

techniques for key recovery. Specifically, our analysis involves splitting the components

of the private key into chunks, generating high scoring candidates for each chunk and

combining them to obtain high scoring candidates for the private key. We achieve this by

making use of key enumeration algorithms, which are discussed at length in Chapter 3. In

particular, we will make use of the general key recovery strategy developed in Chapter 4

as a core algorithm.

We then turn our attention to exploit further the algebraic relation among the components

of the private key, and we thus establish a connection between the key recovery problem

in this particular case and an instance of Learning with Errors Problem (LWE). We then

explore various key recovery techniques to tackle this instance of LWE, such as the meet-in-

the-middle generic attack (collision techniques), as well as key recovery approaches based

on lattice techniques. In particular, we show a key recovery strategy combining lattice

techniques and key enumeration.
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5.2 Preliminaries

In this section, we will introduce the notation and some concepts that we will use in this

chapter.

5.2.1 Notation

In this chapter, we write vectors and polynomials in bold lowercase letters, e.g. a, and

matrices in bold uppercase letters, e.g. A. We frequently identify polynomials a =∑n−1
i=0 aix

i with their coefficient vector a = (a0, . . . , an−1) or at. For any integer q, we

identify the ring Zq with the interval [−q/2, q/2) ∩ Z, and in general for a ring R, we

define Rq to be the quotient ring R/(qR). Whenever working in the quotient ring Rq =

Zq[x]/(xn + 1) and R2q = Z2q[x]/(xn + 1), we will assume that n is a power of 2 and q is

a prime number such that q = 1 mod 2n. We define the rotation matrix of a polynomial

a ∈ Rq as rot(a) = (a,a · x,a · x2, . . . ,a · xn−1) ∈ Zn×nq . Then for a,b ∈ Rq, the matrix-

vector product rot(a) · b mod q corresponds to the product of polynomials ab ∈ Rq. We

write ‖ · ‖ for the Euclidean norm.

5.2.2 Lattices and Bases

In this chapter, we use the following definition of lattices. Let m be a positive integer

and let B = {b1, . . . ,bn} ⊂ Rm be a set of linearly independent vectors. The lattice L

generated by B is the set of linear combinations of b1, . . . ,bn with coefficients in Z, viz.

L(B) =

{
x ∈ Rm| x =

n∑
i=1

αibi for some αi ∈ Z

}
.

A basis for L is any set of linearly independent vectors that generates L. Any two such

sets have the same number of elements. The dimension of L is the number of vectors in

a basis for L. The rank of the lattice L is defined to be the rank of the matrix B. If

the rank equals m we say that L is full-rank. Abusing notation, we identify lattice bases

with matrices and vice versa by taking the basis vectors as the columns of the matrix.

The length of the shortest non-zero vectors of a lattice L is denoted by λ1(L). Let q be

a positive integer. A lattice L that contains qZm is called a q-ary lattice. For a matrix
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A ∈ Zm×nq , we define the q-ary lattice.

Lq(A) = {v ∈ Zm| ∃w ∈ Zn : Aw = v mod q} .

For a lattice basis B = {b1, . . . ,bm} ⊂ Rm its fundamental parallelepiped is defined as

P (B) =

{
x =

n∑
i=1

αibi ∈ Rm | ∀i : 0 ≤ αi < 1

}
.

The determinant det(L) of a lattice L ⊂ Rm is defined as the m-dimensional volume of

the fundamental parallelepiped of a basis of L. Note that the determinant of the lattice

is well-defined, i.e. it is independent of the basis. The Hermite factor δ of a lattice basis

B = {b1, . . . ,bm} ⊂ Rm is defined via the equation ‖b1‖ = δmdet(L)1/m. It provides a

measure for the quality of the basis (for more details, we refer to [33]).

Let L be a lattice and let x be a point. Let y ∈ L be the lattice point for which the length

‖x− y‖ is minimised. We define the distance to the lattice L from the point x to be this

length, which we denote dist(x, L).

Lattice-based cryptography is based on the presumed hardness of computational problems

in lattices. Two of the most important lattice problems are defined next.

5.2.2.1 Shortest Vector Problem (SVP)

The task is to find a shortest nonzero vector in a lattice L, i.e. find a non-zero vector

v ∈ L(B) that minimises the Euclidean norm ‖v‖, i.e. such that ‖v‖ = λ1(L(B)).

5.2.2.2 Bounded Distance Decoding (BDD)

Given α ∈ R≥0, a lattice basis B, and a target vector t ∈ Rm with dist(t, L(B)) < α ·

λ1(L(B)), the goal is to find a vector e ∈ Rm with ‖e‖ < αλ1(L(B)) such that t−e ∈ L(B).
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5.2.2.3 Babai’s Nearest Plane Algorithm

This algorithm was introduced in [5] and it has been utilised as an oracle to carry out

various attacks [35, 16, 72]. The input for Babai’s Nearest Plane algorithm is a lattice

basis B ∈ Zm and a target vector t ∈ Rm and the corresponding output is a vector e ∈ Rm

such that t− e ∈ L(B). We denote the output by NPB(t) = e.

If the lattice basis B consists of vectors that are pairwise orthogonal, i.e., such that

vi ·vj = 0 for all i 6= j, then it is very easy to solve both SVP and BDD. In general, if the

vectors in the basis are reasonably orthogonal to one another, then Babai’s Nearest Plane

Algorithm may solve BDD, but if the basis vectors are highly nonorthogonal, then the

vector returned by the algorithm is generally far from the closest lattice vector to t. In such

a case, before applying the algorithm, we can reduce the lattice basis B to get a “better”

basis by using some basis reduction algorithm [33]. For example, Lenstra-Lenstra-Lovász

(LLL) algorithm or the block Korkin-Zolotarev variant of the LLL algorithm (BKZ-LLL).

These algorithms produce a basis in which the basis vectors are quasi-orthogonal, i.e., they

are reasonably orthogonal to one another.

5.3 BLISS Signature Scheme

In this section we briefly describe the BLISS key generation algorithm [22].

5.3.1 The BLISS Key Generation Algorithm

Given two real numbers 0 ≤ δ1 < 1 and 0 ≤ δ2 < 1, two random polynomials f and

g are generated such that both polynomials have d1 = dδ1ne coefficients in {±1} and

d2 = dδ2ne coefficients in {±2}, assuring that f is invertible. The secret key is given by

S = (s1, s2)
t = (f , 2g + 1)t.

The public key is then computed as follows: set aq = (2g + 1)/f ∈ Rq . Next, define

A = (2 · aq, q − 2) ∈ R1×2
2q . One easily verifies that:
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AS = 2aq · f − 2(2g + 1) = 0 mod q,

AS = q(2g + 1) = q · 1 = 1 mod 2.

That is AS = q mod 2q. Finally, (A,S) is a valid key pair for the scheme.

5.4 The strongSwan Project

The strongSwan project is a multi-platform, open-source IPSec implementation. As its

website describes,1 this project was originally based on the discontinued FreeS/WAN

project and continues to be released under the GPL license. This project was launched

in 2005 to provide a stable and open source IPsec implementation, and was originally

designed for Linux, although it has since been ported to other platforms, such as Android,

FreeBSD, Mac OS X and Windows. It offers simplicity of configuration, strong crypto-

graphic algorithms, set-up of IPsec policies to give support to large and complex VPN

networks, and other features.

5.4.1 The strongSwan BLISS Implementation

Starting with the strongSwan 5.2.2 release, BLISS is offered as an IKEv2 public key

authentication method. Full BLISS key and certificate generation support is also added to

the strongSwan PKI tool. With strongSwan 5.3.0, there was an upgrade to the improved

BLISS-B signature algorithm described in [23]. A recent research paper by Pessl et al. [58]

explores cache attacks on this particular implementation and shows that cache attacks on

this signature scheme are not only possible, but also practical. Its authors claim their

attack recovers the secret signing key after observing roughly 6000 signature generations.

However, there is no research paper, to the best of our knowledge, exploring cold boot

attacks on this implementation.

We will next describe the private key in-memory format used by this implementation.

Private Key In-Memory Format. Figure 5.1 shows the definition of the C struct

private bliss private key t extracted from the file bliss private key.c. It defines

1See https://www.strongswan.org/ for details of this project.
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/**

* BLISS secret key S1 (coefficients of polynomial f)

*/

int8_t *s1;

/**

* BLISS secret key S2 (coefficients of polynomial 2g + 1)

*/

int8_t *s2;

/**

* NTT of BLISS public key (coefficients of polynomial (2g + 1)/f)

*/

uint32_t *A;

/**

* NTT of BLISS public key in Montgomery representation Ar = rA mod

*/

uint32_t *Ar;

Figure 5.1: struct private bliss private key t

the data structure used to store the private key after the subroutine bliss private key gen

defined in the file bliss private key.c has been executed. When this particular subrou-

tine is executing, it invokes internally the subroutine create vector from seed to create

both f and g.

Each of these polynomials has d1 coefficients with values in the set {−1, 1}, d2 coefficients

with values belonging the set {−2, 2} and its remaining coefficients have values equal to

zero. Additionally, f is chosen to be invertible in Rq. The algorithm also computes both

the polynomial 2g + 1 and the public polynomial aq = (2g + 1)/f . The variable s1 will

point to an array whose entries are the coefficient of the polynomial f while the variable

s2 will point to an array whose entries are the coefficients of polynomial 2g + 1. Each

entry of either of the two arrays is an 8-bit integer.

Parameter sets. This implementation includes 4 named reference parameter sets with

a range of choices for n, q, d1 and d2, targeting different security levels and optimisations.

These parameter sets are defined in the file bliss param set.c and were proposed by

the BLISS designers in [22]. For example, the parameter set BLISS-I targets 128 bits

of security and defines n = 512, q = 12289, d1 = 154, d2 = 0, whilst the parameter set

BLISS-IV targets 192 bits of security and defines n = 512, q = 12289, d1 = 231, d2 = 31.
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5.5 Mounting Cold Boot Key Recovery Attacks

In this section, we present several cold boot key recovery attacks on the strongSwan

BLISS implementation and its corresponding private key format which was introduced in

the previous section.

5.5.1 Initial Observations

We continue to make the assumptions outlined in Section 2.3. Our cold boot attack model

assumes that the adversary can obtain a noisy version of the original BLISS private key

(using whatever format is used to store it in memory). We assume that the correspond-

ing BLISS public key is known exactly (without noise). We additionally assume that

all relevant public parameters and private key formatting information are known to the

adversary. Our aim is then recover the private key.

In particular, we assume the attacker obtains s′1 and s′2, which are the noisy versions of

the arrays storing f and 2g + 1 respectively. Both the array s′1 and the array s′2 have

n entries. We also assume the attacker knows that aq · f = 2g + 1 and the parameters

that were used to create the private polynomials, i.e. the values of d1 and d2. This is a

plausible assumption because the values d1 and d2 can be found in a public file.

According to the key generation algorithm, both the polynomial f and the polynomial

g have d1 coefficients with values in the set {−1, 1}, d2 coefficients with values in the

set {−2, 2} and their remaining coefficients have value zero. Therefore, the polynomial

h = 2g + 1 has its constant coefficient value h0 in the set {−1,−3, 1, 3, 5} and satisfies:

1. If h0 is 1, then h has d1 coefficients with values in the set {−2, 2}, d2 coefficients

with values in the set {−4, 4} and its remaining coefficients have value zero.

2. If h0 ∈ {−1, 3}, then h has d1 − 1 coefficients with values in the set {−2, 2}, d2

coefficients with values in the set {−4, 4} and its remaining coefficients have value

zero.

3. If h0 ∈ {−3, 5}, then h has d1 coefficients with values in the set {−2, 2} and d2 − 1

coefficients with values in the set {−4, 4} and its remaining coefficients have value

zero.
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We will make use of these properties of the polynomials f and h to design key recovery

algorithms.

5.5.2 Key Recovery Via Key Enumeration

In this section we will develop algorithms for tackling the problem of recovering f and h

from s′1 and s′2 by running instances of key enumeration algorithms, thoroughly discussed

in Chapter 3, as well as exploiting the underlying properties of the polynomials f and h.

The goal of the attacker is to search for key candidates of the form (fi,hj) for the 2-tuple

(f ,h). To do so, the attacker will first need to construct both a list Lf that contains high

scoring key candidates for the polynomial f and a list Lh that contains high scoring key

candidates for the polynomial h. Next the attacker will take both a key candidate from

the first list and a key candidate from the second list and finally verify if such pair may

be the real private key.

The first task of the attacker will then be producing both the list Lf and the list Lh.

Because both the list Lf and the list Lh must store high scoring key candidates for the

polynomials f and h respectively, the attacker may make use of the key recovery strategy

introduced in Section 4.4.1 to create such lists as follows.

5.5.2.1 Constructing Lf from s′1

Recall that the attacker has access to s′1 that is a bit string of size W = 8n. Let us set

r = s′1. The attacker first sets a chunk to be an 8-bit string, i.e. w = 8, and so there

are n = W/w chunks. For a given chunk, its candidates are then the integers in the set

{−2,−1, 0, 1, 2}. The attacker now sets a block to be a successive sequence of l > 0 chunks,

with l | n, and so there are nb = n/l blocks. To construct the list Lf , the attacker then

proceeds as follows.

Phase I

1. For each chunk ri, 0 ≤ i < n, the attacker uses Equation (2.1) to compute log-
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likelihood scores for each candidate ci for the chunk, viz.

L[ci; ri] := ni00 log(1− α) + ni01 logα+ ni10 log β + ni11 log(1− β),

where the niab values count occurrences of bits across the i-th chunks, ri, ci. So the

attacker obtains a list of chunk candidates with 5 entries for the chunk, since the

candidates for any chunk are the integers in the set {−2,−1, 0, 1, 2}.

2. For each block bj , 0 ≤ j < nb, the attacker presents the l lists corresponding to the

l chunks in the block bj as inputs to OKEA to produce a list with the Mj highest

scoring chunk candidates for the block, Lbj .

Once Phase I is completed, the attacker will obtain nb lists of chunk candidates and

proceed as follows.

Phase II

1. The attacker presents the nb lists as inputs to a key enumeration algorithm in order

to generate Mf high scoring key candidates fi for f , which are then stored in a list

Lf . The instance of the key enumeration algorithm only outputs valid candidate

polynomials fi for f , i.e. those having d1 coefficients with values in the set {1,−1},

d2 coefficients with values in the set {2,−2} and the remaining coefficients with

value zero. With respect to the verification of fi, it can be simply done by running

through each entry of the array representing fi, while counting the array’s entries

with values in the set {−1, 1}, its entries with values in the set {−2, 2} and its entries

with value zero. If the three counting variables are equal to d1, d2 and n − d1 − d2

respectively, then fi is a valid candidate for f . It is preferable to run this check

at this point because during and immediately after Phase I the algorithm can not

control or know what entries will have values either in the set {−1, 1} or in the set

{−2, 2} or value zero.

5.5.2.2 Constructing Lh from s′2

Similarly the attacker has access to s′2, a bit string with W = 8 · n bits. Let us set

r = s′2. The attacker then sets a chunk to be a bit-string of size w = 8, so there are

W/w = n chunks. Note that the candidates for the first chunk are the integers in the
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set {−3,−1, 1, 3, 5}, while the candidates for the remaining chunks are the integers in the

set {−4,−2, 0, 2, 4}. The attacker now sets a block to be a consecutive sequence of l > 0

chunks, with l | n, and so there are nb = n/l blocks. To construct the list Lh, the attacker

then proceeds as follows.

Phase I

1. For each chunk ri, the attacker uses Equation (2.1) to compute log-likelihood scores

L[ci; ri] for each candidate ci for the chunk. So the attacker obtains a list of chunk

candidates with 5 entries for each chunk, because the candidates for the first chunk

are the integers in the set {−3,−1, 1, 3, 5}, while the candidates for the remaining

chunks are the integers in the set {−4,−2, 0, 2, 4}.

2. For each block bj , 0 ≤ j < nb, the attacker presents the l lists corresponding to the

l chunks in the block bj as inputs to OKEA to produce a list with the Mj highest

scoring chunk candidates for the block, Lbj .

Once Phase I is completed, the attacker will obtain nb lists of chunk candidates and pro-

ceed as follows.

Phase II

1. The attacker presents the nb lists as inputs to a key enumeration algorithm in order

to generate Mh high scoring key candidates hi for 2g +1, which are then stored in a

list Lh. This instance of the key enumeration algorithm only outputs valid candidate

polynomials hi for 2g+1, i.e. those having the properties described in Section 5.5.1.

The verification of hi, it can be simply done by computing h′i = hi − 1 and then

running through each entry of the array representing h′i while counting its entries

with values in the set {−2, 2}, its entries with values in the set {−4, 4} and its entries

with values zero. If the three counting variables are equal to d1, d2 and n− d1 − d2

respectively, then hi is a valid candidate for 2g + 1. Similarly, it is preferable to run

this check at this point for similar reasons to those posed for the other case.
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5.5.2.3 Combining Lf and Lh

Once both the list Lf and the list Lh are created, the attacker will run another instance

of a key enumeration algorithm receiving both the list Lf and the list Lh as input, which

then proceeds to find high scoring candidates for (f , 2g + 1) that are obtained by taking

an fi from Lf and an hj from Lh, whilst ensuring that aq · fi = hj , i.e. that there is a

collision of polynomials aq · fi and hj in the two lists. If such a collision is found, then

(fi,hj) is a valid candidate pair for (f , 2g + 1); otherwise it is not.

Regarding the overall performance of the previous key recovery strategy, we note that

the processes for creating the lists Lf and Lh can be run simultaneously because the

dependence of the two on each other is loose. In the combining phase, it is more convenient

to run a non-optimal enumeration algorithm (see Chapter 3 for more details), because the

search can be parallelized and hence performed more efficiently.

With regard to how successful the previous key recovery strategy might be, we note that

the key recovery strategy will find a valid pair (fi,hj) if and only if there is an fi ∈ Lf
and an hj ∈ Lh with the property that aq · fi = hj . Hence its success probability will

improve by increasing the sizes of Lf and Lh. This can be problematic in terms of memory

and performance when Mf and Mh grows bigger, leading us to make refinements to it as

follows.

We will make use of a hash table T1. A hash table is a data structure used to map

keys to values. It uses a hash function to calculate an index in an array of slots, from

which the desired value may be found. Ideally, the hash function should assign each key

to a unique slot, but most hash table designs employ an imperfect hash function, which

might cause hash collisions, i.e., the hash function generates the same index for more than

one key. Hence, we have to use effective techniques for resolving the conflict created by

collisions. The simplest collision resolution technique is chaining. In chaining, we place

all the elements whose keys hash to the same slot into the same linked list pointed to by

the slot. This is, a slot of index t contains a pointer to the head of the linked list of all

stored elements whose keys hash to t [17].

The attacker now generates Mh high scoring key candidates hi for 2g + 1 by following a

similar process as described in Section 5.5.2.2, but instead of storing them in a list Lh, the
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attacker will store them in the global hash table T1. For each hi, the attacker computes

a hash value khi (used as a key) from all the entries of the array representation hi of hi,

then calculates an index thi from khi by using a map I and finally adds hi as the first

entry of a linked list pointed to by the entry T1[thi ]. Note that the number of operations

for adding an array to the table T1 is bounded by a constant C1 on average. Therefore,

generating the table T1 costs Mh · C1 operations on average.

Once this is done, the attacker will generate valid and high scoring key candidates fi for f

as described previously. For each fi, the algorithm calculates a hash value kafi (used as a

key) from all the entries of the array representation afi of aq · fi, then computes the index

tafi = I(kafi) and finally checks if afi can be found in the linked list pointed to by the

entry T1[tafi ] (if exists). If a match is found, then aq · fi = hj , producing a valid candidate

pair for (f , 2g + 1). Note that it is expected that the number of entries of any linked

list pointed to by any entry of T1 is bounded by a constant C2, assuming the function I

disperses the elements properly among the buckets, so searching through T1[tafi ] is also

expected to be done in a constant number of operations on average.

By using just a hash table, this variant scales better in terms of memory than the previous

key recovery strategy. As far as performance is concerned, there is also less restriction on

generating high scoring candidates for 2g+1, because the order in which they are generated

during an enumeration is irrelevant; what is important is that they are included in the

global hash table. Hence, the attacker may run an instance of a non-optimal enumeration

algorithm to generate candidates for 2g + 1, e.g. by selecting a suitable interval in which

either the candidates’ scores lie or the candidates’ ranks lie (see algorithms described in

Section 3.2.3 and Section 3.2.5 respectively). With regard to the generation of candidates

for f , it may also be carried out by running a non-optimal enumeration algorithm since it

can then be customised to perform a more efficient search (see Chapter 3 for more details).

5.5.2.4 Enumerating Only Candidates for f

By exploiting further the relation aq · f = 2g + 1 and the properties of 2g + 1 as a filter,

the attacker can just enumerate candidates for f and not store any tables in memory. We

explain how this can be done next.

By following a similar procedure as described in Section 5.5.2.1, the attacker can generate
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key candidates fi for f from s′1. For each output fi, the attacker computes the polynomial

hi = aq · fi and

1. Verifies if its constant coefficient value is 1 and it has d1 coefficient values in {−2, 2}

and d2 coefficient values in {−4, 4} and its remaining coefficients values are zero. If

so, then the pair (fi,hi) has been found. Otherwise, go to 2.

2. Verifies if its constant coefficient value is in {−1, 3} and it has d1 − 1 coefficient

values in {−2, 2} and d2 coefficient values in {−4, 4} and its remaining coefficients

are zero. If so, then the pair (fi,hi) has been found. Otherwise, go to 3.

3. Verifies if its constant coefficient value is in {−3, 5} and it has d1 coefficient values

in {−2, 2} and d2 − 1 coefficient values in {−4, 4} and its remaining coefficients are

zero. If so, then the pair (fi,hi) has been found, or else keep searching for a suitable

fi.

If the algorithm finds a pair (fi,hi), then it is a candidate pair for (f , 2g + 1). In fact, it

is very likely to be the correct private key. To see why, let P be the set of all polynomials

having d1 coefficients values in {−1, 1}, d2 coefficient values in {−2, 2} and the remaining

coefficients values zero. We ask for the probability that some random f ∈ P has the

property that h = f · aq − 1 ∈ Rq is a polynomial having d1 coefficients with values in

the set {−2, 2}, d2 coefficients with values in the set {−4, 4} and its remaining coefficients

have value zero. Treating the coefficients of h as independent random variables that are

uniformly distributed modulo q, the probability that any particular coefficient is in the

set either {−2, 2} or {−4, 4} is 2/q, and that any particular coefficient is zero is 1/q, then

the probability we are asking for is about n!
d1!d2!(n−d1−d2)!(2/q)

d1+d2(1/q)n−d1−d2 , which is

negligible for common parameters. Therefore, this makes it unlikely that the approach

will find invalid candidates. For example, let us take the parameter set BLISS-I with

n = 512, q = 12289, d1 = 154, d2 = 0. In such case the probability we are asking for is

about
512!

154!0!(358)!
(2/12289)154(1/12289)358 ≈ 1.226× 10−1913.

If we now take the parameter set BLISS-IV with n = 512, q = 12289, d1 = 231, d2 = 31,

then the probability is about

512!

231!31!(250)!
(2/12289)262(1/12289)250 ≈ 7.954× 10−1823.

On the other hand, as far as performance is concerned, the attacker needs to choose the
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key enumeration algorithm to run in Phase II for generating candidates fi very carefully.

In this setting, OKEA would not be suitable, since it is inherently a serial algorithm and

requires a lot of memory (see Section 3.2.1.4 ). Instead, non-optimal key enumeration

algorithms would suit better in this setting, since they are parallelizable and memory-

efficient. Even though their outputs may not be given in the optimal order, the search

can be customisable by either selecting a suitable interval in which the outputs’ scores

lie, e.g. the key enumeration algorithm described in Section 3.2.3 or selecting a suitable

interval in which the outputs’ ranks lie, e.g. the key enumeration algorithm described

in Section 3.2.5. Therefore, we will use a non-optimal key enumeration algorithm during

Phase II. This algorithm will be a novel non-optimal key enumeration algorithm that

combines key features from various non-optimal key enumeration algorithms introduced

in Chapter 3 and will be described in Section 5.6.2.3.

Regarding the verification of hi, it can be simply done by computing h′i = hi−1 and then

running through each entry of the array representing h′i while counting its entries with

values in the set {−2, 2}, its entries with values in the set {−4, 4} and its entries with

values zero. If the three counting variables are equal to d1, d2 and n−d1−d2 respectively,

then hi is a valid candidate for 2g + 1. We will experimentally evaluate this key recovery

algorithm in Section 5.6.2.

5.5.3 Casting the Problem as an LWE Instance

In this section, we establish a connection between the key recovery problem in this par-

ticular case with a non-conventional instance of Learning with Errors Problem (LWE).

Let us consider the polynomials s′1, s
′
2 ∈ Rq obtained from the noisy arrays s′1 and s′2

respectively. We can re-write s′1 as s′1 = f + e1 and s′2 as s′2 = 2g + 1 + e2, where e1, e2

are error polynomials. Hence, we have

aq · s′1 = aq · (f + e1) = aq · f + aq · e1 = 2g + 1 + aq · e1 = s′2 − e2 + aq · e1.

Therefore

aq · s′1 − s′2 = aq · e1 − e2 ∈ Rq. (5.1)
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It is clear that the left-hand side of Equation (5.1) can be computed by the attacker, but

the attacker does not learn any additional information on the nature of the values the

coefficients of e1 and e2 may have. Now if the attacker computes a high scoring candidate

c1 from s′1 for f by using algorithm described in Section 5.5.2.1 and a high candidate c2

from s′2 for 2g + 1 by using algorithm described in Section 5.5.2.2, then there will be also

polynomials e′1 and e′2 such that c1 = f + e′1 and c2 = 2g + 1 + e′2. Therefore, the above

equation can be rewritten as

aq · c1 − c2 = aq · e′1 − e′2 ∈ Rq, (5.2)

where the polynomials e′1, e′2 probably have many coefficients with value zero and their

respective non-zero coefficient values are small. Indeed, since c1 was chosen to be a valid

candidate polynomial for f , it follows that the coefficients of e′1 have values in the set

V1 = {−4,−3, . . . , 3, 4}. Similarly, since c2 was chosen to be a valid candidate polynomial

for 2g + 1, then the coefficients of e′2 have values in the set V2 = {−8,−6, . . . , 6, 8}. We

can now re-write Equation (5.2) as

c = A · s + e mod q, (5.3)

where c ∈ Znq is the column vector associated with the polynomial aq ·c1−c2, s ∈ Znq is the

column vector associated with the polynomial e′1, e ∈ Znq is the column vector associated

with the polynomial −e′2 and A ∈ Zn×nq is the rotation matrix of aq, i.e.

A =



a0 −an−1 · · · −a1

a1 a0 · · · −a2

...
... · · ·

...

an−1 an−2 · · · a0


.

This shows that given a high-scoring candidate (c1, c2), the problem of recovering f and

h can be re-cast as a Ring-LWE instance (since if s can be found, then so can f and h).
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However, the noise distribution in this instance, arising from e, is not the usual one in the

LWE setting [59].

5.5.3.1 Meet-in-the-Middle Attacks

Here we will explore standard meet-in-the-middle attacks to solve LWE. This is a time-

memory trade-off approach and is therefore a faster method than a naive brute force at

the cost of an increased memory requirement [59].

The attacker starts off by splitting s =
(
sl|sr

)
and A =

(
Al|Ar

)
into two parts and

rewriting Equation (5.3) as

c = Al · sl + Ar · sr + e mod q, (5.4)

where sl ∈ V k
1 ⊂ Zkq , sr ∈ V n−k

1 ⊂ Zn−kq , Al ∈ Zn×kq , Ar ∈ Zn×(n−k)q and e ∈ V n
2 ⊂ Znq .

Note that if the attacker guessed the correct vector sl and the correct vector sr, then the

vector Al · sl would be “almost” equal to c−Ar · sr, because calculating Al · sl + e would

likely not make Al · sl to change considerably, since e is very likely to have many zero

entries and its non-zeros entries are in V2. In other words, c −Ar · sr and Al · sl differ

only by a vector e such that max(|e1|, |e2|, . . . , |en|) ≤ 8.

The attacker therefore may be able to choose some b such that given u = Al · sli and

v = c − Ar · srj , then MSBb(up) = MSBb(vp) with overwhelming probability for all

0 ≤ p ≤ n1 ≤ n − 1, where MSBb(x) denotes the b most significant bits of the binary

representation of x. Let us define a hash function H such that H(z) outputs a hash

value involving all the n1 MSBb(zi) values. Therefore, given u and v satisfying that

MSBb(up) = MSBb(vp) for all 0 ≤ p ≤ n1, then H(u) = H(v). Note the attacker may

use H to search for collisions. Indeed, the attacker may proceed to recover s by using H

and hash table T2, similar to the hash table T1 described previously, as follows.

The attacker first computes guesses for sl. For each candidate sli ∈ V k
1 , the attacker first

computes uli = Al · sli and then adds the array representation of sli as the first entry of

a linked list pointed to by T2[tli], calculating tli from H(uli) via using a map I outputting

indexes in the hash table T2 from hash values.
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To enumerate all possible candidates in V k
1 , the attacker first generates all the j-combinations

of k for 0 ≤ j ≤ k, where a j-combination of k is defined as a subset of j distinct elements

of the set {0, 2, 3, . . . , k−1} and is represented as (c0, c1, . . . cj−1). For each j-combination

(c0, c1, . . . cj−1), the attacker generates (|V1| − 1)j vectors of size k by running a modified

version of Algorithm 16 from Section 3.2.5. This is, the tweaked algorithm picks j val-

ues out of V1 \ {0}, assign them to the corresponding entries indexed by c0, c1, . . . , cj−1

and set the non-indexed entries to zero in each iteration. Therefore, once it has finished,

(|V1| − 1)j
(
k
j

)
vectors will be created for each j. In total, |V1|k =

∑k
j=0(|V1| − 1)j

(
k
j

)
.

Additionally, note that for each sli ∈ V k
1 , we must calculate n inner products, i.e. Al · sli.

Therefore, generating the table T2 costs |V1|k · (n + C1) operations, where C1 is a bound

on the number of operations for generating an element in V k
1 and storing it in T2.

Once the table is generated, the attacker then proceeds to compute guesses for sr. For

each candidate srj ∈ V
n−k
1 , the attacker computes vrj = c−Ar ·srj , calculates trj = I(H(vrj ))

and finally iterates through all the arrays stored at index trj of T2. For each array sli found,

the attacker treats si,j = (sli|srj) as a candidate secret. The attacker then calculates the

polynomial fi,j = c1 − si,j and then verifies if aq · fi,j is a valid candidate for 2g + 1 or

not, as described in Section 5.5.2.4. By construction, if T2 is queried for the guess vrj and

returns sli, then MSBb(v
r
j,p) = MSBb(u

l
i,p) for all 0 ≤ p ≤ n1. If there is no candidate

secret sli found, call for more samples and repeat.

Generating all possible guesses srj ∈ V
n−k
1 is done using a similar approach as the algorithm

used to enumerate all possible candidates in V k
1 . Therefore, generating an element in V n−k

1

has a cost of C1 operations on average.2 Also, note that for each candidate srj , the attacker

must calculate n inner products (plus a subtraction) and calculate an index trj in T2. Then

the attacker calculates a polynomial multiplication for each array found in the linked list

pointed to by T2[tli]. It is expected that the number of entries of any linked list pointed to by

any entry of T2 is bounded by a constant C2. Therefore, since there are |V1|n−k possible

guesses srj , the overall cost of the second part of the attack is |V1|n−k · (n + C1 + C2)

operations.

A drawback of the above algorithm is its memory requirements, as it requires storing |V1|k

vectors in memory. In the next section, we will describe a different algorithm to search

for collisions with only negligible memory requirements. This line of research started with

2Assuming k = n/2.
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Pollard’s ρ-method, which was originally applied to factoring and discrete logarithms [57],

but may be generalised to finding collisions in any function [70].

5.5.3.2 Parallel Collision Search

Parallel collision search is a method to search for colliding values x, y in the function values

F (x), F (y) for a given function F . This technique can be applied to meet-in-the-middle

attacks [70, 36, 71]. We will follow the description of the attack in [70].

The goal in collision search is to create an appropriate function F and find two differ-

ent inputs that produce the same output. F is required to have the same domain and

codomain, i.e. F : S → S, and to be sufficiently complex that it behaves like a random

mapping.

To perform a parallel collision search, each processor (thread) proceeds as follows: Select

a starting point x0 ∈ S and produce the trail of points xi = F (xi−1), for i = 1, 2, . . . until

a distinguished point xd is reached based on some easily testable distinguishing property,

e.g. a fixed number of leading zeros. For each trail we store the triples (x0, xd, d) in a

single common list for all processors (threads) and start producing a new trail from a

new starting point. Whenever we find two triples (x0, xt, t), (x′0, x
′
t, t
′) with xt = x′t and

x0 6= x′0 we have found a collision. These trails can be re-run from their starting values

to find the steps xi 6= xj for which F (xi) = F (xj). It can then be checked if this is the

collision we were looking for.

This method can fail in one of two ways: It is possible for one trail to collide with the

starting point of another trail in which case we have a “Robin Hood” which does not lead

to a collision in F and can be easily detected. The second type of hazard is when a trail

falls into a loop which contains no distinguished point. Left undetected, the processor

(thread) involved would cease to contribute to the collision search. This problem can be

handled by setting a maximum trail length, e.g. setting the maximum trail length to 20
θ

as suggested in [70], where θ is the proportion of points which satisfy the distinguishing

property, and abandoning any trail which exceeds the maximum length.

In a general meet-in-the-middle attack, we have two functions, F1 : W1 → S and F2 :

W2 → S, and we wish to find two particular inputs w1 ∈ W1 and w2 ∈ W2, such that
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F1(w1) = F2(w2). To apply parallel collision search to meet-in-the-middle attacks, we

construct a single function F which has identical domain and codomain to do the collision

search on. This function may be constructed from the functions F1 and F2 as follows. Let

I be the set {0, 1, . . . ,M − 1}, with M ≥ max{|W1|, |W2|}), and let D1 : I → W1 and

D2 : I →W2 be functions that map elements of the interval onto elements of W1 and W2

respectively.

Moreover, let G : S → I × {0, 1} be a mapping that maps elements from the range of Fi

to elements of I and a bit selector. The mapping G should distribute the elements of S

fairly uniformly across I × {0, 1}. As a good example for G, we may take a hash function

of whose output the most significant bit is split off. Therefore, we can now define the

function F as F (x, i) = G(Fi+1(Di+1(x))). This is a function whose domain is equal to

its codomain and on which collision search may be performed.

Parallel Collision Search on LWE In order to apply the previous idea to search for

sl and sr, we have to define a function F with the same domain and codomain. We first

define F1 as F1(x) = H(Al · x) and F2 as F2(x) = H(c−Ar · x), where H is the function

defined in Section 5.5.3.1. The domain of F1 is V k
1 , while the domain of F2 is V n−k

1 , and

both functions have the same codomain.

We next define |I| = max(|V1|k, |V1|n−k), the function D1 : I → V k
1 as a function mapping

an integer to a vector in V k
1 and the function D2 : I → V n−k

1 as a function mapping

an integer to a vector in V n−k
1 . The problem of assigning deterministic indices to binary

sequences of length n and weight d is well-known in the combinatorial literature, in par-

ticular we make use of number systems [43]. Indeed, let A be the array whose entries are

all the elements of V1, i.e. A[0] = −4, . . . , A[7] = 4. The function D1 will construct a

vector v ∈ V k
1 given a p ∈ I as follows. It first sets p′ = p mod |V1|k, then calculates

0 ≤ ci < |V1| such that p′ = c0 + c1 · |V1|+ . . .+ ck−1 · |V1|k−1, i.e. the representation of p′

on base |V1|. It then calculates v = [v0, v1, . . . , vk−1] by simply assigning the value A[ci]

to vi, and lastly returns the vector v. D2 may be defined in a similar manner.

Let Hg be a hash function. This can be any function with codomain larger than I.

Therefore, G(x) = (Hg(x) mod |I|)×MSB(Hg(x)) and
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F : I × {0, 1} 7−→ I × {0, 1}

(x, i) 7−→G(Fi+1(Di+1(x))).

The function F can now be used for a collision attack as follows: We define a distinguishing

property D on I and create trails starting from a point x0 ∈ I chosen at random. We run

trails until they reach a distinguished point xt ∈ D and then store the triple (x0, xt, t) in

a hash-list.

Whenever we find two triples (x0, xt, t), (x′0, x
′
t, t
′) with xt = x′t and x0 6= x′0 we have

found a collision. The trails then will be re-run from their starting values to find the steps

xi 6= xj for which F (xi, bi) = F (xj , bj).

We then compute s′ = (sl|sr) with either sl = Dbi+1(xi) and sr = Dbj+1(xj) when bi = 0

and bj = 1 or sl = Dbj+1(xj) and sr = Dbi+1(xi) when bj = 0 and bi = 1. It is then

checked if f ′ · aq is a valid candidate for 2g + 1 or not, where f ′ = c1 − s′. If so, then

return f ′ and f ′ · aq. If not, the triple (x0, xt, t) is replaced by (x′0, x
′
t, t
′) in the hash-list.

5.5.3.3 Hybrid attack on LWE

Another related attack idea is to have a hybrid algorithm by combining lattice-reduction

and meet-in-the-middle techniques. This attack idea has been applied against NTRU

in [35], as well as on special instances of the Learning with Errors (LWE) problem in [16,

72]. With notation as in Equation (5.4), to recover s, the attacker first tries to guess sl and

solve the remaining LWE instance c′ = c−Al ·sl = Ar ·sr+e mod q. The newly obtained

LWE instance may be solved by solving a close vector problem in the lattice Lq(A
r). In

more detail, c′ = Ar · sr + qw + e, for some vector w ∈ Zn, is close to the lattice vector

Ar · sr + qw ∈ Lq(A
r), since e is very likely to have many zeros and its non-zero entries

are small. Hence one can hope to find e by running Babai’s Nearest Plane algorithm in

combination with a sufficient basis reduction as a pre-computation. Moreover, the attacker

may speed up the guessing part of the attack by using a Meet-in-the-Middle approach, i.e.

guessing vectors sl1 ∈ V k
1 and sl2 ∈ V k

1 such that sl = sl1 + sl2.
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5.5.3.4 Combining Lattice Techniques and Key Enumeration

In this section we expand on a hybrid attack similar to the previously described. First we

will give a general description of the attack by following the description in [72] and then

show a manner of applying it to our problem of recovering the private key in the cold boot

attack setting.

According to [72], the goal of this hybrid attack is to find a shortest vector in a lattice L,

given a basis of L of the form

B′ =

 B C

0 Ik

 ,

where 0 < k < m, B ∈ Z(m−k)×(m−k), and C ∈ Z(m−k)×k.

Let v be a short vector contained in the lattice L. Let us split the short vector v into two

parts v = (vl|vr) with vl ∈ Zm−k and vr ∈ Zk. The left part vl of v will be recovered

with lattice techniques (solving BDD problems), while the right part vr will be recovered

by guessing during the attack. Because of the special form of the basis B′, we have that vl

vr

 = B′

 x

vr

 =

 B · x + C · vr

vr

 ,

for some vector x ∈ Zm−k. Thus C · vr = −B · x + vl. Note that C · vr is close to the

lattice L(B), since it only differs from the lattice by the short vector vl. Therefore vl

may be recovered solving a BDD problem if vr is known. The idea now is that if we can

correctly guess the vector vr, then we can hope to find vl by using Babai’s Nearest Plane

algorithm, i.e. NPB(C ·vr) = vl if the basis B is sufficiently reduced. The guessing of vr

is normally carried out by a meet-in-the-middle attack [35, 16, 72]. Note that the lattice

L(B) in which we need to solve BDD has smaller dimension, i.e. m−k instead of m. Thus,

the newly obtained BDD problem is expected to be easier to solve than the original SVP

instance.

Returning to our problem of recovering the private key, let us assume that aq is invertible
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5.5 Mounting Cold Boot Key Recovery Attacks

in Rq, which is the case with very high probability. Therefore, we may obtain the equation

f = (2g + 1)aq
−1 ∈ Rq. Now let us set v = (f |2g + 1) and so

 f

2g + 1

 =

 (2g + 1)aq
−1 + qw

2g + 1

 =

 qIn A

0 In


 w

2g + 1

 ,

for some w ∈ Zn, where A is the rotation matrix of a−1q , i.e.

A =



a0 −an−1 · · · −a1

a1 a0 · · · −a2

...
... · · ·

...

an−1 an−2 · · · a0


,

and

qIn =



q 0 · · · 0

0 q · · · 0

...
... · · ·

...

0 0 · · · q


.

Hence, v ∈ L with

L = L


 qIn A

0 In


 .
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Since the basis of L has the required form and f is a short vector,3 the attacker may

perform the hybrid attack to try to recover the vector v by performing the guessing of the

vector 2g + 1 via running an instance of a key enumeration algorithm. Specifically, the

attacker now uses the algorithm described in Section 5.5.2.2 to generate valid and high

scoring candidate polynomials hi for 2g + 1 from s′2. For each hi, the attacker calculates

NPB(aq
−1 · hi) = vl, where B = qIn. If f ′ = vl mod q is a valid candidate for f , then

the algorithm has found the pair (f ′,hi).

On the other hand, as far as performance is concerned, the attacker can perform the

guessing of 2g + 1 in parallel by carefully selecting which key enumeration algorithm to

run. As in other settings, the OKEA algorithm would not be appropriate, since it is

inherently a serial algorithm and requires a lot of memory as discussed in Section 3.2.

However, non-optimal key enumeration algorithms would suit better, since they can be

customised to do a parallel and memory-efficient search by either selecting a suitable

interval in which the outputs’ scores lie, e.g. the algorithm described in Section 3.2.3, or

selecting a suitable interval in which the outputs’ ranks lie, e.g. the algorithm described

in Section 3.2.5.

Note that this technique is rather similar to the key recovery algorithm introduced in

Section 5.5.2.4 (which will be tested in Section 5.6). In the sense that both techniques

perform an enumeration of candidates (one does for f , while the other does for 2g + 1)

and then each uses its corresponding oracle to find a valid pair (fi,hi).

5.6 Experimental Evaluation

5.6.1 Simulations

All the source code of the implemented algorithms is written in Java. In particular, we

make use of some implemented key enumeration algorithms described in Chapter 3. To

simulate the performance of our key recovery algorithms, we generate a private key (ac-

cording to the format), flip its bits according to the error probabilities α, β, and then run

our chosen key recovery algorithm. We refer to such a run attempting to recover a single

private key as a simulation. For our experiments, we ran our simulations on a machine

with Intel Xeon CPU E5-2667 v2 cores running at 3.30GHz with 8 cores.

3This follows because of its form.
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5.6.2 Key Recovery Via Key Enumeration

In this section, we will show results obtained from running the key recovery algorithm

introduced in Section 5.5.2.4.

5.6.2.1 Parameters

For the simulations, we used two parameter sets: BLISS-I with n = 512, q = 12289,

d1 = 154, d2 = 0 and BLISS-IV with n = 512, q = 12289, d1 = 231, d2 = 31.

5.6.2.2 Setup

Recall that we have access to s′1 that is a bit string of size W = 8(512) = 4096. We first

sets a chunk to be an 8-bit string, i.e. w = 8, and so there are n = 512 chunks. When

using the parameter set BLISS-I, we set the candidates for a chunk to be the integers in

the set {−1, 0, 1}. On the other hand, when using the parameter set BLISS-IV, we set the

candidates for a chunk to be the integers in the set {−2,−1, 0, 1, 2}. Also, we set a block

to be a successive sequence of 64 chunks, resulting in 8 blocks. Besides, we set the number

of candidates blsize generated for any block in Phase I to 2r, for r = 8, 9, 10. Thus,

eight candidate lists, each of size 2r, will be obtained from Phase I. Regarding the key

enumeration algorithm to be employed in Phase II, we will make use of a key enumeration

algorithm that combines key features from the key enumeration algorithms discussed in

Chapter 3. We next describe our particular choice of key enumeration algorithm.

5.6.2.3 Key Enumeration Algorithm for Phase II

First note that because of the nature of the log-likelihood function employed to calculate

scores, many chunk candidates of any given list Lbi output by any Phase I (by OKEA)

will have a repeated score value. Taking advantage of this observation, we will design an

algorithm to both efficiently count and enumerate all the key candidates that any Phase

II will consider in any given interval [a, b].

First we define a “compact” list as a 2-tuple of the form (rscore, rlist), where rscore is

a real value representing a repeated score, while rlist is a list of chunk candidates such
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that each chunk candidate has the repeated score as its score. From each list Lbi , with

0 ≤ i < nb, we can obtain Si “compact” lists Ciki , with 0 ≤ ki < Si. We can then pick a

“compact” list Ciki per list Lbi and simultaneously compute the sum of scores and product

of counts (i.e. the sizes of Ciki .rlist) to produce a 3-tuple of the form (tscore, tnumber,

rtable) and insert it into the list Lbt. The component tnumber holds the total number of

key candidates that will have the total accumulated score tscore, while rtable is a table

whose size is the number of blocks and whose entry i points to the list Ciki . rlist. Note

that storing the rtable in each 3-tuple avoids doing a “Bin Decomposition” process as

Algorithm 15 from Section 3.2.5.

Since the number of “compact” lists, Si, obtained from each list Lbi is less than 10 on

average in our experiments, the total number of entries of Lbt,
∏nb−1
i=0 Si, is not expected

to be considerably large if the number of blocks, nb, is selected suitably. Furthermore,

according to our experiments, it is preferable to select the number of blocks to be less than

12 so as not to negatively affect the overall performance because of the number of entries

of Lbt. Also, note that all the entries of the list Lbt may be ordered in decreasing order

based on the component tscore. So we may obtain an efficient algorithm for counting and

enumerating the key candidates in any given interval that our Phase II search algorithm

would need to consider.

Given the interval [a, b], the algorithm first calculates the set of indices J such that the

value tscorej from any entry with index j ∈ J of Lbt lies in the given interval and then

proceeds as follows.

On the one hand, as for counting, the algorithm will iterate through the indices j ∈ J

while summing the value tnumberj from the entry with index j of Lbt. On completion,

it will return the total sum. On the other hand, as for enumeration, the algorithm will

iterate through the indices j ∈ J while generating all possible key candidates that can be

formed from the table rtablej obtained from the entry with index j of Lbt. This can be

done by simply presenting the table rtablej as input to the function processKF, which

is defined in Algorithm 16 from Section 3.2.5.

When enumerating, the order in which the algorithm iterates through the indices j ∈ J

helps in guaranteeing some quality in the order in which the key candidates will be gener-

ated. Indeed, assuming Lbt is ordered in decreasing order based on the component tscore,
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the set J once calculated may be seen as an array of the form [jstart, jstart + 1, . . . , jstop].

Therefore, the algorithm will first generate all key candidates whose accumulated score

is equal to the value tscorejstart from the entry with index jstart of Lbt, followed by all

key candidates whose accumulated score is equal to the value tscorejstart+1 from the entry

with index jstart+1 of Lbt and so on. Its behaviour will be similar to the manner in which

Algorithm 12 from Section 3.2.4 works.

Moreover, suppose we would like to have t independent tasks T1, T2, T3, . . . , Tt executing

in parallel to enumerate all key candidates whose total accumulated scores are in a given

interval [B1, B2]. After creating the array J = [jstart, jstart + 1, . . . , jstop], we can partition

the array J into t disjoint sub-arrays Ji, and set each task Ti to iterate through the indices

ji ∈ Ji while generating all possible key candidates that can be formed from the table

rtable obtained from the entry with index ji of Lbt. A consequence of the independence

of the tasks is that the key candidates will be generated in no particular order, i.e. this

algorithm will lose its near-optimality property when running in parallel.

Recall from Section 3.2.4.2 that since we have access to the number of candidates to be

enumerated, tnumberj , for the score tscorej per index j ∈ J beforehand, we may design

a partition algorithm that could almost evenly distribute the workload among the tasks.

The partition algorithm directly follows from the algorithm outlined in Section 3.2.5.3,

viz.

1. Set i to 0.

2. If J is non-empty, pick an index j in J such that tnumberj is the maximum number.

Or else return J0, J1, . . . , Jt.

3. Remove j from the array J and add it to the array Ji.

4. Update i to (i+ 1) mod t and go back to Step 2.

5.6.2.4 Results

Complete Enumeration Here we perform simulations to estimate the expected success

rate of our overall algorithm without actually executing the expensive Phase II. Let pi

denote the probability that the correct chunk candidate is actually found in the list Lbi ;

pi will be a function of r. It follows that the probability that our Phase II algorithm

outputs the correct candidate for f when performing a complete enumeration over all 28r
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(b) BLISS-IV parameters.

Figure 5.2: Expected success rate for a full enumeration for α = 0.001. The y-axis
represents the success rate, while the x-axis represents β.

candidate keys is given by p =
∏8
i=1 pi. This simple calculation gives us a way to perform

simulations to estimate the expected success rate of our overall algorithm without actually

executing the expensive Phase II. We simply run many simulations of Phase I for the

given value of blsize (each simulation generating a fresh private key and perturbing it

according to α, β), and, after each simulation, test whether the correct chunks of f are to

be found in the lists Lbi .

Figure 4.2 shows the success rates for complete enumeration for values of blsize = 2r

for r ∈ {8, 9, 10}. As expected, the greater the value of blsize, the higher the success

rate for a fixed α and β. Also, note that when β increases, the success rate drops to zero.

This is expected since it is likely that at least one chunk of f will not be included in the

corresponding lists coming out of Phase I when the noise levels are high, at which point

Phase II inevitably fails. Additionally, note that for BLISS-IV parameters the success

rate will drop quickly (for β = 0.06), while for BLISS-I parameters the success rate will

drop for β ≥ 0.09. This is expected because d2 = 0 for the latter case and so the set of

candidates for a chunk was set to {−1, 0,−1}. This case is similar to the case of NTRU

described in Section 4.5.5.

Note that each data point in this figure (and all figures in section) were obtained using

100 simulations. Note that the running times for Phase I are very low on average (≤ 50

ms), since that phase consists of calling the OKEA for each of the eight lists with blsize

in the set {256, 512, 1024}.
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Figure 5.3: Expected success rate for a 240 enumeration for α = 0.001. The y-axis
represents the success rate, while the x-axis represents β.

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2^35	enum

2^40	enum

Full	enum

(a) BLISS-I parameters.

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.02 0.03 0.04 0.05 0.06

2^35	enum

2^40	enum

Full	enum

(b) BLISS-IV parameters.

Figure 5.4: Expected success rate for various enumerations for α = 0.001 and
blsize = 1024. The y-axis represents the success rate, while the x-axis represents β.

Partial Enumerations Here, we only considered Class II intervals, i.e. intervals of the

form [max−W,max]. To calculate a suitable value for W , we exploit the key enumeration

algorithm used in Phase II to estimate it as a function of the total number of keys

considered, K. Specifically, given a value K, we run the counting method to find a suitable

index iK of Lbt. Therefore, the key enumeration will run through the indices 0, 1, . . . , iK .

Since we can easily estimate the speed at which individual keys can be assessed, we can

also use this approach to control the total running time of our algorithms.

Figure 5.3 shows how the success rate of our algorithm varies for different values of blsize.

We observe the same trends as for full enumeration, i.e. the greater is blsize, the higher is
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the success rate for a fixed α and β. Also, for larger values of (α, β), the success rate drops

rapidly to zero. Besides, Figure 5.4 shows the success rates for a complete enumeration and

partial enumerations with 235 keys and 240 keys. As expected, the success rate for a full

enumeration is greater than for the partial enumerations (but note that a full enumeration

here would require the testing of up to 280 keys, which may be a prohibitive cost).

Additionally, note that for BLISS-IV parameters the success rate will drop quickly (for

β = 0.06 ), while for BLISS-I parameters the success rate will drop for β ≥ 0.09. As noted,

this is expected because d2 = 0 for BLISS-I parameters and so the set of candidates for a

chunk was set to {−1, 0,−1}.

Concerning running times, we find that our code is able to test between 600 and 1000

candidates per millisecond per core during Phase II in our experiments.

5.7 Chapter Conclusions

In this chapter, we initiated the study of cold boot attacks on the BLISS signature scheme,

a member of the same broad family of schemes that operate over polynomial rings. Our

evaluation focused on an existing BLISS implementation provided by the strongSwan

project. We first proposed a key recovery algorithm via combining key enumeration al-

gorithms and other techniques. In particular, we made use of the general key recovery

strategy developed in Chapter 4 as a core algorithm. We then established a connection

between the key recovery problem in this particular case and an instance of Learning with

Errors Problem (LWE). Additionally, we explored other techniques based on the meet-in-

the-middle generic attack to tackle this instance of LWE and also showed a key recovery

strategy combining key enumeration and lattice techniques. We then experimented with

one of the introduced key recovery algorithms to explore its performance for a range of

parameters and found that our key recovery algorithm was able to tolerate a noise level

of α = 0.001 and β = 0.09 for a parameter set when performing a 240 enumeration. We

did not run experiments for each introduced key recovery algorithm, however it may be

interesting to experimentally compare all these algorithms. Alternatively, it may also be

interesting to pursue the research line of developing new key recovery techniques by com-

bining key enumeration algorithms with other techniques for solving Bounded Distance

Decoding, e.g. lattice enumeration [25]. Another possible direction for future works is ex-
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ploring key recovery algorithms exploiting the extra information stored in memory, such

as the NTT of the coefficients of the public polynomial (2g + 1)/f .
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Chapter 6

Cold Boot Attacks on Rainbow
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In this chapter, we analyse the feasibility of cold boot attacks against the Rainbow signature

scheme. We will review the in-memory formats for the private key of this scheme in two

implementations: the Reference implementation and the Bouncy Castle implementation.

We will propose a key recovery strategy that exploits the structure of this signature scheme

for splitting the components of the private key into chunks. By using key enumeration

algorithms, we will generate high scoring candidates for each of these components and

combine them to obtain high scoring candidates for the private key.

6.1 Introduction

In this chapter, we will study the Rainbow signature scheme [19] in the cold boot attack

setting. This scheme is a member of the family of asymmetric cryptographic primitives

based on multivariate polynomials over a finite field K. We believe this to be the first time

that this scheme is analysed in this setting, however there is a very recent study evaluating

other type of side channel attacks on a variant of this signature scheme [62]. Our work is

the continuation of the trend to develop cold boot attacks for different schemes as revealed
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by the literature discussed at length in Section 2.2. But it is also the continuation of the

evaluation of the leading post-quantum candidates against this class of attack. Such an

evaluation should form a small but important part of the overall assessment of schemes in

the NIST selection process for post-quantum algorithms. In particular, this scheme has

been submitted as candidate to the ongoing NIST standardisation process of post-quantum

signature schemes.1

As noted earlier, in the cold boot attack setting, any content retrieved from computer’s

main memory will likely be perturbed due to physical effects on the main memory after

removing the power from the computer. Therefore, having knowledge about the exact

formats in which the private key of the scheme is stored in memory is essential to developing

key recovery attacks. The attacker’s goal is to recover the original private key from a bit-

flipped version of it so that it is necessary either to propose natural formats in which private

key would be stored in memory or to review specific implementations of Rainbow to learn

more about the formats used to store the private key. We adopt the latter approach,

and we study two distinct implementations. The first, the Reference implementation, is

written in C language and also has been included in the package submitted to the NIST

process. The second is a Java implementation included in the popular Bouncy Castle

Java crypto library. Each of these implementations stores its private keys in memory in

slightly different way.

Our key recovery algorithm exploits the structure of this signature scheme, which allows us

to split the private key into components. For each component, we then split it into chunks,

and create log-likelihood estimates for each candidate value for each of the chunks. Each

such estimate can be regarded as a per-chunk score. A log-likelihood estimate (or score) for

a candidate for the complete component can then be computed by summing the per-chunk

scores across the different chunks. By making use of the general key recovery strategy

developed in Chapter 4 as a core algorithm, we create lists of high scoring candidates for

each component and then, by using collision techniques and the structure of the public

key, we verify which combination of high scoring component candidates may be the private

key.

1See http://csrc.nist.gov/groups/ST/post-quantum-crypto/ for details of the NIST process.
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6.2 Multivariable Cryptosystems

The existing multivariable cryptosystems can roughly be divided into explicit cryptosys-

tems and implicit cryptosystems. Both can be used for one of two purposes: 1) encryption

or 2) electronic signature [21].

Let K be a finite field. In an explicit multivariable public key cryptosystem, we have a

map F from Kn to Km such that

F (x1, . . . , xn) = (F (1)(x1, . . . , xn), . . . , F (m)(x1, . . . , xn)) = (y1, . . . , ym),

where F (i)(x1, . . . , xn) is a polynomial in x1, . . . , xn. The key construction for this type of

system is that we first build a map f from Kn to Km such that

f(x1, . . . , xn) = (f (1)(x1, . . . , xn), . . . , f (m)(x1, . . . , xn)),

where f (i)(x1, . . . , xn) is a polynomial in x1, . . . , xn, and the equation f(x1, . . . , xn) =

(f (1)(x1, . . . , xn), . . . , f (m)(x1, . . . , xn)) = (a1, . . . , am), can be solved easily. In other words

we can find a pre-image of f easily.

Then F is constructed as F = L1 ◦ f ◦L2, where L1 is a randomly-chosen, invertible affine

map from Km to Km, i.e. L1(x) = x ·A1 + c1, where A1 is an m×m invertible matrix

and c1 ∈ Km; and L2 is a randomly-chosen, invertible linear map from Kn to Kn, viz.

L2(x) = x ·A2 + c2, where A2 is an n× n invertible matrix and c2 ∈ Kn.

In this case, the public key consists of the m polynomial components of F and the field

structure of K. The secret key mainly consists of L1 and L2. The key idea is that L1 and

L2 serve the purpose of ‘hiding’ the map f , which otherwise could be solved easily. In

some systems the function f may be well-known, whereas in others f itself might be kept

secret. In order to encrypt a message x′, one calculates F (x′). To decrypt a message y′,

one solves the equation F (x′1, ..., x
′
n) = y′.

In the case of electronic signature, to sign a message y′, one solves the above equation,

whose solution we denote by x′. To verify if it is a legitimate signature, one just needs to

check if indeed F (x′1, ..., x
′
n) = y′.
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Due to the design, we can see that we can find a pre-image of y′ by applying in order

(L1)−1, f−1 and (L2)−1.

6.2.1 The Oil and Vinegar Signature Scheme

In this section, we will describe this scheme introduced in [56].

Definition 6.2.1 Let us set o, v ∈ N, n = o+ v and define an Oil-Vinegar polynomial as

p(x1, ..., xn) =
v∑
i=1

v∑
j=1

αij · xi · xj +
v∑
i=1

n∑
j=v+1

βij · xi · xj +
n∑
i=1

γi · xi + η,

where x1, . . . , xv are called Vinegar variables, while xv+1, . . . , xn are called Oil variables.

Key Generation. Let K be a finite field and o, v ∈ N. Let us set n = o+v. The central

map f : Kn → Ko consists of o Oil-Vinegar polynomials f (1), . . . , f (o), i.e.,

f (k) =

v∑
i=1

v∑
j=1

α
(k)
ij · xi · xj +

v∑
i=1

n∑
j=v+1

β
(k)
ij · xi · xj +

n∑
i=1

γ
(k)
i · xi + η(k),

with α
(k)
ij , β

(k)
ij , γ

(k)
i and η(k) ∈ K(1 ≤ k ≤ o).

We compose f with a randomly chosen invertible affine map L2 : Kn → Kn. We then

define the public key as F = f ◦ L2 : Kn → Ko and the private key as f and L2.

Signature Generation. Given a message m, then

1. Use a hash function H : {0, 1}∗ → Ko to compute y′ = H(m).

2. Compute a pre-image x ∈ Kn of y′ under the central map f .

3. Compute the signature x′ ∈ Kn by x′ = L−12 (x).
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At the step 2, we need to compute a pre-image x ∈ Kn of y′ = (y′1, . . . , y
′
o) under the

central map f . Note that the polynomials f (k), 1 ≤ k ≤ o, are of the form

v∑
i=1

v∑
j=1

α
(k)
ij · xi · xj +

v∑
i=1

n∑
j=v+1

β
(k)
ij · xi · xj +

n∑
i=1

γ
(k)
i · xi + η(k).

Hence, if we choose the random values r1, . . . , rv for the Vinegar variables x1, . . . , xv re-

spectively and substitute them into the polynomials f (k), we then have

y′k =
v∑
i=1

v∑
j=1

α
(k)
ij · ri · rj +

v∑
i=1

n∑
j=v+1

β
(k)
ij · ri · xj +

v∑
i=1

γ
(k)
i · ri +

n∑
i=v+1

γ
(k)
i · xi + η(k).

Each equation is linear in the o Oil variables xv+1, . . . , xn. Therefore, altogether we get

o linear equations in the o variables xv+1, . . . , xn. Hence, xv+1, . . . , xn may be recovered

by Gaussian elimination. If the system has no solution, we choose other values for the

Vinegar variables x1, . . . , xv and try again.

As an example, let us set K = F7, o = v = 2 and f = (f (1), f (2)) with

f (1)(x) = 2x21 + 3x1x2 + 6x1x3 + x1x4 + 4x22 + 5x2x4 + 3x1 + 2x2 + 5x3 + x4 + 6,

f (2)(x) = 3x21 + 6x1x2 + 5x1x4 + 3x22 + 5x2x3 + x2x4 + 2x1 + 5x2 + 4x3 + 2x4 + 1.

The goal is to find a pre-image x = (x1, x2, x3, x4) of y′ = (3, 4) under the central map F .

We choose random values for x1 and x2, e.g., (x1, x2) = (1, 4), and substitute them into

f (1) and f (2). Hence, f (1)(1, 4, x3, x4) = 4x3 + x4 + 4, f (2)(1, 4, x3, x4) = 3x3 + 4x4. We

now need to solve the following linear system,

4x3 + x4 + 4 = 3,

3x3 + 4x4 = 4.

The solution for this system is (x3, x4) = (1, 2). Therefore, a pre-image of y′ is x =

(1, 4, 1, 2).

Signature Verification. Given a message m and a signature x′ ∈ Kn, then

1. Compute w = H(m).

2. Compute w′ = F (x′).
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3. Accept the signature iff w′ = w.

The original scheme was broken in [41]. However, a variant of it, introduced in [40], has not

been broken since 1999. This variant is called “Unbalanced Oil and Vinegar” (UOV), since

it has more “Vinegar” variables than “Oil” variables. Although there is a high confidence

in regard to its security, it is not the fastest multivariate scheme, since it has very large

key sizes and large signatures.

6.2.2 Rainbow, a Signature Scheme

This scheme was introduced in 2005 by J. Ding and D. Schmidt [19]. It is a multi-layer

version of UOV, featuring a reduced number of variables in the public key, smaller key sizes,

and smaller signatures. It also is very efficient, much faster than RSA, and suitable for

low-cost devices. Moreover, no weaknesses have been found on it since its introduction.

Furthermore, it is a candidate in the ongoing standardisation process of post-quantum

signature schemes. We will describe it by following the description of [19].

Let V be the set {1, 2, 3, ..., n}. Let v1, . . . , vu be u integers such that 0 < v1 < v2 < · · · <

vu = n, and define the sets of integers Vl = {1, 2, ..., vl} for l = 1, ..., u, so that we have

V1 ⊂ V2 ⊂ · · · ⊂ Vu = V.

The number of elements in Vi is vi. Let oi = vi+1 − vi, for i = 1, . . . , u− 1. Let Oi be the

set such that Oi = Vi+1 − Vi for i = 1, . . . , u − 1. Let Pl be the linear space of quadratic

polynomials spanned by polynomials of the form

∑
i,j∈Vl

αi,jxixj +
∑

i∈Vl,j∈Ol

βi,jxixj +
∑
i∈Vl+1

γixi + η.

We can see that these are Oil and Vinegar type of polynomials such that xi, i ∈ Ol are

the Oil variables and xi, i ∈ Vl are the Vinegar variables. We call xi, i ∈ Ol an l− th layer

Oil variable and xi, i ∈ Vl an l − th layer Vinegar variable. We call any polynomial in Pl

an l-th layer Oil and Vinegar polynomial. Clearly we have Pi ⊂ Pj for i < j.
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Therefore, each Pl, for l = 1, ..., u − 1, is a set of Oil and Vinegar polynomials. Each

polynomial in Pl has xi, i ∈ Ol as its Oil variables and xi, i ∈ Vl as its Vinegar variables.

The Oil and Vinegar polynomials in Pi can be defined as polynomials such that xi ∈ Oi

are the Oil variables and xi, i ∈ Vi are the Vinegar variables. This can be illustrated by

the fact that Vi+1 = {Vi, Oi}.

Now, we will define the central map f of the Rainbow signature scheme. It is a map f

from Kn to Kn−v1 such that

f(x1, . . . , xn) = (f (1)(x1, . . . , xn), . . . , f (n−v1)(x1, . . . , xn)),

where the first o1 polynomials f (1), ..., f (o1) are taken from P1, the next o2 polynomials

f (o1+1), ..., f (v2) are taken from P2, and so on. Therefore, f consists of u− 1 layers of Oil

and Vinegar constructions. From this, we build a rainbow of our variables:

[x1, . . . , xv1 ]; {xv1+1, . . . , xv2}.

[x1, . . . , xv1 , xv1+1, · · · , xv2 ]; {xv2+1, . . . , xv3}.

[x1, . . . , xv1 , xv1+1, . . . , xv2 , xv2+1, . . . , xv3 ]; {xv3+1, · · · , xv4}.
... ;

...

[x1, . . . , . . . , xv1 , . . . , xv2 , · · · , xv3 , . . . , . . . , . . . , xvu−1 ]; {xvu−1+1, · · · , xvu}.

Each row above represents a layer of the rainbow. For the l-th layer above, the ones in []

are Vinegar variables, the ones in {} are Oil variables and each layer’s Vinegar variables

consists of all the variables in the previous layer. We call f a Rainbow polynomial map

with u− 1 layers.

Let L1 and L2 be two randomly chosen invertible affine maps, L1 is on Kn−v1 and L2

on Kn. F is defined by F (x1, ..., xn) = L1 ◦ f ◦ L2(x1, ..., xn), which consists of n − v1

quadratic polynomials with n variables.

Key Pair For the Rainbow signature scheme, the public key consists of the n − v1

polynomial components of F and the field structure of K. The private key consists of the

maps L1, L2 and f .
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Signature Generation. Given a message m, then

1. Use a hash function H : {0, 1}∗ → Kn−v1 to compute y = H(m) ∈ Kn−v1 .

2. Compute ȳ = L−11 (y) ∈ Kn−v1 .

3. Compute a pre-image x ∈ Kn of ȳ under the central map f .

4. Compute the signature x′ ∈ Kn by x′ = L−12 (x).

At the third step of the signature generation algorithm, we need to invert f . Hence, we

need to solve the equation

f(x1, . . . , xn) = ȳ = (ȳ1, . . . , ȳn−v1).

We first randomly choose the values r1, . . . , rv1 for the variables x1, ..., xv1 and plug them

into the first layer of o1 equations given by

f (1)(r1, . . . , rv1 , . . . , xn) = ȳ1,

... =
...

f (o1)(r1, . . . , rv1 , . . . , xn) = ȳo1 .

This produces a set of o1 linear equations with o1 variables, xv1+1, . . . , xv2 , which we solve

to find the values of xv1+1, · · · , xv2 . Then we have all the values of xi, i ∈ V2. Then we

plug these values into the second layer of polynomials, which will again produce o2 number

of linear equations, which we then solve to find the values of all xi, i ∈ V3. We repeat the

procedure until we find a solution. If at any time, a set of linear equations does not have

a solution, we will start from the beginning again by choosing another set of values for

x1, . . . , xv1 . We will continue until we find a solution.

Signature Verification. Given a message m, a signature x′ ∈ Kn, then

1. Compute w = H(m).

2. Compute w0 = F (x′).

3. Accept the signature x′ if and only if w0 = w.

The NIST submission suggests using parameter sets of the form (K, v1, o1, o2). In partic-

ular, its authors propose nine parameter sets for Rainbow in [20], e.g. (F256, 40, 24, 24).
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In Section 6.3.1, we expand on all the proposed parameters to use in this scheme.

6.3 Rainbow Implementations

In this section, we will review two implementations. The first is the Reference imple-

mentation by Jintai Ding et al., while the second is the implementation provided by the

Bouncy Castle crypto package.

6.3.1 The Reference Implementation

This is a reference implementation by Jintai Ding et al., which has been written in the C

language. This implementation has also been included in the package submitted to the

NIST process.2 In this section, we will review it, focusing on the in-memory format this

particular implementation makes use of to store a rainbow private key.

Firstly we will discuss how this implementation stores elements of a finite field K, consid-

ering that K may be F16, F256, F31.

1. Elements of F16 are stored in 4 bits as linear polynomials over F4. The constant

term of the polynomial is therefore stored in the 2 least significant bits. Elements

of F4 are stored in two bits as linear polynomials over F2. The constant term of the

polynomial is therefore stored in the least significant bit. Two adjacent F16 elements

are packed into a single byte. Therefore, a sequence of F16 elements, of size Ns, is

converted into a bit-string with size 4 · Ns. This bit-string is therefore stored as a

byte array with dNs/2e entries.

2. Elements of F256 are stored in a byte as linear polynomials over F16. The constant

term of the polynomial is therefore stored in the 4 least significant bits. Therefore,

a sequence of F256 elements, with size Ns, is converted into a bit-string with size

8 ·Ns. This bit-string is hence stored as a byte array with Ns entries.

3. Elements of F31 are stored as integers in the range [0, 30]. Any number out of

this range, for example 41, is considered as a format error. In order to convert a

sequence of F31 elements, with size Ns, into a bit-string, this implementation stores

3 of elements F31 in two bytes. In case the size of such sequence, Ns, is not divisible

2See https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.
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by three, this implementation stores each of the last Ns mod 3 elements into 8 bits.

Hence, the length of the bit-string needed to store this sequence can be calculated as

(Ns div 3) · 16 + (Ns mod 3) · 8. This bit-string is therefore stored as a byte array

with 2 · (Ns div 3) + (Ns mod 3) entries.

Secondly we will discuss how this implementation stores each component of a private key,

namely L1, L2, f . The affine map L1 : Kn−v1 → Kn−v1 will be represented as a sequence

of the form

a
(1)
1,1, a

(1)
2,1, . . . , a

(1)
(n−v1),1, a

(1)
1,2, . . . , a

(1)
(n−v1),(n−v1), c

(1)
1 , . . . , c

(1)
(n−v1).

Therefore, the number of field elements in the sequence representing L1 will be (n− v1) ·

(n− v1 + 1). In memory, this sequence will be stored in two consecutive byte arrays, mats

and vecs. The elements a
(1)
1,1, a

(1)
2,1, . . . , a

(1)
(n−v1),1, a

(1)
1,2, . . . , a

(1)
(n−v1),(n−v1) will be stored in the

byte array mats, while the remaining elements c
(1)
1 , . . . , c

(1)
(n−v1) will be stored in the byte

array vecs. The size of each byte array depends on the underlying field K.

Likewise, the affine map L2 : Kn → Kn will be represented as a sequence of the form

a
(2)
1,1, a

(2)
2,1, . . . , a

(2)
n,1, a

(2)
12 , . . . , a

(2)
n,n, c

(2)
1 , . . . , c(2)n .

So the number of field elements in the sequence representing L2 will be n · (n + 1). In

memory, this sequence will be stored in two consecutive byte arrays, matt and vect. The

elements a
(2)
1,1, a

(2)
2,1, . . . , a

(2)
n,1, a

(1)
1,2, . . . , a

(1)
n,n will be stored in the byte array matt, while the

remaining elements c
(1)
1 , . . . , c

(1)
n will be stored in the byte array vect. The size of each

byte array depends on the underlying field K.

Regarding the central map, f consists of two layers, because this implementation only

works using parameter sets of the form (K, v1, o1, o2). Therefore,

f(x1, . . . , xn) = (f (1)(x1, . . . , xn), . . . , f (n−v1)(x1, . . . , xn)),

with
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f (k) =
∑

i,j,i≤j∈Vl

α
(k)
i,j xixj +

∑
i∈Vl,j∈Ol

β
(k)
i,j xixj +

∑
i∈Vl+1

γ
(k)
i xi + η(k),

for k ∈ {1, 2, . . . , n − v1} and l ∈ {1, 2}. For the first layer, we have V1 := {1, . . . , v1},

O1 := {v1 + 1, . . . , v1 + o1} and f (1), . . . , f (o1) ∈ P1. However, for the second layer,

V2 := {1, . . . , v2 = v1 + o1}, O2 := {v2 + 1, . . . , n = v2 + o2} and f (o1+1), . . . , f (n−v1) ∈ P2.

Each layer of the central map f will be stored separately. In particular, let us consider

the first layer. This layer consists of the polynomials f (1), . . . , f (o1). These polynomials

will be divided into 3 parts, denoted as ‘vv’, ‘vo’ , and ‘o-linear’.

The ‘vv’ part is given by

vv(k) =
∑

i,j,i≤j∈V1

α
(k)
i,j xixj +

∑
i∈V1

γ
(k)
i xi + η(k), for k = 1, 2, . . . , o1.

This is a system of o1 multivariate quadratic polynomials in v1 variables, viz.

vv(1) =α
(1)
1,1x1x1 + α

(1)
2,1x2x1 + α

(1)
2,2x2x2 + α

(1)
3,1x3x1 + α

(1)
3,2x3x2 + . . .

+ γ
(1)
1 x1 + γ

(1)
2 x1 + . . .+ γ(1)v1 xv1 + η(1).

vv(2) =α
(2)
1,1x1x1 + α

(2)
2,1x2x1 + α

(2)
2,2x2x2 + α

(2)
3,1x3x1 + α

(2)
3,2x3x2 + . . .

+ γ
(2)
1 x1 + γ

(2)
2 x2 + . . .+ γ(2)v1 xv1 + η(2).

...
...

vv(o1) =α
(o1)
1,1 x1x1 + α

(o1)
2,1 x2x1 + α

(2)
2,2x2x2 + α

(o1)
3,1 x3x1 + α

(o1)
3,2 x3x2 + . . .

+ γ
(o1)
1 x1 + γ

(o1)
2 x2 + . . .+ γ(o1)v1 xv1 + η(o1).

So this ‘vv’ part will be represented as a sequence of the form

γ
(1)
1 , . . . , γ

(o1)
1 , γ

(1)
2 , . . . , γ

(o1)
2 , . . . , α

(1)
1,1, . . . , α

(o1)
1,1 , α

(1)
2,1, . . . , α

(o1)
v1,v1 , η

(1), . . . , η(o1).

Therefore, the number of field elements in this sequence will be o1(
v1(v1+1)

2 + v1 + 1). In

memory, this sequence of field elements will be stored in the byte array l1vv.
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Moreover, the ‘vo’ part contains the remaining quadratic terms, viz.

vo(k) =
∑
i∈V1

∑
j∈O1

β
(k)
i,j xixj , for k = 1, 2, . . . , o1.

And so this part will be represented as a sequence of the form

β
(1)
1,v1+1, . . . , β

(1)
1,v1+o1

, β
(1)
2,v1+1, . . . , β

(1)
2,v1+o1

, β
(1)
3,v1+o1

, . . . , β
(o1)
v1,v1+o1 .

Hence, this sequence will have o21 · v1 elements. In memory, this sequence of field elements

will be stored in the byte array l1vo.

Finally, the ‘o-linear’ part contains the remaining linear terms, i.e.,

ol(k) =
∑
i∈O1

γ
(k)
i xi, for k = 1, 2, . . . , o1.

So this part will be represented as a sequence of the form

γ
(1)
v1+1, . . . , γ

(1)
v1+o1 , γ

(2)
v1+1, . . . , γ

(2)
v1+o1 , γ

(3)
v1+1, . . . , γ

(o1)
v1+o1 .

Therefore, the number of field elements in this sequence will be o21. In memory, this

sequence of field elements will be stored in the byte array l1o.

The size of each byte array depends on the underlying field K. Also, these byte arrays will

be stored in memory in the following order: l1o, followed by l1vo and followed by l1vv.

Layer 2 is also stored in the same format. The reason for making use of this particular

format for storing a layer is to improve the performance of sub-algorithms executed in the

signing and verification algorithms.

Rainbow Key Pair Generation. During the execution of the key and signature gen-

eration algorithms, this implementation makes use of a large number of random field

elements. These are obtained by calling a cryptographic random number generator from

the OpenSSL library. The AES CTR DRBG function is used as the random number generator

in this implementation.
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Parameter Sets. As was pointed out, this implementation works using parameter sets

of the form (K, v1, o1, o2). In particular, its authors propose nine parameter sets for

Rainbow.

1. (F16, 32, 32, 32), (F16, 56, 48, 48), (F16, 76, 64, 64).

2. (F31, 36, 28, 28), (F31, 64, 32, 48), (F31, 84, 56, 56).

3. (F256, 40, 24, 24), (F256, 68, 36, 36),(F256, 92, 48, 48).

Additionally, the authors of this implementation provided a security analysis of their

proposed parameter sets in [20]. This analysis categorised the proposed parameter sets

in various security categories specified by NIST [76]. Particularly, the parameter sets

(F16, 32, 32, 32), (F31, 36, 28, 28) and (F256, 40, 24, 24) are categorised in the security cate-

gory I, meaning that the computational resources required to break it is comparable to or

greater than the computational resources required for key search on a block cipher with a

128-bit key [76].

6.3.2 The Bouncy Castle Implementation

This is an implementation that has been included in the Bouncy Castle crypto package.

This package consists of Java implementations of cryptographic algorithms. This package

is organised so that it contains a light-weight API suitable for use in any environment

(including the Java 2 Platform, Micro Edition) with the additional infrastructure to con-

form with the Java Cryptography Extension framework. It also offers the BCPQ (stands

for Bouncy Castle Post Quantum) provider with support for the Rainbow signature al-

gorithm.

Regarding the underlying field K, this implementation only works using F256 elements. A

field element is a polynomial over F2 with degree at most 7. Therefore, it is represented

as an 8 bit-string and is stored in the least 8 significant bits of a short variable (16 bits).

Besides, the class GF2Field provides the basic operations like addition, multiplication and

finding the multiplicative inverse of an element in K. These operations are implemented

using the irreducible polynomial x8+x6+x3+x2+1, which is represented as 101001101 =

0x14d.

Concerning the in-memory representation, this implementation stores the private key as
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an object of the class RainbowPrivateKeyParameters. This class contains the following

members:

• The (n− v1)× (n− v1) short matrix A1inv stores the inverse of A1, where A1 is the

matrix of the affine map L1.

• The short array b1, whose size is (n − v1), stores the translation vector c1 of the

affine map L1.

• The n × n short matrix A2inv stores the inverse of A2, where A2 is the matrix of

the affine map L2.

• The short array b2, whose size is n, stores the translation vector c2 of the affine

map L2.

• The int array vi holds the number of Vinegar variables per layer.

• The Layer array layers. Each entry of this array stores a Layer object, where a

Layer object stores the polynomials of the central map f for a layer, i.e. it represents

a layer of the rainbow.

The entry l holds an object of the class Layer that contains the following members:

• The int variable vi holds the number of Vinegar variables for this layer vl.

• The int variable viNext holds the number of Vinegar variables for the next layer

vl+1. It is equal to (the number of Oils) + (the number of Vinegars).

• The int variable oi holds the number of Oil variables in this layer ol.

• The ol × vl × vl short matrix coeff alpha holds the values α
(k)
ij for this layer. A

layer has ol polynomials, each of which has v2l α-values.

• The ol × ol × vl short matrix coeff beta holds the values β
(k)
ij for this layer. A

layer has ol polynomials, each of which has olvl β-values.

• The ol× vl+1 short matrix coeff gamma holds the values γ
(k)
i for this layer. A layer

has ol polynomials, each of which has vl+1 γ-values.

• The ol short array coeff eta holds the values η(k) for this layer. A layer has ol

polynomials, each of which has an η-value.

Rainbow Key Pair Generation. The class RainbowKeyPairGenerator contains the

method genKeyPair that generates the private key and the public key. In particular, the

private key is generated as follows:
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• The affine map L1 is created by generating a random (n−v1)×(n−v1) short matrix

A1 and testing whether A1 is invertible. If so, its inverse, the (n−v1)×(n−v1) short

matrix A1inv, is calculated and then each entry of the short array b1 is randomly

generated.

• The affine map L2 is created by generating a random n × n short matrix A2 and

testing whether A2 is invertible. If so, its inverse, the n× n short matrix A2inv, is

calculated and then each entry of the short array b2 is randomly generated.

• The Layer array layers is created by instancing each entry l as a Layer object for

0 ≤ l < numOfLayers. Given an index l, the entry l will hold a Layer object that

will represent the layer l and hold ol polynomials. The instantiation of this entry l

is done by

1. Generating each short entry coeff alpha
(l)
(k,i,j) randomly for 0 ≤ k < ol, 0 ≤

i, j < vl.

2. Generating each short entry coeff beta
(l)
(k,i,j) randomly for 0 ≤ k < ol, 0 ≤

i < ol, 0 ≤ j < vl.

3. Generating each short entry coeff gamma
(l)
(k,i) randomly for 0 ≤ k < ol, 0 ≤

i < vl+1.

4. Generating each short entry coeff eta
(l)
k randomly for 0 ≤ k < ol.

Parameter Sets. The class RainbowParameters represents the parameters for Rain-

bow. It contains the int array vi, which contains the number of Vinegar variables per

layer. By default, this class fixes the set {6, 12, 17, 22, 33}, meaning that

v1 = 6 ; o1 = 12− 6 = 6,

v2 = 12; o2 = 17− 12 = 5,

v3 = 17; o3 = 22− 17 = 5,

v4 = 22; o4 = 33− 22 = 11,

v5 = 33; o5 = 0.

This parameter set was introduced by Rainbow’s designers in [19]. Also, they provided a

security analysis of this parameter set, which is based on examining several known attack

techniques against it methodically and in detail.
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6.4 Mounting Cold Boot Attacks

In this section we present our cold boot key recovery attacks on the implementations and

corresponding private key formats introduced in the previous section. We continue to

make the assumptions outlined in Section 2.3 and further assume that all relevant public

parameters and private key formatting information are known by the adversary.

In particular, with regard to the Reference implementation, we assume the attacker knows

the parameter set being used and obtains a noisy image of the memory that contains:

• The two consecutive byte arrays representing L2, namely matt and vect.

• The two consecutive byte arrays representing L1, namely mats and vecs.

• The three consecutive byte arrays representing the layer 1, namely l1o, l1vo and

l1vv.

• The three consecutive byte arrays representing the layer 2, namely l2o, l2vo and

l2vv.

On the other hand, for the Bouncy Castle implementation, we assume the attacker knows

the parameter set being used and obtains a noisy image of the memory that contains:

• The two consecutive short arrays representing L1, namely A1inv and b1.

• The two consecutive short arrays representing L2, namely A2inv and b2.

• The four consecutive short arrays representing the layer 1, namely coeff alpha(1),

coeff beta(1), coeff gamma(1) and coeff eta(1). These are followed by the four con-

secutive short arrays representing the layer 2, namely coeff alpha(2), coeff beta(2),

coeff gamma(2) and coeff eta(2). These arrays are then followed by other consecu-

tive arrays representing the next layer and subsequent layers in the same order.

6.4.1 Key Recovery Algorithm

In this section, we will introduce a key recovery algorithm for the rainbow signature

scheme in the cold boot attack setting. This algorithm will exploit the structure of the

public function F .

We further assume the adversary has access to a message m and its corresponding sig-
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nature x′ = (x′1, ..., x
′
n) ∈ Kn. Because the attacker knows the public key F and knows

F (x′1, ..., x
′
n) = L1 ◦ f ◦ L2(x′1, ..., x′n) = H(m), the natural approach the attacker may try

to perform is the following:

1. The attacker constructs a set of high scoring candidates for L1, C(L1).

2. The attacker constructs a set of high scoring candidates for L2, C(L2).

3. The attacker constructs a set of high scoring candidates for f , C(f).

4. For each hi ∈ C(L1), each gj ∈ C(L2) and each fk ∈ C(f), the attacker generates

candidates F ′ = hi ◦ fk ◦ gj for F and verifies if F ′(x′1, ..., x
′
n) = H(m). If so, then

the 3-tuple (hi, gj , fk) is a candidate for the private key.

A potential problem with this approach is that the fourth step may be computationally

costly, because the cost of this step is O(|C(L1)| · |C(L2)| · |C(f)|). So as to reduce the

computational cost that the fourth step may incur, we will make use of a time-memory

trade-off, introducing two extra tables S and T .

On the one hand, the table S will be a hash table to store 2-tuples of the form (y, i),

where y ∈ Kn−v1 and i is a positive integer that represents an index. We store such a

tuple (y, i) in this hash table S as follows. We first calculate a hash value ky,i from all the

entries of the array representation y of y. We then calculate an index ty,i from ky,i using

a map I and finally add the tuple (y, i) as the first entry of a linked list pointed to by the

entry S[ty,i]. As has been pointed out, the number of operations for both adding a tuple

to the hash table S and looking an element up in this table are expected to be constant

on average.

On the other hand, the table T will be employed to store 2-tuples of the form (y′, j),

where y′ ∈ Kn and j is a positive integer that represents an index. Moreover, we will

exploit the fact that L1 has an easily computable inverse map L−11 and that

L1 ◦ f ◦ L2(x′1, ..., x′n) = H(m) ⇐⇒ f ◦ L2(x′1, ..., x′n) = L−11 (H(m)).

Therefore, our key recovery algorithm may be refined and now proceeds at a high level as

follows:

1. The attacker constructs a list of high scoring candidates for L1, C(L1).
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2. The attacker constructs a list of high scoring candidates for L2, C(L2).

3. The attacker constructs a list of high scoring candidates for f , C(f).

4. For each hi ∈ C(L1), the attacker computes y = h−1i (H(m)) and stores y and i in

the table S.

5. For each gj ∈ C(L2), the attacker computes y′ = gj(x
′) and stores y′ and j in the

table T .

6. For each fk ∈ C(f) and each (y′, j) ∈ T , the attacker computes r = fk(y
′) and looks

r up in the table S. If a match is found, then r = fk(gj(x
′)) ∈ S, so fk(gj(x

′)) =

h−1i (H(m)), for some i. Hence, the 3-tuple (hi, gj , fk) is a candidate for the private

key.

Note that in this variant the sixth step may incur a high cost, however this cost is now

just O(|C(L2)| · |C(f)|). We will next expand more on the first three steps of this variant

and then on its running time, its memory consumption and its parallelisation.

6.4.1.1 Constructing High Scoring Candidates for an Affine Map

Here we will present algorithms to construct a list of high scoring candidates for an affine

map L : Kn → Kn. These algorithms may be executed to carry out the first two steps of

the key recovery algorithm introduced in Section 6.4.1.

In the Reference implementation, an affine map L is represented by two consecutive byte

arrays, namely mat and vec. Recall that the attacker gets noisy versions of these two byte

arrays. Let us name them as mat′ and vec′. In order to construct high scoring candidates

for L, the attacker makes use of the key recovery technique introduced in Section 4.4.1 as

follows.

The attacker first regards both mat′ and vec′ as a single byte array r. This array r

has nr entries, where nr depends on the underlying field K. Indeed, if K = F16, then

nr = d(n2 + n)/2e. If K = F31, then nr = 2 · ((n2 + n) div 3) + (n2 + n) mod 3. And if

K = F256, then nr = n2 + n.

The attacker now regards a byte entry as a chunk. Therefore, W = 8 · nr and w = 8.

Concerning the candidates a chunk may have, we analyse three cases:
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1. WhenK = F16, the candidates for any chunk may be seen as all the integers in the set

{0, 1, 2, . . . , 255} if n2 +n is even. Otherwise, if n2 +n is odd, the candidates for any

chunk save the last chunk may be seen as all the integers in the set {0, 1, 2, . . . , 255},

while the candidates for the last chunk may be seen as all the integers in the set

{0, 16, 32, 48, . . . , 240}. The reason for this is that the last element is stored in the

four most significant bit of the last byte entry. So the four least significant bits of

the entry are zeros.

2. When K = F31, let us consider the first 2 · ((n2 +n) div 3) chunks. Recall that each

three elements are packed in two consecutive bytes and the least significant bit is

not used.3 So we consider the chunks r2k and r2k+1, for 0 ≤ k < (n2 + n) div 3. On

the one hand, the candidates for the chunk r2k may be seen as all the integers in the

set {0, 1, 2, . . . , 247}. The reason for this is that the five most significants bits may

assume any binary string of length 5 except for 11111 and the three least significant

bits may assume any binary string of length 3. On the other hand, the candidates

for the chunk r2k+1 may be seen as all the integers in the set {0, 2, 4, . . . , 60} ∪

{64, 66, . . . , 124} ∪ {128, 130, . . . , 188} ∪ {192, 194, . . . , 254}. The reason for this is

that the two most significant bit may assume any binary string of length 2, the next

five consecutive bits may assume any binary string of length 5 except for 11111, and

the least significant bit is 0. Concerning the remaining (n2+n) mod 3 chunks, their

candidates may be seen as all the integers in the set {0, 1, 2 . . . , 30}.

3. When K = F256, the candidates for any chunk may be seen as all the integers in the

set {0, 1, 2, . . . , 255}.

Furthermore, the attacker represents r as a concatenation of nb blocks, where each block

consists of the concatenation of nbj , with nbj > 0, consecutive chunks, such that nr =∑nb−1
j=0 nbj . Therefore,

r = b0||b1|| · · · ||bnb−1,

where

bj = rij ||rij+1|| · · · ||rij+nbj−1,

for 0 ≤ j < nb and some 0 ≤ ij < nr. The attacker now proceeds as follows.

Phase I

3See function gf31 quick unpack in the file gf31 convert.c.
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• For each chunk ri, 0 ≤ i < nr, the attacker calculates a score for each of the

candidates for the chunk by using Equation (2.1), viz.

L[ci; ri] = ni00 log(1− α) + ni01 logα+ ni10 log β + ni11 log(1− β),

where the niab values count occurrences of bits across the i-th chunks, ri, ci. There-

fore, the attacker will produce a list of chunk candidates Lri for the chunk ri, whose

number of entries depends on the candidates considered for the chunk (and the

underlying field), as was showed above.

• For each block bj , 0 ≤ j < nb, the attacker will present all the lists of chunk

candidates corresponding to all the chunks in bj as inputs to OKEA, which was

described in Section 3.2.1, to produce a list of the Mj highest scoring candidates for

the block, Lbj .

Once Phase I finishes, the attacker will get nb lists and then proceeds as follows.

Phase II

• These lists Lbj are given as inputs to an instance of a key enumeration algorithm,

regarding each list Lbj as a set of candidates for the block bj . This instance will

generate high scoring candidates for r. For each complete candidate r′, the attacker

will extract the elements a1,1, a2,1, . . . , an,1, a1,2, . . . , an,n, c1, . . . cn from r′4 to form

both a candidate A′ for the matrix A and a candidate c′ for the vector c. If A′ is

invertible, then (A′, c′) is a high scoring candidate for L.

In the Bouncy Castle implementation, an affine map L is represented by two consecutive

short arrays, namely Ainv and c. Recall that the attacker gets noisy versions of these

two short arrays. Let us name them as Ainv′ and c′. The first array has n2 entries, while

the second has n entries. In order to construct high scoring candidates for L, the attacker

makes use of the key recovery technique introduced in Section 4.4.1 as follows.

The attacker first regards both Ainv′ and c′ as a single short array r. This array r has

nr entries, where nr = n2 + n. Besides the attacker regards a short entry as a chunk.

Therefore, W = 16 · nr and w = 16. Now recall that this implementation uses F256 as a

field and that each field element is represented by an 8 bit-string that is stored in the 8

4This algorithm depends on the underlying field K.
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least significant bits of a short variable. Therefore, the candidates for a chunk may be

seen as all the integers in the range from 0 to 255.

Furthermore, the attacker represents r as a concatenation of nb blocks, where each block

consists of the concatenation of nbj , with nbj > 0, consecutive chunks, such that nr =∑nb−1
j=0 nbj . Therefore,

r = b0||b1|| · · · ||bnb−1,

where

bj = rij ||rij+1|| · · · ||rij+nbj−1,

for 0 ≤ j < nb and some 0 ≤ ij < nr. The attacker now proceeds as follows.

Phase I

• For a chunk ri, 0 ≤ i < nr, the attacker will compute a score for each of the 256

candidates for the chunk by using Equation (2.1). Hence, the attacker will obtain a

list of chunk candidates Lri with 256 entries for the chunk ri.

• For each block bj , 0 ≤ j < nb, the attacker presents all the lists of chunk candidates

corresponding to all the chunks in bj as inputs to OKEA to produce a list of the Mj

highest scoring candidates for the block, Lbj .

Once Phase I finishes, the attacker will get nb lists and then proceeds as follows.

Phase II

• These lists Lbj are given as inputs to an instance of a key enumeration algorithm,

regarding each list Lbj as a set of candidates for the block bj . This instance will

generate high scoring candidates for r. For each complete candidate r′, the attacker

will retrieve the first n2 entries from r′ to form a candidate Ainv′ for the inverse

matrix of A and retrieve the remaining n entries from r′ to form a candidate c′ for

the vector c. If Ainv′ is invertible, then (Ainv′, c′) is a high scoring candidate for L.
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6.4.1.2 Constructing High Scoring Candidates for f .

Here we will present algorithms to construct a list of high scoring candidates for the central

map f . These algorithms may be executed to carry out the three step of the key recovery

algorithm introduced in Section 6.4.1.

Let us assume the central map f consists of nlayer layers. To construct a list of high

scoring candidates for f , the attacker may proceed as follows.

1. For each layer i, 1 ≤ i ≤ nlayer, the attacker constructs a list of high scoring

candidates for the layer i, Lli .

2. The attacker then presents these lists Lli as inputs to an instance of an enumeration

algorithm, regarding each list Lli as a set of candidates for the layer i. This instance

will pick a candidate from each Lli and form a candidate for f .

The previous algorithm requires to be adapted to each particular implementation, espe-

cially its first step.

In the Reference implementation, the central map f consists of two layers, i.e., nlayer = 2.

Recall the layer 1 is stored in three consecutive byte arrays, namely l1o, l1vo and l1vv,

while the layer 2 is stored in three consecutive byte arrays, namely l2o, l2vo and l2vv. Let

us name their noisy versions as l1′o, l1
′
vo, l1

′
vv, l2

′
o, l2

′
vo and l2′vv. And let us consider

the case for the layer 1. In order to construct high scoring candidates for the layer 1, the

attacker makes use of the key recovery technique introduced in Section 4.4.1 as follows.

The attacker first regards the noisy versions l1′o, l1
′
vo and l1′vv as a byte array r. This

array has nr entries, where nr depends on the underlying field K. Indeed, let nes =

o1(
v1(v1+1)

2 + v1 + 1) + o21 · v1 + o21. If K = F16, then nr = dnes/2e entries. If K = F31,

then nr = 2 · (nes div 3) +nes mod 3. And if K = F256, then nr = nes. The attacker now

regards each byte entry as a chunk. Therefore, W = 8 · nr and w = 8. So the candidates

for a chunk depends on the field we are working on, as showed in Section 6.4.1.1.

Furthermore, the attacker represents r as a concatenation of nb blocks, where each block

consists of the concatenation of nbj , with nbj > 0, consecutive chunks, such that nr =
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∑nb−1
j=0 nbj . Therefore,

r = b0||b1|| · · · ||bnb−1,

where

bj = rkj ||rkj+1|| · · · ||rkj+nbj−1,

for 0 ≤ j < nb and some 0 ≤ kj < nr. In order to construct a list of high scoring candidates

for this layer, the attacker does the following:

Phase I

• For a chunk rk, 0 ≤ k < nr, the attacker will compute a score for each of the

candidates for the chunk by using Equation (2.1). Hence, the attacker will obtain

a list of chunk candidates Lrk for the chunk rk, the size of this list depends on the

number of candidates considered for this chunk (see Section 6.4.1.1).

• For each block bj , 0 ≤ j < nb, the attacker presents L
rkj
, . . . , L

r
kj+nbj

−1 as inputs

to an instance of OKEA to produce a list of the Mj highest scoring candidates for

the block, Lbj .

Once Phase I finishes, the attacker will get nb lists and then proceeds as follows.

Phase II

• The attacker then presents these lists Lbj as inputs to an instance of a key enumer-

ation algorithm, regarding each list Lbj as a set of candidates for the block bj . This

instance will pick a candidate from each Lbj and form a candidate for the array r.

For each complete candidate r′, the attacker will extract the ‘o-linear’ part, the ‘vo’

part and the ‘vv’ part to form a candidate for the layer 1.

In the Bouncy Castle implementation, the central map f consists of nlayer layers, where

nlayer ≥ 1. Recall the layer l, 1 ≤ l ≤ nlayer, is stored in four consecutive short arrays,

namely coeff alpha(l), coeff beta(l), coeff gamma(l) and coeff eta(l). Let us name

their noisy versions as coeff alpha′(l), coeff beta′(l), coeff gamma′(l) and coeff eta′(l).

In order to construct high scoring candidates for the layer l, the attacker makes use of the

key recovery technique introduced in Section 4.4.1 as follows.

The attacker first regards the noisy versions coeff alpha′(l), coeff Beta′(l), coeff gamma′(l)

148



6.4 Mounting Cold Boot Attacks

and coeff eta′(l) as a short array r with nr = olv
2
l +o2l vl+ol(ol+vl)+ol entries. Besides,

the attacker regards each short entry as a chunk. Therefore, W = 16 · nr and w = 16.

Now recall that this implementation uses F256 as a field and that each field element is rep-

resented by an 8 bit-string that is stored in the 8 least significant bits of a short variable.

Therefore, the candidates for a chunk may be seen as all the integers in the range from 0

to 255.

Moreover, the attacker represents r as a concatenation of nb blocks, where each block

consists of the concatenation of nbj , with nbj > 0, consecutive chunks, such that nr =∑nb−1
j=0 nbj . Therefore,

r = b0||b1|| · · · ||bnb−1,

where

bj = rkj ||rkj+1|| · · · ||rkj+nbj−1,

for 0 ≤ j < nb and some 0 ≤ kj < nr. In order to construct a list of high scoring candidates

for the layer l, the attacker does the following.

Phase I

• For a chunk rk, 0 ≤ k < nr, the attacker will compute a score for each of the 256

candidates for the chunk by using Equation (2.1). Hence, the attacker will obtain a

list of chunk candidates Lrk with 256 entries for the chunk rk.

• For each block bj , the attacker presents L
rkj
, . . . , L

r
kj+nbj

−1 as inputs to an instance

of OKEA, which was described in Section 3.2.1, to produce a list of the Mj highest

scoring candidates for the block bj , Lbj .

Once Phase I finishes, the attacker will get nb lists and then proceeds as follows.

Phase II

• The attacker then presents these lists Lbj as inputs to an instance of a key enu-

meration algorithm, regarding each list Lbj as a set of candidates for the block

bj . This instance will pick a candidate from each Lbj and form a candidate for

r. For each complete candidate r(l), the first olv
2
l entries represent a candidate

for the matrix coeff alpha(l), the next o2l vl entries represent a candidate for the
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matrix coeff beta(l), the next ol(vl + ol) entries represent a candidate for the ma-

trix coeff gamma(l) and the remaining ol entries represent a candidate for the array

coeff eta(l).

6.4.1.3 Memory Consumption

Here we will describe how much space in memory the key recovery algorithm introduced

in Section 6.4.1 will consume during its execution.

The analysis is straight-forward. After the first, second and third steps of this algorithm

have been carried out, the algorithm will have stored |C(L1)| candidates for L1, |C(L2)|

candidates for L2 and |C(f)| candidates for f in memory. Furthermore, after the fourth

step is carried out, the table S will have |C(L1)| entries, each of which is of the form (y, i),

where y ∈ Kn−v1 and i is an integer. And after the fifth step is carried out, the table T

will have |C(L2)| entries, each of which is of the form (y′, j), where y′ ∈ Kn and j is an

integer.

Let BL1 ,BL2 and Bf be the number of bits a candidate for L1, L2 and f respectively

occupies in memory. Let BS and BT be the number of bits an entry in S and T respectively

occupies in memory. Therefore, the number of bits this algorithm consumes during its

execution is

|C(L2)| ·BL1 + |C(L1)| ·BL2 + |C(f)| ·Bf + |C(L1)| ·BS + |C(L2)| ·BT .

In the Reference implementation, a candidate for L1 is represented as a sequence of

(n−v1)2 +(n−v1) field elements, a candidate for L2 is represented as a sequence of n2 +n

field elements. Moreover, a candidate for f consists of both a candidate for layer 1 and

a candidate for layer 2. A candidate for layer 1 is represented as a sequence of nl1 field

elements, where nl1 = o1 + o1 · v1 + o1(
v1(v1+1)

2 + v1 + 1); while a candidate for layer 2 is

represented as a sequence of nl2 field elements, where nl2 = o2+o2 ·v2+o2(
v2(v2+1)

2 +v2+1).

Now an entry in S can be represented as sequence of n− v1 field elements plus an integer

(stored in 32 bits). Similarly, an entry in T can be represented as sequence of n field

elements plus an integer. Therefore, If K = F16, then BL1 = 8 · d((n− v1)2 + (n− v1))/2e,

BL2 = 8·d(n2+n)/2e, Bf = 8·d(
∑2

i=1 nli)/2e, BS = 8·d(n−v1)/2e+32, BT = 8·dn/2e+32

Moreover, when K = F256, then BL1 = 8 · ((n − v1)2 + (n − v1)), BL2 = 8 · (n2 + n),
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Bf = 8 ·
∑2

i=1 nli , BS = 8 · (n− v1) + 32, BT = 8n+ 32. Finally, when K = F31, then

BL1 = (((n− v1)2 + (n− v1)) div 3) · 16 + (((n− v1)2 + (n− v1)) mod 3) · 8.

BL2 = ((n2 + n) div 3) · 16 + ((n2 + n) mod 3) · 8.

Bf = ((
∑2

i=1 nli) div 3) · 16 + ((
∑2

i=1 nli) mod 3) · 8.

BS = ((n− v1) div 3) · 16 + ((n− v1) mod 3) · 8 + 32.

BT = (n div 3) · 16 + (n mod 3) · 8 + 32.

In the Bouncy Castle implementation, a candidate for L1 is represented as a sequence of

(n− v1)2 + (n− v1) field elements, while a candidate for L2 is represented as a sequence of

n2 + n field elements. Moreover, a candidate for f consists of nlayer layer candidates. A

layer candidate for layer l, 1 ≤ l ≤ nlayer, is represented as a sequence of nll field elements,

where nll = olv
2
l +o2l vl+ol(vl+ol)+ol. Now an entry in S can be represented as sequence

of n − v1 field elements plus an integer (stored in 32 bits). Similarly, an entry in T can

be represented as sequence of n field elements plus an integer. This implementation only

works using K = F256 and stores a field element in the 8 least significant bits of a short

variable (there are no packing techniques). Therefore, BL1 = 16 · ((n − v1)2 + (n − v1)),

BL2 = 16 · (n2 + n), Bf = 16 ·
∑nlayer

i=1 nll , BS = 16 · (n− v1) + 32, BT = 16 · n+ 32.

6.4.1.4 Running Time

Here we will analyse the running time of the key recovery algorithm introduced in Sec-

tion 6.4.1. Let us assume that the lists C(L1), C(L2) and C(f) have been produced by the

algorithm, i.e., the first three steps of the algorithm have been carried out successfully.

Let TAM (n), Tf (n) be the costs for an affine map evaluation and a central map evaluation

respectively, with n being the number entries in the input vector.

The fourth step of the algorithm basically proceeds as follows. While iterating through

each hi ∈ C(L1), it computes y = h−1i (H(m)) and stores y and i in the table S. Therefore,

the cost for this step is given by |C(L1)| · (TAM (n − v1) + c1), with c1 being a bound on

the number of operations to store an element in table S. Therefore, the cost is O(|C(L1)|).

Similarly, the fifth step of the algorithm iterates through each gj ∈ C(L2), while computing

y′ = gj(x
′) and storing y′ and j in the table T . Therefore, the cost for this step is

TAM (n) · (|C(L2)| + c2), with c2 being a bound on the number of operations to store an

element in table T . Therefore, the cost is O(|C(L2)|).
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The last step of the algorithm iterates through each f ′ ∈ C(f) and each y′ ∈ T , while

computing r = f ′(y′) and looking r up in the table S to find a valid match. Therefore,

the costs of this step is |C(f)| · |C(L2)| · (Tf (n) + c3), with c3 being a bound on the number

of operations to look an element up in the table S. Therefore, the cost of this step is

O(|C(f)| · |C(L2)|).

6.4.1.5 Parallelisation

The fourth, fifth and sixth steps of our key recovery algorithm are amenable to paralleli-

sation. Indeed, let us suppose we want to have t independent tasks T1, T2, . . . , Tt executed

in parallel.

As for the fourth step, we partition C(L1) into t sublists C
(L1)
1 , . . . , C

(L1)
t and then set the

task Tu to run through each hui ∈ C
(L1)
u while computing yui

= h−1ui (H(m)) and storing

the 2-tuple (yui
, ui) in the table S. Likewise this parallelisation strategy may be applied

to the fifth step of the recovery algorithm.

Regarding the sixth step of the key recovery algorithm, the strategy is basically the same.

We partition C(f) into t sublists C
(f)
1 , . . . , C

(f)
t and then set the task Tu to run through

each fuk ∈ C
(f)
u and each y′ ∈ T while computing r = fuk(y′) and looking r up in the table

S. If a match is found, then r = fuk(gj(x
′)) ∈ S, for some j, so fuk(gj(x

′)) = h−1i (H(m)),

for some i and j. Hence, the 3-tuple (hi, gj , fuk) is a candidate for the private key.

6.5 Experimental Evaluation

In this section, we will show some results from running the key recovery algorithm to find

a private key for a particular parameter set. In particular, we will mainly focus on its

success rate.

6.5.1 Implementation

We implement our key recovery algorithm in Java to take advantage of the implemented

algorithms previously and other Rainbow-related algorithms provided by the Bouncy

Castle implementation. Besides, we consider the format this implementation uses to
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store a private key in memory.

6.5.2 Setup

We first pick an ad hoc parameter set to learn more about this algorithm. In particular,

we set v1 = 4, o1 = 4, v2 = 8, o2 = 4. For these particular values, the affine map L1

is represented as a short array with size 72, while the affine map L2 is represented as a

short array with size 156. The central map has two layers. The first and second layer

will be represented as a short array with sizes 164 and 436 respectively.

As for producing array candidates with size 72 as candidates for L1, we set a block to

be a sequence of 9 chunks, hence resulting in nb = 8 = 72/9 blocks. Besides, we set the

number of candidates to be generated for each block, blsize1, to 256. So for each block

bj , 0 ≤ j < nb, OKEA will produce a list of the 256 highest scoring candidates Lbj in

Phase I. Once Phase I has completed, the resulting block lists will be given as inputs to

an instance of the key enumeration algorithm described in Section 5.6.2.3. Finally, this

instance will compute an interval of the form [max − δ,max] such that the number of

candidates NL1 whose scores lie in the interval is at least a value lsize1 but the difference

NL1−lsize1 is the smallest.5 This parameter lsize1 may assume the values 220, 230, 240.

Therefore, once Phase II has completed, we have |C(L1)| ≤ NL1 .

Regarding the creation of array candidates with size 156 as candidates for L2, we set a

block to be a sequence of 39 chunks, hence resulting in nb = 4 = 156/39 blocks. Besides,

we set the number of candidates to be generated for each block, blsize2, to 1024. So for

each block bj , 0 ≤ j < nb, OKEA will produce a list of the 1024 highest scoring candidates

Lbj in Phase I. Once Phase I has completed, the resulting block lists are given as inputs

to an instance of the key enumeration algorithm described in Section 5.6.2.3. Finally,

this instance will compute an interval of the form [max − δ,max] such that the number

of candidates NL2 whose scores lie in the interval is at least lsize2 but the difference

NL2 − lsize2 is the smallest, where lsize2 ∈ {220, 230, 240}. Hence, after Phase II has

completed, we have |C(L2)| ≤ NL2 .

Concerning the creation of array candidates for f , we regard the first and second layer as a

5max is the highest score and is easily calculated by summing the entry 0 of each Lbj . The other value
is computed by iterating through the internal list Lbt while summing counts and checking when the count
is greater than lsize1.
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single array of short entries whose size is 600. And we set a block to be the concatenation

of 100 consecutive chunks, hence resulting in nb = 6 blocks. Moreover, we set the number

of candidates to be generated for each block, blsize3, to 212. So for each block bj ,

0 ≤ j < nb, OKEA will produce a list of the 212 highest scoring candidates Lbj in Phase

I. Once Phase I has completed, the resulting block lists are given as inputs to an instance

of the key enumeration algorithm described in Section 5.6.2.3. Finally, this instance will

compute an interval of the form [max − δ,max] such that the number of candidates Nf

whose scores lie in the interval is at least lsize3 but the difference Nf − lsize3 is the

smallest, where lsize3 ∈ {220, 230, 240}. Hence, after Phase II has completed, we have

|C(f)| ≤ Nf .

6.5.3 Success Rate

Regarding the success rate of our key recovery algorithm, we first notice that this algorithm

will be able to recover the correct private key if and only if the next three conditions hold:

1. The correct candidate for L1 is in C(L1) after the step 1 has been carried out.

2. The correct candidate for L2 is in C(L2) after the step 2 has been carried out.

3. The correct candidate for f is in C(f) after the step 3 has been carried out.

So the success rate for our key recovery algorithm is given by

psuccess = ps1 · ps2 · ps3 ,

with psi , 1 ≤ i ≤ 3, being the probability such that the condition i is satisfied.

We estimate the values ps1 , ps2 , ps3 for our selected parameter set for data points (α, β) ∈

{0.001, 0.002, 0.003, 0.004, 0.005}2, lsizek ∈ {220, 230, 240}, k ∈ {1, 2, 3}, and the full enu-

meration in Phase II. To achieve such an estimation of these values, we run an auxiliary

algorithm 100 times.

For each iteration the auxiliary algorithm first generates a fresh private key and perturbs

each component of it according to α, β. The algorithm then runs a tweaked key recovery

algorithm A for L1 with the corresponding parameters, then runs it for L2 with the

corresponding parameters and finally runs it for f with the corresponding parameters.
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In a run of the algorithm A, it first receives the original short array orginal of a compo-

nent of the private key,6 the corresponding noisy version noisy, the set {220, 230, 240}, the

corresponding array blimits, which contains the indices of the last chunks of each block,

and the corresponding number of candidates to be generated for each block, blsize. A

then partitions noisy into nb blocks, using blimits, viz. noisy0||noisy1|| · · · ||noisynb−1,

and then run Phase I on noisy, hence producing the corresponding lists of chunk can-

didates, Lbj , 0 ≤ j < nb, each having blsize chunk candidates. The algorithm A

then proceeds to split the original array orginal into nb blocks, using blimits, viz.

orginal0||orginal1|| · · · ||orginalnb−1 and checks if the sub-arrays orginalj are con-

tained in the corresponding lists Lbj , while accumulating their chunk scores. If the check

does not succeed, it exits. Or else, A then counts a success for the full enumeration

since if Phase II is run completely, the correct array candidate will be output and in-

serted into the corresponding list. The algorithm A then continues operating and, for each

lsize ∈ {220, 230, 240}, it then proceeds to compute an interval [max−δ,max] (exploiting

the key enumeration algorithm described in Section 5.6.2.3) and verify if the computed

total score for the original array lies in the computed interval. If so, it means that if

Phase II is run over the computed interval, the correct array candidate will be output

and inserted into the corresponding set (therefore counting a success for the particular

value of lsize).

Table 6.1 shows the results only for data points (α, β) for which we can get a non-zero

psuccess. For example, for α = 0.001, β = 0.001, lsize1 = 240, lsize2 = 240, lsize3 = 240,

then psuccess = (0.97) · (0.86) · (0.26) = 0.224458 and the cost of our key recovery would

be at most 280 operations. We may observe that this recovery algorithm manages to

tolerate very small values for both α and β. We believe that this behaviour is a result

of the inherent design of the Rainbow signature scheme, regardless of its implementation.

Indeed, the sizes of the short arrays used to store the components of the private key

are considerably large, even for this ad hoc parameter set. Even though our recovery

algorithm exploits the further redundancy used to store a field element (only 8 bits being

used out of 16 bits), both the number of entries per array and the number of candidates

per chunk make it difficult for our key recovery algorithm to tolerate larger values for both

α, β.

When using the default parameter sets for this scheme, we also expect to obtain very small

6Array representation of L1 or L2 or f .
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Data Points lsize1 lsize2 lsize3

α β 220 230 240 264 220 230 240 220 230 240 272

0.001 0.001 0.97 0.97 0.97 0.97 0.89 0.89 0.89 0.1 0.22 0.26 0.34

0.001 0.002 0.94 0.96 0.96 0.96 0.74 0.77 0.77 0.01 0.03 0.06 0.09

0.001 0.003 0.92 0.97 0.97 0.97 0.46 0.52 0.52 0 0.01 0.02 0.05

0.001 0.004 0.79 0.86 0.87 0.87 0.32 0.39 0.39 0 0 0.01 0.01

0.001 0.005 0.77 0.88 0.89 0.89 0.28 0.37 0.39 0 0 0.01 0.01

0.002 0.001 0.97 0.99 0.99 0.99 0.74 0.77 0.79 0.05 0.08 0.1 0.11

0.002 0.002 0.9 0.93 0.94 0.94 0.54 0.57 0.57 0.01 0.01 0.01 0.03

0.002 0.003 0.82 0.9 0.9 0.9 0.41 0.45 0.46 0 0 0.01 0.01

0.003 0.001 0.89 0.92 0.92 0.92 0.52 0.58 0.59 0.01 0.04 0.07 0.07

Table 6.1: Values for psi , 1 ≤ i ≤ 3, for the ad hoc parameter set.

values for ps1 , ps2 , ps3 , even if the values for both α and β are very small. Recall that in

the Bouncy Castle implementation, the default parameter set is the following.

v1 = 6 ; o1 = 12− 6 = 6,

v2 = 12; o2 = 17− 12 = 5,

v3 = 17; o3 = 22− 17 = 5,

v4 = 22; o4 = 33− 22 = 11,

v5 = 33; o5 = 0.

When using this parameter set, our key recovery algorithm will first attempt to construct

a set of high scoring candidates for L1, C
(L1). The affine map L1 will be represented as a

short array with size (n− v1) · (n− v1 + 1) = (33− 6)(33− 6 + 1) = 27 · 28 = 756. The

construction of such a set involves generating high scoring candidates for an array r with

size equal to 756. Hence, ps1 is expected to be very small, even if the values for both α

and β are very small. Similarly, the second step of our key recovery algorithm involves

constructing a set of high scoring candidates for L2, C
(L2). The affine map L2 will be

represented as a short array with size n2 + n = (33)(33) + 33 = 1122. Hence, ps2 is also

expected to be very small, even if the values for both α and β are very small. Concerning
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the third step, the probability for this step to complete successfully will be even smaller,

because the attacker would need to create a set of high scoring candidates for f such that

the correct candidate is in the corresponding list C(f). A high scoring candidate for f

results from picking a high scoring candidate for each layer and then combining them. In

particular, the first, second, third and fourth layer will be represented as a short array

with sizes 510, 1110 1985 and 8360 respectively. Therefore, ps3 is expected to be very

small, even if the values for both α and β are very small. In conclusion, the probability

psuccess for our key recovery algorithm to recover the correct private key is expected to be

very small for the default parameter set in Bouncy Castle.

On the hand, let us consider the default parameter set (F16, 32, 32, 32) introduced in

the Reference implementation and the particular encoding of this implementation. The

reason for choosing this parameter set is that it represents one of the “smallest” parameter

sets. So, according to this parameter set, v1 = 32, o1 = 32, v2 = 64, o2 = 32, n = 96. In

this implementation, the affine map L1 is represented as a byte array whose size is equal to

d(n−v1)·(n−v1+1)/2e = 2080. Moreover, the affine map L2 is represented as a byte array

whose size is equal to d(n)·(n+1)/2e = 4656. The first layer is represented as a byte array

whose size is equal to d(o1+o1 ·v1+o1(
v1(v1+1)

2 +v1+1))/2e = 9504, while the second layer

is represented as a byte array whose size is equal to d(o1+o1 ·v2+o2(
v2(v2+1)

2 +v2+1))/2e =

35360. Because both the number of entries per array and the number of candidates per

chunk are considerably large, and this encoding decreases redundancy used to store the

private key, we also expect that the probability psuccess for our key recovery algorithm to

recover the correct private key be very small, even if the values for both α and β are very

small.

6.6 Chapter Conclusions

In this chapter, we initiated the study of cold boot attacks on the Rainbow signature

scheme, a member of the family of asymmetric cryptographic primitives based on multi-

variate polynomials over a finite field K. Our evaluation focused on two existing Rainbow

implementations. The first is the Reference implementation included in the package

submitted to the NIST process. The second is the Java implementation included in the

popular Bouncy Castle Java crypto library. By exploiting the algebraic structure of this

scheme, we proposed a time-memory trade-off algorithm for key recovery and then exper-
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imented with this algorithm for an ad hoc parameter set. We found that our algorithm is

not able to tolerate larger values for both α, β. We believe this is a result of the inherent

design of the Rainbow signature scheme, regardless of its implementation. Indeed, the

sizes of the arrays used to store the components of the private key are considerably large,

even for the ad hoc parameter set we used in our experiments. Therefore, as a future

work, it would be interesting to explore other approaches exploiting better the algebraic

structure of this scheme.
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Cold Boot Attacks on McEliece Public
Key Encryption Scheme
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In this chapter, we study the McEliece public key encryption scheme in the cold boot attack

setting. In particular, we focus on a implementation provided by the Bouncy Castle

project. For this implementation, we study its in-memory formats for storing a private

key for this scheme and propose a key recovery strategy that combines key enumeration

algorithms with some linear algebra algorithms.

7.1 Introduction

In this chapter, we examine the feasibility of cold boot attacks against the McEliece

public key encryption scheme [51]. This scheme is a member of the family of asymmetric

cryptographic primitives based on linear codes. We believe this to be the first time that

this has been attempted, however there are very recent studies attempting other side-

channel attacks on this scheme [1, 63]. Our work is the continuation of the trend to
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develop cold boot attacks for different schemes as revealed by the literature discussed at

length in Section 2.2. But it is also the continuation of the evaluation of the leading post-

quantum candidates against this class of attack. Such an evaluation should form a small

but important part of the overall assessment of schemes in the NIST selection process for

post-quantum algorithms.1

As noted previously, in the cold boot attack setting, it is important to have knowledge of

the exact formats in which the private key of a cryptographic scheme is stored in memory to

developing key recovery attacks for the cryptographic scheme. This is because the attack

depends on physical effects in memory, represented by bit flips in private key bits, and the

main input to the attack is a bit-flipped version of the private key. Ergo, it is necessary

either to propose natural ways in which a private key would be stored in memory or to

review specific implementations of the McEliece public key encryption scheme to learn

about what formats are used to store the private key.

As in previous chapters, we adopt reviewing specific implementations of the McEliece

public key encryption scheme, and so our evaluation will be focused on the McEliece im-

plementation included in the popular Bouncy Castle Java crypto library. In this chapter,

we will study this implementation and evaluate it in the cold boot attack setting. In par-

ticular, this implementation stores Goppa polynomials directly in memory in coefficient

form. Additionally, it stores some components of the private key with some redundancy

and additional structure that we can exploit, e.g. the permutations on {0, . . . , n− 1} are

stored as an integer array containing each number l, 0 ≤ l < n, once and only once.

We propose a key recovery algorithm that exploits the structure of this cryptographic

scheme, which allows us to reconstruct the private key of this scheme from some of its

components. To reconstruct the components, we make use of some techniques discussed

previously. In particular, we use the general key recovery strategy developed in Chapter 4

as a core algorithm to create lists of high scoring candidates for some components of the

private key. Once these lists are created, we exploit some algebraic relations among the

components to try to reconstruct the private key.

1See http://csrc.nist.gov/groups/ST/post-quantum-crypto/ for details of the NIST process.
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7.2 Goppa Codes

7.2 Goppa Codes

In this section, we will present some concepts on Goppa codes.

Let q be a prime and let m and t be positive integers. Let g(z) be a polynomial of degree

t over the extension field Fqm , g(z) = g0 + g1z + . . . + gtz
t =

∑t
i=0 giz

i, and let L be a

subset of Fqm , L = {γ1, . . . , γn} ⊆ Fqm .

A Goppa Code Γ(L, g(z)) is defined by the Goppa polynomial g(z) and the subset L such

that g(γi) 6= 0 for all γi ∈ L. With a vector c = (c1, c2, . . . , cn) over Fq we associate the

function

Rc(z) =
n∑
i=1

ci
z − γi

, (7.1)

where 1
z−γi is the unique polynomial such that (z − γi) 1

z−γi ≡ 1 mod g(z).

Definition 7.2.1 The Goppa code Γ(L, g(z)) consists of all vectors c such that

Rc(z) ≡ 0 mod g(z). (7.2)

7.2.1 Parameters of a Goppa Code

The parameters of a code are its size n, its dimension k and its minimum distance d. We

will use the notation [n, k, d] Goppa code for a Goppa code with parameters n, k and d.

The first parameter, n, is the length of the codewords c and therefore is fixed by L. For

the other two parameters, lower bounds may be derived.

Theorem 7.2.1 The Goppa code Γ(L, g(z)) of size n is a linear code over Fq with the

properties:

• The dimension of the code satisfies k ≥ n−mt.

• The minimum distance of the code satisfies d ≥ t+ 1.
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7.2.1.1 Parameters for a special case

We want the minimum distance of the code d to be as large as possible, so that the code

can correct r errors if 2r + 1 ≤ d [38]. There is a special case where the lower bound

on d can be raised. This is the case where Γ(L, g(z)) is a binary Goppa code such that

the polynomial g(z) over F2m of degree t has no roots of multiplicity larger than one. A

polynomial satisfying this property is called separable, a name that we will use from now

on.

Lemma 7.2.2 Let Γ(L, g(z)) be a binary Goppa code with a separable polynomial g(z) of

degree t. Then Γ(L, g(z)) = Γ(L, g2(z)).

Theorem 7.2.3 Let Γ(L, g(z)) be a binary Goppa code with a separable polynomial g(z)

of degree t. Then Γ(L, g(z)) has a minimum distance d of at least 2t+ 1.

7.2.2 Parity Check Matrix of a Goppa Code

We need a parity check matrix H of the code in order to correct errors. Note that 1
z−γi

can be seen as a polynomial pi(z) mod g(z), viz.

1

z − γi
≡ pi(z) = pi1 + pi2z + . . .+ pitz

t−1 mod g(z).

We can therefore rewrite Equation (7.2) as
∑n

i=1 cipi(z) ≡ 0 mod g(z), hence

n∑
i=1

cipij = 0, for 1 ≤ j ≤ t.

Furthermore, the parity check matrix H satisfies c ·Ht = 0, therefore

H =



p11 p21 p31 . . . pn1

p12 p22 p32 . . . pn2

...
...

...
. . .

...

p1t p2t p3t . . . pnt


. (7.3)
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To determine the factors pij , we rewrite pi(z) ≡ (z−γi)−1 ≡ −g(z)−g(γi)
z−γi ·g(γi)

−1 mod g(z),

since −(z − γi) · g(z)−g(γi)z−γi · g(γi)
−1 ≡ 1 mod g(z).

We now define hi := g(γi)
−1 and recall that g(z) = g0 + g1z+ . . .+ gtz

t. Substituting this

into the previous equation, we find

pi(z) = −gt · (z
t − γti ) + . . .+ g1(z − γi)

z − γi
· hi. (7.4)

The fraction in Equation (7.4) can be rewritten as

gt(z
t−1 + zt−2γi + . . .+ γt−1i ) + gt−1(z

t−2 + zt−3γ+ . . .+ γt−2i ) + . . .+ g2(z + γi) + g1.

If we now substitute pi(z) = pi1 + pi1z+ . . .+ pitz
t−1, we find the following expression for

each pij , 

pi1 = −(gtγ
t−1
i + gt−1γ

t−2
i + . . . g2γi + g1)hi.

pi2 = −(gtγ
t−2
i + gt−1γ

t−3
i + . . .+ g2)hi.

...
...

...

pi(t−1) = −(gtγi + gt−1) · hi.

pit = −gt · hi.

Hence we find that H = C ·X ·Y, where

C =



−gt −gt−1 −gt−2 . . . −g1

0 −gt −gt−1 . . . −g2

0 0 −gt . . . −g3,

...
...

...
. . .

...

0 0 0 . . . −gt



, (7.5)
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X =



γt−11 γt−12 γt−13 . . . γt−1n

γt−21 γt−22 γt−23 . . . γt−2n

...
...

...
. . .

...

γ1 γ2 γ3 . . . γn

1 1 1 . . . 1



,Y =



h1 0 0 . . . 0

0 h2 0 . . . 0

0 0 h3 . . . 0

...
...

...
. . .

...

0 0 0 . . . hn



.

7.2.3 Generator Matrix of a Goppa Code

The parity check matrix H is used for correcting errors, but besides that, we also need a

generator matrix to encode and decode messages. A codeword is formed by multiplying a

message m = (m1, . . . ,mk) with G. Furthermore, the resulting codeword can be corrected

using the property c ·Ht = 0 for all c ∈ Γ(L, g(z)). Therefore, G ·Ht = 0 can be used to

find G from H.

Moreover, to encode a long message, we first write it in blocks of k symbols m and then

multiply m by the generator matrix G, viz. (m1,m2, . . . ,mk) ·G = (c1, c2, c3, . . . , cn).

7.2.4 Correcting Errors

Let y be a received word, containing r errors, with 2r+ 1 ≤ d or r ≤ b t2c when d = t+ 1.

Therefore, (y1, y2, . . . , yn) = (c1, c2, . . . , cn) + (e1, e2, . . . , en) with ei 6= 0 in exactly r

positions. In order to correct the word and find the codeword c, we have to find the

error vector e and therefore discover the set of error locations B = {i | ei 6= 0} and the

corresponding values ei for i ∈ B.

Let us define the error locator polynomial σ(z) as

σ(z) :=
∏
i∈B

(z − γi), (7.6)
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and the error evaluator polynomial ω(z) as

ω(z) :=
∑
i∈B

ei
∏

j∈B,j 6=i
(z − γj). (7.7)

From Equation (7.6), it is clear that the set of error locations follows directly from the

roots of σ(z), since B = {i | γi is a root of σ(z)}. Moreover, the syndrome s(z) of the

received word y is defined as

s(z) :=
n∑
i=1

yi
z−γi =

n∑
i=1

ci+ei
z−γi =

n∑
i=1

ci
z−γi +

∑
i∈B

ei
z−γi

≡
∑
i∈B

ei
z−γi mod g(z).

(7.8)

Theorem 7.2.4 Let e be the error vector of weight r such that r ≤ b t2c. Let σ(z), ω(z), s(z)

be as described above. Therefore,

1. deg(σ(z)) = r.

2. deg(ω(z)) ≤ r − 1.

3. gcd(σ(z), ω(z)) = 1.

4. ek = ω(γk)
σ′(γk)

, k ∈ B, where σ′(z) :=
∑
i∈B

∏
j∈B,j 6=i

(z − γj).

5. σ(z)s(z) ≡ ω(z) mod g(z).

In order to correct errors in a codeword, we have to solve the following equation,

σ(z)s(z) ≡ ω(z) mod g(z). (7.9)

Because g(z) is known and the syndrome s(z) can be computed, we have to solve a system

of t equations with 2r unknowns, namely, σ0, σ1, . . . , σr−1 and ω0, ω1, . . . , ωr−1, where

σ(z) = σ0 + σ1z, . . . , σr−1z
r−1 + zr and ω(z) = ω0 + ω1z + . . . + ωr−1z

r−1. Since 2r ≤ t,

there is a unique solution. Algorithm 23 describes the correction of errors in a Goppa

Code.
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Algorithm 23 corrects r ≤ b t2c errors in a Goppa Code

1: Let y = (y1, . . . , yn) be a received codeword containing r errors for 2r ≤ t;
2: Compute the syndrome s(z) =

n∑
i=1

yi
z−γi ;

3: Solve the key equation σ(z)s(z) ≡ ω(z) mod g(z) by writing

σ(z) = σ0 + σ1z, . . . , σr−1z
r−1 + zr;

ω(z) = ω0 + ω1z + . . .+ ωr−1z
r−1;

and solving the system of t equations and 2r unknowns. If the code is binary, one can
take ω(z) = σ′(z);

4: Determine the set of error locations B = {i | σ(γi) = 0};
5: Compute the error values e′i = ω(γi)

σ′(γi)
;

6: The error vector e = (e1, . . . , en) is formed by setting ei = e′i for i ∈ B and zeros at
the remaining positions;

7: The codeword sent is c = y − e;

7.2.4.1 Correcting Errors in a Special case

Let Γ(L, g(z)) be a binary Goppa code such that the polynomial g(z) over F2m is separable

and whose degree is t. Hence, as stated by Theorem 7.2.3, Γ(L, g(z)) has a minimum

distance d of at least 2t + 1. Therefore, it can correct a maximum of t errors, so we can

make changes to the previous ideas to design an algorithm for correcting t errors in this

special case. A general and straightforward approach is as follows.

According to Lemma 7.2.2, Γ(L, g(z)) = Γ(L, g2(z)) and, since g2(z) has degree 2t, we can

then use Algorithm 23 to correct b2t2 c = t errors. But, to do so, we first need to compute

the parity check matrix Ĥ of Γ(L, g2(z)) to compute the syndrome of the received vector.

However, there is another known algorithm if gcd(s(z), g(z)) = 1. Note this condition is

not satisfied in general for g(z) a separable polynomial. However, if we assume g(z) is

irreducible, it is always true. We next show how to get an algorithm for correcting errors

when g(z) is irreducible.

Since Γ(L, g(z)) is a binary code, Equation (7.9) can be transformed to

σ(z)s(z) ≡ σ′(z) mod g(z). (7.10)

Furthermore, we know that σ(z) is a polynomial of degree t and therefore can be rewrit-

ten as σ(z) = σ0 + σ1z + . . . + σtz
t. Grouping terms, we have σ(z) = a2(z) + b2(z)z,
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where deg(a(z)) ≤ t
2 and deg(b(z)) ≤ t−1

2 . Moreover, σ′(z) can be rewritten as σ′(z) =

2a(z)a′(z) + 2b(z)b′(z)z + b2(z) = b2(z). Therefore, using Equation (7.10), we find

(a2(z) + b2(z)z)s(z) ≡ b2(z) mod g(z). (7.11)

Since g(z) is irreducible, then gcd(s(z), g(z)) = 1. Hence, by using the extended euclidean

algorithm(see [66]), we can compute a polynomial h(z) such that

h(z)s(z) ≡ 1 mod g(z). (7.12)

Combining Equation (7.11) and Equation (7.12), it follows that

b2(z)(z + h(z)) ≡ a2(z) mod g(z) (7.13)

If h(z) = z, then, from Equation (7.12), s(z)z ≡ 1 mod g(z), so σ(z) = z is the solution.

Otherwise, there exists a unique polynomial d(z) mod g(z) such that d2(z) = z + h(z).

Now from Equation (7.13), we know that b2(z)d2(z) ≡ a2(z) mod g(z), which is equivalent

to b(z)d(z) ≡ a(z) mod g(z), since it is the binary case. This leads to finding σ(z) =

a2(z) + b2(z)z of degree ≤ t and thereby correcting t errors. Algorithm 24 describes the

correction of errors in a Binary Goppa Code for g(z) irreducible.
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Algorithm 24 corrects r ≤ t errors for g(z) irreducible over F2m

Let y = (y1, . . . , yn) be a received codeword containing r errors for r ≤ t;
Compute the syndrome s(z) =

n∑
i=1

yi
z−γi ;

Use the Extended Euclidean Algorithm (see [66]) to find h(z) such that s(z)h(z) ≡ 1
mod g(z);
if h(z) = z then

σ(z)← z;
else

Calculate d(z) such that d2(z) ≡ h(z) + z mod g(z);
Find a(z) and b(z) with b(z) of least degree such that b(z)d(z) ≡ a(z) mod g(z);
σ(z)← a2(z) + b2(z)z;

end if
Determine the set of error locations B = {i | σ(γi) = 0};
The error vector e = (e1, . . . , en) is formed by setting ei = 1 for i ∈ B and zeros at the
remaining positions;
The codeword sent is c = y − e;

7.2.5 Decoding a Message

After correcting possible errors in a codeword, we can find the original message by using

this expression (m1,m2, . . . ,mk) ·G = (c1, c2, c3, . . . , cn), which is equivalent to

Gt ·



m1

m2

...

mk


=



c1

c2

...

cn


.

Therefore we can find the message vector by reducing

(Gt | ct) =



c1

c2

Gt c3

...

cn


∼ · · · ∼



m1

m2

Ik
...

mk

M


, (7.14)

where Ik is the k × k identity matrix and M is an (n− k)× (k + 1) matrix.
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7.3 McEliece Public Key Encryption Scheme

In this section, we will present the McEliece public key encryption scheme, the first code-

based public-key encryption scheme that was introduced by McEliece [51] in 1978. The

public key specifies a random binary Goppa code. A cipher-text is a codeword plus random

errors, and the private key allows efficient decoding, i.e., extracting the codeword from

the cipher-text, as well as identifying and removing the errors.

The security level of McEliece public key encryption scheme has remained remarkably

stable, despite dozens of attack papers over 40 years [8]. The original McEliece parameters

were designed for only 264 security [51], but this encryption scheme may easily scale up

to provide ample security margin against advances in computer technology, including

quantum computers. This encryption scheme has prompted a tremendous amount of

followup work [10, 54, 65]. For instance, a variant of this encryption scheme is Niederreiter

public key encryption scheme [53]. Additionally, McEliece public key encryption scheme

is a candidate in the ongoing NIST post-quantum standardisation process.2

On the other hand, research on practical questions regarding efficiency and physical secu-

rity of this encryption scheme has just recently started, in particular research on timing-

related side-channel attacks [1, 63]. We here instead follow other direction. We will

evaluate real implementations of this encryption scheme in the cold boot attack setting.

This question has not yet been addressed so far. To this end, we will evaluate a cur-

rent implementation of this encryption scheme in this setting and propose a key recovery

algorithm for that particular implementation.

7.3.1 Public Key Encryption Scheme

In order to set up an encryption scheme depending on Goppa codes, we could use the

following approach, commonly called textbook McEliece cryptosystem.

7.3.1.1 Key Generation

First select an arbitrary separable polynomial g(z) of degree t over F2m . The Goppa code

defined by L and g(z) has parameters [n,≥ n−mt,≥ 2t+1]. Compute the k×n generator

2See http://csrc.nist.gov/groups/ST/post-quantum-crypto/ for details of the NIST process.
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matrix G′ of the Goppa code. Next, choose a random, dense k× k non-singular matrix S

and a random n× n permutation matrix P and compute G = S ·G′ ·P. The public key

is the 2-tuple (G, t), while the private key is the 4-tuple (g(z),G′,S,P).

7.3.1.2 Encryption

The plaintext space of the scheme is the set of binary strings of length k. To encrypt such

a string m, pick a random error pattern e of length n with at most t coordinates equal to

1. The encryption of m is then c = m ·G + e.

7.3.1.3 Decryption

In order to recover m from c, we compute

c′ = c ·P−1 = m ·G ·P−1 + e ·P−1 = mSG′ ·P ·P−1 + e′ = (m · S) ·G′ + e′,

where e′ still has weight at most t, since P is a permutation. With the decoding algorithm

for Goppa codes, we then can correct c′ into the codeword m′ = m · S by finding e′ and

finally recover the original message by computing m = m′ · S−1.

7.4 Software Implementations for McEliece Public Key Encryp-

tion Scheme

In this section, we will review the software implementation for McEliece public key encryp-

tion scheme provided by Bouncy Castle crypto package. In particular, we are interested

in the in-memory format this implementation uses to store the components of the private

key.

7.4.1 Bouncy Castle Implementation

The Bouncy Castle crypto package contains Java implementations of cryptographic al-

gorithms. The package is organised so that it contains a light-weight API suitable for use

in any environment (including the Java 2 platform, Micro Edition) with the additional

infrastructure to conform the algorithms to the Java Crytpgraphy Extension framework.
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It offers the BCPQ (for BC Post Quantum) provider with support for McEliece public key

encryption scheme. We now will describe the in-memory format this implementation uses

to store the components of the private key.

The package org.bouncycastle.pqc.crypto.mceliece contains all the relevant classes

for this implementation. Here we will only describe those classes in the package that are

relevant to the key generation algorithm.

We start off by describing the class McElieceParameters that defines the default param-

eters to set up a new key pair. Specifically, it contains the following int variables.

1. DEFAULT M holds the default extension degree. It is set to the value 11.

2. DEFAULT T holds the default error correcting capability. It is set to the value 50.

3. m stores the extension degree of the finite field F2m .

4. t stores the error correction capability of the code.

5. n stores length of the code.

6. fieldPoly stores the field polynomial.

During the initialisation of an object of this class, m and t are set to the default values if

they are not specified. Furthermore, n is set to 2m while fieldPoly is set to an integer

value that represents an irreducible polynomial of degree m over F2. For example, the

irreducible polynomial z4+z+1 is represented by the integer value (00...0000010011) = 19.

When the default values are selected, we have n = 2048, k = 1498 and t = 50. This

instance of the McEliece cryptosystem gives about 100 bits of security with respect to the

attacks given in [8].

Now the class McElieceKeyPairGenerator internally maintains an object of the class

McElieceParameters. Also, it possesses the method genKeyPair, which will generate

both the private key and the public key when it is executed. Figure 7.1 shows the actual

implementation of this method. As we shall see, this key generation algorithm is slightly

different to the algorithm described in Section 7.3.1.1.

We next explain the code shown in Figure 7.1 by expanding on the lines of code below

each numbered comment.
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private AsymmetricCipherKeyPair genKeyPair()

{ if (!initialized)

{initializeDefault();}

//1. Creating the finite field GF(2^m).

GF2mField field = new GF2mField(m, fieldPoly);

//2. Creating an Irreducible Goppa polynomial.

PolynomialGF2mSmallM gp = new PolynomialGF2mSmallM(field, t,

PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL, random);

//3. Generating the canonical check matrix.

GF2Matrix h = GoppaCode.createCanonicalCheckMatrix(field, gp);

//4. Computing both the short systematic form of the check matrix and a

random permutation P1.

MaMaPe mmp = GoppaCode.computeSystematicForm(h, random);

GF2Matrix shortH = mmp.getSecondMatrix();

Permutation p1 = mmp.getPermutation();

//5. Computing the short systematic form of the generator matrix and

extending it to full systematic form.

GF2Matrix shortG = (GF2Matrix)shortH.computeTranspose();

GF2Matrix gPrime = shortG.extendLeftCompactForm();

//6. Obtaining the number of rows of G, i.e. the dimension of the code.

int k = shortG.getNumRows();

//7. Generating a random invertible (k x k)-matrix S and its inverse.

GF2Matrix[] matrixSandInverse = GF2Matrix

.createRandomRegularMatrixAndItsInverse(k, random);

//8. Generating a random permutation P2.

Permutation p2 = new Permutation(n, random);

//9. Computing the public matrix G=S*G’*P2

GF2Matrix g = (GF2Matrix)matrixSandInverse[0].rightMultiply(gPrime);

g = (GF2Matrix)g.rightMultiply(p2);

//10. Generating both the public key and the private key.

McEliecePublicKeyParameters pubKey = new McEliecePublicKeyParameters(n,

t, g);

McEliecePrivateKeyParameters privKey = new

McEliecePrivateKeyParameters(n, k, field, gp, p1, p2,

matrixSandInverse[1]);

return new AsymmetricCipherKeyPair(pubKey, privKey);

}

Figure 7.1: Key Generation Algorithm of Bouncy Castle Implementation.
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1. The object field of the class GF2mField represents the field which the Goppa Code

will be defined on. This class implements operations with elements from the finite

field F2m = F2[γ], where γ is a root of an irreducible polynomial with degree m.

Each field element e has a polynomial basis representation, i.e. it is represented by

a different binary polynomial of degree smaller than m, i.e. e = em−1γ
m−1 + . . . +

e1γ + e0. All operations are defined only for extension fields with 1 < m < 32. For

the representation of field elements, a map f : F2m → Fm2 is used, where integers

have the binary representation. For example, γ7 + γ3 + γ + 1 is represented by the

integer (00...0010001011) = 139, which is stored in a variable int.

2. The object gp of the class PolynomialGF2mSmallM represents the irreducible Goppa

polynomial g(z) of degree t and whose coefficients are random elements taken from

the field F2m . It is stored as an int array [g0, g1, . . . , gt], where gi is the i-th coefficient

of the polynomial.

3. The method GoppaCode.createCanonicalCheckMatrix(field, gp) will compute

the parity check H for the Goppa code Γ(L, g(z)), where L is the set of field elements

represented by the set of integers {0, 1, 2, 3, . . . , n− 1} with n = 2m.

In order to compute H = C·X·Y, the method makes use of an algorithm that follows

directly from Equation (7.5). It then obtains a (t × n) int matrix hArray, where

each entry is an element in F2m . This matrix is then transformed into a (t ·m)× n

matrix with entries in F2 and stored as a (t ·m)× (n+31)
32 int array,3 which is given

as a parameter to create the object h of the class GF2Matrix. This class GF2Matrix

implements some operations with matrices over F2.

4. The method GoppaCode.computeSystematicForm(h, random) will compute two

matrices A, M and a random permutation P1 such that A−1 ·H ·P1 = (I |M).

In order to create the tuple (A,M,P1), the method proceeds as follows. Since H

is a (t ·m) × n matrix over F2, the method generates a random n × n permutation

matrix P1, and then calculates H · P1 = (A | B), where A is a (t · m) × (t · m)

binary matrix and B a (t ·m) × (n − t ·m) binary matrix. If A is invertible, then

A−1 · H · P1 = (It·m | M), where It·m is the t · m identity matrix and M is a

(t ·m)× (n− t ·m) matrix. Otherwise, it picks another fresh, random permutation

P1 and continues until it has found A. It finally returns (A,M,P1).

The matrices A, M are represented as objects of the class GF2Matrix, while the

3Each entry of the matrix hArray occupies only m out of 32 bits, so after packing all the entries of a
row into a long bit string, this may be stored in only (n+31)

32
int entries.
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permutation P1 is represented as an object of the class Permutation. This latter

class implements permutations on the set {0, 1 . . . , n− 1}, for some given n > 0, as

sequences containing each number l, 0 ≤ l < n, once and only once (n-permutations).

Therefore, a sequence is stored internally as an n int array. Finally, the tuple

(A,M,P1) is represented by an object of the class MaMaPe.

Once the object mmp of the class MaMaPe has been created, the instruction GF2Matrix

shortH = mmp.getSecondMatrix() simply retrieves M and assigns it to the object

shortH. In a similar way, the instruction Permutation p1 = mmp.getPermutation()

retrieves P1 and assigns it to the object p1.

5. The two following instructions follow from the observation that a parity check matrix

can be used to construct the generator matrix for a code (and vice versa). If the

parity check matrix H for a code C is in systematic form, i.e. H = (Ik | M), then

the generator matrix for C is G = (−Mt | In−k), where Mt is the transpose of the

matrix M [38]. Hence

• GF2Matrix shortG = (GF2Matrix)shortH.computeTranspose() simply cal-

culates Mt and assigns it to the object shortG.

• GF2Matrix gPrime = shortG.extendLeftCompactForm() simply forms the ma-

trix G′ = (Mt | I) and assigns it to the object gPrime.4

6. The instruction int k = shortG.getNumRows() simply obtains the number of rows

of G′, which is equal to the dimension of the code.

7. GF2Matrix.createRandomRegularMatrixAndItsInverse(k, random) will output

a tuple (S,S−1), where S is a k× k matrix with entries in F2 and S−1 is the inverse.

8. The instruction Permutation p2 = new Permutation(n, random) will create a ran-

dom n-permutation P2 and assign it to the object p2.

9. The following two instructions will calculate G = S ·G′ · P2 and assign it to the

object g.

10. Finally both the public key and private key are created. The object pubKey will

contain the tuple (n,t,g) while the object privKey will store

(n,k,field,gp,sInv,p1,p2,h),

where

4The minus signs are not needed for fields of characteristic 2, i.e., F2m .
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• n is an int variable that holds the value of the length of the code.

• t is an int variable that holds the value of the error correction capability of

the code.

• k is an int variable that holds the value of the dimension of the code.

• g is an object of the class GF2Matrix, which internally has a k × (n+31)
32 int

array that represents the k × n binary generator matrix G.

• field is an object of the class GF2mField, which represents the underlying

finite field. An object of this class contains the int variable polynomial that

holds the value of the irreducible binary polynomial used for this field (value of

fieldPoly).

• gp is an object of the class PolynomialGF2mSmallM, which represents the irre-

ducible Goppa polynomial g(z). This object internally has a (t+ 1) int array

to hold the coefficients of the polynomial. Each entry represents a field element.

• sInv is an object of the class GF2Matrix, which internally has a k× (k+31)
32 int

array that represents the k × k random binary non-singular matrix S−1.

• p1 and p2 are objects of the class Permutation. Each internally holds an n

int array to store the values of the corresponding sequence of n integers; p1 is

used to generate the systematic check matrix, while p2 is used to compute the

public generator matrix.

• h is an object of the class GF2Matrix. It internally has a (t ·m) × (n+31)
32 int

array that holds the t ·m×n parity check matrix H of the code. Note that this

object h is not given as a parameter when the object privKey is initialised, but

instead h is created again internally by the same instruction used at step (3).

7.5 Mounting Cold Boot Attacks

In this section, we will explore algorithms that might recover the private key of this

cryptosystem for the Bouncy Castle implementation in the cold boot attack setting.

7.5.1 Cold Boot Attack Model

We continue to make the assumptions outlined in Section 2.3. In particular, we assume

that an adversary knows the values t, m, k, n = 2m and the integer value fieldPoly that

represents the binary irreducible polynomial used for constructing the field F2m . This as-
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sumption is plausible since fieldPoly is created by a deterministic algorithm that receives

the value of m when the McEliece parameters (an object of the class McElieceParameters)

are being created. However, it is also possible to set this value and in such case it is very

likely to be public. Additionally, the adversary obtains a noisy version of:

1. The (t + 1) int array coefficients which holds the coefficients of the Goppa

polynomial (member of the object gp).

2. The n int array permp1 which represents the n-permutation P1 (member of the

object p1).

3. The n int array permp2 which represents the n-permutation P2 (member of the

object p2).

4. The k × (k+31)
32 int array Ms which holds the elements of the matrix S−1 (member

of the object sInv).

5. The (t ·m) × (n+31)
32 int array Mh which holds the parity check matrix of the code

(member of the object h).

So the attacker’s goal is to recover the following components of the private key

(coefficients, permp1 , permp2 , Ms, Mh).

7.5.2 Key Recovery

A direct consequence of the manner in which the arrays Ms and Mh are created (look at

step 3 of the key generation algorithm) is that any entry of these two arrays is dense,

i.e. any entry can hold any possible integer value in the range [−231, 231 − 1]. Therefore,

the attacker may not be able to exploit the noisy version of those entries. However, the

attacker may be able to take advantage of the noisy version of the other arrays’ entries.

Recall that each entry of the array coefficients holds an integer value that represents a

field element. Since this integer value is in the range [0, 2m−1], it will be only stored in the

first m of the 32 possible slots with the remaining slots filled with zeros. Similarly, each

entry of the arrays permp1 and permp2 will only store integer values in the range [0, n− 1]

with n = 2m. Therefore, the attacker may create algorithms to generate high scoring and

valid array candidates for those three arrays.
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7.5.3 Key Recovery Algorithm

Let us assume we have an algorithm A that generates an array candidate of the form

[g, p1, p2], where g, p1, p2 are high scoring and valid array candidates for coefficients,

permp1 and permp2 respectively. A valid array candidate for coefficients means that

such an array represents an irreducible polynomial over F2m . On the other hand, a valid

array candidate for permp1 (permp2) means such an array represents a permutation on

{0, 1, 2, . . . , n− 1}.

We next present a key recovery algorithm.

1. Call the algorithm A to generate an array candidate [g(i), p
(i)
1 , p

(i)
2 ]

2. Since g(i) is a valid array candidate for coefficients, g(i) represents an irreducible

polynomial g(i)(z) of degree t that can be used to create the canonical check matrix

H(i) for the Goppa code Γ(i)(L, g(i)(z)), where L is the set of field elements repre-

sented by the set of integers {0, 1, 2, 3, . . . , n − 1} with n = 2m, as done at step (3)

of the key generation algorithm.

3. Once H(i) is created, the attacker gets the permutation P
(i)
1 from p

(i)
1 and then

computes H(i)P
(i)
1 = (A(i) | B(i)), where A(i) is a (t · m) × (t · m) binary matrix

and B(i) a (t ·m)× (n− t ·m) binary matrix. If A(i) is invertible, then the attacker

computes (A(i))−1 ·H(i) ·P(i)
1 = (It·m |M(i)), where It·m is the t ·m identity matrix

and M(i) is a (t ·m)× (n− t ·m) matrix. Hence the attacker gets M(i), which can be

then used to get the generation matrix G′(i) = ((M(i))t | Ik) for this code, as done

at step (5) of the key generation algorithm. Otherwise if A(i) is not invertible, go to

(1).

4. The attacker now computes R(i) = G · (P(i)
2 )−1, where G is the public key and

P
(i)
2 is the permutation obtained from p

(i)
2 . Note that R(i) can be computed by

calculating R(i) = G · (P(i)
2 )t, since the inverse of a permutation P is its transpose,

i.e. P−1 = Pt. The attacker now can try to solve the equation R(i) = S(i) ·G′(i),

where
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,

G′(i) =



g
′(i)
11 . . . g

′(i)
1(n−k) 1 0 0 . . . 0

g
′(i)
21 . . . g

′(i)
2(n−k) 0 1 0 . . . 0

g
′(i)
31 . . . g

′(i)
3(n−k) 0 0 1 . . . 0

...
...

...
. . .

...

g
′(i)
k1 . . . g

′(i)
k(n−k) 0 0 0 . . . 1



.

From R(i) = S(i) ·G′(i), it follows that

r
(i)

îj
=

k∑
r=1

s
(i)

îr
g
′(i)
rj for 1 ≤ î ≤ k, 1 ≤ j ≤ n− k. (7.15)

and

r
(i)

î(n−k+j) = s
(i)

îj
, for 1 ≤ î ≤ k, 1 ≤ j ≤ k. (7.16)

Therefore, from Equation (7.16), the attacker can get possible values for the entries

of S(i), and can then verify all of those values by substituting them in each of the

expressions of Equation (7.15) and checking if each of the equations is satisfied.

This step is efficiently done by extracting the sub-matrix of R(i) consisting of the

rightmost k columns and then multiplying it by G′(i) while simultaneously checking

if the partial results are equal to the corresponding entries of R(i). If the check

finishes successfully, then the attacker finds a candidate for the private key

(n, k, g(i)(z), (S(i))−1,P
(i)
1 ,P

(i)
2 ,H(i)).
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Otherwise, go to step (1).

7.5.4 Constructing Array Candidates

In this section, we will show how we can make use of the key recovery strategy introduced

in Section 4.4.1 to produce array candidates of the form [g, p1, p2], where g, p1, p2 are high

scoring and valid array candidates for the arrays coefficients, permp1 and permp2 .

First the algorithm will receive the arrays coefficients′, perm′p1 and perm′p2 as inputs.

The arrays coefficients′, perm′p1 and perm′p2 are the noisy versions of coefficients,

permp1 and permp2 respectively. The attacker then constructs the lists of chunk candidates

Lg, LP1 , LP2 from coefficients′, perm′p1 and perm′p2 respectively and then combines them

by picking a candidate from each list. Note that the attacker also may present these three

lists as inputs to a key enumeration algorithm, regarding the lists Lg, LP1 , LP2 as sets of

high scoring and valid array candidates for the arrays coefficients, permp1 and permp2 .

Note that the cost of our algorithm is given by O(|Lg| · |LP1 | · |LP2 |).

7.5.4.1 Constructing List of Candidates for Irreducible Polynomials

Here we show how to make use of the key recovery technique introduced in Section 4.4.1

to construct high scoring candidates for the array coefficients.

The attacker has access to a noisy version of coefficients, and so the attacker regards it

as r and sets a chunk to be an int entry. Recall that each entry of the array coefficients

holds an integer value that represents a field element. Since this integer value is in the

range [0, 2m − 1], it will be only stored in the first m of the 32 possible slots with the

remaining slots filled with zeros. Therefore, the candidates for any chunk are the integers

in the set {0, 1, 2, 3, . . . , 2m − 1}.

Furthermore, the attacker represents r as a concatenation of nb blocks, where each block

consists of the concatenation of nbj consecutive chunks, with nbj > 0. Therefore,

r = b0||b1|| · · · ||bnb−1,
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where

bj = rij ||rij+1|| · · · ||rij+nbj−1,

for 0 ≤ j < nb and some 0 ≤ ij < t+ 1.

In order to produce array candidates, the algorithm then proceeds as follows:

Phase I

1. For each chunk ri, 0 ≤ i < t + 1, the attacker uses Equation (2.1) to compute

log-likelihood scores for each candidate ci for the chunk, viz.

L[ci; ri] := ni00 log(1− α) + ni01 logα+ ni10 log β + ni11 log(1− β),

where the niab values count occurrences of bits across the i-th chunks, ri, ci. So the

attacker obtains a list of chunk candidates with 2m entries for the chunk.

2. For each block bj , 0 ≤ j < nb, the attacker presents the nbj lists corresponding to

the nbj chunks in the block bj as inputs to OKEA to produce a list with the Mj

highest scoring chunk candidates for the block, Lbj .

Once Phase I is completed, the attacker will obtain nb lists of chunk candidates and

proceed as follows.

Phase II

1. The attacker presents the nb lists as inputs to a key enumeration algorithm, regarding

each list Lbj as a set of candidates for the block bj . This instance will generate high

scoring array candidates g, where g is a (t+ 1) int array. For each array candidate,

the attacker checks if g conforms to being an irreducible polynomial over F2m . If so,

then g is a high scoring and valid array candidate and is inserted into Lg.

With regard to the check whether an (t+ 1) int array g represents an irreducible polyno-

mial over F2m or not, we use a standard algorithm described in [66] and implemented in

the method isIrreducible of the class PolynomialGF2mSmallM.
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7.5 Mounting Cold Boot Attacks

7.5.4.2 Constructing List of Candidates for a 2m-permutation

Here we show how to make use of the key recovery technique introduced in Section 4.4.1

to construct high scoring candidates for both the array permp1 and the array permp2 .

The attacker now receives the noisy version of the array permp1(permp2) and regards it as

r. The attacker then sets a chunk to be an int entry and its candidates to be the set of

integers in the range between 0 and n−1, where n = 2m. Recall the array permp1 (permp2)

has 2m entries, each of which stores an integer value in the range [0, 2m−1]. Furthermore,

the attacker represents r as a concatenation of nb blocks, where each block consists of the

concatenation of nbj consecutive chunks, with nbj > 0. Therefore,

r = b0||b1|| · · · ||bnb−1,

where

bj = rij ||rij+1|| · · · ||rij+nbj−1,

for 0 ≤ j < nb and some 0 ≤ ij < 2m.

In order to produce array candidates, the algorithm then proceeds as follows:

Phase I

1. For each chunk ri, 0 ≤ i < 2m, the attacker uses Equation (2.1) to compute log-

likelihood scores for each candidate ci for the chunk, viz.

L[ci; ri] := ni00 log(1− α) + ni01 logα+ ni10 log β + ni11 log(1− β),

where the niab values count occurrences of bits across the i-th chunks, ri, ci. So the

attacker obtains a list of chunk candidates with 2m entries for the chunk.

2. For each block bj , 0 ≤ j < nb, the attacker presents the nbj lists corresponding to

the nbj chunks in the block bj as inputs to OKEA to produce a list with the Mj

highest scoring chunk candidates for the block, Lbj .

Once Phase I is completed, the attacker will obtain nb lists of chunk candidates and

proceed as follows.
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Phase II

1. The attacker presents the nb lists as inputs to a key enumeration algorithm, regarding

each list Lbj as a set of candidates for the block bj . This instance will generate high

scoring array candidates p, where p is a 2m int array. For each array candidate, the

attacker checks if p conforms to being a permutation on {0, 1, 2, . . . , 2m − 1}. If so,

then p is a high scoring and valid array candidate and is inserted into LP1(LP2).

To check whether a 2m int array p represents a permutation on {0, 1, 2, . . . , 2m − 1} or

not, the algorithm first sets a 2m boolean array B to have each entry value false and

then it iterates through o = 0, 1, . . . , 2m − 1 while checking if B[p[o]] equals true. If

so, the algorithm stops and outputs false, meaning p does not represent a permutation

on {0, 1, 2, . . . , 2m − 1}. Otherwise, it sets B[p[o]] to have the value true and continues

operating. This algorithm is implemented in the method isPermutation of the class

Permutation.

7.5.5 Parallelisation

The key recovery algorithm introduced in Section 7.5.3 can be parallelised if the algorithm

A is parallelisable. Indeed, if A is parallelisable, it follows that we can have different

instances Ii of A, each of which generates high scoring and valid array candidates, hence

we can run instances of the key recovery algorithm in parallel, each of which has an

instance Ii. We use the algorithm described in Section 7.5.4 as A, which is parallelisable.

7.6 Experimental Evaluation

In this section, we will show some results from running the key recovery algorithm to find

a private key for a particular parameter set. In particular, we will mainly focus on its

success rate.

7.6.1 Implementation

We implement our key recovery algorithm in Java to take advantage of the implemented

algorithms previously and other related algorithms provided by the Bouncy Castle im-
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plementation.

7.6.2 Setup

We run our key recovery algorithm for an ad hoc set of parameters. In particular, m = 9

and t = 31, and n = 512 = 29. Besides, the integer value fieldPoly representing the

irreducible binary polynomial defining F29 is set to 515, i.e. it is 1000000011 if seen as

a bit string and represents the polynomial z9 + z + 1. Therefore, the private key (once

generated) consists of :

1. The (t + 1) int array coefficients which holds the coefficients of the Goppa

polynomial (member of the object gp).

2. The n int array permp1 which represents the permutation P1 (member of the object

p1).

3. The n int array permp2 which represents the permutation P2 (member of the object

p2).

4. The k × (k+31)
32 int array Ms which holds the elements of the matrix S−1 (member

of the object sInv), where k = 233.

5. The (t ·m)× (n+31)
32 int array Mh which holds the check matrix of the code (member

of the object h).

Recall that the attacker has access to a noisy version of the (t+1) int array coefficients,

a noisy version of the n int array permp1 and a noisy version of the n int array permp2 .

As for producing array candidates with size 32 as candidates for coefficients from

its noisy version, we set a chunk to be an int entry (32 bits) and set each block to be a

consecutive sequence of 4 chunks, hence resulting in nb = 8 = 32/4 blocks. Additionally, we

set the set of candidates per chunk to be {0, 1, 2, . . . , 511} and the number of candidates to

be generated for each block, blsize1, to assume the values in the set {29, 210}. Therefore,

any list output by Phase I has blsize entries. Once Phase I finishes, the resulting block

lists are given as inputs to an instance of the key enumeration algorithm described in

Section 5.6.2.3.5 This instance will compute an interval of the form [max − δ,max] such

that the number of candidates N1 whose scores lie in the interval is at least lsize1 but

5We use this algorithm because of its efficiency
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the difference N1−lsize1 is the smallest, where lsize1 may assume the values in the set

{230, 235, 240}. Hence, after Phase II has completed, we have |Lg| ≤ N1.

With regard to creating array candidates with size 512 as candidates for permp1 (permp2)

from its noisy version, we set a chunk to be an int entry (32 bits) and set each block to

be a sequence of 64 chunks, hence resulting in nb = 8 = 512/64 blocks. Also, we set the

set of candidates per chunk to be {0, 1, 2, . . . , 511} and the number of candidates to be

generated for each block, blsize2 (blsize3), to assume the values in the set {29, 210}.

Therefore, any list output by Phase I algorithm has blsize2 (blsize3) entries. Once

Phase I finishes, the resulting block lists are given as inputs to an instance of the key

enumeration algorithm described in Section 5.6.2.3. This instance will compute an interval

of the form [max−δ,max] such that the number of candidates N2 (N3) whose scores lie in

the interval is at least lsize2 (lsize3) but the difference N2−lsize2 (N3−lsize3) is the

smallest. The parameter lsize2 (lsize3) may assume the values in the set {230, 235, 240}.

Hence, after Phase II has completed, we have |LP1 | ≤ N2 (|LP2 | ≤ N3).

We next study the success rate of our algorithm.

7.6.3 Success Rate

For our algorithm to find the private key successfully, the correct components of it have

to be contained in the lists Lg, LP1 , LP2 respectively. We use this observation to estimate

the corresponding probabilities p1, p2, p3, and therefore we may calculate psuccess = p1 ·

p2 · p3, for our selected parameter set. We considered data points (α, β) ∈ {0.001} ×

{0.001, 0.002, 0.003, 0.004, 0.005}, blsizeo ∈ {29, 210}, lsizeo ∈ {230, 235, 240}, 1 ≤ o ≤ 3,

and the corresponding full enumeration in Phase II. Note that given a data point (α, β), a

same value for both lsize2 and lsize3, and a same value for both blsize2 and blsize3,

it is expected that p2 ≈ p3, because we use the same algorithm for generating both LP1

and LP2 (both lists contain candidates for 512-permutations).

To estimate these values, we have an auxiliary algorithm that first generates a fresh pri-

vate key and perturbs each component of it according to α, β. This auxiliary algorithm

then runs a tweaked key recovery algorithm A′ for coefficients with the correspond-

ing parameters, then runs it for permp1 with the corresponding parameters. We run this

auxiliary algorithm 100 times in our experiments.
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Data Points lsize1 lsize2

α β 230 235 240 272 230 235 240 272

0.001 0.001 1 1 1 1 0.19 0.26 0.28 0.34

0.001 0.002 1 1 1 1 0.02 0.09 0.1 0.11

0.001 0.003 1 1 1 1 0.01 0.01 0.02 0.04

0.001 0.004 1 1 1 1 0 0 0 0.02

0.001 0.005 1 1 1 1 0 0 0 0.01

Table 7.1: Values for p1 and p2 for the ad hoc parameter set, with
blsize1 = blsize2 = 29.

In a run of algorithm A′, it first receives the original int array orginal,6 the corre-

sponding noisy version noisy, the set {230, 235, 240}, the corresponding array blimits,

which contains the indices of the last chunks of each block, and the corresponding value

for blsize. This algorithm then partitions noisy into nb blocks using blimits and

run Phase I, hence producing the lists of chunk candidates Lbj , 0 ≤ j < nb, each hav-

ing blsize entries. It then proceeds to split the original array orginal into nb blocks

orginal0||orginal1|| · · · ||orginalnb−1 using blimits and checks if the sub-arrays orginalj

are contained in the lists Lbj while accumulating their chunk scores. If the check does not

succeed, it exits. Or else, the algorithm then counts a success for the full enumeration,

since if Phase II is run completely, the correct array candidate will be output and in-

serted into the corresponding list. It then continues and, for each value lsize in the set

{230, 235, 240}, it proceeds to compute an interval [max− δ,max] (exploiting the counting

method of the key enumeration algorithm described in Section 5.6.2.3) and verify if the

computed total score of the original array lies in the computed interval. If so, it means that

if Phase II is run over the computed interval, the correct array candidate will be output

and inserted into the corresponding list (therefore counting a success for the particular

value of lsize).

Table 7.1 shows the results for the ad hoc parameter set, when blsize1 = 29, blsize2 =

29. On the other hand, Table 7.2 shows the results for the ad hoc parameter set, when

blsize1 = 210, blsize2 = 210. If we set, blsizeo = 29, α = 0.001, β = 0.001, lsizeo =

240, 1 ≤ o ≤ 3, for example, then psuccess = (1) · (0.28) · (0.28) = 0.0784 and the cost of

6Either coefficients or permp1 .
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Data Points lsize1 lsize2

α β 230 235 240 280 230 235 240 280

0.001 0.001 1 1 1 1 0.19 0.27 0.28 0.38

0.001 0.002 1 1 1 1 0.04 0.09 0.11 0.18

0.001 0.003 1 1 1 1 0 0.01 0.05 0.11

0.001 0.004 1 1 1 1 0 0.01 0.01 0.03

0.001 0.005 1 1 1 1 0 0 0 0.01

Table 7.2: Values for p1 and p2 for the ad hoc parameter set, with
blsize1 = blsize2 = 210.

our key recovery algorithm would be at most 2120 operations. Recall that the lists Lg,

LP1 , LP2 would have at most 240 entries, since only valid candidates are included in any

of the lists. Additionally, note that if lsize1 were set to 230, the cost of our key recovery

algorithm would be reduced to at most 2110.

Furthermore, we observe that this recovery algorithm manages to tolerate very small values

for both α and β. We believe that this behaviour is a result of the inherent design of this

scheme, regardless of its implementation. This is because both permutations, P1 and

P2, are chosen randomly during the key generation algorithm. Besides, their entries are

integers in the set {0, 1, 2, . . . , 511}.

Let us consider the default values 11 and 50 for m and t respectively. In such a case,

n = 2048, k = 1498, and the integer value fieldPoly representing the irreducible binary

polynomial defining F211 is set to 2053, i.e. it is 100000000101 if seen as a bit string and

represents the polynomial z11+z2+1. So our algorithm will have to recover an irreducible

polynomial stored in an int array of 51 entries, where each entry may assume any value

in the set {0, 1, 2, · · · , 2047}. Moreover, it will have to recover both the permutation

P1 and the permutation P2. Each permutation is defined on the set {0, 1, 2, · · · , 2047}

and therefore stored in an array of 2047 entries as a sequence containing each number l,

0 ≤ l < 2048, once and only once.

In this case, we expect that the probability psuccess for our key recovery algorithm to

recover the correct private key be very small, even if the values for both α and β are very
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small. In particular, we expect our key recovery algorithm to struggle with recovering

the permutations P1 and P2, as we observed it did for the ad hoc parameter set. Hence,

finding better algorithms to recover both the permutation P1 and the permutation P2

might improve our key recovery algorithm, specially its success rate.

7.7 Chapter Conclusions

In this chapter, we initiated the study of cold boot attacks on the McEliece public key

encryption scheme, a member of the family of asymmetric cryptographic primitives based

on linear codes. Our evaluation focused on an existing McEliece implementation provided

by the Bouncy Castle Java crypto library. We proposed a key recovery algorithm exploit-

ing the algebraic structure of this scheme in the cold boot attack setting, and made some

experiments with this algorithm. As a future research, it would be interesting to search for

other approaches exploiting better the algebraic structure of this scheme. In particular,

exploiting further the relation H ·P1 = (A | B), where A is an invertible (t ·m)× (t ·m)

binary matrix and B a (t ·m)× (n− t ·m) binary matrix, could lead to a better algorithm

to recover P1. Similarly, exploiting further the relation G = S ·G′ · P2 could lead to a

better algorithm to recover P2.
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Chapter 8

Concluding Remarks

In this thesis, we studied algorithms by which an adversary might reconstruct a private

key of a particular cryptographic scheme when the adversary is able to obtain a leakage

function of the private key. In practice such leakage function could be obtained, although

with some effort on the attacker’s part, by gathering data leaked from the physical ef-

fects caused by the functioning of the cryptographic scheme’s implementation [46]. In

particular, we studied the case when the adversary procures data from a computer’s main

memory via a cold boot attack [28]. In Chapter 2, we studied the cold boot attack setting,

in which the attacker with physical access to a machine may recover cryptographic key

information of a cryptographic scheme via this data remanence attack. However, due to

physical effects on the computer’s main memory, any data retrieved from the memory (af-

ter pinpointing the location of the data in it) will probably have random bit fluctuations,

i.e. the data will be noisy. Therefore, the adversary’s main task is then the mathematical

problem of recovering the original key from a noisy version of that key with help of any

extra public information of the cryptographic scheme. This is, the main focus of cold boot

attacks is to develop algorithms for efficiently recovering the original key from a noisy

version of that key for the cryptographic scheme, whilst exploring the limits of how much

noise can be tolerated. In particular, we focused on that task for several post-quantum

cryptographic schemes.

We first posed the problem of key recovery in a general way and established a connection

between the key recovery problem and the key enumeration problem. The latter problem

arises in the side-channel attack literature, where, for example, the attacker might procure

scoring information for each byte of an AES key from a side-channel attack and then want

to efficiently enumerate and test a large number of complete 16-byte candidates until

the correct key is found. In Chapter 3, we then studied several algorithms to solve the
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key enumeration problem, such as the optimal key enumeration algorithm (OKEA) and

several other non-optimal key enumeration algorithms. Additionally, we proposed variants

of some of them and made a comparison of all of them, highlighting their strengths and

weaknesses. This chapter paved the way for later study of cold boot attacks on post-

quantum cryptographic schemes.

We then initiated the study of cold boot attacks on the NTRU public key encryption

scheme, likely to be an important candidate in NIST’s ongoing post-quantum standardis-

ation process. In Chapter 4, we evaluated this cryptographic scheme in the cold boot attack

setting and laid the groundwork for the later study of other cryptographic schemes in the

same broad family of schemes that operate over polynomial rings. We proposed a general

key recovery strategy using key enumeration algorithms for the key recovery problem.

We then adapted it to tackle the problem for various private key formats from two ex-

isting NTRU implementations, the ntru-crypto implementation and the tbuktu/Bouncy

Castle Java implementation. We experimented with variants of this general key recovery

strategy to explore their performance for a range of parameters, showing how algorithms

developed for enumerating keys in side-channel attacks can be successfully applied to the

problem. In particular, our key recovery algorithm was able to tolerate a noise level of

α = 0.001 and β = 0.09 for one of the studied formats when performing a 240 enumeration.

We then continued our task of evaluating post-quantum cryptographic schemes in the

cold boot attack setting and turned our attention to the study of cold boot attacks on

the BLISS signature scheme, a member of the same broad family of schemes that operate

over polynomial rings. In Chapter 5, we evaluated such signature scheme in this setting

and proposed algorithms for the key recovery problem, with particular emphasis on an

existing BLISS implementation provided by the strongSwan project. We made use of the

general key recovery strategy developed in Chapter 4 as a core algorithm. Furthermore,

we established a connection between the key recovery problem in this particular case and

an instance of Learning with Errors Problem (LWE). Additionally, we explored other

techniques to tackle this LWE instance and also showed a technique combining lattice

techniques with key enumeration. We then experimented with one of the key recovery

algorithms to explore its performance for a range of parameters and found that our key

recovery algorithm was able to tolerate a noise level of α = 0.001 and β = 0.09 for a

parameter set when performing a 240 enumeration. As a future work, it may be interesting

to pursue the research line of developing new key recovery techniques by combining key
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enumeration algorithms with other techniques for solving Bounded Distance Decoding,

e.g. lattice enumeration [25]. Another possible direction for future works is exploring key

recovery algorithms exploiting the extra information stored in memory, such as the NTT

of the coefficients of the public polynomial (2g + 1)/f .

We continued our evaluation of post-quantum cryptographic schemes in the cold boot at-

tack setting, with emphasis on the Rainbow signature scheme, which is a member of the

family of asymmetric cryptographic primitives based on multivariate polynomials over a

finite field K. In Chapter 6, we evaluated such cryptographic scheme in this setting and

proposed a time-memory trade-off algorithm for key recovery, focusing our evaluation on

two existing Rainbow implementations: the Reference implementation and the Bouncy

Castle implementation. We experimented with our algorithm and discovered that our

algorithm is not able to tolerate larger values for both α, β. We believe this is a conse-

quence of the intrinsic design of this signature scheme, irrespective of its implementation.

Hence, as a future work, it would be interesting to explore other approaches exploiting

better the algebraic structure of this scheme.

In Chapter 7, we evaluated the McEliece public key encryption scheme in the cold boot

attack setting. This scheme is a member of the family of asymmetric cryptographic prim-

itives based on linear codes. Our evaluation focused on an existing McEliece implemen-

tation: The Bouncy Castle implementation. We proposed a key recovery algorithm ex-

ploiting the algebraic structure of this scheme for this particular implementation and

experimented with this algorithm for an ad hoc parameter set. As a future work, it would

be interesting to explore other approaches exploiting further the algebraic structure of this

scheme. In particular, we think that exploiting further the relation H · P1 = (A | B),

where A is an invertible (t ·m)× (t ·m) binary matrix and B a (t ·m)× (n− t ·m) binary

matrix, could lead to a better algorithm to recover P1. Likewise, exploiting further the

relation G = S ·G′ ·P2 could lead to a better algorithm to recover P2.

According to our results, our key recovery algorithms for cryptographic schemes in the

broad family of schemes that operate over polynomial rings, such as BLISS and NTRU,

tolerated much more noise than for the other cryptographic schemes in the two families

of cryptographic schemes. A plausible reason for this is that both NTRU and BLISS’s

private key formats consist of a few arrays to store the underlying polynomials, i.e., the

number of components to recover and hence needed to re-construct the private key is few.
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Additionally, when a particular component is partitioned into chunks, any of these chunks

may contain much more data than required, in the sense that the number of bits used to

store a small number of candidates is greater than required. This redundancy as well as

the small number of candidates per chunk allowed our attacks to generate more “reliable”

scores for the candidates per chunk (hence, making our algorithms to find the correct

component after enumerating much fewer candidates). From an implementer’s view, this

may be mitigated by reducing the redundancy used to store the polynomials, i.e., by

employing simple packing techniques by which several coefficients are packed together

when storing the private key.

On the other hand, as seen, our key recovery algorithms for Rainbow signature scheme

and McEliece encryption scheme did not tolerate high levels of noise, even though these

algorithms further exploited the algebraic structure of the corresponding schemes. A plau-

sible reason for this is that the private key in both schemes consists of several components,

each of which is represented with arrays having both a considerable number of chunks and

a considerable number of candidates per chunk. Therefore, the redundancy is decreased in

these formats and the correct component’s rank is too high within the search space. This

makes our enumeration techniques not to be as successful as they are in other scenarios.

However, the attacker might still have a chance of improving these results by exploiting

even further the algebraic structure so as to decrease the number of components to recover

or the number of candidates per chunks when trying to recover a particular component.
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