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Phase transitions and their associated crossovers are imprinted in the behavior of fluctuations.
Motivated by recent experiments on ultracold atoms in optical lattices, we compute the thermo-
dynamic density fluctuations δN2 of the two-dimensional fermionic Hubbard model with plaquette
cellular dynamical mean-field theory. To understand the length scale of these fluctuations, we sepa-
rate the local from the nonlocal contributions to δN2. We determine the effects of particle statistics,
interaction strength U , temperature T and density n. At high temperature, our theoretical frame-
work reproduces the experimental observations in the doping-driven crossover regime between metal
and Mott insulator. At low temperature, there is an increase of thermodynamic density fluctua-
tions, analog to critical opalescence, accompanied by a surprising reduction of the absolute value of
their nonlocal contributions. This is a precursory sign of an underlying phase transition between a
pseudogap phase and a metallic phase in doped Mott insulators, which should play an important
role in the cuprate high-temperature superconductors. Predictions for ultracold atom experiments
are made.

I. INTRODUCTION

Theoretical models that can give, with minimal as-
sumptions, insights on how complex behaviors and struc-
tures emerge in natural phenomena are particularly ap-
pealing. The Hubbard model for strongly interacting
electrons on a lattice is such a model. It contains the com-
petition between a kinetic energy term, that describes
the delocalisation of particles on a lattice, and an on-site
repulsive interaction U term, that favors instead parti-
cle localisation. As a prominent example, this model
has long helped to describe the Mott transition [1, 2],
where electron-electron repulsion turns a metal into an
insulator. It has also helped to throw light on how
complex phases of matter in quantum materials, such
as cuprate high-temperature superconductors [3–5], arise
from strong interactions.

Nevertheless, correlated electron systems pose funda-
mental challenges to many-particle quantum theory since
even a minimal model such as the Hubbard model is
hard to solve or simulate [6]. Ultracold atoms in opti-
cal lattices have emerged as a useful platform for imple-
menting the Hubbard model and thereby for perform-
ing “quantum simulations” of interacting quantum sys-
tems [7–11]. The synergy between advances such as
single atom microscopy [12–18] in ultracold atom ex-
periments and theoretical research is leading to a bet-
ter understanding of the phase diagram of the Hubbard
model. Important milestones include the observation of
the Mott insulating phase [19–22], the measure of the
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equation of state [23, 24], the detection of short-range
spin and charge correlations [25–29] and their implication
for transport properties [30, 31], the measure of entan-
glement [32–35], and the observation of long-range anti-
ferromagnetism [36].

A central programme of the synergic effort in theory
and experiments with ultracold atoms is the investiga-
tion of the Hubbard model in two dimensions. This is
motivated by the link to the physics of cuprate high-
temperature supercondutors. These materials are doped
Mott insulator whose important properties should be
captured by this model.

In cold atoms investigations, density fluctuations mea-
sured through single-atom microscopy have emerged as a
powerful tool [28, 37, 38] to detect and characterize phase
transitions and crossovers, and hence to throw new light
on the phase diagram of the Hubbard model. For ex-
ample, experiments in Ref. 28 compared thermodynamic
and local density fluctuations, unveiling a clear metal to
Mott insulator crossover as a function of particle density
(or doping): in the Mott insulating state thermodynamic
and local fluctuations are both suppressed, whereas in
the metallic state density fluctuations of all length scale,
and not only local ones, contribute to the thermodynamic
fluctuations.

What happens to this metal to Mott insulator
crossover at much lower temperatures? While such
temperatures are currently inaccessible experimentally,
this may change soon. Similarly, what happens to
crossovers as a function of doping? The answer to this
question bears key implications for the physics of the
cuprates. Upon doping the Mott insulator, a pseudo-
gap phase emerges. The nature of this phase is under
intense scrutiny in cuprates. Based on recent theoreti-
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cal work [39–41] with the cellular extension [5, 42, 43]
of dynamical mean-field theory [44] (CDMFT), the key
qualitative feature of the temperature-doping phase dia-
gram of the two-dimensional Hubbard model is a finite-
temperature and finite-doping first-order transition be-
tween a metal at low density and a pseudogap at high
density [39, 40], which ends in a second-order critical
endpoint from which a sharp crossover, called Widom
line, emerges up to high temperatures [41]. The defining
feature of the critical endpoint is the divergence of the
correlation length ξ, while the Widom line is the locus of
the maxima of ξ in the supercritical region. Now, den-
sity fluctuations are sensitive to ξ, and hence they are
expected to be sensitive signatures of both the endpoint
and of the associated Widom line.

These signatures are the focus of this paper. We cal-
culate separately the local and nonlocal contributions to
density fluctuations for the square lattice near-neighbor
two-dimensional Hubbard model using CDMFT, span-
ning two decades in temperatures, ranging from tempera-
tures accessible to experiment down to the lower temper-
atures needed to detect the first-order transition. In Sec-
tion III we first analyze the density fluctuations at tem-
peratures accessible to experiments, and then compare
them with the available experimental data of Ref. 28.
The excellent agreement between theory and experiment
proves the accuracy of our approach and provides a
strong framework to interpret current experiments. In
Section IV, we then compute the density fluctuations
at low temperatures, making predictions in Sec. V that
may allow experiments to detect the Widom line, critical
endpoint and first-order transition. The low-temperature
predictions are robust but qualitative since a highly frus-
trated lattice should be used to avoid magnetic phase
transitions. The fermion sign problem prevents us from
computing on such lattices.

II. MODEL AND METHOD

We consider the one-band two-dimensional Hubbard
model on a square lattice. Its Hamiltonian reads

H = −
∑
〈ij〉σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ, (1)

where tij is the hopping between first neighbors (and
tij = 1 sets our energy units), U is the repulsive on-site
interaction, and µ is the chemical potential. The oper-

ators c†iσ, ciσ respectively create and destroy a fermion

with spin σ = {↑, ↓} at site i, and ni = c†i ci is the num-
ber operator. We solve this model using plaquette cel-
lular DMFT [5, 42, 43]. This method selects a cluster
of lattice sites - here we consider a 2 × 2 plaquette -
and replaces the missing lattice environment with a self-
consistent bath of noninteracting fermions. We solve the
cluster in a bath problem with continuous-time quan-
tum Monte Carlo in the hybridisation expansion (CT-
HYB) [45]. Here we focus on the normal state only,

where there is an equal number of fermions with spins
up and down and the spin alignments have short range
correlations but no long range order. We map out the
phase diagram of Eq. 1 as a function of occupation n and
interaction strength U for two decades in temperatures,
from T ≈ 2 down to T ≈ 1/100. [46]

III. DENSITY FLUCTUATIONS: DEFINITIONS
AND COMPARISON WITH AVAILABLE

EXPERIMENTS

To extract the density fluctuations, we follow a proto-
col similar to the experimental work of Drewes et al. [28].
We first summarize this protocol by considering tempera-
tures accessible to current experiments and by comparing
our results to the experimental findings of Ref. [28]. Then
in Sec. IV that follows, we extend our analysis to lower
temperatures to discuss enhanced density fluctuations in
proximity to a critical point at finite T and n which may
be detected in future experiments.

A. Thermodynamic fluctuations

First, consider thermodynamic density fluctuations.
The simplest measure of these fluctuations is the vari-
ance of the number of fermions N in the area A: δN2 ≡
〈(N − 〈N〉)2〉. The fluctuation-dissipation theorem

δN2 = AkBTn
2κT (2)

links the thermodynamic fluctuations δN2 to the charge

compressibility κT = 1
n2

(
∂n
∂µ

)
T

, where n = N/A is the

particle density. From the isothermal occupation curve
n(µ)T we extract κT by numerical derivative, and hence
using Eq. 2 we obtain δN2.

Figure 1(a) shows the thermodynamic fluctuations
δN2 as a function of n for different values of the inter-
action strength U . Our data are taken at temperature
T = 1/1.5, which is close to the lowest temperature that
can be reached in current experiments.

We point out three interesting features. First, there is
excellent agreement between our calculations (open sym-
bols) and the experimental results of Ref. [28] (full sym-
bols). Second, the variance δN2 is much smaller than
expected from the density n (i.e., δN2/〈N〉 � 1), im-
plying sub-Poissonian statistics. This occurs even in the
noninteracting case U = 0. Indeed, as noticed in previous
work [25, 28, 37, 38], this suppression of the thermody-
namic density fluctuations at U = 0 is a consequence of
the Pauli exclusion principle. According to this prin-
ciple, two fermions cannot occupy the same quantum
state, which in real space means that fermions ‘avoid each
other’, or ‘antibunch’, thereby suppressing the density
fluctuations. This sharply differs from the ideal classi-
cal gas, for which κT = 1/(nkBT ), and hence, from the
fluctuation-dissipation theorem Eq. 2, δN2/〈N〉 = 1, i.e.
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FIG. 1. (a) Thermodynamic density fluctuations δN2 versus occupation n at temperature T = 1/1.5 for different values of
the interaction strength U . Thermodynamic fluctuations can be decomposed into a local part, δn2, plus a nonlocal part, δn2

nl.
(b) Local density fluctuations δn2 versus n for the same model parameters as in panel (a). Dotted red line and dashed gray
line are exact results for U = 0 and U = ∞, respectively. (c) Nonlocal density fluctuations δn2

nl versus n for the same model
parameters as in panel (a). Full symbols are experimental data with ultracold atoms in Ref. [28]. We work with units where
A = kB = 1.

Poissonian statistics. Third, the suppression of thermo-
dynamic density fluctuations δN2 due to Pauli principle
is further enhanced by interactions. Indeed, the inter-
action strength U further reduces δN2. As expected,
the closer the occupation n is to half filling n = 1, the
larger the effect of U . Above the critical interaction
UMIT ∼ 5.9 where the system becomes an insulator at
half-filling, the thermodynamic density fluctuations are
strongly suppressed until they vanish completely at zero
temperature, reflecting the incompressible nature of the
Mott insulating state (κT = 0).

B. Local and nonlocal density fluctuations

Next, we consider the length scales of the density fluc-
tuations. From the definition of the occupation n = n(x)
in a translationally invariant system, one has [47]:

kBT
∂〈n(x)〉
∂µ

=

∫
dx′ [〈n(x)n(x′)〉 − 〈n(x)〉〈n(x′)〉] .

(3)
Therefore, using the fluctuation-dissipation theorem
Eq. 2, the density fluctuations at all length scales are
included in δN2. Eq. 3 thus suggests to write the ther-
modynamic fluctuations δN2 as the sum of local fluc-
tuations δn2 and nonlocal fluctuations δn2

nl [28, 48]:
δN2 = δn2 +δn2

nl. For our two-dimensional lattice, Eq. 3

reads:

n2κT =
1

AkBT

∑
ij

(〈ninj〉 − 〈ni〉〈nj〉)

=
1

AkBT

δn2 +
∑
i 6=j

(〈ninj〉 − 〈ni〉〈nj〉)

 , (4)

so

δN2 = AkBTn
2κT = δn2 + δn2

nl, (5)

where we have identified δn2
nl with∑

i 6=j (〈ninj〉 − 〈ni〉〈nj〉). Now the local (onsite)

density fluctuations δn2 can be calculated explicitly:

δn2 ≡ 〈n2
i 〉 − 〈ni〉2 = n+ 2D − n2, (6)

where n = ni = 〈ni↑〉 + 〈ni↓〉 is the density, 〈ni↑〉 =
〈ni↓〉 is the spin-resolved density, and D = 〈ni↑ni↓〉 is
the double occupancy. So, the nonlocal fluctuations

δn2
nl = δN2 − δn2 = AkBTn

2κT − δn2 (7)

can be obtained as the difference between the thermody-
namic and local fluctuations.

Figure 1(b) and Figure 1(c) show the local and nonlo-
cal fluctuations δn2 and δn2

nl respectively as a function of
n for the same model parameters as Fig. 1(a). Again our
calculations (open symbols) and the experimental data
of Ref. [28] (full symbols) are in excellent agreement, as
shown in Figure 1(c). The behavior of the local (onsite)
fluctuations δn2 in Figure 1(b) can be understood by con-
sidering the U = 0 and the U = ∞ limits. For U = 0,
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D = n2/4, so δn2 = n − n2/2 (red dotted line), which
is a monotonically increasing function of n. For U =∞,
D = 0, so δn2 = n−n2 (gray dashed line), which is a non-
monotonic function of n. Therefore, the effect of U is to
strongly reduce the local density fluctuations, especially
close to half filling.

By comparing the overall magnitude of δN2 in Fig-
ure 1(a) and δn2 in Figure 1(b), we find that the inequal-
ity δN2 � δn2 is satisfied over the whole range of fillings
n: clearly, the local fluctuations δn2 do not account for all
thermodynamic fluctuations, which also comprise nonlo-
cal fluctuations δn2

nl that are negative and of comparable
magnitude. Fig. 1(c) shows the filling dependence of δn2

nl
calculated with Eq. 7. These negative contributions to
δN2 lead to sub-Poissonian statistics. As described in
previous work [25, 49], the behavior of δn2

nl is controlled
by the competing effects of Fermi statistics, which domi-
nates for low density and small values of U , and superex-
change, which conversely dominates for large values of U
and upon approaching half filling.

More specifically, for U = 0, nonlocal correlations arise
from the Pauli principle that keeps apart fermions with
the same spin, so fermions move in a way to ‘avoid each
other’, or antibunch. This causes a suppression in charge
density in the vicinity of any fermion, and this charge
suppression can be thought of as a hole, and is usually
called exchange or Pauli hole. At low density, the inter-
action strength U can enhance this antibunching effect,
giving rise to what is known as a correlation hole [50].
As a result, from low to moderate density, n < 0.5, δn2

nl
grows in absolute value, i.e. becomes more negative, with
increasing density since there are more fermions in the
lattice and thus the average fermion spacing decreases
with increasing n and the antibunching effect becomes
more pronounced. In that range of filling, δn2

nl does not
vary much with increasing U .

By contrast, from moderate density up to half filling,
n > 0.5, U has an appreciable effect. We see in Fig-
ure 1(c) that as U increases, δn2

nl decreases in absolute
value, i.e. become less negative. This is because upon
approaching half filling n = 1, the interaction strength
U reduces the double occupancies, so the fermions be-
come more localised around their sites, meaning that
the charge becomes frozen. In that region near half-
filling, and at large U , another way to understand neg-
ative non-local correlations is to realize that they con-
tribute to lower the energy through superexchange J . In-
deed, J comes from virtual double occupation produced
by a fermion leaving a hole behind and hopping on a
site occupied by a fermion of opposite spin. Effectively,
this creates correlations between empty sites (holons)
and doubly occupied sites (doublons) on neighboring
sites [51]. Holons and doublons are then close together, or
‘bunched’, i.e. they form quasi-bound states that lead to
negative near-neighbor correlations as can be seen from
the definition of nonlocal fluctuations: when there is a
virtual double occupancy, then a neighboring site will
be empty and the product ninj will be zero so that the
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FIG. 2. Nonlocal density fluctuations δn2
nl versus tempera-

ture T for different values of U , at half filling n = 1. Full sym-
bols are experimental data with ultracold atoms of Ref. [28].

contribution of that process to
∑
i 6=j (〈ninj〉 − 〈ni〉〈nj〉)

will be negative. However, since J = 4t2/U is inversely
proportional to U , the larger the value of U , the weaker
this doublon-holon correlation since there is no more en-
ergy gain associated with virtual hops. Eventually then,
non-local fluctuations decrease with increasing U . In the
Mott insulating state at large U and n = 1, thermody-
namic fluctuations essentially become local fluctuations.
This description is complementary to the explanation in
Refs. [25, 49] and Ref. [28]. The doublon-holon correla-
tions are also important in spin transport [30].

C. Temperature dependence of nonlocal density
fluctuations

Up to now we considered one temperature only, T =
1/1.5, which is close to the lowest temperature reached
by ultracold atom experiments in Ref. [28]. Further in-
sight can be gained from the temperature evolution of the
nonlocal fluctuations δn2

nl. Figure 2 shows δn2
nl as a func-

tion of temperature for different values of U , at half-filling
n = 1. An important finding of Ref. [28] is that nonlocal
fluctuations decrease in absolute value upon increasing T
(see experimental data in our Fig. 2). Physically, this is
because with increasing T the De Broglie thermal wave-
length ξth becomes smaller than the average distance be-
tween fermions, freezing nonlocal quantum fluctuations,
hence recovering classical Poissonian statistics.

Our results in the temperature range 1/1.5 < T < 2,
displayed in Fig. 2, confirm this behavior and are in good
quantitative agreement with experimental data (solid
symbols). Furthermore, in our CDMFT simulations we
can access lower temperatures than those experimentally
available. In a metallic state, for U < UMIT, δn2

nl remains



5

a monotonic function of T at all temperatures and thus
becomes more negative with decreasing T . In sharp con-
trast, for U > UMIT, a new temperature scale emerges
where δn2

nl becomes less negative or saturates at low
temperature. This occurs because the system is entering
the Mott insulating state as the temperature is reduced.
Hence, states become more localized, or from another
point of view, the doublon-holon correlations lead to a
reduction of the magnitude of the nonlocal correlations.

Far away from half filling, n ≤ 0.75, the system is
metallic and Ref. [28] demonstrates that δn2

nl is a mono-
tonic function of T , as for the case U < UMIT at n = 1
shown in Fig. 2. Thus in a metallic state it is the De
Broglie thermal wavelength ξth that controls the tem-
perature behavior of δn2

nl. In the next section we show
that, for U > UMIT and n > 0.75 (so in a doped Mott
insulator), a novel emergent phenomenon due to the in-
terplay of Mott physics and short-range correlations is
controlling the low temperature behavior of δn2

nl.

IV. DENSITY FLUCTUATIONS ACROSS THE
DOPING DRIVEN MOTT TRANSITION

In this section we analyze the behavior of the density
fluctuations at temperatures lower than those reached by
current experiments.

A. First-order transition, critical point, and
Widom line

According to previous theoretical work with plaque-
tte CDMFT [39, 40], the key qualitative feature of the
U−n phase diagram of the normal state two-dimensional
Hubbard model is a low-temperature first-order transi-
tion extending from half filling n = 1 to away from half
filling, as sketched with a blue line in the U −n phase di-
agram in Figure 3(a). At n = 1 this transition separates
a metal from a Mott insulator as U increases (this cor-
responds to the familiar U driven Mott transition). For
n 6= 1 this transition separates two metallic states: as n
is lowered, one moves from a strongly correlated metal
with a pseudogap to a correlated metal.

Adding the temperature axis, the first-order transition
line in the U − n phase diagram of Fig. 3(a) becomes a
surface of first-order transition in the U − n − T space.
Upon increasing T , this surface ends in a second order
critical line, from which a crossover emerges. A slice of
the U −T −n space at constant U , with U > UMIT, thus
gives rise to the T −n phase diagram of Fig. 3(b), which
contains our CDMFT results for U = 6.2 (i.e. a value of
the interaction U slightly larger than the critical thresh-
old for obtaining a Mott insulator at n = 1). The first-
order transition is delimited by the spinodal lines nc1 and
nc2 (line with solid triangles), where the pseudogap phase
and the metallic phase cease to exist, respectively. This
first-order transition ends in a second order critical end-

point at (nc, Tc) ∼ (0.95, 0.015) (Tc ∼ 0.004 in units of
the bare half-bandwidth), from which a rapid crossover,
known as Widom line [52, 53], emerges. The endpoint
is defined as the location of the divergence of the corre-
lation length and the Widom line as the locus of max-
ima of the correlation length. As U increases, the critical
temperature Tc decreases rapidly while the corresponding
critical filling nc increases. While the first-order transi-
tion may be masked by long-range ordered phases at low
temperature, one expects that in frustrated systems the
Widom line will continue to describe high-temperature
crossovers.

Operationally we construct the Widom line with the
local maxima of the isothermal charge compressibility
κT as a function of n (blue dashed line in Fig. 3(b)).
As shown in Fig. 3(c), the rather featureless κT (n) at
high temperature develops a broad peak that narrows
and grows rapidly in intensity as T decreases towards Tc,
where κT diverges. Hence, a region of enhanced charge
compressibility emanates from the endpoint into the su-
percritical region T > Tc (see Fig. 3(b) and Fig. 3(c)),
all the way up to T ≈ 5Tc [41]. Crossing the Widom line
along isotherms or along paths at constant n produces
sharp but continuous changes in the thermodynamic [41]
properties, such as compressibility, dynamic [41] prop-
erties such as the local density of states, and transport
properties such as c-axis resistivity [54]. In the following,
we focus on the changes of the density fluctuations upon
crossing the Widom line.

B. Critical opalescence

A defining feature of the critical point is the divergence
of the correlation length ξ, which quantifies the charac-
teristic distance over which fermion-density fluctuations
are correlated. The divergence of ξ is linked to the de-
velopment of fluctuations in the density at all scale up to
infinity, leading to the well known phenomenon of criti-
cal opalescence: physically, in our case, this means that
any two fermion-density fluctuations are correlated, no
matter the distance between them. Thus the thermo-
dynamic fluctuations δN2 are expected to diverge. The
fluctuation-dissipation theorem associates the divergence
of δN2 with the divergence of κT . This expectation is
fully confirmed by the calculation of δN2(n) for differ-
ent temperatures at U = 6.2, as shown in Figs. 4(a)(d).
Away from half-filling, in the region 0.92 < n < 1 [shaded
region in Fig. 4(a)], the thermodynamic fluctuations δN2

show an anomalous peak that narrows in size and in-
creases in magnitude as the endpoint Tc is approached
from above (see Fig. 4(d)). It extends up to T ≈ 1/14
or T ≈ 5Tc. The position of these peaks are the same
of those defining the Widom line. Detection of this non
monotonic behavior is a precursor of the endpoint. This
behavior is not surprising since we used the fluctuation-
dissipation theorem Eq. 2 to calculate δN2, and κT di-
verges at Tc (Fig. 3(b) and Ref. [41] for a detailed dis-
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FIG. 3. (a) Sketch of the low-temperature U − n phase diagram of the two-dimensional Hubbard model in the normal state
solved with plaquette CDMFT [39, 40]. The defining feature of the model is the blue line, marking the first-order transition
between a metal (orange region) and Mott insulator at n = 1 (green vertical line at n = 1), and between a metal and a pseudogap
(blue region) for n 6= 1. The former refers to the U -driven Mott transition (see vertical double arrow), the latter denotes the
doping (or filling n) driven Mott transition (see horizontal double arrow). (b) Color map of the charge compressibility κT in
the T −n phase diagram for U = 6.2 > UMIT. The first-order transition is bounded by the spinodal lines nc1 and nc2 (lines with
solid triangles). The region between nc1 and nc2 is an instability region. The first-order transition ends in a critical endpoint
at (nc, Tc), from which a line of a rapid crossover emerges (the Widom line, TW , marked by open circles). (c) Semi-logarithmic
plot of isothermal charge compressibility κT versus n at U = 6.2 for several temperatures. The maxima of the compressibility
define the Widom line appearing in panel (b).

cussion).

C. Local and nonlocal fluctuations near criticality

Since the pioneering work of Kadanoff [55] and Wil-
son [56, 57], it is well known that at the critical point
there are fluctuations at all length scales: at Tc the
scale of the largest density fluctuations becomes infinite,
however fluctuations at smaller scales persist, as illus-
trated by the phenomenon of critical opalescence in flu-
ids. What remains interesting then, is to pin down the
contribution of different length scales of the thermody-
namic density fluctuations. Here we focus on the relative
contributions of local and of nonlocal fluctuations to the
thermodynamic fluctuations δN2.

Let us begin with the local fluctuations δn2. Fig-
ure 4(b) shows δn2 versus n for U = 6.2 near Tc. In sharp
contrast with δN2, δn2(n) does not show an enhancement
along the Widom line (see Fig. 4(e)). Its temperature de-
pendence is controlled by that of double occupancy so it
is very weak when T is much less than U . Local fluctu-
ations δn2 are mostly dominated by quantum effects, as
we discuss momentarily.

Next we turn to the nonlocal fluctuation δn2
nl, shown

in Figure 4(c) again for a temperature close to Tc. Upon
crossing the Widom line, δn2

nl has a non-monotonic be-
havior, showing an additional upward peak as a function
of n, which sharpens and narrows as the critical endpoint

is approached (see Fig. 4(f)). Hence, quite surprisingly,
δn2

nl becomes less negative along the Widom line. Note
that away from the Widom line (say for n < 0.9), δn2

nl
becomes more negative with decreasing T , in agreement
with the discussion of Figure 1(c).

To understand the behavior of δn2
nl and of δn2 one

needs to realize that close to the endpoint and to the
Widom line, the system enters into the so-called renor-
malized classical regime [58]. In this regime, the fluc-
tuations are large and the correlation length ξ becomes
larger than the thermal De Broglie wavelength ξth, and
hence the most important fluctuations are classical. A
large correlation length is associated with a small en-
ergy scale so, equivalently, in the renormalized classical
regime the characteristic energy of the fluctuations be-
comes smaller than the energy associated to tempera-
ture (~ω < kBT ). Close to Tc and to the Widom line,
the correlation length ξ grows rapidly (equivalently, there
is “critical slowing down” so the characteristic frequency
of the system decreases), and hence the thermodynamic
fluctuations δN2 are dominated by the classical contribu-
tions (χ(q = 0, 0) ∼ ξ2 in mean-field). By contrast with
the quantum contribution to the nonlocal fluctuations
δn2

nl that is negative, the classical (thermal) contribution
to the nonlocal fluctuations δn2

nl is positive. Hence δn2
nl

becomes less negative close to Tc or to the Widom line.
Returning to the local fluctuations δn2, the classical (i.e.
thermal) contribution to δn2 is logarithmic in ξ, as one
can see using the Ornstein-Zernike form for the suscepti-
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FIG. 4. (a) Thermodynamic density fluctuations δN2 versus n for U = 6.2 > UMIT at temperature T = 1/60, which is close
to the critical endpoint temperature Tc. (b) Local density fluctuations δn2 versus n for U = 6.2 and T = 1/60. (c) Nonlocal
fluctuations δn2

nl versus n for U = 6.2 and T = 1/60. Panels (d), (e), (f) are a zoom into the shaded orange regions of panels
(a),(b),(c), for several temperatures, T = 1/30, 1/40, 1/50, 1/60 which lie above Tc and for T = 1/100 which lies below Tc (and
thus it is discontinuous as a function of n).

bility (
∫ Ω

0
χ(q, 0)d2q ∼

∫ Ω

0
A

ξ−2+q2 d
2q ∼ A ln(Ω/ξ)). This

means that δn2 does not depend much on ξ. It is con-
trolled mainly by quantum effects, even though strictly
speaking there is a diverging contribution at Tc.

Therefore there are two mechanisms governing the
temperature behavior of δn2

nl away from half-filling, n <
1, for a doped Mott insulator. The first mechanism oc-
curs at high temperature, as discussed in Sec. III. As the
temperature decreases below the Fermi energy, quantum
mechanical effects become important when ξth becomes
larger than the average distance between fermions ` and
it is ξth then that sets a limit to the range of density fluc-
tuations. The non-local correlations are negative because
of the Pauli principle and because of fermion-fermion re-
pulsion. A second mechanism occurs at much lower tem-
peratures: as T crosses the Widom line, or the critical
endpoint, the system becomes renormalized classical: ξ
becomes larger than ξth and it is ξ that sets a limit to the
range of density fluctuations. Since classical contribution
to δn2

nl are positive, δn2
nl becomes less negative close to

Tc or to the Widom line.

V. PREDICTIONS FOR EXPERIMENTS

Our results lead to the following predictions for quan-
tum simulations of the two-dimensional Hubbard model
with ultracold atoms in optical lattices. For U larger than
the critical value UMIT where the Mott transition occurs
at half-filling, both the charge compressibility κT and
the thermodynamic density fluctuations δN2 will show
a peak as a function of the occupation n. As T is de-
creased toward Tc, the peak will increase in magnitude
and narrow in size. This enhancement in δN2 is associ-
ated with the nonlocal contribution δn2

nl becoming less
negative, while the local fluctuations δn2 do not do much.
These will be the signature of the Widom line. Below Tc,
a first-order transition occurs at finite density and finite
temperature, and hence δN2 will be discontinuous.

Usual provisos apply. First, the presence of long-
range ordered phases, or quasi-long-range ordered phases
such as antiferromagnetism [36, 59] or superconductiv-
ity [60, 61] in the low temperature region of the T − n
phase diagram can prevent the observation of the end-
point or of some portion of the Widom line. Nevertheless,
the Widom line extends far away from the endpoint, up to
T ≈ 5Tc, so it may come out into the normal state. Fur-
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thermore, it is possible to shrink the regime of competing
states, such antiferromagnetism, by adding frustration
(e.g next nearest neighbor hopping t′ [62], or triangular
lattice [63]). The onset temperature TN of the antifer-
romagnetic correlations strongly depends on the interac-
tion U and occupation n. Within plaquette CDMFT, it
is largest at n = 1 (i.e. zero doping) around U ≈ 7, where
TN ≈ 0.33 [59]. It decays rapidly as a function of U and
n. For instance, for U = 6.2 considered in Sec. IV, anti-
ferromagnetism sets in from n = 1 to n ≈ 0.85 [62], simi-
larly to recent experimental data with ultracold atoms in
the antiferromagnetic phase [36]. Therefore the results of
this work at half filling n = 1 of Fig. 2 are quantitatively
correct down to at least T ≈ 0.33. Away from half fill-
ing, the results for U = 6.2 in Figs. 3,4 are quantitatively
correct for n / 0.85, but only qualitative for n ' 0.85.

Second, our results have been obtained with plaquette
CDMFT that treats exactly local and short-range fluc-
tuations within the plaquette. The fate of the first order
transition and its associated Widom line with larger clus-
ter size including larger range of fluctuations is computa-
tionally very challenging and hence has not been explored
systematically. Nevertheless, one of our key findings is
that nonlocal fluctuations decrease in absolute value near
the Widom line and close to Tc. This suggests that larger

nonlocal correlations probed by larger clusters should not
qualitatively modify our results.

The significance of the Widom line emanating from the
endpoint at finite T and n stems from the theoretical pro-
posal [41] that identifies the Widom line with the rapid
crossovers marking the pseudogap temperature T ∗ in the
phase diagram of hole-doped cuprates [41, 54]. If con-
firmed by experiments with ultracold atoms, this result
could throw new light into the explanation of the pseudo-
gap phase in cuprate high-temperature superconductors.
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