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Abstract 

Incorrectly handling missing data can lead to imprecise and biased estimates. We 

describe the effect of applying different approaches to handling missing data in an 

analysis of the association between body mass index and all-cause mortality in 

people with type 2 diabetes. Data from the Scottish diabetes register linked to 

hospital admissions data and death registrations were used. The analysis was based 

on people diagnosed with type 2 diabetes between 2004 and 2011 with follow-up 

until 2014. The association between body mass index and mortality was investigated 

using Cox proportional hazard models with comparison of findings using four 

different missing data methods; complete case analysis, two multiple imputation 

models and nearest neighbour imputation. There were 124,451 cases of type 2 

diabetes, among which there were 17,085 deaths during 787,275 person-years of 

follow-up. Patients with missing data (24.8%) had higher mortality than those without 

(Adjusted hazard ratio: 1.36 [95% confidence interval: 1.31-1.41]). A U-shaped 

relationship between body mass index and mortality was observed, with the lowest 

hazard ratios occurring amongst moderately obese people, regardless of the chosen 

approach for handling missing data. Missing data may affect absolute and relative 

risk estimates differently and should be considered in analyses of routine data.  

Key words: Diabetes mellitus, methods, obesity, research design.  

Abbreviations: BMI – body mass index, MCAR – Missing completely at random, 

MAR – Missing at random, MNAR - Missing not at random, MICE – Multiple 

imputation using chained equations, MVN – Multiple imputation using multivariate 

normal imputation, OR – odds ratio, HR – Hazard ratio, SCI-Diabetes, Scottish Care 

Information – Diabetes, CPRD – Clinical Practice Research Datalink, THIN – The 

Health Improvement Network.   
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INTRODUCTION 

Epidemiological studies which utilise electronic health records, in which data 

collection is typically clinically driven are often hindered by the presence of missing 

data. Despite some well-known flaws,[1-4] the exclusion of cases with incomplete 

data, known as complete case analysis remains the most popular approach for 

handling missing data.[5-7]  

An alternative method for handling missing data is multiple imputation. This 

approach is steadily becoming more popular through improved accessibility in 

standard statistical software packages.[8] Multiple imputation involves the production 

of several plausible imputed datasets using information from the observed data, the 

separate analysis of each imputed dataset and finally the pooling together of 

estimates. There are two main imputation models that are routinely used; multiple 

imputation using chained equations or multivariate normal imputation.  

The influence of unobserved data has yet to be explored in analyses investigating 

the possibility of an obesity paradox, whereby obesity confers a survival advantage 

over normal weight individuals among people with type 2 diabetes. Recent evidence 

based upon complete case analyses using datasets with missing data proportions of 

up to 56%, has indicated that being overweight or obese may be associated with 

lower mortality compared to being normal weight in people with type 2 diabetes.[9-13]  

This study investigates the influence of missing data on the estimation of the 

association between body mass index (BMI) at diagnosis with type 2 diabetes and 

all-cause mortality using a contemporary population-based diabetes register in 

Scotland. Absolute and relative mortality estimates of the association between BMI 
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and mortality following complete case analysis and three imputation approaches are 

compared.  

METHODS: 

Data 

Data were obtained from a 2011 extract of the Scottish Care Information – Diabetes 

(SCI-Diabetes) dataset, a national register of patients with diagnosed diabetes in 

Scotland. This database captures demographic information, including an area-based 

measure of deprivation, the Scottish Index of Multiple Deprivation and key diabetes-

related clinical data from over 99% of general practices and all hospital diabetes 

clinics for adults in Scotland. The register is thought to be complete from 2004 

onwards and incident type 2 diabetes cases occurring between January 2004 and 

June 2011 among people aged 30 years or over were included in this study. To 

reduce the risk of reverse causation from the effect of chronic diseases on BMI, 

people who died within two years of diagnosis of type 2 diabetes were excluded from 

all analyses.  

Clinical characteristics at diagnosis, including BMI, blood pressure, lipid profiles and 

glycated haemoglobin were available from the SCI-Diabetes register. Measurements 

at diagnosis were defined as those recorded within one year prior to or two months 

(60 days) following diagnosis. This definition was chosen to reduce the impact of the 

uptake of lifestyle advice and diabetes treatment on measurements while limiting the 

extent of missing data. Exploratory analyses among patients with a BMI recording 

within one month of diagnosis and earlier or later measurements suggested that BMI 

measurements taken within one year prior to diagnosis correlated with the true BMI 
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within one month of diagnosis better than BMI values recorded within one year 

following diagnosis.  

Death data were obtained from linkage of SCI-Diabetes to the National Records of 

Scotland mortality register using the community health index, a unique patient 

identifier. Timing of data linkage enabled follow-up until 31st May 2014.  

Hospital admission data were obtained from the Scottish Morbidity Records dataset 

and were used to develop a Charlson Comorbidity Index which uses 19 pre-defined 

comorbid conditions to calculate a weighted score.[14]  

All data were pseudonymised and permission for creation and analyses of the linked 

dataset was obtained from the Scottish multi-centre research ethics committee, the 

Privacy Advisory Committee of NHS National Services Scotland and the Caldicott 

Guardians for all Health Boards in Scotland.  

Statistical Analyses 

Associations between BMI at date of diagnosis, grouped into 5kg/m² categories 

between 20 and 45, and all-cause mortality were investigated using Cox proportional 

hazards regression. Patients whose BMI fell outside this range were included in the 

lowest and highest BMI categories as appropriate. Hazard ratios (HRs) were 

estimated relative to the BMI category containing the largest number of people and 

the category which has previously been shown to have the lowest mortality in these 

data (30 – 34.9).[12] Follow-up was defined as time from date of diagnosis of type 2 

diabetes until date of death or study end date (31/05/2014), whichever came first. 

Violations to the proportional hazards assumption were investigated graphically 

using Kaplan-Meier plots and log-minus-log survival plots. Estimates were adjusted 
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for age, sex, Charlson comorbidity index (No comorbid conditions/One or more 

comorbid conditions), smoking status at diagnosis (Never/Former/Current) and 

quintiles of the Scottish index of multiple deprivation. Age-standardised mortality 

rates for each category of BMI were calculated using the 2013 European standard 

population.  

Analyses were conducted in Stata, version 11.2, College Station, Texas, 

StataCorpLP.[15]  

Missing Data  

The extent of incomplete data in all variables included in the analysis model and the 

plausibility of the mechanisms of missingness were investigated. According to 

Rubin’s classification system[16] there are three broad mechanisms of missingness; 

Missing Completely at Random (MCAR), Missing at Random (MAR) and Missing Not 

at Random (MNAR). Data are MCAR when missingness does not depend on any 

observed or unobserved data and therefore the missing data should form a random 

subsample of the full dataset. Complete case analysis produces unbiased estimates 

when data are MCAR or when missingness on predictors is not dependent on the 

outcome. Data are MAR when the probability that data are missing is dependent on 

the observed data. Multiple imputation generally assumes data are MAR. Finally, 

data may be MNAR if the probability that data are missing is dependent on 

unobserved data, such as the missing values themselves or some unobserved 

characteristics.  

To assess the plausibility of the MCAR assumption, comparisons between patients 

with and without observed data were made using means for normally distributed 



8 

 

 

variables, medians for non-normally distributed variables and percentages for 

categorical variables. Systematic differences in demographic and clinical 

characteristics between these groups would indicate a possible violation of the 

MCAR assumption made by complete case analysis. Little’s test for MCAR was also 

applied.[17] 

Cox proportional hazards models adjusted for age, sex and deprivation were used to 

identify differences in survival between patients with and without complete data. To 

assess the plausibility of the MAR assumption, predictors of missing data were 

identified using univariate and multivariate logistic regression analyses, whereby the 

outcome was a missing indicator variable.  

Four methods for handling unobserved data were applied. 

1. Complete case analysis -  

Patients with unobserved data on any variable to be included in the analysis 

model were excluded. 

2. Nearest neighbour imputation - 

Missing values were replaced with BMI measurements recorded closest to 

date of diagnosis. Where patients had two measurements recorded within 

equitable timing before and after diagnosis, the measurement recorded before 

diagnosis was used.  

3. Multiple imputation using chained equations (MICE) -  

STATA’S ice command was used to generate 50 imputed datasets.[18] The 

number of imputations was chosen based on the fraction of incomplete cases, 

as advocated by Bodner.[19] Full details of this method are provided in Web 

Appendix 1.  
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4. Multiple imputation using multivariate normal imputation (MVN) - 

STATA’s mi impute mvn command was used to generate 50 imputed 

datasets. Again, further details of this method are provided in Web Appendix 

1.  

RESULTS 

Between January 2004 and May 2011, there were 134,538 incident cases of type 2 

diabetes in Scotland. People who were aged below 30 years at time of diabetes 

diagnosis (n=1,211) or who died within two years of follow-up (n=6,452) were 

excluded, leaving a final sample size of 124,451 incident cases of type 2 diabetes. A 

case-flow schedule is presented in Web Figure 1. 

There were 17,085 deaths during 787,275 person-years and 21.7 deaths/1000 

person-years in the study population. The median follow-up time was 6.1 years and 

the mean (SD) of BMI at diagnosis was 32.4 (6.6). Patient characteristics by 

categories of BMI are presented in Table 1. Increasing BMI was associated with 

lower age at diagnosis of diabetes, small proportions of people with comorbid 

conditions and more never smokers. There was an inverse association between BMI 

category and crude proportions of people that died during follow-up, though this 

association was confounded by age (Web Table 1). 

Of the 124,451 members of the cohort, 93,622 people (75.2%) had complete data on 

age at diagnosis, sex, vital status, deprivation status, Charlson comorbidity status, 

smoking status at diagnosis and BMI at diagnosis. Ten percent of patients were 

without a smoking status at diagnosis recording, 17% did not have a BMI at date of 

diagnosis and 2% did not have a recorded deprivation status. There were 1,519 
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patients without a single BMI measurement who were excluded from the nearest 

neighbour imputation analyses.   

Among patients with complete data, there were 12,575 deaths during 592,805 

person-years, representing a crude mortality rate of 21.2 deaths/1000 person-years. 

For patients with incomplete data, there were 4510 deaths during 194,470 person-

years and 23.2 deaths/1000 person-years. HRs (95% confidence intervals) adjusted 

for age, sex and deprivation indicated higher mortality in people with incomplete data 

compared to people with complete data (HR: 1.36 [1.31, 1.41]). A p-value of <0.000 

was obtained from Little’s test of MCAR, indicating data were unlikely to be MCAR. 

Table 2 and Web Table 2 presents a comparison of characteristics for people with 

and without complete data. Briefly, women were more likely to have incomplete data 

than men (adjusted odds ratio (aOR): 1.16 [1.13, 1.16]), whilst older people were 

less likely to have incomplete data than younger people (aOR: 0.95 [0.94, 0.96]). 

Patients with comorbid conditions were more likely to have unobserved data (aOR: 

1.24 [1.20, 1.27]), as were people who were deceased at study end (aOR: 1.04 

[1.03, 1.05]). 

To investigate whether missingness in BMI and smoking status were dependent on 

their values, we compared BMI and smoking status measurements recorded at date 

of diagnosis to earlier available measurements, where possible. According to these 

comparisons, BMI measurements recorded at diagnosis correlated strongly with 

earlier BMI measurements (Pearson’s correlation coefficient >0.9). A similar pattern 

was observed in smoking statuses.  

Absolute estimates for the association between BMI and all-cause mortality following 

the application of four separate methods for handling missing data are presented in 
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Figure 1. Mortality was highest in the lowest BMI category regardless of the 

approach used for handling missing data. Absolute mortality gradually increased with 

increasing BMI among people with a BMI above 25. Mortality estimates were 

marginally lower and confidence intervals were wider for almost all BMI categories 

based on complete case analysis than when the multiple imputation approaches 

were used. Estimates from MVN and MICE were very similar.  

Figure 2 presents the relative association between BMI and all-cause mortality. 

Across all methods for handling missing data there was a U-shaped relationship 

between BMI and all-cause mortality, with the lowest risk of mortality at 30 to <35 

following adjustment for age, sex, smoking status, deprivation status and Charlson 

comorbidity index. A steeper U-shaped relationship was observed when nearest 

neighbour observation imputation was applied. 

DISCUSSION 

In this study, the extent of incomplete data in the population-based SCI-Diabetes 

register was investigated and their influence on estimates of the association between 

BMI and all-cause mortality was examined. 

We found that despite recent improvements, incomplete data remain a considerable 

barrier to research using this database, a problem that is commonly observed in 

databases derived from routine health care. In patients diagnosed with type 2 

diabetes between 2004 and 2011, a quarter of patients had missing data in variables 

relevant to important outcomes such as cardiovascular disease and cancer.  

The distribution of unobserved data varied by patient characteristics. People with 

missing data were more likely to have comorbid conditions and have attenuated 
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survival rates. This pattern in which data completeness is related to patient survival 

has been reported in other observational studies [20-22] and may reflect the perceived 

lack of relevance of such factors for people with poor prognosis. This finding is 

indicative of a MAR mechanism and therefore undermines the likely accuracy of 

estimates from complete case analysis, as shown by its under-estimation of absolute 

mortality across categories of BMI.   

In this study, longitudinal patient data were compared to observe potential 

differences in missingness by previous variable recordings and we report no 

difference in smoking status at diagnosis recording according to previous smoking 

status. This finding contrasts with findings from studies using primary care 

databases, including the Clinical Practice Research Datalink (CPRD)[23] and The 

Health Improvement Network (THIN).[24] In both THIN and the CPRD databases, 

results indicated that missingness of smoking status was related to smoking status, 

with smokers more likely to have complete data than never smokers. These 

conflicting findings may be explained by differences in the populations included in 

these healthcare registers. While THIN and CPRD include all patients registered at 

selected general practices across the United Kingdom, the Scottish diabetes register 

only includes patients with diabetes, for whom there are several indicators as part of 

the Quality of Outcome Framework, a pay for performance scheme in the United 

Kingdom to encourage widespread and regular risk factor recording. There are 

subsequently fewer incentives to record risk factors including smoking status in 

patients without pre-existing disease.  

Regardless of the approach used for handling the unobserved data, estimates 

indicated the presence of an obesity paradox which is consistent with several other 
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studies which have investigated the relationship between BMI and all-cause 

mortality.[9, 13, 25-27] However, the problems surrounding missing data were rarely 

discussed in this body of literature and the approaches chosen to handle missing 

data were frequently not described. However if the findings from our study are similar 

in other populations it appears that the patterns observed are not an artefact arising 

from missing data.  

The alternative methods to complete case analysis had a number of strengths and 

weaknesses. The development of packages for multiple imputation in all major 

statistical software programs including SAS, R and SPSS has ensured that this 

method is widely accessible.[8] However, in our analyses, the imputation of a large 

number of unobserved values using MICE and MVN required considerable time, in 

terms of specifying and running the imputation model, though advances in 

computational power should ensure that the latter problem of running large 

imputation models can be overcome in time. Furthermore, multiple imputation may 

produce biased results when data are MNAR, a setting which cannot be ruled out. 

Ongoing uncertainty regarding the best approach for handling non-linear 

relationships and interactions in multiple imputation is a further limitation of these 

methods.[28-31] 

From our results, the more straightforward approach of nearest neighbour imputation 

may also be capable of producing valid results when the incomplete variable is 

unlikely to have changed considerably during the measurement period. However, 

this single imputation approach is not recommended as it will overestimate the 

precision of the estimates and cannot be used in the absence of repeated 

measurements.[32]  
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Our findings of similar estimates between the two multiple imputation methods, MICE 

and MVN was reassuring given the different assumptions made about the 

distribution of the data. In particular, MVN assumes a joint normal distribution of the 

data, an assumption that is violated in the presence of binary or categorical 

variables. Previous studies have shown that the MVN model is relatively robust to 

departures from the normal distribution.[32-34] In a simulation study conducted in a 

political research setting, the authors reported that MVN and MICE models 

performed similarly well when continuous variables were imputed which did not 

exhibit a multivariate normal distribution.[34] However, when imputing categorical 

variables, MICE performed better. Another simulation study reported a reasonable 

performance of MVN when the normality assumption did not hold, particularly when 

the sample size was large.[33]  

To handle ordinal data in MVN, it is possible to impute ordinal data in MVN as either 

indicator variables or continuous variables. However, recent research has indicated 

that the latter method is likely to distort non-linear relationships between imputed 

covariates variables and the outcome of interest.[35] In our study, we used the MVN 

model and imputed categorical and ordinal variables as a set of indicator variables 

and used a simple rounding approach to ascertain the variables imputed value, an 

approach that has previously been suggested to introduce bias.[35, 36] Despite this, 

estimates from this study were not dissimilar to those obtained from MICE, which is 

more flexible in handling non-continuous data. Moreover, Lee and Carlin presented 

results which indicated that comparable results can be expected from MICE and 

MVN approaches in the context of linear regression even when simple approaches 

to rounding are used.[37]  
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A strength of this work was the application of four methods for handling unobserved 

data in a real-life setting using a population-based register of patients with diabetes. 

Many previous studies investigating the performance of missing data methods have 

used simulated data which may not adequately reflect the complexity of real-world 

data. Linkage of SCI-Diabetes to other datasets also ensured a large number of 

variables were available to investigate the possible mechanisms of missingness and 

to include in imputation models. 

A major limitation of this work was that the true values of the unobserved data were 

unknown and so we could not ascertain which missing data methods provided the 

least biased results. Nonetheless, this reflects the situation in many analyses and we 

have illustrated the problems associated with handling missing data in electronic 

healthcare records. 

Despite explanatory analyses indicating missingness was associated with patient 

survival, it is not possible to rule out the possibility that data were MNAR. However, 

we have tried to make the MAR assumption more plausible by including a large 

number of potential predictors of missingness in the imputation models, an approach 

which has been recommended over MNAR-specific methods.[32, 38]  

A further limitation of this work is the omission of a maximum likelihood estimation 

approach for handling missing data. This broad set of approaches can be used when 

data are MAR to identify population parameter estimates which have the highest 

probability of producing the sample data and have been found to provide unbiased 

estimates when the missing data mechanism and multivariate normality assumptions 

are met.[39, 40] However, while maximum likelihood estimation approaches require 

fewer decisions when specifying the model, a limited number of statistical software 
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packages offer automated programmes for specifying these maximum likelihood 

estimation models, necessitating the need for manual specification instead [1]. We 

chose not to apply these techniques due to the inaccessibility of the approach and 

subsequent limited uptake by epidemiologists. Finally, data on physical activity and 

alcohol consumption levels were not available and so we were unable to adjust our 

analyses for the effect of these potential confounders.  

Our findings have demonstrated the importance of exploring missing data problems 

in electronic healthcare records and the need to consider the likely influence of 

differences between patients with and without missing data on both absolute and 

relative risks. Our findings provide reassurance of the robustness of MVN models in 

the presence of non-continuous data. Further work is required to assess if these 

findings are applicable in a wider range of settings. 

According to our findings, the presence of an obesity paradox in people with type 2 

diabetes does not appear to be a consequence of bias due to incorrectly handled 

missing data. 
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Table 1. Characteristics of patients diagnosed with type 2 diabetes in Scotland between 01st January 2004 and 31st December 

2011 by categories of body mass index (BMI) in patients with complete data.  

Characteristic  

BMI categorya 

<20   

(n=810) 

20 – 24.9 

(n= 8574) 

25 – 29.9 

(n=28 332) 

30 – 34.9 

 (n= 29 791) 

35 – 39.9  

(n=15 716) 

40 – 44.9 

(n=6588) 

≥ 45 

 (n=3811) 

Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) 

Age, yearsb 68.8 
(14.1) 

 67.9 
(11.4) 

 65.4 
(10.8) 

 62.6 
(10.3) 

 60.0 
(9.9) 

 57.8 
(9.5) 

 55.7 
(8.7) 

 

Male sex  38.2  52.6  61.8  59.3  50.6  41.2  33.6 

Deceased at study-end  36.8  23.9  15.2  11.7  9.8  9.0  7.2 

With ≥ 1 comorbiditiesb   33.3  27.4  25.2  24.4  23.6  21.5  21.8 

SIMD quintileb               

    Q1 (most deprived)  28.8  21.4  21.3  22.5  25.2  27.9  30.0 

    Q2  22.2  21.8  21.8  22.7  23.6  23.7  24.8 

    Q3  16.3  19.8  20.2  20.5  21.0  20.6  20.4 

    Q4  18.3  19.0  19.1  19.3  17.4  15.7  15.4 

    Q5 (least deprived)  14.4  18.1  17.6  15.1  12.7  12.1  9.3 

Smoking statusc               

    Never  32.6  40.7  41.2  40.4  43.1  45.5  50.0 

    Former   21.2  31.7  37.4  39.5  37.3  35.4  31.6 

    Current  46.2  27.6  21.4  20.2  19.6  19.1  18.4 

Follow-up, yearsd 5.3 
(3.9, 
7.2) 

 6.0 
(4.3, 
8.1) 

 6.2 
(4.5, 
8.2) 

 6.2 
(4.5, 
8.1) 

 6.2 
(4.5, 
8.1) 

 6.1 
(4.5, 
8.2) 

 6.1 
(4.5, 
8.1) 
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Characteristic  

BMI categorya 

<20   

(n=810) 

20 – 24.9 

(n= 8574) 

25 – 29.9 

(n=28 332) 

30 – 34.9 

 (n= 29 791) 

35 – 39.9  

(n=15 716) 

40 – 44.9 

(n=6588) 

≥ 45 

 (n=3811) 

Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) Mean 
(SD) 

(%) 

Systolic blood pressure, 
mmHgc 

133.6 
(21.0) 

 136.9 
(19.1) 

 138.2 
(18.1) 

 138.8 
(17.5) 

 139.8 
(17.6) 

 140.6 
(17.5) 

 141.2 
(17.5) 

 

Glycated haemoglobin, 
%c 

8.4 
(3.1) 

 8.4 
(2.6) 

 8.1 
(2.2) 

 8.0 
(2.1) 

 8.0 
(2.0) 

 8.0 
(1.9) 

 8.1 
(1.9) 

 

Total cholesterol, 
mmol/Lc 

5.0 
(1.2) 

 5.1 
(1.3) 

 5.1 
(1.3) 

 5.1 
(1.3) 

 5.1 
(1.2) 

 5.2 
(1.2) 

 5.1 
(1.1) 

 

HDL-cholesterol, 
mmol/Lc 

1.6 
(0.5) 

 1.4 
(0.5) 

 1.2 
(0.4) 

 1.2 
(0.4) 

 1.2 
(0.4) 

 1.2 
(0.3) 

 1.2 
(0.4) 

 

Abbreviations: BMI, Body mass index; SD, Standard deviation; SIMD, Scottish index of multiple deprivation; HDL-cholesterol, High density lipoprotein–
cholesterol  

a BMI given as kg/m2 

b At diagnosis 

c Value recorded closest to date of diagnosis of diabetes within 12 months prior to or 2 months following diagnosis  

d Median follow-up in years (Interquartile range) 
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Table 2. Characteristics of patients diagnosed with type 2 diabetes in Scotland 

between 01st January 2004 and 31st December 2011 with and without complete data  

 

Characteristic 

All patients with complete 
data (n=93622) 

Patients with incomplete 
data (n=24.8)  

Mean (SD) % Mean (SD) % 

Age, yearsb 62.9 (12.2)  56.5 (15.5)  

Male sex  55.5  55.1 

Deceased at study-end  13.4  14.6 

With ≥ 1 comorbiditiesb  24.5  22.1 

SIMD quintileb     

   Q1 (most deprived)  23.2  23.2 

   Q2  22.7  22.7 

   Q3  20.4  20.6 

   Q4  18.5  19.2 

   Q5 (least deprived)  15.3  14.4 

Smoking statusc     

   Never  41.8  44.4 

   Former   37.0  33.3 

   Current  21.2  22.3 

Follow-up, yearsd 6.1 (4.4, 8.2)  6.1 (4.3, 8.3)  

Systolic blood pressure, mmHgc 138.8 (17.9)  140.6 (18.7)  

Glycated haemoglobin, %c 8.1 (2.2)  8.3 (2.3)  

Total cholesterol, mmol/Lc 5.1 (1.3)  5.2 (1.3)  

HDL-cholesterol, mmol/Lc 1.2 (0.4)  1.2 (0.4)  

Abbreviations: BMI, Body mass index; SD, Standard deviation; SIMD, Scottish index of multiple 
deprivation; HDL-cholesterol, High density lipoprotein–cholesterol  

a BMI given as kg/m2 

b At diagnosis 

c Value recorded closest to date of diagnosis of diabetes within 12 months prior to or 2 months 
following diagnosis 

d Median follow-up in years (Interquartile range) 
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Figure 1: Age-standardised estimates (with 95% confidence intervals) of all-cause 

mortality rates by categories of body mass index (kg/m²) among people diagnosed 

with type 2 diabetes in Scotland between 01 January 2004 and 31 December 20011. 

Estimated from four approaches to handling the unobserved data; A) complete case 

analysis, B) nearest neighbour imputation, C) multiple imputation using chained 

equations and D) multiple imputation using multivariate normal imputation. 
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Figure 2. Hazard ratio estimates (with 95% confidence intervals) of the association 

between all-cause mortality and categories of body mass index (kg/m²) among 

people diagnosed with type 2 diabetes in Scotland between 01 January 2004 and 31 

December 2011. Analyses are adjusted for age at diagnosis, sex, smoking status 

and Charlson comorbidity index. Estimated from four approaches to handling the 

unobserved data; A) complete case analysis, B) nearest neighbour imputation, C) 

multiple imputation using chained equations and D) multiple imputation using 

multivariate normal imputation. 
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