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Abstract. We consider the following problem: can a certain graph para-
meter of some given graph G be reduced by at least d, for some integer d,
via at most k graph operations from some specified set S, for some given
integer k? As graph parameters we take the chromatic number and the
clique number. We let the set S consist of either an edge contraction
or a vertex deletion. As all these problems are NP-complete for general
graphs even if d is fixed, we restrict the input graph G to some special
graph class. We continue a line of research that considers these problems
for subclasses of perfect graphs, but our main results are full classifica-
tions, from a computational complexity point of view, for graph classes
characterized by forbidding a single induced connected subgraph H.

1 Introduction

When considering a graph modification problem, we usually fix a graph class
G and then, given a graph G, a set S of one or more graph operations and an
integer k, we ask whether G can be transformed into a graph G′ ∈ G using at
most k operations from S. Now, instead of fixing a particular graph class, one
may be interested in fixing a certain graph parameter π. In this setting we ask,
given a graph G, a set S of one or more graph operations and an integer k,
whether G can be transformed into a graph G′ by using at most k operations
from S such that π(G′) ≤ π(G) − d, for some threshold d ≥ 0. Such problems
are called blocker problems, as the set of vertices or edges involved can be seen
as “blocking” some desirable graph property (such as being colorable with only
a few colors). Identifying the part of the graph responsible for a significant
decrease of the graph parameter under consideration gives crucial information
on the graph.

Blocker problems have been given much attention over the last years
[1–4,6,7,13,15,16]. Graph parameters considered were the chromatic number,
the independence number, the clique number, the matching number and the

D. Paulusma—Author supported by EPSRC (EP/
K025090/1).

This is a post-peer-reviewed, pre-copyedit version of an article published in Lecture Notes in 
Computer Science. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-319-45587-7_4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/199293553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


vertex cover number. So far, the set S always consisted of a single graph oper-
ation, which was a vertex deletion, edge deletion, edge contraction, or an edge
addition. Here, we consider the chromatic number and the clique number. We
keep the restriction on the size of S and let S consist of an edge contraction or a
vertex deletion. Thus, we continue the research initiated by Bentz et al. [4] and
Diner et al. [7]. In the latter paper, classes of perfect graphs are considered. Here,
we also consider classes of perfect graphs, but in our main results we restrict the
input to graphs that are defined by a single forbidden induced subgraph H, that
is, to so-called H-free graphs.

Definitions. The contraction of an edge uv of a graph G removes the vertices
u and v from G, and replaces them by a new vertex made adjacent to precisely
those vertices that were adjacent to u or v in G (neither self-loops nor multiple
edges are introduced). Then G can be k-contracted into a graph H if G can
be modified into H by a sequence of at most k edge contractions. For a subset
V ′ ⊆ V , let G − V ′ be the graph obtained from G after deleting the vertices of
V ′. Let χ(G) and ω(G) denote the chromatic number and the clique number of
G. We now define our two blocker problems formally, where π ∈ {χ, ω} is the
(fixed) graph parameter:

Contraction Blocker(π)
Input: A graph G and two integers d, k ≥ 0.
Question: Can G be k-contracted into a graph G′ such that π(G′) ≤ π(G) − d?

Deletion Blocker(π)
Input: A graph G = (V,E) and two integers d, k ≥ 0.
Question: Is there a set V ′ ⊆ V , with |V ′| ≤ k, such that π(G−V ′) ≤ π(G)−d?

If we remove d from the input and fix it instead, we call the resulting problems
d-Contraction Blocker(π) and d-Deletion Blocker(π), respectively.

Relations to known problems. In Sect. 3, we will pinpoint a close relationship
between the blocker problem and the problem of deciding whether the graph
parameter under consideration (chromatic number or clique number) is bounded
by some constant (in order to prove a number of hardness results). We also
observe that blocker problems generalize graph transversal problems. To explain
the latter type of problems, for a family of graphs H, the H-transversal
problem is that of finding a set V ′ ⊆ V in a graph G = (V,E) of size |V ′| ≤ k for
some integer k, such that G − V ′ contains no induced subgraph isomorphic to a
graph in H. By letting, for instance, H be the family of all complete graphs on
at least two vertices, we find that H-transversal is equivalent to Deletion
Blocker(ω) restricted to instances (G, d = ω(G) − 1, k).

Our Results. In Sect. 2, we introduce some more terminology and give a number
of known results used to prove our results. In Sect. 3, we show how the compu-
tational hardness of the decision problems for χ, ω relates to the computational
hardness of the blocker variants. There, we also give a number of additional
results on subclasses of perfect graphs. We need these results for our proofs.
However, these results may be of independent interest, as they continue similar



work on perfect graphs in [7]. In Sect. 4 we present our results for Contrac-
tion Blocker(π) and d-Contraction Blocker(π) for H-free graphs, where
π ∈ {χ, ω}. Amongst others we prove complete dichotomies for all connected
graphs H. In Sect. 5 we perform the same study for Deletion Blocker(π) and
d-Deletion Blocker(π), where π ∈ {χ, ω} to obtain complete dichotomies for
all connected graphs H. We conclude our paper in Sect. 6.

2 Preliminaries

All graphs considered are finite, undirected and without self-loops or multiple
edges. The complement of G is the graph G = (V,E) with vertex set V and an
edge between two vertices u and v if and only if uv /∈ E. For a subset S ⊆ V ,
we let G[S] denote the subgraph of G induced by S, which has vertex set S and
edge set {uv ∈ E | u, v ∈ S}. We write H ⊆i G if a graph H is an induced
subgraph of G. For a vertex v ∈ V , we write G − v = G[V \ {v}]. Recall that for
a subset V ′ ⊆ V we write G − V ′ = G[V \ V ′]. When we contract an edge uv,
we may also say that a vertex u is contracted onto v, and we use v to denote the
new vertex resulting from the edge contraction.

Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint graphs. The
disjoint union G+H has vertex set VG ∪VH and edge set EG ∪EH . The disjoint
union of k copies of G is denoted by kG. Let {H1, . . . , Hp} be a set of graphs.
We say that G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to
a graph in {H1, . . . , Hp}. If p = 1 we may write H1-free instead of (H1)-free.
A subset C ⊆ V is called a clique of G if any two vertices in C are adjacent
to each other. The clique number ω(G) is the number of vertices in a maximum
clique of G. The Clique problem tests if a graph contains a clique of size at
least k for some given integer k ≥ 0. For a positive integer k, a k-coloring of G
is a mapping c : V → {1, 2, . . . , k} such that c(u) �= c(v) whenever uv ∈ E. The
chromatic number χ(G) is the smallest integer k for which G has a k-coloring.
The Coloring problem tests if a graph has a k-coloring for some given integer k.
If k is fixed, that is, not part of the input, then we write k-Coloring instead.

A graph G = (V,E) is a split graph if G has a split partition, which is a
partition of its vertex set into a clique K and an independent set I. A graph
is cobipartite if it is the complement of a bipartite (2-colorable) graph. A graph
is chordal if it has no induced cycles on more than three vertices. A graph is
perfect if the chromatic number of every induced subgraph equals the size of a
largest clique in that subgraph. Let Cn, Pn and Kn denote the n-vertex cycle,
path and clique, respectively. Let Kn,m denote the complete bipartite graph with
partition classes of size m and n, respectively. The cobanner, bull and butterfly
are displayed in Fig. 1. We finish this section by stating some known results.

Lemma 1 ([14]). Clique is NP-complete for the following classes: (C5, P5)-free
graphs, K1,3-free graphs, cobanner-free graphs and (bull, P5)-free graphs.

Lemma 2 ([10]). Let H be a graph. For the class of H-free graphs, Coloring
is polynomial-time solvable if H is an induced subgraph of P4 or of P1 + P3 and
NP-complete otherwise.
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Fig. 1. (a) Cobanner. (b) Bull. (c) Butterfly.

Lemma 3 ([11]). 3-Coloring is NP-complete for the class of K3-free graphs.

Lemma 4 ([7]). 1-Contraction Blocker(ω) is NP-complete for graphs with
clique number 3.

Lemma 5 ([7]). For π ∈ {χ, ω}, both problems Contraction Blocker(π)
and Deletion Blocker(π) can be solved in polynomial time for P4-free graphs,
but are NP-compete on split graphs.

3 Hardness Conditions and Results for Perfect Graphs

In this section we give some results that we need for the proofs of our main results
in later sections. In the proof of Lemma 4 [7] it is readily seen that the graph
obtained in the reduction as input graph for 1-Contraction Blocker(ω) is
in fact (K4, 2P1 + P2, butterfly)-free. This gives us the following result.

Lemma 6 ([7]). 1-Contraction Blocker(ω) is NP-complete for the class
of (K4, 2P1 + P2, butterfly)-free graphs.

Let G be a graph class closed under adding a vertex-disjoint copy of the
same graph or of a complete graph. We call such a graph class clique-proof. The
following result establishes a close relation between Coloring (resp. Clique)
and 1-Contraction Blocker(χ) (resp. 1-Contraction Blocker(ω)).

Theorem 1. Let G be a clique-proof graph class. Then the following two state-
ments hold:

(i) if Coloring is NP-complete for G, then so is 1-Contraction
Blocker(χ).

(ii) if Clique is NP-complete for G, then so is 1-Contraction Blocker(ω).

Proof. We only give the proof for Coloring and 1-Contraction
Blocker(χ), as the proof for Clique and 1-Contraction Blocker(ω) can
be obtained by the same arguments. Let G be a graph class that is clique-proof.
From a given graph G ∈ G and integer � ≥ 1 we construct the graph G′ =
2G + K�+1. Note that G′ ∈ G by definition and that χ(G′) = max{χ(G), � + 1}.
We claim that G is �-colorable if and only if G′ can be 1-contracted into
a graph G∗ with χ(G∗) ≤ χ(G′) − 1. First suppose that G is �-colorable.



Then, in G′, we contract an edge of K�+1 in order to obtain a graph G∗ that
is �-colorable. Conversely, suppose that G′ can be 1-contracted into a graph
G∗ with χ(G∗) ≤ χ(G′) − 1. As contracting an edge in a copy of G does not
lower the chromatic number, the contracted edge must be in K�+1. Then, as
χ(G∗) ≤ χ(G′) − 1, this implies that χ(G′) = � + 1 and χ(G∗) = �. Hence, as
χ(G∗) = max{χ(G), �}, we conclude that χ(G) ≤ �. 	


Our next result is on cobipartite graphs (we omit its proof).

Theorem 2. For π ∈ {χ, ω}, Contraction Blocker(π) is NP-complete for
cobipartite graphs.

As cobipartite graphs are 3P1-free, we immediately obtain the following.

Corollary 1. For π ∈ {χ, ω}, Contraction Blocker(π) is NP-complete for
3P1-free graphs.

We will continue with some further results on subclasses of perfect graphs.
We need a known lemma.

Lemma 7 ([7]). Let G = (V,E) be a C4-free graph and let v1v2 ∈ E. Let
G|v1v2 be the graph obtained after the contraction of v1v2 and let v12 be the new
vertex replacing v1 and v2. Then every maximal clique K in G|v1v2 containing
v12 corresponds to a maximal clique K ′ in G and vice versa, such that

(a) either |K| = |K ′| and K \ {v12} = K ′ \ {v1};
(b) or |K| = |K ′| and K \ {v12} = K ′ \ {v2};
(c) or |K| = |K ′| − 1 and K \ {v12} = K ′ \ {v1, v2}.
Moreover, every maximal clique in G|v1v2 not containing v12 is a maximal clique
in G and vice versa.

Theorem 3. For π ∈ {χ, ω}, 1-Contraction Blocker(π) is NP-complete
for chordal graphs.

Proof. Since chordal graphs are perfect and closed under taking edge contrac-
tions, we may assume without loss of generality that π = ω. Let G = (V,E) be
a graph that together with an integer k forms an instance of Vertex Cover,
which is the problem of deciding whether a graph G has a vertex cover of size at
most k, that is, a subset S of vertices of size at most k such that each edge is inci-
dent with at least one vertex of S. Vertex Cover is a well-known NP-complete
problem (see [9]).

From G we construct a chordal graph G′ as follows. We introduce a new
vertex y not in G. We represent each edge e of G by a clique Ke in G′ of size
|V | so that Ke ∩ Kf = ∅ whenever e �= f . We represent each vertex v of G by
a vertex in G′ that we also denote by v. Then we let the vertex set of G′ be
V ∪ ⋃

e∈E Ke ∪ {y}. We add an edge between every vertex in Ke and a vertex
v ∈ V if and only if v is incident with e in G. In G′ we let the vertices of V form
a clique. Finally, we add all edges between y and any vertex in V ∪ ⋃

e∈E Ke.



Note that the resulting graph G′ is indeed chordal. Also note that ω(G′) = |V |+3
(every maximum clique consists of y, the vertices of a clique Ke and their two
neighbours in V ).

We claim that G has a vertex cover of size at most k if and only if G′ can
be k-contracted to a graph H with ω(H) ≤ ω(G′) − 1. First suppose that G
has a vertex cover U of size at most k. For each vertex v ∈ U , we contract the
corresponding vertex v in G′ to y. As |U | ≤ k, this means that we k-contracted G′

into a graph H. Since U is a vertex cover, we obtain ω(H) ≤ |V |+2 = ω(G′)−1.
Now suppose that G′ can be k-contracted to a graph H with ω(H) ≤ ω(G′)−1.

Let S be a corresponding sequence of edge contractions (so |S| ≤ k holds). By
Lemma 7 and the fact that chordal graphs are closed under taking edge contrac-
tions, we find that no contraction in S results in a new maximum clique. Hence, as
we need to reduce the size of each maximum clique Kuv ∪{u, v, y} by at least 1, we
may assume without loss of generality that each contraction in S concerns an edge
with both its end-vertices in V ∪{y}. We construct a set U as follows. If S contains
the contraction of an edge uy we select u. If S contains the contraction of an edge
uv, we select one of u, v arbitrarily. Because each maximum clique Kuv ∪{u, v, y}
must be reduced, we find that U ⊆ V is a vertex cover. By construction, |U | ≤ k.
This completes the proof. 	

Similar arguments as in the above proof can be readily used to show the following.

Theorem 4. For π ∈ {χ, ω}, 1-Deletion Blocker(π) is NP-complete for
chordal graphs.

We will finish this section with a result on C4-free perfect graphs.

Theorem 5. For π ∈ {χ, ω}, 1-Contraction Blocker(π) is NP-complete
for the class of C4-free perfect graphs.

Proof. Let π = ω, or equivalently, π = χ. We adapt the construction used in
the proof of Lemma 4 by doing as follows for each edge e of the graph G in this
proof. First we subdivide e. This gives us two new edges e1 and e2. We introduce
two new non-adjacent vertices ue and ve and make them adjacent to both end-
vertices of e1. Denote the resulting graph by G∗. Notice that we do not create
any induced C4 this way. Hence G∗ is C4-free. The vertices of the original graph
together with the subdivision vertices form a bipartite graph on top of which
we placed a number of triangles. Hence, G∗ contains no induced hole of odd size
and no induced antihole of odd size, where a hole is an induced cycle on at least
five vertices and an antihole is the complement of a hole. Then, by the Strong
Perfect Graph Theorem [5], G∗ is perfect as well.

We increase the allowed number of edge contractions accordingly and observe
that, because of the presence of the vertices ue and ve for each edge e, we are
always forced to contract the edge e1, which gives us back the original construc-
tion extended with a number of pendant edges (which do not play a role). Note
that we have left the class of C4-free perfect graphs after contracting away the
triangles, but this is allowed. 	




4 Contraction Blocker in H-Free Graphs

In this section, we will consider both problems Contraction Blocker(π)
and d-Contraction Blocker(π) for π ∈ {ω, χ} and present our classifica-
tion results for H-free graphs. We start with π = χ and H being a connected
graph. In this case, we obtain a complete dichotomy for both problems Con-
traction Blocker(χ) and d-Contraction Blocker(χ) concerning their
computational complexity.1

Theorem 6. Let H be a connected graph. If H is an induced subgraph of P4

then Contraction Blocker(χ) is polynomial-time solvable for H-free graphs.
Otherwise even 1-Contraction Blocker(χ) is NP-hard for H-free graphs.

Proof. Let H be a connected graph. If H is an induced subgraph of P4, then
we use Lemma 5. Now suppose that H is not an induced subgraph of P4. Then
Coloring is NP-complete for H-free graphs by Lemma 2. If H is not a clique,
then the class of H-free graphs is clique-proof. Hence, we can use Theorem 1. So
suppose H is a clique. It suffices to show NP-completeness for H = K3. We reduce
from 3-Coloring restricted to K3-free graphs. This problem is NP-complete by
Lemma 3. Let G be a K3-free graph representing an instance of 3-Coloring.
We obtain an instance of 1-Contraction Blocker(χ) as follows. Take two
copies of G and the 4-chromatic Grötzsch graph F (see [17], p. 184). Call the
resulting graph G′, i.e. G′ = 2G + F . We claim that G is 3-colorable if and only
if it is possible to contract precisely one edge of G′ so that the new graph G∗

has chromatic number χ(G′) − 1. We prove this claim via similar arguments as
used in the proof of Theorem1. 	


For the case when H is a general graph (not necessarily connected), we obtain
a complete dichotomy for Contraction Blocker(χ).

Theorem 7. Let H be a graph. If H is an induced subgraph of P4 then Con-
traction Blocker(χ) is polynomial-time solvable for H-free graphs, otherwise
it is NP-hard for H-free graphs.

Proof. If H is connected then we use Theorem 6. Suppose H is disconnected.
If H contains a component that is not an induced subgraph of P4 then we use
Theorem 6 again. Assume that each connected component of H is an induced
subgraph of P4. If 2P2 ⊆i H or 3P1 ⊆i H then we use Lemma 5 and the fact that
split graphs are (2P2, C4, C5)-free (see [8]) or Corollary 1, respectively. Hence,
H ∈ {2P1, P2 + P1}, so H ⊆i P4 and we can use again Theorem 6. 	

Completing the classification of the computational complexity of d-
Contraction Blocker(χ) for general graphs H (not necessarily connected)
is still open.

We now consider the case π = ω. Also in this case we obtain a complete
dichotomy when H is connected.
1 We can modify the gadgets for proving NP-completeness for the case d = 1 in a

straightforward way to obtain NP-completeness for every constant d ≥ 2. A similar
remark holds for other theorems. Details will be given in the journal version.



Theorem 8. Let H be a connected graph. If H is an induced subgraph of P4

or of P1 + P3 then Contraction Blocker(ω) is polynomial-time solvable for
H-free graphs. Otherwise 1-Contraction Blocker(ω) is NP-hard for H-free
graphs.

Proof. Let H be a connected graph. If H contains an induced C4, use Theorem 5.
If H has an induced K4, 2P1 + P2 or butterfly, use Lemma6. If H contains an
induced K1,3, C5, P5, bull or cobanner, use Lemma 1 with Theorem 1. So we may
assume that H is (C4, C5, P5,K1,3,K4, 2P1 + P2, bull, butterfly, cobanner)-free.

We claim that H is an induced subgraph of P4 or of P1 + P3. For contradic-
tion, assume that H �⊆i P4 and H �⊆i P1 + P3. First suppose that H contains no
cycle. Then, as H is connected, H is a tree. Because H is K1,3-free, H is a path.
Our assumption that H is not an induced subgraph of P4 or of P1 + P3 implies
that H contains an induced P5, which is not possible as H is P5-free.

Now suppose that H contains a cycle C. Then C must have exactly three ver-
tices, because H is (C4, C5, P5)-free. As H is not an induced subgraph of P1 + P3,
we find that H contains at least one vertex x not on C. As H is connected, we
may assume that x has a neighbour on C. Because H is (2P1 + P2,K4)-free, x
has exactly one neighbour on C. Let v be this neighbour. Hence, H contains an
induced P1 + P3 (consisting of x, v and the other two vertices of C). As H is not
an induced subgraph of P1 + P3 and H is connected, it follows that H contains
a vertex y /∈ V (C) ∪ {x} that is adjacent to a vertex on C or to x.

First suppose y is adjacent to a vertex of C. Then, as H is (2P1 + P2,K4)-
free, y has exactly one neighbour u in C. If u = v then H either contains an
induced claw (if x and y are non-adjacent) or an induced butterfly (if x and y are
adjacent). Since, by our assumption, this is not possible, it follows that u �= v.
Then, because H is bull-free, we deduce that x and y are adjacent. However, then
the vertices, u, v, x, y form an induced C4, which is not possible as H is C4-free.
We conclude that y is not adjacent to a vertex of C, so y must be adjacent to
x only. But then H contains an induced cobanner, a contradiction. Hence, H is
an induced subgraph of P4 or of P1 + P3 as we claimed.

If H is an induced subgraph of P4 then we use Lemma 5. If H is an induced
subgraph of P1 + P3, then we know from [12] that either G is K3-free or G
is complete multipartite. In the first case one must contract all the edges of
an H-free graph in order to decrease its clique number. Hence Contraction
Blocker(ω) is polynomial-time solvable for K3-free graphs. In the second case
H is P4-free, so we can use Lemma 5 again. 	

For general graphs H, we have one open case for Contraction Blocker(ω)
(while for d-Contraction Blocker(ω) there are many more open cases).

Theorem 9. Let H �= K3 + P1 be a graph. If H is an induced subgraph of P4

or of P1 + P3 then Contraction Blocker(ω) is polynomial-time solvable for
H-free graphs, otherwise it is NP-hard for H-free graphs.

Proof. If H is connected, use Theorem 8. Suppose H is disconnected. If H con-
tains a component that is not an induced subgraph of P4 or P1 + P3 then we use



Theorem 8 again. Assume that each component of H is an induced subgraph of
P4 or P1 + P3. If 2P2 ⊆i H or 3P1 ⊆i H then we use Lemma 5 or Corollary 1,
respectively. Hence, H ∈ {2P1, P2 +P1,K3 +P1}. In the first two cases H ⊆i P4

and thus we can use Theorem 8, whereas we excluded the last case. 	


5 Deletion Blocker in H-Free Graphs

We adapt the proof of Theorem1 to present relations between Coloring and
1-Deletion Blocker(χ) and between Clique and 1-Deletion Blocker(ω).

Theorem 10. Let G be a clique-proof graph class. Then the following two state-
ments hold:

(i) if Coloring is NP-complete for G, then so is 1-Deletion Blocker(χ).
(ii) if Clique is NP-complete for G, then so is 1-Deletion Blocker(ω).

We notice a relation between 1-Deletion Blocker(ω) and Vertex Cover.

Lemma 8. Let G be a triangle-free graph containing at least one edge and let
k ≥ 1 be an integer. Then (G, k) is a yes-instance for 1-Deletion Blocker(ω)
if and only if (G, k) is a yes-instance for Vertex Cover.

Proof. Let G = (V,E) be a triangle-free graph with |E| ≥ 1. Thus, ω(G) = 2.
Let k ≥ 1 be an integer. First suppose that (G, k) is a yes-instance for Vertex
Cover and let V ′ be a solution, i.e. for every edge e ∈ E, there exists a vertex
v ∈ V ′ such that v is an endvertex of e. It follows that by deleting all vertices
in V ′, we obtain a graph G′ containing no edges and hence ω(G′) ≤ 1. We
conclude that (G, k) is a yes-instance for 1-Deletion Blocker(ω). Conversely,
suppose that (G, k) is a yes-instance for 1-Deletion Blocker(ω) and let V ’ be
a solution, i.e. the graph obtained form G by deleting the vertices in V ′ satisfies
ω(G′) ≤ 1. But this implies that G′ contains no edges and thus V ′ is a vertex
cover of size at most k. So (G, k) is a yes-instance for Vertex Cover. 	

Corollary 2. 1-Deletion Blocker(ω) is NP-complete for the class of
(C3, C4)-free graphs.

Proof. This follows immediately from Lemma 8 and the fact that Vertex
Cover is NP-complete for (C3, C4)-free graphs (see [14]). 	


We are now ready to prove the first main result of this section.

Theorem 11. Let H be a connected graph. If H is an induced subgraph of P4,
then Deletion Blocker(ω) is polynomial-time solvable on H-free graphs. Oth-
erwise 1-Deletion Blocker(ω) is NP-hard for H-free graphs.

Proof. If H contains a cycle Cr, r ∈ {3, 4}, we use Corollary 2. If H contains
a cycle Cr, ≥ 5, we use Lemma 1 combined with Theorem 10. Hence, we may
assume now that H is a tree. If H contains an induced K3,1, we use Lemma 1
combined with Theorem 10. Thus, H is a path. If this path has length at most 4,
we use Lemma 5. Otherwise, we use Lemma 1 combined with Theorem 10. This
completes the proof. 	




If H is disconnected, finding such a dichotomy is open. In particular, the cases
when H ∈ {2P2, 3P1} are unknown. Moreover, in contrast to the Contraction
Blocker(ω) problem, Deletion Blocker(ω) is polynomial-time solvable on
cobipartite graphs [6], which form a subclass of 3P1-free graphs. We now focus
on π = χ. The proof of Theorem6 can easily be adapted to get the following.

Theorem 12. Let H be a connected graph. If H is an induced subgraph of P4,
then Deletion Blocker(χ) is polynomial-time solvable on H-free graphs. Oth-
erwise, 1-Deletion Blocker(χ) is NP-hard for the class of H-free graphs.

If H is disconnected, it seems much harder to get a dichotomy even when d
is part of the input. In contrast to the case of ω, we can prove that Deletion
Blocker(χ) is polynomial-time solvable for 3P1-free graphs.

Theorem 13. Deletion Blocker(χ) can be solved in polynomial time for the
class of 3P1-free graphs.

Proof. Let G = (V,E) be a 3P1-free graph with |V | = n and let k ≥ 1 be an
integer. Consider an instance (G, k, d) of Deletion Blocker(χ). We proceed
as follows. First consider an optimal coloring of G, which can be obtained in
polynomial time [10]. Since G is 3P1-free, the size of each color class is at most
2. Also the number of color classes of size 1 is the same for every optimal coloring
of G. Let � be this number. Hence, there are n−�

2 color classes of size 2 and χ(G) =
� + n−�

2 . Now (G, k, d) is a yes-instance if and only if we can obtain a graph G′

from G by deleting at most k vertices such that χ(G′) ≤ χ(G)−d = �+ n−�
2 −d.

Since G′ is also 3P1-free, the color classes in any optimal coloring of G′ have size
at most 2 and thus, G′ contains at most 2(� + n−�

2 − d) = n + � − 2d vertices.
In other words, we need to delete at least 2d − � vertices from G in order to get
such a graph G′. So (G, k, d) is clearly a no-instance if k < 2d − �. Next we will
show that if k ≥ 2d − �, then (G, k, d) is a yes-instance and this will complete
the proof. If d ≤ �, we delete d vertices representing color classes of size 1. If
d > �, we delete the � vertices representing the color classes of size 1 and 2(d−�)
vertices of d − � color classes of size 2. This way, we clearly obtain a graph G′

whose chromatic number is exactly χ(G) − d. 	


6 Conclusions

We considered the problems (d-)Contraction Blocker(π) and (d-)Deletion
Blocker(π), where π ∈ {χ, ω}. We mainly focused on H-free graphs and ana-
lyzed the computational complexity of these problems. We obtained a complete
dichotomy for both problems and both when d is fixed and when d is part of
the input, if H is a connected graph. If H is an arbitrary graph that is not
necessarily connected, further research is needed: What is the complexity of the
problems d-Contraction Blocker(χ) and d-Contraction Blocker(ω) for
H-free graphs when H is disconnected? What is the complexity of Contrac-
tion Blocker(ω) for (K3 + P1)-free graphs? What are the complexities of



Table 1. Results for subclasses of perfect graphs closed under edge contraction (apart
from the classes of bipartite and perfect graphs), where NP-c stands for NP-complete
and P for polynomial-time solvable; results marked with a ∗ correspond to results of
this paper; the unmarked results for perfect graphs follow directly from other results.

Contraction Blocker(π) Deletion Blocker(π)

Class π = α π = ω(= χ) π = α π = ω(= χ)

Bipartite ? P (trivial) P [6] P∗

Cobipartite d = 1: NP-c [7] NP-c∗; d fixed: P [7] P∗ P [6]

Chordal ? d = 1: NP-c∗ ? d = 1: NP-c∗

Interval ? P [7] ? P [7]

Split NP-c; d fixed: P [7] NP-c; d fixed: P [7] NP-c; d fixed: P [6] NP-c; d fixed: P [6]

Cograph P [7] P [7] P [7] P [7]

C4-free Perfect ? d = 1: NP-c∗ ? ?

Perfect d = 1: NP-c d = 1: NP-c NP-c; d fixed: ? d = 1: NP-c

(d-)Deletion Blocker(χ) and (d-)Deletion Blocker(ω) for H-free graphs
when H is disconnected? In particular, what is the complexity of d-Deletion
Blocker(ω) for 2P2-free graphs and 3P1-free graphs?

Besides considering the parameters χ and ω, we may of course choose any
other graph parameter π, such as π = α, where α is the independence num-
ber (the size of a largest independent set in a graph). Note that d-Deletion
Blocker(ω) in a graph G is equivalent to d-Deletion Blocker(α) in its
complement G. Studying the complexity of d-Contraction Blocker(α) and
d-Deletion Blocker(α) for H-free graphs is left as future research.

In addition to our results on H-free graphs, we also obtained some new
results for subclasses of perfect graphs. We used these as auxiliary results for
our classifications but also in order to continue a line of research started in
[7]. Table 1 gives an overview of the known results and the new results of this
paper for such classes of graphs. Notice that χ = ω holds by definition of a per-
fect graph. In the table we also added results for Contraction Blocker(α)
and Deletion Blocker(α), since these problems have been studied in [6,7]
and since some of our new results immediately imply corresponding results for
the case π = α. In particular, the polynomial-time solvability of d-Deletion
Blocker(ω) for bipartite graphs (and therefore d-Deletion Blocker(α) in
cobipartite graphs) follows from Corollary 2 and the fact that Vertex Cover
is polynomial-time solvable in bipartite graphs. The proof that shows that Con-
traction Blocker(ω) is polynomial-time solvable for interval graphs can eas-
ily be adapted to show that Deletion Blocker(ω) is polynomial-time solvable
for interval graphs.

As can be seen from Table 1 there are several open cases (marked by “?”).
Some of these open cases form challenging open problems related to interval and
chordal graphs, namely what is the complexity of Contraction Blocker(α)
and d-Contraction Blocker(α) for interval graphs and for chordal graphs?
What are the complexities of the problems Deletion Blocker(α) and d-
Deletion Blocker(α) for interval graphs and for chordal graphs?



References

1. Bazgan, C., Bentz, C., Picouleau, C., Ries, B.: Blockers for the stability number
and the chromatic number. Graphs Comb. 31, 73–90 (2015)

2. Bazgan, C., Toubaline, S., Tuza, Z.: Complexity of most vital nodes for independent
set in graphs related to tree structures. In: Iliopoulos, C.S., Smyth, W.F. (eds.)
IWOCA 2010. LNCS, vol. 6460, pp. 154–166. Springer, Heidelberg (2011)

3. Bazgan, C., Toubaline, S., Tuza, Z.: The most vital nodes with respect to indepen-
dent set and vertex cover. Discrete Appl. Math. 159, 1933–1946 (2011)

4. Bentz, C., Costa, M.-C., de Werra, D., Picouleau, C., Ries, B.: Weighted Transver-
sals and blockers for some optimization problems in graphs. In: Progress in Com-
binatorial Optimization. ISTE-WILEY (2012)

5. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)

6. Costa, M.-C., de Werra, D., Picouleau, C.: Minimum d-blockers and d-transversals
in graphs. J. Comb. Optim. 22, 857–872 (2011)
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