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Abstract

This thesis links the theoretical and the applied literature on interdependence be-

tween countries in growth models and their impact on convergence. Economic theory

agrees on the existence of interactions between countries, but the empirical litera-

ture neglects these interactions. Econometric theory defines two types of dependence

between units, which both needs to be taken care of when estimated.

The thesis consists of three chapters. The first chapter presents a growth model,

which motivates the weaker type of dependence, spatial dependence. In this model,

migration, trade and foreign direct investments act as channels for the interaction

of countries. The model predicts positive effects of the interactions, especially of

migration. It is common to model the second type of cross-sectional dependence

in form of a multifactor error structure model in a heterogeneous slope panel. The

model is estimated by the Dynamic Common Correlated Effects estimator, which

approximates the dependence by time specific averages. The second chapter intro-

duces a Stata package to compute this estimator. It discusses practical challenges

in its empirical application, presents examples for the estimation and highlights the

requirements for the time and cross-sectional dimensions using a Monte Carlo sim-

ulation. The final chapter combines the contributions of the first two chapters. A

spatial time lag controls for spatial dependence. The growth model in the first chap-

ter is used to motivate the choice of the weights. Strong cross-sectional dependence

is taken care of by the methods explained in the preceding chapter. In addition, the

chapter uses a general Lotka-Volterra model to determine the type of convergence

in the presence of spatial interactions. Lastly, evidence for conditional convergence

is presented for a panel of 93 countries.
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Chapter 1

Introduction

Why are people in the United States, Germany, and Japan so much richer

today than 100 or 1000 years ago? Why are people in France and the

Netherlands today so much richer than people in Haiti and Kenya? Ques-

tions like these are at the heart of the study of economic growth.

– Jones (2016, page 4)

Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in

Texas?

– Edward N. Lorenz, 1972

Charles Jones posed these questions in the introduction for the latest volume of

the Handbook of Macroeconomics. The handbook chapter shows that the questions

are still of relevance, despite the fact that the first ideas about the origin of economic

growth date as least as far back as Thomas R. Malthus’s seminal book An Essay on

the Principle of Population from 1798.

The above title for a talk by Edward N. Lorenz in 1972 summarises the idea of

the butterfly effect. The butterfly effect states that a small change somewhere in

the world can have a huge cause somewhere else. Edward N. Lorenz derived this

idea from simulating weather models and became one of the founders of the Chaos

1



1. INTRODUCTION

Theory in physics.

If the butterfly effect applies to the weather, it may be relevant on a smaller scale

for countries and their economies. In other words, a change in one country has an

effect on its neighbours or other countries, meaning countries depend on each other.

The combination of this statement and the questions Charles Jones posed are the

focus of this thesis. Does a country’s growth process depend on other countries and

how can this be modelled from a theoretical and applied perspective.

Grossman and Helpman (2015) and Jones (2016) note that the theoretical liter-

ature agrees on the existence of spillovers and interactions between countries. They

are modelled in many different ways such as trade (Grossman and Helpman, 1991),

diffusion of knowledge (Rivera-Batiz and Romer, 1991; Lucas, 2009a) or geograph-

ical distance (Krugman, 1991). Even though theory recognises the spillovers or

dependencies between countries, the empirical literature neglect them (Islam, 2003;

Corrado and Fingleton, 2012). In cross-country regressions, it is common to con-

trol for the location of a country (Hall and Jones, 1999; Sachs, 2001), the openness

to trade of an economy (Frankel and Romer, 1999; Wacziarg and Welch, 2007) or

disease environments (Acemoglu, Johnson and Robinson, 2001). However location

or its proxies are pure controls and do not represent interactions between countries.

Interactions between countries need to be modelled explicitly and come out of the

microfoundations of a growth model.

In a theoretical and applied econometric context the question arises how to model

and control for dependence between units. The literature on panel data models

differentiates between strong and weak dependence between cross-sectional units.

Strong cross-sectional dependence is in the domain of multifactor error structure

models and is contained as an unobserved factor in the error term. If observable,

weak cross-sectional dependence can be modelled by spatial interactions in the form

of weighted observations of other units. Both types of cross-sectional dependence

separately received attention in the empirical literature on growth (Ertur and Koch,

2



1. INTRODUCTION

2007; Eberhardt, Helmers and Strauss, 2012; Eberhardt and Teal, 2017). Only

recently methods have been developed to account for both types of cross-sectional

dependence in a general empirical setting (Bailey, Holly and Pesaran, 2016; Ertur

and Musolesi, 2016).

Convergence is among the key questions in the empirics of economic growth

and the second central topic in this thesis. Convergence is beyond pure academic

relevance and has implications for policy. If countries would converge to a single

equilibrium, then disparities between countries are a matter of time and policy

could work towards closing those. When including spatial interactions in a growth

regression, the conditions for convergence change. Arbia and Paelinck (2003a,b)

suggest a growth model based on a difference equation system, which is able to

handle interactions between units, for determining the type of convergence.

This thesis consists of three essays, which are linked by the above questions. The

motivation of spatial interactions for an empirical model is in the centre of interest of

Chapter 2. A growth model is derived, which in its outcome explicitly links countries

to each other. Appropriate methods to estimate those linkages can be found in

the field of spatial econometrics. An estimation procedure and the description of

a Stata package to estimate dynamic panel data models with a multifactor error

structure is outlined in Chapter 3. A focus is put on the requirements on the time

and cross-sectional dimensions of the dataset. In addition, applied issues such as

the estimation of a unit-specific constant are discussed. Chapter 4 combines the

two strands of literature on cross-sectional dependence in a growth model. It uses

the model derived in Chapter 2 as motivation for the spatial interactions. Strong

cross-sectional dependence is addressed as described in Chapter 3. To determine the

convergence in presence of spatial dependencies, the model extends the approach by

Arbia and Paelinck (2003a,b). The three chapters are outlined in more detail next.

Chapter 2: "A Growth Model with Mobile Labour, Trade and Diffusion of

Ideas" addresses the gap between the theoretical growth and the applied literature

3



1. INTRODUCTION

by developing a model that draws on features from an endogenous Romer-style

growth model and a New Economic Geography (NEG) model. The model has three

distinct sources of interactions between countries: mobility of high skilled workers,

diffusion of knowledge and inter-country trade of goods. One novelty of the model is

the focus on migration of high skilled workers and their explicit effect on economic

growth. The decision to migrate comes from the micro level and therefore out of

the model. The engine of growth is adapted from the endogenous growth literature.

Motivated by higher wages, high skilled workers migrate to the more developed

country, where they work in the Research and Development (R&D) sector. This

in turn contributes towards economic growth in the more developed country, and

leads to divergence between the two countries. Diffusion of knowledge links the

R&D sectors of countries. Ideas developed in one country become available in the

other country, resulting in an increase in productivity of the sector. Trade in the

manufactured good has a positive effect on the more developed country, but only

in the short run. The chapter presents an approach to model the interdependence

between countries explicitly. A country’s growth rate depends on characteristics of

other countries and linkages are micro level founded. In its conclusion of divergence,

the model brings new insights to some of the facts of economic development over

the last 200 years.

Chapter 3: "Estimating Common Correlated Effects Models" introduces

a new Stata command, xtdcce2, to estimate a dynamic model with common cor-

related effects and heterogeneous coefficients in a panel with a large number of

observations over cross-sectional units and time periods. The package was devel-

oped as a part of this thesis. The focus of this chapter lies on the second type of

cross-sectional dependence, unobservable common factors. The package computes

the Dynamic Common Correlated Effects (DCCE) estimator (Pesaran, 2006; Chudik

and Pesaran, 2015a), but in addition allows estimations of the Mean Group (MG)

estimator (Pesaran and Smith, 1995) and the Pooled Mean Group (PMG) estimator

(Shin, Pesaran and Smith, 1999). Coefficients are allowed to be heterogeneous or

4



1. INTRODUCTION

homogeneous. In addition, Instrumental Variable (IV) regressions and unbalanced

panels are supported. A test for weak cross-sectional dependence (CD Test) is au-

tomatically calculated and presented in the estimation output. Small sample time

series bias can be corrected by ’half-panel’ jackknife or Recursive Mean Adjustment

(RMA) correction methods. A Monte-Carlo simulation is carried out to examine

the small sample properties of the estimators. It evaluates the impact of the time

series bias and biases due to the heterogeneous slope coefficients and the common

factors. Finally, it is intended to give the user guidance under which cross-sectional

and time dimensions it is appropriate to employ the DCCE estimator.

Chapter 4: "Cross-country convergence in a general Lotka-Volterra model"

combines the two preceding chapters, by estimating a convergence equation includ-

ing a spatial time lag and common factors. Therefore, it controls for both types

of cross-sectional dependence. The equation is estimated for 93 countries over the

years 1960-2007. The spatial lag controls for spatial dependence while the com-

mon factors control for strong cross-sectional dependence. The share of high skilled

migrants, trade shares and Foreign Direct Investments (FDI) are used as spatial

weights matrices. A Simultaneous Dynamic Least Squares (SDLS) estimator and a

DCCE estimator are employed. In the equation to be estimated, convergence de-

pends on the country and due to the nature of the interactions, on other countries

as well. A traditional approach would neglect the inter-country dependences. The

growth equation is transformed into a representation of a general Lotka-Volterra

model. Convergence depends on cross-sectional interactions in the differential equa-

tion system. The conditions for stability of the general Lotka-Volterra model are

used to determine the existence and type of convergence. Evidence for conditional

convergence is presented. Several robustness checks are carried out and confirm ear-

lier findings. Finally, the chapter highlights the difficulty of differentiating between

strong and weak dependence.

In the remaining part of this chapter, the spatial econometric theory necessary

for this thesis is reviewed, followed by an outline of cross-sectional dependence.
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The chapter closes with an overview of the growth empirical literature and spatial

extensions of it.

Notation Throughout this thesis, the following notation applies: For the theoreti-

cal model in Chapter 2, capital letters, such as Ai refer to levels on the country level.

Small letters, such as xi refer to a firm or sector specific value. For the remaining

chapters, vectors are expressed in small bold letters, for example b, and matrices in

capital bold letters or symbols, B. IN is a N × N identity matrix, ιN is a 1 × N

column vector with ones. Squared brackets denote the floor of a number, [3.14] = 3.

N defines the cross-sectional dimension, T the time dimension. # (Ti ∩ Tj) refers

to the number of common time periods of cross-sectional unit i and j. N → ∞

stands for convergence to infinity, (N, T ) j→ ∞ for joint convergence to infinity,
√
N(πp−π) d→ N(0,Σp) for convergence in distribution and β̂ − β p→ 0 for conver-

gence in probability. ∆ is the first lag operator, i.e. ∆yi,t = yi,t − yi,t−1. ‖w‖ is the

vector norm. ⇒ means it follows, for example x
2 = y ⇒ y = 2x. Lastly, Stata refers

to the statistical software released by StataCorp.

1.1 Spatial Econometrics

Spatial econometrics incorporates the interaction of cross-sectional units in regres-

sion analysis. Several models are standard in the literature (Anselin, 1988; Elhorst,

2010). The most general model is the so-called Manski model, which includes spa-

tial interactions in the independent variable, dependent variable and the error term.

Table 1.1 lists a selection of spatial models, from the Manski model to the standard

Ordinary Least Squares (OLS) model without any spatial components. The spatial

lag and the spatial error model are the most frequent used models in the literature,

of importance for this thesis and will be outlined next. In distinction of the rest of

this thesis, this section looks at a cross-section and not at a panel dataset. In the
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Name Equation Assumptions
Manski y = ρWy + αιN + Xβ + WXΘ + u

u = λRu + ε
Spatial Durbin Model y = ρWy + αιN + Xβ + WXΘ + ε λ = 0
Spatial Durbin Error Model y = αιN + Xβ + WXΘ + u ρ = 0

u = λRu + ε
Spatial Lag y = ρWy + αιN + ε λ = 0,Θ = 0
Spatial Error Model y = αιN + Xβu ρ = 0,Θ = 0

u = λRu + ε or Θ = −ρβ, λ = ρ
OLS Model y = αιN + Xβ + ε λ = ρ = 0,Θ = 0

Table 1.1: Different Spatial lag models and the relation to the Manski Model and
OLS, based on Elhorst (2010, Figure 1). y,u and ε are N ×1 vectors, X is a N ×K
matrix, α, ρ and λ are scalars, β and Θ are K × 1 and W and R are N ×N . N is
defined as the number of observations and K the number of regressors.

spatial lag model, a weighted sum of the dependent variable is added:1

y = ρWy + Xβ + ε, (1.1)

where ρ is the spatial autocorrelation coefficient and W is a N ×N spatial weight

matrix, with:

W =



0 w1,2 . . . . . . w1,N

w2,1
. . . w2,3 . . . w2,N

... . . . ...

... . . . wN−1,N

wN,1 wN,2 . . . wN,N−1 0


. (1.2)

The diagonal elements of the spatial weight matrix consists of zeros. wi,j relates

unit j to unit i. It is assumed that the spatial weights are known.2 In the case of an

endogenous spatial weight matrix, the matrix needs to be estimated. Bhattacharjee

and Holly (2013) and Bhattacharjee and Jensen-Butler (2013) suggest several ap-

proaches to estimate unknown spatial weights and apply it to housing markets in the

United Kingdom (Bhattacharjee and Jensen-Butler, 2013), Portugal (Bhattacharjee,

Maiti, Castro and Marques, 2016) and interactions in the Monetary Policy Com-
1 y and ε are N × 1, X is N ×K, β is K × 1 and ρ is 1× 1.
2Alternatively the weights can be defined as exogenous or pre-specified.
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mittee within the Bank of England (Bhattacharjee and Holly, 2013). Estimation for

endogenous weight matrices are further discussed for example in Kelejian and Piras

(2014) and Qu and Lee (2015).

Even in the case of known spatial weights, the spatial lag is endogenous if the

error terms are correlated across units and OLS becomes inconsistent. Equation

(1.1) can be rewritten as:

y = (IN − ρW)−1 Xβ + (IN − ρW)−1 ε. (1.3)

where ε is an independent and identically distributed (iid) error term. Anselin

(1988); Kelejian and Prucha (1998) show that the spatial lag model can be esti-

mated by an Instrumental Variable (IV) and General Method of Moments (GMM)

approach. Alternatively, as derived in Anselin (1988); Lee (2004); Yu, de Jong and

Lee (2008) the model can be estimated by Maximum Likelihood (ML).

The weight matrixR has the same structure and properties asW and the spatial

error model is defined as:

y = Xβ + u, (1.4)

u = λRu + ε, (1.5)

In a similar fashion as the spatial lag model, the spatial error model can be rewritten

as:

u = (IN − λR)−1 ε (1.6)

→ y = Xβ + (IN − λR)−1 ε, (1.7)

The spatial error model is not efficient using OLS, but can be estimated by either

Generalized Least Squares (GLS) or ML (Anselin, 1988; Kelejian and Prucha, 1999).

In order to estimate any of these models, several assumptions are placed on the
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spatial weight matrices, W and R. It is common to row-standardise the spatial

weight matrix prior to any estimation (Elhorst, 2010):

wi,j∗ = wi,j∑N
j=1wi,j

. (1.8)

In addition (IN − ρW), respectively (IN − λR) have to be non-singular and |λ| <

1 and |ρ| < 1 (Kelejian and Prucha, 1998). Kelejian and Prucha (1998, Assumption

3) state that the column sums of the matricesW, R, (IN − ρW)−1 and (IN − λR)−1

are bounded uniformly in absolute value. Kelejian and Prucha (2010, p. 54-55)

extend this property such that, if there exists a constant cW <∞ then:

max
1≤i≤N

N∑
j=1
|wi,j| ≤ cW and max

1≤j≤N

N∑
i=1
|wi,j| ≤ cW . (1.9)

The spatial lag model can be employed in a panel data framework.3 Adding the

subscript t to each variable leads to:

yt = Xtβ + ρWyt + εt, t = 1, ..., T (1.10)

For a matter of ease, it is assumed that the spatial weight matrix is constant over

time.4 Anselin et al. (2008) defines several spatial panel models with respect to the

number of lags and spatial (time) lags. The most general model, the time-space

dynamic model, includes a spatial time lag and a lag of the dependent variable:

yt = φyt−1 + ρ1Wyt + ρ2Wyt−1 + Xtβ + εt. (1.11)

This model, however, suffers from identification problems and it is more common to
3Spatial panel models are summarised in Anselin, Gallo and Jayet (2008) and Lee and Yu

(2015).
4The literature on time varying spatial weights estimated by IV models or Quasi Maximum

Likelihood (QML) recently received attention by Qu, Wang and Lee (2016) and Qu, Lee and Yu
(2017).
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restrict it to a time-space recursive model:

yt = φyt−1 + ρ2Wyt−1 + Xtβ + εt. (1.12)

This model was applied in Giacomini and Granger (2004) to spatial-time forecasting.

Tao and Yu (2012) emphasise the use of spatial time lags. Leaving out a relevant lag

is equivalent to an omitted variable bias problem. They show that omitting a spatial

time lag causes bias and the possibility misleading inference. On the other hand,

adding an irrelevant spatial time lag only causes an efficiency loss. A time-space

recursive model without the explanatory variable will be used in Chapter 4.

1.2 Types of Cross-Sectional Dependence

Chudik, Pesaran and Tosetti (2011) and Vega and Elhorst (2016) define two forms

of dependence between cross-sectional units, weak and strong dependence. Both

forms of dependence can be attached to a process or a factor.

1.2.1 Cross-Sectional Dependent Processes

Assumption 2.1 and 2.2 from Chudik et al. (2011) assume the process zN,t =

(z1,t, ..., zi,t, ..., zN,t)′, where i = 1, ..., N and t = 1, ..., T and It is an information set

at time t, with E(zN,t|It−1) = 0 and the conditional variance ΣN,t = V ar(zN,t|It−1)

where ΣN,t is a N × N , symmetric, non-negative definite matrix. In addition, de-

fine a vector of non-stochastic weights wN,t = (wN,1,t, ..., wN,N,t)′. The following

granularity conditions have to hold:

‖wN,t‖ = O(N−1/2) (1.13)
wN,j,t
‖wN,t‖

= O(N−1/2), j = 1, ..., N. (1.14)

Then following Definition 2.1 from Chudik et al. (2011) and the assumptions in

(1.13) and (1.14), the process zi,t is defined to be cross-sectionally weakly dependent
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if

lim
N→∞

V ar(w′tzt|It−1) = 0, t = 1, ..., T, (1.15)

and cross-sectionally strongly dependent with N →∞ if

V ar(w′tzt|It−1) ≥ κ > 0, t = 1, ..., T, (1.16)

where κ is a constant independent of N . A process can be decomposed into a strong

dependent and a weakly dependent process (Chudik et al., 2011, Theorem 3.1). The

process is strong if and only if there is at least one strong factor at a given point

in time. Conversely, it is weakly cross-sectional dependent if it includes a weak,

semi-weak or semi-strong factor at a given point in time. Thus, the driving forces

for cross-sectional dependence within a process are strong and weak factors, which

will be defined next.

1.2.2 Cross-Sectional Dependent Factors

The factor ft,l, attached to the loading γi,l, is weakly cross-sectional dependent if:

lim
N→∞

N∑
i=1
|γi,l| = κ <∞ (1.17)

and strongly cross-sectional dependent if:

lim
N→∞

1
N

N∑
i=1
|γi,l| = κ > 0. (1.18)

Cross-sectional independence is defined by γi,l = 0 i = 1, ..., N . Alternatively the

following formulation allows to derive semi-weak and semi strong factors, using a

constant αCSD in the range of 0 ≤ αCSD ≤ 1 (Chudik et al., 2011):

lim
N→∞

N−αCSD
N∑
i=1
|γi,l| = κ <∞ (1.19)
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For values of αCSD = 0 the factor is weak, for αCSD = 1 the factor is strong. For

intermediate values, the factor ft,l can be referred to as semi weak (0 < αCSD < 1/2)

or semi-strong (1/2 ≤ αCSD < 1).

Weak cross-sectional dependence can be thought of as the following: Even if

the number of cross-sectional units increases to infinity, the sum of the effect of the

common factors on the dependent variable remain constant. In the case of strong

cross-sectional dependence, the sum of the effect of the common factors becomes

stronger with an increase in the number of cross-sectional units.

1.2.3 Spatial Dependence and Spatial Lags

Weak cross-sectional dependence can arise due to spatial lags (Pesaran and Tosetti,

2011; Kuersteiner and Prucha, 2015). Spatial lags are the sum of weighted observa-

tions excluding the cross-sectional unit itself and therefore similar to a cross-sectional

dependent process. The weights reflect typically some measure of distance, like geo-

graphical, social or economic. For example, if the nearest neighbour method is used

to construct the spatial weight matrix, each cross-sectional unit is only linked to a

very limited number of other units. If the number of cross-sectional units converges

to infinity, then the existing linkages between the units become less important and

an effect from one unit to the next one would wear out. More formally, following

Pesaran and Tosetti (2011) the following spatial error model is assumed:

y = Xtβ + λRst + ε, t = 1, ..., T, (1.20)

where R is a spatial weight matrix with elements ri,j and has the properties as

described in 1.1. The model can be rewritten on a cross-sectional level as:

yi,t = xi,tβ + λ
N∑

i 6=j,j=1
ri,jsj,t + εi,t. (1.21)
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Since R is bounded and using the definition in equation (1.9)

max
1≤i≤N

N∑
j=1
|ri,j| ≤ cR <∞. (1.22)

If ri,j = γi,l and sj,t = fl,t with l = j, only one time period and thus mN = N , then

equation (1.22) is equal to the definition of weak cross-sectional dependence with

cR = κ.

The same reasoning can be applied to the spatial lag model. The spatial lag

model can be written as a spatial error model with R = (IN − ρW)−1. An alterna-

tive form with the spatial lag written out is:

yt = Xtβ + ρWyt + εt, t = 1, ..., T, (1.23)

and as a cross-sectional level:

yi,t = xi,tβ + ρ
N∑

i 6=j,j=1
wi,jyj,t + εi,t. (1.24)

As long as W is uniformly bounded in absolute value, ∑N
i 6=j,j=1wi,jyj can be inter-

preted as a weakly cross-sectional dependent factor and ρ the factor loading. The

estimation of the interaction effects, namely the spatial autocorrelation coefficients

ρ and λ are possible using standard spatial econometric methods. If the spatial lag

model is used and the spatial weight matrix is observed, then the coefficient has a

meaningful interpretation. This is an important distinction to the common factor

approach and strong cross-sectional dependence, which treats the dependence as

unobserved and the common factors as nuisance parameters.

This established the differences between strong and weak cross-sectional depen-

dence and the relation between spatial and weak cross-sectional dependence. The

remainder of this thesis follows Vega and Elhorst (2016) in the notation of cross-

sectional dependence. Strong cross-sectional dependence is labelled as (unobserved)

common factors, while weak cross-sectional dependence is referred to as spatial de-
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pendence. The only exception to this notation is the test of weak cross-sectional

dependence, which will be explained next.

1.3 Dynamic Panel Data Model with

Cross-Sectional Dependence

Chudik et al. (2011) and Chudik and Pesaran (2015b) assume a dynamic panel

model with heterogeneous coefficients and cross-sectional dependence in the form

of:

yi,t = αi + λiyi,t−1 + βixi,t + ui,t (1.25)

ui,t =
mf∑
l=1

γi,lft,l +
mn∑
l=1

νi,lnt,l + ei,t (1.26)

with i = 1, ..., N and t = 1, ..., Ti,

where ei,t is a cross-section unit-specific iid error term. For simplicity without loss

of generality, it is assumed that only one exogenous explanatory variable exists.

ft = (ft,1, ..., ft,mf )′ and nt = (nt,1, ..., nt,mn)′ are unobserved common factors. mf

and mn are the number of factors. Both common factors are covariance stationary,

have absolute summable autocovariances, are distributed independently over ei,t and

the forth order moments are bounded. Assume that ft,l is a strong common factor

which is possibly correlated with the regressor xi,t and nt,l is a weak, semi-weak or

semi-strong common factor, which is uncorrelated with xi,t. γi = (γi,1, ..., γi,mf ) and

νi = (νi,1, ..., νi,mn) are heterogeneous factor loadings and αi is a unit-specific fixed

effect. The heterogeneous coefficients are randomly distributed around a common

mean, such that βi = β + vi, vi ∼ IID(0,Ωv), and λi = λ + ai, ai ∼ IID(0,Ωa),

where Ωv and Ωa are the variance covariance matrices. λi lies strictly inside the unit

circle. In addition, the random deviation of λi and βi are independently distributed

of the error term and the common factors. In the following the index t relates to

the time dimension t = 1, ..., Ti and index i to the cross-sections i = 1, ..., N . For a

14



1. INTRODUCTION

balanced panel it holds that Ti = T, i = 1, ..., N .

1.4 Test for weak cross-sectional dependence

If equation (1.25) is estimated without taking the error structure into account, the

unobserved common factor and the heterogeneous factor loading remain a part of

the error term ui,t. In this case ui,t will be correlated across units, or in other words

dependent across units. This renders the error not iid anymore. More important

is an omitted variable bias problem, if the observed explanatory variables and the

unobserved common factors are correlated, then OLS becomes inconsistent (Everaert

and De Groote, 2016). Cross-sectional independence is a restrictive assumption for

large panels and only strong cross-sectional dependence poses a problem (Pesaran,

2015). Thus, it is sufficient to test for weak cross-sectional dependence with the

alternative of strong cross-sectional dependence.

Pesaran (2015) developed a procedure to test for weak cross-sectional dependence

in large panels with N and T →∞, where N and T converge with different speeds

to infinity, such that T = O(N ε) with 0 < ε ≤ 1. Under the null hypothesis, the

error terms are weakly cross-sectional dependent, which, using the notation from

above, gives the following implicit null hypothesis:5

H0 : 0 ≤ αCSD < (2− ε)/4. (1.27)

The test statistic is

CD =
√

2T
N (N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij

 (1.28)

ρ̂ij = ρ̂ji =
∑T
t=1 ûi,tûjt(∑T

t=1 û
2
it

)1/2 (∑T
t=1 û

2
jt

)1/2 (1.29)

5For a formal derivation of the null hypothesis, see Pesaran (2015).
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where ρ̂ij is the correlation coefficient.6 In the case of an unbalanced panel, the

correlation coefficient is calculated for the common sample as outlined in Chudik

and Pesaran (2015b):

ρ̂ij = ρ̂ji =
∑
t∈Ti∩Tj

(
ûit − ¯̂ui

) (
ûjt − ¯̂uj

)
[∑

t∈Ti∩Tj

(
ûit − ¯̂ui

)2
](1/2) [∑

t∈Ti∩Tj

(
ûjt − ¯̂uj

)2
](1/2) (1.30)

where

¯̂ui =
∑
t∈Ti∩Tj ûit

Tij
, Tij = # (Ti ∩ Tj) , (1.31)

where Ti ∩Tj are the common periods of unit i and j and # (Ti ∩ Tj) is the number

of common periods. The CD test statistic becomes then

CD =
√

2
N (N − 1)

N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂ij

 . (1.32)

Under the null, the CD test statistic is asymptotically

CD ∼ N(0, 1) (1.33)

distributed.

1.5 Common Correlated Effects Estimators

The previous section explained that ignoring strong cross-sectional dependence leads

to inconsistent OLS estimates. Two approaches how to take out the cross-sectional

dependence are discussed in the literature. The first is based on principle compo-

nents and proposed by Coakley, Fuertes and Smith (2002). The common factors

are approximated by the principle components of the residuals of a first-stage re-

gression. The principle components are then used as observed explanatory variables

in the second stage. Bai (2009) builds on Coakley et al. (2002) and proposes an
6The index for the time periods is omitted for the balanced panel.
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interactive-effects estimator. The common factors are estimated by principal com-

ponents, which are then used to estimate the coefficients of known explanatory

variables. The advantage of the principal component approaches is that an estima-

tion of the factor loadings is possible. However, they come at the disadvantages of

the assumption of homogeneous slopes, implicitly assuming strong dependence and

the number of common factors needs to be known.

This thesis focuses on heterogeneous slope models and therefore an alternative

approach using cross-sectional averages is at the centre of interest. Pesaran (2006)

shows that the static version of equation (1.25)

yi,t = αi + βixi,t + ui,t (1.34)

can be consistently estimated by approximating the unobserved common factors

with cross-section averages x̄t = 1/N ∑N
i=1 xi,t under strict exogeneity of xi,t.7 This

estimator is commonly known as the Common Correlated Effects (CCE). The under-

lying idea of CCE estimator is to eliminate asymptotically the differential effects of

unobserved common factors by cross-sectional averages (Pesaran, 2006, p. 969). The

cross-sectional averages inhibit strong cross-sectional dependence and are suitable

to approximate the common factors.

The estimator was proved to be consistent under a variety of further assump-

tions, such as a large number of unobserved common factors (Chudik et al., 2011),

serial correlation of the common factors (Kapetanios, Pesaran and Yamagata, 2011),

calculation of long run coefficients (Chudik, Mohaddes, Pesaran and Raissi, 2016),

approximating dominant units (Chudik and Pesaran, 2013) and pooled homoge-

neous models with bias correction (Everaert and De Vos, 2016). In empirical appli-

cations it was used for example in Holly, Pesaran and Yamagata (2010), Eberhardt

et al. (2012), Bond and Eberhardt (2013), McNabb and LeMay-Boucher (2014) and

Gundlach and Paldam (2016). The CCE estimator was designed for static panels.
7Unlike Pesaran (2006) the unit-specific fixed effect is kept and not partialled out. See discussion

in Section 3.4.
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In dynamic panels as:

yi,t = αi + λiyi,t−1 + βixi,t + ui,t, (1.35)

where the idiosyncratic errors ui,t are cross-sectionally weakly dependent andE(λi) =

λ, the lagged dependent variable is no longer strictly exogenous and therefore the

unit-specific estimates of βi are asymptotically biased (Nickell, 1981). Chudik and

Pesaran (2015a) show that the Mean Group (MG) estimator remains consistent if

the floor of 3
√
T lags of the cross-section averages are added for both the dependent

variable and the strictly exogenous variables. The number of lags is denoted by

pT =
[

3
√
T
]
. The equation to be estimated is

yi,t = αi + λiyi,t−1 + βixi,t +
pT∑
l=0
δ′i,lz̄t−l + ei,t, (1.36)

where z̄t = (ȳt, x̄t) = (1/N ∑N
i=1 yi,t, 1/N

∑N
i=1 xi,t) are the cross-sectional averages.

λi and βi are stacked into πi = (λi, βi). The MG estimates are

π̂MG = 1
N

N∑
i=1
π̂i. (1.37)

In the following, this estimator is called the Dynamic Common Correlated Effects

(DCCE) estimator. π̂i is consistently estimated if (N, T, pT ) j→∞ such that p3
T/T →

%1, 0 < %1 < ∞ and N/T → %2, %2 > 0 and under full rank of the factor loadings.

Then π̂i and π̂MG converge in probability (Chudik and Pesaran, 2015a, Theorem 1

and 2, p. 397-398):

π̂i − πi
p→ 0 (1.38)

π̂MG − π
p→ 0. (1.39)

The conditions translate into a sufficient number of lags and cross-sectional averages

to approximate the unobserved common factors. The requirements for consistency

on the two estimators can be interpreted for each separately. The unit-specific
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estimates can be obtained from a simple regression on a single cross-section unit.

Therefore, the requirement for consistency is T →∞. A relative expansion rate for

N and T is not required. The number of cross-sectional lags is restricted in order

to maintain a sufficient number of degrees of freedom and therefore the requirement

on the number of lags is necessary. For consistency of the MG estimates N and T

grow jointly to infinity (N, T ) j→∞. The cross-sectional dimension has to approach

infinity due to the heterogeneous coefficients. The time dimension has to grow to

reduce the time series bias due to the lagged dependent variable. The assumption on

the rank of the factor loadings can be relaxed if the factors are serially uncorrelated.

The MG estimates remain consistent even if the factors are serially correlated. For

a more in-depth discussion of consistency, see Chapter 3 in Chudik and Pesaran

(2015b) or Chudik and Pesaran (2015a).

Under these assumptions, the asymptotic variance for the mean group estimates

is consistently estimated by

V̂ar(π̂MG) = N−1Σ̂MG = 1
N(N − 1)

N∑
i=1

(π̂i − π̂MG) (π̂i − π̂MG)′ . (1.40)

The mean group estimates have the following asymptotic distribution (Chudik and

Pesaran, 2015a):

√
N (π̂MG − π) d→ N(0,ΣMG). (1.41)

Pesaran (2006) considers a pooled version of the common correlated effects es-

timator, with the constraint πi = π for i = 1, ..., N . In case of equal weights to

all observations, wi = 1/N , the common correlated effects pooled estimator for π,

π̂P , collapses to a simple OLS estimator and is asymptotically unbiased. Everaert

and De Groote (2016) show that a common correlated effects pooled estimator is

consistent even in a dynamic panel as long as (N, T )→∞. For finite samples with

N → ∞ and T fixed, Everaert and De Groote (2016) and Everaert and De Vos

(2016) suggest a restricted version of the pooled estimator.
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The asymptotic distribution for the pooled estimator is

√
N (π̂P − π) d→ N(0,ΣP ). (1.42)

Following Pesaran (2006), a non-parametric variance estimator for π̂P is given by:

ÂVar (π̂P ) = 1
N

Ψ̂
∗−1

Ξ̂
∗
Ψ̂
∗−1 (1.43)

with

Ξ̂
∗ = 1

N − 1

N∑
i=1

X̃ ′iX̃ i

T

 (π̂i − π̂MG) (π̂i − π̂MG)′
X̃ ′iX̃ i

T

 (1.44)

where X̃ are the explanatory variables with the cross-sectional averages partialled

out and

Ψ̂
∗ =

N∑
i=1

1
N

X̃ ′iX̃ i

T

 . (1.45)

1.6 Empirical Growth Models and Convergence

Empirical Growth Models Islam (2003) defines two major strands of growth

theories, the neoclassical growth theory and the new growth theory. The former

includes convergence, but lacks the ability of generating long-term growth from

within the model. This is mainly due to the assumption of a constant external

growth driving force, such as technological growth. The new growth theory puts

more emphasis on growth from within the model such as human capital, innovation

or spillover effects. As the growth is endogenous, those models are called endogenous

growth models.

One of the key contributions to the endogenous growth models is the Romer

growth model (Romer, 1990). It assumes a Cobb-Douglas production function, with

human capital, labour and an intermediate or durable good as factors of production.
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The change in the stock of knowledge, which drives the number of available durable

goods, depends on the existing stock of it and the stock of human capital. The

returns to human capital are constant, implying the larger the stock, the more new

knowledge is accumulated. The spillover between the knowledge-producing sector

and the durable goods producing sector produces long run growth. On the balanced

growth path, the growth rate depends solely on the stock of human capital. As the

returns to human capital are constant, the model predicts unlimited growth.

The Solow growth model (Solow, 1956) based on the Harrod-Domar model is

among the most widely used neoclassical growth models and offers a solid framework

for growth regressions. Income is a function of physical capital and labour. Due

to decreasing returns of scale, the model predicts convergence to a steady state,

which depends on the saving rate for physical capital, the population growth rate

and the depreciation rate of capital. It identifies as determinants of a country’s

output the stock of physical capital, the level of technology, and the number of

workers. The input factors, physical capital and labour, are paid their marginal

products. Moreover, the model assumes diminishing returns to scale with respect to

the input factors and a constant and exogenous rate of technological progress. The

assumptions allow an economy to converge on a transition path towards a steady

state. In the steady state, the model depends on the saving rate, the depreciation

rate of capital and population and technological growth. Barro and Sala-i Martin

(1992) employ a simple form of the Solow model by regressing the growth rate

between the initial and current level on the initial level of GDP. Mankiw, Romer and

Weil (1992) estimate the Solow model in a cross-section of countries. They include

the saving rate for capital and population growth rate as explanatory variables.

However, their main contribution is to extend the production function of the Solow

growth model by human capital and present evidence for it using cross-sectional

data. Islam (1995) shows that their results are exposed to omitted variable bias

and therefore invalid. He emphasises the use of panel data models to overcome

this weakness. A further advantage of panel data models is, that it allows for the
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estimation of heterogeneous slopes. Under the assumption of parameter, or slope,

homogeneity a change in an explanatory variable such as initial or lagged Gross

Domestic Product (GDP) has the same effect on the growth rate for a country

in Africa and the United States of America (US). Durlauf (2001) and Brock and

Durlauf (2000) point out, that there is no reason to assume parameter heterogeneity

in a setting with such different countries. Lee, Pesaran and Smith (1997) employ

the MG estimator to a growth equation with heterogeneous slope coefficients. Their

approach was further discussed in Lee, Pesaran and Smith (1998) and Islam (1998).

Convergence A key feature of a growth model and important for its policy recom-

mendations is convergence. The literature distinguishes several types of convergence,

such as across or within countries, convergence in growth rates or levels (Islam,

2003). Important for this thesis are the types in levels: absolute and conditional

convergence and an intermediate between these two, club convergence. Convergence

is an outcome of neoclassical growth models and requires diminished returns to the

factors of production. This implies that the higher the stock of, say capital, the

smaller are the gains of an additional increase. The growth rate will decline but re-

main positive, eventually approach zero and the level converges to a fixed number,

the steady state.

Absolute convergence describes that all countries converge to the same steady

state.8 In a simple growth regression, the difference of an end of period income is

regressed on an initial income (Barro, 1991; Barro and Sala-i Martin, 1992; Mankiw

et al., 1992). In a panel data model, such as

log

(
yi,t
yi,t−1

)
= αi + βilog(yi,t−1) + εi,t, (1.46)

convergence appears if |1 + βi| < 1 or −2 < βi < 0. In the case that βi ≥ 0, then

the individual country does not converge, as the growth would continue to increase.

For βi ≤ −2, the country oscillates around a steady state. Absolute convergence
8It is common to call absolute convergence unconditional convergence, see (Islam, 2003, p. 312).
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appears if αi = α, for i = 1, ..., N , βi = β and −2 < βi < 0, for i = 1, ..., N . The

implication is, rich countries have a lower growth rate than poor countries, allowing

the poor ones to catch up. If αi is allowed to be heterogeneous, then each country

converges to its own steady state. This concept is called conditional convergence.9

It came out of the fact that absolute convergence was found among country groups

such as the Organisation for Economic Co-operation and Development (OECD),

but not for countries world-wide. Depending on the difference of α, divergence be-

tween countries becomes possible. Conditional convergence is criticised as being

inappropriate in making any statements about whether differences between coun-

tries diminish. It was labelled as "hollow" (Islam, 1998, p. 1162) and "...an empty

construct" (Islam, 1995, p. 326). Club convergence is a slightly restricted version of

conditional convergence. It differs from conditional convergence in the sense that a

group of countries is allowed to converge to the same steady state. While conditional

convergence allows a different unique equilibrium for all countries, club convergence

allows for multiple equilibria. Country characteristics determine to which equilib-

rium a country converges. In a sense, club convergence lies between unconditional

and conditional convergence.

A limitation of the growth theories mentioned above is that they treat countries

as isolated units and interactions between countries are ignored. This applies to the

theory, the estimation of the parameters as well as to the conditions for convergence.

Growth models like the Solow growth model (Solow, 1956) are a single country model

and do not include any interactions or dependencies between countries. As pointed

out by De Long and Summers (1991), there is no reason to believe that the growth

process of a country is completely isolated from the rest of the world. Countries

interact with each other by trade, knowledge transfers and humans migrate and

spread their ideas. It is no coincidence that the first of the New Kaldor Facts laid

out by Jones and Romer (2010) emphasizes the importance of dependence between

countries. For example, Comin and Hobijn (2010) show diffusion of new technology
9Conditional convergence can be obtained also with a homogeneous αi, if further explanatory

variables are added. Then convergence is conditional on the explanatory variables.
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intensifies over time. From an applied econometric perspective, spatial econometrics

offers methods to incorporate interactions between countries in empirical models.

Empirical growth models in a spatial econometric context will be discussed next.

1.7 Growth Empirics and Spatial Econometrics

Within a growth model, channels for the effect of space on growth are mobility of the

factors of production or technology. Among the most notable contribution is Ertur

and Koch (2007). They derive a spatial Solow growth model by extending it with a

spatial lag of income per capita, and spatial lags of the break-even investments, the

sum of population growth, technological change and the depreciation rate of physical

capital. The model is applied to the Penn World Tables (PWT) 6.1 and estimated

by ML. The spatial weights are pure geographical distance. Their findings show a

significant effect of the spatial autocorrelation coefficient and they present evidence

for the simple Solow growth model without human capital. On a regional level,

Lopez-Bazo, Vaya and Artis (2004) and Fingleton and López-Bazo (2006) include

externalities in their estimation equations in the form of a spatial lag and a spatially

weighted initial income. Lesage and Fischer (2008) estimate a growth equation with

a spatial Durbin model on data for 255 regions in 25 EU countries. Their findings

are that characteristics of neighbouring regions, how the region is connected to its

neighbours and the strength of this connection are more important than direct ef-

fects of the region itself. Koch (2008) takes space explicitly into account within a

growth empirical setting, emphasizing in particular the importance of interdepen-

dence of Total Factor Productivity (TFP) across countries. In his estimation of a

spatial error model, factor productivity as captured by the error term not only de-

pends on the country itself but on other countries’ productivity as well. The paper

finds that if spatial effects are ignored, results using traditional methods are biased.

Elhorst, Piras and Arbia (2010) estimate an extended Solow-Swan growth model

using European regions. They estimate an unconstrained spatial Durbin model us-

ing GMM, ML and a mixture of both, which allows the inclusion of fixed effects
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and spatial interactions. Ertur and Koch (2011) show that spatial dependencies

in TFP matters for a multi-country Schumpeterian growth model augmented with

technological interdependencies between countries.

Arbia and Paelinck (2003a,b) estimate regional convergence for 119 European re-

gions using a Lotka-Volterra approach. They estimate a difference equation system

using OLS, where each region is represented by one equation and use the stability

conditions of this system to determine convergence. This approach implies that

convergence depends on the parameters of the regions itself and of parameters of

other regions.

A very common and obvious choice for the spatial weight matrix is geographical

distance or a related measure. For the context of this thesis, the distinction between

spatial interactions and control variables is crucial. Variables, such as climate and

temperature (Sachs, 2001), disease environment (Acemoglu and Johnson, 2007),

genetic distance (Spolaore and Wacziarg, 2009) control for the location, but they do

not relate cross-sectional units to each other.

1.8 Summary

This chapter identified several gaps in the literature, and working towards closing

them is the aim of this thesis. First of all, empirical growth models require taking

interdependences between countries into account, since otherwise estimates are bi-

ased and inconsistent and cannot as such be used to refute or accept any specific

theory of growth. An empirical growth model, and with it interdependence between

countries, needs to be motivated from and founded in a theoretical model. In order

to do so, the next chapter lays out a growth model which models interactions be-

tween countries explicitly, in the form of migration of high skilled workers, diffusion

of ideas and trade in goods. The micro foundation for trade and migration is taken

from the New Economic Geography and Growth (NEGG) literature. The growth

rate directly depends on the number of high skilled workers moving from one to the

next country and on the diffusion of ideas. The model predicts a positive effect of
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migration and diffusion of ideas on the growth rate, and in the short term of trade.

Explosive growth and divergence are the outcomes of the model, as in the Romer

model.

The econometric literature defines two types of dependence between units in a

panel with a large number of observations over time and units, spatial dependence

and common factors. To obtain valid results, both forms of dependence have to

be taken care of. Chapter 3 develops a Stata package to estimate an equation in

the presence of common factors, which is the main contribution of this chapter.

The chapter explains the options of the command and presents empirical examples.

A Monte Carlo simulation is carried out to shed light on the bias due to small

samples, heterogeneous slope coefficients and common factors. In addition it is

shown, that the bias due to a misspecification of heterogeneous slopes in the presence

of homogeneous slopes is relatively small.

The last chapter estimates a growth model with both types of cross-sectional de-

pendence. Common factors are approximated by cross-sectional averages and spatial

dependence by spatial time lags. The spatial time lags are motivated by the model

in Chapter 2. Accounting for both types of dependence is a recent development and

has not been done in a growth empirical setting. As pointed out in the introduc-

tion, there is no reason to believe that all countries have the same slope parameters.

The estimation method allows for country specific estimates of the coefficients. The

equation relies on the Lotka-Volterra approach to determine the type of convergence

in the presence of interdependence between countries. A further contribution is the

extension of the Lotka-Volterra model with an approach to allow for testing the

conditions for convergence.
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Chapter 2

A Growth Model with Mobile Labour, Trade and

Diffusion of Ideas

2.1 Introduction

Corrado and Fingleton (2012) argue that the frequent criticism of the current growth

empirics literature in spatial econometrics, that it lacks a link to economic theory, is

misplaced. Specifically, in this literature spatial externalities arise from technological

interdependence among countries, where knowledge accumulated in one country de-

pends on knowledge accumulated in other countries. However, the specific patterns

of spatial interactions and dependencies in empirical growth specifications are not

theoretically founded: they are assumed to depend on geographic distances. This

is because a theory of why interactions between two countries matter for economic

growth is largely unexplored.

This chapter aims to close this gap by combining a Romer (1990) style endoge-

nous growth model and elements from a New Economic Geography (NEG) in the

style of Krugman (1991); Forslid and Ottaviano (2003) and Baldwin and Martin

(2004). The setting of the sectors, the mobility of labour and the consumption max-

imizing behaviour of works are drawn from the New Economic Geography models.

The engine of growth originates from the Romer (1990) model. The interaction
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between countries is modelled in three ways. The first connection is the migration

of high skilled workers, the second connection is trade of a manufactured good and

the third is the diffusion of ideas. The engine of growth draws upon the endogenous

growth model and therefore the model predicts divergence. Both the migration of

largely high skilled workers and the prediction of divergence mimics the economic

development during the Great Divergence in the 19th century. Equally, the model

can relate to club divergence in current times.

The two-country model is based on three sectors in each country. The first, the

Research and Development (R&D) sector, uses high skilled workers and the existing

stock of designs to produce new designs. Designs can be seen as patents or ideas to

found new firms in the second sector, the manufacturing sector. Before these firms

can start production, they need to buy exactly one design from the R&D sector.

Low skilled labour and a fraction of high skilled workers are employed to produce

a firm-specific differentiated manufactured good. The last sector, the traditional

sector, uses solely low skilled labour to produce a homogeneous traditional good.

This sector can be interpreted as a food producing agricultural sector.

The engine of growth is the R&D sector, which accumulates designs. Designs

are converted into new output enhancing firms. Therefore, the number of designs

represents the number of firms operating in the manufacturing sector. Different

to Romer (1990), the growth engine in this model lies in the varieties of goods

produced by the manufacturing sector rather than the variety of intermediate goods

(for example, machinery) which are transformed into one final homogeneous good.

In line with the Romer model, a higher permanent growth rate can be achieved by

an increase in high skilled workers employed in the R&D sector. In distinction to the

Romer model, diffusion of ideas is taken into account as well. If ideas spread out, a

permanent increase in the growth rate is possible. Hence, the model recognizes two

ways to increase the growth rate: migration and diffusion of ideas.

Low skilled workers are immobile between countries but mobile between the two
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sectors, manufacturing and traditional. Some high skilled workers migrate to the

higher wage offering country and contribute to the R&D sector there, allowing that

country to grow faster. Corner solutions as well as interior solutions are possible. If

the wage differential is very small, only a fraction of high skilled workers migrate.

With an increase in the difference between wages, the interior solution moves towards

the corner solution, in which all high skilled workers migrate at once. Trade has no

direct effect on the growth rate. However, trade creates a temporary effect on the

growth rate due to specialization and the re-allocation of low skilled labour between

the traditional and manufacturing sector. Diffusion of ideas allows a country to

catch up, if none of the other interactions are possible, or to reduce the difference

between the countries.

The novelty of this model, arising from the features of the endogenous growth

model and inspired by Krugman (1991), Forslid and Ottaviano (2003) and Baldwin

and Martin (2004), are the three channels for interactions between countries: high

skilled worker mobility, trade and the diffusion of technology, namely ideas. Similar

to the Romer (1990) model, this model predicts unbounded growth, an outcome

that has important implications. The country that receives high skilled workers ex-

periences unbounded growth, while the other country becomes stagnant, implying

divergence. Therefore, the model can be applied to the Great Divergence during the

19th century. A distinct feature of the Great Divergence was migration accompanied

by strong economic growth in some parts of the world. The model is also consis-

tent with economic development in the 20th century. At a broad level, it helps to

understand the formation of convergence clubs, even if the convergence or catch-up

processes between countries within each club is not explicitly considered.

The difference in technological development between the beginning and the end

of the 19th century is vast.1 In the 19th century, the “West” (Western Europe, US,

Canada, Australia and New Zealand) started growing rapidly and left large parts of
1Jewkes, Sawers and Stillerman (1961) provides a comprehensive overview of important in-

ventions in the 19th century, such as the high pressure steam engine and combustion engine,
innovations in the textile industry, telegraph and telephone, electric lamps, rubber and steel.
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the world behind. Maddison (2007, p. 70-71) shows that the “West” experienced a

growth rate of 1.07% between 1820 and 1870 and a rate of 1.56% between 1870 and

1913. GDP per capita increased from $1,202 to $3,988 between 1820 and 1913. The

rest of the world remained nearly stagnant with growth rates of 0.1% between 1820

and 1870 and 0.86% between 1870 and 1913, respectively. Over the century (93

years) GDP per capita increased only from $667 to $1,526.2 In these times one of

the main ways to distribute knowledge was movement of human capital, and hence

high skilled migration was important. 3 During the 19th century the first migration

wave started. By the middle of the century, approximately 300,000 migrants dared

to undertake the journey from Europe to the United States each year. The numbers

rose to more than 500,000 at the end of the century, and to more than a million by

the beginning of the 20th century (Williamson, 2006). Even within Europe there

were large migration flows. About half of the Italian emigrants stayed in Europe,

especially France and Germany, while 9 percent of the population in large British

cities were Irish-born (Williamson, 2006).

The remainder of this chapter is structured as follows. Section 2.2 reviews the

literature, followed by the discussion of the model (Section 2.3). Section 2.4 reports

on a simulation of the model and finally section 2.5 concludes.

2.2 Literature

The literature on theories of economic growth on a regional and country level is both

vast and very diverse (Temple, 1999, 2003; Islam, 2003). Selected contributions to

the literature are discussed next, as a motivation for, and aid towards, developing

the model in section 3.
2See Maddison (2007), p. 70-71. GDP per capita is measured in 1990 international dollars.
3High skilled workers were not necessarily well educated. In the context of the 19th century,

skill can be seen more as an ability to perform sophisticated jobs and to create ideas. For a more
detailed definition see Chapter 2.3.
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2.2.1 Growth Models

The introduction discussed two strands of the growth literature, neoclassical growth

models and endogenous growth models. In the light of this thesis, the advantages

of the latter are the existing spillovers from the knowledge producing sector to the

durable producing sector, allowing an extension across countries. In the Romer

model the growth engine is a design producing R&D sector. The designs are trans-

ferred into machines by an intermediate goods sector, which sells the machines to

the final goods sector. The growth rate depends positively on the number of work-

ers employed in the R&D sector and negatively on the interest rate for machines

(capital). This implies the larger the amount of high skilled workers allocated to the

R&D sector, the higher the growth rate. As the production function of the R&D

sector is linear in its factors of production, the model predicts unbounded growth.

The channels to model the interaction between countries are the mobility of the

factors of production and the diffusion of technology. Diffusion of technology is

discussed in the next section; the literature on the mobility of labour will be sum-

marised in Chapter 2.2.5. Another factor that influences the factors of production

is geography. However, the effect is discussed more in an empirical rather than a

theoretical fashion and more in the sense of a control rather than an interaction.

Geography justifies the approach in Acemoglu et al. (2001) of using a settler mortal-

ity, a geography-related instrument, to account for the endogeneity of institutions.

Spolaore and Wacziarg (2013) argue that the main channels of the geography effect

are either directly on the factors of production or indirectly through history. Direct

effects include climate and temperature (Sachs, 2001), while examples of the indi-

rect effects are diseases (Acemoglu and Johnson, 2007), genetic distance (Spolaore

and Wacziarg, 2009), and/or ancestral origin of the current population of a country

(Putterman and Weil, 2010).
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2.2.2 Diffusion of Ideas

Diffusion of ideas, or technology, can occur within a country or between countries.4

The first kind is described for example in Jones (1995, 2005). Examples for the

second type of diffusion are given in Eaton and Kortum (1999), Lucas (2009a) and

Alvarez, Buera and Lucas (2013). What all these models have in common is that

diffusion between countries in terms of time and implementation depends on an

underlying distribution of the quality of ideas. In Eaton and Kortum (1999) ideas

do not diffuse immediately and they differentiate between diffusion and adoption.

Only the highest quality ideas, namely those closest to the technological frontier,

are adopted. Lucas (2009a) extends the model by Eaton and Kortum (1999) to

an overlapping generation model. Ideas are created by chance, depending on the

current state of ideas, and diffuse as long as people live. Alvarez et al. (2013) build

a model in which diffusion of ideas takes place via trade. This is similar to Rivera-

Batiz and Romer (1991). In an extension of the Romer model, Rivera-Batiz and

Romer identify different channels for the diffusion of technology or ideas. The first

channel is that designs are tradeable between countries. Firms can choose between

domestic or foreign designs (“Flows of Goods”, Rivera-Batiz and Romer (1991)),

while the R&D sector depends solely on the domestic stock of designs. Diffusion

has no impact on the growth rate as the allocation of human capital between the

manufacturing and research sector remains the same in this model. The second

possibility is the “Flow of Ideas” (Rivera-Batiz and Romer, 1991), where foreign

designs are freely available to domestic firms. As the return of human capital in the

R&D sector increases, more high skilled workers are shifted into research and the

growth rate increases. Comin and Hobijn (2010) for example show that the diffusion

of new technology intensifies over time. They find that the average adoption lag of

technology is about 45 years, with a standard deviation of 39 years, and shrinks over

time.
4The literature is summarised for example in Grossman and Helpman (1991) and Klenow and

Rodriguez-Clare (2005).
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2.2.3 New Economic Geography

New Economic Geography (NEG) models, initiated by Krugman (1991), provide a

natural way to integrate space into theories of economic growth. The two-region

two-sector model explains the concentration of skill-intensive manufacturing firms

in a region with respect to the consumption maximization behaviour of mobile, high

skilled workers and thus divergence between the two regions. While the NEG models

provide useful explanation for agglomeration, they do not have an explicit source or

engine of growth, and are therefore not adequate for modelling the growth process

in itself.

An extension of the NEG models are NEGG models, such as Baldwin and Forslid

(2000), Baldwin and Martin (2004) and Cerina and Pigliaru (2007) and summarised

in Bond-Smith and McCann (2014). A capital accumulating sector is added to the

economy and works as the engine of growth. However, from a growth theory per-

spective there are some drawbacks. Firstly, the concept of capital is not clearly

defined in the NEGG models. Baldwin and Martin (2004) describe immobile cap-

ital as human capital while mobile capital would be physical capital or patents.

From a growth theory perspective, this ambiguity is problematic because there is

considerable distinction between physical and human capital which is crucial for

interpretation and policy.5 Secondly, there is no distinction between high skilled

workers and low skilled workers. This rules out the role of migration of high skilled

workers as a driver of cross-country interactions. Finally, the effect of geographical

agglomeration on income growth lies at the core of these models, while economic

growth is only a by-product of agglomeration.
5The discussion of the role human capital plays in economic growth is widely discussed in the

literature. See, for example, Lucas (1988), Mankiw et al. (1992), Benhabib and Spiegel (1994),
Barro and Sala-i Martin (2004) and reviews by Temple (1999) or Barro (2001).
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2.2.4 Trade

Trade is another possible channel for interactions between countries. The literature

of the impact of trade on economic growth is heavily influenced by the overview in

Grossman and Helpman (1991).6 In an earlier work, Grossman and Helpman (1990)

propose a three sector model in which the final good can be traded. They find that a

reduction in tariffs only contributes towards growth if the tariff is set by the country

with a comparative advantage or the country with the smaller effective labour force.

Feenstra (1996) builds a two-country growth model, in which the interaction between

the countries is trade in the final good. The model predicts divergence, as the larger

country will gain from trade due to productivity gains from R&D, leading to a higher

growth rate. In Alvarez et al. (2013) trade has a positive effect on economic growth as

inefficient producers are replaced by foreign ones that are more efficient. Grossman

and Helpman (2016) build a growth model with heterogeneous workers and firms.

In their work, the dependence between trade, inequality within a country, funding of

the R&D sector and economic growth is in the foreground. The growth driving force

is a R&D sector as in the Romer model. Driven by wage, workers sort themselves

into doing certain activities and match with certain types of firms, matching their

skills and abilities. The sorting manifests a wage distribution within the country,

which leads to inequality between the different types of workers. Allowing for trade

in the intermediate good, Grossman and Helpman show that the long run growth

rate and inequality rises in every country. Additionally, differences in the financial

endowment of the R&D sector lead to a further diversion of growth rates across

countries and inequality within countries.

The literature on the empirics of growth and trade is not in the foreground of

this chapter but relevant for this thesis and so worth noting. Sachs and Warner

(1995) relate openness to trade and economic growth. Frankel and Romer (1999)

find a small but positive effect of trade on income. They control for country size

and geographical location. In a more recent work, Wacziarg and Welch (2007)
6Another good summary is Ventura (2005).
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find evidence based on the work by Sachs and Warner (1995) that liberalisation to

trade increases income. However, the magnitude of this effect is hard to separate

from other effects, such as political instability. Basu and Bhattarai (2012) relate

openness and trade to human capital and educational spending. Their finding is

that cognitive skills are an important driver of the relationship between education

and trade. Overviews can be found for example in Rodriguez and Rodrik (2000) or

Wacziarg (2001).

2.2.5 Migration

Migration and its impact on the host country as well as on the country of origin are

mainly discussed from a labour or development economic perspective.7 By contrast,

the work in this thesis uses migration to model the interaction between countries,

thereby focusing on the connection between high skilled migration and economic

growth.

The model in this chapter is related to the works in Braun (1993), Klein and

Ventura (2009) and Kennan (2013). Barro and Sala-i Martin (2004, Ch. 9.1.3)

summarize the model in Braun (1993). Braun introduces migration into a Ramsey

model. Costs of migration increase with the number of migrants, which then de-

creases the speed of convergence as it decreases per capita output in the receiving

country. Klein and Ventura (2009) build a growth model for two economies with

different technology, which produce a single good using capital, labour and land.

Workers migrate into the more productive country and help to increase the output.

They adjust their model for the enlargement of the EU and the NAFTA deepening.

To offset the gains from migration an increase in capital income tax of 40% to 45%

would be needed. However, their overall focus lies on the effects of an integration

of two countries, rather than comparing two separate countries. Kennan (2013)
7See, for example, reviews by Borjas (1994) or Ottaviano and Peri (2012) for the effects on labour

markets. In development economics an important topic is the brain drain from underdeveloped
countries (Docquier and Rapoport, 2012; Dequiedt and Zenou, 2013). The literature has also
considered the effect of migration on the income distribution within a country; see, for example,
Ben-Gad (2004).
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includes migration into a Heckscher-Ohlin trade model. The decision to migrate is

driven by the probability of leaving the home country, which depends on the utility

costs of migration. His conclusion is that if borders were open the gain from migra-

tion from a less developed into a developed country would be more than $10,000.

This large gain is associated with only a small loss in real wages in the developed

country. On a regional level for 27 European regions, Huber and Tondl (2012) find

evidence that migration has a positive effect on the income per capita of the desti-

nation country, while it negatively effects the country of origin. This result suggests

a divergence between the countries of destination and origin.

This section highlights the recognition of interactions between countries in the

empirical growth literature. The literature assumes spillovers, mainly diffusion of

knowledge, without providing adequate theory for how and why knowledge spreads.

In addition, the above mentioned examples underline the importance of mobility of

workers. Interactions between countries are modelled in the New Economic Geogra-

phy literature. However, these models either lack an engine of growth or are limited

by a lack of richness in modelling physical and human capital.

2.3 A Growth Model with Mobile Labour

This section develops a model of economic growth, based on the Romer model

and drawing from models of the New Economic Geography literature, especially

Krugman (1991), Baldwin and Martin (2004) and Forslid and Ottaviano (2003). In

addition, the model is related to the work in Feenstra (1996).

This is a two-country model, with one rich or developed country, indexed by

i, and one poor or less developed country, indexed by j. Following the model

in Baldwin and Martin (2004), the economies in both countries consist of three

sectors: a R&D, a manufacturing and a traditional goods sector. The R&D sector

produces designs that are used by the manufacturing sector to found firms.8 Each
8In the remainder of this thesis designs, ideas and varieties are used interchangeably.
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firm in the manufacturing sector produces a unique heterogeneous good. Both,

the manufacturing sector and the traditional goods sector use immobile low skilled

labour, while the R&D sector employs high skilled mobile labour.

The definition of low and high skilled workers leans on the terminology in the

growth and migration literature (Romer, 1990; Dequiedt and Zenou, 2013; Vargas-

Silva and Rienzo, 2014). High skilled workers are either highly educated tertiary

workers or workers in top positions within a firm. The defining characteristic for

high skilled workers is their ability to work in the manufacturing and the R&D

sector. Low skilled have little schooling or work in lower tier positions within a firm.

2.3.1 R&D Sector

The R&D sector is orientated on the Romer model, and produces designs under

perfect competition. It employs high skilled workers HR,i as an input factor. One

of the main criticisms of the Romer model is that the growth rate depends on

the absolute number of workers and does not allow for diffusion of technology or

spillovers (Jones, 1995). To account for diffusion, ideas or designs from abroad

can be used by the domestic R&D sector, following the “Flow of Ideas” concept

in Rivera-Batiz and Romer (1991). As another input factor the existing stock of

domestic designs Ai and foreign designs Aρj is used. R&D firms access foreign designs

at no cost. The foreign designs increase the returns to high skilled labour, so R&D

firms have an incentive to use them. This can be interpreted as the R&D sector,

for example universities, working internationally together, exchanging ideas and

learning from each other. The parameter ρ measures the speed or magnitude of

diffusion. If ρ = 0, then there is no diffusion and ideas do not spread across countries.

This implies that designs produced in one country remain within this country and

technology or knowledge do not diffuse. However, in the open economy case, the

other country has access to a higher number of varieties of the manufactured good

as well. If 0 < ρ < 1, then part of the foreign designs can be adopted, while in the

case of ρ = 1 foreign designs are completely available to the R&D firms in the home
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country. The unlikely case of ρ > 1 implies that foreign ideas are more productive

in the home country. Ȧi is the number of new designs in country i and produced

according to

Ȧi = δHR,iĀi (2.1)

with

Āi = Ai + Aρj , 0 ≤ ρ ≤ 1. (2.2)

The production function has two implications. First, a higher number of employees

in the R&D sector implies a higher output of designs. Secondly, the designs are

accumulated and increase productivity in future periods. Therefore, there are two

effects of an exogenous increase in the number of high skilled workers, a growth

effect and a level effect.

The firms in the R&D sector sell the designs at a price pA,i in a perfectly competitive

market to the manufacturing firms. R&D firms pay the high skilled workers their

marginal product, wR,i = δĀipA,i. Thus the profit equation of a R&D firm is:

πA,i = pA,iȦi − wR,iHR,i. (2.3)

2.3.2 Manufacturing Sector

A firm in the manufacturing sector produces variety s with a constant marginal

product of low skilled labour.9 Before a firm can start producing, it has to buy

exactly one design from the R&D sector at price pA,i.10 This implies that there

are exactly Ai firms in the country. Moreover each manufacturing firm requires a
9For simplicity, the marginal product of labour is assumed to be constant. The main advantage

of this simplifying assumption is that the price does not depend on the quantity of xi and the level
of technology. Therefore, computation of the price index Pi becomes more straightforward. The
assumption is in line with Forslid and Ottaviano (2003).

10This assumption comes from the Romer Model. In the NEG models, a fixed input requirement
is included but this is not seen as a requirement for firm entry. Buying a second design would not
improve the output of a firm.
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share Hx,i = Hi
α
Ai

of high skilled workers, where Hi = AiHx,i + HR,i is the total

number of high skilled workers residing in country i. The high skilled workers in

the manufacturing sector can be interpreted as the administrative staff, managers

or workers in top occupations, required to run a firm. In a theoretical sense, the

high skilled workers provide a margin between the manufacturing and the R&D

sector. Each firm produces one unique intermediate good xi(s) with the following

production function:

xi(s) = φAiLx,i. (2.4)

xi(s) is decomposed into two parts. One part is sold in country i and the rest is

exported to country j with iceberg costs τ , similar to Krugman (1991). Thus the

number of manufactured goods produced in the country is xi(s) = xii(s)+ τxji(s).11

τ measures the number of units of the manufactured good that have to be produced

in order to satisfy the foreign demand of one unit, implying τ ≥ 1. In the case

of zero transportation costs τ equals 1. As trade costs increase to infinity, trade

becomes so expensive that any trade between the countries is precluded.

Denoting the wage for low skilled labour as wx,i, the profit equation for a firm

in country i is:

πx,i = pii(s)xii(s) + pji(s)xji(s)− wx,iLx,i − wH,iHx,i. (2.5)

The cost function has two parts: the variable costs of low skilled labour, wx,iLx,i,

and the fixed costs of high skilled workers, wH,iHx,i.12 Since each firm produces a

differentiated good, the market is characterised by monopolistic competition. Low

skilled workers are paid the marginal product of labour in the manufacturing sector;

wxi = φAi. Finally, to ensure that high skilled workers have no incentive to move
11The first subscript refers to the country of consumption, the second to the country where the

product is produced. Thus xji is produced in country i and exported to or consumed in country
j. Note that by assumption the prices of xii and xjj are the same in both countries, otherwise
it would be possible that high skilled migrants would migrate due to a higher real income that is
only due to lower prices.

12The wages of the high skilled workers are fixed in the R&D sector, and manufacturing firms
take this as given.
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from one sector to another, wages in the manufacturing and the R&D sector have

to be equal, wH,i = wR,i = δĀipA,i.

Manufacturing firms can only use domestic designs Ai to found firms. However,

in the open economy case, spillovers via trade are possible. Consumers have the

possibility to buy the foreign manufactured good and thus enjoy a larger variety

of goods. These spillovers are indirect in the sense that they do not influence the

production side of the home economy; they only appear on the consumption side.

2.3.3 Traditional Goods Sector

The Traditional Goods sector uses low skilled labour LT,i as an input and produces a

homogeneous traditional good. For simplicity, it is assumed that one input produces

exactly one unit of output.13 Firms in the sector produce the good under perfect

competition according to the following production function:

Ti = LT,i. (2.6)

The firms sell their product at a price pT,i and pay wages wT,i. This gives the

following profit equation:

πTi = pT,iTi − wT,iLT,i. (2.7)

Since the competitive firms make no profits, the paid wage equals the price for the

traditional good, wT,i = pT,i. In equilibrium, low skilled labour is paid the same wage

in both sectors to prevent workers moving from the traditional to the manufacturing

sector or vice versa. This assumption quantifies the wage in the manufacturing sector

to be: wx,i = wT,i = pT,i. Following standard NEG models the traditional good can

be traded at no cost (Baldwin and Martin, 2004). As the good is homogeneous and

consumers do not have a preference for variety of the traditional good, the country

with the lower wage for low skilled workers will produce the traditional good in the
13This assumption follows Krugman (1991) and Forslid and Ottaviano (2003).
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open economy case. As the wage for low skilled workers depends positively on the

number of designs (hence on technology), the traditional good will be produced by

the less productive country.

The traditional good sector is necessary to make sure that in the corner solu-

tion of all high skilled worker migrating to the home country, the foreign country

still exists and the remaining, immobile, low skilled workers are employed in the

traditional goods sector.

2.3.4 Consumers

As standard in the NEG and NEGG literature, the representative consumer in

country i maximizes a Cobb-Douglas utility function with both goods:

Ui = Xµ
i T

γ
i (2.8)

with the composite Xi

Xi =
[∫ Ai

0
xii(s)1− 1

σ ds+
∫ Aj

0
xij(s)1− 1

σ ds

] 1
1−1/σ

(2.9)

=
[∫ Ai+Aj

0
xCi (s)1− 1

σ ds

] 1
1−1/σ

(2.10)

σ > 1. (2.11)

The choice of the varieties depends on a Constant Elasticity of Substitution (CES)

function, with σ denoting the elasticity of substitution between the different vari-

eties. A feature of CES utility functions is that consumers prefer the consumption

of a differentiated bundle (“Love for Variety”). Each consumer faces the following
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budget constraint, which can be expressed by two equations:

Yi = wT,iLT,i + wx,iLx,i + wR,iHR,i + wH,iHx,i (2.12)

= pT,iTi +
∫ Ai

0
pii(s)xii(s)ds+

∫ Aj

0
pij(s)xij(s)ds (2.13)

= pT,i + PiXi. (2.14)

Equation (2.12) is the income of the households from working and has to equal the

spending of the households (equation (2.13) and (2.14)).

Wages in the R&D sector are denoted by R, while wages in the two other sectors

are denoted by x for the manufacturing and T for the traditional goods sector. Hi

is the supply of high skilled workers, including both domestic and migrant foreign

workers. Li = AiLx,i+LT,i is the total supply of low skilled labour which is the sum

of the two remaining sectors.

Further, households consume a subsistence level of the traditional good, Ti ≥

Tmini , which can be interpreted as the necessary consumption of it.

As mentioned before, high skilled workers are mobile; they can move from coun-

try j to country i.14 They migrate if their income in the country of destination is

higher compared to their home country. There is no motive for migration if the

income in both countries is equal. Hence the total amount of high skilled workers
14It is assumed that only the high skilled workers employed in the R&D sector migrate and

those who work in the manufacturing sector (Hi
α
Ai

) remain in the country to make sure that the
manufacturing sector continues to work. If these high skilled workers were to leave as well, the
country would not be able to produce the manufactured good and all low skilled labour would be
shifted towards the traditional goods sector. The outcome would be as in the case of trade and
complete specialization; see next section and Chapter 2.4.4.
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in country i is:

Hi = mi(wH,i, wH,j) = (1−mij)LH,i +mjiLH,j (2.15)

mij =


0, if wH,i ≥ wH,j

(0, 1], if wH,i < wH,j

(2.16)

mji =


0, if wH,j ≥ wH,i

(0, 1], if wH,j < wH,i

, (2.17)

where mij is the fraction of high skilled workers (in country i) who migrate from

country i to country j, and LH,i is the number of high skilled workers born in country

i. The same holds for country j:

Hj = mj(wH,i, wH,j) = (1−mji)LH,j +mijLH,i. (2.18)

There are two potential equilibrium outcomes. In the corner solution, all high

skilled workers migrate to the country with higher wages; while in the interior solu-

tion only a fraction of the high skilled workers migrate. The interior solution implies

that the wage differential between the two countries is relatively small. Migration

will occur until either wages are equalised or all high skilled workers have migrated,

which is again the corner solution. In the interior solution, the distribution of high

skilled workers is more balanced and both countries grow.

2.3.5 The Growth Engine

In the model, the sole engine of growth is the R&D sector producing new designs. If

a new design is invented (or produced), a new firm in the manufacturing sector can

be founded. The importance of the designs to the manufacturing firms is similar

to the Romer model. In the present context, designs can be seen as patents or

technologies which are used to produce a good. A firm buys the patent and has

the right to produce and exclusively sell the product based on the patent, acting as

a monopolist in the specific differentiated good. The number of designs increases
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the number of firms, making the R&D sector crucial for the growth process of an

economy.

The growth of designs, Ȧi, depends on the number of high skilled workers and

the existing inventions available. A higher number of high skilled workers increases

the number of new designs. Also, a large stock of designs increases the number of

new designs. The first implication is that countries which are on the technological

frontier have a higher production of new designs. Second, even though the firm in

the R&D sector sells the design exclusively to one firm in the manufacturing sector,

the research firm is allowed to use it for the production of further designs. Then,

the growth rate of designs is:

Ȧi
Ai

= δHR,i

(
1 +

Aρj
Ai

)
. (2.19)

In the case of ρ = 0 equation (2.19) collapses to Ai/Ai = δHR,i, implying a perma-

nent increase in the growth rate of designs is only possible with an increase in the

number of high skilled workers. Therefore, the differentiation between the growth

and level effects is important. If the number of high skilled workers increases from

period t− 1 to t, the growth effect will be an increase in the growth rate of designs

at the end of period t, while the level effect will set in from period t + 1 in the

form of a higher stock of designs Ai. The implication is, that two countries with the

same number of workers employed in the R&D sector may have the same growth

rate but may have a different number (level) of designs (or technology) and have a

different level of income. This implies that the initial income level is determined by

the initial level of technology. Besides raising the productivity in the R&D sector,

more designs contribute to the productivity of the manufacturing sector as well.

In the more realistic case of 0 < ρ < 1 the growth rate depends additionally on

the ratio of foreign to domestic designs. The ratio Aρj/Ai represents the additional

growth due to diffusion. If the ratio is very small, or converging towards zero, hence

there are more domestic designs than foreign designs, then the growth rate of the
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country depends only on the domestic high skilled workers. However, if the ratio

is larger than 1, namely if there are more foreign designs than domestic designs,

then the home country benefits from the diffusion of technology. In the limit, if

(Ai, Aj)
j→ ∞ such that Ai/Aj → 1, the growth rate is twice the rate without

diffusion. One limitation remains: even though the designs are available for the

R&D sector, they need to be processed by high skilled workers. Thus, if there

are no high skilled worker employed in the R&D sector then, despite spillovers, the

growth rate of designs remains zero, the number of firms in the manufacturing sector

remains the same and there is no growth effect.

The spillovers raise the wages of the high skilled workers wH,i, even if the number

of designs in the home country does not increase. Therefore, the wage gap between

two countries increases at a lower rate in comparison to the case without spillovers.

The speed of the increase is lower with a larger value of ρ.

The trade concept in this model is loosely related to the “Flows of Goods” idea in

Rivera-Batiz and Romer (1991). However, the effect takes place on the consumption

side of the economy. Consumers have a larger variety of goods to choose from. This

does not have an effect on the growth rate in either model. However, if one country

solely specializes in the traditional good (complete specialisation), the high skilled

workers in the manufacturing sector are not needed anymore and are available to

migrate as well. Then, if trade and migration are possible, the receiving country

experiences an even larger permanent growth rate. All disadvantages are borne by

the country that specialises in the traditional good, as total output decrease because

of lesser productivity in the traditional good sector.

In addition, in the open economy case, there is a level effect due to the relative

prices of the traditional and manufactured good and accompanied reallocation of

low skilled labour. The manufactured good becomes cheaper and demand rises,

which shifts production from the relatively less productive traditional good sector

to the more productive manufacturing sector. The increase in the production of

the manufactured good increases the income level. This effect diminishes with an
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increase in the number of designs and the decrease of the weight of the traditional

goods sector; see next section.

NEGG models predict catastrophic agglomeration under the assumption of mo-

bile capital and labour, meaning all firms move in the region with greater capital. In

line with this prediction and the Romer model, this model shows the growth equiva-

lent divergence, in the case of labour mobility. The country that is better equipped

with human capital or designs has a higher innovation rate which translates to a

higher growth rate. Instead of manufacturing firms being grouped in one region, in

this model high skilled workers are grouped in the same country, fostering growth.

2.3.6 Closing the Model

Next, the behaviour of the consumers and high skilled workers is explained, the

model is closed.15 It is assumed that the size of the high and low skilled labour force

(LH,i and Li) is predetermined and fixed. Within each period, the number of firms

(Ai) is exogenous as well.

First, the price index and quantities demanded by consumers are derived. A

two-stage optimization of equation (2.8) with respect to equation (2.14), based on

Dixit and Stiglitz (1977), leads to the following values for xii(s), xjj(s), xij(s) and

xji(s):

xii(s) = σ − 1
σ

(
Yi
Ri

− pT,iTi
Ri

)
(2.20)

xjj(s) = σ − 1
σ

(
Yj
Rj

− pT,jTj
Rj

)
(2.21)

xij(s) = τ−σ
σ − 1
σ

(
Yi
Ri

− pT,iTi
Ri

)
(2.22)

xji(s) = τ−σ
σ − 1
σ

(
Yj
Rj

− pT,jTj
Rj

)
(2.23)

15Appendix A.1 contains detailed derivations.
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with

Ri = Ai + τ 1−σAj. (2.24)

The solutions for the manufactured goods imply that if domestic income does not

change, but foreign varieties and so Ri and Rj do, then demand for the domestic

manufactured good (say, xjj and xji) decreases by the growth rate of foreign varieties.

As consumers prefer variety, they are substituting the domestic produced good with

imports.

Demand for the good produced by the traditional goods sector equals:

Ti = max
 φLi

µ
γ

pT,i
Pi

+ φ
, Tmini

 (2.25)

= max
(

γ

µ+ γ

Yi
pT,i

, Tmini

)
. (2.26)

The demand for the traditional good depends on the relative price of the traditional

good to the manufactured good (pT,i/Pi). The price for the traditional good is fixed

at pT,i = φAi, the price index of the manufactured good will be derived next. The

manufacturing firms maximize their profits using the inverse demand functions for

the manufactured goods. Thus, they set the following prices for each good:

pii(s) = pii = pjj = σ

σ − 1 , (2.27)

pji(s) = pji = pij = σ

σ − 1τ = piiτ. (2.28)

In either case, the second equality holds because of symmetry in the production

functions of the two countries. The price is independent of the quantity of the

manufactured good or the technological level Ai, depending only on the elasticity of

substitution between the different varieties. Moreover, the price for each variety is

the same.
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The price index for country i is:

Pi =
[∫ Ai

0
pii(s)1−σds+

∫ Aj

0
pij(s)1−σds

] 1
1−σ

(2.29)

= σ

σ − 1R
1

1−σ
i . (2.30)

The price index falls with an increase in the number of domestic and foreign firms.

In terms of workers, a larger R&D sector with a large output implies a falling price

index.

The derivation of the prices allows for an interpretation of the demand for the

traditional good (equation 2.26). Assuming that the low skilled workforce remains

constant, the demand for the traditional good falls if the relative price of the tra-

ditional good to the manufactured good (pT,i/Pi) increases. As the price index for

the manufactured good decreases with the number of designs while the price for the

traditional good increases with the number of designs, the relative price increases if

the number of designs increases. Therefore, more low skilled labour is allocated to

the manufactured goods sector and the output of the corresponding sector increases.

Similar to the Romer Model, manufacturing firms make no profits because they

bid for the design produced by the R&D sector. The price for a design is the

discounted present value of the firm’s profits at the interest rate ri:

pA,i =
∞∑
t=0

1
1 + rti

πx,i,t. (2.31)

Under the assumption that profits are constant over time, the price collapses to:16

pA,i = 1
ri
πx,i (2.32)

πx,i = piixii + pjixji − wx,iLx,i − wH,iHx,i = ripA,i (2.33)

16The price for the design only changes with the number of high skilled worker, but not with the
number of designs. Then in the steady state where no migration occurs, prices will not change.
Secondly, any changes in migration and therefore the price for the design are unexpected for the
manufacturing firms.
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with

wH,i = δĀipA,i (2.34)

⇒ wH,i = δĀixi(
ri + δα Āi

Ai
Hi

)
(σ − 1)

. (2.35)

As the price for each variety is the same, all firms in the manufacturing sector

produce the same quantity of the firm specific variety, implying xi(s) = xi = xii +

τxji. Thus, the price for the designs depends negatively on the number of high

skilled workers residing in the country and the interest rate.17 The wage depends

negatively on the number of high skilled workers and positively on the number of

designs. This rules out the possibility that the order of wages for high skilled workers

in the two countries reverses. In other words, if the domestic country has a higher

wage compared to the foreign country and receives more high skilled workers in t,

the wage will be higher for all following periods. Diffusion of ideas only slows the

increase in the wage gap, but it is not able to close it, as long as one country has a

larger number of designs (Ai > Aj).

Under the assumption that all labour markets cleared and that there is no un-

employment:

Hi = AiHx,i +HR,i (2.36)

Li = AiLx,i + LT,i, (2.37)

17The same effect of an increase of the number of high skilled workers and the productivity,
Ai, on the wage of high skilled workers can be found for example in Grossmann and Stadelmann
(2013).
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real output can be expressed as:

Yi = Aixi + Ti (2.38)

= AiφAiLx,i + Li − AiLx,i (2.39)

= Li + AiLx,i (φAi − 1) (2.40)

= Li + xi
φ

(φAi − 1) . (2.41)

The time derivative is needed for the growth path:

Ẏi = L̇i + xi
φ
φȦi + ẋi

φ
(φAi − 1) (2.42)

As ẋi = L̇i = 0:

Ẏi = xiȦi (2.43)

⇒ Ẏi
Yi

= Ȧixi
Aixi + LT,i

(2.44)

= ȦiφAiLx,i
AiφAiLx,i + LT,i

(2.45)

= xi

xi + LT,i
Ai

Ȧi
Ai
. (2.46)

Equation (2.45) shows that a reduction in the labour allocated to the traditional

goods sector increases the growth rate, as the low skilled labour is more productive

in the manufacturing sector. This holds as long as φA2
i > 1. Moreover (2.46) implies,

that for a sufficient small Ai a reallocation of low skilled labour can have an impact

on the growth rate. However, in the long run LT,i/Ai → 0 as Ai increases and LT,i

decreases, therefore this effect wears off. The long run growth rate becomes:

Ẏi
Yi
≈ Ȧixi
Aixi

(2.47)

= Ȧi
Ai

= δHR,i

(
1 +

Aρj
Ai

)
, (2.48)

where the last expression comes from (2.19). The implication of (2.48) is that for
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a sufficiently large Ai or small LT,i the growth rate of the economy depends solely

on the growth rate of designs, which is determined by the number of high skilled

workers.

2.3.7 High Skilled Worker Migration

High skilled workers migrate if the wage differential between the countries is pos-

itive.18 Since ordering of wages is preserved and high skilled workers are homoge-

neous, migration flows will only be in one direction. If migration is costless, migra-

tion will happen until wages are equalised, therefore equalising the factor price of

high skilled labour:

wH,i = wH,j (2.49)

δĀi
xi

(σ − 1)(ri + δα Āi
Ai
Hi)

= δĀj
xj

(σ − 1)(rj + δα Āj
Aj
Hj)

(2.50)

Āi
xi

ri + δα Āi
Ai

((1−mijLH,i +mjiLH,j)
= Āj

xj

rj + δα Āj
Aj

((1−mji)LH,j +mijLH,i)
.

(2.51)

Since labour only moves from country j to i (implying mji > 0 and mij = 0), labour

movement becomes:

mji = 1
LH,j(Lx,i + Lx,j)

[
1
δα

(
Lx,irj

Ai

Āj
− Lx,jri

Aj

Āi

)

+LH,jLx,i
Ai
Aj
− LH,iLx,j

Aj
Ai

]
(2.52)

If there is no diffusion (ρ = 0), equation (2.52) becomes:

mji = 1
LH,j(Lx,i + Lx,j)

[
Ai
Aj
Lx,i

(
rj
δα

+ LH,j

)
− Aj
Ai
Lx,j

(
ri
δα

+ LH,i

)]
. (2.53)

There is no labour movement if the difference between the terms in squared
18 Since the interior solution moves towards the corner solution if the wage differential is large,

only the interior solution with a maximum of 1 is discussed, which is the corner solution. Moreover,
high skilled workers are informed about the wages in both countries.
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brackets equals zero. Assuming that the traditional sector requires a constant share

of low skilled labour, the amount of low skilled labour in the manufacturing sectors,

Lx,i and Lx,j, remains constant. As the model does not include any population

growth, the total number of high skilled workers across the two countries is constant

as well. Therefore, labour mobility depends solely on the stock of worldwide varieties

or the number of firms. Migration increases with an increase in the difference in

the number of firms between the two countries. This can easily be seen in equation

(2.53), for the case without diffusion. If country i has more designs than country j,

the positive part in the squared brackets increases, while the negative part decreases.

If the ratio is reversed, Aj >> Ai, then the negative part dominates andmji can even

turn negative. Thus, in terms of firms, the larger country attracts more high skilled

workers. Migration flows are positive as Ai > Aj implies wAi > wAj . An alternative

interpretation is the following: wages for high skilled workers and productivity in the

R&D sector increase with the number of designs. At the same time, more designs

increase the output per worker in the manufacturing sector. The increase in high

skilled wages drives migration, thus the country that has higher productivity in the

R&D as well as in the manufacturing sector, receives more high skilled workers. This

rationale of migration is similar to Klein and Ventura (2009). Hence productivity

differences are a driving force of migration.

Migration can be then summarised as

mji =


min

(
1

LH,j(Lx,i+Lx,j)

[
1
δα

(
Lx,irj

Ai
Āj
− Lx,jri AjĀi

)
+LH,jLx,i AiAj − LH,iLx,j

Aj
Ai

]
, 1
)

, if wH,i > wH,j

0 , if wH,i ≤ wH,j

(2.54)

mij =


min

(
1

LH,i(Lx,j+Lx,i)

[
1
δα

(
Lx,jri

Aj
Āi
− Lx,irj AiĀj

)
+LH,iLx,j AjAi − LH,jLx,i

Ai
Aj

]
, 1
)

, if wH,j > wH,i

0 , if wH,j ≤ wH,i

(2.55)
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The number of high skilled worker Hi living in country i can then be described as:

Hi = (1−mij)LH,i +mjiLH,j, (2.56)

where LH,i and LH,j are as defined before as the high skilled workers born in countries

i and j. Using the fact that Hi = AiHx,i + HR,i = αHi + HR,i ⇒ HR,i = (1− α)Hi

and using equation (2.48):

Ẏi
Yi

= Ȧi
Ai

= δHR,i

(
1 +

Aρj
Ai

)
(2.57)

= δ (1− α) [(1−mij)LH,i +mjiLH,j]
(

1 +
Aρj
Ai

)
. (2.58)

Equation (2.58) directly relates migration of high skilled workers and the diffusion

of ideas to the growth rate of a country. If migration into the country is high, the

growth rate increases. Diffusion of ideas increases the growth rate as well, however

the increase is larger for a country that has a relatively small level of ideas, such that

Aρj/Ai is large. Finally, equation (2.58) shows that trade can only have an indirect

effect on the growth rate via the share of migrants (mji and mij).

2.3.8 Incorporating Migration Costs

The assumption of zero migration costs is unrealistic. Migrants incur costs to es-

tablish social networks, learn and work using a foreign language and culture. These

costs can be summarised as utility costs. On the other hand, the act of migration

itself bears costs. In the following, the main emphasis is put on the latter. Costs

are introduced without any further assumptions about their origin. There will be

migration if the wage in the host country minus costs is larger than in the domestic

country:19

wH,i − k > wH,j. (2.59)

19Detailed derivations are presented in Appendix A.2.
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Ruling out migration in the opposite direction (mij = 0), migration flows from j to

i can be described as:20

mji = li
2ηsisjL2

H,j

−

√√√√( li
2ηsisjL2

H,j

)2

− oi
2ηsisjL2

H,j

, (2.60)

where

η = σ − 1
δ

k (2.61)

si = δα
Āi
Ai

(2.62)

ui = ηrjsi + Ājxjsi (2.63)

vi = ηrisi − Āixisj (2.64)

oi = uiLH,i + viLH,j − Āixirj + Ājxjri + ηrjri + ηsjsiLH,iLH,j (2.65)

li = LH,i (ui − vi + ηsjsi (LH,j − LH,i)) . (2.66)

Compared to the case without migration costs, interpretation of equation (2.60) is

somewhat complicated.21 The main driver of migration is still the difference in the

stock of firms, since the other variables remain constant. Migration costs will have

the effect of postponing migration until the wage differential is large enough to cover

the costs. The influence of costs of migration is further discussed in the context of

simulations in Section 2.4.

2.3.9 Discussion

This completes the description of the model. The model has the following key

characteristics. First, a higher number of high skilled workers leads to an increase in

the production of designs that in turn enhances growth. In addition, the richer

country receives more high skilled workers and therefore the difference between

the two countries increases. In the steady state, when a fraction or the entire
20For mij the indices i and j are interchanged.
21Apart from equation (2.60), there is another potential solution for mji. In this solution, the

square root is positive. This solution is inadmissible as it would predict migration flows from
country i to j even in the case of wH,j > wH,i.
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stock of high skilled workers moves to one country, the model explains divergence.

Diffusion of technology has an effect as long as the R&D sector remains active in

both countries. In the case of an open economy, specialization towards the more

productive good leads to a level effect and under certain circumstances to a growth

effect as well.

Countries are linked to each other by three factors: migration and, in a weaker

form, trade and diffusion of technology. The country with more manufacturing firms

attracts high skilled workers from the other country and benefits from a higher

growth rate. The country with the smaller number of manufacturing firms remains

stagnant at a lower level. The second linkage is trade. The country with a lower

variety of manufactured goods benefits from growth in the richer country by import-

ing a higher number of varieties, while at the same time exporting a fixed quantity

of its manufactured goods. However, if the number of domestic varieties does not

increase, consumers will substitute the domestic produced manufactured good by

imports. The country which produces more of the manufactured good and less of

the traditional good can increase its output by enlarging the production of the man-

ufactured good. In the case of complete specialization and together with migration a

growth effect for the more productive country is possible, as all high skilled workers

move and boost the output in the R&D sector. Diffusion of technology only takes

place in the R&D sector. Therefore, diffusion has an effect on the growth rate as

long as high skilled workers are employed in the R&D sector. In this case, the wage

gap between the two countries decreases, depending on the speed of diffusion.

Like any other theoretical growth model, the above model represents an abstrac-

tion of reality. To obtain realistic interpretations it is useful to consider conceptual

distinctions between cross-country or inter-region migration and growth dependen-

cies. World history offers a huge range of examples of labour movement between

countries or regions. By varying the structural parameters, the model can be applied

to both the above cases.
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Divergence emerges as an essential outcome of the model, a major difference in

comparison to the work of Braun (1993). Additionally, the receiving country benefits

from migration. Moreover the model treats migration indirectly as a determinant

of economic growth rather than Kennan (2013) who focuses on individual gains

from migration. The outcome of divergence is due to the growth engine and the

production function of the R&D sector. As an alternative, it would be possible to

model the R&D sector with decreasing returns to scale, as for example in Fernald

and Jones (2014). Decreasing returns to scale would lead to convergence. However

the derivation of the migration streams would become more difficult and therefore, to

keep the model simple as possible, constant returns are used. Economic divergence

can be seen as the complement to the concentrated agglomeration of the NEGG

models. One region might end up as the manufacturing core, while the other region

remains in an unproductive farm sector.

As outlined in the introduction of this chapter, in the 20th century, there is ev-

idence of club-convergence (Baumol, 1986; Islam, 2003), where groups of countries

converge to a common equilibrium, but unconditional convergence across all coun-

tries is absent.22 Thus, the divergence outcome of the model is also consistent with

contemporary evidence on convergence clubs. It may be noted, however, that there

is no mechanism for catch-up or convergence within each such club. Therefore, this

model should be seen more as an attempt to consider interactions between coun-

tries or regions within a growth model, rather than offering a full explanation for

economic growth and convergence or divergence across countries and regions.

Diffusion of ideas only takes place in the R&D sector. This is different to Feenstra

(1996) as only the R&D sector uses foreign designs. Similar to Feenstra (1996), some

of the foreign ideas are available to the home country. The diffusion of ideas in this
22Empirical analysis in Baumol (1986) suggests convergence for 16 OECD countries, but not for

a broader sample of countries. (Islam, 2003, p. 317) writes: “[P]rodded by Romer, Baumol also
considers the relationship in an extended sample of 72 countries. In this larger sample, however,
he does not find evidence of convergence.” and continues in footnote 11 with “... The numerical
results of this regression were not presented, but Baumol reported that it yielded ‘slightly positive
slope,’ indicating a process of rather divergence.”
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model is between countries and not within a country.23

Besides relying on the work of Romer (1990), the model emphasises to the im-

portance of human capital for economic growth, a point stressed by Lucas (2009a,b).

In addition to diffusion, the spread of knowledge in this model is through migra-

tion, and thus by movement of high skilled worker. A second vehicle for the spread

of technology is trade. The chapter can be understood as emphasizing the impor-

tance of labour movements in the Lucas fashion and when switching off diffusion of

knowledge.

One limitation of the model is that it concentrates on high skilled workers. Many

migrants were low skilled during the great divergence and after. In the context of

this model, there is one limitation and one arguments for restricting the flow of

unskilled workers. The limitation is that allowing low skilled workers to migrate as

well, would lead the poor country to lose all its workers and to a collapse of output.

Low skilled workers are paid the marginal product in the manufacturing sector φAi.

Therefore wages in the manufacturing sector of the richer country will be higher,

giving the unskilled workers an incentive to migrate. To keep the model simple,

migration of low skilled workers is not taken into account. In this particular model

an increase of low skilled workers has no effect on the growth rate. In the light

of the migration literature the model has a few limitations. First of all, the effect

of migration on economic growth is in the foreground. Effects on the country of

origin via remittances are ignored. Return migration is in principle possible, if the

wage differential between the two countries would revert. However as the wage for

high skilled workers is driven by the number of domestic designs, return migration

becomes unlikely. The model ignores mortality of workers and thus any effects on

following generations are not modelled. As the model has no population growth,

depleted skills or workplaces in the country of origin are not replaced by a new gen-

eration of workers. Modelling this would call for an overlapping generation model,

which would complicate the model further. Another potential critique is that the
23Feenstra (1996) presents some evidence such as Coe and Helpman (1995) that diffusion of

technology across countries is weak.

57



2. A GROWTH MODEL WITH MOBILE LABOUR, TRADE AND
DIFFUSION OF IDEAS

model focuses on wage differences rather than on utility as the motive for migration.

However, as the Cobb-Douglas utility function is strictly increasing in both goods

and both goods are normal goods, both motives are coincident. Additionally wage

differences across countries for a worker with the same education and experience

are large. Clemens, Montenegro and Pritchett (2009) compare the income of a US

worker with an identical worker in less developed countries. For example, wages in

the US are 2.5 times higher than in Mexico. Finally, in the model the decision to

migrate is purely economic. Political or geographical reasons such as conflict or nat-

ural disasters often motivate migration. In the context of the model, such motives

may be viewed as reducing the migration costs, k.

The model borrows from the NEGG model in Baldwin and Martin (2004). Both

models build on three sectors. In addition, both share the assumption of no depre-

ciation of physical or human capital. Both models predict divergence between the

two regions or countries. Besides these common characteristics, there are some im-

portant differences. Whereas in Baldwin and Martin (2004) the goods from all three

sectors can be traded, the model in this chapter only allows trade in the traditional

and the manufactured good. However, ideas can diffuse. The major distinction of

the two models is related to this difference: the concept of capital. Baldwin and

Martin (2004) see immobile capital as human capital and mobile capital as physical

capital. This is clearly different to the model in this chapter, which includes mobility

of human capital.

The model is similar to the empirical application in Ortega and Peri (2014).

Ortega and Peri show that migration increases total factor productivity, which then

increases income. Moreover, the authors find a positive diversity effect. A more

diverse country of origin of the immigrant population has an additional positive

effect on income. In contrast to migration, they do not find a robust effect of trade

openness on income as soon as they control for effects such as geography. The

model in this chapter can be seen as a simplification and extension of Grossman

and Helpman (2016), leaving the effects of inequality within a country aside, but
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extending the model by migration of high skilled workers. In both models, the size

of the R&D sector plays a crucial role for income.

2.4 Simulation

In this section, a simulation is carried out to understand the impact of migration,

diffusion and trade on income, in the context of the economic model developed in 2.3.

For this purpose, dynamics into the accumulation of designs needs to be introduced.

The number of designs over subsequent periods evolves as:

Ai,t+1 = Ȧi,t + Ai,t (2.67)

= (1 + δHR,i)Ai,t + δHR,iA
ρ
j,t. (2.68)

It is assumed that the two countries, henceforth called developed (i) and undeveloped

(j), have the same number of firms (or designs) and the same number of low skilled

workers, but the developed country has more high skilled workers. The following

initial values for stocks of designs and workers are considered:

Ai = 10 Aj = 10

Li = 8 Lj = 8

LH,i = 4 LH,j = 2.

Keeping with existing notation, the above parameters imply that the developed

country will have higher income due to a larger number of high skilled workers.

Therefore, high skilled workers will migrate from the undeveloped to the developed

country whenever such migration is allowed.

The manufacturing sector requires two units of low skilled labour for each unit pro-

duced. The R&D sector requires 4 units of high skilled workers for each newly

invented design. The minimal share of high skilled workers in R&D is set to 0.0025.

Jones (2016) finds that employment in the research sector for OECD countries in-

creased from 0.15% in the 1980s to about 0.35% in 2010. The interest rates are

59



2. A GROWTH MODEL WITH MOBILE LABOUR, TRADE AND
DIFFUSION OF IDEAS

equal in both countries at 10%. If not specified otherwise, the demand for the

traditional good is unrestricted (Tmini = Tminj = 0). The marginal rate of substi-

tution between the manufactured good and the traditional good is set according to

Krugman (1991) or estimates from Broda and Weinstein (2006).24 The share of the

manufactured goods sector is set to 0.3.25 Together with the remaining parameters,

the parametrization of the simulation is as follows:

δ = 0.25 σ = 8

φ = 0.5 α = 0.1

µ = 0.3 γ = 0.7

ρ = 0.0025 ri = rj = 0.1.

For trade two cases are considered: (a) Very high transportation costs so that there

is no trade, implies trade costs are set such that τ 1−σ = 0; (b) otherwise, for each

traded unit 1.5 units have to be produced (τ = 1.5). When migration is allowed,

it is introduced only from period 2 onwards. In addition, there are no constraints

for migration, implying that from one period to the next, some or all high skilled

workers are allowed to move between countries. Diffusion takes place immediately

and set to the above value.

First, the model is simulated without migration, diffusion of ideas or trade (Fig-

ure 2.1). This case is used as a baseline and compared to simulations with migration

or trade. These simulations (Figures 2.2 - 2.7) are displayed in percentage deviations

from the baseline case.
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Figure 2.1: Baseline Model (no migration, no trade)
Parameters: Ai = 10, Li = 8, LH,i = 4, Aj = 10, Lj = 8, LH,j = 2, δ = 0.25, σ = 8, φ =
0.5, α = 0.1, µ = 0.3, γ = 0.7, Tmini = 0, Tminj = 0. The developed country is denoted by
i and the less developed by j. No migration, mji = mij = 0, and trade costs such that
τ1−σ = 0.

2.4.1 Baseline

Figure 2.1 shows simulation results of the baseline model without migration, diffu-

sion and trade (τ → ∞, τ 1−σ = 0). Real output (Panel 2.1a), the number of firms

(Panel 2.1b), relative prices (Panel 2.1f) and the wage in the manufacturing sector

(Panel 2.1g) are transformed in logarithms.
24More detailed estimates for the rate of substitution up to a 12 digit HTS and 5 digit ISIC level

can be found for example in Feenstra (1994).
25Similar shares for the consumption of manufactured goods can be found for example in Her-

rendorf, Rogerson and Valentinyu (2014).
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The model behaves as expected from a Romer model. Output increases at a

constant rate, the number of firms and hence varieties increase at the same rate. As

the growth rate of the developed country is larger than the rate of the undeveloped

country, the difference in levels increases, leading to divergence between the two

countries. The wages of high skilled workers increase at a constant rate as well.

The increase is smaller than the increase of the number of varieties as the wage is

scaled down by δ. Since there is no migration, the number of high skilled workers

remains the same. The number of low skilled workers employed in a single firm in

the manufacturing sector decreases over time as the number of firms increases. 0.7

low skilled workers are employed in each of the 10 firms of the manufacturing sector

in both countries in the first period. After the first period, manufacturing firms

in the developed country with the more productive manufacturing sector employ

less low skilled workers per firm. The amount of low skilled labour allocated to the

traditional goods sector decreases, as the countries develop (Panel 2.1e).

2.4.2 Migration

Only Migration Figure 2.2 shows a simulation with migration but no trade. The

graphs show percentage deviations from the baseline model (Graph 2.1).

As soon as migration is introduced in period 2 (indicated by a vertical dashed

line), high skilled workers start moving to the developed country as shown in Panel

2.2c. After two periods all high skilled workers employed in the R&D sector have

moved, leaving the R&D sector in the less developed country empty. This movement

boosts the amount of designs produced in the developed country while the amount

of designs in the other country remain at the same level. The number of designs, and

so the number of firms, do not change anymore and therefore demand remains the

same. The influx of high skilled migrants leads to an increase in the growth rate of

the developed country. Due to the exodus of the high skilled workers, the growth rate

of the undeveloped country breaks down, intensifying divergence between the two

countries in comparison to the baseline scenario and leaving the country permanently
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Figure 2.2: Only Migration
Migration is allowed from period 2 onwards. For parametrisation see Section 2.4 or
Figure 2.1. Graphs show deviations in % from baseline.

worse off.

As before, the amount of low skilled labour allocated to the entire traditional

sector and to each individual firm in the manufacturing sector in the developed

countries decreases, even more than in the baseline scenario. For the undeveloped

country, the movement is the same; however it is not as pronounced as in the baseline

scenario. The wage for high skilled workers (Panel 2.2g) in the more productive

country drops in comparison to the baseline case. The drop is due to the influx of

new high skilled workers. However, it is not large enough to reverse the migration

streams. The increase in designs then pushes the wage above the wage in the
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baseline scenario. The wage for high skilled workers and the relative price in the less

developed country do not change anymore, because the number of designs remains

constant, therefore the deviation is negative.
-6

0
-4

0
-2

0
0

20
D

ev
ia

tio
n 

fro
m

 b
as

el
in

e 
%

0 10 20 30
Time

(a) Real output)
-6

0
-4

0
-2

0
0

20
D

ev
ia

tio
n 

fro
m

 b
as

el
in

e 
%

0 10 20 30
Time

(b) Number of varieties

-1
00

-5
0

0
50

D
ev

ia
tio

n 
fro

m
 b

as
el

in
e 

%

0 10 20 30
Time

(c) High Skilled Worker

-2
0

0
20

40
60

80
D

ev
ia

tio
n 

fro
m

 b
as

el
in

e 
%

0 10 20 30
Time

(d) Low skilled labour in
manufacturing sector per firm

-2
0

0
20

40
60

80
D

ev
ia

tio
n 

fro
m

 b
as

el
in

e 
%

0 10 20 30
Time

(e) Low skilled labour in tra-
ditional goods sector

-6
0

-4
0

-2
0

0
20

D
ev

ia
tio

n 
fro

m
 b

as
el

in
e 

%

0 10 20 30
Time

(f) Relative prices pTi /Pi

-6
0

-4
0

-2
0

0
20

D
ev

ia
tio

n 
fro

m
 b

as
el

in
e 

%

0 10 20 30
Time

(g) Wage in R&D sector

Figure 2.3: Migration with costs
Migration is allowed from period 2 onwards, costs of migration are 300 and no trade.
For parametrisation see Section 2.4 or Figure 2.1. Graphs show deviations in % from
baseline.

Migration Costs Figure 2.3 shows a simulation with migration costs of 300,

which is three times the wage in the R&D sector in period 5. Panel 2.3c shows

that migration starts with a delay of 8 periods. Again all high skilled workers from

the R&D sector migrate. This is because the difference in the number of firms

does not increase linearly over time. The appearance of the graphs is similar to the

scenario without migration costs (Graph 2.2) and the interpretation remains the
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same. The most notable difference is that deviations from the baseline scenario are

less pronounced as the effects of migration kick in later and countries follow their

original path (without migration) for a longer time period.

The simulation clearly shows that the country which receives more high skilled

worker benefits from migration by increasing the growth rate of designs and there-

fore experiencing a higher output growth rate. Migration costs only postpone the

decision to migrate. The outcome remains the same, migration leads to divergence.

2.4.3 Trade
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Figure 2.4: Only Trade
Trade costs are set to τ = 1.5. For parametrisation see Section 2.4 or Figure 2.1.
Graphs show deviations in % from baseline.
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Only Trade To find out how trade affects the model, Figure 2.4 shows how the

simulation with trade costs of τ = 1.5 differ to the baseline scenario. High skilled

workers are immobile and are not allowed to move between countries, making trade

the only interaction between countries.

The number of varieties, or firms, is the same in both cases, since trade does not

lead to any changes in the allocation of the high skilled workers between sectors and

countries. However there is a temporary effect on the growth rate of real output.

Due to the fall in the price level for the manufactured good, Pi, in the developed

country (Panel 2.4f) demand rises. At the same time, the entire production of the

traditional good is taken over by the relatively less productive undeveloped country

as shown Panel 2.4e and 2.4d.26 The shift results in a decrease of real output in the

less productive country as visible by the downward kink in Panel 2.4a. However,

with the increase of designs the allocation of low skilled workers moves away from the

traditional good sector to the manufacturing sector (Panel 2.4e). Therefore in the

limit real output and the growth rate of the country are not affected. As more low

skilled workers are available to work in the manufacturing sector in the developed

country, real output increases by the magnitude of the additional low skilled worker.

This affects the level of output permanently, thus temporarily the growth rate in

the short run (from period 2 to 3) but not the long run growth rate (see equation

2.46 and 2.48). Panel 2.4h shows the absolute value of imports. With an increase

in designs, more goods become available to consume and trade. Moreover, both

countries are growing and both countries employ the entire workforce. However,

differences in the growth rate and levels persist. Hence, trade only has a positive

effect on output if the gains from the reallocation of low skilled labour towards the

relatively more productive sectors outweigh the trade costs. As outlined in Section

2.3.5, it is possible for the growth rate to have an effect on trade under certain

circumstances - as explained next.
26The effect whereby an inefficient sector in one country is replaced is similar to Alvarez et al.

(2013).
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2.4.4 Trade and Migration
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Figure 2.5: Trade with Tmini = Tmini = 4 and Migration
Trade costs are set to τ = 1.5. Migration is allowed from period 2 onwards with no
costs. For parametrisation see Section 2.4 or Figure 2.1. Graphs show deviations in
% from baseline.

Figure 2.5 shows simulations with trade costs of τ = 1.5, but in comparison to

Figure 2.4 migration is allowed and the minimum consumption of the traditional

good is set to Tmini = Tminj = 4. This implies that at least 8 units of low skilled

labour have to be devoted to the production of the traditional good. Panel 2.5d

and 2.5g show that all low skilled labour in the less productive undeveloped country

is moved to the traditional good sector. The country becomes the sole producer

of the traditional good. This implies that the output in absolute terms decreases
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and remains at 8 units. As there is no manufacturing sector in the country left,

high skilled workers employed in this sector can move to the other country. This

boosts the deviation of the output in comparison with the baseline model from

25% in the case of migration only to 29%. Another notable difference is that the

undeveloped country does not export any manufactured goods anymore. Imports

into the less productive, undeveloped country increase as consumers benefit from a

larger variability of the manufactured good.

An interesting outcome can be generated if the subsistence level of Tmini =

Tminj = 4 applies, trade is allowed but no migration occurs. In this case, the un-

developed country will become the sole producer of the traditional good and not

produce the manufactured good. Therefore, there is no demand for further designs,

making all high skilled workers unemployed.

The simulation reveals that, in comparison with migration, the effect of trade is

of a smaller magnitude. In the long run the less productive country does not lose

any output as long as it produces the manufactured good. The more productive

developed country experiences a small level effect due to the increase in low skilled

workers allocated to the manufacturing sector. If one country completely specializes

and solely produces the less productive good, then this country experiences a severe

drop in output, while due to migration and specialisation the other country can

gain, even in the long run, from trade.

2.4.5 Diffusion of Designs

Figure 2.6 shows simulations in which designs diffuse across countries with a rate

of ρ = 0.0025. First, migration is not allowed. In comparison with the baseline

scenario, output growth and the number of designs is increasing, but the increase is

not as pronounced as in the case of migration. As the number of designs is larger,

the wage in the R&D sector increases as well.
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Figure 2.6: Only Diffusion (ρ = 0.0025)
For parametrisation see Section 2.4 or Figure 2.1. Graphs show deviations in %
from baseline.

The price level for the manufactured good increases, implying that the manufac-

tured good becomes cheaper relative to the traditional good. Together with the fact

that the manufactured sector is more productive in comparison to the baseline case,

this results in a larger share of unskilled workers employed in the manufacturing

sector, as seen in Panel 2.6d and 2.6e.

2.4.6 Migration, Diffusion and Trade

Finally, Figure 2.7 shows all three channels activated at the same time. Full migra-

tion is allowed from period 2, trade costs are set to τ = 1.5 and diffusion of designs to
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Figure 2.7: Migration, Trade (τ = 1.5) and Diffusion (ρ = 0.25). Migration is
possible from period 2. For parametrisation see Section 2.4 or Figure 2.1. Graphs
show deviations in % from baseline.

ρ = 0.0025. The minimal consumption of the traditional good is Tmini = Tminj = 4.

The overall picture remains similar to before. Trade leads to a specialization, and

all high skilled workers migrate to the more productive country, while the less pro-

ductive country solely produces the traditional good. This enables the productive

country to grow further and all unskilled workers are allocated to the manufacturing

sector (Panel 2.7d and 2.7e). Therefore, the output of the country which produces

the traditional good drops back to 8 units, while the output of the country producing

the manufacturing good increases.

The simulations show that the country with the higher variety in the manufac-
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turing sector attracts high skilled workers. The time it takes for all high skilled

workers to migrate varies with costs; with higher costs, it takes longer for the mi-

gration to be completed. The host country experiences an economic boom, while

the other country remains stagnant, implying divergence. Trade plays a minor role

and, again, the more productive country is the main beneficiary.

2.5 Conclusion

Satisfactory theoretically founded spatial interactions are neglected in standard

growth models in the literature. While some of the empirical spatial economet-

ric growth literature emphasizes spatial dependence, this is typically modelled in

terms of knowledge diffusion. However, theory provides no motivation as to why

such diffusion exists, or even why geography should constitute the main driver for

knowledge spillovers. This chapter provides an economic model to address this gap

in the literature and motivate interactions between countries. Migration, diffusion of

ideas and trade provide mechanisms for cross-country interactions in the presented

model. The share of migrants and the trade are microfounded and thus determined

within the model. The second focus of this chapter is on the effect of the interactions

on economic growth.

To model interactions between countries, the restriction of immobile high skilled

labour is removed. Therefore features of a New Economic Geography (NEG) model

in the style of Krugman (1991) and an endogenous growth model in the style of

Romer (1990) are combined to develop a new two-country economic model. The

model retains the microfoundation, trade of a manufactured good and migration

of labour from the New Economic Geography models. The microfoundation allows

to model the interactions between the countries explicitly. Migration and trade

come out of the model, while the degree of diffusion of knowledge is exogenous set

under the assumption that all R&D firms have an incentive adopt foreign knowledge.

On the other hand, the engine of growth and the feature of unbounded growth,

which explain the divergence between two countries in this context, comes from
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the endogenous Romer-style growth model. Economic growth and migration are

directly related and therefore the model can be used to motivate migration as a

spatial weight in a cross-country growth regression.

The model has several limitations. First of all only high skilled migrants are

allowed to migrate. This modelling restriction is necessary to ensure that not all

workers leave a country. Secondly the model is restricted to a single generation.

Following generations which would replace depleted skills, allowing the country to

grow again, are not considered. In addition, return migration and the effects on

remittances are not included. It is among the first models which explicitly seeks to

find the role of migration together with trade and technology in generating cross-

country dependence. All three are complex phenomena and naturally, there are

limitations in the model. These are retained in the interest of keeping linkages

between countries as simple as possible.

Without migration and trade, the model behaves like an endogenous Romer-style

growth model. If high skilled workers migrate to the higher wage offering country

and contribute to the R&D sector, output growth is enhanced in this country. This

leads to divergence. While benefits from trade negate part of this divergence, con-

vergence or catch-up does not emerge as an outcome. Due to reallocation of low

skilled labour, trade affects growth, but only in the short run. All this leads to diver-

gence. Simulations confirm the predictions derived from theory. High skilled workers

migrate from the country that offers a lower wage and, under autarky, this coun-

try stagnates. The country that attracts high skilled workers experiences a growth

boom. When trade is allowed, countries start specializing. However, this negatively

affects the country which specializes in the less productive traditional good, while

the other country benefits. Both effects apply only in the short run. A long run

persistence effect on the growth rate is only possible if one country completely spe-

cializes in the traditional good, allowing all high skilled workers to migrate. Then

the more productive country gains from trade. Diffusion has only a small effect on

the level. The number of varieties, and thus output, increases in both countries.
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As only a fraction of ideas diffuse, a catch-up is not possible. Further simulations

show that migration costs lead to a delay in migration, but because of rising wages,

this does not ultimately deter migration. Based on the migration of high skilled

labour and the conclusion of divergence, the proposed model displays some of the

facts of the great divergence of the 19th century, namely the finding of migration

accompanied by divergence. While there is no mechanism for catch-up or conver-

gence within the model, it is also consistent with evidence on the club-convergence

in recent times.

The proposed model may be viewed as a first step towards introducing endoge-

nous spatial interactions in appropriately theoretically founded spatial growth mod-

els. Therefore, it presents a rich agenda for future research. First, the model can

be validated against cross-country economic data for the 19th and 20th centuries.

Second, the R&D sector can be changed such that the outcome of the model is

convergence. Finally, potential migration of low skilled labour can also be incorpo-

rated.
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Appendix Chapter 2

A.1 Derivation of price index and quantities de-

manded by consumers

The derivation of the price index and the quantities demanded by consumers follows

a two-stage optimization, after Dixit and Stiglitz (1977). Maximizing (2.8) with

respect to the budget constraint (2.14) and a minimum amount of the traditional

good Tmini , which has to be consumed, gives the following Lagrangian :

max
Xi,Ti

Xµ
i T

γ
i

s.t.: Yi > pT,iTi +XiPi and Ti ≥ Tmini

L = Xµ
i T

γ
i + λ1(Yi − pT,iTi −XiPi) + λ2(Ti − Tmini )

∂L
∂Xi

= µXµ−1
i T γi − λ1Pi = 0

→ λ1 = µXµ
i Ti

γ

XiPi
(A.1)

∂L
∂Ti

= γXµ
i T

γ−1
i − λ1pT,i + λ2 ≥ 0 (A.2)

∂L
∂λ1

= Yi − pT,iTi −XiPi = 0 (A.3)

λ2
(
Ti − Tmini

)
≥ 0. (A.4)

The budget constraint is always binding, thus λ1 6= 0. If the constraint on the

minimum value is not binding Ti > Tmini , thus λ2 = 0, then putting (A.1) into (A.2)
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and using (A.3) leads to:

Ti = φLi
µ
γ

pT,i
Pi

+ φ

= γ

µ+ γ

Yi
pT,i

(A.5)

Xi = µ

γ + µ

Yi
Pi
. (A.6)

If the constraint on the minimal consumption of the traditional good is binding,

Ti = Tmini , thus λ2 > 0, then:

⇒ Xi = Yi − pT,iTi
Pi

γXµ
i T

γ
i

Ti
− λ1pT,i + λ2 > 0

λ2 = γXµ
i T

γ
i

Ti
− µXµ

i T
γ
i

Xi

pT,i > 0

Yi
pT,i

γ

γ + µ
> Ti = Tmini . (A.7)

The last condition holds as long as µ < 1 and γ 6= 0. Then using (A.1), (A.3) and

Ti = Tmini :

Yi = pT,iT
min
i +XiPi → Xi = Yi − pT,iTmini

Pi
. (A.8)

If γ = 0, then

−λ1pT,i + λ2 > 0

λ2 > λ1pT,i = µXµ−1
i

Pi
pT,i > 0.

Hence (A.4) only holds if:

Ti = Tmini .
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the 2nd stage of utility maximization is:

L = T γi

[∫ Ai

0
xii(s)1− 1

σ ds+
∫ Aj

0
xij(s)1− 1

σ ds

] σµ
σ−1

+ λ1

(
Yi − pT,iTi −

∫ Ai

0
pii(s)xii(s)ds−

∫ Aj

0
pij(s)xij(s)ds

)

+ λ2(Ti − Tmini )
∂L
∂λ1

= Yi − pT,iTi −
∫ Ai

0
pii(s)xii(s)ds−

∫ Aj

0
pij(s)xij(s)ds = 0 (A.9)

∂L
∂xii(s)

= µXµ
i T

γ
i

σ

σ − 1
σ − 1
σ

xii(s)−
1
σX
− 1
σ

i − λ1pii(s) = 0

→ λ1 = µXµ
i T

γ
i X

− 1
σ

i xii(s)−
1
σ pii(s)−1, (A.10)

with varieties s and k, multiplying with pii(s) and solving for xii(s)pii(s):

µXµ
i T

γ
i X

− 1
σ

i xii(s)−
1
σ pii(s)−1 = µXµ

i T
γ
i X

− 1
σ

i xii(k)− 1
σ pii(k)−1

xii(s)pii(s) = pii(k)σpii(s)1−σxii(k). (A.11)

xii(s) and xij(s) are symmetric and thus ∂L
∂xij(s) leads to

xij(s)pij(s) = pij(k)σpij(s)1−σxij(k). (A.12)

In addition (A.10) implies that:

µXµ
i T

γ
i X

− 1
σ

i xii(k)− 1
σ pii(k)−1 = µXµ

i T
γ
i X

− 1
σ

i xij(s)−
1
σ pij(s)−1

xii(k)pii(k)σ = xij(k)pij(k)σ. (A.13)

Inserting (A.11) and (A.12) into (A.9), rearranging the integral, using the result for

Ti from the first stage and defining the price index as

Pi =
[∫ Ai

0
pii(s)1−σds+

∫ Aj

0
pij(s)1−σds

] 1
1−σ
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leads to:

Yi = pT,iTi +
∫ Ai

0
pii(s)1−σpii(k)σxii(k)ds+

∫ Aj

0
pij(s)1−σpij(k)σxij(k)ds

= pT,iTi + pii(k)σxii(k)
∫ Ai

0
pii(s)1−σds

+ pij(k)σxij(k)
∫ Aj

0
pij(s)1−σds.

With the results from (A.13):

= pT,iTi + pij(r)σxij(r)
(∫ Ai

0
pii(s)1−σds+

∫ Aj

0
pij(s)1−σds

)

= pT,iTi + pij(r)σxij(r)P 1−σ
i

→ xij(s) = 1
P 1−σ
i pij(s)σ

(Yi − pT,iTi) , (A.14)

by symmetry it follows that:

→ xji(s) = 1
P 1−σ
j pji(s)σ

(Yj − pT,jTj) (A.15)

and using (A.13) gives the demand for the domestic manufactured good:

→ xii(s) = 1
P 1−σ
i pii(s)σ

(Yi − pT,iTi) . (A.16)

Firms

Transporting good xji from country i to j inhibits Iceberg-Costs as in Krugman

(1991). For one unit to arrive in the destination country, τ ≥ 1 units have to be

shipped. The firm maximizes profits:

πi(s) = pii(s)xii(s) + pji(s)xji(s)− wx,iLx,i − wH,iHx,i
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with the inverse demand function from (A.14) respectively (A.16):

pii(s) =
[

1
P 1−σ
i xii(s)

(Yi − pT,iTi)
] 1
σ

, pji(s) =
[

1
P 1−σ
j xji(s)

(Yj − pT,jTj)
] 1
σ

→ πi(s) = xii(s)
[

1
P 1−σ
i xii(s)

(Yi − pT,iTi)
] 1
σ

+ xji(s)
[

1
P 1−σ
j xji(s)

(Yj − pT,jTj)
] 1
σ

− wx,iLx,i − wH,iHx,i − pAi

∂πi
∂xii(s)

=
[

1
P 1−σ
i xii(s)

(Yi − pT,iTi)
] 1
σ

− 1
σ
xii(s)

[
1

P 1−σ
i xii(s)

(Yi − pT,iTi)
] 1
σ

xii(s)−1 − wx,i
∂Lx,i
∂xii

=pii(s)−
1
σ
pii(s)− wx,i

∂Lx,i
∂xii

= 0

with ∂Lx,i
∂xii

= 1
φAi

and wx,i = φAi:

→ pii(s) = σ

σ − 1

→ pji(s) =τ σ

σ − 1 .

Thus:

pii(s) = pii, pji(s) = pji = τpii.

The second equal sign holds because of the symmetry of the two countries and

because the price is the same for all varieties. It is important to make sure that
∂Lx,i
xii

and ∂Lx,i
xji

are independent of pii, pji, xii(s) and xji(s) in order to determine

the price index and to show that each firm produces the same quantity. Then, with

pii(s) = pii and pji(s) = pji it follows that xii(s) = xii and xji(s) = xji.

Calculation of price aggregate Pi

Assume that wx,i ∂Lx,i∂xii
= 1 and wx,i

∂Lx,i
∂xji

= 1, making prices and quantities pro-
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duced constant:

Pi =
[∫ Ai

0
p1−σ
ii (s)ds+

∫ Aj

0
p1−σ
ij (s)ds

] 1
1−σ

=
[∫ Ai

0

(
σ

σ − 1

)1−σ
ds+

∫ Aj

0

(
τ

σ

σ − 1

)1−σ
ds

] 1
1−σ

=
[
Ai

(
σ

σ − 1

)1−σ
+ Aj

(
τ

σ

σ − 1

)1−σ
] 1

1−σ

= σ

σ − 1
(
Ai + τ 1−σAj

) 1
1−σ = σ

σ − 1R
1

1−σ
i

by symmetry Pj is:

Pj = σ

σ − 1
(
Aj + τ 1−σAi

) 1
1−σ = σ

σ − 1R
1

1−σ
j .

The price level decreases with Ai and Aj.27 The higher the stock of designs, the

lower the price aggregate.

A.2 Calculation of Migration Streams with Mi-

gration Costs

High skilled workers migrate to the country with the higher wage. Assume costs of

k, which reduce the wage for all periods and following equation (2.59):

wH,i − k > wH,j

⇒ δĀi
xi

(ri + δα Āi
Ai
Hi)(σ − 1)

− k = δĀj
xj

(rj + δα Āi
Ai
Hj(σ − 1)

Āi
xi

ri + δα Āi
Ai
Hi

− σ − 1
δ

k = Āj
xj

rj + δα Āi
Ai
Hj

27Remember that: σ > 1→ 1
1−σ < −1.
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Assign the following:28

η = σ − 1
δ

k

si = δα
Āi
Ai

Then:

Āixi
ri + siHi

− η = Ājxj
rj + sjHj

Āixirj + ĀixisjHj − η(rj + sjHj)(ri + siHi) = Ājxjri + ĀjxjsiHi

with

(rj + sjHj)(ri + siHi) = rjri + rjsiHi + sjHjrj + sjHjsiHi

HiHj = (LH,i +mjiLH,j)(1−mji)LH,j

= LH,iLH,j −mjiLH,iLH,j +mjiL
2
H,j −m2

jiL
2
H,j

ui = Ājxjsj + ηrjsi

vi = ηrisj − Āixisj

Then:

Āixirj − Ājxjxjrj − ηrjri =ĀjxjsiHi − ĀixisjHj + ηrjsiHi + ηsjHjri + ηsjHjsiHi

=Hi(Ājxjsj + ηrjsi) +Hj(ηrisj − Āixisj)

=Hiui +Hjvi + ηsjHjsiHi

=(LH,i +mjiLH,j)ui + (1−mji)LH,jvi + ηsjsiLH,iLH,j

− ηsjsimjiLH,iLH,j + ηsjsimjiL
2
H,j − ηsisjm2

jiL
2
H,j

=uiLH,i + voLH,j + ηsisjLH,iLH,j +mji (uiLH,j − viLH,j

− ηsisjLH,jLH,i + ηsisjL
2
H,j

)
− ηsisjm2

jiL
2
H,j

28For sj the indices of si are interchanged.
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with

li = uiLH,j − viLH,j − ηsisjLH,jLH,i + ηsisjL
2
H,j

⇒ 0 = uiLH,i + viLH,j − ĀixirjĀjxjriηrjri + ηsjsiLH,iLH,j +mjili − ηsisjm2
jiL

2
H,j

with

oi = uiLH,i + viLH,j − Āixirj + Ājxjri + ηrjri + ηsjsiLH,iLH,j

⇒ m2
ji −

li
ηsisjL2

H,j

− oi
ηsisjL2

H,j

= 0

mji = li
ηsisjL2

H,j

±

√√√√ li
2ηsisjL2

H,j

2
+ oi
ηsisjL2

H,j

. (A.17)

Only the minus sign makes sense in Eq. (A.17), as otherwise streams from country

i to j are possible even if wH,i > wH,j.

The following terms are combined:

η = σ − 1
δ

k

si = δα
Āi
Ai

ui = ηrjsi + Ājxjsi

vi = ηrisi − Āixisj

oi = uiLH,i + viLH,j − Āixirj + Ājxjri + ηrjri + ηsjsiLH,iLH,j

li = LH,i (ui − vi + ηsjsi (LH,j − LH,i)) .

Finally, migration with costs can be summarised as:

mji =


min

(
li

ηsisjL2
H,j
−
√

li
2ηsisjL2

H,j

2 + oi
ηsisjL2

H,j
, 1
)

, if wH,i > wH,j

0 , if wH,i ≤ wH,j

mij =


min

(
lj

ηsisjL2
H,i
−
√

lj
2ηsisjL2

H,i

2 + oj
ηsisjL2

H,i
, 1
)

, if wH,j > wH,i

0 , if wH,j ≤ wH,i

.

81



Chapter 3

Estimating Common Correlated Effects Models

An early version of this chapter is under revise and resubmit for The Stata Journal.

The xtdcce2 package is available on Statistical Software Components (SSC) since

August 2016.

3.1 Introduction

Estimating panels with heterogeneous coefficients in a panel with a large dimension

of observations over cross-sectional units (N) and time periods (T ) became standard

in the last years, thanks to seminal work in theoretical econometrics (Pesaran and

Smith, 1995; Shin et al., 1999). Heterogeneous slopes allow the researcher to identify

effects for each cross-section separately. At the same time, the theoretical literature

on how to account for unobserved dependence between cross-sectional units evolved

(Pesaran, 2006; Chudik and Pesaran, 2015a). Not accounting for unobserved depen-

dence between cross-sectional units causes the error term to be autocorrelated and

leads to biased OLS regression results.

This chapter introduces and discusses a Stata package that combines these two

strands of the literature. xtdcce2 allows for Mean Group (MG) estimations in a

dynamic panel with dependence between cross-sectional units. MG estimates are

obtained by two steps. First, the coefficients of interest are estimated for each

cross-sectional unit separately. The unit-specific estimates are averaged across all
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groups in a second step. xtdcce2 approximates for cross-sectional dependence by

adding cross-sectional averages and lags, as proposed by Pesaran (2006) and Chudik

and Pesaran (2015a).1 Furthermore, it tests for weak cross-sectional dependence

in the error terms and allows for Instrumental Variable (IV) estimation as well.

Additionally xtdcce2 is able to correct for small sample time series bias by using the

’half-panel’ jackknife correction method or the Recursive Mean Adjustment (RMA)

method as proposed in Chudik and Pesaran (2015a).

xtdcce2 differs in several ways from the existing estimation packages for com-

mon correlated effects in a heterogeneous panel. In comparison to xtmg (Eberhardt,

2012) it allows the consistent estimation of a dynamic panel by adding lags of the

cross-sectional averages. Moreover, coefficients may be constrained to be homoge-

neous across all units. Additionally, unbalanced panels are supported. Compared to

xtpmg (Blackburne and Frank, 2007), xtdcce2 avoids ML estimations, offering the

possibility to estimate models including endogenous independent variables. Hence,

the main novelties within the setting of xtpmg and xtmg are the inclusion of a

test for cross-sectional dependence, small time series bias correction methods and

the support for IV regressions. IV regressions benefit from the ivreg2 package.

Possible applications for an IV estimation are endogenous spatial lags, which are in-

strumented by exogenous measures such as distance, other variables or higher order

spatial lags. An application of this example will be carried out in the Chapter 4.

Adding cross-sectional averages accounts for unobserved heterogeneity across units.

The xtdcce2 package includes xtcd2, which tests for weak cross-sectional depen-

dence (henceforth CD test) as proposed by Pesaran (2015) and Chudik and Pesaran

(2015b). Two other programs, xtcd (by Markus Eberhardt) and xtcsd by De Hoyos

and Sarafidis (2006), made the CD test already available in Stata. The novelties of

xtcd2 are the support of unbalanced panels, the possibility to test any variable for
1Chudik and Pesaran (2015b) give a comprehensive overview of the literature on (dynamic)

common correlated effects, while Chudik and Pesaran (2015a) focuses on dynamic common cor-
related effects. In the following, common correlated effects cites Pesaran (2006), while dynamic
common correlated effects cites Chudik and Pesaran (2015a), even though both are found in Chudik
and Pesaran (2015b).
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cross-sectional dependence and the option to plot the cross correlations as a kernel

density plot.

The remainder of this chapter is structured as the following: the next section

gives a brief introduction of the econometric methods. Then examples for an empir-

ical application are given and the results compared to estimation procedures already

available in Stata. The chapter closes with a Monte Carlo simulation and a conclu-

sion. In order to improve the readability, the Appendix for this chapter is extensive

and consists of three parts. The first part (B.1) explains the syntax, options and

saved values of xtdcce2 and xtcd2. The delta method to calculate the standard

errors for pooled mean group estimations is explained in B.2. Finally, the setup of

the Monte Carlo Simulation and tables with additional results can be found in B.3.

3.2 Estimators

For this chapter, the model from equation (1.25) is used. As common factors are the

focus of this chapter, spatial dependence is set aside (mn = 0) . In a Monte Carlo

Simulation Chudik and Pesaran (2015a) show that the bias of the Dynamic Common

Correlated Effects (DCCE) estimator for one or many common factors is similar.

For a better readability and the sake of simplification, the number of common factors

is set to one (mf = 1). The underlying model for the DCCE estimator is then:

yi,t = αi + λiyi,t−1 + βixi,t + ui,t (3.1)

ui,t = γift + ei,t, (3.2)

The coefficients are defined as in the Introduction (1.3) as βi = β + vi, vi ∼

IID(0,Ωv), and λi = λ + ai, ai ∼ IID(0,Ωa), where Ωv and Ωa are the vari-

ance covariance matrices. In the following βi captures the short run effect of x on y.

The factor loading (γi) and the common factors (ft) are as defined as in Chapter 1.3.
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The estimated equation is:

yi,t = αi + λiyi,t−1 + βixi,t +
pT∑
l=0
δ′i,lz̄t−l + ei,t, (3.3)

where z̄t = 1/N ∑N
i=1 zi,t = (ȳt, x̄t)′, ȳt = 1/N ∑N

i=1 yi,t and x̄t = 1/N ∑N
i=1 xi,t

for i = 1, ..., N . For a pooled estimation the coefficients are constrained to be

αi = α, λi = λ and βi = β. The static version of the CCE estimator (λi = 0

for i = 1, ..., N) was made available in Stata by Markus Eberhard’s xtmg command

(Eberhardt, 2012).

The Pooled Mean Group (PMG) estimator (Shin et al., 1999) can be seen as

an intermediate between a pure pooled estimation (homogeneous coefficients) and a

MG estimation (heterogeneous coefficients). The assumptions of the Pooled Mean

Group (PMG) estimator are that regressors have a homogeneous long run and a het-

erogeneous short run effect on the dependent variable. Equation (3.1) is transformed

into an error correction model, such that

∆yi,t = φi(yi,t−1 − θixi,t) + αi + βi∆xi,t + ui,t. (3.4)

φi = (λi−1) is the error-correction speed of adjustment parameter and (yi,t−1−θixi,t)

is the error correction term. In general, a long run relationship exists if φ 6= 0 (Shin

et al., 1999). βi captures the immediate or short run effect of xi,t on yi,t. The long

run or equilibrium effect is captured by θi. The long run effect measures how the

equilibrium changes and φ represents how fast the adjustment occurs. It can be

estimated as the short run coefficient over the long run coefficient, θi = βi/φi =

βi/(λi − 1). In addition it is assumed to be homogeneous, while the short term

dynamics are heterogeneous across units.2 Shin et al. (1999) propose to estimate the

long run coefficients by ML and the short run coefficients by OLS. The estimator

is consistent as long as the disturbances are independently distributed across all

individuals and time periods with a zero mean and a variance strictly larger than
2This notation follows Shin et al. (1999) Eq. (1) with p = q = 1.
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zero.

The MG estimate and the variance of the short run coefficients are:

δ̂MG = 1
N

N∑
i=1
δ̂i (3.5)

Σ̂MG = V̂ar(δ̂MG) = 1
N(N − 1)

N∑
i=1

(
δ̂i − δ̂MG

)2
, (3.6)

where δi = (αi, βi).

The MG and the PMG estimator in the static and the dynamic version rely on

large N and T. The literature on small sample time series bias corrections in dynamic

heterogeneous panels is somewhat scarce, and it is for this reason that Chudik and

Pesaran (2015a) focus on ‘half-panel’ jackknife and Recursive Mean Adjustment

(RMA) bias correction methods. Neither requires knowledge of the error factor

structure and can be applied to the mean group estimates.3 The MG estimate of

the ‘half-panel’ jackknife bias-corrected CCE estimator is

π̃MG = 2π̂MG −
1
2
(
π̂aMG + π̂bMG

)
, (3.7)

where π̂aMG is the MG estimate of the first half (t = 1, ..., Ti2 ) of the panel and π̂bMG

of the second half (t = Ti
2 + 1, ..., Ti) of the panel.

The RMA method removes the partial mean from the all variables, meaning:

ω̃i,s = ωi,s −
1

t− 1

t−1∑
s=1
ωi,s, (3.8)

where ωi,s = (yi,s, xi,s) or any other variable except the constant. In line with

Chudik and Pesaran (2015a) the partial mean is lagged by one period to prevent it

from being influenced by endogenous observations.

From the asymptotics of the unit-specific estimates and the MG estimates, re-

strictions on the dataset arise. The number of cross-sectional units and time pe-
3For a further discussion see Chudik and Pesaran (2015a) or Everaert and De Vos (2016).
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riods is assumed to grow with the same rate. In an empirical setting, this can be

interpreted as N/T being constant. A dataset with one dimension being large in

comparison to the other would lead to inconsistent estimates, even if both dimension

are large in numbers. For example a financial dataset on stock markets returns on a

monthly basis over 30 years (T=360) of 10,000 firms would not be sufficient. While

individually both dimensions can be interpreted as large, they do not grow with the

same rate and the ratio would not be constant. Therefore, an estimator relying on

fixed T asymptotics and large N would be appropriate. On the other hand a dataset

with say N = 30 and T = 34 would qualify as appropriate, if N and T grow at the

same rate.4

3.3 Syntax

xtdcce2 has the following syntax:

xtdcce2 depvar
[
indepvars

] [
(varlist2 = varlist_iv )

] [
if
]

,

crosssectional(varlist_cr)
[

pooled(varlist_p) nocrosssectional cr_lags(#)

ivreg2options(string) e_ivreg2 ivslow noisily lr(varlist_lr) lr_options(string)

noconstant pooledconstant reportconstant trend pooledtrend jackknife

recursive nocd showindividual fullsample
]

varlist_cr defines the variables for the cross-sectional averages, varlist_p the

pooled variables. varlist2 includes endogenous variables, instrumented by varlist_iv.

The syntax and options are further explained in Appendix B.1 and comments about

the versions can be found in B.1.2.

The syntax for xtcd2 is:

xtcd2
[
varname

]
,
[

noestimation rho kdensity name(string)
]

4An anonymous Stata Journal referee suggested the two examples, which is much appreciated.
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varname is the name of the residual or variable to be tested. varname is optional

in case the command is performed after an estimation command which supports

predict, residuals. Then xtcd2 predicts and tests the residuals for weak cross-

sectional dependence.

3.4 The Constant in xtdcce2

xtdcce2 can treat the individual-specific constants αi in several ways. In Pesaran

(2006) and Chudik and Pesaran (2015b) the individual-specific constants is partialled

out as they are a part of the matrix which includes the cross-sectional averages. In

common correlated effects regressions, the individual-specific constants include the

factor loadings and parts of the cross-sectional averages (see Chudik and Pesaran

(2015a), p. 397). Pesaran and Tosetti (2011) show that it is possible to estimate

the individual-specific constant αi if N and T converge to infinity.5

xtdcce2 estimates and reports a MG estimate of the individual-specific con-

stants if the option reportconstant is used. Otherwise. they are partialled out or

removed from the model and not reported. Additionally xtdcce2 allows the con-

stants to be the same across all units by specifying the option pooledconstant.6

As a final option, the constants can be completely removed from the model by using

the noconstant option.

The individual-specific constants are removed from the model if all parame-

ters including the constants are constrained to be homogeneous, the cross-sectional

means include all variables and the dataset is strongly balanced. Loosely speaking,

by partialling out the time averages of the dependent variable and all independent

variables, the data is demeaned and a homogeneous constant is rendered to be zero.

Thus xtdcce2 automatically removes the constant from the model to improve the es-

timation. If the option reportconstant is used, then the constant is still estimated

5They show that α̂i − αi = Op
( 1
N

)
+ Op

(
1√
NT

)
+ Op

(
1√
T

)
, see Pesaran and Tosetti (2011),

Eq. (31), page 189.
6If pooledconstant is used but not reportconstant, the constant is internally calculated but

not displayed.
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and reported in the output.

There is a notable difference between in the treatment of the constant in xtdcce2

and the official StataCorp command xtreg, fe. If all independent variables ex-

cluding the individual-specific constants are pooled and no cross-sectional averages

added, then xtdcce2 leads to the same point estimates as xtreg, fe for π. It is

important to note that Stata assumes for xtreg, fe a model including a constant

and a fixed effect (in the fashion of yi.t = ν+αi+βxi,t+ εi,t), while the model in this

chapter is described by equation 3.1. The MG estimates for the constant ( ˆ̄αMG) and

the constant estimated by xtreg, fe (ν̂FE) are the same, the individual fixed effects

obtained by predict, u after xtreg, fe differ by the MG estimate of the constant

(α̂i,FE = α̂i,MG − ˆ̄αMG). xtreg, fe demeans all variables to remove the individual

fixed effects, but adds the overall mean in order to obtain estimates for the constant,

i.e. ÿi,t = yi,t− ȳi+ ȳ, where ȳi = 1/T ∑T
t=1 yi,t and ȳ = 1/(NT )∑N

i=1
∑T
t=1 yi,t. Then

it calculates the individual effects by αi = ȳi − α̂− x̄iβ̂. The difference between the

two estimators is, that xtdcce2 identifies αi as the (heterogeneous cross-sectional

specific) constant, while xtreg, fe treats ν as a homogeneous constant.

3.5 Empirical Examples

In this section, three empirical examples are carried out to demonstrate the use of

xtdcce2. A Solow model with dynamic common correlated effects and instrumental

variable regression is estimated. In two other examples, estimations using xtdcce2

are compared with the existing Stata packages xtmg and xtpmg.

3.5.1 Dynamic Common Correlated Effects and testing for

cross-sectional dependence

As a first exercise, the Solow model in style of Mankiw et al. (1992), Islam (1995)

and Lee et al. (1997) is estimated. The dependent variable is log GDP per capita

d.log_rgdpo and the independent variables are lagged GDP per capita L.log_rgdpo,
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physical capital log_ck and the population growth rate log_ngd.7 The Penn World

Tables (Feenstra, Inklaar and Timmer, 2015) version 8.0 are used and restricted to

the years from 1960 to 2007, which means that there is a maximum of T = 48 years.

Both independent variables and the level on the dependent variable are added as

cross-sectional averages, set by the option crosssectional(). The number of cross-

section averages is set to [ 3
√

48] = 3, specified by cr_lags(). Together with the first

lag of log_rgdpo and the three lags of the cross-sectional averages, 4 time periods

are lost and the number of time periods used is reduced to 44. The cross-sectional

dimension is in comparison to the time dimension larger (N
T

= 93
44 = 2.11). To ac-

count for the small sample time series bias, the ’half-panel’ jackknife bias correction

method is applied using the option jackknife.

. use xtdcce2_sample_dataset.dta

. xtset id year
panel variable: id (strongly balanced)
time variable: year, 1960 to 2007

delta: 1 unit

. xtdcce2 log_rgdpo L.log_rgdpo log_ck log_ngd , /*
> */ crosssectional(log_rgdpo log_ck log_ngd) cr_lags(3) jackknife
(Dynamic) Common Correlated Effects Estimator - Mean Group

Panel Variable (i): id Number of obs = 4092
Time Variable (t): year Number of groups = 93

Obs per group (T) = 44
Degrees of freedom per cross-sectional unit:
without cross-sectional averages = 41 F(1396, 2696) = 5.10
with cross-sectional averages = 28 Prob > F = 0.00

Number of R-squared = 0.73
cross-sectional lags = 3 Adj. R-squared = 0.58
variables in mean group regression = 279 Root MSE = 0.06
variables partialled out = 1117

CD Statistic = 0.64
p-value = 0.5226

log_rgdpo Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean Group Estimates:
L.log_rgdpo .61254 .028504 21.49 0.000 .5566735 .6684074

log_ck .115106 .037524 3.07 0.002 .0415604 .1886508
log_ngd .045182 .106571 0.42 0.672 -.1636919 .2540568

Mean Group Variables: L.log_rgdpo log_ck log_ngd
Cross-Sectional Averaged Variables: log_rgdpo log_ck log_ngd
Heterogenous constant partialled out. Jackknife bias correction used.

On the lower right of the upper panel, the output shows a CD test statistic of
7In Mankiw et al. (1992) the dependent variable is the first difference of log GDP per capital.

For the purpose of a true lag, the level is used as a dependent variable. The only difference is the
interpretation of the coefficient on the lagged dependent variable.
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0.64 with a p-value of 0.52, so the null hypothesis of weak cross-sectional dependence

fails to be rejected. Below the coefficient estimates, xtdcce2 displays the names of

the 3 mean group variables and 3 cross-sectional averages.

A regression without any pooled variables is essentially a regression run on each

country separately. The degree of freedom of a regression on each country separately

is shown on the left hand side under the time variable identifier. The first line

shows the degree of freedom without the inclusion of cross-sectional averages, which

results in the number of time periods used (T = 44) minus the number of variables

(K = 3). In the line below, the degree of freedom for each country with cross-

sectional averages is displayed. It equals the number of time periods (T = 44)

minus the number of variables (K = 3), minus the number of cross-section averages

times the number of lags (pT = 3) plus one for the contemporaneous averages and

minus one for the constant (44− 3− 3 ∗ (3 + 1)− 1 = 28). In the section below, the

number of lags of the cross-sectional means is displayed, together with the number

of variables in the mean group regression and the number of variables partialled out,

which equals the number of cross-sectional averages. xtdcce2 displays the degree of

freedom with and without the cross-sectional averages to make the researcher aware

of the degree of freedom which is lost when including the cross-sectional averages.

This is especially important if the number of explanatory variables or lags of the

cross-sectional averages or both is large.

As the cross-sectional averages are purely treated as controls and have no in-

terpretation, no information is lost by partialling out. Therefore, the averages are

regressed on each of the explanatory variables of interest and then the residuals col-

lected. The residuals are then used as the new explanatory and dependent variables.

The partialling out is performed in Mata. The variables to be partialled out (the

cross-sectional means and, if requested, the heterogeneous intercept) are stacked in

a block diagonal matrix, with zeros on the off diagonals. For a large number of

units the matrix becomes sparse and calculating and inverting the cross product
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becomes computationally intensive, hence time consuming. To improve speed, the

partialling out is done sequentially unit by unit, which is possible as long as the co-

efficients on the cross-sectional means, δi,l, are heterogeneous.8 Within this process,

xtdcce2 checks if the factor loadings are full rank.9 If the check fails, the mean

group estimates are still consistent, but not the cross-sectional individual estimates.

Therefore xtdcce2 shows a warning at the end of the output. For the calculation

of the cross-sectional averages and the partialling out, the dataset is restricted to

the observations used in the regression. In total 4 periods are lost; one for the lag

of the dependent variable and a further 3 for the cross-sectional averages. So the

time span for the regression are the years 1964 - 2007, making the time dimension

T = 44.

The regression results are in favour of the Solow model. The coefficients on

physical capital and the lagged dependent variable are positive and significant, while

the coefficient on population growth is positive but not significant. The estimated

capital share is around 23%.10 For a more detailed discussion of the Solow model in

growth empirics see Mankiw et al. (1992) or Durlauf, Johnson and Temple (2005);

Jones (2016); and in a panel Islam (1995)with a focus on slope heterogeneity see

Islam (1998) and Lee et al. (1997, 1998).

To predict the error term predict, residuals is used. Then the test on cross-

sectional dependence can be done by hand to confirm the result from above.

. predict xtdcce2_residuals, residuals

. xtcd2 xtdcce2_residuals
Pesaran (2015) test for weak cross-sectional dependence
H0: errors are weakly cross-sectional dependent.

CD = 0.639

8The precision lies in a negligible order of magnitude and is offsetted by the improvement in
speed.
The standard solver for the calculation of the inverse of the cross product of the factor loadings is
cholsolve. cholsolve cannot solve positive definite or singular matrices. In this case qrsolve is
used.

9The condition of a full rank is checked on the unit-specific matrices containing the cross-
sectional averages (z̄i = (ȳi, x̄i), where ȳi and x̄i are T × 1 and T × K matrices containing the
cross-sectional averages). This is possible as the matrix over all units is block diagonal and the
rank is equal to the sum of the rank of the blocks.

10The calculation is α = _b[log_ck]/(1−_b[L.log_rgdpo]+_b[log_ck]). See Ditzen and Gundlach
(2016) for a more detailed discussion about the estimation of the capital shares in the Solow model.
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p-value = 0.523

It is possible to calculate the residuals including the common factors, using

predict, cfresiduals. It is important to note for this option, that the inclusion

of the constant in the common factors depends on the command line. If the option

reportconstant is used, then the constant is excluded. Therefore, the model is

re-estimated and the CD test carried out:

. xtdcce2 log_rgdpo L.log_rgdpo log_ck log_ngd , /*
> */ crosssectional(log_rgdpo log_ck log_ngd) cr_lags(3) jackknife reportconstant
. predict xtdcce2_cf_residuals, cfresiduals
. xtcd2 xtdcce2_cf_residuals
Pesaran (2015) test for weak cross-sectional dependence
H0: errors are weakly cross-sectional dependent.

CD = 18.374
p-value = 0.000

As expected, the null hypothesis of weak cross-sectional dependence is rejected

and the residuals including the common factors exhibit strong cross-sectional de-

pendence. Using the option noestimation leads to the same result, as long as

the observations which are omitted in the estimation are missing in the variable

residuals. The advantage of noestimation is that it does not require a sample

being set by e(sample), and therefore any observable variable can be tested for

weak cross-sectional dependence. For example testing the independent variable for

weak cross-sectional dependence reads:

. xtcd2 log_rgdpo , noestimation
Pesaran (2015) test for weak cross-sectional dependence
H0: errors are weakly cross-sectional dependent.

CD = 452.528
p-value = 0.000

estat can be used for a graphical analysis of the MG regression results.

. estat rcap log_ngd log_ck if id <= 20
Combined graph saved as xtdcce2_combine.

In Figure 3.1, the MG estimates for the first 20 coefficients of log_ngd and log_ck

are plotted using a range plot. The range plot exhibits the 95% confidence interval

and the point estimate is depicted by the cross. Additionally, the MG point estimate

along with it’s 95% confidence interval is added. The function is intended to give the

user of xtdcce2 some guidance about the distribution of the unit specific estimates
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and the interplay between those and the MG estimates. Another advantage is that

it allows an easy identification of outliers. As the mean group estimator is the

unweighted average across the unit specific estimates, outliers have a huge effect in

panels with a small number of cross-sectional units.

The plot underlines the difference between the unit specific and the MG esti-

mates. It shows that the unit specific estimates are not necessarily in the confidence

set of the MG estimates. Important to note is, that the MG estimates are consis-

tent even if the unit specific estimates are not. A possible reason for the bias is the

length of the time series, which is with 47 periods rather short. This biases both

the unit and the MG estimates. The unit specific estimates are biased because they

solely rely on the unit specific time series and have a degree of freedom as shown on

the output on page 88. As discussed in Chapter 3.6, the bias of the MG estimates

decreases substantially with an increase in the number of time periods. In addition,

outliers of the estimated unit specific coefficients can have an effect on the MG es-

timates. For example, it becomes apparent that unit 8 is an outlier with respect

to both coefficients. For log_ck the confidence interval of the unit specific estimate

even lies outside of the confidence interval of the MG estimate.

In a next step, all 3 coefficients are constrained to be the same across countries,

βi,k = βk,∀i = 1, .., N, k = 1, ..., 3, by specifying the pooled() option. The constant

is pooled using the pooledconstant option and xtdcce2 is forced to report the

constant using reportconstant.11

. xtdcce2 log_rgdpo L.log_rgdpo log_ck log_ngd , /*
> */ pooled(L.log_rgdpo log_ck log_ngd) /*
> */ crosssectional(log_rgdpo log_ck log_ngd) cr_lags(3) /*
> */ pooledconstant reportconstant
(Dynamic) Common Correlated Effects Estimator - Pooled

Panel Variable (i): id Number of obs = 4092
Time Variable (t): year Number of groups = 93

Obs per group (T) = 44
Degrees of freedom per cross-sectional unit:
without cross-sectional averages = 40 F(1120, 2972) = 6.78
with cross-sectional averages = 28 Prob > F = 0.00

Number of R-squared = 0.72

11Pesaran (2006) discusses the MG and the pooled version of the CCE estimator. A pooled
version in the dynamic setting is not mentioned in Chudik and Pesaran (2015a).
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Figure 3.1: Range plot for mean group estimates of the variables log_ngd and
log_ck.
Point estimates are indicated by a cross, the mean group estimates by the red line
and the 95% confidence interval by the range plots.

cross-sectional lags = 3 Adj. R-squared = 0.61
variables in mean group regression = 4 Root MSE = 0.06
variables partialled out = 1116

CD Statistic = -0.89
p-value = 0.3738

log_rgdpo Coef. Std. Err. z P>|z| [95% Conf. Interval]

Pooled Variables:
L.log_rgdpo .796726 .066135 12.05 0.000 .6671033 .9263487

log_ck .084764 .042991 1.97 0.049 .0005027 .1690251
log_ngd .012159 .045954 0.26 0.791 -.0779094 .102228

_cons 2.4e-14 .9422 0.00 1.000 -1.846679 1.846679

Pooled Variables: L.log_rgdpo log_ck log_ngd _cons
Cross-Sectional Averaged Variables: log_rgdpo log_ck log_ngd

The estimate for the constant is zero with probability 1. This result is expected,

as outlined in the section above, because all coefficients are pooled, the panel is

balanced and all variables are added as cross-sectional means. For the calculation of

the standard errors, xtdcce2 follows the approach from Pesaran (2006) as outlined
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in section (1.5), equation 1.43. To obtain estimates of πi and πMG, xtdcce2 performs

in the background a MG estimation.

As a final exercise, assume that investments into physical capital are endogenous.

Countries with a large GDP per capita can save more and therefore accumulate more

capital. This leads to a reversed causality of investments into physical capital and

the level of GDP; for a discussion see for example Durlauf et al. (2005) or Temple

(1999). As suggested in Temple (1999) lags of the endogenous variable are used as

an instrument. In order to avoid a further drop in the degree of freedom by adding

more variables to the model, the first two lags are used as instruments.

In line with the syntax of ivreg2 (Baum, Schaffer and Stillman, 2003, 2007), in-

strumented (endogenous) variables and the instruments are enclosed in parenthesis,

where the instrumented variable is followed by an equal sign and the instruments:

. xtdcce2 log_rgdpo L.log_rgdpo log_ngd /*
> */ (log_ck = L.log_ck L2.log_ck) , /*
> */ crosssectional(log_rgdpo log_ck log_ngd) cr_lags(3) /*
> */ ivreg2options(noid)
(Dynamic) Common Correlated Effects Estimator - Mean Group IV

Panel Variable (i): id Number of obs = 3999
Time Variable (t): year Number of groups = 93

Obs per group (T) = 43
Degrees of freedom per cross-sectional unit:
without cross-sectional averages = 40 F(1396, 2603) = 23.27
with cross-sectional averages = 27 Prob > F = 0.00

Number of R-squared = 0.72
cross-sectional lags = 3 Adj. R-squared = 0.56
variables in mean group regression = 279 Root MSE = 0.04
variables partialled out = 1117

CD Statistic = 1.12
p-value = 0.2618

log_rgdpo Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean Group Estimates:
log_ck .021632 .035794 0.60 0.546 -.0485226 .0917865

L.log_rgdpo .599657 .024456 24.52 0.000 .5517248 .6475899
log_ngd .063232 .090544 0.70 0.485 -.1142319 .240696

Mean Group Variables: L.log_rgdpo log_ngd
Cross-Sectional Averaged Variables: log_rgdpo log_ck log_ngd
Endogenous Variables: log_ck
Exogenous Variables: L.log_ck L2.log_ck
Heterogenous constant partialled out.
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3.5.2 Pooled Mean Group

In the following, xtdcce2 is compared to results from xtpmg, by Blackburne and

Frank (2007). xtpmg implements the PMG estimator by Shin et al. (1999) into

Stata. The two programs differ in two ways. First of all xtpmg estimates the

following equation

∆ci,t = φi(ci,t−1 − θ1,iyi,t − θ2,iπi,t) + δ0,i + δ1,i∆yi,t + δ2,i∆πi,t + εi,t, (3.9)

while xtdcce2 internally estimates (leaving out any cross-sectional averages):

∆ci,t = φici,t−1 + γ1,iyi,t + γ2,iπi,t + δ0,i + δ1,i∆yi,t + δ2,i∆πi,t + εi,t, (3.10)

Secondly, xtpmg calculates the long run coefficients using ML. xtdcce2 treats the

long run coefficients, defined in lr(), as further covariates and estimates equation

(3.10) entirely by OLS. To calculate the long run coefficients, the coefficients are

divided by the negative of the long run cointegration vector to match equation

(3.9), θ1,i = −γ1,i/φi. The variances are calculated using the Delta method as

described in the Appendix. B.2. Equation (3.10) and the coefficients γ1,i, ..., γK,i

can be estimated by using lr_options(nodivide).

The jasa2 dataset is used to explain consumption with inflation and income after

1962 as in Blackburne and Frank (2007).12 The present dataset is unbalanced as

one cross-sectional unit misses an observation for the year 1993. xtdcce2 checks

if any panel misses observations before calculating the cross-sectional averages and

estimating the coefficients.13 In the case of missing observations, the panel is un-

balanced and xtdcce2 removes all observations for the cross-sectional unit in the

specific time period for further calculations. In the jasa2 dataset, the minimum
12The dataset is available at http://www.econ.cam.ac.uk/faculty/pesaran.
13Stata defines 3 types of balances for a panel: strongly balanced, weakly balanced or unbalanced.

In a strongly balanced panel all cross-sectional units have the same time values. A weakly balanced
panel is defined as all cross-sectional units have the same number of time values. All other panels
are unbalanced. See help tsset.
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number of time periods is 31 and the maximum number is 32 time periods. N/T

can be assumed constant and therefore a common correlated effects estimator can

be applied. The output from xtdcce2 is the following:14

. use jasa2, clear

. tsset id year
panel variable: id (unbalanced)
time variable: year, 1960 to 1993

delta: 1 unit

. eststo xtdcce1: xtdcce2 d.c d.pi d.y if year >= 1962 , /*
> */ lr(l.c pi y) p(l.c pi y) nocrosssectional lr_options(xtpmgnames)
(Dynamic) Common Correlated Effects Estimator - Pooled Mean Group

Panel Variable (i): id Number of obs = 767
Time Variable (t): year Number of groups = 24

Obs per group:
min = 31
avg = 32
max = 32

Degrees of freedom per cross-sectional unit:
without cross-sectional averages = 26.958333 F(52, 715) = 36.62
with cross-sectional averages = 25.958333 Prob > F = 0.00

Number of R-squared = 0.73
cross-sectional lags = 0 Adj. R-squared = 0.71
variables in mean group regression = 51 Root MSE = 0.02
variables partialled out = 1

CD Statistic = 4.10
p-value = 0.0000

D.c Coef. Std. Err. z P>|z| [95% Conf. Interval]

Short Run Estimates:

Mean Group Estimates:
D.pi -.054823 .029859 -1.84 0.066 -.1133453 .0036984
D.y .380249 .035007 10.86 0.000 .3116365 .4488617

Long Run Estimates:

Pooled Variables:
ec -.168358 .119581 -1.41 0.159 -.4027324 .066017
pi -.194124 .111477 -1.74 0.082 -.4126141 .0243664
y .902577 .131913 6.84 0.000 .6440312 1.161122

Pooled Variables: ec pi y
Mean Group Variables: D.pi D.y
Long Run Variables: ec pi y
Heterogenous constant partialled out.

The long- and the short-run estimates are split up into two parts; one showing

the results for the average long and average short run coefficients.15 As the dataset
14For a later use the regression results are stored using the estout package (Jann, 2004).
15First the long run coefficients for each cross-section are computed and in a second step the

individual long run coefficients are averaged. As an example, the average long run coefficient for
ˆ̄θ1 is calculated as: ˆ̄θ1 = 1/N

∑N
i=1 θ̂1,i = 1/N

∑N
i=1(−γ̂1,i/φ̂i). If φ is heterogeneous, but let’s say

θ1 homogeneous, then the long run coefficient γ1 is calculated as γ̂1 = −θ̂1/(1/N
∑N
i=1 φ̂i). The
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is unbalanced, the minimum, average and maximum number of time periods are

displayed. For the remaining regressions, esttab produces the following output:

. eststo xtpmg: qui xtpmg d.c d.pi d.y if year>=1962, lr(l.c pi y) ec(ec) replace pmg

. eststo xtdcce2: qui xtdcce2 d.c d.pi d.y if year >= 1962 , /*
> */ lr(l.c pi y) pooled(l.c pi y) nocrosssectional lr_options(nodivide xtpmgnames)

. eststo xtdcce3: qui xtdcce2 d.c d.pi d.y if year >= 1962 , /*
> */ lr(l.c pi y) pooled(l.c pi y) crosssectional(d.c d.pi d.y) /*
> */ cr_lags(0) lr_options(xtpmgnames)

. esttab xtpmg xtdcce1 xtdcce2 xtdcce3 /*
> */ , mtitles("xtpmg - mg" "xtdcce2 - mg" "xtdcce2 - mg" "xtdcce2 - cce" ) /*
> */ modelwidth(13) se s(N cd cdp)

(1) (2) (3) (4)
xtpmg - mg xtdcce2 - mg xtdcce2 - mg xtdcce2 - cce

ec
pi -0.466*** -0.194 -0.0327 -0.276

(0.0567) (0.111) (0.0473) (0.195)

y 0.904*** 0.903*** 0.152** 0.940***
(0.00868) (0.132) (0.0541) (0.0895)

SR
ec -0.200*** -0.168 -0.168*** -0.184*

(0.0322) (0.120) (0.0490) (0.0901)

D.pi -0.0183 -0.0548 -0.0548 0.0237
(0.0278) (0.0299) (0.0299) (0.0317)

D.y 0.327*** 0.380*** 0.380*** 0.384***
(0.0574) (0.0350) (0.0350) (0.0431)

_cons 0.154***
(0.0217)

N 767 767 767 767
cd 4.101 4.101 0.671
cdp 0.0000410 0.0000410 0.502

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

Column (1) shows the results using xtpmg, columns (2) - (4) using xtdcce2.

Column (1) matches the results from Blackburne and Frank (2007, p. 203). As

expected, the MG estimates obtained by xtpmg and xtdcce2 differ due to the dif-

ferent estimation methods. However, the signs of the MG estimates are the same,

especially for the short run coefficients. This implies that xtdcce2 can be employed

to estimate the pooled mean group model. In column (3) the option nodivide is

calculation of the average long run coefficients is the same as in Chudik et al. (2016). In addition,
if the the differences are replaced by lags, the Cross-Sectionally Augmented Distributed Lag (CS-
DL) estimator (Chudik et al., 2016) with one lag of the independent and dependent variable is
obtained.
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used, producing estimates for equation (3.10).16

As the last row indicates, using no cross-sectional averages leads to a rejection of

the null hypothesis of weak cross-section dependence. Cross-sectional dependence

remains in the residuals and OLS becomes inconsistent. To account for the cross-

sectional dependence, cross-sectional averages are added in column (4). The p-value

(row cdp) increases to 0.5 and the hypothesis of weak cross-sectional dependence

cannot be rejected any longer.

The average short run coefficients can be restricted to be equal across all units

by including them in the pooled() option. At the same time, the average long

run coefficients can be allowed to vary as well. To test under which constraints the

model is consistent, the Hausman test can be performed:

. eststo mg: qui xtdcce2 d.c d.pi d.y if year >= 1962 , /*
> */ lr(l.c pi y) nocrosssectional

. eststo pmg: qui xtdcce2 d.c d.pi d.y if year >= 1962 , /*
> */ lr(l.c pi y) pooled(l.c pi y) nocrosssectional

. eststo pooled: qui xtdcce2 d.c d.pi d.y if year >= 1962 , /*
> */ lr(l.c pi y) pooled(l.c pi y d.pi d.y) nocrosssectional

. hausman mg pooled, sigmamore

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
mg pooled Difference S.E.

pi
D1. -.0253642 -.0280826 .0027184 .

y
D1. .2337588 .3811944 -.1474357 .

c
L1. -.3063473 -.1794146 -.1269326 .
pi -.3529095 -.266343 -.0865666 .0844914
y .9181344 .9120574 .0060771 .

b = consistent under Ho and Ha; obtained from xtdcce2
B = inconsistent under Ha, efficient under Ho; obtained from xtdcce2

Test: Ho: difference in coefficients not systematic

chi2(5) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 2.37

Prob>chi2 = 0.7964
(V_b-V_B is not positive definite)

. hausman pmg pooled, sigmamore

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
pmg pooled Difference S.E.

16An alternative to obtain long run coefficients in a dynamic panel using a restricted version of
the between estimator is outlined in Ditzen and Gundlach (2016).
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pi
D1. -.0548234 -.0280826 -.0267408 .

y
D1. .3802491 .3811944 -.0009453 .

c
L1. -.1683577 -.1794146 .0110569 .
pi -.1941238 -.266343 .0722191 .0396237
y .9025766 .9120574 -.0094807 .

b = consistent under Ho and Ha; obtained from xtdcce2
B = inconsistent under Ha, efficient under Ho; obtained from xtdcce2

Test: Ho: difference in coefficients not systematic

chi2(5) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 0.97

Prob>chi2 = 0.9650
(V_b-V_B is not positive definite)

The result of the Hausman test is similar to the one obtained in Blackburne and

Frank (2007, Section 4.3 and 4.4). The first Hausman test implies that the pooled

model is preferred over the mean group model. The second Hausman test compares

the pooled mean group and the pooled model. The conclusion is different from

that in Blackburne and Frank (2007), in that the pooled group model is preferred.

However one difference to Blackburne and Frank (2007) and one limitation of the

Hausman test are worth noting. First of all, xtdcce2 includes in the Hausman test

all coefficients, while Blackburne and Frank (2007) only include the coefficients of

the long run vector (pi and y). Secondly, as Pesaran and Yamagata (2008) point

out, a Hausman test lacks power in the case of pure exogenous regressors if under

the null hypothesis the slope parameters are drawn from the same distribution. Also

a test for slope homogeneity in multifactor error structure models in a large N and

large T panel with an unknown number of factors and a lagged dependent variable

has not been established.17

3.5.3 Mean Group and Common Correlated Effects

xtdcce2 is able to compute the MG and CCE estimators by Pesaran and Smith

(1995) and Pesaran (2006), introduced to Stata by the xtmg command (Eberhardt,

2012). Following Eberhardt (2012) using the dataset manu_stata9.dta, xtmg leads
17Ando and Bai (2015) derive a test for a multifactor error structure model, but they assume

that the common factors are estimated. An estimation of the common factors is neither in Pesaran
(2006) nor Chudik and Pesaran (2015b) considered and not supported by xtdcce2.
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to the following mean group results:18

. use manu_stata9.dta

. xtset nwbcode year
panel variable: nwbcode (strongly balanced)
time variable: year, 1970 to 2002

delta: 1 unit

. eststo xtmg95: qui xtmg ly lk, trend

. eststo xtmg06: qui xtmg ly lk, cce trend

. estout xtmg95 xtmg06 , c(b(star fmt(4)) se(fmt(4) par)) /*
> */ mlabels("xtmg - mg" "xtmg - cce" ) s(N cd cdp , fmt(0 3 3 )) /*
> */ drop(*_ly *_lk) rename(__000007_t trend) collabels(,none)

xtmg - mg xtmg - cce

lk 0.1789* 0.3125***
(0.0805) (0.0849)

trend 0.0174*** 0.0108**
(0.0030) (0.0035)

_cons 7.6528*** 4.7860***
(0.8546) (1.3227)

N 1194 1194
cd
cdp

.

. eststo xtdcce95: qui xtdcce2 ly lk ,/*
> */ crosssectional(ly lk) trend nocrosssectional reportconstant

. eststo xtdcce06: qui xtdcce2 ly lk , /*
> */ crosssectional(ly lk) cr_lags(0) trend reportconstant

. estout xtdcce95 xtdcce06 , c(b(star fmt(4)) se(fmt(4) par)) /*
> */ mlabels("xtdcce2-mg" "xtdcce2-cce" ) s(N cd cdp , fmt(0 3 3 )) /*
> */ rename(__000007_t trend) collabels(,none)

xtdcce2-mg xtdcce2-cce

lk 0.1789* 0.3125***
(0.0805) (0.0849)

trend 0.0174*** 0.0108**
(0.0030) (0.0035)

_cons 7.6354*** 4.7752***
(0.8531) (1.3202)

N 1194 1194
cd 6.686 -0.201
cdp 0.000 0.841

The first table shows the estimation results from Table 1, p. 67 in Eberhardt

(2012). The lower table displays results on the same equation using xtdcce2. The

first column shows in both tables a MG regression, the second column shows a
18The dataset manu_stata9.dta is taken from Eberhardt and Teal (2017) and is available at

https://sites.google.com/site/medevecon/.
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common correlated effects regression with contemporaneous cross-sectional means.

The CD test statistic rejects the hypothesis of weak cross-sectional dependence in

the case of the mean group regression. Including cross-sectional averages improves

the statistic such that the hypothesis cannot be rejected any longer. Estimation

results produced by xtmg and xtdcce2 differ slightly, as seen here by the constant.

The reason is, that xtdcce2 ensures that all variables are stored as doubles to allow

for best precision.19

3.6 Monte Carlo Simulation

In this section a Monte Carlo simulation is performed. The aims of this exercise

are several fold. First of all the estimator is compared to a simple Fixed Effects

(FE) regression. Secondly, the small time series sample adjustments are examined.

Finally, the Monte Carlo will shed light on the size of the bias depending on the

time and cross-sectional dimension. This can give guidance under which dimensions

the DCCE estimator can be used. The Monte Carlo simulation is carried out on the

lines of Chudik and Pesaran (2015a). The underlying model is:

yi,t = cyi + φiyi,t−1 + β0ixi,t + β1ixi,t−1 + ui,t (3.11)

ui,t = γ′ift + εi,t (3.12)

xi,t = cxi + αxiyi,t−1 + γxift + vxi,t (3.13)

gi,t = cgi + αgiyi,t−1 + γgift + vgi,t (3.14)

yi,t is the dependent variable and xi,t a vector of K independent variables. Without

loss of generality, it is assumed that only one independent variable exists. gi,t is a

set of covariates which are affected by the unobserved factors, but are not used to

estimate yi,t. The coefficient for the contemporaneous value of xi,t is drawn from a

uniform distribution as β0i ∼ IIDU(0.5, 1). The coefficient on the lagged value of

the independent variable is set to β1i = −0.5. For the lagged dependent variable two
19xtdcce2 creates all variables as doubles. xtmg stores newly created variables as floats. Another

difference versus xtmg is that xtdcce2 supports time-series operators.
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different scenarios are considered for the calculation of yi,t and xi,t. One with low

values for φ, φi ∼ IIDU(0, 0.8) and αxi ∼ IIDU(0, 0.35) and one with high values

φi ∼ IIDU(0.5, 0.9) and αxi ∼ IIDU(0, 0.15). αgi is in both scenarios the same:

αgi ∼ IIDU(0, 1).20 In comparison to Chudik and Pesaran (2015a), the number of

common factors is restricted to one. As shown in their Monte Carlo simulation, the

results are robust for a small number of common factors. The common factors ft

are potentially correlated over time (ρf 6= 0). The error εi,t is heteroskedastic and

weakly cross-sectional dependent (αCSD = 0.4). Appendix B.3.1 describes detailed

the data generating process for the Monte Carlo simulation.

xtdcce2 estimates the following equation:

yi,t = cyi + φiyi,t−1 + β0ixi,t + β1ixi,t−1 +
pt∑
l=0

δ′ilz̄t−l + eyi,t. (3.15)

The number of lags is set to the integer part of T 1
3 . The cross-sectional averages

contain y, x and g. Besides the unadjusted estimator, jackknife and RMA estimators

are used.

Within each run of the Monte Carlo simulation, the following command line for

xtdcce2 was used:21

. xtdcce2 y L.y x L.x , cr_lags(lags) cr(y x)

Results for four different specifications will be presented next, see Table 3.1.

Tables 3.2 - 3.4 show Monte Carlo results for φ, β0 and β1 with E(φi) = 0.4 and

ρ = 0.6. For the following three tables (Tables 3.5 - 3.7), ρ is set to zero, implying

that the common factors are IIDN(0, 1) distributed and not correlated over time.

For the next three tables (3.8 - 3.10) common factors are correlated again with

ρf = 0.6 and E(φi) = 0.7. For the fourth specification, ρf is set to 0 with high values

of φ. For specification 5 the option pooled(L.x) is added to the command line,

treating the coefficient β1 as pooled. This result will show, if the MG estimate will
20φi and αxi depend on each other to make sure that the series yi,t and xi,t are stationary. See

Chudik and Pesaran (2015a), p. 399-400.
21The simulations were carried out with xtdcce2 version 1.33 and Stata 14. For the RMA and

jackknife half-panel correction methods the options recursive and jackknife are used.
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estimate β1 with different bias than the pooled estimates. The last two specifications

are presented in the Appendix B.3.2, with the exception of Table 3.11. The results

are similar with respect to the biases from Specification 1 and Specification 2.

Specification E(φi) ρf Mean Group Pooled Tables
Variables

1 0.3 0.6 L.y x L.x - Tables 3.2 - 3.4
2 0.3 0 L.y x L.x - Tables 3.5 - 3.7
3 0.7 0.6 L.y x L.x - Tables 3.8 - 3.10
4 0.7 0 L.y x L.x - Tables B.1 - B.3
5 0.3 0.6 L.y x L.x Tables B.4, B.5 and 3.11

Table 3.1: Specifications for Monte Carlo Simulations
The DGP is yi,t = cyi + φiyi,t−1 + β0ixi,t + β1ixi,t−1 + γ′ift + εi,t, where β0i ∼
IIDU(0.5, 0.1), β1i = 0.5, cyi ∼ IIDN(0, 1), γi =

√
1− σ2

γ + ηiγ with ηiγ ∼
IIDN(0, σ2

γ) and σ2
γ = 0.22 and ft = ρfft−1 + ςft with ςft ∼ IIDN(0, 1− ρ2

f ).

3.7 Monte Carlo Results

In a small, finite sample the bias of the DCCE estimator potentially arises from

three sources: the length of the time series, cross-sectional dependence and hetero-

geneous slope coefficients. The first source relates to small T and the time series

bias of order T−1 (Hurwicz bias) and is expected to decrease with T →∞. The het-

erogeneous coefficients are assumed to be randomly distributed around a common

mean. As N converges to infinity, the mean group estimate converges to its true

parameter, ignoring any influence from the other two biases. Therefore the bias due

to heterogeneous coefficients is expected to decrease with an increase in N . The bias

due to cross-sectional dependence needs to be separated further. For a given T and

an increase in N , weak cross sectional dependence declines. Strong cross-sectional

dependence does not decline when N increases, but should not pose a problem as

the cross-sectional averages take it out.

Tables 3.2-3.4 present the Monte Carlo Simulation results for low values of

φ = E(φi) = 0.4 and ρ = 0.6. As cross-sectional averages ȳt, x̄t and ḡt are added.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 5.21 10.20 16.51 19.98 19.76 7.21 7.60 8.36 9.16 8.94
50 4.07 8.82 15.38 18.56 19.84 6.38 6.67 7.68 8.53 8.91
100 5.23 8.91 15.70 18.34 19.54 5.13 5.81 7.22 8.01 8.37
150 5.60 9.71 16.09 18.43 20.06 4.91 5.62 7.08 7.82 8.44
200 5.16 8.66 16.55 18.08 19.16 4.50 4.98 7.23 7.68 8.01

DCCE without bias correction
40 -42.85 -31.69 -13.52 -8.06 -5.54 18.14 13.53 6.26 4.11 3.02
50 -42.91 -30.28 -13.45 -8.25 -6.33 18.03 12.95 6.11 3.99 3.18
100 -43.33 -31.51 -13.66 -8.83 -6.17 17.86 12.96 5.85 3.90 2.78
150 -42.16 -31.11 -13.73 -8.74 -6.31 17.23 12.70 5.70 3.72 2.75
200 -43.65 -31.43 -13.69 -8.96 -6.19 17.75 12.80 5.67 3.73 2.65

DCCE with jackknife bias correction
40 -39.57 -28.49 -10.88 -6.13 -3.98 17.01 12.46 5.42 3.56 2.61
50 -39.79 -26.83 -10.77 -6.25 -4.76 16.97 11.75 5.23 3.38 2.74
100 -40.13 -28.03 -11.03 -6.86 -4.65 16.73 11.68 4.90 3.21 2.28
150 -38.81 -27.48 -11.07 -6.76 -4.77 15.97 11.32 4.72 2.98 2.19
200 -40.52 -27.95 -11.05 -6.97 -4.64 16.56 11.48 4.66 2.98 2.09

DCCE with RMA bias correction
40 -46.80 -34.56 -14.72 -8.80 -6.20 19.76 14.67 6.69 4.35 3.24
50 -46.80 -33.25 -14.91 -8.99 -6.94 19.60 14.13 6.65 4.24 3.38
100 -47.11 -34.36 -14.95 -9.48 -6.71 19.39 14.11 6.34 4.15 2.98
150 -46.10 -34.01 -14.87 -9.44 -6.90 18.80 13.84 6.15 3.99 2.97
200 -47.18 -34.41 -14.88 -9.69 -6.73 19.16 13.98 6.13 4.01 2.85

Table 3.2: Monte Carlo Results for Specification 1 and φ, with φ = E(φi) = 0.4.
The DGP is yi,t = cyi + φiyi,t−1 + β0ixi,t + β1ixi,t−1 + γ′ift + εi,t, where β0i ∼
IIDU(0.5, 0.1), β1i = 0.5, cyi ∼ IIDN(0, 1), γi =

√
1− σ2

γ + ηiγ with ηiγ ∼
IIDN(0, σ2

γ) and σ2
γ = 0.22, ft = ρfft−1 + ςft with ςft ∼ IIDN(0, 1− ρ2

f ), ρf = 0.6.
αCSD = 0.4. For a further description see Section 3.6.

The first panel of Table 3.2 shows results of the fixed effects estimator. The Fixed

Effects (FE) estimator suffers from three sources of biases, the time series bias,

a bias ignoring the cross-sectional dependence and the heterogeneous slope coeffi-

cients. The bias increases with T, holding the number of cross-sections fixed. With

an increase in the number of cross-sections, the bias remains qualitatively similar.

Surprising is the low bias for a small number of time periods. However, the bias

climbs with an increase in T to a substantial level. A possible explanation is that

the time series bias is offset by either or both of the others. Comparing the results

to those with ρ = 0 will shed some light on this.

In the following panels results of the DCCE estimator, without and with small

sample bias correction methods are presented. In comparison to the FE estimator,
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 65.08 65.50 63.27 64.18 64.43 49.89 49.91 48.00 48.45 48.51
50 65.49 64.05 63.98 64.16 63.92 50.02 48.83 48.42 48.34 48.22
100 65.23 65.02 64.26 63.43 64.01 49.54 49.23 48.39 47.76 48.15
150 64.64 64.03 63.28 63.61 63.26 48.95 48.46 47.65 47.87 47.60
200 65.28 64.84 63.84 63.47 63.15 49.37 48.94 48.10 47.71 47.47

DCCE without bias correction
40 4.34 3.37 2.05 1.30 0.67 12.47 9.21 5.62 4.40 3.66
50 4.78 3.10 2.13 1.26 1.24 11.10 8.65 5.32 4.25 3.77
100 4.27 3.71 2.17 1.15 1.18 8.54 6.55 4.10 3.11 2.62
150 3.66 3.96 2.07 1.30 1.02 7.04 5.94 3.47 2.56 2.15
200 5.21 4.07 2.34 1.39 0.96 6.71 5.17 3.18 2.37 1.89

DCCE with jackknife bias correction
40 3.77 3.08 1.60 0.95 0.40 12.59 9.58 5.62 4.41 3.67
50 4.10 2.51 1.67 0.89 0.99 11.41 8.91 5.33 4.23 3.73
100 3.74 3.23 1.68 0.79 0.91 8.80 6.65 4.03 3.09 2.60
150 3.19 3.21 1.62 0.92 0.74 7.16 5.84 3.40 2.50 2.11
200 4.71 3.44 1.86 1.01 0.65 6.61 5.11 3.05 2.28 1.83

DCCE with RMA bias correction
40 5.22 4.79 2.90 1.84 1.21 12.89 9.66 5.76 4.51 3.76
50 6.24 4.29 3.04 1.81 1.73 11.78 9.04 5.56 4.40 3.88
100 5.14 4.94 3.05 1.69 1.67 9.04 7.21 4.42 3.27 2.77
150 4.87 5.22 2.85 1.89 1.51 7.73 6.56 3.77 2.79 2.32
200 6.04 5.38 3.16 1.95 1.46 7.25 5.83 3.56 2.59 2.08

Table 3.3: Monte Carlo Results for Specification 1 and β0, with φ = E(φi) = 0.4
and ρf = 0.6. See notes Table 3.2.

the bias decreases considerably with T. The increase due to a larger number of

cross-sectional units is not that pronounced. The bias is more than halved if the

number of time periods is increased from 50 to 100. One implication is that for low

levels of T, the main source of the bias is the time series bias. As the bias for the

largest value of N and T is around -6% and with a larger number of cross-sectional

units the coefficient on the lagged dependent variable converges to its true value,

the remaining bias is due to the cross-sectional dependence. Similar as the bias,

the Root Mean Squared Error (RMSE) decreases with an increase in the number of

time periods. For a similar bias, the RMSE of the DCCE estimator is much smaller

than for the FE estimator, implying a smaller variation of the bias of the DCCE

estimator.

In favour of this interpretation is the fact that the bias of the two small sample

corrected estimators are in a similar region for large values of T. The jackknife bias
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 5.90 10.02 12.43 15.37 15.26 10.64 10.77 9.54 9.98 9.65
50 5.29 7.69 12.53 13.99 14.72 10.06 9.49 9.01 9.17 9.08
100 5.90 8.94 12.53 13.23 13.76 7.31 7.72 7.84 7.91 8.06
150 5.86 8.45 11.44 12.84 14.04 6.59 6.82 7.00 7.46 7.79
200 6.90 8.60 11.59 12.85 13.60 6.48 6.33 6.77 7.21 7.45

DCCE without bias correction
40 -8.61 -6.20 -1.68 -0.91 -0.91 12.07 10.20 6.02 4.31 3.97
50 -6.82 -5.27 -1.83 -1.02 -1.24 11.54 9.25 5.55 4.06 3.67
100 -5.12 -3.04 -1.07 -1.10 -0.16 8.14 6.41 3.75 3.15 2.66
150 -6.78 -2.76 -0.45 -0.39 -0.29 7.50 5.88 3.32 2.65 2.15
200 -5.13 -2.88 -0.44 -0.68 -0.21 6.63 5.07 2.79 2.31 1.85

DCCE with jackknife bias correction
40 -8.43 -6.41 -1.67 -0.89 -0.93 12.59 10.62 6.15 4.39 4.01
50 -6.96 -5.55 -1.87 -1.02 -1.32 11.81 9.55 5.62 4.07 3.72
100 -5.89 -3.23 -1.04 -1.17 -0.20 8.56 6.79 3.81 3.20 2.66
150 -7.21 -2.92 -0.50 -0.50 -0.36 7.95 6.03 3.38 2.70 2.16
200 -5.75 -3.01 -0.56 -0.79 -0.32 6.96 5.21 2.82 2.32 1.87

DCCE with RMA bias correction
40 -8.24 -5.76 -0.73 -0.30 -0.47 12.50 10.21 5.94 4.34 3.96
50 -6.56 -4.48 -1.03 -0.44 -0.69 11.64 9.35 5.51 4.02 3.61
100 -3.79 -1.72 -0.16 -0.49 0.39 8.11 6.42 3.71 3.12 2.68
150 -5.97 -1.46 0.64 0.33 0.23 7.44 5.95 3.36 2.65 2.16
200 -4.42 -1.37 0.44 -0.07 0.35 6.71 5.03 2.82 2.30 1.87

Table 3.4: Monte Carlo Results for Specification 1 and β1, with φ = E(φi) = 0.4
and ρf = 0.6. See notes Table 3.2.

correction method has only little impact and decreases the bias from -42.85% to

-39.57% for N = 40, T = 40. The bias for the estimation results with the RMA bias

correction method increases, implying that the method does not lead to the desired

results of a lower bias.

There are three notable differences to the study from Chudik and Pesaran (2015a),

Table 2. First of all the FE estimator seems to perform better in samples with a

small number of time periods. Secondly the bias of the DCCE estimator remains

on a higher level than in Chudik and Pesaran (2015b). The final difference is the

performance of the correction methods. While the jackknife bias correction method

leads to an improvement in the precision of the estimates, the RMA method does

not. Especially the latter result is a stark difference to the results from Chudik and

Pesaran (2015a).
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The next two tables show the simulation results for β0 (Table 3.3) and β1 (Ta-

ble 3.4). The FE estimator has a larger bias for β0 and is in the region of 65%.

However, the bias does not decrease with neither N →∞ or T →∞. The bias for

the DCCE estimates of β0 decrease with T , as it does for φ. The level of the bias is

smaller by a magnitude. In comparison to the RMSE of φ, the fall of the RMSE for

β0 is more pronounced with N → ∞. The jackknife bias correction method again

performs better than estimation methods without correction methods.

The differences between Table 3 in Chudik and Pesaran (2015a) and Table 3.3

have the same pattern as the one mentioned before. The biases for all estimators

and specifications are larger and the RMA correction method does not lead to a

decrease of the bias.

(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 -12.57 -7.98 -2.06 0.76 0.87 7.99 6.82 4.80 4.18 3.80
50 -13.33 -8.57 -2.99 -0.34 0.94 7.72 6.25 4.28 3.81 3.76
100 -11.68 -8.70 -2.41 -0.03 0.69 6.15 5.25 3.21 2.76 2.67
150 -11.10 -7.49 -2.20 0.18 1.24 5.73 4.39 2.64 2.20 2.22
200 -11.51 -8.30 -1.69 -0.22 0.84 5.60 4.44 2.34 2.04 1.94

DCCE without bias correction
40 -36.47 -27.06 -11.58 -6.87 -4.73 15.80 11.78 5.57 3.74 2.80
50 -36.40 -25.52 -11.54 -7.02 -5.47 15.55 11.15 5.44 3.60 2.91
100 -36.79 -26.89 -11.71 -7.60 -5.30 15.31 11.18 5.12 3.47 2.48
150 -35.59 -26.51 -11.70 -7.50 -5.43 14.68 10.90 4.94 3.25 2.43
200 -36.86 -26.68 -11.72 -7.69 -5.33 15.08 10.95 4.90 3.24 2.33

DCCE with jackknife bias correction
40 -32.74 -23.65 -8.89 -4.91 -3.15 14.60 10.66 4.77 3.23 2.43
50 -32.96 -21.86 -8.78 -4.98 -3.88 14.42 9.91 4.60 3.03 2.50
100 -33.25 -23.24 -8.99 -5.60 -3.77 14.09 9.87 4.18 2.80 2.00
150 -32.03 -22.64 -8.99 -5.49 -3.86 13.35 9.45 3.96 2.52 1.89
200 -33.40 -22.98 -8.99 -5.67 -3.77 13.79 9.56 3.88 2.51 1.79

DCCE with RMA bias correction
40 -40.07 -29.88 -12.70 -7.59 -5.37 17.28 12.88 5.97 3.96 3.00
50 -40.02 -28.45 -13.00 -7.74 -6.07 16.99 12.29 5.97 3.83 3.10
100 -40.51 -29.50 -13.00 -8.25 -5.83 16.81 12.24 5.61 3.71 2.67
150 -39.34 -29.26 -12.80 -8.18 -5.98 16.14 11.99 5.35 3.51 2.63
200 -40.22 -29.47 -12.85 -8.39 -5.85 16.42 12.05 5.34 3.51 2.52

Table 3.5: Monte Carlo Results for Specification 2 and φ, with φ = E(φi) = 0.4 and
ρf = 0. See notes Table 3.2.

The bias of the FE estimates of β1 in Table 3.4 are smaller than the ones from
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 77.41 77.96 76.08 77.40 77.70 58.80 58.99 57.45 58.24 58.37
50 77.41 76.65 76.84 77.63 77.12 58.71 58.05 57.96 58.35 58.07
100 77.40 77.58 77.61 76.82 77.39 58.50 58.54 58.30 57.75 58.14
150 76.85 76.52 76.71 76.92 76.97 57.96 57.74 57.67 57.80 57.85
200 77.33 77.52 77.08 76.91 76.75 58.30 58.36 57.98 57.74 57.63

DCCE without bias correction
40 4.02 3.02 1.87 1.28 0.64 12.39 9.13 5.54 4.40 3.65
50 4.71 2.84 2.07 1.18 1.20 10.75 8.53 5.32 4.25 3.79
100 4.13 3.59 2.10 1.09 1.13 8.39 6.56 4.09 3.09 2.62
150 3.47 3.90 1.90 1.22 0.96 6.91 5.97 3.41 2.53 2.14
200 4.88 3.93 2.20 1.30 0.92 6.53 5.09 3.12 2.32 1.89

DCCE with jackknife bias correction
40 3.40 2.71 1.40 0.91 0.36 12.53 9.42 5.56 4.40 3.66
50 3.99 2.14 1.55 0.82 0.94 11.13 8.83 5.33 4.25 3.76
100 3.63 3.10 1.57 0.71 0.86 8.61 6.68 4.01 3.08 2.60
150 2.94 3.15 1.43 0.82 0.68 7.02 5.84 3.35 2.47 2.10
200 4.33 3.31 1.70 0.91 0.60 6.46 5.02 3.00 2.24 1.84

DCCE with RMA bias correction
40 5.05 4.42 2.65 1.77 1.14 12.68 9.60 5.67 4.49 3.73
50 6.06 4.07 2.95 1.69 1.64 11.44 8.93 5.53 4.39 3.88
100 5.14 4.79 2.93 1.58 1.58 8.91 7.17 4.40 3.25 2.75
150 4.84 5.13 2.63 1.75 1.41 7.56 6.55 3.67 2.72 2.28
200 5.83 5.13 2.96 1.82 1.37 7.08 5.70 3.47 2.53 2.05

Table 3.6: Monte Carlo Results for Specification 2 and β0, with φ = E(φi) = 0.4
and ρf = 0. See notes Table 3.2.

the DCCE estimator again. Similar to the obtained results so far, the bias is more

pronounced with an increase in T .22 The DCCE estimates are again improving with

an increase in the number of time periods. The bias correction methods seem not

to be important for the regression estimates.

In the following (Tables 3.5 to 3.7), results for φ with E(φi) = 0.4 and no auto-

correlated common factors ρf = 0 are discussed. The bias for the FE estimator in

Table 3.5 turns negative, so the estimates are pushed upwards due to the autocorre-

lation in the common factors. The bias for the DCCE specifications is only slightly

smaller in comparison to the results with serially correlated factors. As the bias

only changes little when the number of cross-sections is increased, but it deceases
22Chudik and Pesaran (2015a) do not show any simulation results for β1. Neither in the published

paper, nor in an online appendix or working paper versions.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 25.60 30.50 33.96 36.93 37.07 16.17 17.83 18.29 19.43 19.35
50 25.42 28.79 33.93 35.93 36.42 15.86 16.63 17.94 18.84 18.90
100 25.53 29.61 34.34 35.42 35.96 14.28 15.95 17.78 18.18 18.41
150 26.03 29.28 33.83 35.12 36.48 14.06 15.51 17.36 17.93 18.52
200 26.61 29.68 33.66 35.17 36.36 14.26 15.52 17.14 17.86 18.41

DCCE without bias correction
40 -6.15 -4.76 -0.99 -0.53 -0.64 11.64 9.81 5.99 4.28 3.96
50 -4.57 -3.72 -1.28 -0.63 -0.94 11.13 9.05 5.50 4.06 3.66
100 -3.07 -1.73 -0.43 -0.69 0.13 7.88 6.27 3.73 3.13 2.66
150 -4.99 -1.35 0.09 -0.02 -0.01 6.99 5.74 3.33 2.62 2.13
200 -3.22 -1.56 0.13 -0.30 0.07 6.26 4.91 2.78 2.28 1.84

DCCE with jackknife bias correction
40 -5.80 -4.96 -1.01 -0.48 -0.64 12.14 10.28 6.13 4.36 4.00
50 -4.55 -3.94 -1.31 -0.63 -1.02 11.50 9.39 5.58 4.07 3.71
100 -3.51 -1.86 -0.39 -0.76 0.09 8.30 6.59 3.80 3.19 2.66
150 -5.25 -1.42 0.04 -0.12 -0.07 7.31 5.88 3.39 2.66 2.14
200 -3.71 -1.57 0.02 -0.40 -0.03 6.56 5.04 2.82 2.29 1.85

DCCE with RMA bias correction
40 -5.78 -4.38 -0.07 0.07 -0.23 12.26 9.91 5.96 4.32 3.96
50 -4.03 -2.88 -0.51 -0.07 -0.44 11.14 9.17 5.48 4.05 3.61
100 -1.87 -0.27 0.42 -0.12 0.64 7.91 6.35 3.71 3.13 2.70
150 -4.07 -0.04 1.13 0.65 0.47 6.97 5.81 3.40 2.64 2.14
200 -2.35 0.00 0.97 0.29 0.59 6.36 4.96 2.85 2.28 1.88

Table 3.7: Monte Carlo Results for Specification 2 and β1, with φ = E(φi) = 0.4
and ρf = 0. See notes Table 3.2.

with the number of time periods, the small time series bias plays a crucial role.

Theoretically, β0 and β1 are expected to suffer less from the small sample time series

bias than φ. This result is confirmed again in Tables 3.6 and 3.7. It is interesting

to note, that the DCCE estimator is able to identify the mean group estimates for

the heterogeneous coefficient β0 and for the homogeneous coefficient β1 well with a

low bias.

As a penultimate exercise in Table 3.8 to 3.10, high values for the autocorrelation

coefficient (E(φi) = 0.7) are considered. The bias for the FE estimates is remarkably

low, but again increases with T . The DCCE estimates are smaller than with E(φi) =

0.4, but still extensive and decline with T. This shows again the robust behaviour

of the DCCE estimator with respect to changes of the correlation over time and
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 0.40 3.01 6.51 8.14 8.60 4.60 4.62 5.54 6.31 6.49
50 0.10 2.47 6.26 7.85 8.45 4.28 4.17 5.28 6.03 6.33
100 0.51 2.61 6.36 7.81 8.52 3.43 3.68 5.06 5.83 6.24
150 0.65 2.59 6.68 7.90 8.71 3.21 3.35 5.13 5.79 6.31
200 0.48 2.47 6.84 7.70 8.36 3.04 3.18 5.20 5.68 6.06

DCCE without bias correction
40 -30.21 -22.13 -9.37 -5.89 -3.97 21.88 16.15 7.04 4.62 3.22
50 -31.07 -22.03 -9.52 -5.94 -4.37 22.42 16.00 7.08 4.54 3.43
100 -31.53 -22.82 -9.85 -6.23 -4.39 22.50 16.27 7.12 4.57 3.25
150 -30.87 -22.54 -9.84 -6.28 -4.52 21.94 15.98 7.02 4.52 3.28
200 -31.53 -22.61 -9.92 -6.37 -4.42 22.36 16.02 7.06 4.55 3.18

DCCE with jackknife bias correction
40 -28.26 -19.98 -7.61 -4.57 -2.88 20.59 14.77 5.92 3.83 2.61
50 -29.04 -19.85 -7.70 -4.59 -3.27 21.12 14.59 5.91 3.70 2.78
100 -29.50 -20.58 -8.09 -4.86 -3.31 21.17 14.77 5.95 3.66 2.55
150 -28.69 -20.24 -8.06 -4.90 -3.42 20.47 14.41 5.81 3.59 2.55
200 -29.53 -20.40 -8.13 -4.98 -3.33 21.01 14.51 5.84 3.60 2.46

DCCE with RMA bias correction
40 -35.33 -26.15 -11.15 -7.01 -4.85 25.49 18.95 8.24 5.35 3.80
50 -35.57 -25.86 -11.43 -6.98 -5.22 25.59 18.68 8.39 5.23 3.98
100 -36.29 -26.56 -11.55 -7.15 -5.17 25.85 18.88 8.29 5.19 3.79
150 -35.51 -26.27 -11.50 -7.26 -5.31 25.18 18.57 8.17 5.20 3.83
200 -36.13 -26.51 -11.57 -7.34 -5.18 25.57 18.75 8.21 5.22 3.71

Table 3.8: Monte Carlo Results for Specification 3 and φ, with φ = E(φi) = 0.7 and
ρf = 0.6. For a further description see Section 3.6.

underlines its exposure to the small sample time series bias.

Lastly, Table 3.11 contains the results with the pooled coefficient (β1,i = β1∀ i)

on the lagged explanatory variable. In order to save space, the results for φ and β0

can be found in the Appendix in Tables B.4 and B.5. The biases for both coefficients

are in a similar order, however slightly smaller. In comparison to the results from

Table 3.4, the MG estimator does a good job. The bias of the pooled estimation

is smaller, but not by a large magnitude. It is interesting to note that the bias for

the estimation without bias correction turns positive. Therefore, the RMSE for the

large panels is larger than the one for the MG estimation.

Overall, the Monte Carlo simulations show the following: first for the common

correlated effects estimators and the number of time periods decreases the bias more

substantially than the number of cross-sectional units. This implies that the time
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 72.05 73.21 71.75 72.50 72.87 55.07 55.63 54.29 54.60 54.76
50 72.48 71.18 72.19 72.72 72.35 55.25 54.15 54.54 54.69 54.50
100 72.44 72.66 72.67 72.28 72.73 54.97 54.98 54.67 54.38 54.67
150 72.02 71.77 71.83 72.41 72.42 54.50 54.29 54.06 54.45 54.46
200 72.61 72.68 72.41 72.27 72.08 54.87 54.83 54.53 54.29 54.15

DCCE without bias correction
40 1.03 1.07 1.13 0.72 0.37 11.82 8.84 5.55 4.36 3.69
50 1.56 0.86 1.23 0.62 0.80 10.56 8.60 5.21 4.17 3.71
100 1.41 1.43 1.07 0.48 0.73 8.00 6.11 3.93 3.01 2.55
150 0.73 1.50 1.05 0.63 0.50 6.53 5.30 3.23 2.45 2.05
200 2.16 1.80 1.26 0.69 0.49 5.78 4.44 2.83 2.23 1.81

DCCE with jackknife bias correction
40 0.98 1.24 0.95 0.57 0.23 12.21 9.40 5.61 4.41 3.73
50 1.28 0.80 1.10 0.47 0.71 11.09 8.96 5.31 4.21 3.71
100 1.47 1.42 0.90 0.34 0.61 8.38 6.43 3.98 3.05 2.58
150 0.75 1.32 0.93 0.49 0.40 6.94 5.47 3.26 2.46 2.06
200 2.23 1.66 1.10 0.54 0.34 6.00 4.59 2.86 2.23 1.81

DCCE with RMA bias correction
40 2.76 3.84 3.24 2.19 1.79 12.17 9.54 6.00 4.59 3.98
50 3.70 3.10 3.32 2.09 2.11 11.35 9.09 5.80 4.53 4.01
100 2.93 3.80 3.03 1.82 2.01 8.59 6.89 4.50 3.34 2.94
150 2.61 3.78 2.89 2.02 1.79 7.01 6.03 3.85 2.92 2.46
200 3.78 4.19 3.12 2.01 1.72 6.35 5.34 3.61 2.69 2.22

Table 3.9: Monte Carlo Results for Specification 3 and β0, with φ = E(φi) = 0.7
and ρf = 0.6. See notes Table 3.2.

series bias is the main driver of the overall bias. Therefore the simulation provided

here implies it is reasonable to employ the estimator with T = 100. Secondly,

the bias on the lagged dependent variable appears to be more pronounced than

the coefficients on exogenous explanatory variables. The last result is in line with

Chudik and Pesaran (2015a). Similar to Chudik and Pesaran (2015a), bias correction

methods have only a small impact and seem not to matter a lot. As Specification 5

showed, the MG estimator identifies a pooled variable equally well.

3.8 Conclusion

The package xtdcce2 for Stata introduces new routines to estimate a heterogeneous

panel model using dynamic common correlated effects in a large N and T panel.

It combines estimation procedures proposed in Pesaran and Smith (1995) and Shin

et al. (1999) with those in Pesaran (2006) and Chudik and Pesaran (2015a). It allows
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 12.05 18.48 24.84 28.80 30.60 12.58 13.60 14.44 15.77 16.39
50 11.34 15.99 25.48 28.77 29.62 11.88 12.24 14.30 15.55 15.65
100 12.82 18.22 25.96 28.50 29.73 9.95 11.52 13.91 14.87 15.35
150 12.83 17.03 25.71 28.40 30.50 8.87 10.32 13.57 14.69 15.62
200 13.83 18.08 25.95 28.29 29.88 9.08 10.38 13.49 14.52 15.24

DCCE without bias correction
40 -27.50 -19.98 -7.54 -4.69 -3.15 18.37 14.25 7.19 5.22 4.45
50 -26.79 -19.25 -7.86 -4.81 -3.90 17.69 13.23 6.94 5.01 4.16
100 -25.57 -17.75 -7.79 -5.28 -3.15 15.14 11.08 5.59 4.18 3.18
150 -26.03 -17.74 -7.12 -4.60 -3.48 14.83 10.56 4.95 3.59 2.88
200 -25.23 -17.56 -7.25 -5.08 -3.21 14.13 10.12 4.56 3.53 2.51

DCCE with jackknife bias correction
40 -25.60 -18.25 -6.26 -3.70 -2.39 18.08 14.01 6.99 5.15 4.37
50 -25.22 -17.76 -6.39 -3.78 -3.16 17.44 12.97 6.56 4.80 4.03
100 -24.24 -15.96 -6.43 -4.27 -2.38 14.80 10.72 5.22 3.92 3.01
150 -24.25 -15.94 -5.77 -3.59 -2.70 14.22 9.94 4.50 3.31 2.67
200 -23.88 -15.83 -5.98 -4.09 -2.48 13.67 9.43 4.09 3.20 2.30

DCCE with RMA bias correction
40 -27.31 -18.79 -5.33 -3.17 -1.73 18.60 14.06 6.76 5.00 4.28
50 -26.47 -17.58 -6.07 -3.23 -2.42 17.71 12.94 6.56 4.70 3.87
100 -24.62 -15.62 -5.72 -3.74 -1.58 14.87 10.38 4.99 3.79 2.92
150 -25.63 -16.07 -4.86 -2.92 -2.02 14.74 10.05 4.32 3.17 2.58
200 -24.99 -15.52 -5.36 -3.57 -1.80 14.17 9.43 3.96 3.08 2.17

Table 3.10: Monte Carlo Results for Specification 3 and β1, with φ = E(φi) = 0.7
and ρf = 0.6. See notes Table 3.2.

coefficients to be pooled or estimated as mean groups. Furthermore, it supports

unbalanced panels, estimation of instrumental variables, small sample time series

bias corrections and a test for cross-sectional dependence, using the included xtcd2

routine. An empirical example estimating a growth regression is given. Monte

Carlo simulation results show that the DCCE estimator is robust to changes in the

autocorrelation coefficients of the common factors and the dependent variable. The

main driver of the bias for the coefficient of the dependent variable, φ, is the small

sample time series bias. The coefficients of further explanatory variables are well

estimated with a low bias. The results imply, that the DCCE estimator can be

comfortably used in a setting with 100 time periods. If the number of time periods

is smaller, especially the coefficient on the lagged dependent variable is exposed to a

bias. In addition, the simulation showed, that the bias due to the falsely assumption

of heterogeneity is negligible.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 5.90 10.02 12.43 15.37 15.26 10.64 10.77 9.54 9.98 9.65
50 5.29 7.69 12.53 13.99 14.72 10.06 9.49 9.01 9.17 9.08
100 5.90 8.94 12.53 13.23 13.76 7.31 7.72 7.84 7.91 8.06
150 5.86 8.45 11.44 12.84 14.04 6.59 6.82 7.00 7.46 7.79
200 6.90 8.60 11.59 12.85 13.60 6.48 6.33 6.77 7.21 7.45

DCCE without bias correction
40 -4.31 -3.37 -0.93 -0.30 -0.70 11.89 10.43 6.16 4.54 4.17
50 -2.98 -2.89 -1.02 -0.13 -0.84 11.15 9.24 5.63 4.31 3.85
100 -1.06 0.21 0.03 -0.55 0.44 8.17 6.48 3.84 3.23 2.78
150 -2.44 0.64 0.77 0.43 0.21 7.08 5.76 3.54 2.72 2.28
200 -1.05 -0.12 0.67 0.02 0.46 6.34 5.11 2.83 2.34 1.94

DCCE with jackknife bias correction
40 -5.53 -4.45 -1.51 -0.70 -1.02 12.21 10.64 6.26 4.57 4.20
50 -4.22 -4.05 -1.70 -0.54 -1.21 11.32 9.49 5.72 4.33 3.89
100 -2.81 -1.10 -0.66 -1.10 0.04 8.34 6.70 3.85 3.30 2.77
150 -3.98 -0.68 0.00 -0.17 -0.26 7.39 5.84 3.53 2.71 2.29
200 -2.94 -1.36 -0.13 -0.59 -0.03 6.58 5.21 2.84 2.36 1.94

DCCE with RMA bias correction
40 -3.38 -2.45 0.09 0.41 -0.19 12.10 10.38 6.09 4.56 4.17
50 -1.94 -1.60 -0.13 0.49 -0.24 11.47 9.44 5.63 4.31 3.80
100 0.61 1.89 1.07 0.15 1.06 8.20 6.67 3.89 3.23 2.84
150 -1.12 2.28 1.97 1.22 0.78 7.09 6.04 3.67 2.78 2.32
200 0.28 1.80 1.69 0.70 1.07 6.47 5.33 2.96 2.37 2.01

Table 3.11: Monte Carlo Results for Specification 5 and β1, with φ = E(φi) = 0.3
and ρf = 0.6. The coefficient on the lagged independent variable L.x is pooled. See
notes Table 3.2.

xtdcce2 can be further developed in many ways. First of all, there is room

for speed improvements. In particular, pooled and IV estimations can be time

consuming. Features such as alternative variance and covariance estimators or bias

corrections methods as proposed in in Everaert and De Groote (2016) and Everaert

and De Vos (2016) can be easily implemented in the current framework. Another

feature can be the estimation of the average long run effects described in Chudik

et al. (2016).

Within the literature of cross-sectional dependence, several estimation proce-

dures are unavailable in Stata. The first is the two-stage estimation procedure in

Bailey, Holly and Pesaran (2016) (this estimation strategy is summarised in the

next chapter). Econometric theory discusses the estimation of factor loadings. Fac-

tor loadings are important for the estimation of stochastic frontier models (Filippini
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and Tosetti, 2014) or gravity models (Serlenga, Shin, Gunnella and Mastromarco,

2013). It might be no coincidence that none of these papers is not published yet

and point towards the gap in the literature. Estimating the common factors is a

challenging for several reasons. First of all, it is necessary to establish the number of

factors. Sarafidis and Wansbeek (2012) developed a promising approach, but it has

never been applied to the best of my knowledge. If the number of common factors

is known, the next question that arises is, how to approximate the common factors.

Are cross-sectional averages sufficient and how to deal if the number of factors is not

equal to the number of cross-sectional averages. The literature on overidentification

or weak instruments can be a good starting point. Finally, econometric theory and

so is the application in Stata, is missing a test for slope homogeneity in large dy-

namic panels with common factors. Developing such a test and implementing it in

Stata would give researchers more confidence selecting between pooled and mean

group estimations.
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Appendix Chapter 3

B.1 The xtdcce2 command

B.1.1 Syntax

xtdcce2 depvar
[
indepvars

] [
(varlist2 = varlist_iv )

] [
if
]

,

crosssectional(varlist_cr)
[

pooled(varlist_p) nocrosssectional cr_lags(#)

ivreg2options(string) e_ivreg2 ivslow noisily lr(varlist_lr) lr_options(string)

noconstant pooledconstant reportconstant trend pooledtrend jackknife

recursive nocd showindividual fullsample
]

Data has to be [TS] xtset before using xtdcce2. depvar , indepvars, varlist2,

varlist_iv, varlist_cr, varlist_p and varlist_lr may contain time-series operators,

see [TS] tsvarlist, and factor variables, see [U] 11.4.3 Factor variables. xtdcce2

requires the moremata package by Jann (2005). varlist2 are the endogenous variables

and varlist_iv are the instruments.

B.1.2 Version

The very first version on SSC was called xtdcce. As of November 2017 xtdcce2 is

available on SSC archive as version 1.32. The results in this chapter, including the

Monte Carlo simulation, were carried out using a beta of version 1.33. The version

is currently under work (November 2017) and continuously updated. An overview

of the current working version is available from within Stata using net install:
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. net from http://www.ditzen.net/Stata/xtdcce2_beta

. net install xtdcce2133 , from(http://www.ditzen.net/Stata/xtdcce2_beta)

In Stata this version can be called by the command line xtdcce2133. Alterna-

tively a wrapper for all beta versions is available from the above shown command

lines. Using the beta versions requires the installation of xtcd2 separately, either

from SSC, or from:

. net install xtcd2 , from(http://www.ditzen.net/Stata/xtdcce2_beta)

B.1.3 Options

crosssectional(varlist_cr) defines the variables which are included in zt and

added as lagged cross-sectional averages (z̄t−l) to the equation. The coefficients

of the lagged cross-sectional averages are treated as nuisance parameters, which

have no interpretation and are therefore partialled out.

crosssectional(_all) adds the levels of the variables from depvar , indepvars,

varlist2, varlist_iv and varlist_lr as cross-sectional averages. No cross-sectional

averages are added if crosssectional(_none) is used, which is equivalent to

nocrosssectional.

crosssectional() is a required option but can be substituted by nocrosssectional.

Variables in crosssectional() may be included in pooled(), exogenous_vars(),

endogenous_vars() and lr().

pooled(varlist_p) specifies homogenous coefficients. For these variables the es-

timated coefficients are constrained to be equal across all units (βi = β for

i = 1, ..., N). Variable may occur in indepvars, varlist2, varlist_iv, varlist_cr,

and varlist_lr.

cr_lags(#) specifies the number of lagged cross-sectional averages. For example,

cr_lags(2) includes the contemporaneous cross-sectional averages and the first

and second lag of the cross-sectional averages. If not defined, but crosssectional()
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contains varlist_cr or cr_lags(0) , then only contemporaneous cross-sectional

averages are added, but no lags.

nocrosssectional prevents adding cross-sectional averages. Results will be equiv-

alent to the Pesaran and Smith (1995) Mean Group estimator, or if lr(varlist)

specified to the Shin et al. (1999) Pooled Mean Group estimator.

xtdcce2 allows IV regression. varlist_2 specifies the endogenous variables and

varlist_iv exogenous variables from IV regression using ivreg2 by Baum et al.

(2003, 2007). The use of varlist_iv and varlist_2 require the prior installation

of ivreg2.

ivreg2options(string) passes further options on to ivreg2. See ivreg2 for

more information.

e_ivreg2 posts all available results from ivreg2 in e() with prefix ivreg2_.

noisily shows the output of wrapped ivreg2 regression command.

ivslow requests to use ivreg2 for the calculation of auxiliary regressions rather

than a faster mata routine. For the calculation of standard errors for pooled

coefficients an auxiliary regression is performed. In this regression all coefficients

are heterogeneous. If option ivslow is used , then xtdcce2 calls ivreg2 for the

auxiliary regression. This is advisable as soon as ivreg2 specific options are

used, which influence point estimates.

lr(varlist): Variables to be included in the long-run cointegration vector in addition

to the error-correcting speed of adjustment term. Using the notation from Eq.

(3.4) with the error correction term as (yi,t−1 − θixi,t) the option would read:

lr(L.y x).

lr_options(string) Options for the long run coefficients. Options may be:

nodivide, coefficients are not divided by the error correction speed of adjustment
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vector (i.e. estimate equation 3.10).

xtpmgnames, coefficients names in e(b) and e(V) match the name convention

from xtpmg.

noconstant suppress the constant term.

pooledconstant restricts the constant to be the same across all groups (β0,i =

β0, i = 1, ..., N).

reportconstant reports the constant. If not specified, the constant is treated as a

part of the cross-sectional averages and partialled out.

trend adds a linear unit-specific trend ti. It cannot be combined with pooledtrend.

pooledtrend adds linear common trend. It cannot be combined with trend.

jackknife applies the ’half-panel’ jackknife bias correction for small sample time

series bias. It cannot be combined with recursive.

recursive applies the recursive mean adjustment method to correct for small sample

time series bias. It cannot be combined with jackknife.

nocd suppresses calculation of CD test statistic.

showindividual reports cross-sectional unit-specific estimates in output.

fullsample uses the entire sample available for calculation of cross-sectional aver-

ages. Any observations which are lost due to lags will be included calculating

the cross-sectional averages, but are not included in the estimation itself. This

option is only helpful in case of small panels.
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B.1.4 Saved results

xtdcce2 saves the following in e():

Scalars
e(N) number of observations e(N_g) number of groups
e(T) number of time periods e(df_m) model degrees of freedom
e(K_partial) number of variables e(K_mg) number of regressors

partialled out (excluding partialled out)
e(K_pooled) number of pooled variables e(K_omitted) number of omitted variables
e(cr_lags) number of lags e(mss) model sum of square
e(rss) residual sum of squares e(rmse) root mean squared error
e(F) F statistic e(df_r) residual degree of freedom
e(r2) R-squared e(r2_a) R-squared adjusted
e(cd) CD test statistic e(cdp) p-value of CD test statistic

Scalars (unbalanced panel)
e(Tmin) minimum time e(Tmax) maximum time
e(Tbar) average time

Macros
e(tvar) name of time variable e(idvar) name of unit variable
e(depvar) name of dependent variable e(indepvar) name of independent variables
e(omitted) name of omitted variables e(lr) long run variables
e(pooled) name of pooled variables e(cmdline) command line
e(cmd) returns command (xtdcce2)

Macros (iv-specific)
e(insts) instruments (exogenous) e(instd) instrumented (endogenous)

variables variables
Matrices

e(b) coefficient vector e(V) variance–covariance matrix
(mean group) (mean group)

e(bi) coefficient vector e(Vi) variance–covariance matrix
(individual and pooled) (individual and pooled)

Functions
e(sample) marks estimation sample

B.1.5 Postestimation

predict and estat can be used after xtdcce2. The syntax of predict following

xtdcce2 is:

predict
[

type
]
newvarname

[
if
][
in
][

, xb residuals cfresiduals stdp coefficients

se partial
]

The default option is xb and calculates the fitted values. residuals calculates

the residuals and cfresiduals calculates the residuals including the comman fac-

tors. Important to note is, that if the option reportconstant is not used, then

the common factors include the constant. stdp calculates the standard error of the

prediction. coefficients creates a separate variable for each coefficient with the

unit-specific estimate. se creates in the same fashion a variable with the standard
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errors. partial partials out the cross-sectional averages and saves the variables.

The new variables have the name newvarname_varname.

estat following xtdcce2 draws a box, bar or range plot of the MG coefficients.

The syntax is:

estat graphtype
[
varlist

][
if
][
in
][

, combine(string) individual(string) nomg

cleargraph
]
.

graphtype is either bar for a bar plot, box for a box plot or rcap for a range

plot. varlist is optional and if not specified, all mean group coefficients are included.

If the bar or range plot is drawn, then a bar plot for each mean group coefficient

defined by varlist is created and all are combined in the end. The option individual

passes further graph options to the individual graphs and combine to the combined

graph. If a box plot is drawn, option individual controls the appearance of the

graph. A confidence interval around the mean of the mean group estimate is added

to the range plot. Option nomg prevents including the confidence interval. The

option cleargraph clears the option of the graph command and is best used in

combination with the combine() and individual() options. Options combine()

and individual() are used without a leading and ending quotation marks. The

name of the graph is saved as r(graph_name).

B.1.6 xtcd2

Included in the xtdcce2 package is the xtcd2 command, which tests for weak cross-

sectional dependence. The command supports balanced as well as unbalanced pan-

els.23 For a discussion of the test statistic, see section 1.4.
23xtcd2 differs from existing routines as xtcsd or xtcd in the sense that it follows the computa-

tion of the correlation coefficients in Pesaran (2015), while other routines rely on Stata’s correlation
function. Therefore, a difference can occur if the average of the variable within a cross-section is
non zero.
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Syntax

xtcd2
[
varname

]
,
[

noestimation rho kdensity name(string)
]

varname is the name of the residuals or variables to be tested. varname is

optional in case the command is performed after an estimation command which

supports predict, residuals. Then xtcd2 predicts and tests the residuals for

weak cross-sectional dependence.

Options

If noestimation is specified, then xtcd2 is not run as a postestimation command

and does not require e(sample) to be set. This option allows any variable to

be tested. If not set, then xtcd2 either uses the variable specified in varname or

predicts the residuals using predict, residuals. In both cases the sample is

restricted to e(sample).

kdensity plots a kernel density graph of the cross correlations. The number of

observations, the mean, percentiles, minimum and maximum of the cross cor-

relations are reported. If name(string) is set, then the graph is saved and not

drawn.

rho saves the matrix with the cross correlations in r(rho).

Saved results

Scalars
r(CD) value of the CD statistic
r(p) p-value

Matrices
r(rho) cross correlations matrix, if requested
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B.1.7 Error Messages

xtdcce2 produces the following error codes:

r(109) ivreg2 not installed r(184) options noconstant and
pooledconstant, trend
and trendconstant or
jackknife and
recursive are combined.

r(2001) More variables than
observations.

B.2 Mathematical Appendix - Delta Method

For the calculation of the long run coefficients the estimates of γ̂k,i obtained by OLS

from equation (3.10) are divided by estimates of the long run cointegration vector

φ̂i. To calculate the variance covariance matrix, the delta method is used. The

delta method allows the calculation of an approximate probability distribution for

a matrix function a(β) based on a random vector with a known variance (see for

example Hayashi, 2000, p. 93). Suppose that for the random vector βi →p β and
√
n(βi − β)→d N(0, σ). Denote the first derivatives of a(β) as

A(β) ≡ ∂a(β)
∂β

′ .

Then the distribution of the function a() is

√
n [a(βi)− a(β)]→d N (0,A(β)ΣA(β)′) .

For the calculation of the long run coefficients and using the notation from equation

(3.10), assume that

βi = (φi, γ1,i, γ2,i, δ1,i, δ2,i)′
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The variance covariance matrix is:

Σ =



V (φi) Cov(φiγ1,i) Cov(φiγ2,i) Cov(φiδ1,i) Cov(φiδ2,i)

Cov(φiγ1,i) V (γ1,i) Cov(γ1,iγ2,i) ... .

. . .

. . .

Cov(φiδ2,i) ... ... ... V (δ2,1)



The function a() maps the long run coefficients and leaves the short run coefficients:

a(βi) = (φi,−γ1,i/φi,−γ2,i/φi, δ1,i, δ2,i)′

= (φi, θ1,i, θ2,i, δ1,i, δ2,i)′

The first derivative of a() is then:

Ai(β) =



∂φi
∂φi

∂θ1,i
∂φi

∂θ2,i
∂φi

∂δ1,i
∂φi

∂δ2,i
∂φi

∂φi
∂γ1,i

∂θ1,i
∂γ1,i

∂θ2,i
∂γ1,i

∂δ1,i
∂γ1,i

∂δ2,i
∂γ1,i

∂φi
∂γ2,i

∂θ1,i
∂γ2,i

∂θ2,i
∂γ2,i

∂δ1,i
∂γ2,i

∂δ2,i
∂γ2,i

∂φi
∂δ1,i

∂θ1,i
∂δ1,i

∂θ2,i
∂δ1,i

∂δ1,i
∂δ1,i

∂δ2,i
∂δ1,i

∂φi
∂δ2,i

∂θ1,i
∂δ2,i

∂θ2,i
∂δ2,i

∂δ1,i
∂δ2,i

∂δ2,i
∂δ2,i



=



1 −γ1,i
φ2
i
−γ2,i

φ2
i

0 0

0 − 1
φi

0 0 0

0 0 − 1
φi

0 0

0 0 0 1 0

0 0 0 0 1


All components of the variance covariance matrix are then known and it can be

calculated as:

Σa = A(β)ΣA(β)′
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B.3 Monte Carlo Simulation

B.3.1 Monte Carlo Setup

As in Chudik and Pesaran (2015a) the data generating processes are the following:

yi,t = cyi + φiyi,t−1 + β0ixi,t + β1ixi,t−1 + ui,t

ui,t = γ′ift + εi,t

xi,t = cxi + αxiyi,t−1 + γxift + vxi,t

gi,t = cgi + αgiyi,t−1 + γgift + vgi,t

yi,t is the dependent variable and xi,t the only independent variable. For a matter

of ease, it is assumed that only one explanatory variable exists. gi,t is another

independent variable, which is affected by the unobserved factors and yi,t, but not

used to estimate it.

Common Factors The common factors are calculated as below:

ft = ρfft−1 + ςft, ςft ∼ IIDN(0, 1− ρ2
f )

vxi,t = ρxivxi,t−1 + ςxi,t, ςxi,t ∼ IIDN(0, σ2
vxi)

vgi,t = ρgivgi,t−1 + ςgi,t, ςgi,t ∼ IIDN(0, σ2
vgi)

ρxi ∼ IIDU(0, 0.95)

ρgi ∼ IIDU(0, 0.95)

ρf = 0 if serially uncorrelated factors, or if correlated ρf = 0.6

σ2
vxi = σ2

vgi = σ2
vi =

(
β0i

√
1− [E(ρxi)]2

)2
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Fixed Effects The cross-section specific fixed effects are generated as:

cyi ∼ IIDN(1, 1)

cxi = cyi + ςcxi, ςcxi ∼ IIDN(0, 1)

cgi = cyi + ςcgi, ςcgi ∼ IIDN(0, 1).

Dependence between xi,t, gi,t and cyi is introduced by adding cyi to the equations for

cxi and cgi.

Coefficients The coefficient for the contemporaneous value of xi,t is drawn from

a uniform distribution as β0i ∼ IIDU(0.5, 1). The coefficient on the lagged value

of the independent variable is set to β1i = −0.5. For the lagged dependent variable

two different scenarios are considered for the calculation of yi,t and xi,t. One with

low values for φ, φi ∼ IIDU(0, 0.8) and αxi ∼ IIDU(0, 0.35) and one with high

values φi ∼ IIDU(0.5, 0.9) and αxi ∼ IIDU(0, 0.15). αgi is in both scenarios the

same: αgi ∼ IIDU(0, 1).24

Factor Loadings

γi = γ + ηiγ, ηiγ ∼ IIDN(0, σ2
γ)

γxi = γx + ηiγx, ηiγx ∼ IIDN(0, σ2
γx)

γgi = γg + ηiγg, ηiγg ∼ IIDN(0, σ2
γg)

σ2
γ = σ2

γx = σ2
γg = 0.22

γ =
√
bγ, bγ = 1

m
− σ2

γ

γx =
√
bx, bx = 2

m(m+ 1) −
2

m+ 1σ
2
γx

γg =
√
bg, bg = 1

m2 −
σ2
g

m

where m is the number of unobserved factors. In comparison to Chudik and Pesaran

(2015a) it is restricted to 1.
24φi and αxi depend on each other to make sure that the series yi,t and xi,t are stationary. See

Chudik and Pesaran (2015a), p. 399-400.
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Error Term The errors are generated such that heteroskedasticity and weakly

cross-sectional dependence is allowed.

εt = αCSDSεεt + eεt

⇒ εt = (1− αCSDSε)−1 eεt

eεt ∼ IIDN(0, 1
2σ

2
i ), with σ2

i ∼ χ2(2)

Sε =



0 1
2 0 0 . . . 0

1
2 0 1 0 0

0 1 0 . . . ...

0 0 . . . . . . 1 0
... 1 0 1

2

0 0 . . . 0 1
2 0
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B.3.2 Further Monte Carlo Results

(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 -4.79 -2.04 1.64 3.10 3.63 5.60 4.30 3.23 3.38 3.43
50 -4.98 -2.48 1.29 2.93 3.46 5.42 4.02 2.83 3.10 3.28
100 -4.38 -2.43 1.53 2.93 3.57 4.24 3.26 2.34 2.70 2.96
150 -4.22 -2.12 1.74 3.05 3.72 3.99 2.71 2.10 2.57 2.92
200 -4.39 -2.28 1.91 2.86 3.53 3.89 2.64 2.04 2.42 2.75

DCCE without bias correction
40 -26.26 -19.45 -8.43 -5.31 -3.61 19.19 14.30 6.42 4.26 3.01
50 -26.97 -19.24 -8.54 -5.36 -3.97 19.61 14.07 6.43 4.16 3.18
100 -27.34 -20.03 -8.81 -5.63 -3.97 19.58 14.35 6.41 4.16 2.98
150 -26.64 -19.73 -8.76 -5.65 -4.09 19.01 14.03 6.28 4.09 2.99
200 -27.36 -19.72 -8.84 -5.72 -3.99 19.45 14.00 6.31 4.10 2.89

DCCE with jackknife bias correction
40 -24.13 -17.22 -6.63 -3.98 -2.51 17.82 12.88 5.30 3.48 2.42
50 -24.85 -16.95 -6.69 -3.98 -2.86 18.26 12.59 5.26 3.34 2.55
100 -25.13 -17.72 -7.02 -4.24 -2.89 18.14 12.81 5.22 3.26 2.29
150 -24.39 -17.32 -6.95 -4.26 -2.98 17.49 12.39 5.06 3.16 2.26
200 -25.25 -17.40 -7.02 -4.33 -2.89 18.03 12.43 5.08 3.16 2.17

DCCE with RMA bias correction
40 -31.08 -23.25 -10.17 -6.41 -4.48 22.59 16.95 7.59 4.96 3.56
50 -31.43 -23.00 -10.43 -6.39 -4.82 22.74 16.70 7.72 4.84 3.72
100 -31.83 -23.57 -10.46 -6.55 -4.74 22.72 16.82 7.54 4.78 3.49
150 -31.02 -23.23 -10.32 -6.60 -4.86 22.04 16.46 7.36 4.74 3.51
200 -31.52 -23.32 -10.38 -6.65 -4.72 22.35 16.52 7.38 4.74 3.39

Table B.1: Monte Carlo Results for Specification 4 and φ, with φ = E(φi) = 0.7
and ρf = 0. For a further description, see Section 3.6.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 79.89 80.73 79.10 79.97 80.30 60.59 61.01 59.67 60.12 60.26
50 80.10 79.16 79.70 80.32 79.73 60.69 59.90 60.06 60.31 59.99
100 80.04 80.32 80.42 79.85 80.21 60.45 60.56 60.39 60.00 60.23
150 79.72 79.29 79.67 79.85 80.01 60.10 59.79 59.86 59.97 60.12
200 80.16 80.39 79.90 79.84 79.69 60.39 60.50 60.08 59.92 59.82

DCCE without bias correction
40 0.90 1.03 1.11 0.80 0.40 11.87 8.84 5.52 4.35 3.67
50 1.82 0.83 1.27 0.65 0.84 10.33 8.53 5.22 4.21 3.72
100 1.42 1.57 1.12 0.51 0.75 7.94 6.19 3.94 3.00 2.56
150 0.82 1.67 1.03 0.65 0.53 6.37 5.40 3.21 2.43 2.06
200 2.18 1.91 1.25 0.70 0.52 5.70 4.43 2.83 2.23 1.83

DCCE with jackknife bias correction
40 0.74 1.20 0.93 0.65 0.27 12.14 9.36 5.57 4.40 3.70
50 1.55 0.71 1.11 0.51 0.75 10.81 8.96 5.30 4.25 3.72
100 1.46 1.58 0.94 0.36 0.63 8.25 6.51 3.98 3.04 2.58
150 0.91 1.48 0.89 0.51 0.43 6.74 5.54 3.25 2.44 2.06
200 2.18 1.84 1.08 0.54 0.38 5.88 4.59 2.87 2.23 1.83

DCCE with RMA bias correction
40 2.84 3.82 3.11 2.16 1.73 12.26 9.59 5.94 4.57 3.93
50 4.01 3.24 3.33 2.03 2.05 11.04 9.01 5.75 4.53 4.00
100 3.13 4.07 3.02 1.80 1.95 8.55 6.97 4.51 3.33 2.92
150 2.98 4.07 2.80 1.99 1.74 6.92 6.15 3.79 2.86 2.42
200 3.92 4.29 3.07 1.98 1.69 6.32 5.34 3.57 2.67 2.21

Table B.2: Monte Carlo Results for Specification 4 and β0, with φ = E(φi) = 0.7
and ρf = 0. See notes Table 3.2.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 28.49 35.05 41.72 44.96 46.49 17.49 19.79 21.92 23.20 23.82
50 28.57 33.30 41.83 45.34 45.46 17.32 18.64 21.64 23.28 23.18
100 29.12 34.49 42.52 44.76 45.98 16.19 18.36 21.77 22.71 23.26
150 29.56 34.19 42.58 44.81 46.65 15.73 17.92 21.65 22.65 23.51
200 29.83 34.94 42.45 44.71 46.43 15.86 18.12 21.49 22.55 23.36

DCCE without bias correction
40 -23.19 -17.04 -6.33 -4.00 -2.66 16.71 13.11 6.89 5.08 4.39
50 -22.46 -16.57 -6.67 -4.06 -3.38 16.08 12.28 6.63 4.83 4.04
100 -21.16 -14.79 -6.55 -4.50 -2.60 13.26 9.87 5.19 3.96 3.05
150 -21.95 -14.91 -5.86 -3.81 -2.92 13.06 9.35 4.54 3.34 2.72
200 -21.19 -14.62 -5.99 -4.29 -2.66 12.36 8.87 4.09 3.25 2.33

DCCE with jackknife bias correction
40 -20.92 -15.19 -5.02 -2.95 -1.88 16.44 12.89 6.72 5.02 4.32
50 -20.68 -14.90 -5.15 -3.02 -2.61 15.85 12.07 6.30 4.66 3.92
100 -19.47 -12.78 -5.16 -3.47 -1.82 12.91 9.44 4.86 3.73 2.90
150 -19.91 -12.92 -4.50 -2.78 -2.13 12.31 8.74 4.15 3.09 2.54
200 -19.63 -12.76 -4.68 -3.29 -1.92 11.84 8.17 3.67 2.95 2.15

DCCE with RMA bias correction
40 -23.01 -16.02 -4.25 -2.58 -1.36 17.19 12.99 6.56 4.90 4.25
50 -21.81 -14.81 -4.96 -2.54 -2.01 15.95 12.07 6.30 4.59 3.79
100 -20.13 -12.54 -4.61 -3.04 -1.16 13.01 9.19 4.66 3.63 2.86
150 -21.41 -13.06 -3.62 -2.21 -1.57 12.95 8.78 3.98 3.00 2.47
200 -20.56 -12.38 -4.09 -2.81 -1.31 12.25 8.12 3.54 2.85 2.05

Table B.3: Monte Carlo Results for Specification 4 and β1, with φ = E(φi) = 0.7
and ρf = 0. See notes Table 3.2.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 5.21 10.20 16.51 19.98 19.76 7.21 7.60 8.36 9.16 8.94
50 4.07 8.82 15.38 18.56 19.84 6.38 6.67 7.68 8.53 8.91
100 5.23 8.91 15.70 18.34 19.54 5.13 5.81 7.22 8.01 8.37
150 5.60 9.71 16.09 18.43 20.06 4.91 5.62 7.08 7.82 8.44
200 5.16 8.66 16.55 18.08 19.16 4.50 4.98 7.23 7.68 8.01

DCCE without bias correction
40 -38.75 -28.93 -12.53 -7.49 -5.18 16.55 12.52 5.92 3.91 2.90
50 -38.99 -27.87 -12.63 -7.68 -5.93 16.54 12.05 5.82 3.78 3.04
100 -39.47 -29.02 -12.73 -8.32 -5.74 16.35 11.98 5.49 3.72 2.62
150 -38.59 -28.54 -12.78 -8.17 -5.95 15.83 11.69 5.34 3.50 2.61
200 -39.82 -28.92 -12.76 -8.42 -5.80 16.23 11.81 5.30 3.52 2.50

DCCE with jackknife bias correction
40 -36.40 -26.41 -10.34 -5.87 -3.83 15.77 11.69 5.24 3.46 2.56
50 -36.46 -25.14 -10.39 -5.97 -4.57 15.67 11.12 5.10 3.27 2.66
100 -36.97 -26.20 -10.52 -6.62 -4.42 15.49 10.95 4.70 3.13 2.19
150 -35.93 -25.63 -10.53 -6.46 -4.60 14.83 10.59 4.51 2.87 2.13
200 -37.39 -26.08 -10.51 -6.70 -4.44 15.32 10.74 4.44 2.88 2.02

DCCE with RMA bias correction
40 -42.21 -31.61 -13.69 -8.22 -5.82 17.97 13.58 6.33 4.15 3.11
50 -42.45 -30.61 -14.04 -8.39 -6.53 17.94 13.13 6.35 4.02 3.23
100 -42.80 -31.61 -13.95 -8.95 -6.28 17.71 13.03 5.95 3.95 2.82
150 -42.05 -31.20 -13.87 -8.85 -6.53 17.20 12.73 5.76 3.77 2.82
200 -42.95 -31.65 -13.90 -9.12 -6.33 17.48 12.89 5.75 3.79 2.70

Table B.4: Monte Carlo Results for Specification 5 and φ, with φ = E(φi) = 0.3
and ρf = 0.6. The coefficient on the lagged independent variable L.x is pooled. See
notes Table 3.2.
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(N,T) Bias (x100) RMSE (x100)
40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 65.08 65.50 63.27 64.18 64.43 49.89 49.91 48.00 48.45 48.51
50 65.49 64.05 63.98 64.16 63.92 50.02 48.83 48.42 48.34 48.22
100 65.23 65.02 64.26 63.43 64.01 49.54 49.23 48.39 47.76 48.15
150 64.64 64.03 63.28 63.61 63.26 48.95 48.46 47.65 47.87 47.60
200 65.28 64.84 63.84 63.47 63.15 49.37 48.94 48.10 47.71 47.47

DCCE without bias correction
40 4.24 3.15 1.83 1.32 0.66 11.92 8.92 5.49 4.32 3.66
50 4.81 3.08 2.16 1.31 1.20 10.96 8.36 5.26 4.21 3.76
100 4.23 3.92 2.17 1.16 1.21 8.40 6.42 3.96 3.05 2.54
150 3.62 4.04 2.14 1.36 1.12 6.81 5.73 3.42 2.57 2.13
200 4.90 3.92 2.38 1.46 1.03 6.48 5.07 3.18 2.35 1.86

DCCE with jackknife bias correction
40 3.59 2.84 1.37 0.93 0.34 11.96 9.17 5.48 4.30 3.67
50 3.97 2.40 1.66 0.89 0.90 11.06 8.44 5.27 4.21 3.72
100 3.55 3.29 1.59 0.75 0.88 8.61 6.40 3.84 3.00 2.50
150 2.99 3.22 1.59 0.91 0.78 6.80 5.54 3.30 2.47 2.07
200 4.20 3.15 1.81 1.02 0.64 6.25 4.91 3.02 2.24 1.78

DCCE with RMA bias correction
40 5.17 4.60 2.72 1.89 1.20 12.51 9.35 5.66 4.45 3.76
50 6.16 4.37 3.09 1.86 1.69 11.64 8.85 5.49 4.39 3.86
100 5.09 5.17 3.05 1.71 1.70 8.94 7.13 4.29 3.21 2.70
150 4.62 5.27 2.93 1.96 1.62 7.43 6.44 3.75 2.80 2.32
200 5.75 5.26 3.23 2.01 1.53 7.00 5.74 3.60 2.59 2.06

Table B.5: Monte Carlo Results for Specification 5 and β0, with φ = E(φi) = 0.3
and ρf = 0.6. The coefficient on the lagged independent variable L.x is pooled. See
notes Table 3.2.
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Chapter 4

Cross-Country Convergence in a General Lotka-Volterra

Model

An early version of this chapter is published in Spatial Economic Analysis, 2018,

Volume 13, Issue 2 (Ditzen, 2018).1

4.1 Introduction

This chapter reverts back to the questions posed in the Introduction. In the core

lies the question if interdependence between countries matter for their economic de-

velopment. The convergence model in Arbia and Paelinck (2003a,b) is extended. In

addition the chapter borrows from the literature on multifactor error structure mod-

els. Following Arbia and Paelinck (2003a,b) a general Lotka-Volterra Model is used

to determine the type of convergence in a set of 93 countries rather than regions.

Absolute convergence is tested by estimating the steady states for each country

and then testing those for equality. The stability conditions of the Lotka-Volterra

model are used in conjunction with a bootstrap to test for conditional convergence.

This chapter advances the empirical spatial growth literature in the form that both

forms of cross-sectional dependence are controlled for. Weak cross-sectional depen-

dence, or spatial dependence, is controlled for by adding spatial time lags of the
1I am grateful to the editor Paul Elhorst and two anonymous referees for their comments and

feedback.
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dependent variable. Chapter 2 pointed at three different channels for interactions

between countries. This motivates the use of high skilled migration, exports and

Foreign Direct Investments (FDI) as spatial weight matrices. Strong cross-sectional

dependence is taken care of in the form of a multifactor error structure model. The

common effects are approximated by cross-sectional averages as explained in Section

1.5.

There are several notable findings. A Lotka-Volterra approach on a classical

convergence equation without cross-sectional interactions confirms earlier empirical

findings in the literature. However strong cross-sectional dependence remains in

these specifications, invalidating these results. Adding cross-sectional averages and

spatial lags controls sufficiently for cross-sectional dependence. Lastly, this chapter

presents evidence for conditional convergence.

The remainder of the chapter is structured as follows. The next section intro-

duces a general Lotka-Volterra model, followed by a discussion about convergence.

Then a growth model is outlined and the estimation strategy and the empirical

equation are discussed. In the following section, the empirical results are presented

and checked against alternative specifications. The chapter closes with a conclusion.

4.2 A General Lotka-Volterra Model

Lotka-Volterra models are used in mathematical biology to model the evolution

of two dependent species and have been developed by Lotka (1920) and Volterra

(1926).2 The general two equation Lotka-Volterra model describes the evolution of

two species, x and y, with the help of a differential equation system. The population

of x depends negatively on the level of the other, y, but grows positively in the

absence of y. The population of y depends positively on the population size of
2The textbook example of the Lotka-Volterra Model is on the interaction of a predator, y, and

a prey, x. In absence of the predator, the population of the prey increases by xa. As the predator
needs the prey to survive its population decreases by yc. The larger the population of the predator,
more prey are hunted and their population decreases by by. On the other hand, large numbers of
prey lead to an increase of the population of the predators by dx.
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species x, but decreases if the size is zero. The path over time of the two populations

can be described by the following two equations:3

dx

dt
= x(a− by)

dy

dt
= y(−c+ dx)

where a > 0, b > 0, c > 0, d > 0. a and c capture the effect the specie has on its

own, while b and d represent the interaction between both.

Among the first contributions to an economic interpretation of the Lotka-Volterra

model are Goodwin (1967) and Samuelson (1971). Samuelson (1971) presented the

standard Lotka-Volterra model in an economic context, generalised it to more than

two species and derived its equilibrium behaviour. Goodwin (1967) applied the

Lotka-Volterra model to an endogenous growth model with Harrod-Domar technol-

ogy. In the model income is divided into a worker’s share, or the wage in efficiency

terms, and investments. The worker’s share of income preys on the employment

rate. If the worker’s share of income is high, investments are low, which leads to a

contracting employment and reduces the employment rate. On the other hand, if

the employment rate is high, income needs to be spread across a larger number of

workers and therefore the worker’s share of income is low.

In a similar fashion, instead of the two species or worker’s share and the employ-

ment rate, assume two countries R and P , with output yR and yP . Similar to the

population Lotka-Volterra model, one is "preying" upon the other. Say, the output

per capita of country P increases if country R’s increases. However the opposite

does not hold and country P ’s output is reduced with the others’. The two interac-

tions can be captured by the terms −ρRwR and ρPwP . For later use, ρR and ρP are

coefficients to be estimated and wR and wP observed weights. The system can be
3The equation follows Murray (2002, Chapter 3.1).
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then expressed by:

dyR
dt

= yR(a− ρRwRyP )⇒ ẏR
yR

= a− ρRwRyP

dyP
dt

= yP (−c+ ρPwPyR)⇒ ẏP
yP

= −c+ ρPwPyR

The two equations can be stacked in matrices:


ẏR
yR

ẏP
yP

 =

 a

−c

+

−ρRwRyP
ρPwPyR



=

 a

−c

+

−ρR 0

0 ρP


 0 wR

wP 0


yR
yP


= c + ρWy

= c + Dy.

Adding time indices gives

∆yt = c + Dyt−1. (4.1)

If the growth rate converges to zero, two solutions can be derived from yt = yt−1 =

y∗ = −D−1c. The first solution is (yR, yP ) = (0, 0) and in the prevailing context

meaningless as it would imply that the income of a country is zero. The second

solution is (yR, yP ) = (c/(ρPwP ), a/(ρRwR)) and has a more meaningful interpreta-

tion. If yR = yP then the countries converge to the same output per capita. Both

solutions are stable if the real parts of the eigenvalues of the community matrix D

are negative (Arbia and Paelinck, 2003b; Griffith and Paelinck, 2011).4 Thus in the

case of yR 6= yP and stability, both countries would converge to their own equilibria

and conditional convergence occurs.
4The condition is derived from a Liapunov function; for further details see Arbia and Paelinck

(2003b); Griffith and Paelinck (2011). In mathematical biology, the matrix D in equation (4.1) is
often called a community matrix (Murray, 2002). This chapter follows this notation.
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Using matrix notation, the steady state under convergence would be:

∆yt = 0 (4.2)

⇒ yt = yt−1 = y∗ = −D−1c. (4.3)

The assumptions on the signs of the interactions −ρRwR and ρPwP can be re-

laxed, such that ρRwR and ρPwP are positive or negative. Then Lotka-Voterra

models can be applied to a more general setting, as for example interactions be-

tween countries. In addition, the model is not limited to two countries or equations.

In the case of N countries, there would be N difference equations. Still, it would be

possible that some countries benefit, while others lose from the interactions. Samuel-

son (1971) describes such an extension with n > 2 predators and prey. Convergence

would depend on the properties of the eigenvalues of the community matrix D.

The predator and prey relationship in the general Lotka-Volterra model or the

economic interpretation in Goodwin (1967) is a null-sum game. If the population

size of the predator increases, the number of prey decrease. Even if there is an

increase in the population of the prey, the increase in the number of the predators

will decrease the population of the prey. In the country version of the Lokta-Volterra

model as described by equation (4.1) with relaxed assumptions on the sign of the

interactions, countries can benefit from each other and a null-sum game is not a

necessity. While this is different to the classical Lotka-Volterra models, the same

assumption applies to the model in Arbia and Paelinck (2003a,b). A Lotka-Volterra

in which both species benefit from each other is described in a biological context

as a Mutualism or Symbiosis Lotka-Volterra model in Murray (2002, Chapter 3.6 -

3.7).
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4.3 Growth Model and Convergence

4.3.1 Growth Model

Based on a Cobb-Douglas production function, Barro and Sala-i Martin (1992) de-

rive a closed form solution for a simple growth model in the fashion of:

∆yi,t = βi + αyi,t−1 + ui,t, (4.4)

where yi,t is the log of GDP per capita at time period t in country i, βi is a country

specific technology term and ui,t is an iid error term. In general, there is convergence

if the coefficient α on the lagged income per capita level is between−1 and 0 (Mankiw

et al., 1992; Islam, 1995). The interpretation is, the higher the income per capita in

period t, the lower the growth rate. Therefore, each country converges as the growth

rate of income per capita declines. Under the assumption that technology is the same

for all countries βi = β for i = 1, ..., N , unconditional or absolute convergence occurs

if the coefficient α on the lagged income per capita level is between −1 < α < 0

(Mankiw et al., 1992; Islam, 1995). Unconditional convergence implies that the gap

between countries will be depleted. In the case that βi is different for countries and

−1 < α < 0, countries converge to their own steady state, implying conditional

convergence. Poor countries do not necessarily catch up and differences in income

levels can persist with conditional convergence. In both cases, poor countries with

a smaller level of GDP grow with a larger growth rate, as the coefficient on lagged

GDP per capita is negative.

Chapter 2 describes how observable dependencies between countries can be mod-

elled in a growth model. In a more applied fashion, Gallo and Fingleton (2014)

extend the growth model from equation (4.4) by a spatial component to account for

spatial dependence.5 To model strong dependence, an unobserved common factor,
5For an overview of spatial growth models see Fingleton and López-Bazo (2006) and Abreu, De

Groot and Florax (2004).
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ft, and an heterogeneous unit-specific factor loading, γi, are added. In addition, the

coefficient on the lagged dependent variable is allowed to vary across countries:

∆yi,t = βi + αiyi,t−1 + ρi
N∑

i 6=j,j=1
wi,jyj,t−1 + εi,t, (4.5)

εi,t = γift + ui,t (4.6)

where ρi is the spatial autocorrelation coefficient, wi,jyi,t−1 the spatial time lag and

wi,j observed spatial weights. The spatial time lag accounts for observed spatial

dependence as explained in the Introduction. In the same chapter, the motivation

for the inclusion of spillovers and dependencies is discussed. As pointed out, there is

no reason to believe that countries are isolated from each other. Furthermore, there

is evidence for the increase in integration across countries presented in the New

Kaldor Facts in Jones and Romer (2010). Chapter 2 presented a growth model with

interactions between countries. The model underlines the crucial role interactions

play for the development of a country.

In equation (4.5) the spillovers are captured by the spatial time lag and are

therefore global. This means that the dependent variable depends on time lags of

the dependent variable of the other cross-sectional units. In addition, the spatial

weight matrices capture the effect of the neighbours and of neighbours of a higher

order as well. Chapter 2 suggests trade in goods, diffusion of ideas and high skilled

migration as possible channels for interactions between countries. Trade allows for

specialization, FDI raises or lowers the accumulation of capital and migration in

the form of human capital produces more ideas. The common factors, or strong

dependence, can be for example common aggregate shocks or time specific fixed

effects (Pesaran, 2006; Kuersteiner and Prucha, 2015).

In addition, the coefficients on the lagged dependent variable and the spatial

autocorrelation coefficient are allowed to vary across countries. As noted in the

Introduction, there are no reasons why countries have the same slope coefficients.

The same argument applies to the spatial autocorrelation coefficient.
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4.3.2 Convergence in spatial growth models

Determining convergence solely based on the coefficient αi, would miss out the

interactions between countries represented by the spatial time lag. Therefore, it is

necessary to include the spatial time lag into the condition for convergence. Equation

(4.5) can be rewritten in matrix form as:

∆yt = β0 + diag(α)yt−1 + diag(ρ)Wyt−1 + εt, (4.7)

with

yt = (y1,t, ..., yN,t)′ εt = (ε1,t, ..., εN,t)′

α = (α1, ..., αN)′ ρ = (ρi, ..., ρN)′

W =



0 w1,2 . . . w1,N

w2,1
. . . ...

... . . . ...

wN,1 . . . . . . 0


β0 = (β0,1, ..., β0,N)′

In the next step diag(α) and diag(ρ)W are put together in a matrix and the system

becomes:

∆yt = b + Ayt−1 + εt, (4.8)

and

b = β0 (4.9)

A = diag(α) + diag(ρ)W =



α1 ρ1w1,2 . . . ρ1w1,N

ρ2w2,1 α2
...

... . . . ...

ρNwN,1 . . . . . . αN


(4.10)
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The last equation is an economic growth representation of the Lotka-Volterra model

as presented in equation (4.1) and used by Arbia and Paelinck (2003a). Similar

conditions for convergence as for the Lotka-Volterra model outlined in Section 4.2

apply. For stability, the real parts of the eigenvalues of the community matrix A

have to be −2 < λ1, ..., λN < 0.6 In addition equation, (4.5) can be re-written if

yi,t = yi,t−1 ≡ y∗i and ∆yi,t = 0 as:

y∗i = −
β0,i + ρi

∑
j=1,i 6=j wi,jy

∗
j

αi
. (4.11)

Equation (4.11) illustrates several requirements for convergence. As αi is expected

to be negative, the sum of the numerator has to be positive, such that y∗i is positive

as well. If one country does not converge, all other countries do not converge as

well, if ρi 6= 0 and wi,j 6= 0. If either ρi = 0 or wi,j = 0, then convergence for the

other countries is possible, despite the entire system not being stable. Moreover, a

negative ρi implies a larger steady state. For unconditional convergence, the entries

of matrix A−1b are the same for each country, i.e. y∗i = y∗j = y∗, i, j = 1, ..., N .

Thus the steady state under absolute convergence is:

y∗i = y∗ = − β0,i

αi + ρi
∑
j=1,i 6=j wi,j

. (4.12)

The outlined approach is different to those prevailing in the time series literature.

In a pure time series framework with no cross-sectional units, a unit root test on

the lag of the dependent variable and tests for stationary would be the equivalent

to the cross-sectional test for convergence. For a time series panel, Pesaran (2007)

derives a pair-wise test for output convergence basing on stationary of the output

differences of a set of countries. However, this test does not take spatial interactions

between countries into account.7
6The requirement for stability for a discreet dynamic equation is, |λi| < 1, i = 1, ..., N , see

Galor (2007). This is the case if the level occurs on both sides; here on the left hand side the
growth rate occurs.

7A unit root test in a panel with cross-sectional dependence is derived in Pesaran, Smith and
Yamagata (2013).
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4.4 Heterogeneous Panel Estimators

In this chapter, two estimators which allow estimations of unit-specific coefficients

are considered: the DCCE and Simultaneous Dynamic Least Squares (SDLS) es-

timator. The DCCE estimator was introduced in Chapter 1 and its application

discussed in Chapter 3. Arbia and Paelinck (2003a,b) employ the SDLS estimator.

Therefore, the estimator SDLS is used in this chapter to compare the results with

earlier findings in the literature. SDLS minimizes the squared deviations between

an observed and an endogenously computed value and is similar to Seemingly Un-

related Regression (SURE) or a 3 Stage Least Squares (3SLS) estimator without

endogenous variables. It is a generalised reduced form estimator, a ML estimator if

the error term is homoscedastic, normally distributed with mean zero and a variance

σ2I. For a further description see the Appendix C.2 or Griffith and Paelinck (2011,

Chapter 11).

Both estimators produce consistent estimates of the unit-specific coefficients as

necessary for the construction of the matrices A and b in equation (4.8). While

DCCE allows controlling for both types of cross-sectional dependence, SDLS can

only handle spatial dependence using spatial lags.

4.5 Empirical Equation

Rewriting equation (4.5) with the cross-sectional averages instead of the common

factors, the following equation is estimated:8

∆yi,t = β0,i + αiyi,t−1 +
K∑
k=1

ρ(k),i

N∑
j=1,i 6=j

w(k),i,jyj,t−1 +
pT∑
l=0

ϑiȳi,t−l + ui,t (4.13)

where ∑K
k=1 ρ(k),i

∑N
j=1,i 6=j w(k),i,jyj,t−1 captures spatial dependence. ȳi,t−l is the l-th

of pT lags of the cross-sectional averages of yi,t and ϑi the coefficient. The sum
8Note that the model can be rewritten in levels as yi,t = β0,i + (1 + αi)yi,t−1 +∑K
k=1 ρ(k),i

∑N
j=1,i6=j w(k),i,jyj,t−1 + εi,t. The point estimates between the two models do not differ

and the dependent variable occurs as a spatial time lag.
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l=0 ϑiȳi,t−l represents all the lags of the cross-sectional averages and accounts for

the common factors. The model can be written in matrix notation:

∆yt = b + Ayt−1 + ut, (4.14)

with ut containing the cross-sectional averages. The difference between equation

(4.13) and equation (4.5) is that the latter allows for multiple spatial interactions,

namely K spatial weights matrices. Equation (4.13) follows Arbia and Paelinck

(2003a,b) extended by cross-sectional averages and has several insights. First, it is

relatively easy to compute. Secondly, no country-specific effects have to be consid-

ered. The equation can be estimated for each country separately and the constant

contains the country specific effects. This procedure avoids removing the country-

specific effect by transforming the convergence equation into first differences, which

would be then exposed to endogeneity.9 The spatial time lag ensures that the term is

exogenous, as neither yi,t nor yi,t−1 are included in yj,t−1. Endogeneity is not present

as long as the errors are not autocorrelated and further explanatory variables are

exogenous. Finally, it accounts for spatial dependence using the spatial time lag and

common factors by the multifactor error structure, respectively the cross-sectional

averages.

The combination of spatial dependence and common factors recently received

attention in the literature and was summarised in Elhorst, Abreu, Amaral, Bhat-

tacharjee, Corrado, Fingleton, Fuerst, Garretsen, Igliori, Le Gallo, McCann, Monas-

tiriotis and Yu (2016). Ertur and Musolesi (2016) estimate total factor productivity

with a multifactor error structure and spatial dependence in the form of geographical

distance. Bailey, Holly and Pesaran (2016) develop a two-step estimator to control

for spatial dependence and common factors. In the first step, the common factors

are factored out. The weakly cross-sectional dependent observations are then used

in the second step in a spatial model. Bailey, Holly and Pesaran (2016) apply it to a
9For a more detailed discussion on endogeneity in a empirical growth context, see Hauk and

Wacziarg (2009); Gallo and Fingleton (2014)
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model of house prices and estimation of the spatial weight matrix. Vega and Elhorst

(2016) apply an extension of the method to a regional unemployment model.

The approach in this chapter differs in several ways from the empirical spatial

growth models. First of all it takes both sources of cross-sectional dependence into

account. The common factors capture unobservable shocks, which hit all countries

at the same time.

Another difference is the inclusion of a spatial time rather than a contemporane-

ous spatial lag. Lopez-Bazo et al. (2004); Fingleton and López-Bazo (2006); Ertur

and Koch (2007); Lesage and Fischer (2008); Elhorst et al. (2010) and Ertur and

Koch (2011) use a spatial lag model and emphasise the importance to include a

contemporaneous spatial lag. A notable exception in the context of spatial growth

models is Ho, Wang and Yu (2013). They follow the approach from Ertur and Koch

(2007) and estimate a spatial Solow model extended by a spatial time lag. A con-

temporaneous spatial lag is not possible with a Lotka-Volterra model. Estimating a

spatial lag model requires methods that do not rely on OLS. The model is rewritten

into a closed form solution with the inverse of an identity matrix minus the spatial

weight matrix multiplied to the right hand side. Usually this model requires a maxi-

mum likelihood estimator (Lee, 2004; Yu et al., 2008) or a GMM estimator (Kelejian

and Prucha, 1998, 1999) and cannot be used in a multifactor error structure. Thus,

adding a contemporaneous spatial lag, would rule out the possibility of using the

DCCE estimator to control for common factors. Because of the spatial time lag,

the type of endogeneity in this chapter differs from the one mainly occurring in

the literature. In a spatial lag model with an exogenous spatial weight matrix,

reversed causality occurs as the observations of the dependent variable from other

cross-sectional units are added as explanatory variables. This type of endogeneity

in a spatial lag model is usually estimated with an IV or GMM approach (Kelejian

and Prucha, 1998, 1999). In this chapter, endogeneity stems from the spatial weight

matrix and thus the spatial time lag becomes endogenous.

A third difference to the works above and to Barro and Sala-i Martin (1992); Mankiw
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et al. (1992); Islam (1995) is the assumption of slope heterogeneity. In an empiri-

cal setting, parameter heterogeneity was discussed in Lee et al. (1997, 1998); Islam

(1998) and Eberhardt and Teal (2011). Especially in a cross-country setting, the as-

sumption of slope homogeneity is rather strong. Slope heterogeneity is a prerequisite

for the Lotka-Volterra model as the model requires estimates for each cross-sectional

unit.

Another difference is that the growth model in equation (4.5) does not include

any further covariates, such as physical or human capital or a measure of the size of

the population. In the case of a Lotka-Volterra model, further covariates would be

required to be stable as well and would complicate the conditions for convergence.

The exclusion of a spatial lag and further covariates are important limitations

of the Lotka-Volterra approach. Including those would complicate the estimation

method as described above. The focus of this chapter is on the Lotka-Volterra ap-

proach in a cross-country setting with a multifactor error structure and controlling

for both types of cross-sectional dependence. Therefore, the model and the esti-

mation method are kept as simple as possible. The Lotka-Volterra model is not

widely adopted in empirical economics. A possible explanation is, that testing the

conditions for convergence is difficult as explained next.

4.6 Testing for absolute convergence and infer-

ence on eigenvalues

In order to state the type of convergence, the conditions for it have to be assessed.

The country specific estimates are used to calculate the steady states for each country

ŷ∗i . Then a Wald Test with the hypothesis H0 : y∗1 = y∗2 = ... = y∗N is performed to

test for absolute convergence. If the null is rejected, the steady states are different

from each other and no absolute convergence is found.

Testing for conditional convergence requires more care, as instead of the steady
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states, the negativity of the eigenvalues is tested. A vast literature deals with infer-

ence of eigenvalues of covariance matrices in principal component analysis. However,

in contrast to inference on covariance matrices of principal components, the eigenval-

ues in this chapter are allowed to be negative. Hence, the large sample distribution

theory as derived for example in Anderson (2003) is not valid.

An approximate distribution of the eigenvalues can be derived using the Delta

Method. Under the assumption that the eigenvalues are a function of ω, i.e. λ(ω) =

(λ1, ..., λN)′, with ω = (α,ρ), ωi = (αi, ρi) and Ω the true value, then ω →p Ω

and
√
n(ω −Ω) →d N(0,Σ).10 The distribution of the eigenvalues using the delta

method is then
√

(n)(λ(ω) − λ(Ω)) →d N(0,Λ(Ω)ΣΛ(Ω)′).11 Then a possible

hypothesis would be H0 : −2 < λi < 0 i = 1, ..., N . However, this joint test would

involve inequalities under the null hypothesis. As an alternative, the maximum of

an eigenvalue can be tested. The maximum of eigenvalues follows an extreme value

distribution. This approach is infeasible, because the moments of the extreme value

distribution would rely on a single observation.

As an alternative a bootstrap is carried out, where the cross-sectional dimension

(N) is fixed and T → ∞. Moreover as this is a heterogeneous slope model, the

unit-specific coefficients ωi depend on the observed data X = (X1, ...,XT ), implying

that ω is a function of the data, ω = ω(X). Hence the eigenvalues are indirectly

a function of the observed data as well, λ(ω(X)). For the bootstrap the following

steps are performed:12,13

10Additionally the weight matrix W and their weights have to be uncorrelated with ω. Λ(Ω) is
the first derivative of the eigenvalues.

11See Hayashi (2000) Lemma 2.5.
12For an overview of bootstrap methods see Horowitz (2001) and for the block bootstrap, see

Härdle, Horowitz and Kreiss (2003). A non-overlapping block bootstrap is preferred over the more
complicated overlapping block bootstrap. Härdle et al. (2003) report that the numerical results of
the two approaches are similar.

13The argumentation can be put differently: The community matrix depends on the estimated
coefficients of the lagged dependent variable and the spatial autocorrelation coefficient. The Monte
Carlo results in Chapter 3 proof, that the biases of the coefficient on the lagged dependent variable
and on exogenous explanatory variables decrease with T . In addition, the sum of the spatial
autocorrelation coefficient and the spatial time lag is weakly cross-sectional dependent. Both
favour the cross-sectional dimension to be fixed and to draw from the time dimension.
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1. X = (X1, ...,XT ) is split into country specific blocks of length Bl.

2. A sample X∗ is drawn with replacement.

3. Equation (4.13) is estimated, matrix A constructed and the eigenvalues com-

puted.

4. The number of eigenvalues −2 < λi < 0 is stored in Tr.

5. Steps 1 - 4 are repeated R times

6. T̄ = 1
R

∑R
r=1 Tr is calculated.

Under the null hypothesis all eigenvalues are between −2 and 0, implying conver-

gence, thus H0 : T̄ = N , against the alternative H0 : T̄ < N . The length of the

blocks is 10 periods (Bl = 10) periods. It is alternated to 5 and 20 periods as a

robustness check.

4.7 Data

GDP per capita originates from the Penn World Tables 8 (Feenstra et al., 2015) and

is transformed into logarithms. The yearly data is restricted to the years 1960 to

2007. Even though the Penn World Tables are available until 2011, data from 2008

onwards is excluded due to the financial crisis. Using yearly observations in cross-

country regressions is rather unusual. It is common to use 5-year averages (Islam,

1995; Caselli, Esquivel and Lefort, 1996; Hauk and Wacziarg, 2009). However, this

will shorten the panel such that the DCCE estimator is not applicable. The reason

for the period averages is to smooth short run effects such as the business cycle.

However, those should be captured by the common factors of the DCCE estimator.14

Spatial Weights Three different row normalised spatial weight matrices are used

in this study. The first one is based on migration streams of high skilled workers.

The weight matrix is constructed out of data for 2010 from the IAB brain drain
14This topic is somewhat related to the questions of continuous-time models and issues of ag-

gregation over time, which is well beyond the topic of this chapter and thesis.
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dataset (Brücker, Capuano and Marfouk, 2013). The rationale is that high skilled

workers contribute to the economic performance of a country and strengthen the ties

between countries.15 A positive spatial autocorrelation coefficient ρ(1) would imply

that high skilled migrants are carriers of positive spillover effects. Equation (2.58)

in Chapter 2 directly relates migration streams and economic growth.

Mayda (2010) finds using bilateral migration flows from the OECD International

Migration Statistics that pull factors (income in destination country) increase the

size of emigration rates. Barro and Sala-i Martin (2004) assume a smaller rate of

convergence if the regression contains migration. They find a small negative effect

of migration on income per capita growth rates.

On a regional level for 27 European regions, Huber and Tondl (2012) find evi-

dence that migration has a positive effect on the income per capita of the destination

country, while it negatively effects the country of origin. Ozgen, Nijkamp and Poot

(2010) summarize the effect of migration on convergence on a regional level in form

of a meta study.

The second spatial weights matrix are trade shares between countries, originating

from the Direction of Trade Statistics (DOTS) of the IMF. The data ranges from

2009 to 2013 in yearly intervals. The latest available year is used as the baseline

spatial weights matrix, as done for migration. Trade is commonly used as a spatial

weight for economic distance (LeSage and Pace, 2008). If two countries trade a

lot, spillovers between these two will be larger. A more theoretical rationale is

that countries use their comparative advantage in the production of specific goods,

which are then traded. Moreover, it is suggested in the literature (Grossman and

Helpman, 1991; Coe and Helpman, 1995) that international trade is a major channel

for diffusion of technology. Both theories strongly suggest an estimated spatial
15Only high skilled migration into OECD countries is taken into account, from OECD countries

as well as from non-OECD countries. The first reason is that the amount of high skilled migrants
into non OECD countries is likely to be very small. Secondly, data for streams between non OECD
countries is largely unavailable. Alternatively, it would be possible to restrict the study to OECD
countries, with the cost of losing 3/4 of the observations. A list of the countries can be found in
the Appendix C.1.
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autoregressive coefficient for the trade weight matrix larger than zero. In a growth

empirical setting, trade as a spatial weights matrix to measure economic distance

can be found for example in Ertur and Koch (2011) or Ho et al. (2013).

As a third weight matrix, FDI from the Coordinated Direct Investment Survey

(CDIS) of the IMF is considered. The data spans the years 1980 until 2010 in 5 year

intervals. In line with the other two spatial weights, the latest available year is used

as a spatial weight. FDI represents technological diffusion. In a spatial context, it

is surveyed in Abreu et al. (2004).

4.8 Estimations

In the next section, regression results are presented. First estimates obtained by

the SDLS estimator are discussed and compared to earlier findings in the literature.

Then regression results using the DCCE estimator are analysed.16

4.8.1 Simultaneous Dynamic Least Squares

SDLS results are presented in Table C.1. Panel A shows the results without any

spatial weights. The p-values from the bootstrap with the hypothesis that all eigen-

values are negative are shown in squared brackets in the column labelled “Eigenval.”

The p-value for the test of absolute convergence is shown in parenthesis. In the

last row of each panel, the spatial weight is removed from the computation of the

community matrix A and the number of negative eigenvalues and the corresponding

p-value of the bootstrap is shown.

The regression results for the classical model in Panel A are not in favour of con-

ditional or absolute convergence, as the hypothesis of all eigenvalues being between

-2 and 0, and all steady states being the same are rejected. However, the esti-

mate of the coefficient on the lagged dependent variable is negative and significant.

Therefore, in a classical sense, conditional convergence is found.
16The estimations are performed in Stata using the xtdcce2 package (Ditzen, 2017), version

1.32 from July 2017.
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Adding spatial weights changes the overall picture. All values for α and the real

parts of the eigenvalues of A are negative. In the case of migration and exports

as spatial weights conditional convergence is found as all eigenvalues are negative.

This evidence is supported by the bootstrap. Moreover the spatial autocorrelation

coefficient using exports as a weight is significant at a level of 10%. This result is

in line with the results from Arbia and Paelinck (2003a,b), who find convergence

once spatial interactions are accounted for. The last panel includes all three spatial

weight matrices. The bootstrap just rejects the hypothesis of conditional conver-

gence. However not all eigenvalues are negative and none of the spatial weights are

significant.

As the last column indicates, the hypothesis of spatial dependence in the resid-

uals is rejected for the case without spatial lags and if the FDI migration weight

matrix and all three weight matrices are used. This implies that OLS is inconsistent.

Therefore, as a next step, the DCCE estimator is used to control for unobserved

cross-sectional dependence together with spatial interactions to account for observed

dependence.

4.8.2 Dynamic Common Correlated Effects - Mean Group

Table C.2 displays results using the DCCE estimator. Cross-sectional averages of

the independent variable and
[

2
√

47
]

= 3 lags of it are added in Panels B - F.

Panel A shows results without any cross-sectional averages or spatial weights.

The mean of the coefficient on the lagged dependent variable, αi is negative and

highly significant. However only 83 eigenvalues are between -2 and 0, indicating no

conditional convergence. The bootstrapped p-value of the test that all eigenvalues

are between -2 and 0 is 0.988, thus supporting the hypothesis of negative eigenvalues.

The hypothesis of absolute convergence is rejected. The p-value of the CD test in the

final column rejects the hypothesis of weak cross-sectional dependence, suggesting

the estimates are inconsistent.
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If cross-sectional averages are added (Panel B), the overall results appear to be

similar. However, the hypothesis of weak cross-sectional dependence in the error

term cannot be rejected. The value of the test statistic decreases from 31.55 to 0.25.

The value implies that not much of cross-sectional dependence is left. Only one

country has an eigenvalue not between -1 and 0, implying that most countries show

a tendency towards convergence.

In the regressions in Panel C to Panel E a single spatial interaction is included.

The spatial autocorrelation coefficient for migration and FDI is significant and pos-

itive while the coefficient on exports is insignificant. The significance of the co-

efficients implies that spatial dependence exists and underlines the importance of

accounting for both types of dependence. The interpretation of the coefficients is,

that the growth rate increases for countries that have strong ties via migration or

FDI. For migration, the result is in contradiction to earlier findings as in Barro

and Sala-i Martin (2004) who find a negative relationship. The number of eigen-

values between -2 and 0 does not change if the coefficients relating to the spatial

interactions are removed from community matrix A. The column on the very right

shows the value of the CD test statistic and the p-values. The hypothesis of weak

cross-sectional dependence cannot be rejected in all three cases.

Panel F includes all three spatial weights. Out of the spatial interactions, only

FDI has a significant positive effect. This result can be explained that only little

cross-sectional dependence remains in Panel B and that the remaining dependence

is split among the three channels. The number of eigenvalues between -2 and 0 is

stable around 88, the bootstrapped p-values imply that the hypothesis of conditional

convergence cannot be rejected. None of the regressions show any evidence for

absolute convergence as the p-values are 0.

The estimated convergence equation is similar to the models estimated by Bau-

mol (1986) and Barro and Sala-i Martin (1992). Baumol finds for a larger set of

countries club convergence, but for a smaller absolute convergence. While the for-
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mer fits loosely into conditional convergence, the latter is clearly contradicted by

the results. Barro and Sala-i Martin find conditional convergence for 98 countries.

In a more recent study, Barro (2015) finds conditional convergence in large panel as

well. Therefore, the results show that a Lotka-Volterra approach can be placed into

the existing literature.

4.9 Robustness Checks

Several robustness checks were carried out and lead to similar conclusions, confirm-

ing conditional convergence but no evidence for absolute convergence.

4.9.1 Dynamic Common Correlated Effects - Pooled

In Table C.3 the spatial autocorrelation coefficients are constrained to be equal

across countries (ρk,i = ρk, i = 1, ..., N). The overall picture remains similar to

the results from the DCCE-MG estimation. For comparison, Panel A and B are

the same as in Table C.2. None of the three spatial autocorrelation coefficients

is significant. The number of eigenvalues between -2 and 0 is between 88 and 90,

the bootstrapped p-values imply however that all eigenvalues are between -2 and

0. The number of eigenvalues between -2 and 0 reacts only very little to changes

in the interactions. This result is somewhat surprising. However taking the size of

the coefficients into account and comparing it to the size of the coefficient on the

lagged dependent variable αi, the coefficients on ρ appear to be much smaller. The

hypothesis of weak cross-sectional dependence cannot be rejected in all cases with

spatial weights.

In the absence of a test for heterogeneous slopes, it only possible to speculate

which model is the preferred one. Given the similarity of the Monte Carlo results

in Chapter 3 and the significance of the MG results, the MG estimation results are

preferred.
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4.9.2 Dynamic Common Correlated Effects - IV estimation

Consistency of the DCCE estimator depends on the assumption that the variables

are (weakly-) exogenous. However, if the dependent variable is an economic mea-

sure such as GDP and the spatial weight is a measure of ’economic distance’ such

as trade volumes, then the spatial weights are likely to be correlated with the de-

pendent variable (Qu and Lee, 2015). The reversed causality leads to endogeneity

of the spatial (time) lag. Kelejian and Piras (2014) propose regressing the spatial

weights on exogenous variables. This implies that the weight matrix itself is esti-

mated. This chapter follows an extension of this approach suggested by Qu and

Lee (2015). A simple IV regression is performed on the sum of the weighted spatial

autocorrelations. The first stage is

vi,t =
N∑

j=1,j 6=i
w(1),i,jyj,t−1 = γ0,i + γ1,i

N∑
j=1,j 6=i

w(2),i,jyj,t−1

+ γ2,i

N∑
j=1,j 6=i

w(3),i,jyj,t−1 + γ3si,t + ξi,t, (4.15)

where w(1),i,j is the endogenous weight and w(2),i,j and w(3),i,j are the elements of

the exogenous weight matrices. vi,t is the sum over the elements i, j of the spatial

weight matrix times the spatial lag. si,t are further exogenous covariates from the

second stage, such as cross-sectional averages. v̂i is then used in the second stage:

∆yi,t = β0,i + αiyi,t−1 +
K∑
k=1

ρ(k),i

N∑
j=1,i 6=j

v̂i,t +
pT∑
l=0

ϑiȳi,t−l + ui,t. (4.16)

The weight matrices of migration of high skilled workers, FDI and exports are

instrumented by distance and distance squared. In equation (4.15), w(1),i,j contains

either of the three matrices, w(2),i,j and w(3),i,j are the exogenous weights distance

and distance squared.

The location of each country and its borders is taken from the World Borders
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Dataset (Sandvik, 2008). The location of a country can be assumed to be exogenous

as for example described in Eaton and Kortum (1999); Klenow and Rodriguez-Clare

(2005).

In Table C.4 the spatial weight matrices are assumed to be endogenous. All three

weight matrices are constructed using data from 2010 and therefore likely to be an

outcome of the dependent variable. The coefficients on the migration and FDI spatial

weights matrices are significant. The autocorrelation coefficient on the migration

weights matrix is positive and significant. This implies that an influx of high skilled

migrants increases the growth rate. From the results, it is evident that migration has

a positive effect on the growth rate. The coefficient on direct investment is positive

and significant at a level of 1%. More foreign direct investments imply an increase

in the growth rate. As only two instruments are available, it is not possible to treat

all three spatial weight matrices as endogenous at the same time. The bootstrapped

p-values are in comparison to earlier results much smaller, but with the exception

of the last two Panels, still in a non-rejection area. Again, there is no evidence

for absolute convergence. The CD test for all regressions including spatial weights

cannot reject the hypothesis of weak cross-sectional dependence.

The overall picture remains the same, FDI and to a lesser extent migration are

the main drivers of spatial interactions. Both coefficients are positive and signifi-

cant, but the coefficient on FDI is much larger. The coefficient on Exports remains

insignificant and negative. While FDI clearly improves growth rates, exports have a

dampening effect. The bootstrapped p-values testing the hypothesis that all eigen-

values are between -2 and 0 are in a non rejection region.

4.9.3 Alternating Number of Cross-Sectional Lags

In Tables C.5 to C.7 the number of cross-sectional averages and its lags are alter-

nated.
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No Cross-sectional Averages An OLS regression with heterogeneous slope co-

efficients is estimated in Table C.5. This is essentially a MG regression. All spatial

autocorrelation coefficients appear to be positive and statistically significant dif-

ferent from zero at a level of 1%. The bootstrapped p-values indicate conditional

convergence. However as the last column indicates, the test for weak cross-sectional

dependence is rejected and therefore cross-sectional dependence occurs and renders

the point estimates inconsistent. The results clearly show that accounting for spatial

dependence by spatial weights is not sufficient to remove all spatial dependence.

Only contemporaneous averages In the next table, contemporaneous cross-

sectional averages are added, but no lags. This setting would suffice a static panel

model. Interestingly the MG estimates for the weight matrices turn negative and

are with the exception of the autocorrelation coefficient on the migration weight

matrix significant. The evidence for conditional convergence is even stronger as the

p-values for the test on the negativity of the eigenvalues are larger. Similar to the

case without cross-sectional averages, the CD test rejects the hypothesis of weak

cross-sectional dependence in all cases. This implies that if only spatial dependence

is accounted for, the common factors are still in the error terms. In addition, it is

remarkable that the CD test statistic hardly reacts to the inclusion of the spatial

terms.

One Lag Table C.7 shows the results of the same specification as in Table C.2, but

with 1 instead of 3 lags of the cross-sectional averages (pT = 1). As expected, the size

of the CD test statistic increases and therefore the p-values decrease and are below

0.1 for all specifications but the one without any spatial weights. The reason for an

increase in the CD test statistics is that, when leaving out the cross-sectional lags, the

error terms are more exposed to unaccounted cross strong sectional dependence. The

coefficients on the migration and FDI weight matrices are significant and positive,

a result which is in line to earlier findings. The number of negative eigenvalues

remains high and the results from the bootstrap imply conditional convergence.
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Overall, the regressions in Tables C.5 and C.6 highlight several findings. First

of all, they emphasise the sensitivity of the CD test to a change in the number of

cross-sectional averages. Furthermore, it shows the importance to account for com-

mon factors by using a sufficient number of lags. Even though the MG estimates are

significant for most cases, the estimates are inconsistent as the error terms inhibit

strong cross-sectional dependence. The change of the sign of the spatial autocorrela-

tion coefficients in the case of only contemporaneous cross-sectional averages can be

interpreted in two ways. The first is due to the small sample bias in a finite sample.

The second interpretation is that the cross-sectional averages take out some of the

spatial dependence and render the coefficient to change its sign.

4.9.4 Lagged Spatial Weights

An important assumption is that the spatial weight matrix is exogenous. In the

previous Tables the migration and export weight matrix dates from 2010, the FDI

matrix from 2013. Similar to the argumentation in Section 4.9.2 the endogeneity of

the spatial weights is questionable. As an alternative method to the one in Section

4.9.2 it is possible to use spatial weight matrices from an earlier point in time.

Therefore, in Tables C.8 and C.9 the migration and export weights dates from 1980

and FDI from 2010.

Table C.8 is the analog to Table C.2 and with the same setting. Overall the MG

estimations for α are in similar regions. Most notable is that the coefficient on FDI

almost halved and the one on exports increased in absolute value and is significant.

Moreover it is negative and implying a dampening effect of exports on growth. The

overall picture remains similar. Conditional convergence is found and the CD test

statistics are in a non-rejection region.

In a similar fashion, Tables C.4 and C.9 can be compared. The level of the MG

estimate for migration is similar. FDI becomes smaller and insignificant and exports

have a strong negative effect. Notable is that the p-values for the test on conditional

convergence are much smaller and almost lie in a non-rejection area. This implies
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that with the lagged spatial weight matrices, no conditional convergence is found.

4.9.5 US as common factor

To rule out any effects of dominating units on the spatial interactions, the US are

removed from the weight matrix and modelled as a common factor in Table C.10.

The approach is similar to Holly, Pesaran and Yamagata (2011) and Chudik and

Pesaran (2013). None of the spatial autocorrelation coefficients is significant. This

underlines the importance of the US for spatial dependence in terms of FDI, trade

and migration. The bootstrapped p-values are all in a non-rejection region, im-

plying conditional convergence. Again, there is no evidence for absolute conver-

gence. Including spatial weights and the cross-section averages, leads to weakly

cross-sectional dependent error terms. This might raise the question once more that

the cross-sectional averages take out too much of the spatial dependence and lead to

insignificant results for coefficients which are meant to capture spatial dependence.

4.9.6 Alternating length of bootstrap blocks

As a final robustness check, the length of the blocks for the bootstrap is alternated.

If the blocks are small, the drawn data resembles the observed data closer, while

with large blocks specific time periods can appear multiple times.

The results in Tables C.11 and C.12 are similar to those obtained by the baseline

model in C.2. The p-values differ only in a very small order. The result implies that

the length of the blocks has only a minor effect on the number of eigenvalues between

−1 and 0.

4.10 Conclusion

This chapter studies convergence in a cross-country framework using a general

Lotka-Volterra Model to detect the type of convergence. Two types of cross-sectional

dependence are accounted for. Common factors are incorporated by adding cross-
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sectional averages of the dependent and independent variables. As a second type,

spatial dependence is accounted for by using a spatial time lag with three different

weight matrices. The model is estimated with two different types of estimators, a Si-

multaneous Dynamic Least Square estimator and the Dynamic Common Correlated

Effects Estimator, in the mean group as well as in the pooled version.

The chapter extends the current literature manifold. First of all the approach

by Arbia and Paelinck (2003a,b) is advanced by taking both types of cross-sectional

dependence into account. The conditions for absolute and conditional convergence

are tested directly and by using a bootstrap method. The type of convergence is

identified using a difference equation system, rather than a single parameter. This is

further novelty in cross-country regressions. Finally, the use of the DCCE estimator

in combination with spatial weights to account for observed as well as unobserved

(global) factors in a empirical growth model is new to the best of my knowledge.

Using this rather simple estimation technique comes at the cost of one important

limitation. A spatial time lag is used rather than a more general spatial lag model.

There are several notable findings. A Lotka-Volterra approach on a classical

convergence equation without spatial interactions confirms earlier empirical find-

ings in literature. Conditional convergence appears to be more frequent if both

types of cross-sectional dependence are controlled for. This allows the conclusion

that interactions between countries contribute towards convergence. This finding

however has to taken with caution. Conditional convergence in the prevailing con-

text implies that countries converge towards their own equilibrium. Secondly, this

argument underlines the importance of considering spatial dependencies between

countries in growth empirics. In particular FDI and Migration appear to play a

strong role in connecting countries and somewhat surprisingly to a lesser extent

trade. However this is in line with the theoretical model in Chapter 2. Finally, the

non rejection of weak cross-sectional dependence, if controlled for by spatial interac-

tions and cross-sectional averages, is a strong argument to account for those. To put

it very succinctly, a growth regression without taking dependence between between
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countries into account is likely to be inconsistent.

There are some possible extensions to the estimation approach of this chapter.

In a growth empirical setting, applying the model to estimate the rate of conver-

gence and the question of club convergence is of interest. In particular the matrix

environment of the Lotka-Volterra model has the potential to determine convergence

clubs. This could shed further light on the blurry definition of conditional conver-

gence. An interesting and easy extension would be to apply the model to a subset

of countries, however this would come at a cost, the loss of many cross-sectional ob-

servations. Three further applications of the Lotka-Volterra model in combination

with the cross-sectional dependence literature are possible. First, the spatial Solow

model developed by Ertur and Koch (2007) with physical and human capital and

population growth as explanatory variables can be estimated adding cross-sectional

averages to control for strong dependence. Secondly, a contemporaneous spatial

lag can be added. This would make the model more general, but the estimation

procedure would be more complicated. Finally, the two-step estimation procedure

proposed by Bailey, Holly and Pesaran (2016) and the GMM procedure developed

by Kuersteiner and Prucha (2015) can be applied to the settings above. Further

work is required to encompass the two strands into a Lotka-Volterra model, which

is beyond the scope of this thesis and left for further research.
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Appendix Chapter 4

C.1 Countries

Argentina, Australia, Austria, Bangladesh, Barbados, Belgium, Benin, Bolivia, Bots-

wana, Brazil, Burundi, Cameroon, Canada, Central African Republic, Chile, China,

Colombia, Republic of Congo, Costa Rica, Cote dÌvoire, Cyprus, Denmark, Domini-

can Republic, Ecuador, Egypt, El Salvador, Fiji, Finland, France, Gabon, Gam-

bia, Germany, Ghana, Greece, Guatemala, Honduras, Hong Kong, Iceland, Indone-

sia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya, Republic of Ko-

rea, Lesotho, Luxembourg, Malawi, Malaysia, Mali, Malta, Mauritania, Mauritius,

Mexico, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand, Niger,

Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Portugal, Rwanda, Sene-

gal, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria, Taiwan, Tanzania,

Thailand, Togo, Trinidad & Tobago, Tunisia, Turkey, Uganda, United Kingdom,

United States, Uruguay, Venezuela, Zambia, Zimbabwe

C.2 Simultaneous Dynamic Least Square estima-

tor

Arbia and Paelinck (2003a,b) estimate regional convergence for 119 European re-

gions. They use an iterative SDLS, which minimizes the squared deviations between

an observed and an endogenously computed value, to estimate the parameters of a

Lotka-Volterra equation. The SDLS estimator is similar to SURE or a 3SLS estima-

tor without endogenous variables. It is a generalised reduced form estimator, a ML
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estimator if ε ∼ N(0, σ2I) and consistent estimator under homoscedastic errors (see

Griffith and Paelinck (2011, Chapter 11)). The equilibrium conditions for Lotka-

Volterra models are then used to determine the existence of convergence. Arbia and

Paelinck estimate the following equation:

∆yr,t = aryr,t−1 + bry
∗
r,t−1 + cry

∗∗
r,t−1 + cr + e0 (C.1)

∆y = Ay + c

where y∗r,t−1 and y∗∗r,t−1 are spatial time lags of first and second order (in the spatial

dimension) and yr,t−1 lagged income. cr and e0 are regional specific effects. The

second equation is the Lotka-Volterra representation of Eq. (C.1).

In a similar fashion, the same approach will be used in this chapter to estimate

convergence among 93 countries during the years 1960 to 2007. In line with Arbia

and Paelinck (2003b) the following steps will be performed:

First, the income variable is set relative to the overall average. If all countries

move towards the same level of income, or converge in absolute terms, then the

relative income in each country should converge to the same value.

Secondly, the following model is estimated for each country separately by simple

OLS:

yi,t − yi,t−1 =αiyi,t−1 +
K∑
k=1

ρ(k),i

N∑
j=1,i 6=j

w(k),i,jyj,t−1 (C.2)

+ β0,i + ei,0 + εi,t (C.3)

where

βi =(β1,i, β2,i, β3,i)′ (C.4)
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and e0,i is a dummy for the initial difference. w(1),i,j, w(2),i,j and w(3),i,j are spatial

weights constructed out of migration streams, trade data and the inverse of the dis-

tance between countries. ρ(1), ρ(2) and ρ(3) are the spatial autoregressive parameters.

The entire system can be expressed in matrices:

∆yt =diag(α)yt−1 +
K∑
k=1

diag(ρ(k))W(k)yt−1 + β0 + e0 + εt (C.5)

with

yt = (y1,t, ..., yN,t)′ α = (α1, ..., αN)′ (C.6)

ρ(k) = (ρ(k),i, ..., ρ(k),N)′ e0 = (e1,0, ..., eN,0)′ (C.7)

εt = (ε1,t, ..., εN,t)′ (C.8)

W(k) =



0 w(k),1,2 . . . w(k),1,N

w(k),2,1
. . . ...

... . . . ...

w(k),N,1 . . . . . . 0


(C.9)

The coefficients are saved as α̂(1), β̂
(1)
, ˆρ(k)

(1), ... etc. for use in the next step. In

the following a hat indicates an estimated value, while the superscript refers to the

number of repetitions.

Thirdly, income in t is iteratively computed for each period using the estimated

coefficients from step 1. For the first period, yi,1, the dummy on the initial difference

e0,i is used instead of the lagged left hand side variable:

ŷ(1)
1 = β̂

(1)
0 + e(1)

0 (C.10)
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The income of the subsequent periods, t > 1, is then derived from:

ŷ(1)
t =

(
diag(α̂)(1) + 1

)
ŷ(1)
t−1 +

K∑
k=1

diag(ρ̂(k))W(k)ŷt−1 (C.11)

Finally, the first three steps are repeated until the coefficients converge. The fi-

nal estimation results are put into a system of differential equations, which has in

addition to Eq. (4.1) a time varying factor. Thus

∆yt = Ayt−1 + b + εt (C.12)

where

A = diag(α) +
K∑
k=1

diag(ρ(k))W(k)

b = β0 + e0

The matrix A and vector b are then used to determine the type of convergence.

The diagonal elements of A are the autocorrelation coefficients αi, while on the off

diagonal elements the sum of the spatial interactions (∑K
k=1 ρ(k),iw(k),i,j) appear. This

implies that that the diagonal represents the effects over time from within a country,

while the off diagonal elements stand for cross-country or spatial interactions.

Equation (4.13) allows for different convergence equations. If all spatial interac-

tions and possible explanatory variables are omitted (ρ(k),i = βi = 0, i = 1, ..., N

and k = 1, ..., K), then the classical convergence equation (Barro and Sala-i Martin,

1992) is obtained. If only the spatial interactions are set to zero (ρ(k),i = 0, k =

1, ..., K), then the model is closer to the work of Mankiw et al. (1992). A spatial

convergence model is obtained if ρ(k),i 6= 0, k = 1, ..., K.
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4. CROSS-COUNTRY CONVERGENCE IN A GENERAL
LOTKA-VOLTERRA MODEL
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Chapter 5

Conclusion

This thesis has studied the fields of applied research in economic growth and the

connection to interdependence between countries. Economic theory recognises inter-

dependence across countries, but in applied empirical works those interdependence

are neglected. Econometric and spatial econometric theory identify two types of

interdependence between countries, strong and weak cross-sectional dependence.

Strong dependence is modelled in form of unobservable common factors. Spatial

econometrics offers methods to account for weak cross-sectional dependence, or spa-

tial dependence. Therefore, to obtain consistent estimates for a growth regression,

an appropriate method needs to pay attention to both sources of interdependence.

The main message of a growth regression in the long run interpretation is conver-

gence. Conditions for it need to be adjusted if interactions between countries are

included in a growth model.

One of the aims of this thesis is to close the gap between the theoretical and the

applied growth literature on the implementation of interdependences between coun-

tries. Chapter 2 derives a growth model by combining an endogenous Romer model

with features from the New Economic Geography and Growth literature. Countries

interact via three different channels: migration of high skilled workers, diffusion of

ideas and trade of goods. The countries’ growth rate depends positively on all three

factors. Especially migration of high skilled workers has a large effect on the growth
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5. CONCLUSION

rate and is founded on the micro level. Wage differentials are the motivation for

high skilled workers to migrate. The engine of growth is taken from the endogenous

Romer growth model. Therefore, the model predicts explosive growth and diver-

gence across countries. Left for further research is to change the production function

of the R&D sector to decreasing returns of scale. A possible outcome of this would

be convergence.

Before it is possible to use the model from above as motivation for interdepen-

dence between countries for an empirical model, it is important to discuss the second

type of cross-sectional dependence, common factors. In the literature it is standard

to use the Common Correlated Effects estimators for the estimation of the multi-

factor error structure models. Chapter 3 describes a Stata package, which allows

the estimation of the Dynamic Common Correlated Effects estimator. The package

allows for the estimation of Mean Group and pooled models. It accounts for com-

mon factors by adding contemporaneous values and lags of cross-sectional averages,

following Pesaran (2006) and Chudik and Pesaran (2015a). The chapter discusses

the integrated routine to test for weak cross-sectional dependence and the estima-

tion strategy for a unit-specific fixed effect. Monte Carlo simulations point towards

the requirements for the time and cross-sectional dimension the estimator can be

applied to. The main driver for the bias of the coefficient of the lagged dependent

variable is the time series bias. The coefficient is biased in small samples and the

bias decreases only with a reasonable time series length of around 100 periods. The

bias for coefficients of further exogenous explanatory variables remains low, even for

small samples.

The final chapter draws on the preceding chapters. A growth equation with

both types of cross-sectional dependence is estimated. The spatial weight matrices,

migration of high skilled workers, trade and foreign direct investments, are motivated

by the model from Chapter 2. The estimation procedure follows on the lines of the

method described in Chapter 3. To determine the type of convergence a general

Lotka-Volterra model is employed. Evidence for conditional convergence is found,
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especially if cross-sectional dependence is controlled for. FDI and migration play

a strong role for the interdependence between countries. The robustness checks

underline the importance to control for both types of dependence, otherwise the

regression results are endangered to be invalidated. To put it succinctly, results

from growth regression without interdependence between the units are likely to be

inconsistent. The results highlight the potential use of a general Lotka-Volterra

model, respectively of a differential equation model, for establishing convergence in

the presence of interactions between countries.

xtdcce2 is an ongoing project. On the top of the agenda are improvements

of the speed of the estimations, new features such as the CS-DL and CS-ARDL

estimator (Chudik et al., 2016) and alternative variance/covariance estimators for

pooled coefficients and individual coefficients in a mean group regression. Further

extensions can incorporate the bias correction methods for the pooled estimator

suggested in Everaert and De Groote (2016) and Everaert and De Vos (2016). The

literature on cross-sectional dependence increased in the last years. However, the

implementation of the newly developed methods into programs such as Stata lags

behind. This excludes many researchers from using the methods in applied research.

Left in this field is for example the two-stage approach described in Bailey, Holly and

Pesaran (2016). xtdcce2 gives the researcher the possibility to estimate the sum of

the common factors, with or without the constant. Estimating the factor loadings

would be beneficial in several ways. First of all, the common factors are of use for

example in stochastic frontier models (Filippini and Tosetti, 2014) or estimation of

gravity models (Serlenga et al., 2013). A key for the estimation of the factors is to

determine the number of factors. Sarafidis and Wansbeek (2012) propose methods

to estimate the number of the common factors. From there the question arises, if

the cross-sectional averages are suitable to approximate the common factors for an

estimation of the factor loadings. Important is a test for slope homogeneity. To the

best of my knowledge, no such test for a panel with large N and T exists. Developing

a test would be highly beneficial for applied econometrics. If the common factors
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are estimated, then a test on the lines of Ando and Bai (2015) can be derived.

The model in Chapter 4 has several limitations. The model relies on a spatial

time rather than a spatial lag. A spatial lag requires more sophisticated methods.

The Lotka-Volterra approach is in the focus and therefore a simple method preferred.

In addition to a spatial lag, further explanatory variables are missing. Including

them would require further conditions for convergence. This can go in hand with a

Lotka-Volterra representation of a neoclassical growth model as the Solow model.

However the question of the meaning of conditional convergence remains. It does

not make a statement about the persistence of income differences. Of interest would

be the identification of convergence clubs and the Lotka-Volterra approach might be

of use. There are alternatives to the difference equation Lotka-Volterra model. One

alternative for the pair-wise approach to test for convergence is described in Pesaran

(2007). However, it is not obvious how the test would perform in an equation with

spatial dependence or common factors. Another limitation is a clear econometric

guidance when to include spatial lags to control for spatial dependence. The CD test

captures strong dependence, but is not be able to detect independence. A method

to specify this could be along the lines of estimating αCSD as proposed in Bailey,

Kapetanios and Pesaran (2016).
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