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Abstract

We investigate the Squier complexes of presentations of groups and inverse monoids

using the theory semiregular, regular, and pseudoregular groupoids. Our main inter-

est is the class of regular groupoids, and the new class of pseudoregular groupoids.

Our study of group presentations uses monoidal, regular groupoids. These are

equivalent to crossed modules, and we recover the free crossed module usually asso-

ciated to a group presentation, and a free presentation of the relation module with

kernel the fundamental group of the Squier complex, the module of identities among

the relations.

We carry out a similar study of inverse monoid presentations using pseudoregular

groupoids. The relation module is defined via an intermediate construction – the

derivation module of a homomorphism, – and a key ingredient is the factorisation of

the presentation map from a free inverse monoid as the composition of an idempotent

pure map and an idempotent separating map. We can then use the properties

of idempotent separating maps, and properties of the derivation module as a left

adjoint, to derive a free presentation of the relation module. The construction of

its kernel – the module of identities – uses further key facts about pseudoregular

groupoids.
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Chapter 1

Introduction

The relationships between presentations of semigroups, monoids, and groups, and

systems of rewriting rules has led to a network of ideas that has drawn together

concepts from group and semigroup theory, low-dimensional topology, and theoret-

ical computer science. In [37], Squier addressed the question of whether a finitely

presented monoid with solvable word problem is necessarily presented by a finite,

complete, string rewriting system. He proved that a monoid presented by a finite,

complete, string rewriting system must satisfy the homological finiteness condition

FP3: indeed, an earlier result of Anick [2] implies that such a monoid satisfies the

stronger condition FP∞. These ideas are concisely surveyed by Cohen [9], and more

extensively by Otto and Kobayashi in [31]. Since examples are known of finitely pre-

sented monoids with solvable word problem that do not satisfy FP3, Squier’s work

shows that such monoids need not be presented by finite, complete, string rewriting

systems.

Squier, Otto and Kobayashi [38] go on to study finite, complete, string rewriting

systems for monoids and proved that the existence of such a system presenting a

monoid M implies a homotopical property – finite derivation type – defined for a

graph that encodes the rewriting system. Moreover, they show that having finite

derivation type does not depend on the particular rewriting system used to present
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Chapter 1: Introduction

M , and so is a property of M itself and hence is a necessary condition that M should

be presented by a finite, complete string rewriting system.

Finite derivation type is naturally thought of as a property of a 2–complex – the

Squier complex – associated to a monoid presentation, and obtained by adjoining

certain 2–cells to the graph of [38]. This point of view was introduced independently

by Pride [33] and Kilibarda [20], and then extensively developed by Guba and Sapir

in terms of both string-rewriting systems [16] and more geometrically, in terms of

directed 2-complexes [17]. The theory developed by Kilibarda and then by Guba and

Sapir focusses on the properties of diagram groups, which are fundamental groups of

the Squier complex. Pride’s results in [33] focus upon the low-dimensional homology

of the Squier complex.

In [13] Gilbert looked at the structure of the fundamental groupoid of the

Squier complex associated to a monoid presentation [X : R]. The local groups

of this groupoid are precisely the diagram groups. He showed that the fundamental

groupoid is a monoid in the category of groupoids, and that the universal group of

this monoid then gives the low-dimensional homotopy invariants for the identities

among the relations of the group presentation 〈X : R〉 (see [8]) and also explained

Pride’s corresponding theory of diagram groups for monoid presentations of groups

[34] in these terms.

In this thesis, we take the work of Pride [33, 34] and Gilbert [13] as the start-

ing point for an investigation of the Squier complexes of presentations of groups

and of inverse monoids, and the algebraic structures that arise from these presen-

tations, in general these structures depend on the chosen presentation and will not

be invariants of the group or inverse monoid being presented. After preliminary

material in chapters 1 and 2, we study the classes of semiregular, regular, and pseu-

doregular groupoids in chapter 3. These are groupoids with extra structure that

describe the fundamental groupoids of our version of the Squier complexes obtained

from monoid, group, and inverse semigroup presentations. Semiregular and regular

2



Chapter 1: Introduction

groupoids were introduced in [13], and we review the basic properties of semiregular

and regular groupoids in sections 3.1 and 3.2. Our main interest is in the class of

regular groupoids and in the new class of pseudoregular groupoids introduced in

section 3.3. The classes are nested, since regular implies pseudoregular, and pseu-

doregular implies semiregular, but new features arise for the study of a pseudoregular

groupoid. All three classes are related to the class of monoidal groupoids, and we

note here that semiregular groupoids are also called whiskered groupoids, see [4].

In Chapter 4 we use regular and pseudoregular groupoids to classify congruences

on groups and inverse monoids. For groups the classification by normal subgroups

is well-known, and our classification in Proposition 4.2.1 merely restates this in

different terms. For inverse monoids, the classification of congruences by congru-

ence pairs, due to Petrich [32], is also well-known, but its restatement in terms of

pseudoregular groupoids is more involved.

In chapter 5 we carry out a study of group presentations using regular groupoids.

To each group presentation P = 〈X : R〉 we associate the fundamental groupoid

Π(Sq(P), F (X)) of a version Sq(P) of the Squier complex of P that has vertex set

the free group F (X) with basis X. Our complex Sq(P) may be considered as a

subcomplex of the variant of the Squier complex used by Pride in [34] (and there

denoted D(P)∗) to study group presentations, and called the Pride complex in [13]

(and there denoted K+(P)). The groupoid Π(Sq(P), F (X)) is a regular, monoidal

groupoid, and so is equivalent to a crossed module of groups. Crossed modules

are introduced in chapter 2, and their role in understanding group presentations

is outlined in section 2.1.3, and fully elaborated in [8] and [36]. We show that the

crossed module equivalent to Π(Sq(P), F (X)) is isomorphic to the free crossed mod-

ule usually associated to the presentation P , and so in Proposition 5.2.6 we obtain

a free presentation (5.10) of the relation module of P with kernel the fundamental

group π1(Sq(P , 1)), which is now identified with the module of identities among the

relations of P , as in [8].

3



Chapter 1: Introduction

In chapter 6 we begin a similar study of inverse monoid presentations using pseu-

doregular groupoids. The first task is to define the relation module of an inverse

monoid presentation P = [X : R] of an inverse monoid S. For this we use the

approach of Gilbert in [14], and construct from any homomorphism φ : T → S of

inverse monoids, an S–module Dφ called the derivation module of φ. The presen-

tation P gives rise to a presentation map θ : FIM(X) → S from the free inverse

monoid FIM(X) on X, and in [14] the relation module is defined as the kernel of

a canonical map Dθ → ZS from the derivation module, to the module ZS defined

by Loganathan [24]. However, we improve upon the approach of [14] by using the

factorisation of the presentation map θ as a composition FIM(X)
τ−→ T (X)

ψ−→ S of

an idempotent pure map τ and an idempotent separating map ψ. It turns out that

Dθ is isomorphic to Dψ, and we can then use the favourable properties of idempotent

separating maps, and properties of the construction D as a left adjoint functor, to

get a better understanding of the relation module. We also show, again following

[14], how the relation module can be obtained from the Schützenberger graphs of S.

In chapter 7 we obtain a presentation of the relation module of the presentation

P = [X : R] derived from a Squier complex Sq(P) with vertex set T (X). We

show that its fundamental groupoid is pseudoregular and monoidal, and that there

is an associated free crossed module – now a crossed module of groupoids, using

the interpretation of T (X) as an inductive groupoid with vertex set E(T ) (the set

of idempotents of T , which is isomorphic to E(S)). From this free crossed module

we obtain a free presentation of the relation module with kernel a collection of

subgroups of the fundamental groups of the fundamental groupoid Π(Sq(P), T (X)).

The construction of this kernel – the module of identities of P – uses key facets of

the theory of pseudoregular groupoids from chapter 3.

Finally, in chapter 8, we look at our construction in action in a number of

illustrative examples.
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Chapter 1: Introduction

Throughout this thesis we have included proofs of known results for completeness

and to make the thesis more self-contained, the proofs given are close copies of the

originals unless otherwise stated.

1.1 Regular and Inverse Semigroups

A semigroup is defined as a non-empty set S on which an associative binary operation

is defined. If a semigroup has an identity element 1 ∈ S, then S is called a monoid.

If a semigroup S has the property that, for all x, y ∈ S xy = yx, we shall say that

S is commutative.

An element x of a semigroup S is called regular, if there exists y ∈ S such that

x = xyx and y = yxy. A semigroup S is called regular if all its elements are regular.

A semigroup S is called an inverse semigroup if for each s ∈ S there is a unique

element s−1 ∈ S such that

ss−1s = s and s−1ss−1 = s−1 .

If there exists an identity element 1 ∈ S then S is called an inverse monoid. An

element e of a semigroup S is an idempotent, if e2 = e. The set of idempotents

of an inverse semigroup S is a commutative inverse subsemigroup of S. It is a

semilattice, by which we mean a commutative semigroup in which every element is

an idempotent. We shall denote the set of idempotents of an inverse semigroup S

by E(S). Inverse semigroups may also be characterized as the regular semigroups

in which the idempotents commute. For this and other background information on

inverse semigroups, we refer to Lawson’s book [22].

1.1.1 Remark. A meet semilattice is a partially ordered set P in which any two

elements a, b ∈ P have a greatest lower bound a ∧ b ∈ P

If S is a commutative semigroup with S = E(S), i.e. a semilattice, then defining

5
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a partial order on S by

a 6 b⇔ ab = a

gives S the structure of a meet semilattice.

Conversely, a meet semilattice P becomes a commutative semigroup with P =

E(P ), i.e. a semilattice, if we define the binary operation on P to be the greatest

lower bound.

A non-empty subset T of S is called a subsemigroup of S, if it is closed with

respect to multiplication, that is , if xy ∈ T for all x, y ∈ T . Furthermore, if T

is closed under taking inverses, then it is called an inverse subsemigroup of S. An

inverse subsemigroup T of S is said to be full if E(T ) = E(S), and is normal if it

is full, and if in addition, s−1Ts ⊆ T for all s ∈ S.

A map φ : S → T, where S and T are semigroups, is called a morphism (or

homomorphism) if

(xy)φ = (xφ) (yφ) for all x, y ∈ S.

If S and T are monoids, with identity elements 1S, 1T respectively, then φ will be

called a monoid morphism if it has the additional property 1S φ = 1T . Because of

the uniqueness of inverses, a homomorphism φ : S → T between inverse semigroups

automatically preserves the inverse: for all s ∈ S we have s−1φ = (sφ)−1.

1.1.1 Definition. The kernel of a homomorphism of inverse semigroups φ : S → T

is the inverse image of E(T ): that is,

kerφ = {s ∈ S : sφ ∈ E(T )} .

We now record some useful results drawn from of [22, Section 1.4].

1.1.2 Proposition. Let S be an inverse semigroup.

(1) For any s ∈ S, both s−1s and ss−1 are idempotents and s(s−1s) = s and

(ss−1)s = s.

6



Chapter 1: Introduction

(2) (s−1)−1 = s for every s ∈ S .

(3) For any idempotent e in S and any s ∈ S, the element s−1es is an idempotent.

(4) If e is an idempotent in S, then e−1 = e .

(5) (s1 · · · sn)−1 = sn
−1 · · · s1−1 for all s1, . . . , sn ∈ S where n > 2 .

1.1.3 Lemma. Let S be an inverse semigroup.

(1) For every idempotent e and element s there exists an idempotent f such that

e s = s f .

(2) For every idempotent e and element s there exists an idempotent f such that

s e = f s .

1.1.4 Proposition. Groups are precisely the inverse semigroups with exactly one

idempotent

1.1.1 The Natural Partial Order

An inverse semigroup S comes equipped with a natural partial order defined by:

s 6 t if and only if s = te for some e ∈ E(S).

We record the following properties of the natural partial order from [22, Lemma

1.4.6].

1.1.5 Lemma. Let S be an inverse semigroup with semilattice E of idempotents,

and let s, t ∈ S. The following statements are equivalent:

(1) s 6 t;

(2) s = ft for some idempotent f ∈ E ;

(3) s−1 6 t−1;

7
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(4) s = ss−1t;

(5) s = ts−1s;

(6) ss−1 = ts−1;

(7) s = s t−1 s;

(8) ss−1 = st−1;

(9) s−1s = t−1s;

(10) s−1s = s−1t;

The following result presents a number of further properties of the natural partial

order

1.1.6 Proposition. [22, Proposition 1.4.7] Let S be an inverse semigroup.

(1) The relation 6 is a partial order on S.

(2) For idempotents e, f ∈ S, we have that e 6 f if and only if e = ef = fe .

(3) If s 6 t and u 6 v then su 6 tv .

(4) If s 6 t then s−1s 6 t−1t and ss−1 6 tt−1 .

1.1.2 Definition. An inverse semigroup is E–unitary if, whenever e is an idempo-

tent and e 6 s then s is an idempotent.

1.2 Congruences and Green’s Relations

A congruence on a semigroup S is an equivalence relation ρ on S such that, if

(a, b) ∈ ρ and (c, d) ∈ ρ then (ac, bd) ∈ ρ. An equivalence relation is called a left

congruence if (a, b) ∈ ρ implies that (ca, cb) ∈ ρ for any c ∈ S. Right congruences

are defined dually. An equivalence relation is a congruence if it is a left and right

congruence.

8



Chapter 1: Introduction

We recall the definitions of Green’s relations L,R,H and D on an inverse semi-

group. We shall subsequently relate these to the interpretation of an inverse semi-

group as an inductive groupoid in section 1.4.2.

1.2.1 Definition. We define Green’s L and R relations as follows:

(s, t) ∈ L ⇐⇒ s−1s = t−1t and (s, t) ∈ R ⇐⇒ ss−1 = tt−1 .

Both L and R are equivalence relations: indeed L is a right congruence and

R is a left congruence. We can consider the equivalence classes of these relations,

L-classes and R-classes respectively, such that for s ∈ S the L-class of s is Ls =

{t ∈ S : t−1t = s−1s} and the R-class of s is Rs = {t ∈ T : tt−1 = ss−1}.

The equivalence relation H is defined by H = L∩R, and the equivalence relation

D is defined by D = L ◦ R = R ◦ L. The D−relation on an inverse semigroup can

be characterized explicitly by:

sD t ⇐⇒ ∃z such that s−1s = zz−1 and z−1z = tt−1.

The set of equivalence classes S/ρ of a congruence on S is a semigroup in a natural

way: if [a] denotes the equivalence class of a ∈ S, then we define [a][b] = [ab]. Any

semigroup homomorphism determines a congruence on its domain: given φ : S → T

we define

a ρ b ⇐⇒ aφ = bφ .

Conversely, the canonical map S → S/ρ is a semigroup morphism. We then have

the following useful result and its corollary, (see [19, Lemma 2.4.3]).

1.2.1 Lallement’s Lemma. If ρ is a congruence on a regular semigroup S, and

for a ∈ S, we have a ρ a2, then a ρ e for some e ∈ E(S).

Proof. Let v ∈ S satisfy a2va2 = a2 and va2v = v. Set e = ava. Then e2 =

ava2va = ava = e, so e ∈ E(S), and a ρ a2 = a2va2 ρ ava = e. �

9



Chapter 1: Introduction

1.2.2 Corollary. If ρ is a congruence on an inverse semigroup, then S/ρ is an

inverse semigroup.

1.2.2 Definition.

(a) A congruence ρ on an inverse semigroup S is said to be idempotent pure if

a ∈ S and a ρ e for some e ∈ E(S) imply that a ∈ E(S).

(b) A congruence ρ on an inverse semigroup S is said to be idempotent separating

if e, f ∈ E(S) and e ρ f imply that e = f .

1.2.3 Remark. Any inverse semigroup homomorphism φ : S → T induces a con-

gruence χφ on S by

a χφ b ⇐⇒ aφ = bφ .

We say that φ is idempotent pure (respectively, idempotent separating) if χφ has

this property. To avoid excessive notation we have chosen in later chapters to use φ

interchangeably as both the homomorphism and the congruence.

We conclude this introductory account of congruences on inverse semigroups

with an important example.

1.2.4 Theorem. [22, Theorem 2.4.1] The relation σ defined on the inverse semi-

group S by

s σ t if and only if there exists u ∈ S such that u 6 s and u 6 t

is a congruence on S, and S/σ is a group. Moreover, if ρ is any congruence on S

such that S/ρ is a group, then σ ⊆ ρ .

The congruence σ is the minimum group congruence. We shall denote the quo-

tient S/σ by Ŝ.

1.2.5 Theorem. [22, Theorem 2.4.6] Let S be an inverse semigroup. Then the

minimum group congruence is idempotent pure if and only if S is E–unitary.

10
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1.3 Clifford Semigroups

Clifford semigroups constitute a class of inverse semigroups that will be of impor-

tance in the description of relation modules in section 6.2.4.

Let (E,6) be a meet semilattice, and let {Ge : e ∈ E} be a family of disjoint

groups indexed by the elements of E, the identity ofGe being denoted by 1e . For each

pair e, f of elements of E where e > f let φe,f : Ge → Gf be a group homomorphism,

such that the following two axioms hold:

� φe,e is the identity homomorphism on Ge ,

� if e > f > g then φe,f φf,g = φe,g .

We call such a family

(Ge, φe,f ) = ({Ge : e ∈ E}, {φe,f : e, f ∈ E, f 6 e})

a presheaf of groups over E.

Let (Ge, φe,f ) be a presheaf of groups. Let S = S(Ge, φe,f ) be the union of the

Ge equipped with the product ⊗ on S defined by:

x⊗ y = (xφe,ef )(yφf,ef ) ,

where x ∈ Ge and y ∈ Gf . Then (S,⊗) is an inverse semigroup, called a Clifford

semigroup.

1.3.1 Proposition. If a homomorphism φ : S → T of inverse semigroups is idem-

potent separating then its kernel is a Clifford semigroup over E(S).

Proof. Suppose that φ is idempotent separating and that a ∈ kerφ. Then aφ = x ∈

E(T ) and so

(aa−1)φ = (aφ)(aφ)−1 = x = (aφ)−1(aφ) = (a−1a)φ .

11
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Hence aa−1 = a−1a.

For e ∈ E(S) we set

Ke = {a ∈ kerφ : aa−1 = e = a−1a} .

The it is easy to see that Ke is a group with identity e. Now if a ∈ Ke and f ∈ E(S)

then af ∈ kerφ, and so

(af)(af)−1 = afa−1 = (af)−1(af) = fa−1a = faa−1 .

Hence

af = af(a−1a) = (afa−1)a = (faa−1)a = fa

and so Ke centralises E(S). If e > f we may then define κe,f : Ke → Kf by

a 7→ fa (= af), and in S, for a ∈ Ke and b ∈ Kf ,

(aκe,ef )(bκf,ef ) = (aef)(efb) = (ae)(fb) = (aa−1a)(bb−1b) = ab .

�

1.4 Groupoids and Inverse Semigroups

1.4.1 Groupoids

We shall give two definitions of a groupoid, which are equivalent. The first definition

presents a groupoid as an algebraic structure similar to a group, but in which the

binary operation is no longer always defined. This idea goes back to the introduction

of the groupoid concept by Brandt [3].

1.4.1 Definition. A groupoid is a set G with a unary operation, −1 : G→ G, and a

partial function, ◦ : G×G→ G, such that the following axioms hold, for a, b, c ∈ G:

12
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� Associativity: if both a ◦ b and b ◦ c are defined then (a ◦ b) ◦ c and a ◦ (b ◦ c)

are defined and equal.

� Inverses: a ◦ a−1 and a−1 ◦ a are always defined.

� Identities: if a ◦ b is defined then a ◦ b ◦ b−1 = a and a−1 ◦ a ◦ b = b.

The second definition is based in category theory, and presents a groupoid as a

special kind of category.

1.4.2 Definition. A category C consists of:

� a collection of objects C00,

� for any two objects A,B ∈ C00 a set of arrows from A to B. We will denote

the collection of all arrows as C1, and the set of arrows from A to B as C(A,B).

Two such arrows, say from A to B and from B to C can be composed to obtain

an arrow from A to C. If f ∈ C(A,B) we say that f has domain A and range

B and write fd = A and fr = B.

� for each object A ∈ C0 we have an identity arrow, 1A ∈ C(A,A).

These satisfy the following:

� Associativity: for each f ∈ C(A,B), g ∈ C(B,C) and h ∈ C(C,D) we have

(f ◦ g) ◦ h = f ◦ (g ◦ h)

� Identity: for each f ∈ C(A,B) we have:

f ◦ 1B = f = 1A ◦ f

1.4.3 Definition. A small category is a category where the collections of objects is

a set.

13
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1.4.4 Definition. A groupoid is a small category in which all of the arrows are

invertible. So given f ∈ C(A,B) there exists a (unique) f−1 ∈ C(B,A) such that

f ◦ f−1 = 1A and f−1 ◦ f = 1B.

A morphism of groupoids is then just a functor between such categories.

Given a topological space we can consider a groupoid associated with it, its

fundamental groupoid. We will use these fundamental groupoids in later sections.

1.4.5 Definition. Let X be a topological space, then Π(X), the fundamental

groupoid of X, is the groupoid with objects X, and with arrows from x to y the

homotopy classes, [α], of continuous maps α : [0, 1]→ X whose endpoints map to x

and y. Composition is then concatenation of representative maps.

1.4.2 Inverse Semigroups and Inductive Groupoids

We consider a groupoid as an algebraic structure following [22, Chapter 4]: the

elements are the morphisms, and composition is an associative partial binary oper-

ation. The set of identities in G is denoted G0, and an element g ∈ G has domain

gd = gg−1 and range gr = g−1g. (Note that this reverses the conventions of [22,

Chapter 4]). For each x ∈ G0 the star at x is the set starx(G) = {g ∈ G : gd = x},

and the set G(x) = {g ∈ G : gd = x = gr} is a subgroup of G, called the local

subgroup at x.

A groupoid G is connected if, for any x, y ∈ G0, there exists at least one g ∈ G

with gd = x and gr = y, and G is unicursal if there exists at most one g ∈ G with

gd = x and gr = y. A connected, unicursal groupoid therefore has exactly one

edge from x to y for any x, y ∈ G0. Such a groupoid is isomorphic to the simplicial

groupoid on the set G0, where for any set X the simplical groupoid ∆(X) has set

of arrows X ×X: the arrows of the form (x, x) are the identities, (x, y) has inverse

(y, x), and the composition of arrows is given by the rule (x, y)(y, z) = (x, z).

In a connected groupoid G, all local subgroups are isomorphic, and for any such

14
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local subgroup L there is an isomorphism G ∼= G0 × L × G0, where the latter set

carries the groupoid composition (x, k, y) (y, l, z) = (x, kl, z).

An ordered groupoid (G,6) is a groupoid G with a partial order 6 satisfying the

following axioms:

(OG1) for all g, h ∈ G, if g 6 h then g−1 6 h−1,

(OG2) if g1 6 g2 , h1 6 h2 and if the compositions g1h1 and g2h2 are defined, then

g1h1 6 g2h2,

(OG3) if g ∈ G and x is an identity of G with x 6 gd, there exists a unique element

(x|g), called the restriction of g to x, such that (x|g)d = x and (x|g) 6 g,

As a consequence of (OG3) we also have:

(OG3*) if g ∈ G and y is an identity of G with y 6 gr, there exists a unique element

(g|y), called the corestriction of g to y, such that (g|y)r = y and (g|y) 6 g,

since the corestriction of g to y may be defined as (y|g−1)−1.

Let G be an ordered groupoid and let a, b ∈ G. If ar and bd have a greatest

lower bound ` ∈ G0, then we may define the ṗseudoproduct of a and b in G as:

a⊗ b = (a|`) (`|b),

where the right-hand side is now a composition defined in G. As Lawson shows in

[22, Lemma 4.1.6], this is a partially defined associative operation on G.

If G0 is a meet semilattice (see Remark 1.1.1) then G is called an inductive

groupoid. The pseudoproduct is then everywhere defined and (G,⊗) is an inverse

semigroup. On the other hand, given an inverse semigroup S with semilattice of

idempotents E(S), then S is a poset under the natural partial order, and the re-

striction of its multiplication to the partial composition

a · b = ab ∈ S defined when a−1a = bb−1

15
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gives S the structure of an inductive groupoid, which we denote by ~S, with obj(~S) =

E(S). These constructions give rise to an isomorphism between the categories of in-

verse semigroups and inductive groupoids: this is the Ehresmann-Schein-Nambooripad

Theorem [22, Theorem 4.1.8].

It is sometimes useful to adopt a less formal version of this correspondence, and

to think of an element s of an inverse semigroup S as an arrow joining the idempotent

ss−1 to the idempotent s−1s.

1.4.3 Strict Monoidal Groupoids

We can form products of small categories and of groupoids by taking the set-theoretic

product of the sets of objects and arrows, and performing all operations componen-

twise. Indeed, the category of small categories and the category of groupoids are

each examples of complete categories, in that they admit all (category-theoretic)

limits : see, for example, [18, Proposition 17].

Let 1 denote the trivial groupoid containing just one object and its associated

identity arrow. A groupoid G (considered as a small category) is monoidal if there

exist functors µ : G × G → G and η : 1 → G such that the following diagrams

commute:

G×G×G µ×1
//

1×µ

��

G×G

µ

��

G×G µ
// G

and

1×G η×1
//

π2
((

G

µ

��

G× 1
1×η

oo

π1
vv

G

where 1 is the identity functor on G, and π1, π2 are the projection maps.

We note that η : 1 → G simply selects a distinguished object e ∈ G0 (and its

16



Chapter 1: Introduction

associated identity arrow 1e).

On restriction to objects, the diagrams above describe a monoid structure on

G0, with identity e. We write this as juxtaposition: so for x, y ∈ G0, (x, y)µ = xy.

The functor µ defines an associative everywhere-defined composition on the arrows

of G. For f, g ∈ G1 we write (f, g)µ = f ⊗ g. Functorialty of µ then implies

that if f ∈ G(u, v) and g ∈ G(x, y) then f ⊗ g ∈ G(ux, vy). Furthermore, for all

f, g, h, k ∈ G1 we have

(f ⊗ g) ◦ (h⊗ k) = (f ◦ h)⊗ (g ◦ k) . (1.1)

Equation (1.1) is known as the interchange law. The Eckmann-Hilton argument [11]

shows that if G is a group then the operations ◦ (the group multiplication) and ⊗

coincide and are commutative.

A monoidal groupoid is a monoid object in the category of groupoids, using the

standard product structure. We shall construct examples in later chapters.

1.5 Free Monoids and Free Inverse Monoids

Let A be a set, and let A∗ be the set of all finite strings of elements of A. The empty

string, denoted by ε, is an element of A∗. The length of a string w ∈ A∗ is denoted

by |w|. Then A∗ is a monoid under the operation of concatenation of strings, with

identity element ε, and is called the free monoid on A. Note that the strings of

length 1 are the elements of A, so that A ⊂ A∗. The freeness property possessed

by A∗ is the extension of functions to monoid homomorphisms: given any function

f : A → M from A to a monoid M , there exists a unique monoid homomorphism

f ∗ : A∗ →M such that, for all a ∈ A, af ∗ = af .

The free inverse monoid FIM(X) on a set X satisfies the following freeness

property: given any function f : X → M from X to an inverse monoid M , there

17
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exists a unique inverse monoid homomorphism f# : FIM(X) → M such that, for

all x ∈ X, xf# = xf . The elements of FIM(X) were described by Munn [28] using

what are now called Munn trees : see [22, Section 6.4].

Let F (X) be the free group on X, we will think of this as the collection of reduced

words on the alphabet X ∪X−1. The Cayley graph Γ of F (X), with respect to the

free generating set X, is a tree with vertex set V (Γ) = F (X), and an element of

FIM(X) is a pair (P, u) where P is a finite connected subtree of Γ with 1 ∈ V (P ),

and u ∈ V (P ). The pair (P, u) is a Munn tree. The multiplication in FIM(X) is

then given by:

(P, u)(Q, v) = (P ∪ uQ, uv).

We note that a generator x ∈ X is then represented by the pair (ex, x) where ex is

the directed edge in Γ from 1 to x. The natural partial order on FIM(X) is given

by

(P, u) 6 (Q, v) ⇐⇒ P ⊇ Q and u = v .

We may carry out the same construction in any Cayley graph Cay(G,X) of a

group G with generating set X. A pattern in Cay(G,X) is a connected subgraph

that contains the vertex 1 ∈ G, and a pointed pattern is a pair (P, g) where P is a

pattern and g ∈ G is a distinguished vertex of P . Pointed patterns in Cay(G,X)

may then be multiplied by the rule

(P, g)(Q, h) = (P ∪ gQ, gh)

and in this way we obtain an inverse monoid M (G,X), the Margolis-Meakin or

graph expansion of (G,X). Margolis and Meakin [26, Theorem 2.2] show that any

X–generated E–unitary inverse monoid M with maximum group image G is an

idempotent pure image of M (G,X).

18



Chapter 1: Introduction

1.6 Modules for Inverse Semigroups

Modules for inverse semigroups were first defined by Lausch [21].

1.6.1 Definition. Let S be an inverse semigroup with semilattice of idempotents

E(S). Consider a Clifford semigroup A = (Ae, αe,f ) (see section 1.3), in which

each Ae is an additively written abelian group with identity 0e. The disjoint union

A =
⊔
e∈E(S)Ae is a commutative inverse semigroup under the operation

a⊕ b = aαe,ef + bαf,ef

for a ∈ Ae and b ∈ Af . Then A is an S–module [21, section 2] if there exists a map

A× S → A, written (a, s) 7→ aC s, such that

(i) (a⊕ b)C s = aC s⊕ bC s for all a, b ∈ A and s ∈ S,

(ii) aC st = (aC s)C t for all a ∈ A and s, t ∈ S,

(iii) aC e = a⊕ 0e for all a ∈ A and e ∈ E(S),

(iv) 0e C s = 0s−1es for all e ∈ E(S) and s ∈ S.

Loganathan [24] then showed that Lausch’s S–modules could also be described

as modules for a left-cancellative category L(S) associated to S – that is, as functors

from L(S) to the category of abelian groups. The category L(S) is defined as follows.

1.6.2 Definition. For an inverse semigroup S, we construct the category L(S) with

set of objects E(S), and set of arrows

{(e, s) : e ∈ E(S), s ∈ S, e > ss−1} .

We define (e, s)d = e, (e, s)r = s−1s, and (e, e) to be the identity arrow at e.

Composition is defined by (e, s)(f, t) = (e, st) whenever s−1s = f .
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1.6.1 Lemma. The category L(S) is left cancellative, and a homomorphism of

inverse semigroups φ : S → T induces a functor Fφ : L(S) → L(T ) which maps

(e, s) 7→ (eφ, sφ).

Proof. Suppose that (e, s)(f, t) = (e, s)(g, u) in L(S). Then (e, st) = (e, su) and

f = s−1s = g. So f = g and

t = ft = s−1st = s−1su = gu = u .

The existence of Fφ is clear. �

Loganathan defines an S–module to be a functor A from L(S) to the category

of abelian groups, and shows in [24, Lemma 2.6] that this defines a category of

S–modules isomorphic to that defined by Lausch in [21], (see Definition 1.6.1). We

sketch Loganathan’s constructions of the connections of the two notions of modules

in the next result.

1.6.2 Proposition. [24, Lemma 2.6] Let S be an inverse semigroup and let A be

an S–module in the sense of Lausch. Then A determines a functor AL from L(S)

to abelian groups, and so gives a module in the sense of Loganathan. Conversely,

any functor B from L(S) to abelian groups determines a Lausch S–module BL, and

these constructions are inverse to one another.

Proof. For a Lausch S–module A, the functor AL carries e ∈ E(S) to the abelian

group Ae, and an arrow (e, s) to the map Ae → As−1s given by a 7→ aC s. Part (i)

of Definition 1.6.1 ensures that this map is a homomorphism of abelian groups. If

a ∈ Ae, then

0s−1es = 0e C s = (a− a)C s = (aC s)⊕ (−aC s) = (aC s)− (aC s)

and so aC s ∈ As−1es. Hence, if e > ss−1, then aC s ∈ As−1s.
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Conversely, a functor B from L(S) to abelian groups determines a Clifford semi-

group BL = (Be, βe,f ) with Be = eB and βe,f = (e, f)B. We then define, for a ∈ Be

and s ∈ S,

aC s = a((e, es)B) .

We check that this action satisfies the four conditions given in Definition 1.6.1.

For (i) we have, for a ∈ Be and b ∈ Bf , using the functorial properties of B,

(a⊕ b)C s = ((aβe,ef ) + (bβf,ef ))C s

= [a(e, ef)B + b(f, ef)B](ef, efs)B

= a(e, ef)B(ef, efs)B + b(f, ef)B(ef, efs)B

= a(e, efs)B + b(f, efs)B

= a((e, es)(s−1es, s−1efs))B + b((f, fs)(s−1fs, s−1efs))B

= (a(e, es)B)βs−1es,s−1efs + (b(f, fs)B)βs−1fs,s−1efs

= (aC s)⊕ (bC s) .

For (ii) we have, for a ∈ Be and s, t ∈ S,

aC st = a(e, est)B = a((e, es)(s−1es, s−1est))B

= (a((e, es)B)(s−1es, s−1est))B = (aC s)C t .

For (iii) we have, for a ∈ Be and f ∈ E(S),

aC f = a(e, ef)B = aβe,ef = aβe,ef + 0ef = aβe,ef + 0fβf,ef = a⊕ 0f .

Finally, for (iv) we have, for e ∈ E(S) and s ∈ S,

0e C s = 0e(e, es)B = 0s−1es .
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Hence BL is a Lausch S–module.

It is clear that the constructions given above are inverse to one another. �

Remark. The correspondence in Proposition 1.6.2 may be readily extended to a

correspondence between the obvious notions of S–module morphism, to establish

the full strength of [24, Lemma 2.6], that the two categories of S–modules in the

sense of Lausch and of Loganathan, are isomorphic.

1.6.3 Example. Any abelian group A extends to the constant or homogeneous S–

module A, in which Ae = A and all the maps (e, s)A are identities. In particular we

can take A = Z to obtain the constant S–module Z.

A further construction of Loganathan [24] is the L(S)–module ZS, defined as

follows. For each idempotent e ∈ E(S), let Le be the L–class of e, that is Le =

{s ∈ S : s−1s = e}, and let ZSe be the free abelian group with basis Le. Now if

a ∈ Le and (e, s) ∈ L(S) we define aC (e, s) = as. Since e = a−1a > ss−1, it follows

that (as)−1(as) = s−1a−1as = s−1s, so that as ∈ Ls−1s and the mapping a 7→ as

induces a homomorphism ZSe → ZSs−1s. The augmentation map εS : ZS → Z is

the L(S)–map defined on the basis Le of ZSe by s 7→ 1 ∈ Ze. It is clear that this is

an L(S)–map, and its kernel is the augmentation module IS of S.

1.6.4 Lemma. For each e ∈ E(S), the abelian group ISe is freely generated by the

elements s− e with e 6= s ∈ Le.

Proof. Let x =
∑

i∈I nisi ∈ ISe, so that each si ∈ Le. Since xεS = 0, we have∑
i∈I ni = 0 and hence

∑
i∈I nie = 0. Then

x =
∑
i∈I

nisi −
∑
i∈I

nie = 0 =
∑
i∈I

ni(si − e) = 0.

Hence the elements s−e with s ∈ Le generate ISe, and since ZSe is freely generated

by Le, it is clear that the elements s− e with e 6= s ∈ Le are a basis. �
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We remark that essentially the same definitions of ZG and its augmentation

module were given for a groupoid G by Brown and Higgins [6].

Loganathan’s description of an S–module also allows a clear definition of freeness

(see [25, section 2]). We begin with an E(S)–set X , that is a family of disjoint sets

Xe indexed by E(S). (This is equivalent to a functor from the trivial category with

object set E(S) to the category of sets.) An L(S)–module F is then free on X if, for

each e ∈ E(S), we have a map ie : Xe → Fe such that, for every L(S)–module A and

for each family of maps je : Xe → Ae, there exists a unique L(S)–map φ : F → A

such that ieφe = je for all e ∈ E(S). To construct F on basis X , we set the group

Fe to be the free abelian group on the basis

{(x, (f, s)) : x ∈ Xf , (f, s) ∈ L(S), s−1s = e} .

The action Fe → Fk of an arrow (e, t) with t−1t = k is given by (x, (f, s))C (e, t) =

(x, (f, st)). Loganathan notes [24, Remark 4.2] that if S is an inverse monoid then

ZS is a free L(S)–module. A basis in this case is the E(S)–set X with X1 equal to

a singleton set, and with Xe = ∅ for e 6= 1.

Finally in this section, we give the details of one further example which will be of

interest later. Let φ : S → T be an idempotent separating surjective homomorphism

of inverse semigroups, so that, by Proposition 1.3.1, K = kerφ is a Clifford semi-

group (Ke, κe,f ). Abelianise each Ke and let κe,f be the induced map Kab
e → Kab

f .

Set K = (Kab
e , κe,f ). Then:

1.6.5 Proposition. K is a T–module, with the T– action defined by

k C t = s−1ks where sφ = t .

Proof. We first check that the action is well-defined. Suppose that aφ = bφ, with
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aa−1 = x = bb−1 and a−1a = y = b−1b. Let k ∈ Ke. Then

a−1ka = a−1aa−1kaa−1a = a−1bb−1kbb−1a

= (a−1b)(b−1kb)(b−1a)

= (a−1b)κy,ye(b
−1kb)(b−1a)κy,ye .

The last line here is a conjugation in the group Kab
ye , and so on abelianisation we

find that

a−1ka = b−1kb ∈ Kab
ye .

It is then easy to check that the axioms listed in Definition 1.6.1 all hold, so that K

is a T–module. �

1.7 Presentations

We shall consider presentations of groups and of inverse monoids, and we establish

our conventions here.

1.7.1 Definition. A group presentation P = 〈X : R〉 of a group G, consists of a

set of generators X, and a set of relators R ⊆ (X ∪X−1)∗ × (X ∪X−1)∗. We write

A = X ∪ X−1. Our formalism allows for relators that are not freely reduced: by

allowing a multiset R ⊆ A∗ × A∗ we can also allow for repeated relators. We let

ρ : A∗ → F (X) be the canonical map, and define ρ̂ : R → F (X) by (`, r)ρ̂ = (`−1r)ρ.

We let R be the image of ρ̂ in F (X), and define N = 〈〈R〉〉 to be the normal closure

of R in F , so that a typical element of N has the form

u−11 (r1ρ̂)ε1u1 · · ·u−1k (rkρ̂)εkuk ,

where, for 1 6 j 6 k, we have uj ∈ F , rj ∈ R, and εj = ±1. Then G is the quotient

group F (X)/N , and we have a canonical presentation map θ : F (X)→ G.
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We note that N = ker θ and denote the abelianisation of N by Nab, these groups

will be important in later chapters.

In most cases, however, we shall regard R as a subset of F (X) × F (X), with

(`, r) ∈ R then corresponding to the relation ` = r, which is to hold in the group G.

1.7.2 Definition. An inverse monoid presentation Q = [X : R] of an inverse

monoid S, consists of a set of generators X, and a set of relations R ⊆ A∗ × A∗,

where again we write A = X∪X−1. The canonical image of R in FIM(X)×FIM(X)

generates a congruence θ on FIM(X), and S is the quotient FIM(X)/θ. We also use

θ to denote the presentation map FIM(X)→ S.

Two inverse monoid presentations Q = [X : R] and P = [X : T ] with the same

set of generators are said to be equivalent if R and T generate the same congruence

on FIM(X).

The fact that we use a congruence to obtain the presented inverse monoid S,

where as for a group presentation we use a quotient group by a normal subgroup,

reflects the structural difference between congruences on groups and on inverse semi-

groups. We shall return to this in chapter 4.

The (left) Schützenberger graph SchL(S,X) of an inverse monoid S generated by

a set X is a directed graph with vertex set S. There is a directed edge, labelled by

(x, s) ∈ X × S, from s to xs whenever xs L s, as in Green’s L relation, Definition

1.2.1, or equivalently whenever x−1x > ss−1, which we recall from Definition 1.2.1

of Green’s L relation.

1.7.1 Lemma. Suppose that s ∈ S and that s = xε1i1 · · ·x
εk
ik

with xij ∈ X and

εj = ±1. Then there exists a path in SchL(S,X) from s−1s to s of the form

(xik , uk)
εk · · · (xi1 , u1)ε1

where uj L s.
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Proof. Let vj (1 6 j 6 k) be the suffix x
εk−j+1

ik−j+1
· · ·xεkik of the given expression for s of

length j : so vk = s and we set v0 = 1. Let pj be the associated prefix xε1i1 · · · x
εk−j

ik−j
,

so that s = pjvj, and set uj = vjs
−1s. Then for all j,

u−1j uj = s−1sv−1j vj = s−1pjvjv
−1
j vj = s−1pjvj = s−1s .

Let 0 6 m 6 k − 1 and suppose that εk−m = 1. Then,

xk−mum = xk−mvms
−1s = vm+1s

−1s = um+1

and there is an edge labelled (xk−m, um) connecting um and um+1 in SchL(S,X).

Similarly, if εk−m = −1, there is an edge labelled (xk−m, um+1) connecting um+1 and

um. �

The connected components of SchL(S,X) are therefore in one-to-one corre-

spondence with the L–classes of S, and so each connected component contains

a unique idempotent vertex. The component containing e ∈ E(S) will be de-

noted SchL(S,X, e). There exists a dual version, the right Schützenberger graph

SchR(S,X) whose connected components correspond to the R–classes of S, and

this right version is the one more usually discussed, see [26, 40].

1.7.1 Examples of Schützenberger Graphs

1.7.2 Example. Let M be the semilattice {1, e, f, ef}, generated as an inverse

monoid byX = {e, f}. Each element ofM is its own L–class, and the Schützenberger

graph is
1•

e• •f

ef•

e f

e f
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1.7.3 Example. The bicyclic monoid B is the inverse monoid presented by [x :

xx−1 = 1]. An element of b ∈ B has a unique expression as b = x−pxq with p, q > 0,

and such an element is an idempotent if and only if p = q. Clearly bb−1 = x−pxp

and b−1b = x−qxq: hence the L–class of b = x−pxq, with q > 0, is

Lx−pxq = {x−kxq : k > 0} .

Left multiplication by x does not change the L–class, and so the Schützenberger

graph Sch(B, x, x−qxq) is the semi-infinite path

xq x−1xq x−2xq . . . x−kxq . . .x x x x x

1.7.4 Example. Given an inverse monoid M with presentation [Y : R], we add a

zero to M to obtain M0. For M0 we take the generating set X = Y ∪ {z} (with

z 6∈ Y ), and we have a presentation Q of M0 given by

Q = [Y, z : R, z2 = z, yz = z = zy (y ∈ Y )] .

The element 0 ∈M0 is now an L–class, and in the Schützenberger graph there is a

loop at 0 labelled for each element of Y .

1.7.5 Example. The symmetric inverse monoid I2 on the set {1, 2} has seven

elements, represented in the usual matrix notation with ∗ indicating ‘undefined’, as

1 =

 1 2

1 2

 , τ =

 1 2

2 1

 , ε =

 1 2

1 ∗

 , α =

 1 2

2 ∗

 ,

α−1 =

 1 2

∗ 1

 , η =

 1 2

∗ 2

 ,0 =

 1 2

∗ ∗
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The I2 is generated by τ and ε, and the Schützenberger graph SchL(I2, {τ, ε}) is:

1 τ

ε α−1 η α

0

τ

τ

ε

τ

τ

τ

ε

τ

τ ε

1.7.2 Schützenberger Automata

For each s ∈ S, the connected component SchL(S,X, s) of SchL(S,X) that contains

s may be thought of as a deterministic automaton – the Schützenberger automaton

with input alphabet A, with s−1s as its start state and s as the only accept state.

This automaton accepts a language L(S,X, s). The connections between inverse

monoid presentations and Schützenberger automata are due to Stephen [40] and are

summarised in the next result.

1.7.6 Theorem. [40, Theorem 3.1] Let S be an inverse monoid generated by X,

and let A = X ∪X−1. Let θ : A∗ → S be the canonical map. Then for any u ∈ A∗,

the language L(S,X,wθ) accepted by SchL(S,X, uθ) is

L(S,X, uθ) = {w ∈ A∗ : wθ > uθ} .

Theorem 1.7.6 points to a method for solving the word problem for S, since for

u, v ∈ A∗ we have uθ = vθ if and only if u ∈ L(S,X, vθ) and v ∈ L(S,X, uθ).

Of course, the automata L(S,X,wθ) needs to be constructible, and Stephen [40,

section 5] gives an iterative construction from a presentation Q = [X,R] of S. The

starting point is the linear graph of w: if w = xε1i1 · · ·x
εk
ik

its linear graph is the path

from (w−1w)θ to wθ constructed in the proof of Lemma 1.7.1. The linear graph is

then modified by a sequence of expansions and folds. If (`, r) is a relation in R and
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` labels a path in some automaton, then an expansion adjoins a new path (with the

same endpoints) labelled by r. A fold (as defined by Stallings [39]) collapses edges

with the same label and same initial vertex:

x

x

x

x

x

x

We refer to [40] for further details.
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Crossed Modules and Group

Presentations

2.1 Crossed Modules

Here we introduce precrossed modules and crossed modules (of groups). These will

be the algebraic models of group presentations that we shall use in our formulation

of the relation module and the module of identities for a group presentation. For a

more detailed account of these topics , we refer to [8].

A precrossed module (of groups) is a group homomorphism ∂ : T → Γ together

with an action of Γ on T (written (t, g) 7→ tg) such that ∂ is Γ–equivariant, that is,

for all t ∈ T and g ∈ Γ we have

(tg)∂ = g−1(t∂)g . (2.1)

Here Γ is considered to act on itself by conjugation. A crossed module is a precrossed

module that additionally satisfies the rule, that for all t, u ∈ T , we have:

tu∂ = u−1tu . (2.2)
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2.1.1 Example. Examples of crossed modules include the following:

� any Γ–module M with the trivial map M
0→ Γ,

� the inclusion of any normal subgroup N ↪→ Γ,

� the map T → AutT that associates to t ∈ T the inner automorphism of T

defined by a 7→ t−1at,

� any surjection T → Γ with central kernel, where Γ acts on T by lifting and

conjugation,

� the boundary map π2(X, Y ) → π1(Y ) from the second relative homotopy

group of a pair of spaces (X, Y ) with Y ⊆ X [41, Section IV.1].

This last example motivated the introduction of the crossed module idea by J.H.C.

Whitehead [42]. The main concern here will be the special case in which X is a 2–

complex and Y its 1–skeleton: a theorem of Whitehead then asserts that π2(X, Y )→

π1(Y ) is a free crossed module (in a sense that we shall clarify in section 2.1.1) and

π1(Y ) is of course a free group.

Let ∂ : T → Γ be a crossed module, and let N be the image of ∂. The following

properties are easy consequences of (2.1) and (2.2).

� N is normal in Γ, and so if we set G = Γ/N we get the short exact sequence

of groups:

1→ N → Γ→ G→ 1 .

� ker ∂ ⊆ Z(T ), the center of T , so ker ∂ is abelian.

� ker ∂ is invariant under the Γ–action on T , and so is a Γ–module.

� N acts trivially on Z(T ) and thus on ker ∂, hence ker ∂ inherits an action of

G to become a G–module.

� the abelianisation T ab of T inherits the structure of a G-module.
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Morphisms between precrossed Γ–modules and between crossed Γ-modules are

defined in the same way, and so we give a combined definition.

2.1.1 Definition. Let (A, ∂) and (A′, ∂′) be (pre)crossed Γ-modules. A morphism of

(pre)crossed Γ-modules φ : (A, ∂) → (A′, ∂′) is a group homomorphism φ : A → A′

such that for a ∈ A, and u ∈ Γ, (au)φ = (aφ)u and φ∂′ = ∂, i.e.

A

φ
��

∂ // Γ

A′
∂′

??

commutes.

We can also have (pre)crossed module morphisms between (pre)crossed modules

associated with different groups. If we have a (pre)crossed Γ1-module (A1, ∂1) and

a (pre)crossed Γ2-module (A2, ∂2), a (pre)crossed module morphism is now a pair

(φ, ψ) : (A1, ∂1)→ (A2, ∂2) consisting of a group homomorphism φ : A1 → A2 and a

group homomorphism ψ : Γ1 → Γ2 such that

A1

φ
��

∂1 // Γ1

ψ
��

A2 ∂2
// Γ2

commutes and (au)φ = (aφ)(uψ), for a ∈ A and u ∈ Γ.

2.1.1 Free (Pre)Crossed Modules

2.1.2 Definition. Let (A, ∂) be a (pre)crossed Γ-module, let R be a set, and let

v : R→ A be a function. We say (A, ∂) is a free (pre)crossed Γ-module with basis v if

for any (pre)crossed Γ-module (A′, ∂′) and function v′ : R→ A′ such that ∂′v′ = ∂v,
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that is, such that

R

v′
��

v // A

∂
��

A′
∂′
// Γ

commutes, then there exists a unique morphism of (pre)crossed modules φ : (A, ∂)→

(A′, ∂′) such that vφ = v′, that is,

R

v′
��

v // A

∂
��

φ

{{

A′
∂′

// Γ

commutes.

We may also choose to emphasise w = v∂ : R → Γ by saying that a free

(pre)crossed module (A, ∂) with basis v is a free (pre)crossed module on w.

2.1.2 Proposition. Let Γ be a group, R a set, and w : R→ Γ a function. Then a

free precrossed Γ-module on w exists and is unique up to isomorphism.

Proof. Let F be the free group on the basis R × Γ. Then Γ acts on F by right

multiplication of basis elements: for r ∈ R and u, v ∈ Γ we have (r, u)v = (r, uv).

We map (r, u) 7→ u−1(rw)u and this induces a group homomorphism δ : F → Γ.

It is easy to check that this is a free precrossed Γ–module on w. Uniqueness up to

isomorphism follows from the usual universal argument. �

2.1.2 From Precrossed to Crossed Modules

We now discuss a procedure to obtain, from any precrossed Γ-module, a universal

crossed Γ–module quotient. This procedure is discussed in detail in [8, Section 2],

whose account we follow. From a precrossed module (X, δ) we shall obtain a crossed

Γ–module (A, ∂) with A = X/P for some normal subgroup P . The definition of P

will ensure that (2.2) holds in A.

33



Chapter 2: Crossed Modules and Group Presentations

2.1.3 Definition. Let (X, δ) be a precrossed Γ-module. A Peiffer element of X is

an element of the form

〈x, y〉 = x−1y−1xyxδ

for some x, y ∈ X . We call the subgroup of X generated by all the Peiffer elements

the Peiffer group of X, denoted P .

2.1.3 Proposition. [8, Proposition 2] The Peiffer group P of a precrossed Γ–module

(X, δ) is normal in X, is invariant under the Γ–action, and is contained in ker δ.

Proof. Let x, y, z ∈ X, then

z−1〈x, y〉z = z−1x−1y−1xyxδz

= z−1x−1y−1x (zy(xz)δ(y(xz)δ)−1z−1) yxδz

= (xz)−1y−1(xz)y(xz)δ
(
z−1(yxδ)−1)z(yxδ)zδ

)−1
= 〈xz, y〉〈z, yxδ〉−1

So a conjugate of a Peiffer element is a product of Peiffer elements, and P is normal

in X. Now for u ∈ Γ and x, y ∈ X,

〈xu, yu〉 = (xu)−1(yu)−1xu(yu)(x
u)δ

= (xu)−1(yu)−1xu(yu)u
−1(xδ)u

= (xu)−1(yu)−1xu(yxδ)u

= 〈x, y〉u

So a Peiffer element acted on by an element of Γ is another Peiffer element, and we
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see that P is invariant under the Γ–action. Lastly we have

〈x, y〉δ = (x−1y−1xyxδ)δ = (x−1)δ(y−1)δxδ(yxδ)δ

= (xδ)−1(yδ)−1(xδ)(xδ)−1(yδ)(xδ)

= 1

and so P ⊆ ker δ. �

2.1.4 Proposition. [8, Corollary to Proposition 2] Let (X, δ) be a precrossed Γ-

module. Then there exists a crossed Γ-module (A, ∂) and a precrossed Γ-module

morphism φ : (X, δ) → (A, ∂), such that φ is universal for morphisms from (X, δ)

to crossed Γ-modules.

Proof. Let P be the Peiffer group of (X, δ) and set A = X/P , with φ : X → A

the quotient map. Moreover, since P ⊆ ker δ, there is an induced homomorphism

∂ : A → Γ with δ = φ∂. Furthermore, there is an action of Γ on A defined by

(xP )u = (xu)P : this is well-defined since if xP = yP , then

xu(yu)−1 = xu(y−1)u

= (xy−1)u.

Since xP = yP we know xy−1 ∈ P , and by Proposition 2.1.3, P is invariant under

the Γ–action on X. Thus (xy−1)u ∈ P , and our action is well-defined.

Now we must show that (A, ∂) is in fact a crossed Γ–module, and so we verify
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the two conditions (2.1) and (2.2) for the Γ–action on A. For (2.1):

(xP )u∂ = (xφ)u∂

= (xu)φ∂

= (xu)δ

= u−1(xδ)u

= u−1(xφ∂)u

= u−1(xP )∂u .

Now the subgroup P is precisely defined to ensure that (2.2) holds:

(x−1yx)P = (yxδ)P = (yP )xδ = (yP )(xP )∂ .

Finally, given any morphism τ from (X, δ) to a crossed Γ–module (T, d), we have

P ⊆ ker τ and so τ induces a group homomorphism A → T which gives a crossed

Γ–module morphism (A, ∂)→ (T, d). �

2.1.5 Corollary. Let Γ be a group, R a set, and w : R → Γ a function. Then a

free crossed Γ-module on w exists and is unique up to isomorphism.

Proof. We form the quotient F/P of the free precrossed Γ–module F from Proposi-

tion 2.1.2. �

2.1.6 Proposition. [8, Proposition 7] Let (C, ∂) be the free crossed Γ-module with

basis v′ : R → C, and set Q = coker ∂ = Γ/C∂. Then Cab is a free Q-module on

the image of the composition v : R v′−→ C → Cab.

Proof. Let p : Γ → Q be the quotient map and let M be any Q–module. Then

C∂ ×M , with the projection map π1 onto C∂ ⊆ Γ, is a crossed Γ–module, with

action given by conjugation on C∂ and on M via p. To verify this we check (2.1)
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and (2.2). For (c∂,m) ∈ C∂ ×M and g ∈ Γ, we have

((c∂,m)g)π1 = (g−1(c∂)g,mgp)π1 = g−1(c∂)g = g−1(c∂,m)π1g .

and for (c∂,m), (d∂, n) ∈ C∂ ×M we have

(c∂,m)(d∂,n)π1 = (c∂,m)d∂ = ((d−1cd)∂,md∂p)

= ((d−1cd)∂,m) (since d∂p = 1Q)

= (d∂, n)−1(c∂,m)(d∂, n).

Therefore, both (2.1) and (2.2) hold, and π1 : C∂ ×M → Γ is a crossed module.

For any function v′′ : R → M , define v∗ : R → C∂ ×M by r 7→ (rv′∂, rv′′).

Then the diagram

R
v∗

��

v′ // C

∂
��

C∂ ×M // Γ

commutes and so by freeness of C , we get φ : C → Γ×M such that v′φ = v∗:

R
v∗

��

v′ // C

∂
��

φ

zz

C∂ ×M // Γ

Composing with projection to M then gives us a a morphism of groups C → M

which factors through the abelianisation Cab, and Cab → M is then the required

Q–morphism. �

2.1.7 Remark. Proof given in [8] uses Γ×M but it seemed to us that we need to

restrict to C∂ ×M as shown above.
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2.1.3 Crossed Modules from Group Presentations

Let P = 〈X : R〉 be a presentation of a group G. Recalling our conventions from

section 1.7, we write A = X ∪ X−1 and let ρ : A∗ → F (X) be the canonical map,

and define ρ̂ : R → F (X) by (`, r)ρ̂ = (`−1r)ρ. We let R be the image of ρ̂ in F (X),

and define N = 〈〈R〉〉 to be the normal closure of R in F .

We now let (C(P), ∂) be the free crossed F (X)–module on the function ρ̂ : R →

F (X). An element of C = C(P) is represented by a product

(r1, w1)
ε1 · · · (rk, wk)εk

where rj ∈ R, wj ∈ F (X) and εk = ±1. A typical Peiffer element (trivial in C) has

the form

(r, u)−1(s, v)−1(r, u)(s, vu−1(rρ̂)u) .

For (r, w) ∈ C we have ∂ : (r, w) 7→ w−1(rρ̂)w, and the image of ∂ is N . We denote

ker ∂ by π = π(P) (and we will explain this choice of notation in section 2.1.4). We

therefore have short exact sequences of groups

1→ N → F (X)→ G→ 1 (2.3)

and

0→ π(P)→ C(P)→ F (X)→ 1 , (2.4)

with π central in C and a G–module.

2.1.8 Proposition. [8, Corollary to Proposition 7] The free crossed module C is

isomorphic as a group to π × N . Its abelianisation Cab is a free G–module, and

the induced map π → Cab is injective, so that we have a short exact sequence of

G–modules.

0→ π → Cab → Nab → 0 (2.5)
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Proof. Since F is free, (2.4) splits, and since π is central in C we have C ∼= π × F .

It follows that [C,C] ∼= {0} × [F, F ] and so π → Cab is injective. Cab is free by

Proposition 2.1.6. �

In the sequence (2.5), the G–module Nab is the relation module of the presen-

tation P , and the G–module π is the module of identities. The sequence (2.5) then

gives a free presentation of the relation module.

2.1.4 The Presentation Complex

We conclude this chapter with a brief review of the classical approach to the relation

module and the module of identities, based on the topology of a 2–complex K(P)

associated to a group presentation P . This material is standard, and we follow

the account in [8, Section 5]. The first stage is to replace the derivation of the

sequence (2.5) from crossed modules, by a description of the sequence using some

basic homological algebra.

Given a group presentation P = 〈X : R〉 of a group G, we can construct an

associated chain complex of free G-modules. Consider the free G-module P2 =

⊕ρ∈RZGe2ρ with basis e2ρ. Then by Proposition 2.1.6, P2 is isomorphic to Cab, where

(C, ∂) is the free crossed module derived from P , and (2.5) becomes:

0→ π → P2 → Nab → 0 . (2.6)

There are two further short exact sequences related to (2.6). Let P0 = ZG, and

regard Z as a G-module with trivial G-action. The augmentation map P0 → Z has

kernel the augmentation ideal IG of G and we get the short exact sequence:

0→ IG→ P0 → Z→ 0 (2.7)

Now define P1 to be the free module P1 = ⊕XZG, with basis e1x. Then we have a
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short exact sequence:

0→ Nab → P1 → IG→ 0 (2.8)

with the map P1 → IG given by

e1x → 1− xN

with x ∈ X, and the map Nab → P1 given by

uN ′ →
∑
X

τ

(
∂u

∂x

)
e1x

with ∂
∂x

: ZF → ZF the Fox derivative (see [8, Section 4]), and τ : ZF → ZG is

induced by the natural epimorphism F → G. We can put (2.6), (2.7) and

0→ π → P2
∂2−→ P1

∂1−→ P0 → Z→ 0 (2.9)

with π = ker ∂2.

Now given a presentation P = 〈X;R〉 of a group G, we can form a 2–complex

K = K(P) with;

� a single vertex, ∗;

� a 1-cell, e1x, for each x ∈ X;

� a 2-cell, e2ρ, for each ρ ∈ R, attached by the image of the relator r = ρ̂ in F

We call K = K(P) the presentation complex of P . We can now identify the chain

complex (2.9) with the cellular chain complex of the universal cover, K̃ of K. The

complex K̃ has

� vertex set, K̃0 = G;

� the 1-cells of K̃ are bijective with X × G, so we can label them e1(x,g), with
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(x, g) ∈ X ×G, where e1(x,g) joins g to g(xθ), with θ : F → G the presentation

map,

� the 2-cells of K̃, are bijective with R×G, so we label them e2(ρ,g), with (ρ, g) ∈

R×G,

2.1.9 Proposition. [8, Proposition 9] The cellular chain complex of K̃ is G-

isomorphic to the chain complex P2 → P1 → P0 associated to the presentation

P.

2.1.10 Corollary. Let P = 〈X;R〉 be a presentation of a group G, and let K =

K(P) be its presentation complex. Then the module of identities π for P is naturally

isomorphic to the second homology group H2(K̃) of the universal cover K̃ of K, and

hence also to π2(K), the second homotopy group of K.

Proof. We see from (2.6) that π = ker ∂2 and so by Proposition 2.1.9 we have

π = H2(K̃). Then the Hurewicz theorem (see, for example, [41, Theorem 2.5.2])

gives H2(K̃) ∼= π2(K). �
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Regular and Semiregular

Groupoids

3.1 Semiregular Groupoids

We now introduce some additional structure on a groupoid. This idea originates in

work of Brown and Gilbert [5], and was further developed by Gilbert in [13] and by

Brown in [4]. Brown uses the terminology whiskered groupoid for what Gilbert had

called a semiregular groupoid. We shall use the semiregular terminology, and will

also discuss in detail the two special cases of regular groupoids and pseudoregular

groupoids.

3.1.1 Definition. Let G be a groupoid, with object set G0, morphism set G1 and

domain and range maps d, r : G1 → G0 as in Definition 1.4.2. Then G is semiregular

if

� G0 is a monoid, with identity 1 ∈ G0, and

� there are left and right actions of G0 on G1, denoted x B α, α C x, which for

all x, y ∈ G0 and α, β ∈ G1 satisfy:
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1. (xy)Bα = xB (yBα); αC (xy) = (αCx)C y; (xBα)C y = xB (αC y),

2. 1B α = α = αC 1,

3. (xBα)d = x(αd); (αCx)d = (αd)x; (xBα)r = x(αr); (αCx)r = (αr)x,

4. xB (α ◦ β) = (xBα) ◦ (xB β); (α ◦ β)C x = (αC x) ◦ (β C x), whenever

α ◦ β is defined, and

5. xB 1y = 1xy = 1x C y.

3.1.1 Proposition. [13, Proposition 1.1] Let G be a semiregular groupoid. Then

there are two everywhere defined binary operations on G1 given by:

α ∗ β = (αC βd) ◦ (αrB β)

α~ β = (αdB β) ◦ (αC βr) .

Each of the binary operations ∗ and ~ make G1 into a monoid, with identity 11.

Proof. We have ∗ associative:

(α ∗ β) ∗ γ =
(
(αC βd) ◦ (αrB β)

)
∗ γ

=
(
αC (βd)(γd)

)
◦
(
αrB β C γd

)
◦
(
(αr)(βr)B γ

)
= α ∗

(
(β C γd) ◦ (βrB γ)

)
= α ∗ (β ∗ γ)

and we can see that 11 is the identity under ∗:

11 ∗ α = (11 C αd) ◦ α

= 1αd ◦ α

= α
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α ∗ 11 = α ◦ (αr)B 11)

= α ◦ 1αr

= α

Similar calculations can be carried out for ~. �

3.1.2 Proposition. [13, Proposition 1.2] The binary operation ∗ and the monoid

structure on G0 make the semiregular groupoid G into a strict monoidal groupoid, as

in section 1.4.3, if and only if the operations ∗ and ~ on G1 coincide.

Proof. The requirement that the monoid structure on G0 and ∗ on G1 make G into a

monoidal groupoid, so that G ×G → G is a functor, is equivalent to the interchange

law:

(α ∗ β) ◦ (γ ∗ δ) = (α ◦ γ) ∗ (β ◦ δ) (3.1)

For the equation (3.1) to be defined we will have αr = γd, βr = δd, so we can

rewrite the left hand side of (3.1) as:

(α ∗ β) ◦ (γ ∗ δ) = (αC βd) ◦ (αrB β) ◦ (γ C δd) ◦ (γrB δ)

= (αC βd) ◦ (γdB β) ◦ (γ C βr) ◦ (γrB δ)

= (αC βd) ◦ (γ ~ β) ◦ (γrB δ) (3.2)

Similarly

(α ◦ γ) ∗ (β ◦ δ) = (αC βd) ◦ (γ ∗ β) ◦ (γrB δ) (3.3)

So it is clear that the interchange law holds if ∗ = ~.

Conversely if (3.2) and (3.3) are always equal, we can set α = 1γd and δ = 1βr

to see that ∗ = ~. �
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3.2 Regular Groupoids

3.2.1 Definition. A semiregular groupoid G is a regular groupoid if G0 is a group.

3.2.1 Proposition. [13, Proposition 1.3(i)] Let G be a regular groupoid. Then the

two binary operations ∗ and ~ given in Proposition 3.1.1 makes G1 into a group,

with identity 11.

Proof. The inverse of α with respect to ∗ is

α−∗ = αr−1 B α−◦ C αd−1

and ~ is

α−~ = αd−1 B α−◦ C αr−1

where −◦ is the inverse of α with respect to the groupoid operation, and −1 is the

inverse in the group G0. �

We remark here that the formula for α−∗ is mis-stated in [13].

Recall from section 1.4.2 that the star at 1 of G is defined by {α ∈ G : αd = 1}.

We will denote this by star1(G), or just star1.

3.2.2 Lemma. star1 is a subgroup of (G1, ∗).

Proof. star1 is closed under ∗, since (α ∗ β)d = (αd)(βd), and α−∗ for α ∈ star1 is

equal to αr−1 B α−◦, which is also clearly in star1. �

3.2.3 Proposition. [13, Proposition 1.3(i)] (G1, ∗) admits a group action of G0 by

automorphisms defined by αw = w−1BαCw, where w−1 is the inverse in the group

G0. This action makes r : star1(G)→ G0 into a precrossed module.

Proof. We have (star1(G), ∗) a subgroup by Lemma 3.2.2, and it is clear that it is

invariant under the action of G0. Then for star1
r−→ G1 to be a precrossed module

we need r to be a group homomorphism which satisfies (2.1):
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(α ∗ β)r = (α ◦ (αrB β))r = (αr)(βr)

(αw)r = (w−1 B αC w)r = w−1(αr)w

by the semiregularity conditions given in Definition 3.1.1. �

3.2.4 Proposition. [13, Proposition 1.3(ii)] The categories of precrossed modules

and regular groupoids are equivalent.

Proof. One half of the equivalence is given in Propositions 3.2.1, and 3.2.3. The

other half is the construction of a category from a precrossed module δ : H → F .

The set of objects is F , and the set of morphisms is the semidirect product F nH,

with (u, h)d = u and (u, h)r = u(hδ), composition of morphisms is defined by

(u1, h1) • (u2, h2) = (u1, h1h2) whenever u2 = u1(h1δ). The left and right actions of

F on F oH are given by the operation in the semidirect product:

v B (u, h) = (v, 1)(u, h) = (vu, h) and (u, h)C w = (u, h)(w, 1) = (uw, hw) .

�

3.2.5 Proposition. [13, Proposition 1.3(iii)] A regular groupoid is equivalent as in

Proposition 3.2.4 to a crossed module if and only if ∗ and ~ coincide.

Proof.

(u, h) ∗ (v, g) = ((u, h)C v) • (u(hδ)B (v, g))

= (uv, hv) • (u(hδ)v, g)

= (uv, hvg)
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(u, h)~ (v, h) = (uB (v, g)) • ((u, h)C v(gδ))

= (uv, g) • (uv(gδ), hv(gδ))

= (uv, ghv(gδ))

These are equal if and only if h(gδ) = g−1hg for all h, g ∈ H, that is if and only

if δ : H → F is a crossed module. �

Let π1 = {α ∈ G : αd = 1 = αr}, the local group at 1. For a regular groupoid

G, π1 is the kernel of its associated precrossed module.

3.2.6 Proposition. In a regular groupoid G for which ∗ equals ~, the group π1 is

a G0-module.

Proof. For α, β ∈ π1,

α ∗ β = (αC βd) ◦ (αrB β) = (αC 1) ◦ (1B β) = α ◦ β .

Since ∗ = ~ we have

α ∗ β = α~ β

= (αdB β) ◦ (αC βr)

= (1B β) ◦ (αC 1)

= β ◦ α

= β ∗ α .

So (π1, ∗) is abelian.

Now consider the action of w ∈ G0 on α ∈ π1. Since (αw)r = w−1(αr)w =

w−11w = w−1w = 1, then αw ∈ π1, and so π1 is a G0–module. �
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3.3 Pseudoregular Groupoids

In considering presentations of inverse monoids in subsequent chapters, we shall

want to consider semiregular groupoids in which the vertex set is an inverse monoid.

3.3.1 Definition. A semiregular groupoid G is a pseudoregular groupoid if G0 is an

inverse monoid.

The name pseudoregular is chosen to reflect the close structural connection be-

tween inverse monoids and pseudogroups, which are inverse semigroups of partial

homeomorphisms of topological spaces (see [22, section 1.1]).

3.3.1 Proposition. In a pseudoregular groupoid G, the operations, ∗ and ~ given in

Proposition 3.1.1 each make G1 into a monoid, but G1 is not necessarily an inverse

monoid.

3.3.2 Example. We give an example of a pseudoregular groupoid G in which (G1, ∗)

is not inverse. Let ∂ : T → G be a crossed module of groups. Add a zero 0 to G

to form G0 and let 0 ∈ G0 act on T as the trivial endomorphism t 7→ 1T . The

semidirect product G0 n T is then the disjoint union

G0 n T = Gn T t {(0, t) : t ∈ T}.

The group semidirect product GnT is, by Proposition 3.2.5 equivalent to a regular

groupoid with vertex set G and arrow set GnT , with (g, t)d = g and (g, t)r = g(t∂).

Extending this structure to the additional arrows in {0} × T we have (0, t)d = 0 =

(0, t)r and composition (0, t) ◦ (0, u) = (0, tu) and so the local group at 0 is a

copy of T . The left and right actions of 0 ∈ G0 are obtained from left and right
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multiplication by (0, 1) in G0 n T :

0B (g, t) = (0, 1)(g, t) = (0, t),

(g, t)C 0 = (g, t)(0, 1) = (0, 1),

0B (0, t) = (0, 1)(0, t) = (0, t),

(0, t)C 0 = (0, t)(0, 1) = (0, 1).

Then ∂ : T → G0 is a crossed monoid (originally monöıde croisé) in the sense

of Lavendhomme and Roisin [23, Example 1.3C]. The structure just described on

G0 n T is a pseudoregular groupoid G, with vertex set G0. The ∗–operation on G

recovers the semidirect product:

(g, t) ∗ (h, u) = (gh, thu) ∈ G0 n T

and the operations ∗ and ~ coincide, but the semidirect product is not inverse. This

follows from the results of [29], but can also be seen directly, as follows.

For any t ∈ T , the element (0, t) is an idempotent in (G0 n T, ∗):

(0, t) ∗ (0, t) = (0, t0t) = (0, 1T t) = (0, t) .

But for distinct s, t ∈ T we have

(0, s) ∗ (0, t) = (0, s0t) = (0, t) and (0, t)(0, s) = (0, s)

and so the idempotents in G0nT do not commute, thus G0nT is not inverse. Since

Gn T is a subgroup of G0 n T and the other elements are idempotents, G0 n T is

regular (and indeed orthodox, since E(G0 n T ) is a subsemigroup).
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3.3.1 Inverse Monoids as Pseudoregular Groupoids

We saw in section 1.4.2 that an inverse monoid S can be considered as an inductive

groupoid ~S, with vertex set E(S). Since we have natural left and right actions of

E(S) on S by left and right multiplication, and E(S) is an inverse monoid, we may

ask when is ~S pseudoregular?

Defining the action of E(S) on S as proposed, by e B s = es and s C e = se,

we consider the five semiregularity conditions in Definition 3.1.1, for s, t ∈ S and

e, f ∈ E(S):

1. For e, f ∈ E(S), and s ∈ S, associativity in S implies that

eB (f B s) = ef B s , (sC e)C f = sC ef , and (eB s)C f = eB (sC f) .

2. 1B s = 1s = s = s1 = sC 1

3. We have (eBs)d = (es)d = (es)(es)−1 = ess−1, and e(sd) = ess−1 as required.

But for the range map we have (e B s)r = (es)r = (es)−1(es) = s−1es, and

e(sr) = es−1s. Now

s−1es = es−1s =⇒ s−1ess−1 = es−1ss−1 =⇒ s−1e = es−1 =⇒ s−1es = es−1s .

We see that (eBs)r = e(sr) if and only if the idempotents of S are central in S.

This condition is also necessary and sufficient for the equation (sCe)d = (sd)e

to hold, whilst (sC e)r = (sr)e always holds.

4. Given s, t ∈ S, the composition s◦t = st is defined in ~S only when s−1s = tt−1.

However, assuming that idempotenst are central in S, we have for all s, t ∈ S

and e ∈ E(S) that est = eest = (es)(et) and so certainly e B (s ◦ t) =

(eB s) ◦ (eB t). Similarly (s ◦ t)C e = (sC e) ◦ (tC e).

5. The identity arrow 1e ∈ ~S at e ∈ E(S) is just e itself, and so e B 1f = ef =
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1ef = 1e C f .

These considerations, together with [19, Theorem 4.2.1], establish:

3.3.3 Proposition. The inductive groupoid ~S associated to an inverse monoid S is

pseudoregular if and only if S is a Clifford semigroup.

3.3.2 Stars in Pseudoregular Groupoids

In a pseudoregular groupoid, it is natural to consider

stare(G) = {α ∈ G : αd = e}

for each idempotent e ∈ E(G0). It is then easy to see the following:

3.3.4 Proposition. In any pseudoregular groupoid G, and for any e ∈ E(G0), the

operation ∗ makes stare(G) into a semigroup.

However, we do not always have a monoid with identity 1e here, as the action of

e is not necessarily trivial:

α ∗ 1e = (αC e) ◦ (αrB 1e)

= (αC e) ◦ 1r(α)e

= αC e

3.3.5 Example. Let E be the semilattice {1, e, f, 0} with ef = 0 and consider the

subgroupoid U of the simplicial groupoid ∆(E) (see section 1.4.2) defined by

U = {(x, y) ∈ ∆(E) : x 6= 1 6= y} ∪ {(1, 1)} .

Right and left actions of E on the arrows of ∆(E) may be defined just by multipli-
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cation:

xB (y, z) = (xy, xz) and (x, y)C z = (xz, yz) ,

making U pseudoregular. The ∗–operation on edges is then given by

(u, v) ∗ (x, y) = ((u, v)C x)(v B (x, y)) = (ux, vx)(vx, vy) = (ux, vy) .

The star at 0 is

star0 = {(0, e), (0, f), (0, 0)} ,

which we relabel using only the second component as star0 = {e, f, 0} and the ∗–

operation is then just identical to multiplication in E. In particular, (star0, ∗) is not

a monoid.

The construction in Example 3.3.5 will be generalised in chapter 4 to study

congruences.

We can, however, remedy the problem illustrated in Example 3.3.5 by passing

to a subsemigroup that does admit 1e as an identity. For e ∈ E(G0) we define

star./e (G) = {eB αC e : α ∈ stare(G)} .

3.3.6 Proposition. In any pseudoregular groupoid G, and for any e ∈ E(G0),

the operation ∗ makes star./e (G) into a monoid with identity 1e. The range map

r : G → G0 restricts to a semigroup morphism re : star./e (G)→ G0 whose image is a

monoid Ue with identity e.

We now define

π./e (G) = {α./ ∈ star./e (G) : r(α./) = e} .

3.3.7 Proposition. The binary operation ∗ and the groupoid composition ◦ coincide

on π./e (G) and under each operation π./e (G) is a group. Furthermore if the binary
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operations ∗ and ~ are equal, then π./e (G) is abelian.

Proof. For α./, β./ ∈ π./e (G) we have

α./ ∗ β./ = (α./ C d(β./)) ◦ (r(α./)B β./)

= (α./ C e) ◦ (eB β./)

= α./ ◦ β./

Since e B α−◦ C e = (e B α C e)−◦ it is clear that π./e (G) is a subgroup of the local

group π1(G, e) at e in the groupoid G.

If ∗ and ~ coincide, then:

α./ ◦ β./ = α./ ∗ β./

= α./ ~ β./

= (d(α./)B β./) ◦ (α./ C r(β./))

= (eB β./) ◦ (α./ C e)

= β./ ◦ α./

So π./e is abelian. �

3.3.8 Example. In the setting of Example 3.3.5 we have

star./0 = {0} .

In Proposition 3.2.5 we saw that a regular groupoid G in which we have ∗ coin-

ciding with ~, is equivalent to a crossed module, and so as a consequence of section

2.1, the group π1(G) is a G0–module. We now want to show that, for a pseudoregular

groupoid G, the collection of abelian groups {π./e (G) : e ∈ E(G0)} is a G0–module.

3.3.9 Proposition. Let G be a pseudoregular groupoid in which the operations ∗ and

~ are equal. Then the family of abelian groups π./e (G), e ∈ E(G0), is a G0-module.
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Proof. By Proposition 3.3.7, each π./e (G) is an abelian group, and for e > f we

define,

ϕef : π./e (G)→ π./f (G) by

α./ 7→ f B α./ C f

= f B eB αC eC f

= feB αC ef

= f B αC f ∈ πf

= f B f B αC f C f ∈ π./f

Now for α./, β./ ∈ π./e :

(α./ ∗ β./)ϕef = f B (α./ ∗ β./)C f

= f B (α./ ◦ β./)C f

= (f B α./ C f) ◦ (f B β./ C f)

= (f B α./ C f) ∗ (f B β./ C f)

= α./ϕef ∗ β./ϕef

and so each ϕef is a homomorphism. Furthermore

α./ϕefϕ
f
g = g B (f B α./ C f)C g = gf B α./ C fg = g B α./ C g = α./ϕeg

and,

α./ϕee = eB α./ C e = eB eB αC eC e = eB αC e = α./ .

So these ϕef satisfy Definition 1.6.1.

The G0–action is now given by α C s = s−1 B α C s ∈ π./s−1es, and it is easy to
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check that the conditions for a Lausch G0–module are satisfied. �
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Congruences and Groupoids

Supose that ρ is an equivalence relation on a set X. Then we may define a groupoid

Gρ whose set of arrows are the pairs (x, y) ∈ X×X with x ρ y. The identity arrows

are those of the form (x, x), an arrow (x, y) has inverse (y, x), and the composition

of arrows is given by the rule (x, y)(y, z) = (x, z). The groupoid Gρ is unicursal,

and so embeds in the simplicial groupoid ∆(X) as a wide subgroupoid, that is, one

containing all the identities. Conversely, given a wide subgroupoid H of ∆(X), we

obtain an equivalence relation χ on X by defining x χ y if and only if there exists

h ∈ H with hd = x and hr = y. Hence equivalence relations on a set X are in

one-to-one correspondence with unicursal groupoids G with vertex set G0 = X. If

X supports a semigroup structure, then we can consider congruences, rather than

just equivalence relations on X.

4.1 Congruences on Semigroups

4.1.1 Proposition. Unicursal semiregular groupoids G with vertex set G0 = S are

in one-to-one correspondence with congruences on the semigroup S.

Proof. Suppose that G is unicursal and semiregular, and that G corresponds to the

equivalence relation ' on S. If a ' b and c ' d, with α ∈ G(a, b) and γ ∈ G(c, d),
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then α ∗ γ ∈ G(ac, bd) and so ac ' bd. Hence ' is a congruence on S. Conversely, if

' is known to be a congruence on S, and a ' b corresponds to α ∈ G(a, b), then for

all x, y ∈ S we may define xB α to be the unique arrow in G(xa, xb) correpsonding

to xa ' xb, and αCy to be the unique arrow in G(ay, by) corresponding to ay ' by.

It is then easy to check that this defines a semiregular structure on G. �

We note that in the proof of Proposition 4.1.1 we could have used the operation

~ instead of ∗:

4.1.2 Lemma. In a unicursal semiregular groupoid G, the binary operations ∗ and

~ coincide.

Proof. If a, b, c, d ∈ S and α ∈ G(a, b), β ∈ G(c, d) then both α ∗ β and α ~ β are

arrows in G(ac, bd) and so must be equal, by the unicursal property of G. �

4.2 Congruences on Groups

As an easy consequence of Proposition 4.1.1, we obtain the following well-known

classification of congruences on a group.

4.2.1 Proposition.

(a) Unicursal regular groupoids G with vertex set G0 = G are in one-to-one corre-

spondence with congruences on the group G.

(b) The congruences on a group G are in one-to-one correspondence with the nor-

mal subgroups of G.

Proof. Part (a) is just the regular case of Proposition 4.1.1. For part (b), we note

that, in a unicursal regular groupoid, the homomorphism r : star1(G) → G0 is

injective and so identifies star1(G) with its image N , which is a normal subgroup of

G0. Then there exists α ∈ G(a, b) if and only if a−1b ∈ N . �
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Although Proposition 4.2.1 describes the standard correspondence between con-

gruences on a group and its normal subgroups, we do not immediately recover the

regular groupoid corresponding to a congruence from the crossed module determined

by a normal subgroup, as we might expect from Proposition 3.2.5.

Let N be a normal subgroup of a group G considered as a crossed module

ι : N ↪→ G. Then from Proposition 3.2.4 we can construct a regular groupoid

Γ = Γ(G,N) as follows: Γ0 = G and Γ1 = G×N , with d(g, n) = g and r(g, n) = gn.

The composition is given by (g, x) · (h, y) = (g, xy) when h = gx, and the actions

by hB (g, x) = (hg, x) and (g, x)C h = (gh, xh) = (gh, h−1xh). We let G(G,N) be

the regular groupoid corresponding to the congruence determined by N .

4.2.2 Theorem. The regular groupoids Γ(G,N) and G(G,N) are isomorphic.

Proof. We define the functor φ : G(G,N) → Γ(G,N) to be the identity on the

common object set G, and to be given on arrows by φ : (g, h) 7→ (g, g−1h). Since

(g, h) is an arrow in G(G,N) if and only if g−1h ∈ N this is well-defined, and φ is a

functor, since

φ((g, h) ◦ (h, k)) = φ(g, k) = (g, g−1k)

whereas

φ(g, h) · φ(h, k) = (g, g−1h) · (h, h−1k) = (g, g−1hh−1k) = (g, g−1k) .

The inverse of φ is clearly given by (g, x)→ (g, gx). �

This is all seen to be an elaborate version of the following elementary (but not

necessarily well-known fact).

4.2.3 Corollary. Let N be a normal subgroup of the group G, and form the semidi-

rect product GnN with G acting by conjugation. Then GnN is isomorphic to the

direct product G×N .
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Proof. The group (Γ(G,N), ∗) is the semidirect product GnN , whereas (G(G,N), ∗)

is the direct product G×N . �

4.3 Congruences on Inverse Monoids

The classification of congruences on inverse semigroups is more subtle than that

for congruences on groups, and has been treated by different authors in different

ways: see for example [15, 32, 35]. An approach to the classification using ordered

goupoids has been given by AlYamani and Gilbert [1].

Let ρ be a congruence on an inverse semigroup S. Following [32], the trace, tr(ρ)

of ρ is its restriction to E(S), and the kernel, ker ρ is the set

ker ρ = {s ∈ S : s ρ e for some e ∈ E(S)}.

4.3.1 Definition. Recall from [32] that a congruence ρ on the semilattice of idem-

potents E(S) of S is normal if, for all s ∈ S, e ρ f implies that s−1es ρ s−1fs.

Then [32, Definition 4.2] a congruence pair (K, ν) on S consists of a normal inverse

subsemigroup K of S and a normal congruence ν on E(S) such that

(4.1) if e ∈ E(S) and s ∈ S satisfy se ∈ K and s−1s ν e then s ∈ K,

(4.2) if u ∈ K then uu−1 ν u−1u.

For any congruence ρ, its kernel and trace form a congruence pair. Conversely,

given a congruence pair (K, ν) the relation ρ(K,ν) defined by

s ρ(K,ν) t ⇐⇒ s−1t ∈ K and ss−1 ν tt−1 (4.3)

is a congruence with kernel K and trace ν. Congruence pairs form the basis of the

classification of congruences on inverse semigroups in [32, Theorem 4.4].

59



Chapter 4: Congruences and Groupoids

Any normal congruence ν on E(S) determines a relation νmin on S as follows:

for a, b ∈ S,

a νmin b ⇐⇒ there exists e ∈ E(S) with ae = be and a−1a ν e ν b−1b . (4.4)

4.3.1 Lemma. [35, Theorem 4.2] The relation νmin is a congruence on S and is the

smallest congruence on S whose trace is equal to ν.

Proof. It is clear that νmin is reflexive and symmetric. Suppose that a, b, c ∈ S

with a νmin b νmin c: so there exist e, f ∈ E(S) with ae = be, bf = cf and

a−1a ν e ν b−1b ν f ν c−1c. Then

a(ef) = (ae)f = (be)f = b(ef) = b(fe) = (bf)e = (cf)e = c(fe) = c(ef)

and, since ν is a congruenec on E(S),

a−1a = (a−1a)(a−1a) ν ef ν (c−1c)(c−1c) = c−1c .

Hence νmin is an equivalence relation on S.

To show that νmin is a congruence on S, we shall show that it is both a left

congruence and a right congruence.

Suppose a, b, c ∈ S with a νmin b. So there exists e ∈ E(S) with ae = be, and

therefore

ac(c−1ec) = aec = bec = bc(c−1ec)

with (ac)−1(ac) = c−1a−1ac ν c−1b−1bc = (bc)−1(bc), since ν is a normal congruence

on E(S). This shows that νmin is a right congruence.

Now set f = e(a−1c−1ca)(b−1c−1cb) ∈ E(S). Since ae = be, we have caf = cbf .
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Then

(ca)−1(ca) = a−1c−1ca = a−1aa−1c−1caa−1a

ν ea−1c−1cae = eb−1c−1cbe

ν b−1bb−1c−1cbb−1b = b−1c−1cb

= (cb)−1(cb) .

and

(ca)−1(ca) = (ca)−1(ca)(ca)−1(ca) ν ea−1c−1cab−1c−1cb = f .

Therefore νmin is also a left congruence.

If ν ′ is a congruence on S with trace ν and a νmin b then ae = be for some

e ∈ E(S) with a−1a ν e ν b−1b and so a−1a ν ′ e ν ′ b−1b. Then

a = aa−1a ν ′ ae = be ν ′ bb−1b = b

and so a ν ′ b. �

Definition. We recall from Definition 1.2.2:

(a) A congruence ρ on an inverse semigroup S is said to be idempotent pure if

a ∈ S and a ρ e for some e ∈ E(S) imply that a ∈ E(S).

(b) A congruence ρ on an inverse semigroup S is said to be idempotent separating

if e, f ∈ E(S) and e ρ f imply that e = f .

Since the trace of an idempotent separating congruence on S is the identity

relation on E(S), an idempotent separating congruence ρ is completely determined

by its kernel K: from (4.3) we see that

s ρ t ⇐⇒ s−1t ∈ K and ss−1 = tt−1 . (4.5)

61



Chapter 4: Congruences and Groupoids

We can describe the classes of ρ as cosets of K in S, as follows:

4.3.2 Definition. Let S be an inverse semigroup, and K a normal subsemigroup

of S. Then the left trace coset of K determined by s ∈ S is:

~sK = {sk : k ∈ K, s−1s = kk−1} .

Similarly, the right trace coset of K determined by s is

K~s = {ks : k ∈ K, k−1k = ss−1}

4.3.2 Proposition. Let S be an inverse semigroup and ρ an idempotent separating

congruence on S with kernel K. Then the congruence classes of ρ are exactly the

trace cosets of K.

Proof. Suppose that s ρ t. Then by (4.5) we have t = tt−1t = ss−1t, and s−1t ∈ K.

Since s−1t(s−1t)−1 = s−1tt−1s = s−1s we see that t ∈ ~sK.

Conversely, if t ∈ ~sK then t = sk for some k ∈ K with s−1s = kk−1. But then

s−1t = s−1sk ∈ K and tt−1 = skk−1s−1 = ss−1ss−1 = ss−1, and so s ρ t. �

Restating Proposition 1.3.1 for congruences, we have:

4.3.3 Lemma. The kernel K of an idempotent separating congruence ρ on an in-

verse semigroup S is a Clifford semigroup.

We now turn to a factorization result for congruences that will be important for

our discussion of relation modules in sections 6.2.3 and 6.2.4. It is closely related

to Lemma 4.3.1. Our discussion is based on [26, page 265], to which we refer for

further details. The result originates in [35, Theorem 4.2], as did Lemma 4.3.1.

4.3.4 Proposition. Let ρ be a congruence on the inverse semigroup S. Let ρmin be

the smallest congruence on S with the same trace as ρ: this is equal to the congruence

tr(ρ)min of Lemma 4.3.1 defined in (4.4).
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1. For a, b ∈ S we have

a ρmin b ⇐⇒ there exists c ∈ S with a > c 6 b and a ρ c ρ b. (4.6)

2. The canonical map ψ : S/ρmin → S/ρ is idempotent separating,

3. If S is E–unitary then the canonical map τ : S → S/ρmin is idempotent pure.

Proof. (1) We first show that the conditions (4.4) and (4.6) are equivalent. First as-

sume that (4.4) holds and set c = ae = be. Then a > c 6 b and, since a−1a ρ e ρ b−1b

we have

a = aa−1a ρ ae = be ρ bb−1b = b .

Now if (4.6) holds, take e = c−1c. Since a > c 6 b we have ae = c = be, and since

a ρ c we have a−1a ρ c−1c = e. Similarly b−1b ρ c−1c.

(2) Suppose that a, b ∈ S with a ρmin a
2 and b ρmin b

2. By Lallement’s Lemma

1.2.1, there exist e, f ∈ S with a ρmin e and b ρmin f . If now e ρ f then e ρmin f ,

and so a ρmin b. Hence ψ is idempotent separating.

(3) Suppose that, for s ∈ S and x ∈ E(S), we have s ρmin x, then there exists

e ∈ E(S) with se = xe and xe ∈ E(S). Then if S is E–unitary, we have s ∈ E(S)

and τ is idempotent pure. �

4.3.1 Congruences and Pseudoregular Groupoids

Our aim is now to use pseudoregular groupoids to classify congruences. For con-

sistency with our earlier definitions, we shall work with inverse monoids, but the

extension to inverse semigroups is straightforward.

Let S be an inverse monoid. A congruence χ on S is then equivalent to a

unicursal (and so monoidal) pseudoregular groupoid with vertex set S. We shall

now take such a groupoid as our starting point, look at properties of the congruence
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that it represents, and find an equivalent algebraic description that can be considered

as a generalisation of Proposition 4.2.1.

Let Γ be a unicursal pseudoregular groupoid, whose vertex set Γ0 is an inverse

monoid S. We let χ be the relation on S defined by

a χ b ⇐⇒ a and b are in the same connected component of Γ .

4.3.5 Lemma. The relation χ is a congruence on S and its trace is a normal

congruence on E(S).

Proof. It is clear that χ is an equivalence relation on S, whose set of equivalence

classes may be identified with the set π0(Γ) of connected components of Γ. Moreover,

if a, b, c, d ∈ S and if η ∈ Γ(a, b) and ξ ∈ Γ(c, d), then

η ∗ ξ = (η C c)(bB ξ) ∈ Γ(ac, bd)

and so χ is a congruence on S. Moreover, if e, f ∈ E(S), and if η ∈ Γ(e, f) and

s ∈ S, then

s−1 B γ C s ∈ ΓE(s−1es, s−1fs) ,

and so χ is a normal congruence on E(S). �

By Lemma 4.4, the normal congruence χ on E(S) determines the congruence

χmin on S, with quotient inverse monoid T = S/χmin: we let τ denote the quotient

map S → T .

We define

K(Γ) = {s ∈ S : there exists e ∈ E(S) with s χ e} .

4.3.6 Lemma. K(Γ) is a normal inverse submonoid of S, and is a disjoint union

of inverse subsemigroups Ke = {s ∈ S : s χ e}.
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Proof. K(Γ) is just the kernel of the congruence χ and so is known to be a normal

inverse subsemigroup of S. However, it is worthwhile to show how the necessary

properties are obtained from the structure of Γ.

It is clear that K is a subsemigroup of Γ, using the proof that χ is a congruence

on S, given above. Moreover, if a ∈ K then a−1 ∈ K, since if γ ∈ Γ(a, e) with

e ∈ E(S) then

(a−1 B γ C a−1)(a−1 B γ−1 C ea−1)(eB γ−1 C a−1)(eaa−1 B γ−1 C e)(eB γ C e)

is a path in Γ(a−1, e). Hence each Ke is an inverse subsemigroup of K, and their

union K is an inverse subsemigroup.

It is obvious that E(S) ⊆ K, and if s ∈ S and γ ∈ Γ(a, e) then s−1 B γ C s ∈

Γ(s−1as, s−1es), and so K is normal. �

4.3.7 Lemma. The image U of K(Γ) under the quotient map τ : S → T is a normal

inverse subsemigroup of T that is a disjoint union of groups, indexed by E(T ).

Proof. Let a ∈ K(Γ) with a χ e. Then a−1 χ e and so aa−1 χ e χ a−1a. Since χ and

χmin have the same trace, aa−1 χmin a
−1a and so aτ is an element of a subgroup of

T , with identity eτ . �

The pseudoregular groupoid Γ has now determined the following diagram of

inverse monoids:

S

τ

��

E(S)? _oo

τ

��

U �
�

// T E(T )? _oo

(4.7)

in which τ is the quotient map induced by the congruence χmin, and U ↪→ T is the

inclusion of a disjoint union of groups indexed by E(T ).

4.3.8 Proposition. The orginal congruence χ on S is recoverable from diagram
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(4.7) as follows: for a, b ∈ S,

a χ b ⇐⇒ (ab−1)τ ∈ U and (a−1a)τ = (b−1b)τ . (4.8)

Proof. If a χ b then ab−1 χ bb−1 and so ab−1 ∈ K(Γ) and so (ab−1)τ ∈ U : further-

more, a−1a χ b−1b.

For the converse, consider the relation χ defined by (4.8). Since U is full, χ is

reflexive, and is clearly transitive. Moreover, if a, b, c ∈ S and if (ab−1)τ, (bc−1)τ are

in U , and (a−1a)τ = (b−1b)τ = (c−1c)τ , then

(ac−1)τ = (aa−1ac−1)τ = (ab−1bc−1)τ = (ab−1)τ (bc−1)τ ∈ U .

Hence χ is an equivalence relation. It is a right congruence since, if a χ b and c ∈ S

then (ab−1)τ ∈ U

((ac)(bc)−1)τ = (acc−1b−1)τ = (acc−1b−1bb−1)τ

= (ab−1bcc−1b−1)τ = (ab−1)τ (bcc−1b−1)τ ∈ U

since U is full in T , and

(ac)−1(ac) = c−1a−1ac χ c−1b−1bc = (bc)−1(bc)

since χ is a normal congruence on E(S).

To show that χ is a left congruence, again given a, b, c ∈ S with a χ b, we have

(ab−1)τ = u from some u ∈ U and

((ca)(cb)−1)τ = (cab−1c)τ = (cτ) (ab−1)τ (cτ)−1

= (cτ)u(cτ)−1 ∈ U

since U is normal in T . Set e = c−1c: then (ca)−1(ca) = a−1ea and (cb)−1(cb) =
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b−1eb. Now

(a−1ea)τ = (a−1eaa−1aa−1ea)τ

= (a−1eab−1ba−1ea)τ

= (a−1e)τ (ab−1)τ (ba−1)τ (ea)τ

= (a−1e)τ (ab−1)τ ((ab−1)τ)−1 (ea)τ

= (a−1e)τ ((ab−1)τ)−1 (ab−1)τ (ea)τ

since (ab−1)τ ∈ U

= (a−1eba−1ab−1ea)τ

= (a−1)τ ((ab−1e)τ)−1 (ab−1e)τ (aτ)

= (a−1)τ (ab−1e)τ ((ab−1e)τ)−1 (aτ)

since (ab−1e)τ ∈ U

= (a−1ab−1eba−1a)τ

= (b−1bb−1ebb−1b)τ

= (b−1eb)τ .

�

67



Chapter 5

The Squier Complex of a Group

Presentation

In this chapter we study group presentations using regular groupoids. To a group

presentation P = 〈X : R〉 we associate the fundamental groupoid Π(Sq(P), F (X))

of a version of the Squier complex of P , that has vertex set the free group F (X) with

basis X. Our complex Sq(P) may be considered as a subcomplex of the variant of

the Squier complex used by Pride in [34] (and there denoted D(P)∗) to study group

presentations, and called the Pride complex in [13]. The groupoid Π(Sq(P), F (X))

is a regular, monoidal groupoid, and so is equivalent to a crossed module of groups.

5.1 The Squier Complex and its Fundamental

Groupoid

Consider a group presentation P = 〈X : R〉, where R is a set of relations whose

elements we denote in the form (l = r). For convenience we shall assume that for

(l = r) ∈ R we have l, r ∈ F (X) and that if (l = r) ∈ R then (r = l) /∈ R.

5.1.1 Definition. For a group presentation P , its Squier complex Sq(P) is the

2–complex defined as follows:
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� the vertex set of Sq(P) is the free group F (X) on X,

� the edge set of Sq(P) will consist of all 3-tuples (p, l = r, q) with p, q ∈ F (X)

and (l = r) ∈ R. Such an edge will start at plq and end at prq, where these

are the reduced forms of plq and prq respectively, we will drop the bars for

convenience and consider plq and prq as elements of the free group. Each edge

corresponds to the application of a relation. An edge path corresponds to a

succession of such applications.

� the 2-cells correspond to applications of pairs non-overlapping relations, and

so a 2-cell is attached along every edge path of the form:

plqp′l′q′

(plqp′,l′=r′,q′)

��

(p,l=r,qp′l′q′)
// prqp′l′q′

(prqp′,l′=r′,q′)

��

plqp′r′q′
(p,l=r,qp′r′q′)

// prqp′r′q′

This makes the two edge paths

(p, l = r, qp′l′q′)(prqp′, l′ = r′, q′) and (plqp′, l′ = r′, q′)(p, l = r, qp′r′q′)

homotopic in Sq(P).

5.1.1 Example. Let P = 〈x; 1 = xn〉 presenting the cyclic group of order n. Then

we can build Sq(P) as follows.

Vertex set V (Sq(P)) = F (x), so we have a vertex xm for each m ∈ Z.

Edges correspond to factorisations, at xm we have xm = xm−k · xk so we have an

edge for each k ∈ Z:
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xm

xm+n

(xm−k, 1 = xn, xk)

So for each pair (m, k) ∈ Z× Z we have an edge from xm to xm+n.

2-cells correspond to 3-way factorisations of the form,

xm = xm−(a+b) · xa · xb

for a, b ∈ Z and this factorisation gives us the 2-cell:

xm

(xm−b,1=xn,xb)

��

(xm−(a+b),1=xn,xa+b)
// xm+n

(x(m+n)−b,1=xn,xb)

��

xm+n

(xm−(a+b),1=xn,xa+n+b)

// xm+2n

So we have a 2-cell for each triple (m, a, b) ∈ Z× Z× Z.

5.1.2 Theorem. The fundamental groupoid Π(Sq(P), F (X)) of the Squier complex

Sq(P) of a group presentation P is a regular groupoid.

Proof. The vertex set of Π = Π(Sq(P), F (X)) is the group F (X). We need to define

left and right actions of F (X) on homotopy classes of paths in Sq(P). We first define

such actions for single edges. Let u, v ∈ F (X) and suppose that (p, l = r, q) is an
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edge in Sq(P). We define

uB (p, l = r, q) = (up, l = r, q) (5.1)

(p, l = r, q)C v = (p, l = r, qv) . (5.2)

We now define the actions on a path α = α1 ◦ α2 ◦ · · · ◦ αn with αi single edges in

Sq(P) by:

uB α = (uB α1) ◦ (uB α2) ◦ · · · ◦ (uB αn)

αC v = (α1 C v) ◦ (α2 C v) ◦ · · · ◦ (αn C v) .

Since the left and right actions of F (X) will transform the boundary of a 2–cell

in Sq(P) into the boundary of another 2–cell, it follows that these actions are well-

defined on homotopy classes of paths in Π, and it is clear that the conditions defining

a semiregular groupoid given in Definition 3.1.1 then hold. Therefore Π is a regular

groupoid. �

In what follows it will be convenient to work directly with edge paths in Sq(P),

even though these are to be interpreted as representatives of homotopy classes in the

fundamental groupoid Π(Sq(P), F (X)). In particular, we shall apply the operations

∗ and ~ directly to edge paths.

5.1.3 Theorem. In the regular groupoid Π(Sq(P), F (X)) , the two everywhere de-

fined operations ∗ and ~, as in Proposition 3.1.1, coincide.

Proof. Recall that

α ∗ β = (αC βd) ◦ (αrB β)

α~ β = (αdB β) ◦ (αC βr) .
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First consider single edge paths α = (p, l = r, q) and β = (p′, l′ = r′, q′). Then

α ∗ β = (p, l = r, qp′l′q′) ◦ (prqp′, l′ = r′, q′)

α~ β = (plqp′, l′ = r′, q′) ◦ (p, l = r, qp′r′q′) .

These paths comprise the boundary of a 2–cell in Sq(P) and are thus homotopic in

Π(Sq(P), F (X)): hence α ∗ β = α~ β.

Now consider edge paths α = α1 ◦α2 ◦ · · · ◦αk and β = β1 ◦β2 ◦ · · · ◦βm and with

each αi, βj single edges. Inductively we may assume that if β is the single edge β1

then

(α1 ◦ · · · ◦ αk−1) ∗ β1 = (α1 ◦ · · · ◦ αk−1)~ β1 .

Then

α ∗ β = (αC β1d) ◦ (αkrB β)

= (α1 C β1d) ◦ (α2 C β1d) ◦ · · · ◦ (αk C β1d) ◦ (αkrB β1)

= (α1 C β1d) ◦ · · · ◦ (αk−1 C β1d) ◦ (αk ∗ β1)

= (α1 C β1d) ◦ · · · ◦ (αk−1 C β1d) ◦ (αk ~ β1)

= (α1 C β1d) ◦ · · · ◦ (αk−1 C β1d) ◦ (αkdB β1) ◦ (αk C β1r)

= (α1 C β1d) ◦ · · · ◦ (αk−1 C β1d) ◦ (αk−1rB β1) ◦ (αk C β1r)

= ((α1 ◦ · · · ◦ αk−1) ∗ β) ◦ (αk C β1r)

= ((α1 ◦ · · · ◦ αk−1)~ β) ◦ (αk C β1r)

= (α1dB β1) ◦ (α1 C β1r) ◦ · · · ◦ (αk−1 C β1r) ◦ (αk C β1r)

= α~ β

So by induction on k, we have α ∗ β = α~ β, whenever m = 1. We now assume

72



Chapter 5: The Squier Complex of a Group Presentation

inductively that, for any edge path α,

α ∗ (β1 ◦ · · · ◦ βm−1) = α~ (β1 ◦ · · · ◦ βm−1) .

Then

α ∗ β = (αC β1d) ◦ (αnrB β)

=
(
(α1 ◦ · · · ◦ αn)C β1d

)
◦
(
αnrB (β1 ◦ · · · ◦ βm−1)

)
◦
(
αnrB βj

)
=
(
α ∗ (β1 ◦ · · · ◦ βm−1)

)
◦
(
αnrB βm

)
=
(
α~ (β1 ◦ · · · ◦ βm−1)

)
◦
(
αnrB βm

)
=
(
α1dB (β1 ◦ · · · ◦ βm−1)

)
◦
(
αC βm−1r

)
◦
(
αnrB βj

)
=
(
α1dB (β1 ◦ · · · ◦ βm−1)

)
◦
(
αC βmd

)
◦
(
αnrB βj

)
=
(
α1dB (β1 ◦ · · · ◦ βm−1)

)
◦
(
α ∗ βm

)
=
(
α1dB (β1 ◦ · · · ◦ βm−1)

)
◦
(
α~ βm

)
=
(
α1dB (β1 ◦ · · · ◦ βm−1)

)
◦
(
α1dB βm

)
◦
(
αC βmr

)
=
(
αdB β

)
◦
(
αB βr

)
= α~ β

Thus by induction we have that α ∗ β = α~ β, for all edge paths α, β in Sq(P). �

This result is perhaps easier to see graphically, we can represent α ∗ β by:

73



Chapter 5: The Squier Complex of a Group Presentation

• α1Cβ1d
// • α2Cβ1d

// • • αnCβ1d
// •

αnrBβ1

��
•

αnrBβ2

��
•

•

αnrBβm

��
•

and recognise that (αn C β1d) ◦ (αnr B β1) shown in red equals αn ∗ β1 = αn ~ β1

which equals ((an)dB β1) ◦ (αn C β1r) shown in blue and thus we have two sides of

a two-cell which we can complete:

• α1Cβ1d
// • α2Cβ1d

// • • αnCβ1d
//

αndBβ1

��

•

αnrBβ1

��
•

αnCβ1r
// •

αnrBβ2

��
•

•

αnrBβm

��
•

It is homotopically equivalent to follow the blue path and thus we get a new diagram,

where we can see another pair making up 2 sides of a 2-cell:
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• α1Cβ1d
// • α2Cβ1d

// • • αnCβ1d
//

��

•

αnrBβ1

��
• // •

αnrBβ2

��
•

•

αnrBβm

��
•

We can continue to use the 2-cells in this way until we reach the end of the rightmost

column:

• α1Cβ1d
// • α2Cβ1d

// • • αnCβ1d
//

��

•

αnrBβ1

��
• //

��

•

αnrBβ2

��
•

��

// •

•

��

// •

αnrBβm

��
• // •

We can then repeat this process across each of the remaining columns until we have:
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•

α1dBβ1

��

α1Cβ1d
// • α2Cβ1d

// • • αnCβ1d
// •

αnrBβ1

��
•

α1dBβ2

��

•

αnrBβ2

��
• •

•

α1dBβm

��

•

αnrBβm

��
•

βmrBα1

// •
βmrBα2

// • •
βmrBαn

// •

and so α ∗ β is homotopic to α~ β via the Squier 2-cells.

5.1.4 Corollary. The set of edge paths star1(Π(Sq(P), F (X))) at 1 ∈ F (X) in

the fundamental groupoid of the Squier complex Sq(P) is a group under the binary

operation ∗, and the restriction of the range map to star1(Π(Sq(P), F (X))) is a

crossed module

r : star1(Π(Sq(P), F (X)))→ F (X) .

Proof. This follows from Theorem 5.1.3 and Proposition 3.2.5. �

5.2 The Crossed Module of a Squier Complex

Our aim is now to show that the crossed module in Corollary 5.1.4 is isomorphic to

the free crossed module C
∂−→ F (X) derived from the presentation P , as in Section

2.1.3. Furthering our blurring of the distinction between an edge path and its homo-

topy class in the fundamental groupoid, we shall abbreviate star1(Π(Sq(P), F (X)))

as star1(Sq(P)). We denote by S1 the set of all edges e ∈ Sq(P) with ed = 1, that
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is

S1 = {(p, l = r, q) : p, q ∈ F (X), (l = r) ∈ R, plq = 1} (5.3)

= {(q−1l−1, l = r, q) : q ∈ F (X), (l = r) ∈ R} . (5.4)

We shall denote the edge (q−1l−1, l = r, q) by λl=r,q.

Let e = (p, l = r, q) be an edge of Sq(P) in the connected component of 1 ∈ F (X),

and define

eλ = (ed)−1 B e = (q−1l−1, l = r, q) ∈ S1 .

5.2.1 Proposition. Let α be an edge path in star1(Sq(P)). Then α is equal to a

∗-product of single edges in S1. Thus the group (star1(Sq(P)), ∗) is generated by S1.

Proof. The claim is trivial for edge paths α of length 1, so now suppose that

α = α1 ◦ α2 ◦ · · · ◦ αn

for some n > 1, with each αi a single edge. Set λi = αiλ = (αid)−1 B αi. Then

λi ∈ S1, and α1 = λ1. We now assume inductively that

α1 ◦ α2 ◦ · · · ◦ αn−1 = λ1 ∗ λ2 ∗ · · · ∗ λn−1 .

Then

α = (α1 ◦ · · · ◦ αn−1) ◦ αn

= (α1 ◦ · · · ◦ αn−1) ◦ (αndB λn)

= (α1 ◦ · · · ◦ αn−1) ◦ (αn−1rB λn)

= (α1 ◦ · · · ◦ αn−1) ∗ λn

= λ1 ∗ λ2 ∗ · · · ∗ λn−1 ∗ λn .
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Therefore α = λ1 ∗ · · · ∗ λn . �

5.2.1 Definition. We denote the product λ1 ∗ · · · ∗ λn used to represent α ∈

star1(Sq(P)) in Proposition 5.2.1 by αλ.

5.2.2 Lemma. Suppose that α ◦ β ∈ star1(Sq(P)). Then (α ◦ β)λ = αλ ∗ βλ.

We now want to understand the effect of homotopy of edge paths in Sq(P) on

the ∗–products defined in Proposition 5.2.1. We first consider a 1–homotopy, that

is, the insertion of deletion of a pair of inverse edges. Let ξ = ρ ◦ σ in Sq(P), with

ρ ∈ star1(Sq(P)). Then consider the homotopic path ξ′ = ρ ◦ α ◦ α−◦ ◦ σ, with α a

single edge. Then

ξ′λ = ρλ ∗ αλ ∗ (α−◦)λ ∗ σλ

= ρλ ∗ [(αd)−1 B α ∗ (α−◦d)−1 B α−◦] ∗ σλ

= ρλ ∗ [(αd)−1 B α ∗ (αr)−1 B α−◦] ∗ σλ

= ρλ ∗ [(αd)−1 B αC 1) ◦ (αd)−1αrB ((αr)−1 B α−◦)] ∗ σλ

= ρλ ∗ [(αd)−1 B α) ◦ (αd)−1 B α−◦)] ∗ σλ

= ρλ ∗ σλ = ξλ

Therefore a 1–homotopy applied to an edge path α does not change the ∗–product.

Suppose that we have a 2–cell

plqtsu

(plqt,s=d,u)

��

(p,l=r,qtsu)
// prqtsu

(prqt,s=d,u)

��

plqtdu
(p,l=r,qtdu)

// prqtdu

(5.5)
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in the connected component of 1 ∈ F (X) in Sq(P), with

α = (p, l = r, qtsu), β = (prqt, s = d, u), γ = (plqt, s = d, u), δ = (p, l = r, qtdu) .

(5.6)

This 2–cell gives a homotopy between α ◦ β and γ ◦ δ, or equivalently tells us that

in Π(Sq(P)) we have

(p, l = r, q) ∗ (t, s = d, u) = (p, l = r, q)~ (t, s = d, u) .

If this 2–cell is involved in a 2–homotopy between edge paths ξ and ξ′, we may

assume using 1–homotopies where necessary, that we have ξ = ρ ◦ α ◦ β ◦ σ and

ξ′ = ρ ◦ γ ◦ δ ◦ σ, that is a configuration

•

β
��

1 ρ •

α
??

γ
��

•??

δ

σ •

•

Then, using ' to denote homotopy of edge paths in Sq(P), we have

ξλ = ρλ ∗ αλ ∗ βλ ∗ σλ

= ρλ ∗ (α ◦ β) ∗ σλ

' ρλ ∗ (γ ◦ δ) ∗ σλ

= ρλ ∗ γλ ∗ δλ ∗ σλ

= ξ′λ .

(5.7)

The above considerations show that, for a given homotopy class in star1(Sq(P)),

we may select a representative edge path ξ in the form of its ∗–product ξλ and that

this product will be unique up to changes induced by the 2–cells in Sq(P), which

may modify the product as in equations (5.7) above. We can be more precise.
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5.2.3 Proposition. Given q ∈ F (X) and (l = r) ∈ R, we set

λl=r,q = (q−1l−1, l = r, q) ∈ S1 .

Then the following are a set of defining relations for the group (star1(Sq(P)), ∗) on

the generating set S1:

λl=r,vsu ∗ λs=d,u = λs=d,u ∗ λl=r,vdu , (5.8)

where (l = r), (s = d) ∈ R and u, v ∈ F (X).

Proof. Since

λl=r,vsu ∗ λs=d,u = (u−1s−1v−1l−1, l = r, vsu) ◦ (u−1s−1v−1l−1rv, s = d, u)

and

λs=d,u ∗ λl=r,vdu = (u−1s−1, s = d, u) ◦ (u−1s−1v−1l−1, l = r, vdu) ,

we see that the stated relations are true in (star1(Sq(P)), ∗) since they record the

equality of the two paths around the sides of the 2–cell

1

(u−1s−1,s=d,u)

��

(u−1s−1v−1l−1,l=r,vsu)
// u−1s−1v−1l−1rvsu

(u−1s−1v−1l−1rv,s=d,u)

��

u−1s−1du
(u−1s−1v−1l−1,l=r,vdu)

// u−1s−1v−1l−1rvdu

On the other hand, to accomplish the rewriting in (5.7), we need to identify the

paths around the boundary of a general 2–cell as in (5.5) and, in the notation of
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(5.6), use the relation

αλ ∗ βλ = γλ ∗ δλ .

Now

αλ = (u−1s−1t−1q−1l−1, l = r, qtsu) = (l−1, l = r, 1)qtsu ,

βλ = (u−1s−1, s = d, u) = (s−1, s = d, 1)u = γλ

and

δλ = (u−1d−1t−1q−1l−1, l = r, qtdu) = (l−1, l = r, 1)qtdu .

If we set v = qt then

αλ = (u−1s−1v−1l−1, l = r, vsu) = λl=r,vsu ,

βλ = λs=d,u = γλ

and

δλ = (u−1d−1v−1l−1, l = r, vdu) = λl=r,vdu .

and the required relation is

λl=r,vsu ∗ λs=d,u = λs=d,u ∗ λl=r,vdu .

�

5.2.4 Example. Recall the presentation P = 〈x : 1 = xn〉 from Example 5.1.1 we

can now use Proposition 5.2.3 to construct star1. We have the generating set:
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S1 = {(x−k, 1 = xn, xk) : k ∈ Z}

where we can denote (x−k, 1 = xn, xk) by λk. The defining relations are

λk+l ∗ λl = λl ∗ λk+n+l (5.9)

If we set k = 0 we can see that we have λl = λn+l for all l ∈ Z, so in star1 only n

of the generators remain distinct. Applying λl = λn+l to λk+l we can then see that

(5.9) becomes:

λk+l ∗ λl = λl ∗ λk+l

for all k, l ∈ Z and so all relations assert that the generators commute. Hence star1

is free abelian on n generators.

5.2.5 Theorem. The crossed F (X)-module star1(Sq(P))
r−→ F (X) derived from the

Squier complex Sq(P) of a group presentation P = 〈X : R〉, is isomorphic to the

free crossed F (X)-module C
∂−→ F derived from P, as in section 2.1.3.

Proof. Recall from section 2.1.3 that the free crossed module C
∂−→ F has basis

function v : R → C, v : (l = r) 7→ (l = r, 1). We define v : R → star1(Sq(P))

by v : (l = r) 7→ (l−1, l = r, 1). Then v∂ = vr, and thus by freeness of (C, ∂), we

have a crossed module morphism φ : C → star1(Sq(P)), defined on generators by

(l = r, u) 7→ (u−1l−1, l = r, u) = λl=r,u. We note that this is a bijection from the

group generating set of C to S1, a generator for C is a pair (l = r, u) with (l = r) ∈ R

and u ∈ F (X), these are exactly the pairs used to form λl=r,u.

To obtain an inverse to φ, we therefore wish to map λl=r,u 7→ (l = r, u). This

will be well-defined and a homomorphism if and only if the defining relations given

in (5.8) in Proposition 5.2.3 are mapped to an equation that holds in the group C.
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Now the left-hand side of (5.8) maps to

(l = r, vsu)(s = d, u)

and the right-hand side to

(s = d, u)(l = r, vdu) .

and in the crossed F (X)–module C we do indeed have

(s = d, u)−1(l = r, vsu)(s = d, u) = (l = r, vsu(u−1s−1du)) = (l = r, vdu) .

�

The kernel of the map star1(Sq(P))
r−→ F (X) is the local group at 1 ∈ F (X) of

the groupoid Π(Sq(P), F (X)), that is the fundamental group π1(Sq(P), 1). Then

from Proposition 2.1.8 we obtain:

5.2.6 Proposition. Let P = 〈X : R〉 be a presentation of a group G with presen-

tation map θ : F (X) → G and let N = ker θ, so that Nab is the relation module of

P. Then we have a short exact sequence of G–modules:

0→ π1(Sq(P), 1)→
⊕
r∈R

ZG→ Nab → 0 . (5.10)

5.2.7 Example. Returning again to the presentation P = 〈x : 1 = xn〉 we have

that the relation module for P is the abelianisation of the image of the crossed

module homomorphism r : star1 → F (x). The image of r is the vertex set of the

component of the Squier complex containing 1, that is {xkn : k ∈ Z}. So we can see

that Nab ∼= Z. Then we can see that (5.10) becomes:

0→ F ab
n−1 → F ab

n → F ab
1 → 0
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where F ab
n is the free abelian group on n generators.

The action of G on the relation module F ab
1 is induced by conjugation in F (x)

and so the action is trivial.

F ab
n is generated as an abelian group by {λ0, . . . , λn−1}, we can see that

x−1 B λk C x = (x−k−1, 1 = xn, xk+1) = λk+1

so λl = x−l B λ0 C xl, and so λ0 generates F ab
n as a free G-module.

For all k we have that r : λk 7→ xn, so we can see that ker r is generated by the

set

{λ−∗0 ∗ λ1, λ−∗1 ∗ λ2, . . . , λ−∗n−2 ∗ λn−1}

which has size n − 1, thus is a basis for F ab
n−1 as a free abelian group. Write κi =

λ−∗i−1 ∗ λi for i ∈ [1, n− 1]. Then the G-action on F ab
n−1, induced by λk 7→ λk+1, is

x−1 B κi C x = κi+1 if 1 6 i 6 n− 2

x−1 B κn−1 C x = −(κ1 + κ2 + · · ·+ κn−1)
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Derivation and Relation Modules

6.1 Derivation Module of a Group

Homomorphism

We will begin by reviewing some results from group theory given by Crowell in [10].

6.1.1 Definition. Given an arbitrary group homomorphism φ : G→ H and a right

H-module A, then a φ-derivation δ : G→ A is a mapping which satisfies:

(g1g2)δ = (g1δ)C (g2φ) + (g2δ) .

If φ is the identity map G→ G then we just refer to δ as a derivation.

6.1.2 Definition. The derivation module of a group homomorphism, φ : G → H

consists of an H-module Dφ and a φ-derivation δ : G → Dφ, such that for any

H-module A and φ-derivation δ′ : G → A there exists a unique H-morphism λ :

Dφ → A, such that

G
δ //

δ′
  

Dφ

λ
��

A

commutes.
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In [10] Crowell proves that for a homomorphism of groups φ : G → H, the

derivation module exists and is unique up to isomorphism, and in fact is given by

the tensor product

Dφ = IG⊗G ZH ,

with δ : G → Dφ defined by g 7→ 1 ⊗ (g − 1). Where IG is the augmentation ideal

of G, the kernel of the natural map ε : ZG → Z that maps g 7→ 1 for all g ∈ G.

Crowell goes on to show that for a given short exact sequence of groups:

1→ K
ψ−→ G

φ−→ H → 1 (6.1)

we can construct a short exact sequence of H-modules:

0→ Kab ψ∗−→ Dφ
φ∗−→ IH → 0 (6.2)

where Dφ is the derivation module of φ, IH is the augmentation ideal of H, and

Kab is the abelianisation of K. Here, for g ∈ G and k ∈ K with image k ∈ Kab, we

have

φ∗ : 1⊗ (1− g) 7→ 1− gφ

and

ψ∗ : k 7→ 1⊗ (1− k) .

Of particular interest is the case of a presentation map. Let P = 〈X;R〉 present

the group G, with θ : F (X) → G the presentation map. Then the exact sequences

(6.1) and (6.2) become:

1→ N → F (X)
θ−→ G→ 1 (6.3)
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0→ Nab → Dθ
θ∗−→ IG→ 0 (6.4)

and we recognise Nab from section 2.1.3 as the relation module for P , which can

now be defined as ker(Dθ → IG).

6.2 Derivation Module of an Inverse Monoid

Homomorphism

This section begins with the construction of the derivation module for an inverse

monoid morphism given in [14].

6.2.1 Definition. Let M,N be inverse monoids and let A be an L(M)-module.

Suppose that we have an inverse monoid homomorphism φ : N → M . Then a

φ-derivation η : N → A is a function N →
⊔
e∈E(M)Ae such that:

� if a ∈ N then aη ∈ A(a−1a)φ, and

� if a, b ∈ N and a−1a > bb−1 then

(ab)η = aη C ((a−1a)φ, bφ) + bη (6.5)

If φ : M →M is the identity map, we just refer to η as a derivation.

6.2.1 Example. Let IM be the augmentation ideal of M . Define κ : M → IM by

m 7→ m−m−1m. Then κ is a derivation:

� for m ∈M we have mκ = m− (m−1m), which is an element of (IM)m−1m,
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� For l,m ∈M such that l−1l > mm−1 we have:

lκC (l−1l,m) +mκ = (l − l−1l)C (l−1l,m) + (m−m−1m)

= lm− l−1lm+m−m−1m

= lm−m+m−m−1m

= lm−m−1m

= lm−m−1l−1lm

= (lm)− (lm)−1(lm)

= (lm)κ

6.2.1 Constructing the Derivation Module

Let φ : N →M be an inverse monoid homomorphism, and for each e ∈ E(M) define

(N GM)e = {(a,m) : a ∈ N,m ∈M, (a−1a)φ > mm−1,m−1m = e} .

Now define Dφ,e as the abelian group generated by (N GM)e subject to all relations

of the form

(ab,m) = (a, (bφ)m) + (b,m) where a, b ∈ N,m ∈M, and a−1a > bb−1 . (6.6)

We denote the image of (a,m) in Dφ,e by 〈a,m〉.

The derivation module Dφ of φ is then the L(M)–module with, for e ∈ E(M),

(Dφ)e defined to be Dφ,e, and the action of (e, n) on a generator 〈a,m〉 given by

〈a,m〉C (e, n) = 〈a,mn〉 ,

Since m−1m = e > nn−1, we have 〈a,mn〉 ∈ Dφ,n−1n, and Dφ is an L(M)-module.

6.2.2 Proposition. [14, Proposition 3.5] There exists a canonical φ-derivation δ :
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N → Dφ such that given any φ-derivation η : N → A, with A an L(M)-module,

there is a unique L(M)-map ξ : Dφ → A such that

N δ //

η
  

Dφ
ξ
��

A

commutes.

Proof. Define the map δ : N → Dφ by a 7→ 〈a, (a−1a)φ〉. Then aδ ∈ Dφ,(a−1a)φ and δ

satisfies the derivation property (6.5) since, for a, b ∈ N , with a−1a > bb−1, we have

(ab)δ = 〈ab, (b−1a−1ab)φ〉

= 〈a, bφ(b−1a−1ab)φ〉+ 〈b, (b−1a−1ab)φ〉

= 〈a, ((a−1a)φ)(bφ)〉+ 〈b, (b−1b)φ〉

= 〈a, (a−1a)φ〉C ((a−1a)φ, bφ) + 〈b, (b−1b)φ〉

= aδ C ((a−1a)φ, bφ) + bδ .

Let A be an L(M)-module and suppose that an L(M)-map, ξ : Dφ → A satisfies

η = δξ. Let 〈a,m〉 ∈ Dφ : then (a−1a)φ > mm−1, and

〈a,m〉ξ =
(
〈a, (a−1a)φ〉C ((a−1a)φ,m)

)
ξ

= 〈a, (a−1a)φ〉ξ C ((a−1a)φ,m)

= aδξ C ((a−1a)φ,m)

= aη C ((a−1a)φ,m)

So ξ is completely determined by η. Given a derivation η : N → A we now define

ξ : Dφ → A by

〈a,m〉 = aη C ((a−1a)φ,m) .
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This is well-defined since for a, b ∈ N , a−1a > bb−1 we have:

(〈ab,m〉 − 〈b,m〉)ξ = ((ab)η C ((b−1b)φ,m))− (bη C ((b−1b)φ,m))

= ((ab)η − bη)C ((b−1b)φ,m)

= (aη C ((a−1a)φ, bφ) + bη − bη)C ((b−1b)φ,m)

= aη C ((a−1aφ, bφ)((b−1b)φ,m)

= aη C ((a−1a)φ, (bφ)m)

= 〈a, (bφ)m〉ξ .

It is also an L(M)-map since:

(〈a,m〉C (e, x))ξ = 〈a,mx〉ξ

= aη C ((a−1a)φ,mx)

= aη C ((a−1a)φ,m)C (e, x)

= 〈a,m〉ξ C (e, x) .

�

6.2.3 Example. In Example 6.2.1 we saw the derivation κ : M → IM mapping

m 7→ m−m−1m. This induces an M–module map ξ : D → IM that maps 〈a, b〉 7→

ab− b.

We note some consequences of the relations (6.6) for later use.

6.2.4 Lemma. [14, Lemmas 3.2 and 3.4]

(a) If (a,m) ∈ (N GM)e then 〈aa−1,m〉 = 0 in Dφ,e.
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(b) If a, b ∈ N , with b > a and m ∈M with (a−1a)φ > mm−1 then

〈a,m〉 = 〈b,m〉

in Dφ,e.

(c) Suppose N is generated as an inverse semigroup by the subset X. Then Dφ,e is

generated as an abelian group by the subset

(X GM)e = {〈x,m〉 : x ∈ X, m ∈M, (x−1x)φ > mm−1,m−1m = e}

Proof. (a) We have:

0 = 〈a,m〉 − 〈a,m〉

= 〈aa−1a,m〉 − 〈a,m〉

= 〈a, ((a−1a)φ)m〉+ 〈a−1a,m〉 − 〈a,m〉

= 〈a,m〉+ 〈a−1a,m〉 − 〈a,m〉

= 〈a−1a,m〉 .

(b) Note that when b > a we have a = ba−1a and b−1b > a−1a, and so:

〈a,m〉 = 〈ba−1a,m〉 = 〈b, ((a−1a)φ)m〉+ 〈a−1a,m〉 = 〈b,m〉 .

(c) Suppose a ∈ N , with a = bu for some b ∈ N and u ∈ X ∪X−1, then

a = b(b−1b)u and b−1b > b−1buu−1 = (b−1bu)(b−1bu)−1

Then the relations, (6.6), imply that if (a,m) ∈ (N GM)e, then

〈a,m〉 = 〈b, ((b−1bu)φ)m〉+ 〈b−1bu,m〉.
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By (b) 〈b−1bu,m〉 = 〈u,m〉 and so

〈a,m〉 = 〈b, ((b−1bu)φ)m〉+ 〈u,m〉

It follows by induction on the minimum length of a product of elements in X ∪X−1

representing a ∈ N , thatDφ,e is generated as an abelian group by the subset {〈x,m〉 :

x ∈ X ∪X−1}. By part (a), and relations (6.6), for any (a,m) ∈ (N GM)e

0 = 〈aa−1,m〉 = 〈a, (a−1φ)m〉+ 〈a−1,m〉

and thus 〈x−1,m〉 = −〈x, (x−1φ)m〉. �

6.2.5 Corollary. Consider an inverse monoid, M , with presentation P = [X;R],

and associated presentation map θ : FIM(X) → M . Then Dθ,e is generated as an

abelian group by the subset

{〈x,m〉 : x ∈ X, (x−1x)θ > mm−1,m−1m = e} .

and Dθ is generated as an L(M)-module by

{〈x, (x−1x)θ〉 : x ∈ X} .

6.2.2 Examples of Derivation Modules

6.2.6 Example. Let K = (Ke, κe,f ) be a Clifford monoid and let K = (Kab
e , κe,f )

be its abelianisation. We have an inverse monoid map ε : K → E(K) that maps

each k ∈ Ke to e ∈ E(K), and (Dε)f is generated by elements 〈a, f〉 with a ∈ Ke

and e > f , subject to all relations of the form 〈ab, x〉 = 〈a, x〉 + 〈b, x〉, where

a ∈ Ke, b ∈ Kf and e > f > x. It is then easy to see that the map α : 〈a, f〉 7→

aκe,f ∈ Kab
f is an abelian group homomorphism, with inverse given by a 7→ 〈a, e〉 for

a ∈ Ke. Hence the Clifford monoids K and Dε are isomorphic. The E(K)–module
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structure on K is determined by the κe,f : in Loganathan’s formalism (see section

1.6), aC (e, f) = aκe,f . Hence

(〈a, f〉C (f, x))α = 〈a, x〉α = aκe,x = aκe,fκf,x = 〈a, f〉αC (f, x) ,

and we have an isomorphism of E(K)–modules D ∼= K.

6.2.7 Example. Consider the identity map 1 : M → M . For e ∈ E(M), the

abelian group (D1)e is generated by the elements 〈a, b〉 with a−1a > bb−1, subject

to relations 〈ab, c〉 = 〈a, bc〉 + 〈b, c〉. It follows that we have an abelian group

homomorphism (D1)e → (IM)e given by 〈a, b〉 7→ ab− b. This has inverse given by

m−m−1m 7→ 〈m,m−1m〉 and we have an isomorphism of M–modules D1
∼= IM .

Now we have an analogue to Crowell’s derivation module for an inverse monoid

presentation so we can generalise the exact sequence 6.4 and replace it with

0→Mθ → Dθ
θ∗−→ IM → 0 (6.7)

where Dθ is the derivation module for the presentation map θ. The map θ∗ is

induced by the θ–derivation FIM(X) → ZM mapping w 7→ wθ − (w−1w)θ, which

is the composite of θ with the derivation κ of Example 6.2.1. It follows that, for

〈w,m〉 ∈ Dθ,

θ∗ : 〈w,m〉 7→ (wθ)m−m.

6.2.2 Definition. The M–module ker θ∗ = Mθ is the relation module of the pre-

sentation P .

6.2.3 Factorising the Presentation Map

Our aim in this section is to obtain a more explicit description of the relation module

Mθ, which will be analogous to the identification of the relation module of a group

93



Chapter 6: Derivation and Relation Modules

presentation map θ : F (X) → G as the abelianisation of ker θ. Our first result is

taken from [26], and characterizes the idempotent pure quotients of FIM(X).

6.2.8 Lemma. [26, Lemma 1.6] Let P = [X;T ] be a presentation of an inverse

monoid M with associated presentation map θ : FIM(X)→ M . Then the following

are equivalent:

(a) P is equivalent to a presentation of the form P1 = [X;T1] where T1 = {ei = fi :

i ∈ I} for some set I and idempotents ei, fi of FIM(X).

(b) the presentation map θ : FIM(X)→M is idempotent pure.

(c) Each Schützenberger graph, SchL(X,T, e) is a tree.

Proof. (a) ⇒ (b): The group presented by 〈X;T1〉 is clearly F (X) and so we have

a commutative triangle

FIM(X) θ //

σ
%%

M

σM
||

F (X)

Suppose that w ∈ FIM(X) and that wθ ∈ E(M). Then wσ = wθσM = 1F , but σ is

idempotent pure, and so w ∈ E(FIM(X)).

(b) ⇒ (c): Suppose that a, b ∈ FIM(X) and that aθ = bθ. Then (aa−1)θ =

(ba−1)θ ∈ E(M) and so ba−1 ∈ E(FIM(X)). Therefore (ba−1)σ = 1F and so

(ba−1)σ = (bσ)(a−1σ) = (bσ)(aσ)−1 = 1F and bσ = aσ. So the congruence θ (and

in fact any idempotent pure congruence) is contained in σ.

In particular σ : FIM(X)→ F (X) factors through M :

FIM(X) θ //

σ
%%

M

σM
||

F (X)
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and since σ is idempotent pure so is σM .

Now suppose that m L n in M , so that m−1m = n−1n. Then m = mm−1m =

mn−1n, and if mσM = nσM then in F (X):

mσM = (mn−1)σM(nσM)

= (mn−1)σM(mσM)

and so (mn−1)σM = 1F . Then since σM is idempotent pure, mn−1 ∈ E(M) and

m = (mn−1)n 6 n, and by symmetry we have m = n. Hence σM is injective on

each L-class, and the mapping

SchL(M,X, e)→ Cay(F (X), X)

defined on edges in SchL(M,X) by

xm (xm)σ

� //

m

BB

mσ

@@

is an embedding, and so SchL(M,X, e) is a tree.

(c) ⇒ (b): Suppose that w ∈ FIM(X) and that wθ ∈ E(M). Now follow

the path labelled by w in the tree SchL(M,X,wθ), starting at wθ. This ends at

(wθ)(wθ) = wθ and therefore is a closed path in the tree. Thus the path reduces to

the empty path, and so w is an idempotent in FIM(X). Thus θ is idempotent pure.

(b) ⇒ (a): Assume θ : FIM(X)→M is idempotent pure. Let θmin be the small-

est congruence on FIM(X) that has the same trace as the congruence χθ induced

by θ on E(FIM(X)). Then by Lemma 4.3.4, since FIM(X) is E–unitary, θmin is
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also idempotent pure, and so χθ and θmin have the same trace and kernel, and are

therefore the same congruence on FIM(X). Now θmin is clearly generated by the set

T1 = {(e, f) : e, f ∈ E(FIM(X)) and eθ = fθ} .

�

6.2.3 Definition (Gilbert [14]). An inverse monoid M is arboreal if it satisfies the

conditions of Lemma 6.2.8.

6.2.9 Corollary. An arboreal inverse monoid M is E–unitary.

Proof. As shown in the proof of Lemma 6.2.8, the map σM : M → F (X) is idem-

potemt pure, and so the result follows from Theorem 1.2.5. �

6.2.10 Corollary. Let P = [X : R] be a presentation of an inverse monoid M , with

presentation map θ : FIM(X)→M . Then θ has a canonical factorization as

FIM(X)
τ−→ T (X,M)

ψ−→M

where T (X,M) is arboreal and ψ is idempotent separating.

Proof. This follows from Proposition 4.3.4 and Lemma 6.2.8, since FIM(X) is E–

unitary. �

Since we define τ to be θmin as in Proposition 4.3.4 this factorisation is completely

determined by the presentation.

6.2.4 The Relation Module

The factorization of a presentation map θ : FIM(X)→M given in Corollary 6.2.10

gives us an idempotent separating homomorphism ψ : T (X,M) → M , for which

we can compute the derivation module Dψ. In our next result, we see that Dψ is

isomorphic to Dθ, which gave rise to the relation module Mθ in (6.7).
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6.2.11 Theorem. For an inverse monoid presentation P = [X;R] presenting M ,

with presentation map θ, which factorises as τψ as in Corollary 6.2.10, the deriva-

tion modules Dθ and Dψ are isomorphic as M-modules.

Proof. There is a map Dθ → Dψ induced by τ , which a maps generator 〈w,m〉

to 〈wτ,m〉. This mapping is surjective, since τ is a quotient map and is therefore

surjective.

We want to reverse this map, and so take 〈wτ,m〉 7→ 〈w,m〉. Observe that if we

have 〈wτ,m〉 ∈ Dψ then ((wτ)−1(wτ))ψ > mm−1, and so

mm−1 6 (wτ)−1ψ(wτ)ψ = (wτψ)−1(wτψ) = (wθ)−1(wθ) .

Therefore 〈w,m〉 exists in Dθ. However given 〈wτ,m〉 we do not have a canonical

choice of w.

Recall that τ is the quotient map FIM(X) → FIM(X)/θmin, as in Proposition

4.3.4. Suppose that w1τ = w2τ . Then w1 θminw2 and so by part (1) of Proposition

4.3.4, there exists z ∈ FIM(X) with w1 > z 6 w2 and w1τ = zτ = w2τ , If e = z−1z

then w1e = z = w2e. Now if 〈w1,m〉 exists in Dθ then so do 〈w2,m〉 and 〈z,m〉, and

moreover eθ > mm−1. Therefore, using the defining relations (6.6) for Dθ, we have

〈z,m〉 = 〈w1e,m〉 = 〈w1, (eθ)m〉+ 〈e,m〉 = 〈w1,m〉

and similarly 〈z,m〉 = 〈w2,m〉. So for 〈w1τ,m〉 ∈ Dψ, and w2 ∈ FIM(X) such that

w1τ = w2τ , 〈w1,m〉 = 〈w2,m〉 in Dθ, and so we have a prospective inverse map.

Finally we must check if this map is in fact well defined on Dψ, so let’s consider

a defining relation:

〈(uτ)(vτ),m〉 = 〈uτ, ((vτ)ψ)m〉+ 〈vτ,m〉 (6.8)

where (uτ)−1(uτ) > (vτ)(vτ)−1. Now set v̄ = u−1uv, then v̄τ = (u−1uv)τ = vτ , and
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thus (uτ)(v̄τ) = (uτ)(vτ). So we can write (6.8) as

〈(uτ)(v̄τ),m〉 = 〈uτ, (v̄τ)ψm〉+ 〈v̄τ,m〉 (6.9)

= 〈uτ, (v̄θ)m〉+ 〈v̄τ,m〉

Then the left hand side of (6.9) lifts to 〈uv̄,m〉 and the right hand side lifts to

〈u, (v̄θ)m〉+ 〈v̄,m〉. Since

v̄v̄−1 = u−1uvv−u−1uu−1uv−1 6 u−1u

this is a defining relation of Dθ, and therefore the inverse map is well-defined. �

We now return our focus to the analogue of Crowell’s exact sequences, but now

using T (X,M)
ψ−→M rather than the presentation map θ. We set

U = kerψ = {w ∈ T (X,M) : wψ ∈ E(M)}.

and consider the sequence

0→ U ↪→ T (X,M)
ψ−→M → 0 . (6.10)

of inverse monoid maps as our analogue of (6.3). By Lemma 4.3.3, we know that U

is a Clifford semigroup, and so U is a union of groups Ue, indexed by the idempotents

of M . Hence U has a natural abelianisation

U =
⋃

e∈E(M)

Uab
e .

6.2.12 Lemma. U is an M–module.

Proof. This is a special case of Proposition 1.6.5. �
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We have a sequence of M–modules

U α−→ Dψ → IM → 0. (6.11)

where, for u ∈ Ue with image u ∈ Uab
e we have uα = 〈u, (u−1u)ψ〉. We wish to show

that this sequence is exact at Dψ, and that α is injective: the resulting short exact

sequence

0→ U α−→ Dψ → IM → 0 (6.12)

will be our analogue of (6.4).

To establish the exactness of (6.11) at Dψ we use functorial properties of D

established in [14]. We include the details here, for the reader’s convenience.

For an inverse monoid M , the slice category InvMon ↓M over M has as its

objects all inverse monoid homomorphisms with codomain M , and as its morphisms

the obvious commutative triangles. The derivation module construction defines,

from an inverse monoid homomorphism φ : N → M , an M–module Dφ and this

gives us a functor from the slice category InvMon ↓M to the category ModM of

M–modules.

We claim that D has a left adjoint, and so is right exact. The adjoint construc-

tion, from ModM to InvMon ↓M , is a semidirect product M n − equipped with

the projection map to M . The details are as follows. Let A be an M–module, and

define

M nA = {(m, a) : m ∈M,a ∈ Am−1m} .

For (p, a), (q, b) ∈M nA we define

(p, a)(q, b) = (pq, aC q ⊕ b) ,

where we are using Lausch’s conventions for describing an M–module, explained in

Definition 1.6.1: this gives a more compact notation for MnA than the Loganathan
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conventions would do. M n A is the semidirect product of M and A. Gilbert [14]

states the following without giving the details of the proof:

6.2.13 Proposition. [14, Proposition 2.2] MnA is an inverse monoid, with E(Mn

A) isomorphic to E(M).

Proof. We have

(p, a)((q, b)(r, c)) = (p, a)(qr, bC r ⊕ c) = (pqr, aC (qr)⊕ bC r ⊕ c)

and

((p, a)(q, b))(r, c) = (pq, aC q ⊕ b)(r, c) = (pqr, (aC q ⊕ b)C r ⊕ c)

and so associativity of the given multiplication follows from conditions (i) and (ii)

of Definition 1.6.1. The element (1M , 01M ) is an identity for M nA. Now if (p, a) ∈

M nA with p−1p = f then (p−1,−aC p−1) ∈M nA and

(p, a)(p−1,−aC p−1)(p, a) = (p, a)(f,−aC f ⊕ a)

= (p, a)(f,−a⊕ 0f ⊕ a)

= (p, a)(f, 0f ) = (p, a)

so that M nA is regular.

Now suppose that (p, a) is an idempotent, so that (p, a)2 = (p2, aCp⊕a) = (p, a).

Thus p ∈ E(M), and aC p⊕ a = a⊕ 0p⊕ a = a+ a in Ap, by part (iii) of Definition

1.6.1. But then a+ a = a and so a = 0p. Hence

E(M CA) = {(e, 0e) : e ∈ E(M)}

and it is now clear that the idempotents in M nA commute, and that E(M nA)

is isomorphic to E(M). �
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It is obvious that the map (p, a) 7→ p is an inverse monoid homomorphism

M nA →M , and so we may regard the semidirect product M nA as an object of

InvMon↓M .

6.2.14 Proposition. [14, Proposition 3.7] The derivation module, regarded as a

functor InvMon ↓M→ ModM given by (N
φ−→ M) 7→ Dφ, is left adjoint to the

semidirect product functor ModM → InvMon↓M given by A 7→M nA.

Proof. We need to establish a natural isomorphism

InvMon↓M (N,M nA) ∼= ModM(Dφ,A) , (6.13)

where φ : N →M .

A morphism ν : N → M nA in InvMon↓M is an inverse monoid homorphism

of the form n 7→ (nφ, nδ) for some function δ : N → A such that nδ ∈ A(n−1n)φ.

Then if u, v ∈ N with u−1u > vv−1 we have

(uν)(vν) = (uφ, uδ)(vφ, vδ) = ((uφ)(vφ), (uδ)C vφ⊕ vδ .

However, both (uδ) C vφ and vδ are in A(v−1v)φ: hence ⊕ here is just addition in

A(v−1v)φ, and so δ is a φ–derivation (cf Definition 6.2.1). By Proposition 6.2.2, δ

induces an M–module map ν̂ : Dφ → A given by 〈u,m〉 7→ uδ Cm.

Conversely, an M–map γ : Dφ → A induces a φ–derivation γ′ : N → A given

by nγ′ = 〈n, (n−1n)φ〉γ, and hence an inverse monoid map γ† : N → M nA given

by nγ† = (nφ, 〈n, (n−1n)φ〉γ). Clearly this gives a morphism γ† : N → M n A in

InvMon↓M .

The correspondences ν 7→ ν̂ and γ 7→ γ† are then mutually inverse natural

bijections, as required to establish (6.13). �

6.2.15 Corollary. The functor D : InvMon↓M→ ModM preserves colimits.
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Proof. This is a standard fact from elementary category theory: see, for example,

[18, Proposition 15]. �

6.2.16 Lemma. Let M be the quotient of an inverse monoid T by an idempotent

separating congruence, and let ψ : T → M be the natural map. Then the following

diagram is a pushout in the slice category InvMon↓M :

kerψ

��

��

// T

ψ

��
ψ

��

M M

E(M)

��

� � //M

M M

Proof. Suppose we are given ν : V → M and φ : T → V , ε : E(M) → V such that

φν = ψ and εν is equal to the inclusion i : E(M) ↪→ M . We define µ : M → V by

σ : tψ 7→ tφ. This is well-defined: if aψ = bψ then, since ψ is idempotent separating,

aa−1 = bb−1 and moreover (a−1b)ψ ∈ E(M), and so (a−1b)φ = (a−1b)ψε ∈ E(M).

Then bφ = (bb−1b)φ = (aa−1b)φ = aφ(a−1b)φ 6 aφ. By symmetry, bφ = aφ. So

µ is well-defined, and is a map in InvMon ↓M since, for m = tψ ∈ M , we have

mµν = tφν = tψ = m. �

6.2.17 Proposition. Let ψ : T → M be an idempotent separating homomorphism

of inverse monoids. Its kernel K = kerψ is a Clifford semigroup K = te∈E(M)Ke,

and we let K be the M–module K = te∈E(M)K
ab
e . Then the diagram

K κ //

��

Dψ

ξ

��

0 // IM

(6.14)
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in the module category ModM is a pushout, and so the sequence of M–modules

K κ−→ Dψ
ξ−→ IM −→ 0 (6.15)

is exact.

Proof. That the square is a pushout follows from Lemma 6.2.16, Corollary 6.2.15,

and the computations of derivation modules in section 6.2.2.

We need only verify exactness of (6.15) at Dψ, and this is equivalent to the

exactness of the sequence

Kab
e −→ (Dψ)e

ξe−→ IMe → 0

for each e ∈ E(M). It is clear that (Dψ)e → IMe is surjective, so only the exactness

at (Dψ)e needs to be checked. It is clear from the commutativity of the square (6.14)

that the image of κe is contained in ker ξe. The pushout property of IM then implies

that there is a map (IM)e → coker ξe making the diagram

Kab
e

κe //

��

(Dψ)e

ξe

��

��

0 //

))

(IM)e

##

coker ξe

commute, and so ker ξe ⊆ imκe. �

6.2.18 Proposition. The mapping α in sequence (6.11) splits as a homomorphism

of abelian groups, and therefore

0→ U α→ Dψ → IM → 0 (6.16)
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is a short exact sequence of M–modules.

Proof. We want to define a map β : 〈x,m〉 7→ ū ∈ U such that αβ = idU . Since we

have presentations for each Dψ,e as an abelian group, we shall construct βe as an

abelian group homomorphism. This will be sufficient to show that αe : Uab
e → Dψe

is injective.

We consider the left trace cosets of U in T (X,M) and let V ⊆ T (X,M) be a

transversal. By Proposition 4.3.2 the elements of M are in one-to-one correspon-

dence with the trace cosets of U , and so we may define a map υ : M → V by mυ = t

if m = tψ: that is, υ maps m ∈ M to the transversal element that represents its

coset. Therefore υψ = idM and υ splits ψ. Furthermore, since ψ is idempotent

separating, each coset contains at most one idempotent, and so we may assume that

V is chosen so that, for each e ∈ E(T (X,M)), we have (eψ)υ = e.

Now suppose that w ∈ T (X,M) and m ∈ M with (w−1w)ψ > mm−1. Then

〈w,m〉 ∈ Dψ and we define κ : Dψ → U by

〈w,m〉κ = (((wψ)m)υ)−1w(mυ) (6.17)

Clearly 〈w,m〉κ ∈ T (X,M), and applying ψ we find

〈w,m〉κψ =
(
(((wψ)m)υ)−1w(mυ)

)
ψ

= (((wψ)m)υψ)−1wψ(mυψ)

= ((wψ)m)−1(wψ)m

= m−1(w−1w)ψm

= m−1m

Hence 〈w,m〉κ ∈ Um−1m. We now compose κ with the abelianisation map on U and

so define

κ : 〈w,m〉 7→ 〈w,m〉κ ∈ Uab
m−1m .
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We check that κ induces an abelian group homomorphism Dψ,m−1m → Uab
m−1m. Con-

sider a defining relation of Dψ,m−1m, where a, b ∈ T (X,M) with a−1a > bb−1 and

m ∈M with (b−1b)ψ > mm−1 :

〈ab,m〉 = 〈a, (bψ)m〉+ 〈b,m〉 . (6.18)

In what follows we shall for clarity suppress the bars above elements of U , but it

is crucial to remember that we are indeed mapping Dψ,m−1m into an abelian group

using κ. If we apply κ to the left hand side of (6.18) we obtain

〈ab,m〉κ = [(((ab)ψ)m)υ]−1 · ab ·mυ . (6.19)

Applying κ to the right-hand side, we obtain

[(aψ · bψ ·m)υ]−1 · a · ((bψ)m)υ · ((bψ)m)υ−1 · b ·mυ .

Now

[((bψ)m)υ · ((bψ)m)υ−1]ψ = (bψ)m · ((bψ)m)−1 = [b ·mυ · (mυ)−1 · b−1]ψ

and since ψ is idempotent separating, we deduce that

((bψ)m)υ · ((bψ)m)υ−1 = b ·mυ · (mυ)−1 · b−1 .

Hence, on applying κ to the right-hand side of (6.18), we obtain

[(aψ · bψ ·m)υ]−1 · ab·mυ · (mυ)−1 · b−1b ·mυ

= [(aψ · bψ ·m)υ]−1 · ab ·mυ

and comparison with (6.19) shows that the relation (6.18) is preserved. Therefore κ
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does define an abelian group homomorphism Dψ,m−1m → Uab
m−1m.

It remains to check that κ splits α : u→ 〈u, (u−1u)ψ〉. Now

κ : 〈u, (u−1u)ψ〉 7→ [((uψ)(u−1u)ψ)υ]−1 · u · (u−1u)ψυ

= ((uψ)υ)−1 · u · (u−1u)ψυ

Since uψ ∈ E(M) then uψ = (uu−1)ψ, and we have assumed that ψυ is the identity

on E(T (X,M)). Thus

〈u, (u−1u)ψ〉κ = ((uψ)υ)−1 · u · (u−1u)ψυ = (((uu−1)ψ)υ)−1 · u · (u−1u)ψυ = u .

Therefore κ splits α as an abelian group homomorphism, and each αe : Uab
e → Dψ,e

is injective. �

6.2.19 Corollary. The module U and the relation module Mθ are isomorphic M–

modules.

Proof. By Theorem 6.2.11, the relation module Mθ is isomorphic to Mψ, defined

as the kernel of the canonical map Dψ → IM given in Example 6.2.3, and by

Proposition 6.2.18 this is isomorphic to U . �

6.2.20 Example. Let S = {1, e, f, ef} be the semilattice presented as an inverse

monoid by P = [e, f : e2 = e, f 2 = f ]. Then FIM(e, f) is partitioned as

FIM(e, f) = {1}∪ (FIM(e)\{1})∪ (FIM(f)\{1})∪ (FIM(e, f)\ (FIM(e)∪FIM(f)))

with the parts mapping to 1, e, f and ef respectively. We represent elements of

FIM(e, f) by Munn trees in the Cayley graph of the free group F (e, f), as explained

in section 1.5. We want to factorize θ : FIM(e, f)→ S into

FIM(e, f) T (e, f) Sτ

θ

ψ
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Since S is a semilattice, T = kerψ = U , and so T is a Clifford semigroup. The

congruence on FIM(e, f) determined by τ is, by Proposition 4.3.4, the following:

(P, u) τ (Q, v) if and only if there exists an idempotent (R, 1) ∈ FIM(e, f) such that

(P ∪uR, u) = (Q∪vR, v) and (u−1P, 1)θ = (v−1Q, 1)θ = (R, 1)θ. Now (P ∪uR, u) =

(Q ∪ vR, v) implies that u = v: if we then define R = u−1(P ∪ Q) it follows that

(P ∪ uR, u) = (Q ∪ uR, u). The condition (u−1P, 1)θ = (u−1Q, 1)θ = (R, 1)θ then

holds if and only if each of (u−1P, 1), (u−1Q, 1) and (R, 1) is in the same part of the

partition of FIM(e, f) given above. Therefore (P, u) τ (Q, v) if and only if one of

the following four mutually exclusive conditions holds:

� P = Q = {1} and u = v = 1, or

� P andQ involve only e–labelled edges in the Cayley graph Cay(F (e, f), {e, f}),

and u = v ∈ F (e), or

� P andQ involve only f–labelled edges in the Cayley graph Cay(F (e, f), {e, f}),

and u = v ∈ F (f), or

� P andQ each involves both e–labelled edges and f–labelled edges in Cay(F (e, f), {e, f}),

and u = v ∈ F (e, f).

In each case, the τ–class is determined by the element u ∈ {1}tF (e)tF (f)tF (e, f).

The Clifford semigroup T is then the disjoint union of groups

{1}

F (e) F (f)

F (e, f)

Given τ and T , we can easily define ψ by mapping {1} 7→ 1, F (e) 7→ e, F (f) 7→ f

and F (e, f) 7→ ef . This is clearly idempotent separating since each group contains

exactly one idempotent, and τψ = θ since τ respects the partition we used to
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characterise θ. Now we have ψ defined we can construct Dψ. For y ∈ E(S) each

Dψ,y is generated as an abelian group by:

Xy = {(a, s) : a ∈ T , s ∈ S, (a−1a)ψ > ss−1, s−1s = y}

subject to relations:

(ab, s) = (a, (bψ)s) + (b, s)

with a, b ∈ T , s ∈ S and a−1a > bb−1. We can take each element of S in turn:

� Dψ,1

Generators:

X1 = {(a, 1) : a ∈ T , (a−1a)ψ > 1}

= {(a, 1) : a ∈ {1}}

= {(1, 1)}

Relations:

(1 · 1, 1) = (1, 1) + (1, 1)

= (1, 1)

So Dψ,1 is the trivial group.

� Dψ,e

Generators:

Xe = {(a, e) : a ∈ T , (a−1a)ψ > e}

= {(a, e) : a ∈ F (e) t {1}}
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Relations:

(ab, e) = (a, (bψ)e) + (b, e)

= (a, e) + (b, e)

So Dψ,e is the free abelian group, F ab(e).

� Dψ,f

This follows the same construction as Dψ,e, thus Dψ,f = F ab(f).

� Dψ,ef

Generators:

Xef = {(a, ef) : a ∈ T , (a−1a)ψ > ef}

= {(a, ef) : a ∈ T }

Relations:

(ab, ef) = (a, (bψ)ef) + (b, ef)

= (a, ef) + (b, ef)

So Dψ,ef is the free abelian group F ab(e, f).

Therefore Dψ =

0

Z Z

Z⊕ Z
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with the S–module structure given by inclusion maps.

We then recall from (6.16) that we have the exact sequence of S-modules:

0→ U → Dψ → IS → 0

with U =Mθ the relation module for our presentation. We have already constructed

Dψ, it remains to consider IS. From Lemma 1.6.4 we know that for each y ∈ E(S),

ISy is freely generated by

{s− y : y 6= s ∈ Ly}

However since S a semilattice each of these generating sets is empty, and so IS is

trivial, and we have Mθ = Dψ.

6.2.5 The Relation Module and the Schützenberger Graphs

As shown in [8, Corollary 5.1], the relation module of a group presentation 〈X : R〉 of

a group G – that is, the abelianisation of the kernel of the quotient map F (X)→ G

– is isomorphic to the first homology group of the Cayley graph Cay(G,X). Hence

in settings in which the Cayley graph is well understood, the computation of the

relation module is straightforward. Similar considerations apply to the relation

module of an inverse monoid presentation [X : R], if we replace the Cayley graph

by the Schützenberger graph (see section 1.7).

Consider the Schützenberger graph SchL(M,X) for an inverse monoid M gen-

erated by X, and let θ : FIM(X) → M be the presentation map. We recall

that SchL(M,X) has a connected component SchL(M,X, e) for each idempotent

e ∈ E(M), and that the vertex set of SchL(M,X, e) is the L–class of e. Hence

the cellular chain group C0(SchL(M,X, e)) in dimension 0, which is the free abelian

group on the vertex set of SchL(M,X, e), is the free abelian group on the L–class

Le and so is isomorphic to ZMe. The cellular chain group C1(SchL(M,X, e)) in
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dimension 1 is the free abelian group on the edge set, and hence is the free abelian

group on the set

{(x, s) : x ∈ X, s ∈ S, (x−1x)θ > ss−1, s−1s = e}

and the boundary map ∂ : C1(SchL(M,X, e))→ C0(SchL(M,X, e)) is then given by

(x, s) 7→ (xθ)s− s. For the Schützenberger graph SchL(M,X) we have

C0(SchL(M,X)) =
⊕

e∈E(M)

C0(SchL(M,X, e))

and

C1(SchL(M,X)) =
⊕

e∈E(M)

C1(SchL(M,X, e)) .

Let L(M) be Loganathan’s left-cancellative category , see Definition 1.6.2. Suppose

that s−1s = e and that (e, t) ∈ L(M). Then by defining

sC (e, t) = st and (a, s)C (e, t) = (a, st)

we get an M–module structure on each of C0(SchL(M,X)) and C1(SchL(M,X)),

with that on C0(SchL(M,X)) making C0(SchL(M,X)) isomorphic to ZM as an

M–module. The cellular chain complex

C1(SchL(M,X))
∂−→ C0(SchL(M,X))

of SchL(S,X) is then a complex of M–modules.

6.2.21 Theorem. [14, Theorem 4.3] Suppose that M is an inverse monoid presented

by P = [X : R] with presentation map θ : FIM(X) → M . Then the derivation

module Dθ is isomorphic as a group to the cellular chain group C1(SchL(M,X)) and

the relation module Mθ is isomorphic as a group to the first homology group of the

Schützenberger graph SchL(M,X).
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Proof. The sequence 6.7 gives us a commutative diagram of L(M)–maps

H1(SchL(M,X)) C1(SchL(M,X)) C0(SchL(M,X))

Mθ Dθ ZM

κ κ

∂

∼=
θ∗

in which the middle map κ is the L(M)–map induced (as a homomorphism of abelian

groups) by (x,m) 7→ 〈x,m〉, the two left-hand horizontal maps are inclusions, and

κ therefore restricts to a surjection H1(SchL(M,X))→Mθ.

Now the function X → M n C1(SchL(M,X)) that maps x 7→ (xθ, (x, (x−1x)θ)

induces an inverse monoid homomorphism FIM(X) → M n C1(SchL(M,X)) and

by Proposition 6.2.14 there is then an L(M)–map Dθ → C1(SchL(M,X)) mapping

〈x, (x−1x)θ〉 7→ (x, (x−1x)θ) giving an inverse to κ. �

6.2.22 Remark. Description ofDθ andMθ in term of Schützenberger graphs makes

clear the possible dependence of these modules on the choice of generating set.

6.2.6 Examples of Relation Modules

We return to the examples of Schützenberger graphs in Section 1.7.1.

6.2.23 Example. Let M be the semilattice {1, e, f, ef}, generated as an inverse

monoid by X = {e, f}. The Schützenberger graph is

1•

e• •f

ef•

e f

e f
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The relation module is therefore

0

Z Z

Z⊕ Z

and all the structure maps are inclusions. This of course recovers the relation module

described in Example 6.2.20.

6.2.24 Example. The bicyclic monoid B is the inverse monoid presented by [x :

xx−1 = 1]. The Schützenberger graph Sch(B, x, x−qxq) is the semi-infinite path

xq x−1xq x−2xq . . . x−kxq . . .x x x x x

The relation module M is therefore trivial. This is no surprise: B is an arboreal

inverse monoid, and this example illustrates Lemma 6.2.8.

6.2.25 Example. Given an inverse monoid M with presentation [Y : R], we add

a zero to M to obtain M0. For M0 we take the generating set X = Y ∪ {z} (with

z 6∈ Y ), and we have a presentation Q of M0 given by

Q = [Y, z : R, z2 = z, yz = z = zy (y ∈ Y )] .

In the Schützenberger graph there is a loop at 0 labelled for each element of X. If

[Y : R] has relation module M then the relation module of Q can be thought of

schematically as

M

Z|X|

ζ

where the map ζ carries a circuit in SchL(M,Y ) labelled by a word w ∈ (Y t Y −1)∗
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to the element of Z|Y | ⊂ Z|X| determined by w.

6.2.26 Example. The symmetric inverse monoid I2 on the set {1, 2} has Schützenberger

graph SchL(I2, {τ, ε})

1 τ

ε α−1 η α

0

τ

τ

ε

τ

τ

τ

ε

τ

τ ε

The relation module is therefore

Zτ 2

Zε⊕ Zτ 2 Zτ 2 ⊕ Zε

Zε⊕ Zτ
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Squier Complexes for Inverse

Monoid Presentations

7.1 The Squier Complex

We now wish to extend the constructions described in Chapter 5 and show that we

can obtain a presentation of a relation moduleMθ, derived from an inverse monoid

presentation P = [X : R] with presentation map θ : FIM(X) → M , from a free

crossed module that is in turn derived from a Squier complex Sq(P) associated to

P . However, in the more general setting of inverse monoid presentations, we will

obtain a free crossed module of groupoids. This notion will be reviewed in section

7.2.

The fundamental groupoid of Sq(P) will be a pseudoregular groupoid, and in the

construction of Sq(P) we are faced with the problem of selecting the correct vertex

set. The obvious analogy with group presentations would lead us to use the free

inverse monoid FIM(X). However, to establish a connection with our description

of the relation module in chapter 6 as the kernel of the idempotent separating map

T (X,M) → M , it is more appropriate to make a definition of Sq(P) with vertex

set T (X,M).
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7.1.1 Definition. Let P = [X : R] be an inverse monoid presentation, with pre-

sentation map θ : FIM(X)→M factorised, as in Corollary 6.2.10, as

FIM(X)
τ−→ T (X,M)

ψ−→M

with τ idempotent pure and ψ idempotent separating. Then Sq(P , T (X,M)) is the

2–complex constructed as follows:

� The vertex set is T (X,M).

� The edge set consists of all 3-tuples (p, l = r, q) with p, q ∈ T (X,M)) and

(l = r) ∈ R. Such an edge will start at p(lτ)q and end at p(rτ)q, so each edge

corresponds to the application of a relation. An edge path in Sq(P) therefore

corresponds to a succession of such applications.

� The 2-cells correspond to applications of non-overlapping relations, and so a

2-cell is attached along every edge path of the form:

p(lτ)qp′(l′τ)q′

(p(lτ)qp′, l′=r′, q′)

��

(p, l=r, qp′(l′τ)q′)
// p(rτ)qp′(l′τ)q′

(p(rτ)qp′, l′=r′, q′)

��

p(lτ)qp′(r′τ)q′
(p, l=r, qp′(r′τ)q′)

// p(rτ)qp′(r′τ)q′

This attachment of 2–cells makes these two edge paths between p(lτ)qp′(l′τ)q′

and p(rτ)qp′(r′τ)q′ homotopic in Sq(P , T (X,M)).

We can see that this is essentially the same definition as for groups, see Definition

5.1.1, however now we have the vertex set T (X,M) and this means we must map

our relations using τ into T (X,M). For clarity from here we will suppress the use

of τ , and just write plq and prq for the endpoints of (p, l = r, q).

116



Chapter 7: Squier Complexes for Inverse Monoid Presentations

7.1.1 Proposition. The fundamental groupoid Π(Sq(P , T (X,M))) is pseudoregu-

lar, and the binary operations ∗ and ~ coincide.

Proof. This follows in exactly the same way as the proof of regularity given in

Theorem 5.1.3. �

Let e ∈ E(T (X,M)). From Proposition 3.3.6 we see that star./e in Π(Sq(P , T (X,M)))

is a monoid. Moreover, the vertex set of star./e is equal to

Ue = {a ∈ T (X,M) : aψ = eψ}

= {a ∈ T (X,M) : aψ = e}

since we can identify E(T (X,M) and E(M) as ψ is idempotent separating. We

recognise this set as one of the groups that make up the kernel of ψ. (see Lemma

4.3.3). However, we shall now see that in fact star./e is a group, and Ue is a subgroup.

7.1.2 Lemma. Let e ∈ E(T (X,M)). In Π(Sq(P , T (X,M))) the set star./e , with

the operation ∗, is a group.

Proof. By Proposition 3.3.6, the set of arrows star./e is a monoid under the binary

operation ∗. As in the regular case, for α ∈ star./e we define

α−∗ = (αr)−1 B α−◦ C (αd)−1 ,

where a superscript −1 denotes the inverse in the inverse monoid T (X,M) and a

superscript −◦ denotes the inverse in the groupoid Sq(P).

Now

α ∗ (α)−∗ = α ∗
(
(αr)−1 B (α)−◦ C (αd)−1

)
=
(
αC (αr)−1((αd)−◦)(αd)−1

)
◦
(
(αr)(αr)−1 B (α)−◦ C (αd)−1

)
=
(
αC (αr)−1(αr)(αd)−1

)
◦
(
(αr)(αr)−1 B (α)−◦ C (αd)−1

)
.
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Since α ∈ star./e we have αd = e, and since αr ∈ Ue and Ue is a subgroup of

T (X,M) with identity e, then (αr)−1(αr) = e = (αr)(αr)−1. So

α ∗ (α)−∗ = (αC e) ◦ (eB (α)−◦ C e)

= α ◦ (α)−◦

= 1e

Similarly (α)−∗ ∗ α = 1e, and therefore each star./e is a group. �

7.1.3 Lemma. Suppose that (ep, l = r, qe) ∈ star./e . Then eplqe = e, and therefore

(ep)(lqe)(ep) = eep = ep

(lqe)(ep)(lqe) = lqee = lqe

and so ep = (lqe)−1 in T (X,M). Therefore (ep, l = r, qe) = (eq−1l−1, l = r, qe):

moreover e = eq−1l−1lqe and so e 6 q−1l−1lq.

7.1.4 Lemma. A path α ∈ star./e can be rewritten as a ∗-product of single edges in

star./e . Thus each star./e is generated by the subset S./e of single edges in star./e , and

these have the form

λel=r,q = (eq−1l−1, l = r, qe) ,

with e 6 q−1l−1lq.

Proof. The rewriting of a path α to a ∗–product αλ of edges in S./e is essentially

that defined in Proposition 5.2.1. The details are as follows.

The vertex set of the component of Sq(P) that contains e is the group Ue (with

identity e), and so for a path α in this component we define

αλ = (αd)−1 B αC e
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If α = (p, l = r, q) is a single edge, then

αλ = (q−1l−1p−1p, l = r, qe) = (eq−1l−1p−1p, l = r, qe)

since plq ∈ Ue. Then by Lemma 7.1.3, we have eq−1l−1p−1p = (lqe)−1 and so

αλ = (eq−1l−1, l = r, qe) = λel=r,q ,

and (αλ)d = eq−1l−1lqe = e.

Now if α = α1 ◦ α2 then

αλ = (α1d)−1 B (α1 ◦ α2)C e

= ((α1d)−1 B α1 C e) ◦ ((α1d)−1 B α2 C e)

= α1λ ◦ ((α1d)−1 B α2 C e) ,

and

α1λ ∗ α2λ = (α1λC e) ◦ ((α1d)−1(α1r)e(α2d)−1 B α2 C e) .

But α1r = α2d ∈ Ue and so (α1d)−1(α1r)e(α2d)−1 = (α1d)−1 and therefore αλ =

α1λ ∗ α2λ. The lemma then follows easily by induction on the length of a path. �

Now suppose that the path α is a composition α = α1 ◦α2 and that β is the path

β = α1 ◦ γ ◦ γ−◦ ◦ α2

for some path γ. Then

βλ = α1λ ∗ γλ ∗ γ−◦λ ∗ α2λ .
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Now if d = γd and r = γr then

γλ ∗ γ−◦λ = (d−1 B γ C e) ∗ (r−1 B γ−◦ C e)

= (d−1 B γ C e)(d−1r B r−1 B γ−◦ C e)

= (d−1 B γ C e)(d−1 B γ−◦ C e)

= d−1 B (γ ◦ γ−◦)C e

= e .

Hence if α and β are paths differing by a 1–homotopy in Sq(P) then αλ = βλ in

the group (star./e , ∗).

Now consider a 2–cell in the component of Sq(P) containing e: Suppose that we

have a 2–cell

plqtsu

(plqt,s=d,u)

��

(p,l=r,qtsu)
// prqtsu

(prqt,s=d,u)

��

plqtdu
(p,l=r,qtdu)

// prqtdu

(7.1)

with

α = (p, l = r, qtsu), β = (prqt, s = d, u), γ = (plqt, s = d, u), δ = (p, l = r, qtdu) .

(7.2)
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Then

αλ = (p, l = r, qtsu)λ

= (u−1s−1t−1q−1l−1p−1p, l = r, qtsue)

= (eu−1s−1t−1q−1l−1p−1p, l = r, qtsue) (since plqtsu ∈ Ue)

= (eu−1s−1t−1q−1l−1, l = r, qtsue)

= λel=r,qtsu (by Lemma 7.1.3).

Similarly βλ = λes=d,u = γλ and δλ = λel=r,qtdu. Hence if two paths differ by a

2–homotopy in Sq(P) their λ–rewrites in star./e are equal as a consequence of the

relation

λel=r,vsu ∗ λes=d,u = λes=d,u ∗ λel=r,vdu

(where v = qt above). These considerations show that:

7.1.5 Proposition. Given e ∈ E(T (X,M)), q ∈ T (X,M) and (l = r) ∈ R such

that e 6 q−1l−1lq, we set λel=r,q = (eq−1l−1, l = r, qe). Then the following are a set

of defining relations for the group (star./e , ∗) on the generating set S./e :

λel=r,vsu ∗ λes=d,u = λes=d,u ∗ λel=r,vdu .

7.2 Crossed Modules of Groupoids

We now present the rudiments of the theory of crossed modules of groupoids. For

further information we refer to [7].

7.2.1 Definition. Let G be a groupoid with vertex set E, which we denote by

G ⇒ E, where ⇒ represent the maps d and r defined in Definition 1.4.2. Then a

crossed G-module of groupoids

C ∂−→ G ⇒ E
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consists of:

1. a disjoint union of groups C =
⊔
e∈E Ce, indexed by E,

2. a homomorphism ∂ of groupoids,

3. an action of G on C, denoted (c, g) 7→ cg, such that an edge g in G with gd = e

and gr = f , acts on c ∈ Ce with cg ∈ Cf .

The action of G on C satisfies

(cg)∂ = g−1(c∂)g (7.3)

whenever cg is defined, and

ca∂ = a−1ca (7.4)

for some e ∈ E, a, c ∈ Ce.

Just as for groups we have precrossed modules of groupoids which are as above

but need not satisfy (7.4). We also have analogous definitions of a free precrossed

and crossed module of groupoids, see [7, Section 7.3].

7.2.2 Definition. Consider a (pre)crossed module of groupoids

C ∂−→ G ⇒ E

along with a set R and a function ω : R→ G such that ωd = ωr. Then C is said to

be the free (pre)crossed G-module with basis ω if for any (pre)crossed G-module

C ′ ∂
′
−→ G ⇒ E

and function ν ′ : R → C ′ such that ω = ν ′∂′ there exists a unique morphism of

(pre)crossed modules φ : C → C ′ such that ∂ = φ∂′.
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We shall now discuss the construction of the free (pre)crossed module of groupoids

again following [7, Section 7.3] and amplifying the details.

7.2.1 Proposition. Given a groupoid G, a set R and a function ω : R → G such

that ωd = ωr, then a free precrossed G-module with basis ω exists and is unique up

to isomorphism.

Proof. For each e ∈ E we define Re = {r ∈ R : (rω)r = e = (rω)d} and

(R G G)e = {(r, g) ∈ R× G : r ∈ Rgg−1 , g−1g = e} .

We define Fe to be the free group on (R G G)e, and F =
⊔
e∈E Fe. Then F along

with the map δ : F → G, defined on generators by (r, g) 7→ g−1(rω)g, and an action

of G on F , defined on generators by (r, g)h = (r, gh) whenever g−1g = hh−1 is a free

precrossed G-module. Uniqueness follows from the usual universal argument. �

Then recall from Definition 2.1.3 that the Peiffer elements of Fe are the elements

of the form 〈x, y〉 = x−1y−1xyxδ, for x, y ∈ Fe. We observe that for x, y ∈ Fe, the

action of xδ on y takes us from Fe to F(xδ)−1(xδ): however (xδ)−1(xδ) = (x−1x)δ =

eδ = e, and so 〈x, y〉 is defined in the group Fe. We let Pe denote the subgroup of

Fe generated by the Peiffer elements of Fe.

7.2.3 Definition. For a precrossed module of groupoids F δ−→ G ⇒ E, the Peiffer

subgroupoid P is the disjoint union of the subgroups Pe of Fe.

7.2.2 Proposition. For P the Peiffer subgroupoid of a precrossed module of groupoids

F δ−→ G ⇒ E:

1. Each Pe is a normal subgroup of Fe.

2. P is invariant under the G action.

3. P is contained in the kernel of δ.
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Proof. The proof of this proposition follows the proof of Proposition 2.1.3. However

now we have to note carefully how the action shifts elements.

1. Let x, y, z ∈ Fe, then

z−1〈x, y〉z = z−1x−1y−1xyxδz

= z−1x−1y−1x (zy(xz)δ(y(xz)δ)−1z−1) yxδz

= (xz)−1y−1(xz)y(xz)δ
(
z−1(yxδ)−1)z(yxδ)zδ

)−1
= 〈xz, y〉〈z, yxδ〉−1

Therefore a conjugate of a Peiffer element is a product of Peiffer elements, and

Pe is normal in Fe.

2. Now consider g ∈ G with gg−1 = e and a Peiffer element 〈x, y〉 of Fe. Then

〈xg, yg〉 = (xg)−1(yg)−1xg(yg)(x
g)δ

= (xg)−1(yg)−1xg(yg)g
−1(xδ)g

= (xg)−1(yg)−1xg(yxδ)g

= 〈x, y〉g

So a Peiffer element in Fe acted on by an appropriate element of G is another

Peiffer element, now in Fg−1g, and we see that P is invariant under the G-

action, and that acting on elements of P shifts us in the subgroups Pe just as

it does around the subgroups Fe of F .

3. Lastly, for 〈x, y〉 ∈ Pe we have,

〈x, y〉δ = (x−1y−1xyxδ)δ = (x−1)δ(y−1)δxδ(yxδ)δ

= (xδ)−1(yδ)−1(xδ)(xδ)−1(yδ)(xδ)

= e ∈ E(G)
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and so P ⊆ ker δ.

�

7.2.3 Theorem. Let F δ−→ G ⇒ E be a precrossed G-module of groupoids. Then

there exists a crossed G-module of groupoids, A ∂−→ G ⇒ E and a morphism of

precrossed G-modules φ : F → A which is universal for morphisms from (F , δ) to

crossed G-modules of groupoids.

Proof. Let P = te∈EPe be the Peiffer subgroupoid of (F , δ), and set A = te∈EAe,

where Ae = Fe/Pe, regarded as the set of left cosets of Pe in Fe, with φ the quotient

map. Then since each Pe ⊆ ker δ we have an induced homomorphism ∂ : A → G.

We can define an action of G on A by

(xPe)
g = (xg)Pg−1g whenever gg−1 = e.

This is well-defined, since if xPe = yPe, and g ∈ G such that gg−1 = e, then

xg(yg)−1 = xg(y−1)g = (xy−1)g.

and since xy−1 ∈ Pe, we have (xy−1)g ∈ Pg−1g. Therefore xgPg−1g = ygPg−1g.

It remains to check the conditions (7.3) and (7.4). For (7.3) we have

(xPe)
g∂ = (xφ)g∂

= (xg)φ∂

= (xg)δ

= g−1(xδ)g

= g−1(xφ∂)g

= g−1(xPe∂)g ,
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and for (7.4)

(x−1yx)Pe = (yxδ)Pe = (yPe)
xδ = yP (xPe)∂

e .

Then given any morphism τ from (F , δ) to a crossed G-module of groupoids (T , d)

we will have P ∈ ker τ , and thus there will be an induced crossed module morphism

(A, ∂)→ (T , d). �

Via the free precrossed module, we arrive at the free crossed module, as in [7,

Proposition 7.3.7].

7.2.4 Corollary. Given a groupoid G, a set R and a function ω : R → G with

ωd = ωr, then a free crossed G-module with basis R exists, and is unique up to

isomorphism.

7.2.5 Example. Consider a crossed module A ∂−→ G ⇒ E in which ∂ is trivial: that

is, ∂ maps each a ∈ Ae to e ∈ E. We write ∂ = ε. By (7.4) each Ae is then abelian,

and A is a G–module. The concept of a free G–module then follows: given a set R

and a function ω : R → G with ωd = ωr, a G–module A is free with basis ω, if for

any G–module B and function ν : R → B such that νε = ω, there exists a unique

morphism φ : A → B of G–modules.

7.2.1 Modules and Crossed Modules

Suppose that (as in Example 7.2.5) in a crossed G-module C ∂−→ G ⇒ E, the map ∂

has image E. Then, by (7.4), for a, c ∈ Ce we have c = a−1ca and so Ce is abelian,

and C is then a G–module: that is, the association e 7→ Ce is the object part of

a functor from G to the category of abelian groups, and an arrow g ∈ G is then

associated to the action homomorphism c 7→ cg defined for c ∈ Cgd.

More generally, we have:

7.2.6 Proposition.
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1. Let C ∂−→ G ⇒ E be a crossed module of groupoids, and let Q be the quotient

groupoid G/C∂, with φ : G → Q the natural map Then Cab =
⊔
e∈E C

ab
e is a

Q–module, where for c ∈ Ce and q = gφ with gg−1 = e we have

cC q = cg .

2. If C ∂−→ G ⇒ E is a free crossed G-module of groupoids with basis ω : R → G

then Cab is a free Q–module with basis the image of the induced map R→ C →

C.

Proof. The claimed Q–action is well-defined, since if q = gφ = hφ with g, h ∈ G,

then h = (a∂)g for some a ∈ C, and then

ch = c(a∂)g = (a−1ca)g = cg ,

just as for crossed modules of groups in section 2.1.

Now let A be an arbitrary Q-module, and consider the disjoint union of groups

Λ = te∈EΛe, where Λe = Ce∂ × Ae. We let G act on Λ by conjugation on each Ce

and via φ on Ae. Let π1 : Λ→ G be the projection map: we claim that Λ
π1−→ G ⇒ E

is a crossed module of groupoids. For (c∂, a) ∈ Λe and g ∈ G with gd = e we have:

((c∂, a)g)π1 = (g−1(c∂)g, agφ)π1 = g−1(c∂)g = g−1(c∂, a)π1g ,

and for (c1∂, a1), (c2∂, a2) ∈ Λe,

(c1∂, a1)
(c2∂,a2)π1 = (c1∂, a1)

c2∂

= ((c2∂)−1(c1∂)(c2∂), a
(c2∂)φ
1 )

=
(
(c2∂)−1(c1∂)(c2∂), a1

)
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since c2∂φ = e, and

= (c2∂, a2)
−1(c1∂, a1)(c2∂, a2) ,

since Ae is abelian. So Λ
π1−→ G ⇒ E is a crossed module of groupoids.

Now let ν ′ : R → A be given by a family of functions ν ′ : Re → Ae, and then

define

ν ′′ = (ν∂, ν ′) : R → Λ .

We note that ν ′′π1 = ν∂, and so by freeness of C, there is an induced morphism

λ : C → Λ of crossed G–modules, with νλ = ν ′′. Composing λ with the second

projection π2 : Λ→ A gives a morphism C → A that factors through Cab → A, and

is easily seen to be a map of Q–modules.

The maps used in the proof are illustrated below.

C G

R

Λ G

A

∂

λ

ν

ν′′

ν′

π1

π2

�

Part (2) of Proposition 7.2.6 generalises Proposition 2.1.6.
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7.2.2 A Crossed Module from an Inverse Monoid Presenta-

tion

Consider an inverse monoid presentation P = [X : R] of M , along with its presen-

tation map θ : FIM(X)→M , and its factorisation given in Lemma 4.3.4

FIM(X)
τ−→ T (X,M)

ψ−→M .

Let E = E(T (X,M)). We regard T (X,M) as an inductive groupoid with vertex

set E, as discussed in section 1.4.2, and define

S./ =
⊔
e∈E

star./e .

7.2.7 Proposition. S./
r−→ T (X,M)⇒ E is a crossed module of groupoids.

Proof. By Lemma 7.1.2, each star./e is a group, and so S./ is a disjoint union of

groups indexed by E, and is a groupoid with vertex set E. Then r is a groupoid

homomorphism, and is the identity on E.

An action of T (X,M) on S./ is defined using the actions in the pseudoregular

groupoid Π(Sq(P , T (X,M))) as follows: for w ∈ T (X,M) and α ∈ star./ww−1 we

define

αw = w−1 B αC w ∈ star./w−1·d(α)·w = star./w−1ww−1w = star./w−1w .

Then (7.3) holds, since

(α)wr = (w−1 B αC w)r = w−1(αr)w ,

For (7.4), since the binary operations ∗ and ~ on Π(Sq(P , T (X,M))) coincide by
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Proposition 7.1.1, then

α ∗ β = α~ β = β ◦ (αC βr)

and

β ∗ (α)βr = β ∗ ((βr)−1 B αC βr) = β ◦ (αC βr) .

So α∗β = β ∗αβr. Therefore S./
r−→ T (X,M)⇒ E is a crossed module of groupoids.

�

We now wish to define a free crossed T (X,M)–module directly from an inverse

monoid presentation P = [X : R] of M . We recall that ψ : T (X,M) → M is

idempotent separating, and since if (l = r) ∈ R then lψ = rψ we have (l−1r)ψ ∈

E(M). Hence (l−1r)ψ = eψ for some (unique) e ∈ E(T (X,M)) and

(l−1r)ψ = (l−1l)ψ = (r−1r)ψ and (lr−1)ψ = (ll−1)ψ = (rr−1)ψ .

Hence l−1l = x = r−1r and ll−1 = rr−1: that is, l and r are H–related in T .

Now for x ∈ E we define

Rx = {(l = r, x) ∈ R× E : (l−1r)ψ > xψ}

and consider the set R =
⊔
x∈E Rx, along with the function ω : R→ T (X,M) which

maps (l = r, x) 7→ xl−1rx. (We note that, since l−1rx is in the H–class at x, then

l−1rx = xl−1rx: we write xl−1rx for its convenient symmetry.) Then

(l = r, x)ωd = xl−1rxr−1lx and (l = r, x)ωr = xr−1lxl−1rx ,

with

(l = r, x)ωdψ = (xl−1rxr−1lx)ψ = xψ = (xr−1lxl−1rx)ψ = (l = r, x)ωrψ .
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Since ψ is idempotent separating, we conclude that (l = r, x)ωd = (l = r, x)ωr. As

in Proposition 7.2.1 and Theorem 7.2.3 we can construct the free precrossed and

crossed T (X,M)-modules with basis ω. To this end, we define Fe to be the free

group with basis

(R G T )e = {(l = r, u) ∈ R× T (X,M) : (l = r, uu−1) ∈ Ruu−1 , u−1u = e} . (7.5)

and set F =
⊔
e∈E Fe. Then F along with δ : F → T (X,M) mapping (l = r, u) 7→

u−1l−1ru, and the action of T (X,M) on F given on generators by (l = r, u)v = (l =

r, uv) (where (l = r, u) ∈ (R G T )e and vv−1 = e) is the free precrossed T (X,M)-

module on ω. Then by Theorem 7.2.3 we can factor out the Peiffer subgroupoid to

obtain C ∂−→ T (X,M)⇒ E(M) as the free crossed T (X,M)-module on ω.

7.2.8 Theorem. The crossed T (X,M)-module

S./
r−→ T (X,M)⇒ E(M)

is isomorphic to the free crossed T (X,M)–module

C ∂−→ T (X,M)⇒ E(M) .

Proof. Define ν : R → S./ by (l = r, x) 7→ (xl−1, l = r, x). We then have (xl−1, l =

r, x)d = xl−1lx = x, and so (l = r, x)ν ∈ star./x . Moreover,

(l = r, x)νr = (xl−1, l = r, x)r = xl−1rx = (l = r, x)ω .

Therefore νr = ω and by freeness of C ∂−→ T (X,M)⇒ E(M) there exists a crossed

module morphism η : C → S./ mapping

(l = r, u) 7→ (u−1l−1, l = r, u) ∈ star./(u−1u) ,
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where (l−1r)ψ > (uu−1)ψ and l−1l = r−1r > uu−1. We claim that η is an isomor-

phism, and we verify this by constructing its inverse.

Suppose that (ep, l = r, qe) ∈ star./e . Then byLemma 7.1.3, we have ep = (lqe)−1

in T (X,M) and therefore (ep, l = r, qe) = (eq−1l−1, l = r, qe). We can define a

mapping µ on the set of single edges (ep, l = r, qe) in star./e into the basis (R G T )e

of the free group He defined in (7.5) by

µ : (ep, l = r, qe) 7→ (l = r, qe) .

and this is a bijection. We consider the effect of this map on a defining relation

λel=r,vsu ∗ λes=d,u = λes=d,u ∗ λel=r,vdu .

as given in Proposition 7.1.5. We have

λel=r,vsu
µ7→ (l = r, vsue)

λes=d,u
µ7→ (s = d, ue)

λel=r,vdu
µ7→ (l = r, vdue) .

In the group Ce = Fe/Pe we have

(s = d, ue)−1(l = r, vsue)(s = d, ue) = (l = r, vsueu−1s−1due) .

Now sψ = dψ and so

[(sue)(sue)−1]ψ = [(due)(due)−1]ψ .

Since ψ is idempotent separating, (sue)(sue)−1 = (due)(due)−1 and therefore

vsueu−1s−1due = v(sue)(sue)−1due = v(due)(due)−1(due) = vdue .
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So in Ce we have

(s = d, ue)−1(l = r, vsue)(s = d, ue) = (l = r, vdue)

and µ induces a homomorphism star./e → Ce that is the inverse of η. �

By Proposition 7.2.6,

(S./)ab =
⊔
e∈E

(star./e )ab

is a free ~M–module with basis function

(R G T )→ S./ → (S./)ab , (l = r, u) 7→ (u−1l−1, l = r, u)ab .

Here the ~M–module structure only takes account of the groupoid action of ~M .

However, we can say more.

7.2.9 Proposition. (S./)ab is the free L(M)–module on the E(M)–set Z in which

Ze = {(l = r) ∈ R : (l−1r)ψ = eψ}.

Proof. We need to extend the action of ~M to one of L(M), and if e, f ∈ E(M) with

e > f , and if α ∈ star./e with image α ∈ (star./e )ab, then we define αC(e, f) = fBαCf ,

and so for (e,m) ∈ L(M) with m = wψ, we have

αC (e,m) = w−1 B αC w .

We note that (w−1 B α C w)dψ = (w−1 B αd C w)ψ = m−1em = m−1m, since

e > mm−1.

As a component of the free ~M–module (S./)ab, the group (star./e )ab is the free

abelian group with basis

Ye = {(l = r,m) : (l−1r)ψ > mm−1,m−1m = e} .
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and the L(M)–action on a basis element is (l = r,m) C (e, n) = (l = r,mn). Now

Loganathan’s free L(M)–module F with basis Z is, according to the description in

section 1.6, constructed by taking Fe to be free abelian on the basis

Be = {(l = r, (f, s)) : (l−1r)ψ = fψ, fψ > ss−1, s−1s = e} .

Since ψ is idempotent separating, there is a unique idempotent f ∈ E(T ) such that

(l−1r)ψ = fψ and so f is determined by the relation l = r. Therefore Ye and Be are

in one-to-one correspondence, and the bijection (l = r, a) 7→ (l = r, (f, a)) induces an

isomorphism between (star./e )ab and Fe as abelian groups. However, since the L(M)–

action on a basis element (l = r, (f, s)) ∈ Be is given by (l = r, (f, s))C (e, n) = (l =

r, (f, sn), this isomorphism is an L(M)–map. �

We recall that, in the fundamental groupoid Π(Sq(P), T ), an element is a ho-

motopy class of sequence of edges (p, l = r, q) (and their inverses) that forms a path

in the Squier complex Sq(P , T ). Such a path starting at e ∈ T ends at an element

u such that uψ = eψ, and since the congruence induced by ψ is generated by the

relations l = r, any such u occurs at the end of a path. Hence the image of the

restriction of the range map

r : star./e → T

is the subgroup Ue of T , whose abelianisation Uab
e is a component of the relation

module for P by Corollary 6.2.19. We therefore have a crossed module of groupoids

S./ −→ U ⇒ E(M) . (7.6)

We wish to use this crossed module to understand more about the structure of the

relation module U =
⊔
e∈E(M) U

ab
e . To this end, we shall show that (7.6) is a free

crossed U–module. We shall generalise a result of Ellis and Porter [12], who show

for crossed modules of groups that, given a free crossed G-module ∂ : C → G on R

134



Chapter 7: Squier Complexes for Inverse Monoid Presentations

with v : R→ C and with N = im ∂, then C
∂−→ N is a free crossed module on R×T

with v′ : (r, t) 7→ t−1v(r)t, where T is a transversal for N in G.

Once again we shall use trace cosets, as in Definition 4.3.2.

7.2.10 Proposition. Let C ∂−→ G ⇒ E be a free crossed module of groupoids with

basis ω : R → G, and let N be the image of ∂. Let Z be a transversal to the

trace cosets of N in G. Then the crossed module C ∂−→ N ⇒ E is free with basis

ω : (R G Z)→ N , where

(R G Z) =
⊔
e∈E

(R G Z)e =
⊔
e∈E

{(r, z) ∈ R× Z : rω = zz−1 , z−1z = e}

and ω : (r, z) 7→ z−1(rω)z.

Proof. Suppose that K ∂−→ N ⇒ E is a crossed module and that we have a function

ν : (R G Z)→ K such that ω = ν∂. Recalling the construction of C from Proposition

7.2.1 and Corollary 7.2.4, for each e ∈ E we have a free group Fe with basis

(R G G)e = {(r, g) : (rω)d = gg−1 = (rω)r , g−1g = e} .

For g ∈ G we may write g = zgng for unique ng ∈ N and zg ∈ Z. We now define a

group homomorphism φe : Fe → Ke by φe : (r, g) 7→ ((r, zg)ν)ng .

Two basis elements (r, g) and (s, h) of Fe yield a Peiffer element

〈(r, g), (s, h)〉 = (r, g)−1(s, h)−1(r, g)(s, hg−1(rω)g) ∈ Fe . (7.7)

Now hg−1(rω)g = zh(nhg
−1(rω)g) with nhg

−1(rω)g ∈ N , and so

(s, hg−1(rω)g)φe = ((s, zh)ν)nhg
−1(rω)g

= (((s, zh)ν)nh)g
−1(rω)g

= ((s, h)φe)
g−1(rω)g.
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Now

(r, g)φe∂ = ([(r, zg)ν]ng)∂

= n−1g ((r, zg)ν∂)ng

= n−1g (r, zg)ωng

= n−1g z−1g (rω)zgng

= g−1(rω)g .

Hence

(s, hg−1(rω)g)φe = ((s, h)φe)
g−1(rω)g

= ((s, h)φe)
(r,g)φe∂

= (r, g)−1φe(s, h)φe(r, g)φe

Comparing with (7.7) we see that each Peiffer element 〈(r, g), (s, h)〉 is in the kernel

of φe , and since the Peiffer subgroup Pe is normally generated by such elements,

we have Pe ⊆ kerφe, and so we obtain an induced homomorphism Ce → Ke. It is

then easy to see that this gives the morphism of crossed N–modules required by the

universal property of a free crossed module. �

7.2.3 A Presentation for the Relation Module

From an inverse monoid presentation P = [X : R] of an inverse monoid M we have

now constructed a free crossed module S./
∂−→ U ⇒ E as in (7.6), and for each e ∈ E

we have a crossed module of groups star./e
∂−→ Ue. Since Ue is the vertex set of the

component of Sq(P) containing e, the map ∂ : star./e → Ue is surjective. We define

π./1 (Sq(P), e) = {α ∈ star./e : αr = e} ,
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and abbreviate this to π./e . By Propositions 3.3.7 and 7.1.1, π./e is abelian and so we

have a short exact sequence of groups

0→ π./e → star./e → Ue → 1 , (7.8)

7.2.11 Lemma. Each group Ue is free, and so the sequence splits and, as groups,

star./e and π./e × Ue are isomorphic.

Proof. The group Ue is a subgroup of T (X,M) and the maximum group image

map σM : T (X,M) → F (X) is idempotent pure. Its restriction σm : Ue → F (X)

therefore has trivial kernel and so is injective. Hence Ue is isomorphic to a subgroup

of a free group and is free. As noted in section 2.1, Ue acts trivially on π./e and so

the splitting of the sequence (7.8) induces an isomorphism star./e
∼= π./e × Ue. �

7.2.12 Theorem. Let P be an inverse monoid presentation of an inverse monoid

M . There exists a short exact sequence of L(M)–modules

0→
⊔

e∈E(M)

π./e → (S./)ab
∂−→ U → 0 (7.9)

in which (S./)ab is a free L(M)–module, ∂ is induced by S./
∂−→ U and U is isomorphic

to the relation module for P .

Proof. The M–module structure on
⊔
e∈E(M) π

./
e is given by Proposition 3.3.9, that

on (S./)ab by Proposition 7.2.9, and that on U by Lemma 6.2.12. Lemma 7.2.11

gives us, for each e ∈ E(M), a short exact sequence of abelian groups

0→ π./e → star./e
∂−→ Uab

e → 0

and these assemble into the sequence (7.9). It remains to check that ∂ is then a map

of M–modules.

Let α ∈ star./e with image α ∈ (S./)ab, and let m ∈M with mm−1 = e. Then the
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action of m on α is defined by lifting m to T (X,M) and acting on α in the crossed

module S./
∂−→ T :

αCm = t−1 B αC t

where tψ = m. Hence

(αCm)∂ = (t−1 B αC t)r = t−1(αr)t ∈ Uab
m−1m .

But α ∂ = αr and αrCm = t−1(αr)t. �
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Further Examples

8.1 Free Semilattices

The inverse monoid presentation P = [x : x = x2] presents the two-element semi-

lattice E = {1, e}. The trace of the congruence associated to the presentation map

θ : FIM(x)→ E has two classes, {1} and E(FIM(X)) \ {1} and it follows from the

factorisation of the presentation map (see Corollary 6.2.10) and the definition of τ

(see Proposition 4.3.4) that T (x,E) is the disjoint union of groups {1}tF (x), with

ψ : T (x,E) → E mapping 1 7→ 1 and F (x) → {e}. The relation module is then

equal to T (x,E) (with F (x) ∼= Z of course).

Following the recipe (and using the notation) of section 7.2.2, we have R1 = ∅

and Re = {(x = x2, e)}, with ω : (x = x2, e) 7→ x. The free crossed T –module

C ∂−→ T (x,E) ⇒ E is the union of the trivial crossed module {1} → {1} with

the crossed module of groups ∂ : C → F (x) on the single-element basis Re. As a

group, C is isomorphic to F (x) and is a crossed F (x)–module with trivial action

(the conjugation action in the abelian group F (x)). This can be seen from the

construction of free crossed modules described in section 2.1.1 but also follows from

results in chapter 7. It is clear that 1 is an isolated vertex in the Squier complex
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Sq(P), and by Lemma 7.1.4, the group (star./(e), ∗) is generated by the set

S./e = {(x−q−1, x = x2, xq) : q ∈ Z} ,

subject to the defining relations given in Proposition 7.1.5. Writing λq = (x−q−1, x =

x2, xq), these relations are

λv+u+1 ∗ λu = λu ∗ λv+u+2 (8.1)

where u, v ∈ Z. Setting v = −1 we obtain λu = λu+1 for all u ∈ Z. Hence, for all

p ∈ Z we have λp = λ0, and once these identifications are made, the relations (8.1)

are trivial and so star./(e) is freely generated by λ0. Hence, for each q ∈ Z, there

is a unique homotopy class of paths in star./(e) from e to xq, and π./1 (e) is trivial.

The short exact sequence (7.9) reduces to an isomorphism (S./)ab → T (x,E).

8.2 Polycyclic Monoids

The polycyclic monoid Pn, introduced by Nivat and Perrot in [30], is the inverse

monoid with zero presented by

[a1, . . . , an : aia
−1
i = 1, aja

−1
k = 0 (j 6= k)]

and so presented as an inverse monoid by the presentation

Pn = [a1, . . . , an, z : aia
−1
i = 1, aja

−1
k = z (j 6= k), z2 = z, aiz = z = zai] .
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We set A = {a1, . . . , an} and Az = A t {z}. Non-zero elements of Pn are uniquely

represented in the form u−1v for u, v ∈ A∗ and multiplied as follows:

(p−1q)(u−1v) =


p−1tv if q = tu for some t ∈ A∗ ,

p−1t−1v if u = tq for some t ∈ A∗ ,

0 otherwise.

The non-zero idempotents of Pn are the elements of the form u−1u for u ∈ A∗, and

elements p−1q and u−1v are L–related if and only if q = v. The natural partial

order on the non-zero idempotents is induced by the suffix ordering on A∗: we have

q−1q 6 u−1u if and only if u is a suffix of q, if and only if q = tu for some t ∈ A∗.

Left multiplication by an element a ∈ A preserves the L-class of p−1q if and only if

p−1 begins with a−1, and in this case, if p = ta then a(p−1q) = t−1q. Hence a typical

a–labelled edge in the Schützenberger graph SchL(Pn, A
z, q−1q) starts at a−1t−1q

and ends at t−1q. Identifying a vertex p−1q with the word p ∈ A∗, we see that

SchL(Pn, A
z, q−1q) is isomorphic to the A–regular tree rooted at vertex q. Hence

the relation module at every non-zero idempotent is zero, and at the idempotent 0

is free abelian of rank n + 1, since SchL(Pn, A
z, 0) consists of a loop at 0 for each

element of Az.

The E(Pn)–set Z of Proposition 7.2.9 is given by

Z1 = {aia−1i = 1 : 1 6 i 6 n} ,

Zq−1q = ∅ ,

Z0 = {aja−1k = z, z = z2, aiz = z, zai = z : 1 6 i, j, k 6 n, j 6= k} .

In the free L(Pn)–module F on Z, F1 is free abelian on the basis

B1 = {(aia−1i = 1, (1, p−1)) : 1 6 i 6 n, p ∈ A∗}
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which we rewrite as the set B1 = {bp
−1

1 , . . . , bp
−1

n : p ∈ A∗}; the group Fq−1q is free

abelian on the basis

Bq−1q = {(aia−1i = 1, (1, p−1q)) : 1 6 i 6 n, p ∈ A∗}

which we rewrite as the set Bq−1q = {bp
−1q

1 , . . . , bp
−1q
n : p ∈ A∗}; and the group F0 is

free abelian on the basis B0 t Y0, where B0 = {b01, . . . , b0n} and

Y0 = {(aja−1k = z, (0, 0)) : j 6= k} ∪ {(z = z2, (0, 0))} ∪ {(aiz = z, (0, 0)) : 1 6 i 6 n}

∪ {(zai = z, (0, 0)) : 1 6 i 6 n} .

We rewrite Y0 as

Y0 = {yjk : j 6= k} ∪ {yz} ∪ {xi : 1 6 i 6 n} ∪ {yi : 1 6 i 6 n} .

The action of L(Pn) is then

bp
−1

i C (1, u−1v) = bp
−1u−1v
i ∈ Fv−1v ,

bp
−1q
i C (q−1q, u−1v) = bp

−1t−1v
i ∈ Fv−1v where u = tq ,

and the basis elements in Y0 are fixed by the action of (0, 0) ∈ L(Pn).

For q ∈ A∗, a basis element bp
−1q
j ∈ Fq−1q corresponds in (S./)ab, under the isomor-

phism of Proposition 7.2.9, to (q−1p, aja
−1
j , p−1q) and this edge (q−1p, aja

−1
j , p−1q)

is a loop in Sq(P) at the vertex q−1q. Hence the map r : star./(q−1q) → T is zero,

the relation module at q−1q is {0} as already noted, and the module of identities

π1(Sq(P), q−1q) is isomorphic to star./(q−1q).

However, at the idempotent 0, the relation module is free abelian of rank n+ 1

and star./(0) is free abelian of rank n(n − 1) + 3n + 1 = (n + 1)2. Therefore, the
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module of identities at 0 is free abelian of rank (n+ 1)2 − (n+ 1) = n(n+ 1).

8.3 The Free Inverse Monoid Mc2 on Two

Commuting Generators

The free inverse semigroup on two commuting generators was introduced by McAl-

ister and McFadden [27] as an example of a universal construction of inverse semi-

groups from semigroups. We consider here the inverse monoid on two commuting

generators, which is presented by

P = [x, y : xy = yx] .

We follow [26] and denote this inverse monoid by Mc2. McAlister and McFadden

show [27, Proposition 2.5] that Mc2 is E–unitary, and as explained in [26, Example

4.2], it follows that elements of Mc2 can be represented by certain pointed patterns

in the Cayley graph Cay(F (x, y)ab, {x, y}) of the free abelian group of rank two.

Specifically, let A = {x, x−1, y, y−1} and, for w ∈ A∗, let Pw be the pattern

spanned by w in Cay(F (x, y)ab, {x, y}) . Let w be the image of w in F (x, y)ab. We

now complete Pw as follows. If xiyj and xkyl are vertices of Pw, we add all vertices

of the form xrys with i 6 r 6 k and j 6 s 6 l, and all edges between such vertices.

The result is the box completion P�w of Pw, and we say that P�w is complete. The

pointed pattern (P�w , w) is then a canonical representative of w, in the sense that

words u, v ∈ A∗ represent the same element of Mc2 if and only if P�u = P�v and

u = v.

8.3.1 Example. The box completion P of a pattern P is obtained by repeatedly

completing either of the subgraphs
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to the box

If w = xx−2yxy ∈ A∗ then Pw is the pattern

1

and its box completion is the pattern

1

Since w = y2, the pointed pattern representing w ∈ Mc2 is

1

with the distinguished vertex y2 indicated by the small arrow.

Multiplication in Mc2 is obtained by the multiplication and box completion of

pointed patterns: if P and Q are complete patterns then

(P, u) ◦ (Q, v) = ((P ∪ u ·Q)�, uv) .

The idempotents in Mc2 are the complete pointed patterns (P, 1), and since the

complete pointed pattern (Q, v) has (Q, v)−1 = (v−1Q, v−1), and (Q, v)−1(Q, v) =

(v−1Q, 1), we see that (Q, v) L (P, 1) if and only if Q = vP . Hence the L–class of

(P, 1) is

L(P,1) = {(uP, u) : u−1 ∈ P} .

144



Chapter 8: Further Examples

In the Schützenberger graph SchL(Mc2, {x, y}, (P, 1)) there is an edge labelled x

from (uP, u) to (xuP, xu) if and only if u−1, u−1x−1 ∈ P , that is, if and only if there

is an edge labelled x from u−1x−1 to u−1 in P . Therefore the mapping (uP, u) 7→ u−1

induces an edge-reversing isomorphism of labelled graphs

SchL(Mc2, {x, y}, (P, 1))→ P .

8.3.2 Example. Let e = xyy−1x−1 , represented by the complete pattern (P, 1):

1 x

y xy

The L-class of e, and therefore the vertex set of SchL(Mc2, {x, y}, e) is

Le = {(P, 1), (x−1P, x−1), (y−1P, y−1), ((xy)−1P, (xy)−1)} .

The edges of SchL(Mc2, {x, y}, e) replicate those in P , and so SchL(Mc2, {x, y}, e)

is:

(P, 1) (x−1P, x−1)

(y−1P, y−1) ((xy)−1P, (xy)−1)
x

x

y y

Let K be any complete pattern in Cay(F (x, y)ab, {x, y}) . The relation mod-

ule M at the idempotent (K, 1) ∈ Mc2 is then the first homology H1(K) of the

pattern K. Under the isomorphism SchL(Mc2, {x, y}, (K, 1)) → K the action of

(K, (Q, v)) ∈ L(Mc2) (where K ⊆ Q) on SchL(Mc2, {x, y}, (K, 1)) is given by the
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composition of left multiplication by v−1 and embedding the pattern v−1K into

v−1Q:

(K, (Q, v)) : K → v−1K ↪→ v−1Q .

The induced map on homology H1(K)→ H1(v
−1Q) is therefore injective.

Let B be the complete pattern consisting of the square with boundary y−1x−1yx

(starting from 1) and let Z be the E(Mc2)–set with ZB = {∗} a singleton, and ZQ =

x−1y−1 y−1

x−1 1

Figure 8.1: The pattern B

∅ for B 6= Q. Then the free L(Mc2)–module F on Z (see section 1.6) has, for a

complete pattern K in Cay(F (x, y)ab, {x, y}), the group FK free abelian on the basis

{(B, (wK,w)) : B ⊆ wK,w−1 ∈ K}, and since B is fixed, this basis is in one-to-one

correspondence with {(wK,w) : w−1B ⊆ K}, where w−1B is the complete pattern

consisting of the square with boundary y−1x−1yx starting from w−1. Therefore FK

is free abelian on a basis that is in one-to-one correspondence with the unit squares

in the pattern K. The boundaries of these squares then give a cycle basis for the

homology H1(K), so that H1(K) and FK are isomorphic as abelian groups.

The L(Mc2)–action of (K, (Q, v)) (with K ⊆ Q) on a basis element (wK,w) is

then given by

(wK,w)C (K, (Q, v)) = (wQ,wv) .

Now (wK,w) corresponds to the square w−1B in K with boundary y−1x−1yx start-

ing from w−1, and (wQ,wv) corresponds to the square v−1w−1B in (wv)−1wQ =

v−1Q with boundary y−1x−1yx starting from (wv)−1 = v−1w−1. The action of

(K, (Q, v)) on H1(K) first translates by v−1 on the left, then includes H1(v
−1K) into
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H1(v
−1Q): in particular, it maps the basis element w−1B ⊆ K to v−1w−1B ⊆ v−1Q.

Hence the isomorphisms FK → H1(K) combine to give a L(Mc2)–module isomor-

phism F →M, and the relation module of the presentation [x, y : xy = yx] of Mc2

is a free L(Mc2)–module.

Now we can consider using the factorised presentation map θ = τψ. First we

have to construct the inverse monoid T ({x, y},Mc2), where we have

FIM(x, y)
τ−→ T ({x, y},Mc2)

ψ−→ Mc2

Let (P, u), (Q, v) ∈ FIM(x, y) then by Lemma 4.3.1 the relation τ is characterised

as follows:

(P, u)τ(Q, v)⇔

1. ∃(K, 1) ∈ E(FIM(x, y)) such that (P, u)(K, 1) = (Q, v)(K, 1), and

2. (P, u)−1(P, u)θ(K, 1)θ(Q, v)−1(Q, v)

Firstly for P ⊆ Cay(F (x, y), {x, y}) we have to define what we mean by P�.

The abelianisation F (x, y)→ F ab(x, y) induces a graph map

α : Cay(F (x, y), {x, y})→ Cay(F ab(x, y), {x, y})

so, for a pattern P ⊆ Cay(F (x, y), {x, y}) we let P� denote the box completion of

Pα.

Proposition. For (P, u), (Q, v) ∈ FIM(x, y), (P, u)τ(Q, v)⇔ P� = Q� and u = v.

Proof. Assume that (P, u)τ(Q, v), then since (P, u)(K, 1) = (P∪uK, u) and (Q, v)(K, 1) =

(Q∪vK, v) we deduce that u = v and that P ∪uK = Q∪uK. Now (P, u)−1(P, u) =

(u−1P, 1) is θ-related to (Q, u)−1(Q, u) = (u−1Q, 1) if and only if (u−1P, 1) and

(u−1Q, 1) represent the same idempotent in Mc2, and so (u−1P )� = (u−1Q)�. Hence

u−1P� = u−1Q�, and P� = Q�.
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Now assume that P� = Q� and u = v. Let K = u−1(P ∪Q), then given that u =

v we have that (P, u)(K, 1) = (Q, u)(K, 1). We have that (P, u)−1(P, u) = (u−1P, 1)

represents the idempotent (u−1P�, 1) ∈ Mc2. Since P� = Q� this is the same as the

idempotent represented by (Q, u)−1(Q, u) in Mc2, so (P, u)−1(P, u)θ(Q, v)−1(Q, v).

(K, 1) = (u−1(P ∪Q), 1) represents the idempotent ((u−1(P ∪Q))�, 1) in Mc2.

(P ∪Q)� = (P� ∪Q�)�

= (P� ∪ P�)�

= (P�)�

= P�

Thus (K, 1) represents the idempotent (u−1P�, 1), and so

(P, u)−1(P, u)θ(K, 1)θ(Q, v)−1(Q, v)

�

So (P, u)τ(Q, v) ⇔ P� = Q� and u = v. Thus T ({x, y},Mc2) = {(L, u) : L is a

closed pattern in Cay(F ab(x, y), {x, y}), u ∈ F (x, y) readable in L from 1}

Recall that (P, u)θ(Q, v) ⇔ P� = Q� and u = v, with w the image of w ∈ F (x, y)

in F (x, y)ab. So we can define

ψ : T ({x, y},Mc2)→ Mc2 by

(P�, u) 7→ (P�, u)

Consider kerψ, for a complete pattern K, we have that (K, u) 7→ (K, 1), exactly

when u ∈ kerφ where φ : F (x, y) → F ab(x, y). So we have kerψ = {(L, u) : L a
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closed pattern in Cay(F ab(x, y), {x, y}), u ∈ F (x, y) readable in L as a circuit at 1}.

For a given closed pattern K the elements u ∈ F (x, y) readable as a circuit as 1

in K form a subgroup, CK , of F (x, y). It is clear that 1 ∈ CK represented by the

empty circuit, for u, v ∈ CK we can read u then v and we still have a closed circuit

at 1, and given u ∈ CK , let u−1 ∈ CK be u read backwards. Then CK is isomorphic

to the fundamental group of K. Then the relation module for P is the collection of

abelianisations of the fundamental groups of closed pattern in Cay(F ab(x, y), {x, y})

which is exactly the first homology groups of the closed patterns as we saw above.

8.4 The Bicyclic Monoid

Let P = [x, 1 = xx−1], then P presents the bicyclic monoid, B. Firstly it is useful to

determine the form of the elements of B. Elements of FIM(x) can be expressed in

Schlieblich normal form, that gives us any word w ∈ FIM(x) as x−pxpxqx−qxr with

p, q > 0 and −p 6 r 6 q. If we then consider the presentation map θ : FIM(x)→ B,

we can see that this would map x−pxpxqx−qxr 7→ x−pxpxr = x−pxp+r, and thus

elements b ∈ B are can all be expressed in the form x−pxt for p, t > 0 just as in

Example 1.7.3.

We know from Corollary 6.2.19 that the relation module of P is equal to the kernel

of the mapping Dψ → IB, where we can factorise the presentation map θ as in

Lemma 4.3.4 as follows

FIM(x) τ //

θ
&&

FIM(x)/τ

ψ
��

B

Consider the maps θ and τ as congruences on FIM(x), τ is the minimum congruence

on FIM(x) with trace equal to the trace of θ, defined on u, v ∈ FIM(x) by:

uτb⇔ ∃e ∈ E(FIM(x)) : ue = ve andu−1uθeθv−1v
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Let u = x−axaxbx−bxc, and v = x−pxpxqx−qxr, then

(u−1u)θ = (x−cxbx−bx−axax−axaxbx−bxc)θ

= (x−cx−axaxbx−bxc)θ

= x−cx−axaxc

similarly

(v−1v)θ = x−rx−pxpxr

We have u−1uθv−1v ⇔ a + c = p + r, and since idempotents in FIM(x) are of the

form e = x−kxkxlx−l, for u−1uθeθv−1v, we set k = a+ c = p+ r.

Moving onto the second condition , ue = ve, to investigate this condition it is

convenient to consider the geometric representation if FIM(x), described in section

1.5.

Geometric Representation of FIM(x):

Consider elements of FIM(x) in Schleiblich normal form as above, we can represent

this geometrically by considering the route along the number line it would traverse,

with representing where this terminates.

8.4.1 Example. x−pxpxqx−qxr becomes:

−p 0 r q

We can compose two of these pictures by “attaching” the start, or 0, of the second

at the point ext point of the first, giving:

−p1 0 r1 q1

◦

150



Chapter 8: Further Examples

−p2 0 r2 q2

=

−p 0 r1 + r2 q

Where −p = min{−p1,−p2 + r1} q = max{q1, q2 + r1}.

Recall u = x−axaxbx−bxc, and v = x−pxpxqx−qxr, with e = x−kxkxlx−l, such that

a+ c = p+ r = k, then

ue = x−axaxbx−bxcx−kxkxlx−l

= x−axaxbx−bxcx−(a+c)xa+cxlx−l

= x−axaxbx−bxcx−cx−axaxcxlx−l

= x−axaxbx−bxcxlx−l

similarly

ve = x−pxpxqx−qxrxlx−l

Consider the geometric representations:

u becomes

−a 0 c b

and ue becomes

−a 0 c b c+ l

when c + l > b, otherwise ue = u. Similarly, in the case where r + l 6 r, ve = v,

otherwise ve is represented by:

−p 0 r q r + l
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For ue = ve it is clear we must have a = p and c = r, then we can choose an l such

that l + c = l + r > max(b, q). Then uτv.

Recall the definition of θ as a congruence, uθv ⇔ uθ = vθ which is exactly when

a = p and c = r. Since given such a u and v, we can construct an idempotent

e = x−kxkxlxl, by setting k = a + c, and l = max(b, q) − c, so that ue = ve and

u−1uθeθv−1v. Therefore θ = τ as a congruence, and FIM(x)/τ = B, and ψ is then

the identity morphism on B.

From Theorem 6.2.11 we know Dθ = Dψ, and we know from Example 6.2.7

that the derivation module of the identity morphism is the augmentation ideal, IB.

Therefore the sequence

0→Mθ → Dθ → IB → 0

becomes

0→Mθ → IB → IB → 0

and the relation moduleMθ = ker(Dθ → IB) is then trivial, as we saw in Example

6.2.24.

8.5 A Squier Complex Construction

Here we will construct the Squier complex for the presentation P = [x; 1 = xx−1],

presenting the bicyclic monoid as in section 8.4. In this section I will consider

elements of B to be of the form x−pxpxr with p > 0 and r > −p, this is equivalent

to x−pxt where t = p+ r, but separation here will be convenient.

We have above in section 8.4 that T = B, so we can define Sq(P , T ) to be the

152



Chapter 8: Further Examples

two complex defined as in Definition 7.1.1, with vertex set B. Let’s consider the

components of Sq(P , B) containing idempotents, E(B) = {x−nxn|n > 0}, we will

construct the component of Sq(P , B) containing x−nxn, Sq(P , B)x−nxn .

Since two elements u, v ∈ B are in the same connected component of Sq(P , B)

if and only if uψ = vψ and ψ is the identity morphism each connected component

contains exactly one vertex.

The edge set of Sq(P , B)x−nxn , consists of insertions and deletions of xx−1, and

thus correspond to factorisations of x−nxn. We can consider these factorisations

geometrically. x−nxn is represented geometrically by:

-n 0

There are 4 types of factorisation, as follows:

Type 1:

−a −r 0

◦

−n 0 r

where 0 6 r 6 a < n. Converting to our standard form we get:

x−axax−r · x−(n−r)xn−rxr = x−axax−r · xrx−rx−(n−r)xn−rxr

= x−axax−r · xrx−(n−r)−rx(n−r)+r

= x−axax−r · xrx−nxn

for a equals 0 1 2 . . . n-2 n-1

# choices for r 1 2 3 . . . n-1 n
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So the number of factorisations of type 1 is 1
2
n(n+ 1).

Type 2:

−n −r 0

◦

−b 0 r

where 0 6 r 6 n and 0 6 b 6 n− r. Converting to our standard form we get:

x−nxnx−r · x−bxbxr = x−nxnx−r · xrx−rx−bxbxr

= x−nxnx−r · xrx−(b+r)xb+r

for r equals 0 1 2 . . . n-1 n

# choices for b n+1 n n-1 . . . 2 1

So the number of factorisations of type 2 is 1
2
(n+ 1)(n+ 2).

Type 3:

−a 0 r

◦

−(n+ r) −r 0

where 0 < r and 0 6 a < n. Converting to our standard form we get:
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x−axaxr · x−(n+r)xn+rx−r = x−axaxr · x−rx−nxnxrx−r

= x−axaxr · x−rx−nxn

In this case we now have r unbounded, we have n choices for a, and so we have n

infinite families of type 3.

Type 4:

−n 0 r

◦

−(b+ r) −r 0

where 0 < r and 0 6 b 6 n. Converting to our standard form we get:

x−nxnxr · x−(b+r)x(b+r)x−r = x−nxnxr · x−rx−bxbxrx−r

= x−nxnxr · x−rx−bxb

Again we have r unbounded, we have n + 1 choices for b, and so we have n + 1

infinite families of type 4.

We can now consider how the 2-cells affect these edges. 2-cells correspond to

three-way factorisations, x−nxn = p · q · t, as follows:
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(p(1τ)q, 1=xx−1, t)

��

(p, 1=xx−1, q(1τ)t)
//

(p((xx−1)τ)q, 1=xx−1, t)

��

(p, 1=xx−1, q((xx−1)τ)t)
//

Then we recall that 1τ = 1 = (xx−1)τ , and so this becomes:

(pq, 1=xx−1, t)

��

(p, 1=xx−1, qt)
//

(pq, 1=xx−1, t)

��

(p, 1=xx−1, qt)
//

Which gives us a commutativity relation: (p, 1 = xx−1, qt) ◦ (pq, 1 = xx−1, t) =

(pq, 1 = xx−1, t) ◦ (p, 1 = xx−1, qt).

It remains to check when we have these commutativity relations, and so which

of the edges commute. Given two edges (p, 1 = xx−1, u) and (v, 1 = xx−1, t), if we

can find q ∈ T such that u = qt and v = pq, then we can use a 2-cell to show that

these two edges commute.

We have four types of edges and so we have ten ways in which to form pairs:

1. Type 1 & Type 1:

Take

(x−axax−r, 1 = xx−1, xrx−nxn) 0 6 r 6 a < n

and

(x−bxbx−s, 1 = xx−1, xsx−nxn) 0 6 s 6 b < n

and let a 6 b, then set p = x−axax−r, and t = xsx−nxn, then for q =
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xrx−bxbx−s we have:

pq = x−axax−r · xrx−bxbx−s = x−bxbx−s

qt = xrx−bxbx−s · xsx−nxn = xrx−nxn

as required. Thus edges of type 1 commute with edges of type 1.

2. Type 1 & Type 2:

Take

(x−axax−r, 1 = xx−1, xrx−nxn) 0 6 r 6 a < n

and

(x−nxnx−s, 1 = xx−1, xsx−(b+s)xb+s) 0 6 r 6 n, 0 6 b 6 n− s

then set p = x−axax−r and t = xsx−(b+s)xb+s, then for q = xrx−nxnx−s we

have:

pq = x−axax−r · xrx−nxnx−s = x−nxnx−s

qt = xrx−nxnx−s · xsx−(b+s)xb+s = xrx−nxn

as required. Thus edges of type 1 commute with edges of type 2.

3. Type 1 & Type 3:

Take

(x−axax−r, 1 = xx−1, xrx−nxn) 0 6 r 6 a < n

157



Chapter 8: Further Examples

and

(x−bxbxs, 1 = xx−1, x−sx−nxn) 0 < s, 0 6 b < n

Here we must consider two cases, b > a and b < a separately.

When b > a, set p = x−axax−r, and t = x−sx−nxn, then for q = xrx−bxbxs we

have:

pq = x−axax−r · xrx−bxbxs = x−bxbxs

qt = xrx−bxbxs · x−sx−nxn = xrx−nxn

as required, now we must consider the case when b < a.

In this case set p = x−bxbxs and t = xrx−nxn, now for q = x−sx−axax−r we

have:

pq = x−bxbxs · x−sx−axax−r = x−axax−r

qt = x−sx−axax−r · xrx−nxn = x−sx−nxn

again as required, and so edges of type 1 commute with edges of type 3.

4. Type 1 & Type 4:

Take

(x−axax−r, 1 = xx−1, xrx−nxn) 0 6 r 6 a < n

and

(x−nxnxs, 1 = xx−1, x−sx−bxb) 0 < s, 0 6 b 6 n
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then set p = x−axax−r and t = x−sx−bxb then for q = xrx−nxnxs we have:

pq = x−axax−r · xrx−nxnxs = x−nxnxs

qt = xrx−nxnxs · x−sx−bxb = xrx−nxn

as required. Thus edges of type 1 commute with edges of type 4.

5. Type 2 & Type 2:

Take

(x−nxnx−r, 1 = xx−1, xrx−(b+r)x(b+r)) 0 6 r 6 n, 0 6 b 6 n− r

and

(x−nxnx−s, 1 = xx−1, xsx−(c+s)x(c+s)) 0 6 s 6 n, 0 6 c 6 n− s

Let c + s 6 b + r and set p = x−nxnx−r and t = xsx−(c+s)x(c+s) then for

q = xrx−(b+r)x(b+r)x−s we have:

pq = x−nxnx−r · xrx−(b+r)x(b+r)x−s = x−nxnx−s

qt = xrx−(b+r)x(b+r)x−s · xsx−(c+s)x(c+s) = xrx−(c+s)x(c+s)

as required. Thus edges of type 2 commute with edges of type 2.

6. Type 2 & Type 3:

Take

(x−nxnx−r, 1 = xx−1, xrx−(b+r)x(b+r)) 0 6 r 6 n, 0 6 b 6 n− r
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and

(x−axaxs, 1 = xx−1, x−sx−nxn) 0 < s, 0 6 a < n

then set p = x−axaxs and t = xrx−(b+r)x(b+r) the for q = x−sx−nxnx−r we

have:

pq = x−axaxs · x−sx−nxnx−r = x−nxnx−r

qt = x−sx−nxnx−r · xrx−(b+r)x(b+r) = x−sx−nxn

as required. Thus edges of type 2 commute with edges of type 3.

7. Type 2 & Type 4:

Take

(x−nxnx−r, 1 = xx−1, xrx−(b+r)x(b+r)) 0 6 r 6 n, 0 6 b 6 n− r

and

(x−nxnxs, 1 = xx−1, x−sx−cxc) 0 < s, 0 6 c 6 n

Here we must consider two cases, b+ r > c and b+ r < c separately.

When b + r > c set p = x−nxnx−r and t = x−sx−cxc for q = xrx−(b+r)x(b+r)xs

we have:

pq = x−nxnx−r · xrx−(b+r)x(b+r)xs = x−nxnxs

qt = xrx−(b+r)x(b+r)xs · x−sx−cxc = xrx−(b+r)x(b+r)

as required, now we must consider the case b+ r < c.
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In this case set p = x−nxnxs and t = xrx−(b+r)x(b+r) so for q = x−sx−cxcx−r

we have:

pq = x−nxnxs · x−sx−cxcx−r = x−nxnx−r

qt = x−sx−cxcx−r · xrx−(b+r)x(b+r) = x−sx−cxc

as required. Thus edges of type 2 commute with edges of type 4.

8. Type 3 & Type 3:

Take

(x−axaxr, 1 = xx−1, x−rx−nxn) 0 < r, 0 6 a < n

and

(x−bxbxs, 1 = xx−1, x−sx−nxn) 0 < s, 0 6 b < n

Let b > a, and set p = x−axaxr and t = x−sx−nxn, then for q = x−rx−bxbxs

we have:

pq = x−axaxrcdotx−rx−bxbxs = x−bxbxs

qt = x−rx−bxbxs · x−sx−nxn = x−rx−nxn

as required. Thus edges of type 3 commute with edges of type 3.

9. Type 3 & Type 4:

Take

(x−axaxr, 1 = xx−1, x−rx−nxn) 0 < r, 0 6 a < n
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and

(x−nxnxs, 1 = xx−1, x−sx−bxb) 0 < s, 0 6 b 6 n

Set p = x−axaxr and t = x−sx−bxb then for q = x−rx−nxnxs we have:

pq = x−axaxr · x−rx−nxnxs = x−nxnxs

qt = x−rx−nxnxs · x−sx−bxb = x−rx−nxn

as required. Thus edges of type 3 commute with edges of type 4.

10. Type 4 & Type 4:

Take

(x−nxnxr, 1 = xx−1, x−rx−axa) 0 < r, 0 6 a 6 n

and

(x−nxnxs, 1 = xx−1, x−sx−bxb) 0 < s, 0 6 b 6 n

Let a > b and set p = x−nxnxr and t = x−sx−bxb then for q = x−rx−axaxs we

have:

pq = x−nxnxr · x−rx−axaxs = x−nxnxs

qt = x−rx−axaxs · x−sx−bxb = x−rx−axa

as required. Thus edges of type 4 commute with edges of type 4.

Therefore all single edges in star(x−nxn) commute.

We now have a complete picture of the single edges in star(x−nxn) we can consider

how these map to the star./(x−nxn), again we can do this by considering each of
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the 4 edge types in turn:

1. Type 1:

(x−axax−r, 1 = xx−1, xrx−nxn)

./

��

0 6 r 6 a < n

(x−nxnx−r, 1 = xx−1, xrx−nxn)

with 0 6 r < n, and so from this collection of edges we retain n distinct edges

after mapping with ./.

2. Type 2:

(x−nxnx−r, 1 = xx−1, xrx−(b+r)x(b+r))

./

��

0 6 r 6 n, 0 6 b 6 n− r

(x−nxnx−r, 1 = xx−1, xrx−nxn)

with 0 6 r 6 n, for 0 6 r < n we map to the same collection of edges that

edges of type type 1 mapped to, but when r = n we have one new edge in

star./(x−nxn).
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3. Type 3:

(x−axaxr, 1 = xx−1, x−rx−nxn)

./

��

0 < r, 0 6 a < n

(x−nxnxr, 1 = xx−1, x−rx−nxn)

with 0 < r, so we have an infinite collection of edges but now only one for

each r.

4. Type 4:

(x−nxnxr, 1 = xx−1, x−rx−bxb)

./

��

0 < r, 0 6 b 6 n

(x−nxnxr, 1 = xx−1, x−rx−nxn)

again with r > 0, this gives us exactly the same collection of edges as type 3

maps to.

So we can see that once we map to star./(x−nxn) we have only two types of

edges:

1. (x−nxnx−r, 1 = xx−1, xrx−nxn) for 0 6 r 6 n, and

2. (x−nxnxr, 1 = xx−1, x−rx−nxn) for r > 0.

We can consider the set of single edges in star./(x−nxn) as the set of ordered

pairs {(n, r) : r > −n}. Then we can consider the ∗-operation, since all edges in
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star./(x−nxn) start and finish at x−nxn it is clear that the ∗ operation is equal to

the groupoid operation and that star./(x−nxn) is the free abelian group on {(n, r) :

r > −n}.

We can now go on to construct the crossed-module associated with the Squier

complex. Let S./ be the Clifford semigroup
⊔
n>0 star

./(x−nxn), then from Theorem

7.2.8 we have:

S./
r−→ B ⇒ E

a free crossed B-module of groupoids.

We can consider the set of single edges in S./ as ordered pairs,

{(n, r) : n > 0, r > −n}

as we did for each star./, where elements of S./ are strings (n, r1)(n, r2)(n, r3) · · · (n, rk)

for n > 0, ri > −n and k > 0. Then r : S./ → B is defined on the generators of

each star./(x−nxn) by:

r : (n, r)→ x−nxn

Then it remains to define the action of B on S./. Every element of B can be

written as b = x−pxpxq, with p > 0 and q > −p. We can see that bb−1 = x−pxp,

so b can only act on elements of star./(x−pxp). Then for α ∈ star./(x−pxp), αb ∈

star./(b−1b) = star./(x−(p+q)x(p+q)), and so as a string of ordered pairs we have that

αb = (αb1 · αb2 · · ·αbk) = (p + q, )1(p + q, )2 · · · (p + q, )k, we still have to determine

the second entries of our ordered pairs.

Let αi be a generator for star./(x−pxp), with

αi = (x−pxpxr, 1 = xx−1, x−rx−pxp)
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with r > −p, then

αbi = (b−1 · x−pxpxr, 1 = xx−1, x−rx−pxp · b)

= (x−qx−pxpxr, 1 = xx−1, x−rx−pxpxq)

= (x−qx−pxp(xqx−q)xr, 1 = xx−1, x−r(xqx−q)x−pxpxq)

= (x−(p+q)x(p+q)x−qxr, 1 = xx−1, x−rxqx−(p+q)x(p+q))

The second entry in our ordered pair is then determind by x−qxr. Thus for

b = x−pxpxq, αb is defined whenever α ∈ star./(x−pxp), and b acts on generators as

follows:

(x−pxpxr, 1 = xx−1, x−rx−pxp)
�b

−→ (x−(p+q)x(p+q)x(r−q), 1 = xx−1, x−(r−q)x−(p+q)x(p+q)).

For a string (n, r1)(n, r2)(n, r3) · · · (n, rk) ∈ S./ and for b ∈ B such that b = x−nxnxq,

((n, r1)(n, r2)(n, r3) · · · (n, rk))b = (n+q, r1−q)(n+q, r2−q)(n+q, r3−q) · · · (n+q, rk−q).

We know from 7.2.8 that this crossed module is free on

R =
⊔
x∈E

Rx =
⊔
x∈E

{(l = r, x) ∈ R× E : (l−1r)ψ > xψ}

with

ω : R→ B

(l = r, x) 7→ xl−1rx
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We have E(B) = {x−nxn : n > 0}, and so Rx−nxn = {(1 = xx−1, x−nxn)}.

Then for F , the free pre-crossed B-module on R,ω, we have Fe the free group on

(R G B) = {(1 = xx−1, b) : b ∈ B, (1 = xx−1, bb−1) ∈ Rbb−1 , b−1b = e}

Since for any b ∈ B (1 = xx−1, bb−1) ∈ Rbb−1 exists, this essentially says that Fe is

freely generated by the costar of e in B.

Then to move to the crossed module we need to consider the Peiffer elements,

that is for a, b ∈ B:

(1 = xx−1, a)−1(1 = xx−1, b)−1(1 = xx−1, a)(1 = xx−1, b)aδ

Then consider

(1 = xx−1, b)aδ = (1 = xx−1, b)a
−1a = (1 = xx−1, ba−1a) = (1 = xx−1, bb−1b) = (1 = xx−1, b)

Thus the Peiffer identities give us exactly commutators. So star./(e) is the free

abelian group generated by the costar of e in B.

From Proposition 7.2.9 S./ is also a free L(B)-module on the E(B) set Z in

which Ze = {(l = r) ∈ R : (l−1r)ψ = eψ}. For P , R = {1 = xx−1}, so

Ze =


{∗} if e = 1

∅ ow

Thus the free L(B)-module A is such that Ae is the free abelian group generated

by

Be = {(1 = xx−1, (1, b)) : 1ψ > bb−1, b−1b = e}
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Again exactly the costar at e in B.

We note that since we have a trivial relation module here our presentation (7.9)

0→
⊔

e∈E(M)

π./e → (S./)ab
∂−→ U → 0

gives us that S./ is in fact isomorphic to the module of identities for P .
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