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Abstract

Accurate and meaningful representations of the environment are required for autonomy
in underwater applications. Thanks to favourable propagation properties in water,
acoustic sensors are commonly preferred to video cameras and lasers but do not provide
direct 3D information. This thesis addresses the 3D reconstruction of underwater scenes
from 2D imaging SONAR data as well as the recognition of objects of interest in the
reconstructed scene. We present two 3D reconstruction methods and two model-based
object recognition methods. We evaluate our algorithms on multiple scenarios including
data gathered by an AUV. We show the ability to reconstruct underwater environments
at centimetre-level accuracy using 2D SONARs of any aperture. We demonstrate the
recognition of structures of interest on a medium-sized oil-field type environment providing
accurate yet low memory footprint semantic world models. We conclude that accurate
3D semantic representations of partially-structured marine environments can be obtained
from commonly embedded 2D SONARs, enabling online world modelling, relocalisation

and model-based applications.



Acknowledgements

I wish to express my gratitude to Professor Yvan Petillot, my first supervisor, who
introduced me to the fascinating world of research and gave me the opportunity to start
this adventure. Undoubtedly, his guidance throughout the three years as well as his

human qualities were decisive in making this experience a success.

I would like to thank Dr. Kartic Subr for his patient guidance. The numerous valuable
discussions we had made this experience truly enriching. His expertise and support were

precious and greatly appreciated in crucial times of this project.

My sincere thanks to the personal of SeeByte for creating a great work environment. A
special thanks goes to the AIV team and in particular Chris Sotzing, Gavin Irvine, Mark
Payne and Brieuc Roblin as well as Subsea7 for giving me access to fantastic datasets

and developing the coolest underwater vehicle in the world.

I would like to thank the members of the Ocean System Lab in Heriot Watt university
for the many valuable exchanges. I am particularly grateful to Len McLean for his help
during tank experiments and in-lake trials. Likewise, I would like to thank Yan Pailhas

for his advices and support.

I had the pleasure to be part of Robocademy, a Marie Curie Research Training Network -
FP7-PEOPLE-2013-ITN-608096. I am grateful to the management board of this project
for making these collaborations possible. Not only this project provided valuable technical
training but it also offered unrivalled opportunities to reach worldwide experts. Likewise,
I would like to thank all the students and supervisors involved in this project for the all

these good times spent (net)working together.

Finally, none of this would have been possible without the unconditional support of my

family. I am deeply grateful for their constant encouragement and understanding.

ii



iii

HERIOT
G WATT

UNIVERSITY

ACADEMIC REGISTRY
Research Thesis Submission

Name:

School:

Version: (ie. First, Degree Sought:
Resubmission, Final)

Declaration

In accordance with the appropriate regulations | hereby submit my thesis and | declare that:

1) the thesis embodies the results of my own work and has been composed by myself

2) where appropriate, | have made acknowledgement of the work of others and have made reference to work carried
out in collaboration with other persons

3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions
submitted*.

4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for
loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian
may require

5) lunderstand that as a student of the University | am required to abide by the Regulations of the University and to
conform to its discipline.

6) | confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g.
Turnitin.

*  Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of Date:
Candidate:
Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in
capitals):

Method of Submission

(Handed in to SSC; posted through
internal/external mail):

E-thesis Submitted (mandatory for
final theses)

Signature: Date:

Please note this form should be bound into the submitted thesis.
Academic Registry/Version (1) August 2016



Contents

Abstract i
Acknowledgements ii
Contents iv
List of Tables ix
List of Figures X
Abbreviations xiv
Symbols xvi
List of Publications xviii
1 Introduction 1
1.1 Motivations . . . . . . . . e 1
1.2 Thesis organisation . . . . . . . . ... L Lo 3
1.3 Contributions . . . . . . . . L Lo )

2 Sonar principles and simulation 7
2.1 Introduction . . . . . . . . . . . . e 7
2.2 Principles and modelling . . . . . .. ... o o0 8
2.2.1 SONARequation . . . . . .. . . .. . . . .. i 8

2.2.2  SOUICE . . v . v v i e e e e e e e 9

2.2.3 Propagationmodel . . . . . ... oL oo 11

2.2.4  Sound scattering model . . . ... ... oL 12

2.2.5 Acoustic shadowing . . . . .. ... L Lo 14

2.2.6 Multipath propagation . . . . . . . .. ... ... ... ... .. 15

2.2.7 Measurement model . . . . .. ... ... L 16

2.2.8 Directivity model . . . . . ... 18

2.29 Phased arrays . . . . . .. ... 18

2.2.10 Beamforming . . . . . . . ... L 20

2.2.11 SONAR noisemodel . . . . . ... ... ... ... 22

2.3 Overview of the different types of SONARs . . . . .. .. ... ... ... 23
2.3.1 Review . . . .. e 23



Contents v
2.3.2 Interest in using 2D imaging SONARs . . . . .. ... ... ... 27

2.4 Description of 2D imaging SONARs . . . . .. ... .. ... ... .... 28
2.4.1 2D imaging SONAR model . . . . ... ... ... ... ...... 28
2.4.2 The aperture problem . . . . . ... ... .. ... ... ... 30

2.5 Simulation . . . . . .. .. 31
2.5.1 Choice of the simulation environment . . . ... ... ... .... 31
2.5.2 2D SONAR simulation . . . . . . ... ... ... ... ....... 32

2.6 Conclusions . . . . . . . . . . . e e e 40
Literature review on 3D reconstruction from SONAR data 42
3.1 Imtroduction . . . . . . . . . . . .. 42
3.2 Single-beam echosounder . . . . . .. ... L L L Lo 43
3.3 3D from side-scan SONARs . . . . . . ... ... ... .. ... ... 43
3.3.1 Shadow based estimation methods . . . .. ... ... ... .... 44
3.3.2 Intensity model-based methods . . . . ... ... ... ....... 44
3.3.3 Geometrical model-based method . . . . . . ... ... ... ... 46
3.3.4 3D side-scan . . . . ... 46

3.4 3D from pencil-beam imaging SONARs . . . .. ... ... ... ..... 48
3.5 3D from wide-beam imaging SONARs . . . ... ... ... ... ..... 50
3.5.1 Non linear methods . . . . .. .. . ... ... ... .. ..., 51
3.5.2 Imaging model inversion . . . . . . . . ... 51
3.5.3 Opti-acoustic methods . . . . . . ... ... ... ... ....... 52
3.5.4 Feature-based methods . . ... ... ... ... .. ........ 53
3.5.5 Acoustic stereo imaging . . . . . .. ... Lo 54
3.5.6 Acoustic concentrator lens . . . . ... ..o 55

3.6 3D SONARSs . . . . . 56
3.6.1 Bio-inspired 3D SONARs . . . . .. . ... ... ... ....... 56
3.6.2 Mechanically scanned SONAR . . ... ... ... ... ...... 56
3.6.3 Pencil-beam 2D array . . .. .. ... ... L. o7
3.6.4 Interferometric 3D SONARs. . . . . . ... ... ... ....... 58

3.7 Summary ... 61
3.8 Conclusions . . . . . . . . . . e e 63
3D reconstruction by space carving 66
4.1 Imtroduction . . . . . . . . . . .. e 66
4.2 Formulation of the reconstruction problem . . . . . . ... ... ... ... 67
4.3 Space carving . . . . ... e e e 68
4.3.1 Theory . . . . . . 69
4.3.2 Illustration of the carving reconstruction principle . . . . .. ... 70

4.4 Space carving algorithm . . . . . . . ... oo oo 72
4.4.1 OVerview . . . . . . i 72
4.4.2  Spherical reprojection principle . . . . . ... 73
4.4.3 Occlusions and conservative reprojection . . . . . . .. .. .. ... 74
4.4.4 3D data storage and Min-filtering . . . . . . . ... ... ... ... 75
4.4.5 Occlusion resolution . . . . . ... .. ... ... .. ... ..., 76
4.4.6 Non-uniform and non-regular sampling . . . . . .. ... ... ... 78
4.4.7 Image denoising and intensity threshold . . . . .. .. .. .. ... 80



Contents vi
4.4.8 Implementation . . . . . . . ... Lo L Lo 80

4.5 Simulation results . . . . . . .. .. 81
4.5.1 Reference models used in simulation . . .. .. ... ... ..... 81
4.5.2 Noise-free simulation results . . . . . . ... ... ... ... .... 82
4.5.2.1 Quantitative analysis metrics . . . . . .. ... ... ... 83

4.5.2.2  Quantitative results . . . . .. ..o 86

4.5.2.3 Analysis . . ... L 90

4.5.3 Noise corrupted simulation results . . . . .. ... ... ... ... 91

4.6 Water tank experimental results . . . . . .. ... ... L. 93
4.6.1 Experimentalsetup. . . . . . . . ... oL 93
4.6.2 Experimental results . . . . . .. .00 0oL 97
4.6.3 Analysis . . . . ... 97

4.7 Fieldresults . . . . . . . . e 99
4.7.1 The Autonomous Inspection Vehicle prototype . . ... ... ... 99
4.7.2 Lakefield trials . . . . . . . . ... ... 101
4.7.2.1 Pencil-beam SONAR inspection . . . .. ... ... ... 101

4.7.2.2 Wide-beam SONAR inspection . . . . . . ... ... ... 102

4.7.3 Offshore trials. . . . . . . .. .. ... .. ... 102
4.7.3.1 Pencil-beam SONAR inspection . . ... ... ...... 104

4.7.3.2 Wide-beam SONAR inspection . . . . . . ... ... ... 104

4.7.4 Computing resource Usage . . . . « .« v v v v v e e e 107
4.75 Analysis . . . ..o 107

4.8 Conclusions . . . . . . . . . e e e e 109
5 Reconstruction as a deconvolution 111
5.1 Introduction . . . . . . . . . . . .. 111
5.2 Formulation as a spatially-variant blind deconvolution problem . . . . .. 113
5.3 Review on deconvolution methods . . . . ... ... ... ... ...... 115
5.3.1 Fourier-based inversion . . . . . ... ... ... ... ... 115
5.3.2 Bayesian inference and MAP formulation . .. ... ... ... .. 116
5.3.2.1 MAP formulation . . ... ... ... ... ... ..... 117

5.3.2.2 Regularization . . . .. .. ... oL 118

5.3.3 Blind deconvolution methods . . . . . ... ... ... ....... 119

5.4 Sparse linear system of the 3D reconstruction problem . . . ... ... .. 120
5.5 3D reconstruction as a constrained optimization. . . . . . ... ... .. 123
5.5.1 Approximations . . . . . . . . ... 124
5.5.2 Regularization . . . . ... ... .o 124
5.5.3 Positivity constraint . . . . .. ... oo oL 124
5.5.4 Denoising and de-ringing . . . . . . .. ..o 125
5.5.5 Implementation . . . . . . . .. ..o oo 125

5.6 Results. . . . . . . . . e 126
5.6.1 Simulation . . . . .. ... 126
5.6.1.1 Quantitative results of noise-free reconstructions . . . . . 126

5.6.1.2 Analysis . . . . . ... 131

5.6.2 Tank experiment . . . . . . .. ... L oL 134
5.6.2.1 Analysis . . . .. ... 135

5.6.3 Fielddata . . . . . . . . ... 138



Contents vii

5.6.3.1 Laketrials . . . .. .. .. ... o oo 138

5.6.3.2 Offshore trials . . . . . ... ... ... ... ..., 139

5.6.4 Influence of regularization . . . . . . . .. .. ... L. 140
5.6.4.1 Regularized reconstruction . . . . .. ... ... ... .. 140

5.6.4.2 Limitations . . . . . . .. ... ... 142

5.6.5 De-ringing and denoising . . . . . . ... ..o 144
5.6.6 Beam pattern thresholding . . . .. ... ... ... .. ..., 145
5.6.7 Multiple pass deconvolution . . . . . . .. .. ... ... 147
5.6.7.1 Normal-based kernel . . . . . .. ... ... ... ... 147

5.6.7.2  Occlusion-based kernel . . . . . . ... ... ... ..., 148

5.6.7.3  Post-reconstruction occlusion resolution . . . . . . .. .. 149

5.6.7.4 Limitations . . . . . . .. ... Lo 150

5.6.8 Computing resource usage . . . . . . . . . ot e u e e e 151

5.7 Analysis . . . . oL 151
5.7.1 3D reconstruction from SONAR for real world observations . . . . 151
5.7.2  Deconvolution versus space carving technique . . . . . . .. .. .. 153
5.7.3 Optimization of the sensing strategy . . . . . . . . ... ... ... 154

5.8 Conclusions . . . . . . . . e 156
6 Object recognition in underwater scenes using SONAR data 158
6.1 Introduction . . . . . . . . .. L 158
6.2 Large field 3D reconstruction through local registration . . . . . ... .. 159
6.2.1 Elevation map generation . . . . .. ... ... ... ... 160
6.2.2 3D registration through bundle adjustment . . . .. ... ... .. 160
6.2.2.1 2D matching . . . . . ... oL oo 162

6.2.2.2 Experimental results . . . . ... ... ... 163

6.2.2.3 Applications . . . . . ... 165

6.3 CAD-model-based object recognition . . . . . . . .. ... L. 168
6.3.1 Model recognition in the 3D scene . . . . . ... ... ... .... 169
6.3.1.1  Scene partitioning and subspace analysis . . . . ... .. 170

6.3.1.2 Direct 3D matching . . . . . ... ... ... L. 172

6.3.1.3 Experiments . . .. ... ... ... L. 173

6.3.1.4  Applications and limitations . . . ... .. ... ... .. 177

6.3.2 Structure recognition in 2D space . . . . . . .. ... ... 178
6.3.2.1 Overview of main feature description methods . . . . . . 179

6.3.2.2 2D histogram based description . . . .. ... ... ... 180

6.3.2.3  Structure description . . . . ... ... 180

6.3.2.4  Structure recognition . . . . .. ... 180

6.3.2.5  Model matching . . . . .. .. ... oo 181

6.3.2.6 Implementation and optimizations . . . . .. ... . ... 182

6.3.2.7 Experimental results on field data . . . . . ... ... .. 183

6.3.2.8 Performance and limitations . . . .. ... .. .. .... 185

6.3.3 Applications . . . ... .. 186

6.4 Optical mapping from 3D information . .. ... ... ... ... ..... 190
6.4.1 Video mapping on 3D reconstruction from SONAR . . . . ... .. 191
6.4.2 Model-based video mapping . . . . . . .. ..o 191

6.4.3 DISCusSion . . . . . . . .. 192



Contents viii

6.5 Conclusions . . . . . . . . L e 195
Conclusion and future work 197
6.6 Summary . . . ... e e 197
6.7 Future work . . . . . . .. 201
Examples of commercial 2D SONARs specifications 203
Model-based field structure 3D recognition and matching 205

Bibliography 207



List of Tables

2.1

3.1

4.1

4.2
4.3

44

5.1

6.1

Strengths and weaknesses of the different types of SONAR sensors . . . . 27
Comparison of state-of-the-art 3D reconstruction methods . . . . . . . .. 62

Proportion of points removed by a Z-test of threshold T on a gaussian
noise distribution: percentage of points equivalent to the complementary
cumulative distribution function of a gaussian distribution evaluated at

respectively (0,20,30). . . . . . 80
Specifications of the two sensors used for tank experiments. . . . . .. .. 95
Imaging settings for the two SONAR sensors during the water tank

experiments. . . . ... ..o e e 95
Specifications of the BlueView P900-130 embedded on the AIV. . . . . .. 100
Influence of Ly regularization on the reconstruction of a sphere . . . . . . 141

Unsigned median distances (and mean distances) in cm between the
reconstructed structures and their CAD models after each registration step.184

Specifications of typical 2D wide-aperture SONARs . . . . . . .. ... .. 204

ix



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

3.1
3.2

3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Range resolution of a SONAR . . . . . . ... ... ... ... ... ... 10
Regions of dominant processes of attenuation of sound in sea water . . . . 12
Acoustic shadowing . . . . . . . . . . .. 14
Iustration of acoustic shadowing in real data . . . . . .. ... ... ... 15
Multipath propagation . . . . . . . . ... L L L oo 16
Illustration of a multipath propagation on real data . . . . . .. ... .. 17
Typical beam pattern of an acoustic transducer . . . . . . .. .. .. ... 19
Estimation of the direction of arrival using a phased array . . . . . . . .. 20
BlueView P900-130 noise pattern . . . . . . . . . .. .. ... ....... 23
Single beam echosounder footprint . . . . . . .. ... ... L. 24
Side-scan SONAR footprint . . . . . . . .. .. ... ... ... ...... 25
Multibeam SONAR footprint . . . . . .. .. ... ... ... ... ..., 25
3D SONAR footprint . . . . . . . . . ... 26
2D Imaging SONAR geometry . . . . . ... ... .. ... .. ...... 29
The aperture problem . . . . . . . ... L oo 31
Simulation of an offshore field with UWSim . . . .. ... ... ... ... 33
SONAR noise measurement . . . . . . . . . . . .. ... 35
Simulated pipeline inspection for SONAR simulation . . . . . .. ... .. 37
Comparaison between simulated SONAR data and real data . . . . . . .. 38
Ilustration of the importance of jittered sampling . . . . . ... .. ... 39
Ilustration of a 3D reconstruction from side-scan SONAR . . . . .. ... 45
Iustration of a 3D reconstruction from side-scan SONAR with model

prediction . . . . . . ..o 46
Iustration of a interferometric SAS system . . . . . . .. ... ... ... 47
Illustration of a 3D reconstruction from pencil-beam SONAR . . ... .. 49

Illustration of bathymetry and backscatter data obtained with a pencil-

beam SONAR . . . . . . . . . 49
Iustration of a 3D cave mapping from an array of narrow beam transducers 50
Illustration of reconstructed stone from wide-beam SONAR observations . 52

Ilustration of ship hull wide-beam SONAR mosaic . . . . ... ... ... 53
Iustration of dual wide-beam SONAR 3D occupancy estimation . . . . . 55
Illustration of a reconstruction of aquatic plants using a concentrator lens 56
Ilustration of a bio-inspired 3D SONAR . . . . . . . ... ... ... ... 57
Ilustration of mechanically scanned bathymetry system . . . .. ... .. 58
Mustration of FLBS 3D reconstruction system . . . . .. ... ... ... 59
Ilustration of the Coda Echoscope system . . . . . ... ... ... .... 60
Mustration of a high-frequency FSPA SONAR image . . . . .. ... ... 60



List of Figures xi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32

4.33
4.34

5.1
5.2
5.3
5.4
5.5
5.6

5.7

Carving reconstruction principle . . . . . . . ... oo 71
Carving algorithm diagram . . . . . ... ... ... ... ... .. ... 72
Spherical reprojection . . . . . ... L L 73
Scatterer candidates . . . . . . .. ... Lo 74
Conservative reprojection . . . . . . . . . . . ... oo 75
Octree structure . . . . . . . .. L 76
Occlusion resolution method . . . . . . . . . . .. .. ... ... ... ... 7
Solved occlusions . . . . . . . . . ... 78
Non-uniform sampling . . . . . . . .. ... oL 79
Cartesian gridding . . . . . . . ... 79
Reference CAD models used in simulation . . . . . . ... ... ... ... 82
3D carving reconstruction from noise-free simulated data . . . . . . . . .. 84
Typical reconstruction error distribution . . . . . . .. .. .. .. ... .. 85
Median error versus vertical sampling period . . . . . ... ... ... .. 87
Median error versus vertical sampling period for different sensor apertures 87
Surface coverage versus vertical sampling period . . . ... ... ... .. 88
Surface coverage versus vertical sampling period for different sensor apertures 88
Median error to coverage ratio versus vertical sampling period . . . . . . . 89
Median error to coverage ratio versus vertical sampling period for different

vertical apertures . . . . . . .. Lo 89
Presence of outliers versus vertical sampling period . . . . . . .. .. ... 90
Z-test denoising on a simulated image . . . .. ... ... ... ... 92
Median error and coverage versus SNR . . . . . .. .. ... oL 92
Median error to coverage ratio and outliers versus SNR . . . . . . .. .. 93
Heriot-Watt University OSL water tank . . . . . ... ... ... ..... 94
Synchronization of position and SONAR samples . . . . .. ... ... .. 94
Reference objects used for tank experiment . . . . ... ... ... .... 96
3D carving reconstruction from tank data . . . . ... ..o 98
Synchronization of position and SONAR samples . . . . . ... ... ... 100
Lake field trials reference structures . . . . . ... ... ... ... .... 102
Loch Eil trials pencil-beam carving reconstructions . . . . . . .. .. ... 103
3D carving reconstruction of the box structure from FLS samples . . . . . 104
3D carving reconstruction of a pipeline and its mattress from pencil-beam

samples . ..o L e 105
3D carving reconstruction of a polygonal structure . . . . . . ... .. .. 105
3D carving reconstruction of a riser pipeline . . . . . . ... ... ... 106
SONAR imaging model as a convolution . . . . . . ... ... ... .... 113
Rectilinear approximation . . . . . . . .. ... oL 120
Graphical representation of the linear system formulation . . . .. .. .. 122
Range dependent vertical resolution . . . . .. .. .. ... ... 122
3D deconvolution reconstruction from noise-free simulated data . . . . . . 127

Comparison of 3D reconstruction results using the deconvolution and
space carving method on noise-free simulated data . . . . . ... .. ... 128
Median error of the deconvolution reconstructions versus vertical sampling
period . . ..o 129



List of Figures xii

5.8

5.9

5.10

5.11

5.12
5.13

5.14

5.15
5.16

5.17

5.18

5.19

5.20

5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Surface coverage of the deconvolution reconstructions versus vertical sam-

pling period . . . . . ... 130
Median error to coverage ratio of the deconvolution reconstructions versus

vertical sampling period . . . . . ... Lo 130
Presence of outliers in the deconvolution reconstructions versus vertical

sampling period . . . . . ... oL 131
Averaged quantitative results of deconvolution vs space carving simulated

reconstructions . . . . . .. ... 132
Median error and coverage for different sensor apertures . . . . . .. . .. 132
Median error to coverage ratio versus vertical sampling period for different

vertical apertures . . . . . . . . ... L e e 133
Illustration of a degraded deconvolution reconstruction due to the rectilin-

ear approximation . . . . .. ..o L 133
3D deconvolution reconstruction from tank data . . . . .. ... ... .. 136
Comparison of 3D reconstruction from tank data with deconvolution and

space carving methods . . . . . . ... L oo oo 137
Comparison of pencil-beam deconvolution reconstruction of the box struc-

ture versus its equivalent carving reconstruction. . . . .. .. .. ... .. 138
Comparison of wide-beam deconvolution reconstruction of the box struc-

ture versus its equivalent carving reconstruction. . . . .. .. .. ... .. 139
Comparison of 3D deconvolution reconstruction of the polygonal structure

versus its equivalent carving reconstruction. . . . . .. .. ..o 140
Ilustration of the influence of the L regularization on noise-free simulated

data . . . . . e 141
Illustration of the influence of the Ly regularization term . . . . . . . . .. 142
Ilustration of the influence of the L; regularization term . . . . . . . . .. 143
Limitations of sparsity promotion with L; regularization . . . . . . . . .. 143
Illustration of the importance of de-ringing and denoising steps . . . . . . 145
Influence of the beam pattern profile . . . . . . .. ... ... .. ... .. 146
Multipass deconvolution - normal based deconvolution . . . . .. ... .. 147
Multipass deconvolution - occlusion based deconvolution . . . . . . . ... 148
Normal based deconvolution . . . . . .. .. .. .. ... . L. 149
Occlusion resolution on deconvolution reconstruction . . . . . . . . .. .. 150
Quality of tank experiment images . . . . . . . . . ... .. ... ... .. 152
Quality of field experiment images . . . . . . . . ... ... ... 152
Pre-dive parameters exploration in simulation . . . . . . . ... ... ... 154
3D reconstruction artefacts due to navigation drift . . . . . . ... .. .. 159
Elevation map generation . . . . . . ... ... Lo oL 161
Lawnmower inspection pattern . . . . . . ... ... 0L, 161
Median-based swath registration . . . . ... ... ... .00 163
Loch Eil trials field map . . . . . . ... . . L oo 164
Loch Eil trials field inspection pattern . . . . . . . ... ... ... .... 164
Illustration of field 3D reconstructions after swathes registration . . . . . 166
Complete reconstruction of the field of trials in Fort William . . . .. .. 167
Marine growth on the buoyancy of a riser structure . . . . . . . ... ... 169
Buoyancy detection in 3D on simulated data . . . .. ... ... ... .. 174
Buoyancy detection in 3D on field data. . . . . . .. ... ... 175



List of Figures xiii

6.12
6.13
6.14
6.15
6.16

6.17
6.18
6.19
6.20
6.21

22

Buried pipeline detection . . . . . ... L oo oo 176
Model description on N circular regions . . . . .. .. .. .. ... ... 180
Histogram-based model recognition method . . . . . ... .. .. ... .. 182
Model-based recognition in 2D space field results . . . . . . ... ... .. 184
Two-step model registration. a-b-c) The 4D registration based on the

elevation map representation provides a first rough registration of the
model (represented in black) on a fixed 4D grid. d-e-f) The second

registration step, based on ICP, provides a full 6D registration. . . . . . . 185
Influence of sampling period on matching error and computing time . . . 186
Iustration of World model generation . . . . . .. .. ... ... ..... 188
Association of a 3D representation and video data . . . . . ... .. ... 190

Mlustration of a video projection on a 3D reconstruction from SONAR datal92
Iustration of a video projection on a registered CAD model . . . . . .. 193

Structure detection on FW ATV trials field reconstruction using ICP-based
recognition algorithm . . . . . . . . ... oL oo 206



3D
AIV
AUV
CAD
CPU
DOA
DVL
FLS
FPGA
FOV
FSPA
GPS
GPU
ICP
LIDAR
MAP
NED
NNLS
OBB
OSL
PSF
RAM
RANSAC
ROV
SAS

Abbreviations

3 Dimensions

Autonomous Inspection Vehicle
Autonomous Underwater Vehicle
Computer-Aided Design

Central Processing Unit
Direction Of Arrival

Doppler Velocity Log

Forward Looking Sonar

Field Programmable Gated Array
Field Of View

Frequency Steered Phased Array
Global Positinning System
Graphics Processing Unit
Iterative Closest Point

LIght Detection And Ranging
Maximum A Posteriori

North East Depth

Non Negative Least Square
Oriented Bounding Box

Ocean Systems Laboratory
Point Spread Function
Random-Access Memory
RANdom SAmpling Consensus
Remotely Operated Vehicle

Synthetic Aperture Sonar

Xiv



Abbreviations

p.q%

SLAM
SNR
SONAR
SVD
TV
TVG
USBL

Simultaneous Localization And Mapping
Signal to Noise Ratio

SOund Navigation And Ranging
(S)ingular Value Decomposition

Total Variation

Time Varying Gain

Ultra Short BaseLine



Symbols

Pe(t)
Amp(t)
Q(t)
5(t)

=3 = b} <]

ENE

Ap
Isonar(t, )
B(0)
V(t,0,9)
O34p
R(r,0,¢)
S(r,0,¢)
Uge

Trog
o(¢i,0;)
Ul(a,b)
m(r, @)

time

sound speed in water

emitted pulse

time-varying amplitude

phase modulation term

Dirac function

gradient operator

pressure field

reflectivity coefficient

range

elevation angle

azimuth angle

vertical aperture

horizontal aperture

intensity measured at time ¢ and azimuth angle ¢
angular attenuation of a transducer (beam pattern)
acoustic potential

angle of mid-power attenuation

reflectivity at 3D point (7, ¢, 6)

surface indicator function

direction of propagation of emitted wave front
normal at the surface of the scatterer at (r, ¢, 0)
ray on indexed azimuth and elevation angles ¢;, 8;
uniform distribution on the interval [a, b]

mean intensity at range r and azimuth angle ¢

xvi



Symbols

xvii

o(r,¢)

Ly

N e R >

T'model
T'subspace
T

l model
Vmodel

Omodel

Qy

standard variation of the intensity at range r and azimuth angle ¢

ith angular section along the vertical aperture
size of angular section along the vertical aperture
diameter

vertical beam pattern

reflectivity

blurring kernel

Fourier transform

p-norm

sampling period along the Z-axis

number of input samples

number of vertical subdivisions along the vertical aperture
number of reconstructed points along the Z-axis
vector of N observations

vector of P estimated intensities

imaging model matrix

approximate imaging model matrix
normal-based imaging model matrix

occlusion and normal-based imaging model matrix
regularization coefficient

CAD model radius

subspace radius

sampling period

CAD model length along its principal directions
CAD model volume

CAD model voxel occupancy on a regular grid

score to test



List of Publications

e Guerneve, T. and Petillot, Y. (2015). Underwater 3d reconstruction using blueview

imaging sonar. In OCEANS 2015-Genova, pages 1-7. IEEE.

e Guerneve, T., Subr, K., and Petillot, Y. (2018). Three-dimensional reconstruction

of underwater objects using wide-aperture imaging sonar. Journal of Field Robotics.

e Guerneve, T., Subr, K., and Petillot, Y. (2017b). Underwater 3d structures as
semantic landmarks in sonar mapping. In Intelligent Robots and Systems (IROS),

2017 IEEE/RSJ International Conference on, pages 614—619. IEEE.

e Guerneve, T., Subr, K., and Petillot, Y. (2017a). Cad-model-based 3d video
mapping. In OCEANS-Anchorage, 2017, pages 1-5. IEEE.

xviii



Chapter 1

Introduction

”Qcean is more ancient than the
mountains, and freighted with the

memories and the dreams of Time.”

The White Ship - H.P. Lovecraft, 1919

1.1 Motivations

”Freighted with the memories and dreams of Time”, the Ocean encapsulates all the
components of human life. From being the prime source of nourishment for life to playing
a major role in the regulation of climate, it directly shaped the physicality of human
beings. Since early times, its immensity gave birth to many mysteries, cultivating both
human fears and dreams. Nowadays a sanctuary for past and present life, the sea remains
a fantastic field of exploration for humankind. In many ways, the ever-lasting quest to
understanding our environment as well as the vital need to develop synergies between
human actions and the Ocean make the study of marine environment one of the most

topical research effort of our time.

An ocean of applications
At the heart of marine research, oceanographic studies aim at understanding the Ocean in
its physical and biological aspects. Perhaps the most immediate outcome of oceanography

is the modelling of the climate regulating behaviour of the Ocean. In this context, there
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is often a strong interest in obtaining a map of the sea-floor for environmental moni-
toring (Brown et al. [2011]) or improving long-distance navigation through bathymetric

navigation (Nygren and Jansson [2004]).

Similarly to its equivalent on land, underwater archaeology provides an insight into
human history by focusing on the study of archaeological remains such as shipwrecks,
flooded constructions and ancient man-made objects. In this situation and a-fortior:
when operating in deep water, there is a need for underwater vehicles to enable semi-
autonomous or autonomous data gathering (Bingham et al. [2010]). In particular, the 3D
reconstruction of the area of study from data gathered by an AUV provides archeologists
valuable data for visual inspection and mission planning while the possibility to perform

online semantic labelling improves time efficiency by enabling long, recovery-free missions.

For now more than a century, the ever-growing need for energy production has driven
the development of offshore oil and gas rigs. Nowadays, recent advances in harvest-
ing wind and tidal energy emphasize the importance of developing safe underwater
robotics systems for deployment and maintenance of man-made infrastructures at the sea.
Similarly, from the need for fast and long-distance telecommunication means arose the
deployment of submarine telecommunication cables. Thanks to recent technical advances
in the development of ROVs and AUVs (Whitcomb [2000]), structure deployment and

maintenance on offshore fields are now carried increasingly autonomously.

Once a natural barrier keeping people apart, the Ocean has now become a space of intense
traffic due to the development of marine technologies. As a result, considerable efforts
have been put towards the development of reliable monitoring systems. In particular,
military underwater tasks typically require the use of specific semi-autonomous systems for
harbour surveillance (Madureira et al. [2009]), ship hull inspections (Hover et al. [2012]),
surface vessels protection and hazards detection and identification such as underwater

mines (Hagen et al. [2003]).

A need for acoustic-based 3D semantic mapping

In each of these fields, the progress of scientific and technological research is conditioned
by the advances in marine robotics, providing increased autonomy, controllability and
high-quality measurements. In this context, there is a strong interest in improving the
observation and analysis capabilities of marine robotic platforms. In particular, acquiring

an accurate representation of the 3D world and being able to obtain semantic information
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on the environment from the scarce choice of underwater sensors are key challenges
limiting the autonomy in marine robotics. Due to the poor propagation properties of
electromagnetic waves in water, acoustic sensors remain the privileged sensing modality

for short to long range sensing.

In this thesis, we propose to push the state-of-the-art of 3D semantic mapping in
underwater environments by improving 3D sensing capabilities from standard 2D SONAR

imaging and exploring object recognition in SONAR-based 3D reconstructions.

1.2 Thesis organisation

The organisation of this thesis is as follows:

e Chapter 2 provides an introduction to the reader on the principles of underwater
acoustic sensing. Through the description and mathematical modelling of the
multiple physical phenomena involved in SONAR sensing, we provide key elements
to understand the characteristics of SONAR data. Based on these elements, we
present the differences between the different types of SONAR systems and highlight
the interest in using 2D imaging SONAR sensors, thereby justifying their choice
in our research. Based on the characteristics of 2D imaging sensors, we present
the basis of the 3D reconstruction problem by describing the aperture problem.
Finally, we present our 2D imaging SONAR simulation framework with which our

algorithms will be tested on a variety of realistic situations.

e Chapter 3 provides a review on the state-of-the-art in 3D reconstruction from
SONAR data. Due to the specificities of each sensor, the review is split in 5
sections describing the variety of processing techniques investigated to obtain a 3D

representation.

e Chapter 4 describes our first 3D reconstruction method from 2D SONAR data,
referred to as space carving technique. Based on a simple observation, we describe
the principle of the carving technique and its implementation. Experimental results
on both simulated and real data are presented, along with an initial quantitative

analysis.
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e Chapter 5 introduces our second 3D reconstruction method from 2D SONAR
data, referred to as a deconvolution technique. Based on the formulation of the
3D reconstruction problem as a spatially-variant blind deconvolution, a practical
solution is proposed and formulated as a constrained optimization. A variety
of experimental results is presented and compared to the space carving method
both qualitatively and quantitatively. With an emphasis on field applications, the
interest of both methods is then discussed as well as the influence of the sensor

characteristics.

e Chapter 6 presents our research efforts in taking advantage of the possibilities
of SONAR-based 3D reconstructions. In particular we investigate the extension
of 3D mapping from SONAR data to large areas where navigation drift becomes
consequent. We propose to extract semantic information from the reconstructed
scene based on a set of rough CAD models, effectively providing the ability to
operate 3D object recognition from SONAR sensing on a field. We explore multi-
modal mapping with the addition of video data to the 3D reconstructions. Once
again with an emphasis on field robotics, we provide an analysis on the applicability
of our research work as well as possibilities of further developments based on our

results.
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1.3 Contributions

The main contributions of this thesis can be summarized as follows:

e 2D imaging SONAR simulator: we developed a framework enabling realistic
simulation of 2D imaging SONAR of any aperture. In comparison to previous
SONAR simulation framework, our implementation takes advantage of a sensor-
specific noise model providing realistic sensor-specific simulations in near real-time.
The simulator has been successfully integrated in UWSim providing a complete
simulation environment for the evaluation of algorithms and sensors. In particular,
we show that the use of the simulation environment is of great interest as a pre-dive
tool to optimize the result of underwater operations against operational parameters
(sampling scheme, sensing modality, etc.) based on custom metrics of importance

(reconstruction accuracy, surface coverage, time, power consumption, etc.).

e Space carving 3D reconstruction method: we developed a novel 3D recon-
struction method based on the observation of empty spaces and an occlusion
resolution processing. Importantly, the method enables online reconstruction and
no strong constraint on the sampling pattern is required in the formulation. Addi-
tionally, no assumption is made on the scene, allowing reconstruction of scene with
or without background surface. We demonstrated the interest of using this method
on an AUV and the possibility to obtain 3D reconstructions at a centimetre level,

similar to the accuracy of the sensor and local navigation drift.

e Deconvolution reconstruction method: inspired by SAS techniques, we pro-
pose a novel formulation of the reconstruction problem as a spatially-variant blind
deconvolution. In order to address the notorious complexity of the problem, we
adopt an approximate resolution through a constrained sparse solver and explore
multi-pass deconvolution. We show the interest of our method on real data and

exhibit the possibility to obtain detailed and high coverage reconstructions.

e Quantitative analysis of 3D reconstruction from 2D imaging SONARs:
through a comparison to reference CAD models, we provide the first quantitative
results on the accuracy and coverage of 3D reconstruction results obtained from

2D imaging SONAR data.
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e Study on the choice of an acoustic sensor for 3D reconstruction: based on
the simulation environment, we conducted a comparative study between pencil-beam
and wide-beam SONARs highlighting the interest of using commonly embedded

wide-beam sensors for high-coverage 3D reconstructions.

¢ CAD-model-based underwater object recognition method: we demon-
strate the first CAD-model-based underwater object recognition method through
a direct 3D CAD model mapping approach. Through our field experiment using
SONAR data gathered by an AUV, we show the ability to identify the nature and
6D position of man-made structures based on a set of CAD models specifying the

objects of interest.

e Model-based video mapping: using field data, we demonstrate the interest
in performing model-based video mapping for visual inspection of 3D man-made

objects.



Chapter 2

Sonar principles and simulation

”If you cause your ship to stop, place
the head of a long tube in the water
and place the outer extremity in your
ear, you will hear ships at a great

distance from you”

Leonardo Da Vinci, 1490

2.1 Introduction

With these famous words written in the 15" century, Leonardo Da Vinci described the
favourable propagation properties of sound waves in water. Since this early observation,
successive technological improvements arose. The tragic sinking of the Titanic in April
1912 as well as the two successive World Wars rose awareness on the interest of exploiting
sound waves to observe distant objects. As a result, many patents were filed and
continuous improvements in maximum range and spatial resolution were achieved, leading
to the development of so-called SOund Navigation And Ranging systems. Modern
SONARs are now widely used in very different fields of application both in the civil and
military domain. Their contained cost and size nowadays enables their integration on

small underwater platforms.

We present here an introduction to SONAR principles, encompassing the various physical

phenomena occurring during the emission and propagation of acoustic waves in a 3D space.

7
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We then provide a generic measurement model for SONAR sensing before reviewing the
differences between each type of SONAR sensor. Based on this review, we justify the
choice of using 2D imaging SONARS for underwater environment observation. Adapting
the general description of the physical phenomena to acoustic sensing from a generic
transducer, we provide a mathematical model for a 2D imaging SONAR. We present
the so-called aperture problem, highlighting the difficulty to estimate the 3D position
of a scatterer from a single SONAR measurement. Finally we present a simulation
framework enabling realistic simulation of 2D imaging SONARS of any vertical aperture.
In comparison to existing SONAR simulation, our simulation framework enables the
generation of 2D SONAR images at sufficient rate for enabling near real-time simulation

and features a realistic sensor-specific noise model.

2.2 Principles and modelling

We present in this section the various physical phenomena that need to be taken into
account when studying the formation of SONAR images. At each step, we provide

mathematical models to be integrated later in a sensor-specific model.

2.2.1 SONAR equation

In 1967, Urick formulated the SONAR equation from an energetic point of view (Urick
[1967]), modelling the relation between the emitted and received power levels in dB

(relative to the reference intensity of a 1uPa plane wave):

SL — 2TL + TS — (NL — DI) = DT (2.1)

with the parameters being:

e SL: Source Level (emitted power).

e T'L: Transmission Loss (loss occurring during the propagation of the wave in open

water).

e T'S: Target Strength (target reflectivity or proportion of backscattered energy).
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e N L: ambient Noise Level.
e DI: Directivity Index.

e DT': Detection Threshold or minimum SNR allowing the detection of a scatterer.

2.2.2 Source

In the case of an active SONAR, typical emission levels are around 200 dB. High emission
levels are desired for both long-range sensing and achieving a good SNR (thanks to
a high dynamic range). However, in practice, due to non-linear and cavitation effects
(Urick [1967]), the use of high-power rectangular short pulses appears to be impossible in
the water. Furthermore an ideal pulse (Dirac pulse) would feature an infinite bandwith
which is in practice impossible to achieve due to the limited size of the transducer. As a
consequence, the signals transmitted by acoustic transducers are band-limited. While
the maximum range and the dynamic range of the SONAR are proportional to the
transmitted energy, the range resolution is determined by its pulse duration (Callow
[2003]). As illustrated in figure 2.1, the pulse width must be chosen small enough to
enable the dissociation between scatterers observed consecutively along the direction of
propagation. The duration of the pulse is naturally limited by the wavelength which is in
turn defined by the frequency of the emitted signal. Small range resolutions can therefore
only be achieved at high frequencies. On the other hand, the attenuation of sound is much
higher at high-frequencies which limits the distance of observation (maximum range).
When designing a acoustic source, there is therefore a trade-off between the desired
range resolution and the maximum range. In order to maximum the resolution within
practical bandwidths, techniques like pulse-compression have been developed (Cook
[2012]), enabling range resolutions proportional to the signal bandwidth by emitting
phase-modulated signal and operating a correlation between the received signal and the
emitted signal. While the use of a wideband signal provides increased resolutions, in
practise the bandwidth of the signal remains limited by the physical properties of the
transducer (material and size) as well as the electronics. As detailed in Pailhas [2013],
these aspects make the development of wideband systems considerably more complex. For
these reasons, most SONARs operate at a single frequency and provide pulse-like signals

through a simple amplitude modulation. Since we aim at performing centimeter-level 3D
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F1GURE 2.1: Hlustration of the pulse width limiting the range resolution of a SONAR.

A signal is emitted at E along the x-axis and backscattered by two targets. In the

situation where the pulse width is greater than the distance between the two scatterers

(a), the backscattered signals at each target sum up to a single large echo making the

dissociation of the two scatterers impossible. On the contrary, when the pulse width is

smaller than the distance between the two targets (b), the backscattered signal features
two clear and distinct echoes.

reconstruction, the range resolution needs to be of centimeter level and we will therefore

focus on high-frequency SONARs, emitting signals of at least a few hundreds kHz.

We therefore restrict our study to single and high-frequency designs and formulate the

signal emitted by the transducer as:

pe(t) = Amp(t) sin(t + wp) (2.2)

where Amp(t) is a time-varying amplitude, often denoted as signal envelope and € is

the phase at t = 0.

As described in section 2.2.7, real imaging systems are typically composed of an array
of transducers and the signal observed at the receiver is typically obtained by auto-
correlations over time periods to measure the energy backscattered at a given range. In
this situation, phased arrays enable to increase the SNR through a so-called beamforming

process (see section 2.2.10) and effectively reconstruct the emitted pulse. For this reason,
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we formulate the model of our pulse as an ideal Dirac pulse:
Pe(t) = 6(t —to) (2.3)

with ¢y the emission time of the pulse.

2.2.3 Propagation model

Recalling the 3D wave equation describing the behaviour of a wave in an isotropic

non-viscous fluid:
87213262 Vip=c 5+ 5+ =5) (2.4)
ot? x

where p is a pressure field and c is the spatial velocity of the wave front in the water.

It can be shown that functions of the following form in spherical coordinates notation

are solution:

pltr) = [t =) (25)
This solution exhibits a typical spherical spread behaviour where the intensity decreases
with the distance from the source. An important consequence of this is a quadratic
decrease in power when ensonifying a distant target. In the case where the emission and
reception are made at the same point, the two-way propagation therefore implies a power

attenuation in r—%.

In addition to the spherical spread, additional loss due to physical reactions in the water
has been observed. As illustrated in figure 2.2, the absorption is frequency-dependent

and mainly needs to be considered when operating at high frequency.

In order to compensate for transmission loss happening when observing distant targets,
a TVG (Time Varying Gain) is often applied before the analog to digital conversion step,
allowing the generation of images with range-independent intensities. For this reason,
propagation loss terms are often dismissed in models and we will assume here that we

are modelling sensors with ideal TVG, compensating for any propagation attenuation.
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FIGURE 2.2: Regions of dominant processes of attenuation of sound in sea water - Urick

[1967).

2.2.4 Sound scattering model

When meeting a solid surface, acoustic waves encounter a sudden change in mechanical

impedance leading to the rejection of part of the incoming energy. Depending on the

properties of the material (surface geometry, hardness), the wavelength considered and

the incidence angle, the amount of energy bounced back by the scatterer varies widely.

In general, the ratio between the size of the scatterer and the wavelength of the incoming

wave determines the type of scattering. While Rayleigh scattering models are commonly

used to model situations with large wavelengths compared to the scatterer size, geometric

scattering is often assumed when considering large scatterers compared to the wavelength.

In this situation, the laws of geometric optics are sufficient to describe the phenomenon.
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This phenomenon, generally denoted as acoustic reflectivity in the literature has been

widely studied underwater.

In Urick [1954], Urick presented the backscattered energy as a function of pulse length,
frequency and grazing angle. His early experiments suggested that the surface roughness
determined the characteristics of the backscattering and exhibited a diffuse reflection,
rather than a specular diffusion. Further experiments ([McKinney and Anderson, 1964,
Stanic et al., 1988]) made on different types of seabed at a large range of grazing
angles confirmed the results of Urick. Alongside with Marsh and Patterson models, the
Lambertian model (see equation 2.6) is used in Gott et al. [1993] where a parameter

estimation is made from the backscattered data of a 12kHz sonar array.

I, = pl;sin(0)sin(¢)dS (2.6)

where 0 < pu < 1 is a reflectivity coefficient modelling the proportion of energy backscat-
tered by a material, I; is the intensity of the incident wave, 6 and ¢ are the two grazing
angles (complementary of incidence angle) characterising the direction of the incident
wave w.r.t the local surface patch dS. Due to its simplicity, the Lambertian assumption

is commonly assumed in underwater imaging (Aykin and Negahdaripour [2013]).

When operating at low grazing angles, the authors of Trevorrow [2004] showed that a
Rayleigh model was better suited than Lambert’s law by studying the skewness of the
backscattered distribution. Similar recent studies such as Lyons and Abraham [1999]
found that log-normal distributions and Rayleigh mixture model provide a better fit
to the tail of statistical distribution of backscattered signals than Lambert’s model.
However in general, the roughness of the surface compared to the wavelength remains the
dominant factor to be considered in the choice of a model. Altough using high-frequency
SONARs with wavelengths of a few millimeters, we consider in this study the observation
of surfaces with very low roughness such as clean man-made structures. This type of
surface therefore exhibits a specular behaviour that justifies the Lambertian assumption.
We define a scatterer as being an element of large size in comparison to the wavelength
of the sensor, therefore when considering a 900kHz sensor a scatterer would be typically

half a centimeter at least.
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2.2.5 Acoustic shadowing

One important consequences of sound scattering and propagation in the water is the
shadowing phenomenon. Due to the backscattering of sound waves by the surface of the
objects, no acoustic sensing is possible in the inner part of the objects. In general, the
presence of obstacles (ranging from small particles to solid objects) affects the propagation
of the wave by reflecting a fraction or all the incoming energy, making further acoustic
sensing in the direction of propagation impossible. Therefore when the emitter and
receiver are coincident, only the surface visible from the location of the sensor can be

observed, leaving the rest of the scene unknown.

As illustrated in figure 2.3, in presence of a scatterer within the beam boundaries, the
region behind the object does not reflect any energy and therefore remains unobserved.
However, on the side of the scatterer, the wave keeps propagating, enabling the observation

of further objects in these directions.

unobserved region

acoustic wave \

scatterer surface

source

F1GURE 2.3: Acoustic shadowing. A scatterer is present on the propagation path of
an acoustic wave creating an acoustic shadow. The region behind the solid surface can
therefore not be observed from the source position.

When adopting uniform representations such as 2D images, this absence of backscattered
energy leads visible shadows behind the obstacles. An illustration of this phenomenon is
shown in figure 2.4 where a boat hull present on the seabed is imaged with a BlueView
P900-130 SONAR. Due to the occlusion of the boat in the field of view of the SONAR, a

shadow is visible in the area behind it.

As a consequence, acoustic shadows must be taken into account when interpreting
SONAR measurements. The observation of an absence of acoustic returns can be caused

by both open water propagation and shadowing effect. Therefore and under the sensor
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seabed

boat hull laying
on the seabed

FI1cURE 2.4: Tllustration of acoustic shadowing in real data. BlueView P900-130 image
during the inspection of a sunk boat hull, laying on the seabed. The image exhibits
large shadows area behind the boat due to the occlusion of the seabed by the boat hull.

spatial resolution, it is a-priori impossible to determine directly whether or not a region

with no acoustic return is occupied or not.

2.2.6 Multipath propagation

Another consequence of sound bouncing on surfaces is the multipath propagation phe-
nomenon. As showed in figure 2.5, when multiple scatterers are present in the scene, the
emitted acoustic wave can successively bounce from one scatterer to another. In this
situation, it is possible to observe an acoustic return of a travel time equal to the sum
of all the travel durations between the different elements. As a consequence the wave
reflected by the last scatterer will appear as coming from further than the direct distance

to the transducer.

When unable to resolve the direction of arrival of the observed wave (for example
under the angular resolution of the sensor), this phenomenon typically leads to wrong
interpretation of the delayed return. In this situation, an acoustic return at a further
distance in the direction of the sensor will be represented. For this reason, this type of

return is sometimes denoted as a ghost return.
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delayed
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F1GURE 2.5: Multipath propagation. An emitted acoustic wave is reflected by two

scatterers in the scene before returning to the transducer location. In this situation, a

delayed return is observed as featuring a travel time equal to the sum of the three point

to point propagation paths (transducer to scatterer 1, scatterer 1 to scatterer 2 and
scatterer 2 to transducer).

This phenomenon is typically observed in situation where multiple scatterers are present
in the scene such as when observing complex geometrical shapes or operating in closed
environments (the presence of interfaces on the sides such as walls, seabed or water
surface will induce acoustic reflections). As an illustration of this phenomenon, figure
2.6 shows two SONAR images in polar coordinates acquired in a small water tank in
Heriot-Watt University. Two different shapes are represented, figure 2.6-a shows an
aluminium sphere and its security rope while the figure 2.6-b exhibits a more complex
object (Hyball ROV). Both objects have been placed on the bottom of the tank, 1 metre
away from the side walls. In addition to the objects and the bottom of the tank, acoustic
returns reflected by the water surface, the tank side walls as well as multiple parts of the

vehicles.

Although weaker by nature (multiple attenuations), these returns severely pollute the
image and make its interpretation complex. In a situation of multipath observation,
ghost returns are visible but a similar image could be obtained with a real scatterer in
place of the ghost return. It is therefore a-priori impossible to determine the position of

the multiple scatterers from a single observation.

2.2.7 Measurement model

Once the pulse transmitted, any incoming wave located within the physical aperture

boundaries of the transducer is observed. As elaborated in antena theory (Kino [1987]),
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multipath returns due to the surface and side walls
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(a)

multipath returns due to the tank bottom and side walls

FIGURE 2.6: Illustration of a multipath propagation on real data. Two objects are
being imaged in a small water tank. A simple, spherical shape (a) and a more complex
geometrical shape (b) are placed at the bottom of a small water tank. In both cases,
reflections coming from multipath between the tank side walls and respectively the water
surface and the bottom of the tank are observed. In (b), multipath due to multiple
reflections between the parts of the object (Hyball ROV) are visible.

the plane wave assumption is only valid in the far field of the sensor which starts at 1m
for a SONAR operating at 900kHz. In this study we therefore assume far-field conditions
and the observed waves as being plane waves. The transducer then essentially records
the acoustic state in its vicinity which results from the sum of all these waves. The
physical aperture of the transducer induces an attenuation pattern varying on the angle

of observation.

As illustrated in equation 2.7, mathematically, the measured intensity is therefore a 2D

integral of the acoustic potential in its vicinity:

ITransducer(t) = / /A Bv(e)Bh(gb)V(tv 0, ¢)d9d¢ (27)

where A, and Aj are respectively the physical vertical and horizontal apertures of the

transducer, B, and By, their associated beam patterns and V' (0, ¢,t) is the acoustic
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potential observed at an elevation angle 8, an azimuth angle ¢ and a time t.

2.2.8 Directivity model

In order to obtain an increased resolution and better power efficiency, acoustic transducers
often feature radiation patterns with a high directivity (narrow beam pattern), effectively
focusing the emitted energy in a specific direction. This angular attenuation affects the
signal both during the transmission and reception phase. When unknown, the beam
pattern can be estimated such as in Lanzoni and Weber [2010] where the transmission
and reception beam pattern of a Reason 7125 sonar have been measured. In many cases,
sonar sensors are effectively composed of an array of sensors. As mentioned in Thorner
[1990], transducers beam pattern often exhibit side-lobes resulting in sensing signals
coming from neighbours transducers or multi-paths waves. In practice, manufacturers
aim at reducing the side-lobes as much as possible while approaching a step profile in
the Fourier domain (ideal low-pass filter). For this reason, the beam pattern is typically

modelled by a Bessel function of the first kind:

(2.8)

with x =~ 1.389 and #3545 being the angle of mid-power attenuation such that [B(6345)]? =
0.5, commonly used to define the aperture of the sensor. Figure 2.7 provides an illustration
of the beam pattern with 0355 = 5°exhibiting small sides lobes, at least ten times the
amplitude of the main lobe. As a consequence, we will consider this model when

evaluating the angular attenuation.

2.2.9 Phased arrays

In order to increase both directivity and footprint, SONARs are usually composed of an
array of transducers. They effectively produce 2D images from the measurements of each
element on a unidimensional array (Belcher et al. [2002]) or 3D range images with a 2D
array (Davis and Lugsdin [2005]). So as to maximize the field of view, each transducer
can be used alternatively as an emitter or a receptor. Depending on the characteristics
of the sensor, specific emission patterns are designed by the SONAR manufacturers in

order to allow the acquisition of the data on each beam independently and minimize
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FIGURE 2.7: Typical beam pattern of a 10°aperture transducer pointing along the hori-
zontal axis (0°direction) and displayed in polar coordinates with normalized amplitude.

crosstalk artefacts. Although all beams are acquired independently and sequentially,
the high frequency SONARs considered in this study operate short range sensing (1
to 50m). Due the constraint of having a high range resolution, our 3D reconstruction
applications target inspections at typically 1 to 10m range. At these distances and using
high-frequency sensors, SONARs typically feature updates rates of a few tenths of Hz.
In these conditions, the change in the scene between the acquisition of two beams (either
due to the vehicle motion or to the evolution of the scene) can be considered negligible.

We will therefore ignore the impact of the emission pattern of the sensor in this study.
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2.2.10 Beamforming

Exception made of acoustic lens-based designs such as Belcher et al. [1999], traditional
SONARs use transducers featuring a non-negligible aperture of at least 1°. The angular
uncertainty due to the aperture of the transducers is then reduced by using a so-called
beamforming technique which consists in combining the observations acquired by different
transducers along the array. As illustrated in figure 2.8, the angle of arrival 6 of the
wavefront induces a delay between the observations of the wavefront at each transducer.

Based on this principle, the angle 6 can be estimated through a so-called electronic

plane wavefront

FIGURE 2.8: Estimation of the direction of arrival using a phased array. Q plane wave

is observed at each transducer (1...N) with a delay depending on the spacing between

each transducer (d = %) and the direction of arrival.

steering (or scanning) where the signals of each transducers are combined with a range of
delays (N —1)dcos(d) = (N — 1)% cos(f) corresponding to the direction of measurement.
Thus the contributions of a wave coming from an angle 6 will remain coherent and add up
whereas observations in directions where no wave is coming from will appear incoherent
and result as noise. This processing therefore increases the Signal to Noise Ratio (SNR)
and provides a higher resolution along the direction of the array. This phased array
processing is therefore called beamforming for its ability to estimate the missing direction
of arrival making it equivalent to a sensor with a small aperture along the direction of

the array.
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Based on this principle of phased array, many beamforming techniques have been
investigated. As described in Thorner [1990], the beamforming scheme can be either
adaptive or fixed. In adaptive beamforming, the received signal is used to refine the
characteristics of the array processing, allowing dynamically optimized measurements
for various purposes (interference rejection, SNR maximization, etc.) whereas fixed
beamforming makes use of constant time/delay weights to form the image. Since the
first publication of electronic beamforming of acoustic sources (Billingsley and Kinns
[1976]), three types of beamforming methods have emerged. Simple delay-and-sum
approaches estimate the reflected wave intensity at a given range and bearing angle by
summing the measurements of each transducers weighted by a delay term. The energy
coming from this range and bearing angle will then add-up coherently or incoherently
depending on whether or not a scatterer was present at this location. While simple,
this technique a-priori requires considering every possible angle on a sufficiently high
resolution sampling grid, resulting in heavy computations. In opposition to time domain
approaches, frequency-based approaches operate the beamforming by processing the dual
frequency representation of the measured signal. Importantly and unlike time-domain
beamformers, the beam resolution achieved by frequency-based methods is not limited by
sampling period. Improvements to reduce the sensitivity to noise have been made such as
the MUSIC beamformer (Schmidt [1986]) where the frequency representation of the signal
is linearly decomposed, identifying the noise characteristics and improving the angular
estimation. The last beamforming approach are called maximum likelihood approach
where an estimation of the spatial covariance matrix is obtained by minimization towards
a model. In practice, the beamforming operation is in general computationally intensive
and often implemented by the manufacturer on dedicated hardware platforms such as
FPGAs (Graham and Nelson [1998]). Implementation details are at the discretion of
the manufacturer and depend on the intrinsic design of the sensor. For this reason, all

manufacturers provide the beamformed data by default.

While the phase information contained in the signals pre-beamforming is of interest for
the problem of 3D reconstruction in general, it is in practice difficult to leverage due
to the constraints imposed by coherent processing (position known to a fraction of the
wavelength accuracy) as well described in SAS work Marston and Kennedy [2016], Saebg
et al. [2013]. Since we chose to operate with high-frequency SONARs of at least a few

hundreds of kHz, the wavelenghts considered amount to a fraction of a centimeter making
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coherent processing impossible with current navigation systems. For this reason, we
choose to assume our data as beamformed and our modelling of a 2D sonar will therefore

assume direct bearing sensing, resulting in the following formulation:

Tsonan (£, 6) = /A Bu(0)V (t,0, $)d0 (29)

where A, is the vertical aperture of the array of transducers, B, the associated beam
pattern and V (0, ¢,t) is the acoustic potential observed at an elevation angle 6, an

azimuth angle ¢ and a time t.

2.2.11 SONAR noise model

As studied in Wenz [1962], acoustic ambient noise levels in the oceans depend on the
local conditions such as the presence of bubbles, surface agitation and turbulent pressure
fluctuations. In addition to the ambient noise and depending on the operated frequency
band and the quality of the SONAR electronics, various types of noise can corrupt the
data. In spite of the use of beamforming techniques, increased sensor-specific noise
patterns can be observed in the SONAR images. In particular, the measurements
obtained in areas of high attenuation (side of the transducers beam patterns) exhibit
lower intensities resulting in higher noise levels. An illustration of this phenomenon is
showed in figure 2.9 where a sonar image has been measured in open-water in Loch FEil,

Scotland.

In addition to sensor-specific noise patterns, speckle noise is frequently observed in sonar
images as described in Abbott and Thurstone [1979]. From the use of simple image
processing techniques (averaging multiple frames, median filter) to more complex filters
([Huang et al., 2009, Isar et al., 2005]), speckle noise can be mitigated in different ways,
often at the cost of an edge smoothing. In general, the observed noise is the result of
the combination of multiple kinds of noise in the acquisition chain. For this reason, a
Gaussian noise is commonly observed in the final data and is assumed to be decorrelated
from the properties of the scene. Although the presence of a scatterer in the field of
view of the sensor could potentially modify the noise distribution, the study of this
phenomenon would require a series of experiments in an open-water environment and an
elementary scatterer to be placed in various locations in front of the sensor. It appears

difficult to carry such an experiment and the dependency on the location of a scatterer
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noise stripe a . .
TN zero intensity

F1cURE 2.9: BlueView P900-130 noise pattern. In absence of any scatterer in the scene,
the sonar image exhibits 7 noise stripes.

in the scene would make the denoising process a complex treatment. Our chosen noise
model will therefore be sensor-specific and modelled based on the observation of noise

statistics in a scatterer-free environment.

2.3 Overview of the different types of SONARs

In order to exhibit the specificities and usage of each type of sensor, we provide here a
brief overview of the various types of SONARSs existing along with their main application
fields. Following this review, we highlight the particular interest in using 2D imaging

SONARs for their frequent usage in a wide variety of applications.

2.3.1 Review

Single-beam echosounders As illustrated in figure 2.10, single-beam echosounders

provide direct range readings in a single direction.

Consisting of a single transducer, single-beam echosounders often equip boats to provide
a rough estimate of the draught. These sensors are inexpensive and have only been

scarcely used for research work to provide low-resolution bathymetry measurements,
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FIGURE 2.10: Illustration of the footprint of a single-beam sensor mounted on an AUV
in a downward configuration.

study seabed composition (Amiri-Simkooei et al. [2011]) or observe local faun (Hutin

et al. [2005]).

Side-scan SONARs Side-scan SONARs aim at providing backscatter data of a very
narrow stripe from a single ping. The narrow aperture (typically a fraction of degree
to 1°) is obtained by beamforming of an array of receiving transducers. Due to these
specificities, side-scan SONARs can only be employed in a side-way-looking configuration
as visible on figure 2.11.

For this type of sensor, low frequency designs are prevalent, allowing typical sensing
ranges of a few hundreds meters. Side-scan SONARs are traditionally inexpensive and
employed to image large areas of seabed for inspection, detection and classification of
objects lying on the seabed. Therefore side-scan SONARs are frequently integrated on
cost-efficient platforms with the aim of delivering long-range seabed imaging as in Collier
and Humber [2007] for coral reef monitoring, pipeline tracking as in [Bagnitsky et al.,

2011, Petillot et al., 2002] or mine detection as demonstrated by Reed et al. [2003].

2D Multibeam imaging SONARs In order to provide direct 2D readings, multiple
transducers can be arranged as an unidimensional array. As visible on figure 2.12, this
type of sensor naturally provides larger footprints than single-beam sensors, allowing

direct range sensing at multiple bearing angles. Beamforming techniques then enable the
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FiGURE 2.11: Illustration of the footprint of a side-scan sensor mounted on the side of
an AUV.

FI1GURE 2.12: Tllustration of the footprint of a multibeam sensor mounted on an AUV
in a downward configuration.



Chapter 2. Sonar principles and simulation 26

generation of range and bearing 2D images. Depending on the design of the sensor, the
bearing angle resolution typically ranges from a fraction of a degree to 2°. The range
resolution depends on the frequency operated and typically ranges from a few millimetres
to a few centimetres. Multibeam SONARs are then divided into two categories, based
on their vertical aperture. Pencil-beam sensors offer a low footprint by featuring typical
apertures around 1° whereas wide-aperture SONARs ensonify large volumes of water at

each ping with typical vertical apertures of 7° to 20°.

Thanks to their low elevation angle uncertainty, pencil-beam sensors are traditionally
used to acquire bathymetry ([Grasmueck et al., 2006, Vaneck et al., 1996]) at ranges
up to a hundred metres, to perform short to mid-range mapping (Papadopoulos et al.

[2011]), to study ecosystems or assist fishing activities (Gerlotto et al. [2000]).

On the other hand, wide-aperture SONARs are more commonly employed for collision
avoidance tasks (Petillot et al. [2001]), sea floor imaging and mosaicking (Hurtés et al.

[2014]) or online target tracking (Folkesson et al. [2007]).

3D SONARS In order to provide direct 3D information, a 2D set of acoustic transducers
can be integrated in a single sensor. As illustrated in figure 2.13, these sensors offer

direct range readings along two axis, effectively providing direct 3D information. These

e

il

‘,

i

i
(I

F1cURE 2.13: Illustration of the footprint of a 3D SONAR mounted on an AUV in a
downward configuration.
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Weaknesses Strenghts
Sinele-beam | - low resolution - low cost
& (20cm x 10°) - very long range (up to 7000m)

- low cost

- long range (up to 500m)

- higher resolution (SAS) provided
accurate navigation is available

- compact and commonly embedded
on AUVs

- medium to high resolution
depending on range
Side-scan (3 to 10cm x 1°)

- only provides 1D data and
in slanted range

- high resolution

(0.5 to 3cm x 0.6°to 2°)

- short range (up to 100m) - relatively small and easy

- high cost to integrate on AUVs

- provides 2D information of direct
use for live monitoring

2D multibeam

- very short range (up to 100m

but typically used up to 10m - high resolution (3cm x 0.5°to 20°)
3D array to yield high resolutions) - provides direct 2.5D information

- very high cost of interest for collision avoidance

- bulky

TABLE 2.1: Strengths and weaknesses of the different types of SONAR, sensors

3D SONARs usually operate at high frequency to provide higher resolutions (centimetre
level) in a contained size. 3D SONARs have been employed to perform tasks where
instant 3D sensing is desired, in particular to observe phenomena in real-time such as in
Soloviev et al. [2012] where ship wakes were studied with an Echoscope SONAR (Davis
and Lugsdin [2005]). Other applications include real-time positioning (Woodward et al.
[2010]) or fast 3D mosaicking (Hansen et al. [2005]). Although various 3D SONARs are
now commercially available, their increased complexity in comparison to standard 2D
SONARs makes these sensors expensive and bulky. Their use on AUVs is therefore in

general impractical if not prohibitive on cost-efficient platforms.

2.3.2 Interest in using 2D imaging SONARs

In order to identify the pros and cons of each type of SONAR, we present in table 2.1 a

summary of the strengths and weaknesses of each configuration.

Although inexpensive, side-scan SONARs only provide 1D information about a narrow
stripe at each ping and the recovery of 3D information from side-scan data is inherently
ill-posed. On the other hand, direct 3D sensors such as the Echoscope provide real-

time 3D sensing capabilities but remain prohibitively expensive and too large for being
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integrated on AUVs. Multibeam sensors bridge the gap between these two categories
of sensors by offering small to large footprints, 2D centimetre-level resolutions in a cost
and size that makes them suitable for employment on a wide variety of surface and
underwater vehicles. SONAR sensors being expensive in general, there is a lot of interest
in using sensors commonly embedded on underwater platforms rather than adding a
specific sensor for each new application. For these reasons, our work focuses on the use
of standard 2D imaging SONARs for 3D reconstruction. For reference, appendix A -
section 6.7 provides typical specifications of a 2D imaging SONAR.

2.4 Description of 2D imaging SONARs

Following the justification of the interest in studying the use of 2D imaging SONARs for
3D reconstruction purposes, we present here an imaging model specific to this sensor. In
particular, we combine the generic acoustic sensing models presented in sections 2.2.2
to 2.2.11 with the specificities of 2D imaging sensors to present a mathematical model

suitable to the description of the generation of 2D high-frequency SONAR measurements.

Based on this model, we present the aperture problem inherent to the imaging process
and illustrate it to exhibit the difficulty of performing 3D reconstruction from 2D SONAR

data.

2.4.1 2D imaging SONAR model

A 2D imaging SONAR is essentially a rectilinear array of transducers. These transducers
are triggered at different times in order to provide readings at multiple bearing angles
with an increased resolution when using beamforming techniques. As visible in figure
2.14-a, imaging sensors deliver 2D images where each pixel represents a range and bearing
angle small interval. As depicted in figure 2.14-b, the pixels at each range range and
bearing angle represent backscattered intensities coming from all elevation angles along

the vertical aperture A,.

Based on the models established in sections 2.2.3 to 2.2.8, we present here the combined
imaging model of a multibeam SONAR in absence of occlusions and multipath propaga-

tion. Recalling the measurement model presented in equation 2.9 and considering an



Chapter 2. Sonar principles and simulation 29

<y

pixel

Is (7’, ¢)

Sensor array

(a) (b)

FIGURE 2.14: 2D Imaging SONAR geometry.

isotropic propagation of the emitted pulse p.(¢) in the medium, the received signal at

time t and bearing angle ¢ can be written as:

Tsoman(t, @) = /A B.(0)? /0 R(r,@,cﬁ)%pe(t—%)drdO (2.10)

with R(r,0,¢) the scatterer reflectivity at the 3D point (7,0, ¢). The signal observed
by the transducer at time t is therefore a sum of the acoustic returns coming from
distant scatterers present in the scene with a delay (¢ — 27”) associated to the two-way

propagation and an attenuation in r~1.

As explained in section 2.2.3, assuming compensation of the propagation loss (as obtained
when using a TVG), the attenuation term can be omitted. Furthermore, we consider here
2r

an ideal dirac pulse pe(t — 2°) = Iy §(t — 2-) which results in the following formulation:

Fsoart:0) = [ BOP [T R0 ae-2Daras )

Based on this model, readings at range r can therefore be obtained at t = 2{ + tg where

t > to and ty is the emission time of the pulse:

Lsonar(r, @) = Io / B,(0)? R(r,0,6) A0 (2.12)

v
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One can then describe the reflectivity R of the scatterers as following a Lambertian

diffusion model:

Lsonar (r,®) = I / Bo(6)? Su(r.0,0) u(r,0,¢) — 227700 g (2.13)
Aw Vool |7r06 ||

where Ss(r, 0, ¢) represents an indicator function that is unity if there is a surface at
location (r, 0, ¢) (relatively to the position of the source) and zero otherwise. The term
modelling the albedo of the surface (proportion of reflected energy) is defined with respect
to the source location s by the reflectivity coefficient associated to the material of the
scatterer u(r, 6, ¢) and the dot product vge.7i,94 Where v, then represents the direction
of propagation of the acoustic beam at the angles 6 and ¢ and 7,44 is the surface normal

of the scatterer at (r,6, ¢).

2.4.2 The aperture problem

As described in the previous sections, an imaging SONAR delivers intensities by summing
the multiple acoustic returns coming from different elevation angles. The width of the
vertical aperture therefore has a direct impact on the ability to locate the scatterer
position within the vertical aperture. This phenomenon is commonly called the aperture

problem.

When considering large apertures, this blurring process induces an ambiguity when
determining the position of the scatterer along the vertical aperture of the sensor. As
illustrated in figure 2.15, two identical scatterers placed at opposite elevation angles

relatively to the SONAR image plane result in the same measurement.

This example exhibits the 3D to 2D compression resulting from the SONAR imaging
process. It demonstrates the inherent illness of the 3D reconstruction problem and the
a-priori impossibility to determine the position of the scatterer based on a single image

without additional knowledge.
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Scatterer Footprint of
— the scatterer
on the SONAR
image plane

<y

Pixel gathering
returns from the
scatterer

FIGURE 2.15: Illustration of the aperture problem. Two scatterers placed at opposite

elevation angles (a and b) lead to the same image (c). In this situation, the returns

coming from the scatterers are integrated in the same pixel of the SONAR image with
the same measured intensity.

2.5 Simulation

In order to simulate realistic underwater scenarios, an underwater simulation environment
is needed with the possibility to simulate 2D SONAR data. We present in this section
an overview of the underwater simulation possibilities. We then provide a brief review of
published work on SONAR simulation and exhibit the limitation of existing solutions.
Following this, we present our imaging SONAR simulation framework along with a

qualitative comparison between real and simulated data.

2.5.1 Choice of the simulation environment

Review

In order to provide a realistic 3D underwater environment, sensor simulation algorithms
need to be integrated in a simulation environment. A review of commercial and open-
source unmanned vehicle simulators is proposed in Craighead et al. [2007]. The authors
highlight the recent trend of using frameworks derived from commercial game engines for

real-time physics-based simulation and the presence of many open-source solutions. In
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the underwater domain, a high-level and non-exhaustive review of AUV simulators has
been presented in Matsebe et al. [2008]. In our case, we are interested in an open-source
simulation environment in order to allow easy extension and integration of third-party
libraries. The simulation environment needs to offer near real-time simulation of multiple
sensors and easy configuration of the 3D scenario. After evaluating the different open-
source underwater simulation environments available, decision was made to use UWSim

(Prats et al. [2012]).

UWSim

The UWSim simulation environment offers the simulation of various sensors (Lab [2012])
such as single and stereo video camera, single-beam range reading, structured light
projector, object picker, DVL, IMU, GPS and force sensor. The environment supports
the simultaneous simulation of multiple vehicles at a time. Physics simulation is provided
through the use of OSG library (Osfield et al. [2004]). As visible in figure 2.16, the
simulated scene can be defined by a set of CAD models, allowing easy modelling of
various real-life situations such as offshore inspections, archaeological surveys, shipwreck
inspection, etc. Importantly, UWSim implementation is open-source, making its extension
and maintenance by a third party easy. The simulator makes use of ROS framework
where new functionalities can be easily added via the implementation of new software

modules called nodes.

2.5.2 2D SONAR simulation

Review

In order to simulate the SONAR imaging process, various approaches have been inves-
tigated. Although popular in many simulation applications, finite elements methods
are impractical when considering small wavelengths due to a very high computing cost.
Frequency domain approaches have been used such as the SIGMAS simulator presented
in Groen [2006]. Interestingly, this approach enables easy integration of the beamforming
process (match filtering) and of the sensor physical apertures. Following this approach,
the authors of Coiras et al. [2009] presented a GPU implementation allowing fast simula-
tion of a side-scan of a few hundreds kHz. The Sonar Simulation Toolset, a ray-based
SONAR modelling framework is presented in Goddard [2008]. This framework focuses

on fidelity but does not offer real-time data generation. Recently, raytracing-based
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FIGURE 2.16: Simulation of an offshore field with UWSim. A set of CAD models offer
realistic 3D representations of oil-field structures.

SONAR simulation methods have been applied to various kind of SONARs [Bell, 1997,
Sac et al., 2015] enabling near real-time image generation through discretization of the
SONAR beam. A major drawback of ray-tracing approaches applied to SONARs is
their discrete and spherical sampling approach which requires high sampling resolutions
to avoid subsampling aliasing artefacts. In order to address this issue, improvements
of raytracing techniques have been presented in Gueriot et al. [2007] where a so-called
tube-tracing technique is used, a tube being defined as a 3D region bounded by an
ensemble of rays. Using a tube-tracing technique therefore enables to sample volumes
instead of points at a slightly higher computing resource cost. Interestingly, the authors
adopter a transducer-wise simulation enabling the simulation of multi-path effects as well
as textures due to features smaller than the pixel resolution. Although these raytracing
simulators offer realistic intensity shading, no real-time processing is demonstrated. In

addition to this, no sensor-specific noise pattern is modelled.

2D Imaging SONAR simulation
In its base version, UWSim only provides very basic multibeam simulation, featuring

no vertical aperture modelling. The multibeam readings are then essentially multiple
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range readings with no integration along the elevation direction. In order to allow for
simulation of imaging SONARs of any aperture, we implemented a SONAR simulation
incorporating the imaging model described in 2.4. The implementation is based on a
raytracing technique where the SONAR footprint is discretized in an ensemble of rays
{0ij = 0(¢i,0;)} 1<i<n at different bearing angles ¢; (along the horizontal aperture) and

1<SM

elevation angles (along the vertical aperture) #; such that N = % and M = 0’3:3 with

Ay and A, the respective horizontal and vertical apertures of the sensor, ¢,cs and 0.5

the angular resolutions considered for sampling the scene. In order to prevent aliasing
issues, a jittered sampling (Dippé and Wold [1985]) approach is followed by defining each

angle as following a uniform distribution:

Pi ~ U(—% + (1 = 1)-0res, —% + i-Gres) (2.14)
Ay . A, .
ej ~ U(_? + (] - 1)~¢r65a _? +]~¢res) (2-15)

where U(a,b) is the uniform distribution on the interval [a, b].

Each ray is then defined by a normalized vector going from the sensor acoustic centre
in the direction (¢;,6;) w.r.t. the sensor frame. Each ray is then thrown at the scene
using OSG library raytracing functions. In case of intersection with an element in
the scene, OSG provides the 3D coordinates of the intersection point associated with
the local normal which is used to compute the reflected intensity following Lambert
law as detailed in equation 2.6. Depending on the value of the elevation angle ¢;, an
attenuation factor is applied using a Bessel function as in equation 2.8. The resulting
intensity is then accumulated in a N x P polar image in the corresponding pixel at (r, @)
following a discretization in the range domain with each pixel being of size 7res X Gres
and rps = "merztmin - Once all the rays thrown, a predefined scaling of the intensity is
applied based on the final quantization of the image (8 or 16 bits) and the maximum

level measurable (akin to the physical sensor combined gain in emission and reception).

Noise simulation

Once the raytracing image generated, various noise models can be overlaid to provide
sensor-specific simulation. In the case of multiple noise sources, the noise distribution
often tends to be Gaussian. In this situation, the noise pattern can be measured using a
sequence of SONAR images recorded in open water. This sequence can then be used to

estimate the first two moments of the noise distribution (u, o) at each pixel in the SONAR
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FIGURE 2.17: SONAR noise measurement from a sequence of open-water images. The
images are displayed in polar representation. a) Single SONAR image. b) Mean noise
intensity values. ¢) Standard deviation of the noise intensity values.
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image. Through this process, two images can be generated, one representing the mean
noise intensities m(r, ¢) and the second one representing the standard deviation o(r, @)
of the noise intensities. As an illustration, figure 2.17 presents a noise measurement
using BlueView images acquired in an empty scene in the sea. The images are displayed
in polar coordinates (range X bearing angle). 700 images have been used to obtain
a robust statistical estimation. The images are displayed in JetMap intensities where
red represents the highest intensity and blue the lowest. The images exhibit significant
non-uniformity in the noise spatial distribution. 7 vertical noise stripes are clearly visible
with gradual fading on their sides. Based on these statistics, random samples can be
drawn for each pixel to emulate the sensor typical noise realisation. The noise data can
then be added to the simulated image.

In order to feature a smoother noise model, less specific to the sensor, we chose to use the
measurements as a reference for modelling the noise in BlueView images. We modelled
the noise as 7 noise stripes with Gaussian intensities of varying mean and standard
deviation values at each range and bearing angle, the angular intensity fading being
obtained by following a Gaussian distribution around the central bearing angle of each

noise stripe.

Simulation results

We provide here a comparison of simulated and real data acquired in similar conditions.
As illustrated in figure 2.18, the SONAR is mounted in a forward-looking configuration,
facing a vertical pipeline. The red line depicts the vehicle trajectory during the inspection
of the structure. The green lines delimit the sensor aperture in horizontal and vertical
directions. The simulated SONAR features a vertical aperture of 20° and a horizontal
aperture (or field of view) of 130°. The distance between the sensor and the structure
is of 3 metres, the range resolution is 2cm and the bearing resolution is 0.2° while the
elevation angle resolution is 0.01°. The SONAR maximum range is set to 7 metres.
Figure 2.19-a shows the output of the raytracing algorithm where intensities due to
the beam pattern and Lambert’s law are evaluated. Figure 2.19-b depicts the same
image with added BlueView-type noise pattern. Figure 2.19-c exhibits a real BlueView
P900-130 image acquired in similar conditions, facing a vertical riser featuring advanced
marine growth, therefore having a more complex geometry. In spite of this, the images

between figures 2.19-a and 2.19-c exhibits similar intensity shading and noise.

The importance of jittered sampling is visible when observing a surface at low grazing
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Fi1cURE 2.18: Simulated pipeline inspection for forward-looking SONAR simulation. As
visible with the green lines, the simulated SONAR features a 130° horizontal aperture
and 20° vertical aperture.

angles. Figure 2.20 illustrates this on the observation of a flat surface (top side of a
cube) with a SONAR. Figure 2.20-a shows the scene to be raytraced by the SONAR
simulation algorithm. We present two simulated images, generated at the same spatial
resolution and from the same point of view. When sampling on a regular grid, visible
aliasing appears on the simulated image as shown in Figure 2.20-b. As visible in figure
2.20-c, this phenomenon disappears when using jittered sampling. On a recent hardware
platform (Intel Core i7-4700MQ processor), these images were generated at an average
rate of 2Hz, enabling near real-time SONAR simulation. The raytracing process was
not multithreaded and the memory usage was limited to a few hundreds MB of RAM,

making its integration on small hardware platforms possible.
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FIGURE 2.19: Comparaison between simulated SONAR data and real data a) Simulated
SONAR image with no noise. b) Simulated SONAR image with BlueView-type noise
pattern. ¢) Real BlueView P900-130 image.
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FiGure 2.20: Illustration of the importance of jittered sampling to prevent aliasing.

a) Observation of a surface at low grazing angle. b) Simulated SONAR image with
regular sampling, exhibiting visible aliasing. c¢) Simulated SONAR, image with jittered
sampling.
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2.6 Conclusions

In this chapter, we first detailed the principles of SONAR sensing. In order to detail
these principles, the various physical phenomena involved in acoustic sensing have been
modelled through the description of the emission, the propagation and the reception
processes. At each step, a generic mathematical model was presented, deriving the model

of a simple acoustic transducer, suitable to describe any type of SONAR.

We presented a review of the different types of SONARs as well as their applications.
Importantly, we exhibited the interest of studying the use of 2D imaging SONARS for
3D reconstruction of the scene due to their contained cost compared to 3D SONARS,
their large footprints and short to large range sensing capability. Thanks to these
characteristics, 2D imaging SONARs are often the sensor chosen to provide sensing in
many fundamental applications such as collision avoidance, mapping, target tracking or
seabed observation. As a consequence, these sensors are frequently integrated on surface
and underwater platforms which makes the acquisition of experimental data easier and

the impact of advances in imaging SONAR-based techniques direct.

In light of this, a mathematical model for 2D imaging SONARs was then presented,
associating the various elementary models described previously with the specificities of
2D imaging sensors. In particular, the final imaging model exhibits a dependency on the
incidence angle to the scatterers surface as well as an integration process along the vertical
aperture of the sensor. From these observations result two main consequences. Firstly,
the appearance of a scene in SONAR measurements is highly variable and dependent on
the position of the sensor. Secondly, the 3D to 2D compression through an integration
process makes the estimation of the 3D position of a scatterer along the vertical aperture
inherently ill-posed. We illustrated this so-called aperture problem with an example
where two different situations lead to a similar SONAR measurement to show the a-priori

impossibility to obtain 3D information from a single image.

Finally, we introduced our 2D imaging SONAR simulation framework based on UWSim,
an open-source underwater simulation environment. Based on the imaging model pre-
sented previously in this chapter, this framework provided the capability of imaging
any simulated scene with sensor-specific noise model based on a previous modelling of

the sensor noise characteristics. We provided details on the implementation based on a
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raytracing method as well as a comparison between simulated and real data and showed
that unlike existing SONAR simulation solutions, our simulation provides near real-time

simulation with realistic noise model.
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Literature review on 3D

reconstruction from SONAR data

3.1 Introduction

Thanks to favourable propagation properties in water, SONARs have been widely
employed for reliable range measurement in multiple dimensions. The ability to obtain
an accurate 3D representation of the environment is of prime importance in many
applications such as mission planning, underwater navigation, environment monitoring,
mine countermeasure, archaeology, marine structure maintenance, cave mapping or

fishing.

The increasingly large offer of commercially available sensors enabled the development of
many scientific and industrial research projects. We provide here a review and analysis
of the latest advances in 3D reconstruction from SONAR sensors. In order to highlight
the specificities and potential of each type of sensor, we chose to classify our review in
five categories representing different types of sensors. We then present our analysis on
the pros and cons of each modality and technique used so as to set the context of our

work relatively to the current state of the art.

42
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3.2 Single-beam echosounder

Single-beam echosounder provide range readings in a single direction, resulting in a
small footprint. Their use for 3D reconstruction therefore requires mechanical steering
to cover the full space. This cost efficient solution has been employed to study the
behaviour of fish populations from a fixed platform in Gauthier et al. [1997] using a
200kHz echosounder featuring an 11° beam aperture. The study presents quantitative
results and exhibits the limit of this method such as the difficulty of discriminating
targets due to a large beamwidth and target movement during the scanning process

which led to multiple recordings of a same target.

While possible on a fixed platform, the use of mechanically steered echo-sounder is made
difficult when placed on a moving platform such as an underwater vehicle, requiring
accurate relative positioning between the beams and increasing the stochasticity of the
backscattered signal. In order to reduce these effects, series of sequential pings can be
averaged as in Snellen et al. [2011] where a single-beam 38 kHz Kongsberg echosounder
was used to perform sediment classification from a backscatter model inversion. When
averaging the results, a trade-off between robust estimation and spatial accuracy is made,
therefore limiting the employability of single-beam echo sounders. Recently, Bichucher
et al. [2015] demonstrated the ability to simultaneously obtain a bathymetry and correct
for slow navigation drift only using a 600 kHz Teledyne RDI Explorer DVL which makes

use of four beams.

In general and for 3D sensing purposes, a small beam width provides better spatial
accuracy but require higher sampling rate, therefore slower sensor motion. For this reason,
single-beam echosounders are rarely used for 3D reconstruction but rather employed for

low-resolution data acquisition.

3.3 3D from side-scan SONARs

While technically simple, side-scan SONARs only provide time-based backscatter samples
of the 3D scene, effectively loosing the elevation angle. In order to perform the conversion
from the so-called slant range data to horizontal range data, a flat seabed approximation

is commonly used. In general and in the case of a more complex 3D seabed (prominent
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3D features such as large rocks or man-made structures), this assumption does not hold
true and additional information is needed to recover the 3D information. For this reason,
the combination of sidescan data with an additional bathymetry system has been studied
in Gueriot [2000] where bathymetric information acquired by a multi-beam echosounder
has been associated to side-scan intensities to generate 3D seabed mosaics with additional
texture information. Due to the additional bathymetry acquisition, this approach is
in practice considerably more time-consuming and expensive. In absence of additional
sensors, the recovery of 3D information from side-scan data is in general ill-posed and

some prior information is needed.

3.3.1 Shadow based estimation methods

In Reed et al. [2004] the shape of objects lying on a flat seabed was estimated from
matching the shadow visible behind the objects to simulated shadows generated from a
given set of CAD models. Inspired by the early work of Martin and Aggarwal [1983],
the use of acoustic shadows was made in Sun et al. [2008] where a Markov random
field helped to classify each pixel in one of the three following categories: shadow (no
backscattered energy), echo (strong reflection) or background (low-intensity reflection).
From this segmentation, a set of occluding contours from different points of views is
obtained and used to bound the volume and recover the height information. A reflection
map can then be computed by tomography. Results are obtained from simulated data.
While interesting, this method requires a circular sampling around the object of interest,
which in the case of a side-scan SONAR is very impractical and inefficient in terms of

time and surface coverage.

3.3.2 Intensity model-based methods

Following the SONAR model, the backscattered acoustic intensity is proportional to the
incidence angle of the acoustic wave on the local surface. Based on this observation,
shape-from-shading techniques aim at deducing the 3D geometry by inverting the intensity
model. Early attempts as in Langer and Hebert [1991] were propagation based: assuming
initial values for altitude and slope at the first return, the slope of the following pixels was
estimated from the intensity and the elevation values deduced from the slope. Although

simple, this technique exhibits a few drawbacks such as error propagation with growing
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range, assumed connectivity between successive pixels. The assumed reflectivity model
being often non-linear, Durd et al. [2004] presented a linear approach to the shape-from-
shading technique, taking advantage of a linear frequency domain model as derived in Bell
et al. [1999]. Maximum likelihood estimation approaches (such as energy minimization)
aim at matching a model to the observed data by searching for the configuration that
minimizes the distance between the model and the data. In Coiras et al. [2007], a
side-scan SONAR intensity model is formulated and matched to the observation by the
use of an likelihood-maximization optimization procedure. The optimization enables
the estimation of the model parameters (seabed reflectivity, side-scan beam pattern
and seabed altitude), effectively providing a direct 3D representation of the seabed as

shown in figure 3.1. An extension of this technique for arbitrary vehicle motion has been

FIGURE 3.1: Hlustration of a 3D reconstruction from side-scan SONAR - Coiras et al.
[2007]. a) Original side-scan image. b) Model after convergence. c) Elevation map. d)
Corresponding perspective view of the textured 3D surface.

presented in Woock [2011].
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3.3.3 Geometrical model-based method

Depending on the operating scenario, side-scan measurements can be affected by well-
known multi-path effects, effectively integrating reflections coming from multiple direc-
tions such as a fish, the seabed or the sea surface. As shown in Saucan et al. [2015], the
ability to predict the DOA (Direction Of Arrival) enables 3D reconstructions at a much
higher level of detail. The authors present a so-called echo-tracking method based on a
set of geometrical models expected in the scene. Each measurement is tested against all
models and a tracking approach helps to regularize the observations. As can be seen in

figure 3.2, experimental results from real data exhibit accurate 3D reconstruction.
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Ficure 3.2: Illustration of a 3D reconstruction from side-scan SONAR with model
prediction - Saucan et al. [2015]. a) Reconstructed bathymetry. b) Selected model. ¢)
Original side-scan image.

3.3.4 3D side-scan

Inspired by the principle of SAS (Synthetical Aperture SONAR) where the angle of
reflected waves is estimated by interferometry, the authors of Griffiths et al. [1997]
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presented a 3D side-scan system. The prototype sensor has been tested in a controlled
environment, yielding low resolution reconstruction. The main reason for the limited
accuracy of this configuration is well-know in the SAS community, as these systems
require very accurate knowledge of the sensor position (to a fraction of the wavelength)
equivalent at best to mm-level navigation accuracy which is currently impossible to

obtain on underwater platforms.

For this reason, this technology has only been punctually applied, both commercially as
in Hartley et al. [1993] and for research purposes (Szbg et al. [2013]) as illustrated in
figure 3.3.
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FIGURE 3.3: Illustration of a interferometric SAS system - Saxbg et al. [2013]. a) SAS
image. b) Interferometric coherence image. ¢) Estimated bathymetry using a complex
cross correlation technique.

Although widely used for their long-range imaging capabilities, the operation of side-
scan SONARs for 3D reconstruction purposes remains marginal and is based on the
assumption that each range reading corresponds to a single altitude on the seabed,
therefore restricting it to the observation of simple and smooth surfaces. However, in
these situations, good results have been obtained by taking advantage of an accurate

intensity model and adequate inversion methods.
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3.4 3D from pencil-beam imaging SONARs

Nowadays commonly used for the study of ecosystems and fishing (Gerlotto et al. [2000]),
pencil-beam multibeam SONARs offer accurate range and bearing readings thanks to
their unidimensional array of transducers. This results in accurate 2D sensing with low
uncertainty along the remaining dimension due to very small apertures (typically 0.5° to
1.5°). Direct 3D sensing can then be obtained by combining the 2D pencil-beam SONAR
images with a motion along the missing direction. The reconstruction procedure in
this case is a simple projection of the range profile represented in the acquired image.
This profile which is essentially an ensemble of range readings (one per bearing) is
typically obtained by selecting the first return (value higher than a given threshold) as
in Newman and Durrant-Whyte [1998] or the maximum intensity along the beam. As a
result, this configuration is widely used to perform underwater 3D sensing at a range
of up to 100 metres as presented in Gerlotto et al. [1999] where the authors applied
this technique to the observation of fish schools in 3D. Since their first non-military
application (Farr [1980]), pencil-beam SONARs have been frequently used to acquire
bathymetry data both from the surface when mounted on a boat (Vaneck et al. [1996])
or an AUV (Grasmueck et al. [2006]). In this context, the accuracy of the map is usually
limited by the accuracy of the navigation data but multiple research efforts showed
that accurate maps could be obtained when combining the acquisition of multi-beam
data with a SLAM approach as in [Barkby et al., 2011, Palomer et al., 2016, Roman
and Singh, 2005]. Cave reconstruction was explored by Mallios et al. [2015] using a
mechanically scanned imaging sonar with a 1° beam width. A high-frequency multi-beam
SONAR, a BlueView MB-2250, has been used in Papadopoulos et al. [2011] to map a
marine structure simultaneously underwater and above water using a LIDAR sensor
(see figure 3.4). Interestingly, no navigation sensor such as DVL or GPS was used to
position the acquired data. The authors performed the mapping using a scan registration
technique from LIDAR data and presented a 10cm resolution 3D reconstruction. To the
exception of this study, multibeam-based 3D reconstructions require navigation data
to enable multiviews data association. Conversely when operating at low frequency,
acoustic waves penetrate further in the seabed. Low-frequency multi-beam SONARs like
the Kongsberg Simrad EM1002S can therefore provide both bathymetry and backscatter
information as detailed in Brown and Blondel [2009]. In [am Ende, 2001, Stone et al.,

2000], cave mapping was achieved using the DWM (Digital Wall Mapper), a diver-assisted
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F1GURE 3.4: Mlustration of a 3D reconstruction from pencil-beam SONAR and LIDAR
data - Papadopoulos et al. [2011]. a) Reconstructed structure. b) Reconstructed surface.
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FIGURE 3.5: Tllustration of bathymetry and backscatter data obtained with a pencil-

beam SONAR - Brown and Blondel [2009]. The bathymetry (visible on the left side)

and the backscatter data (visible on the right side) are both acquired from a single
pencil-beam SONAR, the Simrad EM1002S.

torpedo-shaped instrument featuring acoustic sensing capability as well as a propeller.
The mapping was done using thirty-two 2° aperture transducers, helically arrayed around
the nose of the instrument. After manual registration of the acquired point clouds, results
exhibit good large-scale mapping ability with a 21km long mapped dataset as can be

seen in 3.6.

Similarly, a set of 54 pencil-beam transducers has been used in Fairfield et al. [2007] to
map underwater tunnels. While this modality provides direct 360° mapping capability, it

requires specific integration on the vehicle.
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Fi1cURE 3.6: Hlustration of a 3D cave mapping from an array of narrow beam transducers

- am Ende [2001]. a) The Digital Wall Mapper instrument, featuring 32 helically arrayed

narrow beam transducers. b) Illustration of a 3D reconstruction of the entrance of a
cave.

Due to their small footprint, pencil-beam imaging SONARs have been widely used for
bathymetric measurements and short range marine structure reconstruction. A trade-off
is then achieved in the design of the sensor to provide either high range accuracy with
low maximum range when operating at high frequency or on the contrary lower range

accuracy but longer maximum range when operating at low frequency.

3.5 3D from wide-beam imaging SONARs

Unlike pencil-beam SONARs, wide-beam imaging SONARs provide typical apertures of
7° to 20°. Wide-beam imaging SONARs therefore ensonify large volumes of water at a

time, providing information on large amounts of 3D points in the observed scene.

Due to their larger aperture, wide-beam SONARs produce integral intensity values that
result from a summation along the vertical aperture, effectively producing a blurring
effect. Each measurement therefore potentially corresponds to reflections coming from
multiple points in the 3D scene. The 3D reconstruction process is therefore an ill-posed

problem and requires additional information to be solved.
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3.5.1 Non linear methods

In a similar way to reconstruction from side-scan data, various approaches have been
investigated such as the use of acoustic shadows in Zerr and Stage [1996] where the
authors reconstructed a small object placed on the ground from a set of 2D images.
These images were acquired from a set of positions located on a circle around the object,
separated by 5° steps. For each image, the pixels were classified into 3 categories (echo,
shadow or background) using a Markov random field and intensity thresholds. The
shadows and sensor positions were then used to bound the object volume in each point
of view. Good results were obtained in a controlled environment featuring a flat ground

where a 360° rotation around the object was possible.

Similarly, Aykin and Negahdaripour [2013, 2016] evaluated the reconstruction of objects
laid on a seafloor from multiple views around the objects taken at both multiple yaw
angles and roll angles. In this situation, the shape of the observed is obtained by
successive volume bounding from a background, return, shadow segmentation. The roll
angle in the sensor enables to take advantage of the high bearing resolution of the sensor
to compensate for the uncertainty along the vertical axis. Not only this method assumed
the presence of a background surface to use the shadow information but it also required
roll motions and a large rotation around the object which are both impractical when

inspecting real marine environments with an AUV.

3.5.2 Imaging model inversion

In Aykin and Negahdaripour [2013], the SONAR imaging model is inverted to recover
the missing elevation of range readings from the measured acoustic intensity. Controlled
environment experiments are presented, exhibiting reconstructions of small objects with
limited accuracy and visible distortion in the vertical direction. Due to the impossibility
of computing the elevation behind acoustic shadows, this work is also based on the
assumption that the reconstructed objects feature smooth surfaces, varying monotonically

in terms of distance from the sonar which does not hold true in general.
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3.5.3 Opti-acoustic methods

As reviewed in Ferreira et al. [2016], recent improvements in SONAR sensors accuracy
paved the way to easier association with optical sensors. While SONARs provide accurate
range measurement and uncertain elevation information, optical cameras offer by design
high angular resolution in elevation and bearing but no depth information. Combining
these two sensors therefore enables instant 3D sensing. When using two different sensors,
arises the need of joint calibration to ensure geometrical consistency when performing
3D reconstructing. In this situation, standard calibration such as the Direct Linear
Transform (Hartley and Zisserman [2003]) appear impractical due to the difference in
spatial resolution and acoustic noise. As detailed in Hurtés et al. [2010], alternative
calibration methods can be employed to achieve consistent mapping. In Babaee and
Negahdaripour [2015], a so-called opti-acoustic imaging system has been used to provide
observations both in the optical and in the acoustic domain. Through the use of 2D
occluding contour correspondences, a 3D occluding rim is defined and opti-acoustic
samples are registered by bundle adjustment. From this, a simple surface interpolation
was employed to reconstruct the surface of small coral rocks in a controlled environment.
As can be observed in figure 3.7, the reconstruction results exhibit decent accuracy but
require large rotations around the objects and assume contours visibility in both sensors
which implies in particular, having the SONAR pointed in a grazing configuration and

low water turbidity to allow for sharp optical imaging.
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FIGURE 3.7: Illustration of reconstructed stone from combined multiple wide-beam
SONAR and optical camera observations during a 360° rotation around the stone -
Babaee and Negahdaripour [2015].
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In Ozog et al. [2015], prior information on the object to be reconstructed was given by
either a CAD model or a video-based 3D reconstruction. A Didson imaging SONAR
was used for its large footprint when projected on a ship hull section. The prior map
was projected in the SONAR image plane to associate the 3D position to the acoustic
measurement in the SONAR image, based on the known sensor position. More precisely,
for each mesh element of the prior map, the four best views were selected and the
acoustic intensities were blended based on their distance to the mesh sampled points. As
illustrated in figure 3.8, this results in a large 3D map, textured with acoustic intensities.
While this technique exhibits interesting results at large scale, no small scale error analysis
is made, due to the lack of ground truth. Furthermore, this approach is entirely based

on the use of an accurate prior map which is in general hard to obtain.
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F1GURE 3.8: Illustration of ship hull mosaic obtained with a wide-beam imaging SONAR
- Ozog et al. [2015]. The back-projected SONAR footprint appears much larger than
the camera footprint, enabling faster mosaicing.

3.5.4 Feature-based methods

Recent work (Huang and Kaess [2015]) investigated the application of structure from
motion techniques to Didson SONAR data using manually selected and associated feature
points. While interesting, this approach relies on the availability of good acoustic features
and accurate associations. In SONAR imagery, the variability of the appearance of 3D
points based on the position of the sensor is well known. In addition to this, measurement
noise and frequent acoustic effects such as multi-path ringing make the observed intensity

prone to high variations from one point of view to another. As a consequence, a fully
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automated processing with acoustic feature computation and an automated corresponding

association is likely to be unreliable, making acoustic structure from motion impractical.

In a similar way and inspired by computer vision techniques, Brahim et al. [2011]
presented a reconstruction technique based on stereo-matching between two SONAR
images. Building up on their previous work on feature point extraction (Brahim et al.
[2010]) which presents a feature extraction method based on multiple frames to reduce
speckle noise, the author detailed an assessment of the Didson SONAR projective
model and a 3D reconstruction method based on a evolutionary optimization algorithm.
The results exhibit very sparse 3D reconstruction, only allowing for basic structural
representation featuring the corners of the object. Although sparse, feature-based

methods enable navigation-free registration through feature matching.

3.5.5 Acoustic stereo imaging

In Assalih et al. [2013], ASI (Acoustic Stereo Imaging) has been used to obtain real-time
3D reconstruction from two imaging SONARs. Knowing the transformation between the
two sensors, the 3D position can be estimated by triangulation. The results from an
experiment made in a controlled environment exhibit potential good accuracy but high
variability in the results. SONARs being expensive sensors, embedding two sensors on a
vehicle is impractical but assuming the scene is static and good position information,
one moving sensor could achieve the same results. The remaining problem lies in data
association across multiple points of view when dealing with uncertain positions which

has not been addressed in this study.

Similarly, the use of two SONARSs has been investigated in Horner et al. [2009] where two
different sensors were mounted in orthogonal directions, providing a direct way to obtain
the 3D coordinates of the points lying at the intersection of the two footprints. Through
the use of a Bayesian filtering, an occupancy grid is iteratively built, providing an online
obstacle avoidance method. Experimental results are demonstrated on a navigation
sequence under a bridge, demonstrating a path-planning-free navigation in presence of
obstacles. As illustrated in 3.9, only low-resolution mapping is achieved and comes at

the cost of a helical trajectory.
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F1GURE 3.9: Ilustration of dual wide-beam SONAR 3D occupancy estimation - Horner

et al. [2009]. a) The helical trajectory (green) enables to ensonify surrounding hazards

while maintaining the desired forward heading. b) Estimated occupancy grid of the
scene after reconstruction.

3.5.6 Acoustic concentrator lens

A Didson sonar has been used in Mizuno and Asada [2014] combined with a 3° concentrator
lens in order to reduce the aperture, enabling direct 3D reconstruction. Motion correction
using additional sensors and 3D mosaicing was then performed to create a 3D map of a
lake. As presented in figure 3.10, a segmentation was made using a difference of Gaussian
methods, enabling the classification of voxels in three categories: seabed and two types

of aquatic plants present in the lake (Chara globularis and Elodea muttallii).
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FIGURE 3.10: Illustration of reconstruction of aquatic plants using a 3° concentrator
lens mounted on a boat - Mizuno and Asada [2014]. The reconstruction exhibits two
different types of plants, Chara globularis and Elodea muttallii.

3.6 3D SONARs

Due to the uncertainty along the elevation axis when using unidimensional arrays, the

interest in 2D arrays of hydrophones has grown considerably in the last few years.

3.6.1 Bio-inspired 3D SONARs

Inspired by the human eye, Rosenblum et al. [1991] presented a 3D SONAR composed of
an acoustic lens focusing the incoming waves on small transducers laid on a half-sphere
(see figure 3.11), in a similar way to the human retina. Direct reconstruction can then
be obtained and a simple threshold enables the separation of noise and acoustic returns.
The authors present results of reconstructed spheres at a voxel resolution of 10cm, mainly

limited by the beamwidth.

3.6.2 Mechanically scanned SONAR

An inexpensive approach to directly observe the 3D space is to rotate a single-beam

along two dimensions. An example of this approach is used in Auran and Malvig
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FIGURE 3.11: Tllustration of a bio-inspired 3D SONAR - Rosenblum et al. [1991]. An
array of transducer receives acoustic waves focused by the acoustic lens.

[1996] where a WesMarSS150 sensor is used, featuring a beam-with of 6.5°. The sonar
head could be tilted at a wide range of angular configurations (¢ € [86°,180°] and 6 €
[0°,360°]). The authors present a method to compute connectivity between 3D sonar
returns, low-resolution representation is given. One major limitation is the considerably
large sampling time (100 seconds per full sweep) requiring to stabilise the platform (or

accurately estimate its motion) during the acquisition.

Similar work has been carried on in Roman and Singh [2004] where a pencil beam 2D
scanning sonar producing range images was used to measure 3D bathymetry patches. As
illustrated in figure 3.12-a, these patches were then registered using a scan registration
technique to achieve micro-bathymetric mapping (see figure 3.12-b). Although promising,
a significant amount of time is needed to acquire each patch, restricting this technique to
applications where the sensor can be kept steady or well positioned. For these reasons,

mechanically-scanned sensors are rarely used on moving platforms.

3.6.3 Pencil-beam 2D array

In Jaffe et al. [1995], a 3D SONAR made of 64 pencil-beam (2°) transducers is presented.

The prototype called FishTV featured a 2° angular resolution and a 16° field of view,
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FIGURE 3.12: Tlustration of mechanically-scanned bathymetry system - Roman and
Singh [2004]. a) A 2D mechanically-swept pencil-beam sensor enables the recovery a 3D
patch. b) Illustration of reconstructed terrain bathymetry assembled from 6 patches.

allowing the detection and tracking of zooplankton. Due to the absence of beamforming
processing, the resolution is limited to the transducers aperture and restricts its usage to

tracking species of a few centimetres size.

3.6.4 Interferometric 3D SONARs

In opposition to mechanically scanned SONARs, the steering process can be obtained
electronically from a bidimensional array of transducers as presented in Zimmerman
[2004]. This method is often refereed to as interferometry. In Yufit and Maillard [2013],
a prototype of a so-called FLBS (Forward Looking Bathymetric SONAR) made of three
SONAR arrays is presented, allowing the estimation of elevation information by phase
difference (see figure 3.13-a). As illustrated in figure 3.13-b, the device allowed for

long-range reconstruction (60 metres away from the target) with a resolution of 10cm.

Similar solutions are now commercially available such as the Tritech Eclipse. This sensor
was used in Biilow and Birk [2011] where a frequency-based method was presented to
register multiple 3D scans. The reconstructed data shows low-resolution 3D information
but coarse geometrical consistency. Since its first presentation in 1996 (Hansen and
Andersen [1996]) as a 3D acoustic camera, the Echoscope sensor has seen its performance
improving. Recently, the Coda Echoscope technology presented in Davis and Lugsdin

[2005] showed very promising results (see fig3.14), exhibiting an improved 3D resolution
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FIGURE 3.13: Tllustration of FLBS system - Yufit and Maillard [2013]. a) Elevation

estimation of the targets (spheres) is achieved by phase difference measurement with

the two receiving arrays of transducers (respectively represented in red and blue). b)

Tlustration of FLBS long-range reconstruction. The reconstruction exhibits two concrete
cylindrical blocs laid on the seabed.

of up to lem. Operating at 375kHz, long-range (up to 200 metres) 3D reconstruction can
also be achieved. Thanks to its instant 3D sensing capability, this sensor has been used
in recent research work such as fast 3D mosaicing of a shipwreck (Hansen et al. [2005]),
real-time positioning (Woodward et al. [2010]) or the study of ship wakes (Soloviev et al.
[2012]). In order to address the noise in the Echoscope range images, a method based on
Markov Random Fields has been applied in Murino et al. [1998] to obtain a measure
of confidence on the range readings. An iterative optimization enabled the recovery of
centimetre-level accuracy range readings, greatly improving the 3D representation of
small objects. In spite of its attractive performance, the Echoscope remains an expensive
and relatively large sensor which makes its integration on AUVs or cost-efficient platforms
difficult. In order to address the size issue, recent research work have adopted higher
frequency designs such as in Josserand and Wolley [2011] where a 8 x 8 cm 2D SONAR
array is presented with a spatial resolution of 2.5 cm in range, 1° in azimuth and 1° in
elevation. The authors took advantage of a FSPA (Frequency Steered Phased Array)
technology enabling beam steering in different directions depending on the applied
frequency. Tests in water tank using a broadband 2.25 MHz transducer are presented,

showing fairly good accuracy 3D images as can be seen in figure 3.15.
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(b)

FIGURE 3.14: Tllustration of the Coda Echoscope system - Davis and Lugsdin [2005]. a)
The Coda Echoscope sensor is composed of a 2D array of transducers. b) Illustration of

a single-pass 3D recontruction obtained with the Echoscope while inspecting a harbour.

The pointcloud exhibits multiple pillars and a detailed rocky seabed.

(b)

F1GURE 3.15: Illustration of a high-frequency FSPA SONAR image - Josserand and
Wolley [2011]. a) Objects placed in a water tank for reconstruction. b) 3D Image
obtained by frequency beam-steering. ¢) Same 3D image from a side point of view.
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3.7 Summary

We present in table 3.1 a summary of the different 3D reconstruction methods presented
in this chapter and exhibit the advantages and inconvenients of each approach. In the
context of observations gathered by and AUV and in spite of their high resolutions,
the restrictions on bulkiness prohibits the use of 3D SONARs. The observation of
moving elements and the necessity to react to changes in the environment (dynamic
path planning) make mechanically steered sensors unpractical. Shadow-based techniques
require a background and knowledge on its shape which restricts their use to flat seabed
inspections but do not allow for instance the inspection of vertical pipelines. 3D SAS
approaches provide high-resolution reconstructions but require mm-level navigation
accuracy which when operating at high-frequency is impossible to achieve on AUVs with
current navigation systems. The employment of multiple sensors feature the inconvenients
of each sensing modality and require a joint calibration. Feature-based attempts exhibited
low-resolution reconstructions. As opposed to these methods, model-to-data matching
methods exhibit robustness to outliers and noise and have the potential to offer accurate
reconstruction provided a good sensing model is available. To the exception of 3D
SONARs and feature-based methods, all methods require navigation data (DVL, INS or

USBL-based) to estimate the displacement of the sensor between successive views.
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Pros

Cons

Direct sensing

- low framerate

through Now cost - limited to slow changing conditions
mechanical (slow motion of the vehicle
steering and elements in the scene)
_ can be obtained using - requires the presence of a shadow
Shadow- . on a known background
based res pectively IOV.V_COSt (typically assumed to be a flat
and shape- (sidescan) or high- seabed)

from-shading

resolution (multibeam)
sensors.

requires accurate imaging model
requires accurate navigation

model-to-data

- can be obtained using
respectively low-cost
(sidescan) or high-
resolution (multibeam)

requires accurate modelling
optimisation approaches are

matching . .
sensors. computionally expensive
- robust to outliers and noise
in data (image or navigation)
: . ; — ; ;
3D SAS - high resolution (cm level) requires perfect position estimation

(mm-level)

multi-sensor
(multiple sonars
or opti-acoustic)

- can leverage strenghts of
multiple modalities such as
range resolution for SONARs
and elevation/azimuth angles
resolution for video cameras

- increased cost due to multiple
Sensors

- requires joint calibration

- often limited by disadvantages of
both sensors

- might require multiple inspections

feature-based

- can be performed without
navigation input (feature
matching)

- low resolution (sparse features)
- sensitive to appearance variability
of SONAR data

direct 2.5D

using an 2D
transducer
array (3D
SONAR)

- high resolution (cm level)

- does not necessarily require
navigation input

(registration by 3D matching)

- expensive sensor
- bulky

TABLE 3.1: Comparison of state-of-the-art 3D reconstruction methods
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3.8 Conclusions

The problem of 3D reconstruction from SONAR sensors has been studied regularly for
now more than three decades, involving different sensor configurations. Recent advances
in 2D array processing techniques have paved the way to the development of 3D SONARs,
providing direct and real-time 3D information at ranges of up to 200m. Mechanically-
steered SONARs offer inexpensive solutions but require accurate position knowledge
during the scanning process, mainly restricting their use to steady platforms or low
refreshing rate applications. In comparison to these sensors, multiple interferometric 3D
SONARs have been successfully developed and commercially used in the last few years.
These sensors now offer centimetre-level accuracy but remain rarely embedded on AUV

platforms due to their large size and high cost.

Inexpensive and technically simple single-beam sensors such as single-beam echosounders
and side-scan SONARs are often embedded on surface and underwater platforms. In
spite of their popularity, they remain rarely used for 3D sensing, either due to their small
footprint (single-beam echosounder) or to the uncertainty on the angle of arrival in the

case of side-scan SONARs.

Since spatial accuracy generally comes at the cost of a small footprint, small-aperture
multibeam (or pencil-beam) imaging SONARSs offer an interesting trade-off by combining
an array of high-frequency transducers with beamforming techniques to generate 2D
images with low uncertainty in every 3D direction, at ranges of up to a few tens of
metres. These sensors offering direct 3D sensing capabilities, they have been widely
used for bathymetric applications and marine structure inspections. The accuracy of the
3D reconstruction is in this case limited by navigation accuracy, restricting its use to
local mapping. In the case of large mapping applications, pencil-beam sensors remain of
interest but require the use of registration techniques applied between multiples views,
increasing the operation time. Furthermore, the small footprint of pencil-beam sensors
leads to overall lower scene coverage rate, leaving gaps between scans and unobserved

surfaces when observed at grazing angles.

Conversely, wide-aperture imaging SONARs provide larger footprints and are for this
reason widely used for seabed imaging and monitoring applications. The ability of

scouring large volumes of water at a time comes at the cost of an increased uncertainty
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in the elevation direction. In order to solve for this uncertainty, additional equipment
such as optical camera, acoustic lenses or a second SONAR has been used, increasing the
cost, embedded payload and the practical operational complexity. In particular, the need
for multi-sensor calibration as well as the differences in resolutions and noise limited the
reconstruction accuracy. When restricted to the use of a single wide-beam SONAR, prior

assumptions needed to be considered.

In order to solve this ill-posed problem, non-linear methods have been employed using
multiple point of views to bound the volume of the object. When no full rotation around
the object can be done, sensor imaging models have been used (both in wide-beam and
side-scan SONARS) to recover the shape from the observed intensity shading. In each
of these situations, the reconstruction was obtained based on the presence of shadows
and assumptions on the background (seabed). When a detailed imaging model was
assumed, the a-priori lack of knowledge of the key elements such as the reflectivity
of the elements, the beam pattern or geometry of the object required to either make
strong assumptions or adopt a partial modelling, making the inversion ill-posed and
computationally expensive. Inspired by optical reconstruction techniques, feature-based
approaches have been investigated with relatively little success due to the nature of

SONAR imagery, only providing sparse reconstructions.

3D reconstruction from SONAR data is therefore a large topic where multiple trade-offs
between accuracy, operation time, processing time and cost of the equipment need to be
made. Our work focuses on 3D reconstruction from imaging SONARs of any vertical
aperture, investigating in particular the trade-off between spatial coverage and accuracy
when using imaging SONARs. Importantly, the use of a single sensor of any vertical
aperture enables to leverage the presence of wide-aperture imaging SONARs which are
commonly embedded on ROV and AUVs for monitoring and collision avoidance and
avoids excessive costs of integrating bulky and expensive additional sensors such as 3D
SONARs. In this study, we assume the availibility of navigation data but do not require
mm-level accuracy as typically required by SAS techniques. This enables reconstruction
of data acquired by standard ROV and AUVs where navigation is based on inexpensive
DVLs. Thanks to their high-frequency designs, 2D imaging SONARs typically acquire
short-range (1 to 20m distance) measurements in a few tenths of milliseconds (20m-long
two-way propagation takes 30ms). We consider vehicle motions of up to 20cm/s meaning

that the motion during the acquisition amounts to a few millimeters only and can
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therefore be ignored. In contrast to previous work, our reconstruction techniques do
not assume the presence of shadows or background in the image. Our methods do not
require any strong constraint on the motion of the vehicle but require a set of observation
acquired along the direction of uncertainty of the sensor (elevation angle). Our methods
are based on a simple imaging model and the use of optimization (deconvolution method
described in chapter 5 allows modelling error mitigation) and do not rely on feature

observation.



Chapter 4

3D reconstruction by space

carving

4.1 Introduction

As detailed in chapter 2, the 2D imaging SONAR model compresses 3D information on
a 2D plane through an integration along the vertical direction. While this integration
enables the observation of a large number of scatterers at a time, it makes the recon-
struction of the initial 3D scene from a single SONAR image ill-posed. In this context,
additional views of the scene and a data association technique are required to address

the reconstruction problem.

In chapter 3, we provided a summary of the research work previously carried on 3D
reconstruction from SONAR data. In particular when measuring bathymetry, previous
reconstruction techniques from 2D imaging sensors are limited to small-aperture sensors
from which range profiles can be extracted and approximated to a 3D profile. When using
wide-beam sensors, state-of-the-art reconstruction techniques (Aykin and Negahdaripour
[2016], Zerr and Stage [1996]) estimate the information on the last dimension by taking
advantage of the acoustic shadow visible when the object is placed on a flat surface. This
assumption makes the 3D reconstruction impossible when the objects are not surrounded
by any flat surfaces. In addition to this, the reconstruction is obtained from a set of
observations acquired by successive rotations around the object as well as a rotation of

the sensor in the case of Aykin and Negahdaripour [2016]. When observing a marine

66
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environment with an AUV, this is in general impractical either due to the uncertainty on

the environment or the geometry of the scene.

In this chapter, we present a non-linear 3D reconstruction technique enabling the
reconstruction of the 3D scene from a set of observations at known positions. As opposed
to previously mentioned methods, our 3D reconstruction technique does not require any

background to estimate the elevation information.

We first formulate the reconstruction problem as the estimation of the reflectivity from a
set of integral measurements. We then present the so-called space carving reconstruction
method by deriving the theoretical background based on the 2D SONAR imaging model.
We introduce a three-step carving algorithm allowing online 3D reconstruction during
the inspection process with little constraint on the trajectory. We assess the quality of
the reconstruction on both simulated and real datasets with sensors of different vertical
apertures, respectively representing a pencil-beam and a wide-beam SONAR. While
assessing the quality of the reconstruction, we provide both qualitative and quantitative
analysis. We finally assess the viability of the reconstruction technique for real-world
objects reconstruction using both water tank and field data on multiple man-made

structures including real oil field structures.

4.2 Formulation of the reconstruction problem

Based on the imaging model of a 2D SONAR, we formulate here the reconstruction

problem. Recalling the SONAR imaging model presented in equation 2.13:

Lsonar(r,6) = Iy / Bu(0)? S4(r,0,) (1,0, 0) =0 df
Ay [Tog | 172ros
We adopt the following notation:
Vo1
f(T‘, ®, 0) = SS(T’ 0, ¢) /J(T, 0, ¢) #
1706l [172r00l

Through this notation, we formulate the reconstruction problem as the estimation of the

space occupancy at a point P from a set of observations of f acquired in different points
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of views, each measurement at f(r, ¢,6) being blurred by the vertical aperture A,:

Isonar(r, @) = Iy / B,(0)? f(r,$,6) df (4.1)

v

Although 7i,g4 is a-priori unknown, the range of observation angles defined by the vectors
Upg and 7i.g4 at each point in the scene can be assumed to be small due to the limited
vertical aperture of the sensor (maximum 20°). Under these conditions, the dot product
Upe-Tirae varies little and can be considered as constant accross all observations. This
assumption allows us to estimate f independently from the orientation of the surface
with respect to the sensor. This latter combined with the assumption of locally accurate
navigation data (maximum 2cm drift per meter) provides photo-consistency. Note that
the orientation-independent model is equivalent to considering the scatterers as observed
locally as being small spheres of equal sizes exhibiting different albedos depending on the

type of material and whether or not the space is occupied by a solid material or water:

Ooo-Tiros _ _ ¢ (4.2)

V(T,07¢) c [0,00[X [—7T,7T[>< [—71',71'[ SS(T797¢) m =

with C' a constant value. Intuitively, this modelling is equivalent to considering the
reflectivity as a first order approximation for the occupancy and is supported by the
fact that we base our reconstruction method on multiple observations of the same points

with little diversity in point of views thus enabling consistent estimation of C"

f(r,,0) = C u(r,0,0) (4.3)

We therefore aim at estimating the space occupancy through the estimation of the

reflectivity from a set of blurred observations.

4.3 Space carving

In this section, a presentation of the carving reconstruction technique is given. Based on
the imaging model of the SONAR, we first present the theoretical background of the
carving technique. We then provide an illustration on a simple example of the carving

principle.
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4.3.1 Theory

Based on equation 4.1, one can consider subdivisions of the vertical aperture A, in p

uniform sections ©; of size Ag = (62 — 61)/p such that:

p
[91,92} = U 0, = [91,91 -+ A@] J---uU [01 —+ (p— 1)A9,92]
=1

and

Tsonar(r,6) = 3 /@ Bu(0)? f(r,0,6)d0 = (r,0) (4.4)
=1 i

i=1
with

oi(r,6) = /@ B,(0)® (1.6, 0)

Due to the positivity of f, each subsection integral ¢;(r, ¢) is positive and for small

enough subdivision ©;, one can assume (Riemann quadrature):

si(r, ¢) ~ Ko, By(0;)* f(r,0;,9)

with 6; being ©; midpoint and Kg, being a measure of the size of the integration domain
©;. For simplicity and since we aim at estimating voxels of equal sizes, we consider,

without loss of generality Ko, as a constant equal to 1.

From this approximation, results the following inequalities:

ISonm' (Ta ¢)

vie[Lrl 0= f(n80) < =5 g

(4.5)

Each observation provides an upper limit to the intensity reflected by the scattering
points within the vertical aperture of the sensor and in particular in the case of N
observations {I}1<x<n of the same point P from different elevation angles {0 }1<x<n,
we have:

I,
< P) < i
0</(P)< min 5 5y

(4.6)

An estimated upper bound to f(P) is therefore given by the observation of a mini-

mum scaled intensity. The estimation of this upper bound from the set of observations
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{I }1<k<n and their associated vertical angles of observation 6; constitutes a reconstruc-
tion method. Since this non-linear approach relies on the observation of empty spaces to

bound the function f, we refer to it as space carving.

4.3.2 Illustration of the carving reconstruction principle

In 4.1, an illustration of the carving reconstruction technique is provided. As shown
in figures 4.1-a and 4.1-b, the acquisition process is performed along the direction of
uncertainty caused by the vertical aperture of the 2D multibeam sensor. This direction
is perpendicular to the image plane of the sensor at each measurement and referred to
as the U-axis. Note that this axis is represented here as a vertical axis but could in
practise correspond to any 3D line as it only depends on the orientation of the sensor.
The scene is observed from 4 locations at different altitudes under an horizontal angle ¢
and at a range r. The overlap between the footprints enable multiple observations of
the points located on the U-axis. Figure 4.1-c exhibits the multiple intensities measured
when moving along the Z-axis while figure 4.1-d presents the reconstructed axis using

the carving principle.
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FI1GURE 4.1: Carving reconstruction principle.
a) Geometry of samples acquisition along the direction of uncertainty of the sensor:
U-axis. 4 measurements are made at different vertical positions z1, zo and z3. b)
The samples provide multiple observations of the surface of the object. Due to the
vertical aperture of the sensor A,, the spatial extent of the measurements exhibit
overlapping areas. ¢) Depending on the presence of scatterers in the aperture of the
sensor, the samples feature different intensities ranging from low to high intensities.
d) The reconstruction of the observations along the axis U is obtained by keeping the
minimum observed intensity for each vertical section. The observation of empty spaces
(white intensity) provide a spatial boundary to the object.
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4.4 Space carving algorithm

In addition to the principle presented in the previous section and due to the nature of
SONAR imaging, several additional processing steps are needed. We present here the

multiple steps of the practical algorithm implementing the space carving technique.

4.4.1 Overview

As illustrated in figure 4.2, the carving reconstruction algorithm is composed of three

major steps. The first two steps aim at generating a temporary map of the environment

' v
SONAR image
acquisition

Spherical expansion
following the SONAR t-----
imaging model.

}

Data association : map
update keeping the
lowest value in each
voxel

A

Vehicle moving in the
direction of uncertainty

(SONAR vertical
aperture)
A
Occlusion resolution,
|:| External action associating each return |
X along the vertical

[ ] Algorithm step aperture to the map

User or external logic

input

FIGURE 4.2: Carving algorithm diagram. The 3-step carving algorithm features two

initial steps applied each time new data is acquired. While these two steps provide

an initial temporary estimate of the occupancy, the occlusions happening during the

imaging process are not solved at this point. Once enough data has been acquired, a
final occlusion resolution step provides the final map.

and are applied each time new data is acquired. Based on the SONAR imaging model,
a spherical expansion of the 2D SONAR image to a 3D discrete representation is first
performed. Then the carving filtering rule is applied by comparing the new 3D data
to the current estimate of the map and keeping the lowest observed intensity. New

measurements are then acquired at various positions along the direction of uncertainty
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(vertical aperture) to refine the map until the inspection is judged to be completed. Once
this condition satisfied, a last step called occlusion resolution is applied to generate the

final map, taking into account the occlusions happening during the imaging process.

4.4.2 Spherical reprojection principle

The SONAR imaging process compresses 3D information into a 2D representation by

summation along the vertical aperture. In order to retrieve a 3D representation of the

scene, the 2D images are first ”expanded” in a spherical way using a 3D rotation. As

illustrated in figure 4.3, for each return at a bearing angle ¢, the ensemble of possible

scatterer position is obtained by 3D rotation around the vector vy of a rotation angle
Ay Ay

within the vertical aperture [-5*,%>]. The rotation axis vector ¥ is defined by the cross

product between the bearing direction 4 and the unit vector orthogonal to the sonar

plane ZSonar-

Image plane

Ensemble of
possible

location of

scatterers

Pixel

Ap

FIGURE 4.3: Spherical reprojection. For each pixel, the ensemble of possible scatterers
related to it is obtained by applying a 3D rotation of the pixel centre around the axis
described by the vector v.

Once the spatial extent of potential scatterers defined, the resulting spherical arc is then
discretized at a given angular resolution 6,..s. As visible in figure 4.4, the discretization

step provides multiple 3D points for each pixel.
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FIGURE 4.4: Scatterer candidates. The ensemble of possible scatterer position for the
pixel is discretized at a given angular resolution, providing a set of 3D points for each
pixel.

Importantly, an intensity is assigned to each generated 3D point based on its elevation

angle following the upper bound described in equation 4.5:

o IPixel (T7 ¢)

I(r,¢,0) = B (0,2 (4.7)

This representation enables direct 3D filtering by maintaining at each time the estimated

upper upper bound for the observed intensity at a 3D location.

4.4.3 Occlusions and conservative reprojection

As described in section 2.2.5, the absence of acoustic return at a given point can either
be the result of open-water propagation of the emitted wave or a shadowing effect due
to the presence of an object in between the sensor and the point considered. As result
and when operating a spherical reprojection of a zero intensity pixel, it is necessary to
check for potential occlusion. In this situation, a conservative reprojection where zero
intensity pixels are projected only when no non-zero intensity pixel is present in between

the considered pixel and the sensor is needed.

Figure 4.5 provides an illustration of the conservative reprojection rule where the pixels
measured along the directions #; and iy are expanded to 3D. In the first case, no
acoustic return has been measured along the iy direction, all intensities can therefore be

reprojected. In the second case, the axis directed by us features two acoustic returns
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which can be both reprojected. In the last situation, an empty pixel is measured behind
an acoustic return, since it could be due to both an absence of scatterer or an occlusion
by a scatterer at shorter range (the scatterer leading to the return at shorter range), no
reprojection is operated.

?ZSOnar empty pixel and located after a
: return : no reprojection

reprojection of empty ~_ /e
pixels since no return :
has been measured

FI1GURE 4.5: Conservative reprojection. In order to account for potential occlusions
when expanding a SONAR image to 3D, empty pixels are only reprojected if no acoustic
return has been measured between its position and the sensor. The pixels measured
along the directions %7 and us are therefore reprojected while the empty measurement
on w3 is not expanded due to a full pixel measured at shorter range in this direction.

This conservative reprojection rule enables to obtain a set of hypothetical locations
for scatterers in 3D. At this stage, each 3D point generated represents a possible
source of backscattering with an associated intensity representing its a-priori maximum

backscattering strength or reflectivity.

4.4.4 3D data storage and Min-filtering

Once a 3D representation obtained, a 3D map gathering the multiple observations
obtained is maintained. In order to enable search and general processing operations, a
structured representation is needed. 3D data in general requires large amounts of memory
making a full regular gridded cube inconvenient. For this reason, an octree structure
(Meagher [1982]) is chosen to provide a lightweight representation. An Octree is a k-d
tree structure with nodes splitting in 3D, producing 8 partitions. It is constructed by
recursively subdividing space into eight cells until a limit condition is met. This condition

can either be a pre-defined number of elements or a maximum tree depth. As illustrated
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in figure 4.6, the possibility not to allocate certain child nodes allows sparsity of the data

and decreases the memory usage in comparison to regular grids.

/

Octree level 1

/ Octree level 2

/ - Octree level 3

(a) (b)

FIGURE 4.6: Octree structure. Compared to a regular grid (a), an octree structure (b)
enables a lightweight memory usage by decreasing the number of levels required to store
unoccupied cells.

Once a new SONAR image has been expanded to a 3D representation, the set of 3D
points is added to the map. When adding a point to the map, if the voxel the new
point fall into had previously been populated by another measurement, the carving
method is applied: the intensity associated to the considered voxel is the lowest estimated
reflectivity of the two measurements. Thus if the new reflectivity measurement appears
to be lower, its value will be affected to the voxel, otherwise, the previous measurement
will be kept. If the new measurement appears to fall into a previously observed voxel,

the intensity of the voxel is initialised to the first measurement.

Each time a new measurement is added, the map representing the best current estimate
of the reflectivity is updated. Once enough samples acquired (end of inspection), this

temporary map is processed to solve the occlusions happening during the inspection.

4.4.5 Occlusion resolution

As illustrated in figure 4.5, when multiple returns are measured on the same bearing axis
(as visible on the axis directed by s), each return is reprojected along the entire vertical
aperture. This situation reflects the a-priori possibility of presence of scatterers at each
elevation angle for each return. Due to the occlusion phenomenon described in section

2.2.5, it is impossible to observe from the same point of view two consecutive scatterers
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aligned with the SONAR location. Therefore, follo