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Abstract

Accurate and meaningful representations of the environment are required for autonomy

in underwater applications. Thanks to favourable propagation properties in water,

acoustic sensors are commonly preferred to video cameras and lasers but do not provide

direct 3D information. This thesis addresses the 3D reconstruction of underwater scenes

from 2D imaging SONAR data as well as the recognition of objects of interest in the

reconstructed scene. We present two 3D reconstruction methods and two model-based

object recognition methods. We evaluate our algorithms on multiple scenarios including

data gathered by an AUV. We show the ability to reconstruct underwater environments

at centimetre-level accuracy using 2D SONARs of any aperture. We demonstrate the

recognition of structures of interest on a medium-sized oil-field type environment providing

accurate yet low memory footprint semantic world models. We conclude that accurate

3D semantic representations of partially-structured marine environments can be obtained

from commonly embedded 2D SONARs, enabling online world modelling, relocalisation

and model-based applications.
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Chapter 1

Introduction

”Ocean is more ancient than the

mountains, and freighted with the

memories and the dreams of Time.”

The White Ship - H.P. Lovecraft, 1919

1.1 Motivations

”Freighted with the memories and dreams of Time”, the Ocean encapsulates all the

components of human life. From being the prime source of nourishment for life to playing

a major role in the regulation of climate, it directly shaped the physicality of human

beings. Since early times, its immensity gave birth to many mysteries, cultivating both

human fears and dreams. Nowadays a sanctuary for past and present life, the sea remains

a fantastic field of exploration for humankind. In many ways, the ever-lasting quest to

understanding our environment as well as the vital need to develop synergies between

human actions and the Ocean make the study of marine environment one of the most

topical research effort of our time.

An ocean of applications

At the heart of marine research, oceanographic studies aim at understanding the Ocean in

its physical and biological aspects. Perhaps the most immediate outcome of oceanography

is the modelling of the climate regulating behaviour of the Ocean. In this context, there

1
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is often a strong interest in obtaining a map of the sea-floor for environmental moni-

toring (Brown et al. [2011]) or improving long-distance navigation through bathymetric

navigation (Nygren and Jansson [2004]).

Similarly to its equivalent on land, underwater archaeology provides an insight into

human history by focusing on the study of archaeological remains such as shipwrecks,

flooded constructions and ancient man-made objects. In this situation and a-fortiori

when operating in deep water, there is a need for underwater vehicles to enable semi-

autonomous or autonomous data gathering (Bingham et al. [2010]). In particular, the 3D

reconstruction of the area of study from data gathered by an AUV provides archeologists

valuable data for visual inspection and mission planning while the possibility to perform

online semantic labelling improves time efficiency by enabling long, recovery-free missions.

For now more than a century, the ever-growing need for energy production has driven

the development of offshore oil and gas rigs. Nowadays, recent advances in harvest-

ing wind and tidal energy emphasize the importance of developing safe underwater

robotics systems for deployment and maintenance of man-made infrastructures at the sea.

Similarly, from the need for fast and long-distance telecommunication means arose the

deployment of submarine telecommunication cables. Thanks to recent technical advances

in the development of ROVs and AUVs (Whitcomb [2000]), structure deployment and

maintenance on offshore fields are now carried increasingly autonomously.

Once a natural barrier keeping people apart, the Ocean has now become a space of intense

traffic due to the development of marine technologies. As a result, considerable efforts

have been put towards the development of reliable monitoring systems. In particular,

military underwater tasks typically require the use of specific semi-autonomous systems for

harbour surveillance (Madureira et al. [2009]), ship hull inspections (Hover et al. [2012]),

surface vessels protection and hazards detection and identification such as underwater

mines (Hagen et al. [2003]).

A need for acoustic-based 3D semantic mapping

In each of these fields, the progress of scientific and technological research is conditioned

by the advances in marine robotics, providing increased autonomy, controllability and

high-quality measurements. In this context, there is a strong interest in improving the

observation and analysis capabilities of marine robotic platforms. In particular, acquiring

an accurate representation of the 3D world and being able to obtain semantic information
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on the environment from the scarce choice of underwater sensors are key challenges

limiting the autonomy in marine robotics. Due to the poor propagation properties of

electromagnetic waves in water, acoustic sensors remain the privileged sensing modality

for short to long range sensing.

In this thesis, we propose to push the state-of-the-art of 3D semantic mapping in

underwater environments by improving 3D sensing capabilities from standard 2D SONAR

imaging and exploring object recognition in SONAR-based 3D reconstructions.

1.2 Thesis organisation

The organisation of this thesis is as follows:

• Chapter 2 provides an introduction to the reader on the principles of underwater

acoustic sensing. Through the description and mathematical modelling of the

multiple physical phenomena involved in SONAR sensing, we provide key elements

to understand the characteristics of SONAR data. Based on these elements, we

present the differences between the different types of SONAR systems and highlight

the interest in using 2D imaging SONAR sensors, thereby justifying their choice

in our research. Based on the characteristics of 2D imaging sensors, we present

the basis of the 3D reconstruction problem by describing the aperture problem.

Finally, we present our 2D imaging SONAR simulation framework with which our

algorithms will be tested on a variety of realistic situations.

• Chapter 3 provides a review on the state-of-the-art in 3D reconstruction from

SONAR data. Due to the specificities of each sensor, the review is split in 5

sections describing the variety of processing techniques investigated to obtain a 3D

representation.

• Chapter 4 describes our first 3D reconstruction method from 2D SONAR data,

referred to as space carving technique. Based on a simple observation, we describe

the principle of the carving technique and its implementation. Experimental results

on both simulated and real data are presented, along with an initial quantitative

analysis.
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• Chapter 5 introduces our second 3D reconstruction method from 2D SONAR

data, referred to as a deconvolution technique. Based on the formulation of the

3D reconstruction problem as a spatially-variant blind deconvolution, a practical

solution is proposed and formulated as a constrained optimization. A variety

of experimental results is presented and compared to the space carving method

both qualitatively and quantitatively. With an emphasis on field applications, the

interest of both methods is then discussed as well as the influence of the sensor

characteristics.

• Chapter 6 presents our research efforts in taking advantage of the possibilities

of SONAR-based 3D reconstructions. In particular we investigate the extension

of 3D mapping from SONAR data to large areas where navigation drift becomes

consequent. We propose to extract semantic information from the reconstructed

scene based on a set of rough CAD models, effectively providing the ability to

operate 3D object recognition from SONAR sensing on a field. We explore multi-

modal mapping with the addition of video data to the 3D reconstructions. Once

again with an emphasis on field robotics, we provide an analysis on the applicability

of our research work as well as possibilities of further developments based on our

results.
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1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• 2D imaging SONAR simulator: we developed a framework enabling realistic

simulation of 2D imaging SONAR of any aperture. In comparison to previous

SONAR simulation framework, our implementation takes advantage of a sensor-

specific noise model providing realistic sensor-specific simulations in near real-time.

The simulator has been successfully integrated in UWSim providing a complete

simulation environment for the evaluation of algorithms and sensors. In particular,

we show that the use of the simulation environment is of great interest as a pre-dive

tool to optimize the result of underwater operations against operational parameters

(sampling scheme, sensing modality, etc.) based on custom metrics of importance

(reconstruction accuracy, surface coverage, time, power consumption, etc.).

• Space carving 3D reconstruction method: we developed a novel 3D recon-

struction method based on the observation of empty spaces and an occlusion

resolution processing. Importantly, the method enables online reconstruction and

no strong constraint on the sampling pattern is required in the formulation. Addi-

tionally, no assumption is made on the scene, allowing reconstruction of scene with

or without background surface. We demonstrated the interest of using this method

on an AUV and the possibility to obtain 3D reconstructions at a centimetre level,

similar to the accuracy of the sensor and local navigation drift.

• Deconvolution reconstruction method: inspired by SAS techniques, we pro-

pose a novel formulation of the reconstruction problem as a spatially-variant blind

deconvolution. In order to address the notorious complexity of the problem, we

adopt an approximate resolution through a constrained sparse solver and explore

multi-pass deconvolution. We show the interest of our method on real data and

exhibit the possibility to obtain detailed and high coverage reconstructions.

• Quantitative analysis of 3D reconstruction from 2D imaging SONARs:

through a comparison to reference CAD models, we provide the first quantitative

results on the accuracy and coverage of 3D reconstruction results obtained from

2D imaging SONAR data.
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• Study on the choice of an acoustic sensor for 3D reconstruction: based on

the simulation environment, we conducted a comparative study between pencil-beam

and wide-beam SONARs highlighting the interest of using commonly embedded

wide-beam sensors for high-coverage 3D reconstructions.

• CAD-model-based underwater object recognition method: we demon-

strate the first CAD-model-based underwater object recognition method through

a direct 3D CAD model mapping approach. Through our field experiment using

SONAR data gathered by an AUV, we show the ability to identify the nature and

6D position of man-made structures based on a set of CAD models specifying the

objects of interest.

• Model-based video mapping: using field data, we demonstrate the interest

in performing model-based video mapping for visual inspection of 3D man-made

objects.



Chapter 2

Sonar principles and simulation

”If you cause your ship to stop, place

the head of a long tube in the water

and place the outer extremity in your

ear, you will hear ships at a great

distance from you”

Leonardo Da Vinci, 1490

2.1 Introduction

With these famous words written in the 15th century, Leonardo Da Vinci described the

favourable propagation properties of sound waves in water. Since this early observation,

successive technological improvements arose. The tragic sinking of the Titanic in April

1912 as well as the two successive World Wars rose awareness on the interest of exploiting

sound waves to observe distant objects. As a result, many patents were filed and

continuous improvements in maximum range and spatial resolution were achieved, leading

to the development of so-called SOund Navigation And Ranging systems. Modern

SONARs are now widely used in very different fields of application both in the civil and

military domain. Their contained cost and size nowadays enables their integration on

small underwater platforms.

We present here an introduction to SONAR principles, encompassing the various physical

phenomena occurring during the emission and propagation of acoustic waves in a 3D space.

7
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We then provide a generic measurement model for SONAR sensing before reviewing the

differences between each type of SONAR sensor. Based on this review, we justify the

choice of using 2D imaging SONARS for underwater environment observation. Adapting

the general description of the physical phenomena to acoustic sensing from a generic

transducer, we provide a mathematical model for a 2D imaging SONAR. We present

the so-called aperture problem, highlighting the difficulty to estimate the 3D position

of a scatterer from a single SONAR measurement. Finally we present a simulation

framework enabling realistic simulation of 2D imaging SONARS of any vertical aperture.

In comparison to existing SONAR simulation, our simulation framework enables the

generation of 2D SONAR images at sufficient rate for enabling near real-time simulation

and features a realistic sensor-specific noise model.

2.2 Principles and modelling

We present in this section the various physical phenomena that need to be taken into

account when studying the formation of SONAR images. At each step, we provide

mathematical models to be integrated later in a sensor-specific model.

2.2.1 SONAR equation

In 1967, Urick formulated the SONAR equation from an energetic point of view (Urick

[1967]), modelling the relation between the emitted and received power levels in dB

(relative to the reference intensity of a 1µPa plane wave):

SL − 2TL + TS − (NL − DI) = DT (2.1)

with the parameters being:

• SL: Source Level (emitted power).

• TL: Transmission Loss (loss occurring during the propagation of the wave in open

water).

• TS: Target Strength (target reflectivity or proportion of backscattered energy).
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• NL: ambient Noise Level.

• DI: Directivity Index.

• DT : Detection Threshold or minimum SNR allowing the detection of a scatterer.

2.2.2 Source

In the case of an active SONAR, typical emission levels are around 200 dB. High emission

levels are desired for both long-range sensing and achieving a good SNR (thanks to

a high dynamic range). However, in practice, due to non-linear and cavitation effects

(Urick [1967]), the use of high-power rectangular short pulses appears to be impossible in

the water. Furthermore an ideal pulse (Dirac pulse) would feature an infinite bandwith

which is in practice impossible to achieve due to the limited size of the transducer. As a

consequence, the signals transmitted by acoustic transducers are band-limited. While

the maximum range and the dynamic range of the SONAR are proportional to the

transmitted energy, the range resolution is determined by its pulse duration (Callow

[2003]). As illustrated in figure 2.1, the pulse width must be chosen small enough to

enable the dissociation between scatterers observed consecutively along the direction of

propagation. The duration of the pulse is naturally limited by the wavelength which is in

turn defined by the frequency of the emitted signal. Small range resolutions can therefore

only be achieved at high frequencies. On the other hand, the attenuation of sound is much

higher at high-frequencies which limits the distance of observation (maximum range).

When designing a acoustic source, there is therefore a trade-off between the desired

range resolution and the maximum range. In order to maximum the resolution within

practical bandwidths, techniques like pulse-compression have been developed (Cook

[2012]), enabling range resolutions proportional to the signal bandwidth by emitting

phase-modulated signal and operating a correlation between the received signal and the

emitted signal. While the use of a wideband signal provides increased resolutions, in

practise the bandwidth of the signal remains limited by the physical properties of the

transducer (material and size) as well as the electronics. As detailed in Pailhas [2013],

these aspects make the development of wideband systems considerably more complex. For

these reasons, most SONARs operate at a single frequency and provide pulse-like signals

through a simple amplitude modulation. Since we aim at performing centimeter-level 3D
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Figure 2.1: Illustration of the pulse width limiting the range resolution of a SONAR.
A signal is emitted at E along the x-axis and backscattered by two targets. In the
situation where the pulse width is greater than the distance between the two scatterers
(a), the backscattered signals at each target sum up to a single large echo making the
dissociation of the two scatterers impossible. On the contrary, when the pulse width is
smaller than the distance between the two targets (b), the backscattered signal features

two clear and distinct echoes.

reconstruction, the range resolution needs to be of centimeter level and we will therefore

focus on high-frequency SONARs, emitting signals of at least a few hundreds kHz.

We therefore restrict our study to single and high-frequency designs and formulate the

signal emitted by the transducer as:

pe(t) = Amp(t) sin(t+ ω0) (2.2)

where Amp(t) is a time-varying amplitude, often denoted as signal envelope and Ω0 is

the phase at t = 0.

As described in section 2.2.7, real imaging systems are typically composed of an array

of transducers and the signal observed at the receiver is typically obtained by auto-

correlations over time periods to measure the energy backscattered at a given range. In

this situation, phased arrays enable to increase the SNR through a so-called beamforming

process (see section 2.2.10) and effectively reconstruct the emitted pulse. For this reason,
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we formulate the model of our pulse as an ideal Dirac pulse:

pe(t) = δ(t− t0) (2.3)

with t0 the emission time of the pulse.

2.2.3 Propagation model

Recalling the 3D wave equation describing the behaviour of a wave in an isotropic

non-viscous fluid:
∂2p

∂t2
= c2 ∇2p = c2(

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
) (2.4)

where p is a pressure field and c is the spatial velocity of the wave front in the water.

It can be shown that functions of the following form in spherical coordinates notation

are solution:

p(t, r) =
1

r
f(t± r

c
) (2.5)

This solution exhibits a typical spherical spread behaviour where the intensity decreases

with the distance from the source. An important consequence of this is a quadratic

decrease in power when ensonifying a distant target. In the case where the emission and

reception are made at the same point, the two-way propagation therefore implies a power

attenuation in r−4.

In addition to the spherical spread, additional loss due to physical reactions in the water

has been observed. As illustrated in figure 2.2, the absorption is frequency-dependent

and mainly needs to be considered when operating at high frequency.

In order to compensate for transmission loss happening when observing distant targets,

a TVG (Time Varying Gain) is often applied before the analog to digital conversion step,

allowing the generation of images with range-independent intensities. For this reason,

propagation loss terms are often dismissed in models and we will assume here that we

are modelling sensors with ideal TVG, compensating for any propagation attenuation.
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Figure 2.2: Regions of dominant processes of attenuation of sound in sea water - Urick
[1967].

2.2.4 Sound scattering model

When meeting a solid surface, acoustic waves encounter a sudden change in mechanical

impedance leading to the rejection of part of the incoming energy. Depending on the

properties of the material (surface geometry, hardness), the wavelength considered and

the incidence angle, the amount of energy bounced back by the scatterer varies widely.

In general, the ratio between the size of the scatterer and the wavelength of the incoming

wave determines the type of scattering. While Rayleigh scattering models are commonly

used to model situations with large wavelengths compared to the scatterer size, geometric

scattering is often assumed when considering large scatterers compared to the wavelength.

In this situation, the laws of geometric optics are sufficient to describe the phenomenon.
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This phenomenon, generally denoted as acoustic reflectivity in the literature has been

widely studied underwater.

In Urick [1954], Urick presented the backscattered energy as a function of pulse length,

frequency and grazing angle. His early experiments suggested that the surface roughness

determined the characteristics of the backscattering and exhibited a diffuse reflection,

rather than a specular diffusion. Further experiments ([McKinney and Anderson, 1964,

Stanic et al., 1988]) made on different types of seabed at a large range of grazing

angles confirmed the results of Urick. Alongside with Marsh and Patterson models, the

Lambertian model (see equation 2.6) is used in Gott et al. [1993] where a parameter

estimation is made from the backscattered data of a 12kHz sonar array.

Ir = µIisin(θ)sin(φ)dS (2.6)

where 0 ≤ µ ≤ 1 is a reflectivity coefficient modelling the proportion of energy backscat-

tered by a material, Ii is the intensity of the incident wave, θ and φ are the two grazing

angles (complementary of incidence angle) characterising the direction of the incident

wave w.r.t the local surface patch dS. Due to its simplicity, the Lambertian assumption

is commonly assumed in underwater imaging (Aykin and Negahdaripour [2013]).

When operating at low grazing angles, the authors of Trevorrow [2004] showed that a

Rayleigh model was better suited than Lambert’s law by studying the skewness of the

backscattered distribution. Similar recent studies such as Lyons and Abraham [1999]

found that log-normal distributions and Rayleigh mixture model provide a better fit

to the tail of statistical distribution of backscattered signals than Lambert’s model.

However in general, the roughness of the surface compared to the wavelength remains the

dominant factor to be considered in the choice of a model. Altough using high-frequency

SONARs with wavelengths of a few millimeters, we consider in this study the observation

of surfaces with very low roughness such as clean man-made structures. This type of

surface therefore exhibits a specular behaviour that justifies the Lambertian assumption.

We define a scatterer as being an element of large size in comparison to the wavelength

of the sensor, therefore when considering a 900kHz sensor a scatterer would be typically

half a centimeter at least.
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2.2.5 Acoustic shadowing

One important consequences of sound scattering and propagation in the water is the

shadowing phenomenon. Due to the backscattering of sound waves by the surface of the

objects, no acoustic sensing is possible in the inner part of the objects. In general, the

presence of obstacles (ranging from small particles to solid objects) affects the propagation

of the wave by reflecting a fraction or all the incoming energy, making further acoustic

sensing in the direction of propagation impossible. Therefore when the emitter and

receiver are coincident, only the surface visible from the location of the sensor can be

observed, leaving the rest of the scene unknown.

As illustrated in figure 2.3, in presence of a scatterer within the beam boundaries, the

region behind the object does not reflect any energy and therefore remains unobserved.

However, on the side of the scatterer, the wave keeps propagating, enabling the observation

of further objects in these directions.

unobserved region
acoustic wave

scatterer surface

source

Figure 2.3: Acoustic shadowing. A scatterer is present on the propagation path of
an acoustic wave creating an acoustic shadow. The region behind the solid surface can

therefore not be observed from the source position.

When adopting uniform representations such as 2D images, this absence of backscattered

energy leads visible shadows behind the obstacles. An illustration of this phenomenon is

shown in figure 2.4 where a boat hull present on the seabed is imaged with a BlueView

P900-130 SONAR. Due to the occlusion of the boat in the field of view of the SONAR, a

shadow is visible in the area behind it.

As a consequence, acoustic shadows must be taken into account when interpreting

SONAR measurements. The observation of an absence of acoustic returns can be caused

by both open water propagation and shadowing effect. Therefore and under the sensor
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on the seabed

seabed

Figure 2.4: Illustration of acoustic shadowing in real data. BlueView P900-130 image
during the inspection of a sunk boat hull, laying on the seabed. The image exhibits
large shadows area behind the boat due to the occlusion of the seabed by the boat hull.

spatial resolution, it is a-priori impossible to determine directly whether or not a region

with no acoustic return is occupied or not.

2.2.6 Multipath propagation

Another consequence of sound bouncing on surfaces is the multipath propagation phe-

nomenon. As showed in figure 2.5, when multiple scatterers are present in the scene, the

emitted acoustic wave can successively bounce from one scatterer to another. In this

situation, it is possible to observe an acoustic return of a travel time equal to the sum

of all the travel durations between the different elements. As a consequence the wave

reflected by the last scatterer will appear as coming from further than the direct distance

to the transducer.

When unable to resolve the direction of arrival of the observed wave (for example

under the angular resolution of the sensor), this phenomenon typically leads to wrong

interpretation of the delayed return. In this situation, an acoustic return at a further

distance in the direction of the sensor will be represented. For this reason, this type of

return is sometimes denoted as a ghost return.
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transducer

first scatterer

second scatterer

delayed 
return

Figure 2.5: Multipath propagation. An emitted acoustic wave is reflected by two
scatterers in the scene before returning to the transducer location. In this situation, a
delayed return is observed as featuring a travel time equal to the sum of the three point
to point propagation paths (transducer to scatterer 1, scatterer 1 to scatterer 2 and

scatterer 2 to transducer).

This phenomenon is typically observed in situation where multiple scatterers are present

in the scene such as when observing complex geometrical shapes or operating in closed

environments (the presence of interfaces on the sides such as walls, seabed or water

surface will induce acoustic reflections). As an illustration of this phenomenon, figure

2.6 shows two SONAR images in polar coordinates acquired in a small water tank in

Heriot-Watt University. Two different shapes are represented, figure 2.6-a shows an

aluminium sphere and its security rope while the figure 2.6-b exhibits a more complex

object (Hyball ROV). Both objects have been placed on the bottom of the tank, 1 metre

away from the side walls. In addition to the objects and the bottom of the tank, acoustic

returns reflected by the water surface, the tank side walls as well as multiple parts of the

vehicles.

Although weaker by nature (multiple attenuations), these returns severely pollute the

image and make its interpretation complex. In a situation of multipath observation,

ghost returns are visible but a similar image could be obtained with a real scatterer in

place of the ghost return. It is therefore a-priori impossible to determine the position of

the multiple scatterers from a single observation.

2.2.7 Measurement model

Once the pulse transmitted, any incoming wave located within the physical aperture

boundaries of the transducer is observed. As elaborated in antena theory (Kino [1987]),
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multipath returns due to the surface and side walls

multipath returns due to the tank bottom and side walls
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Figure 2.6: Illustration of a multipath propagation on real data. Two objects are
being imaged in a small water tank. A simple, spherical shape (a) and a more complex
geometrical shape (b) are placed at the bottom of a small water tank. In both cases,
reflections coming from multipath between the tank side walls and respectively the water
surface and the bottom of the tank are observed. In (b), multipath due to multiple

reflections between the parts of the object (Hyball ROV) are visible.

the plane wave assumption is only valid in the far field of the sensor which starts at 1m

for a SONAR operating at 900kHz. In this study we therefore assume far-field conditions

and the observed waves as being plane waves. The transducer then essentially records

the acoustic state in its vicinity which results from the sum of all these waves. The

physical aperture of the transducer induces an attenuation pattern varying on the angle

of observation.

As illustrated in equation 2.7, mathematically, the measured intensity is therefore a 2D

integral of the acoustic potential in its vicinity:

ITransducer(t) =

∫
Av

∫
Ah

Bv(θ)Bh(φ)V (t, θ, φ)dθdφ (2.7)

where Av and Ah are respectively the physical vertical and horizontal apertures of the

transducer, Bv and Bh their associated beam patterns and V (θ, φ, t) is the acoustic
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potential observed at an elevation angle θ, an azimuth angle φ and a time t.

2.2.8 Directivity model

In order to obtain an increased resolution and better power efficiency, acoustic transducers

often feature radiation patterns with a high directivity (narrow beam pattern), effectively

focusing the emitted energy in a specific direction. This angular attenuation affects the

signal both during the transmission and reception phase. When unknown, the beam

pattern can be estimated such as in Lanzoni and Weber [2010] where the transmission

and reception beam pattern of a Reason 7125 sonar have been measured. In many cases,

sonar sensors are effectively composed of an array of sensors. As mentioned in Thorner

[1990], transducers beam pattern often exhibit side-lobes resulting in sensing signals

coming from neighbours transducers or multi-paths waves. In practice, manufacturers

aim at reducing the side-lobes as much as possible while approaching a step profile in

the Fourier domain (ideal low-pass filter). For this reason, the beam pattern is typically

modelled by a Bessel function of the first kind:

B(θ) =

∣∣∣∣∣sin( κ.θ
θ3dB

)

κ.θ
θ3dB

∣∣∣∣∣ (2.8)

with κ ≈ 1.389 and θ3dB being the angle of mid-power attenuation such that [B(θ3dB)]2 =

0.5, commonly used to define the aperture of the sensor. Figure 2.7 provides an illustration

of the beam pattern with θ3dB = 5◦exhibiting small sides lobes, at least ten times the

amplitude of the main lobe. As a consequence, we will consider this model when

evaluating the angular attenuation.

2.2.9 Phased arrays

In order to increase both directivity and footprint, SONARs are usually composed of an

array of transducers. They effectively produce 2D images from the measurements of each

element on a unidimensional array (Belcher et al. [2002]) or 3D range images with a 2D

array (Davis and Lugsdin [2005]). So as to maximize the field of view, each transducer

can be used alternatively as an emitter or a receptor. Depending on the characteristics

of the sensor, specific emission patterns are designed by the SONAR manufacturers in

order to allow the acquisition of the data on each beam independently and minimize
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Figure 2.7: Typical beam pattern of a 10◦aperture transducer pointing along the hori-
zontal axis (0◦direction) and displayed in polar coordinates with normalized amplitude.

crosstalk artefacts. Although all beams are acquired independently and sequentially,

the high frequency SONARs considered in this study operate short range sensing (1

to 50m). Due the constraint of having a high range resolution, our 3D reconstruction

applications target inspections at typically 1 to 10m range. At these distances and using

high-frequency sensors, SONARs typically feature updates rates of a few tenths of Hz.

In these conditions, the change in the scene between the acquisition of two beams (either

due to the vehicle motion or to the evolution of the scene) can be considered negligible.

We will therefore ignore the impact of the emission pattern of the sensor in this study.
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2.2.10 Beamforming

Exception made of acoustic lens-based designs such as Belcher et al. [1999], traditional

SONARs use transducers featuring a non-negligible aperture of at least 1◦. The angular

uncertainty due to the aperture of the transducers is then reduced by using a so-called

beamforming technique which consists in combining the observations acquired by different

transducers along the array. As illustrated in figure 2.8, the angle of arrival θ of the

wavefront induces a delay between the observations of the wavefront at each transducer.

Based on this principle, the angle θ can be estimated through a so-called electronic

1 2 3

plane wavefront

Figure 2.8: Estimation of the direction of arrival using a phased array. Q plane wave
is observed at each transducer (1...N) with a delay depending on the spacing between

each transducer (d = λ
2 ) and the direction of arrival.

steering (or scanning) where the signals of each transducers are combined with a range of

delays (N −1)d cos(θ) = (N −1)λ2 cos(θ) corresponding to the direction of measurement.

Thus the contributions of a wave coming from an angle θ will remain coherent and add up

whereas observations in directions where no wave is coming from will appear incoherent

and result as noise. This processing therefore increases the Signal to Noise Ratio (SNR)

and provides a higher resolution along the direction of the array. This phased array

processing is therefore called beamforming for its ability to estimate the missing direction

of arrival making it equivalent to a sensor with a small aperture along the direction of

the array.
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Based on this principle of phased array, many beamforming techniques have been

investigated. As described in Thorner [1990], the beamforming scheme can be either

adaptive or fixed. In adaptive beamforming, the received signal is used to refine the

characteristics of the array processing, allowing dynamically optimized measurements

for various purposes (interference rejection, SNR maximization, etc.) whereas fixed

beamforming makes use of constant time/delay weights to form the image. Since the

first publication of electronic beamforming of acoustic sources (Billingsley and Kinns

[1976]), three types of beamforming methods have emerged. Simple delay-and-sum

approaches estimate the reflected wave intensity at a given range and bearing angle by

summing the measurements of each transducers weighted by a delay term. The energy

coming from this range and bearing angle will then add-up coherently or incoherently

depending on whether or not a scatterer was present at this location. While simple,

this technique a-priori requires considering every possible angle on a sufficiently high

resolution sampling grid, resulting in heavy computations. In opposition to time domain

approaches, frequency-based approaches operate the beamforming by processing the dual

frequency representation of the measured signal. Importantly and unlike time-domain

beamformers, the beam resolution achieved by frequency-based methods is not limited by

sampling period. Improvements to reduce the sensitivity to noise have been made such as

the MUSIC beamformer (Schmidt [1986]) where the frequency representation of the signal

is linearly decomposed, identifying the noise characteristics and improving the angular

estimation. The last beamforming approach are called maximum likelihood approach

where an estimation of the spatial covariance matrix is obtained by minimization towards

a model. In practice, the beamforming operation is in general computationally intensive

and often implemented by the manufacturer on dedicated hardware platforms such as

FPGAs (Graham and Nelson [1998]). Implementation details are at the discretion of

the manufacturer and depend on the intrinsic design of the sensor. For this reason, all

manufacturers provide the beamformed data by default.

While the phase information contained in the signals pre-beamforming is of interest for

the problem of 3D reconstruction in general, it is in practice difficult to leverage due

to the constraints imposed by coherent processing (position known to a fraction of the

wavelength accuracy) as well described in SAS work Marston and Kennedy [2016], Sæbø

et al. [2013]. Since we chose to operate with high-frequency SONARs of at least a few

hundreds of kHz, the wavelenghts considered amount to a fraction of a centimeter making
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coherent processing impossible with current navigation systems. For this reason, we

choose to assume our data as beamformed and our modelling of a 2D sonar will therefore

assume direct bearing sensing, resulting in the following formulation:

ISonar(t, φ) =

∫
Av

Bv(θ)V (t, θ, φ)dθ (2.9)

where Av is the vertical aperture of the array of transducers, Bv the associated beam

pattern and V (θ, φ, t) is the acoustic potential observed at an elevation angle θ, an

azimuth angle φ and a time t.

2.2.11 SONAR noise model

As studied in Wenz [1962], acoustic ambient noise levels in the oceans depend on the

local conditions such as the presence of bubbles, surface agitation and turbulent pressure

fluctuations. In addition to the ambient noise and depending on the operated frequency

band and the quality of the SONAR electronics, various types of noise can corrupt the

data. In spite of the use of beamforming techniques, increased sensor-specific noise

patterns can be observed in the SONAR images. In particular, the measurements

obtained in areas of high attenuation (side of the transducers beam patterns) exhibit

lower intensities resulting in higher noise levels. An illustration of this phenomenon is

showed in figure 2.9 where a sonar image has been measured in open-water in Loch Eil,

Scotland.

In addition to sensor-specific noise patterns, speckle noise is frequently observed in sonar

images as described in Abbott and Thurstone [1979]. From the use of simple image

processing techniques (averaging multiple frames, median filter) to more complex filters

([Huang et al., 2009, Isar et al., 2005]), speckle noise can be mitigated in different ways,

often at the cost of an edge smoothing. In general, the observed noise is the result of

the combination of multiple kinds of noise in the acquisition chain. For this reason, a

Gaussian noise is commonly observed in the final data and is assumed to be decorrelated

from the properties of the scene. Although the presence of a scatterer in the field of

view of the sensor could potentially modify the noise distribution, the study of this

phenomenon would require a series of experiments in an open-water environment and an

elementary scatterer to be placed in various locations in front of the sensor. It appears

difficult to carry such an experiment and the dependency on the location of a scatterer
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zero intensity

Figure 2.9: BlueView P900-130 noise pattern. In absence of any scatterer in the scene,
the sonar image exhibits 7 noise stripes.

in the scene would make the denoising process a complex treatment. Our chosen noise

model will therefore be sensor-specific and modelled based on the observation of noise

statistics in a scatterer-free environment.

2.3 Overview of the different types of SONARs

In order to exhibit the specificities and usage of each type of sensor, we provide here a

brief overview of the various types of SONARs existing along with their main application

fields. Following this review, we highlight the particular interest in using 2D imaging

SONARs for their frequent usage in a wide variety of applications.

2.3.1 Review

Single-beam echosounders As illustrated in figure 2.10, single-beam echosounders

provide direct range readings in a single direction.

Consisting of a single transducer, single-beam echosounders often equip boats to provide

a rough estimate of the draught. These sensors are inexpensive and have only been

scarcely used for research work to provide low-resolution bathymetry measurements,
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Figure 2.10: Illustration of the footprint of a single-beam sensor mounted on an AUV
in a downward configuration.

study seabed composition (Amiri-Simkooei et al. [2011]) or observe local faun (Hutin

et al. [2005]).

Side-scan SONARs Side-scan SONARs aim at providing backscatter data of a very

narrow stripe from a single ping. The narrow aperture (typically a fraction of degree

to 1◦) is obtained by beamforming of an array of receiving transducers. Due to these

specificities, side-scan SONARs can only be employed in a side-way-looking configuration

as visible on figure 2.11.

For this type of sensor, low frequency designs are prevalent, allowing typical sensing

ranges of a few hundreds meters. Side-scan SONARs are traditionally inexpensive and

employed to image large areas of seabed for inspection, detection and classification of

objects lying on the seabed. Therefore side-scan SONARs are frequently integrated on

cost-efficient platforms with the aim of delivering long-range seabed imaging as in Collier

and Humber [2007] for coral reef monitoring, pipeline tracking as in [Bagnitsky et al.,

2011, Petillot et al., 2002] or mine detection as demonstrated by Reed et al. [2003].

2D Multibeam imaging SONARs In order to provide direct 2D readings, multiple

transducers can be arranged as an unidimensional array. As visible on figure 2.12, this

type of sensor naturally provides larger footprints than single-beam sensors, allowing

direct range sensing at multiple bearing angles. Beamforming techniques then enable the
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Figure 2.11: Illustration of the footprint of a side-scan sensor mounted on the side of
an AUV.

Figure 2.12: Illustration of the footprint of a multibeam sensor mounted on an AUV
in a downward configuration.
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generation of range and bearing 2D images. Depending on the design of the sensor, the

bearing angle resolution typically ranges from a fraction of a degree to 2◦. The range

resolution depends on the frequency operated and typically ranges from a few millimetres

to a few centimetres. Multibeam SONARs are then divided into two categories, based

on their vertical aperture. Pencil-beam sensors offer a low footprint by featuring typical

apertures around 1◦ whereas wide-aperture SONARs ensonify large volumes of water at

each ping with typical vertical apertures of 7◦ to 20◦.

Thanks to their low elevation angle uncertainty, pencil-beam sensors are traditionally

used to acquire bathymetry ([Grasmueck et al., 2006, Vaneck et al., 1996]) at ranges

up to a hundred metres, to perform short to mid-range mapping (Papadopoulos et al.

[2011]), to study ecosystems or assist fishing activities (Gerlotto et al. [2000]).

On the other hand, wide-aperture SONARs are more commonly employed for collision

avoidance tasks (Petillot et al. [2001]), sea floor imaging and mosaicking (Hurtós et al.

[2014]) or online target tracking (Folkesson et al. [2007]).

3D SONARs In order to provide direct 3D information, a 2D set of acoustic transducers

can be integrated in a single sensor. As illustrated in figure 2.13, these sensors offer

direct range readings along two axis, effectively providing direct 3D information. These

Figure 2.13: Illustration of the footprint of a 3D SONAR mounted on an AUV in a
downward configuration.



Chapter 2. Sonar principles and simulation 27

Weaknesses Strenghts

Single-beam
- low resolution
(20cm × 10◦)

- low cost
- very long range (up to 7000m)

Side-scan

- medium to high resolution
depending on range
(3 to 10cm × 1◦)
- only provides 1D data and
in slanted range

- low cost
- long range (up to 500m)
- higher resolution (SAS) provided
accurate navigation is available
- compact and commonly embedded
on AUVs

2D multibeam
- short range (up to 100m)
- high cost

- high resolution
(0.5 to 3cm × 0.6◦to 2◦)
- relatively small and easy
to integrate on AUVs
- provides 2D information of direct
use for live monitoring

3D array

- very short range (up to 100m
but typically used up to 10m
to yield high resolutions)
- very high cost
- bulky

- high resolution (3cm × 0.5◦to 20◦)
- provides direct 2.5D information
of interest for collision avoidance

Table 2.1: Strengths and weaknesses of the different types of SONAR sensors

3D SONARs usually operate at high frequency to provide higher resolutions (centimetre

level) in a contained size. 3D SONARs have been employed to perform tasks where

instant 3D sensing is desired, in particular to observe phenomena in real-time such as in

Soloviev et al. [2012] where ship wakes were studied with an Echoscope SONAR (Davis

and Lugsdin [2005]). Other applications include real-time positioning (Woodward et al.

[2010]) or fast 3D mosaicking (Hansen et al. [2005]). Although various 3D SONARs are

now commercially available, their increased complexity in comparison to standard 2D

SONARs makes these sensors expensive and bulky. Their use on AUVs is therefore in

general impractical if not prohibitive on cost-efficient platforms.

2.3.2 Interest in using 2D imaging SONARs

In order to identify the pros and cons of each type of SONAR, we present in table 2.1 a

summary of the strengths and weaknesses of each configuration.

Although inexpensive, side-scan SONARs only provide 1D information about a narrow

stripe at each ping and the recovery of 3D information from side-scan data is inherently

ill-posed. On the other hand, direct 3D sensors such as the Echoscope provide real-

time 3D sensing capabilities but remain prohibitively expensive and too large for being



Chapter 2. Sonar principles and simulation 28

integrated on AUVs. Multibeam sensors bridge the gap between these two categories

of sensors by offering small to large footprints, 2D centimetre-level resolutions in a cost

and size that makes them suitable for employment on a wide variety of surface and

underwater vehicles. SONAR sensors being expensive in general, there is a lot of interest

in using sensors commonly embedded on underwater platforms rather than adding a

specific sensor for each new application. For these reasons, our work focuses on the use

of standard 2D imaging SONARs for 3D reconstruction. For reference, appendix A -

section 6.7 provides typical specifications of a 2D imaging SONAR.

2.4 Description of 2D imaging SONARs

Following the justification of the interest in studying the use of 2D imaging SONARs for

3D reconstruction purposes, we present here an imaging model specific to this sensor. In

particular, we combine the generic acoustic sensing models presented in sections 2.2.2

to 2.2.11 with the specificities of 2D imaging sensors to present a mathematical model

suitable to the description of the generation of 2D high-frequency SONAR measurements.

Based on this model, we present the aperture problem inherent to the imaging process

and illustrate it to exhibit the difficulty of performing 3D reconstruction from 2D SONAR

data.

2.4.1 2D imaging SONAR model

A 2D imaging SONAR is essentially a rectilinear array of transducers. These transducers

are triggered at different times in order to provide readings at multiple bearing angles

with an increased resolution when using beamforming techniques. As visible in figure

2.14-a, imaging sensors deliver 2D images where each pixel represents a range and bearing

angle small interval. As depicted in figure 2.14-b, the pixels at each range range and

bearing angle represent backscattered intensities coming from all elevation angles along

the vertical aperture Av.

Based on the models established in sections 2.2.3 to 2.2.8, we present here the combined

imaging model of a multibeam SONAR in absence of occlusions and multipath propaga-

tion. Recalling the measurement model presented in equation 2.9 and considering an
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Figure 2.14: 2D Imaging SONAR geometry.

isotropic propagation of the emitted pulse pe(t) in the medium, the received signal at

time t and bearing angle φ can be written as:

ISonar(t, φ) =

∫
Av

Bv(θ)
2

∫ ∞
0

R(r, θ, φ)
1

2r
pe(t−

2 r

c
) dr dθ (2.10)

with R(r, θ, φ) the scatterer reflectivity at the 3D point (r, θ, φ). The signal observed

by the transducer at time t is therefore a sum of the acoustic returns coming from

distant scatterers present in the scene with a delay (t− 2 r
c ) associated to the two-way

propagation and an attenuation in r−1.

As explained in section 2.2.3, assuming compensation of the propagation loss (as obtained

when using a TVG), the attenuation term can be omitted. Furthermore, we consider here

an ideal dirac pulse pe(t− 2 r
c ) = I0 δ(t− 2 r

c ) which results in the following formulation:

ISonar(t, φ) =

∫
Av

Bv(θ)
2

∫ ∞
0

R(r, θ, φ) I0 δ(t−
2 r

c
) dr dθ (2.11)

Based on this model, readings at range r can therefore be obtained at t = 2 r
c + t0 where

t > t0 and t0 is the emission time of the pulse:

ISonar(r, φ) = I0

∫
Av

Bv(θ)
2 R(r, θ, φ) dθ (2.12)
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One can then describe the reflectivity R of the scatterers as following a Lambertian

diffusion model:

ISonar(r, φ) = I0

∫
Av

Bv(θ)
2 Ss(r, θ, φ) µ(r, θ, φ)

~vθφ.~nrθφ
‖~vθφ‖ ‖~nrθφ‖

dθ (2.13)

where Ss(r, θ, φ) represents an indicator function that is unity if there is a surface at

location (r, θ, φ) (relatively to the position of the source) and zero otherwise. The term

modelling the albedo of the surface (proportion of reflected energy) is defined with respect

to the source location s by the reflectivity coefficient associated to the material of the

scatterer µ(r, θ, φ) and the dot product ~vθφ.~nrθφ where ~vθφ then represents the direction

of propagation of the acoustic beam at the angles θ and φ and ~nrθφ is the surface normal

of the scatterer at (r, θ, φ).

2.4.2 The aperture problem

As described in the previous sections, an imaging SONAR delivers intensities by summing

the multiple acoustic returns coming from different elevation angles. The width of the

vertical aperture therefore has a direct impact on the ability to locate the scatterer

position within the vertical aperture. This phenomenon is commonly called the aperture

problem.

When considering large apertures, this blurring process induces an ambiguity when

determining the position of the scatterer along the vertical aperture of the sensor. As

illustrated in figure 2.15, two identical scatterers placed at opposite elevation angles

relatively to the SONAR image plane result in the same measurement.

This example exhibits the 3D to 2D compression resulting from the SONAR imaging

process. It demonstrates the inherent illness of the 3D reconstruction problem and the

a-priori impossibility to determine the position of the scatterer based on a single image

without additional knowledge.
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Figure 2.15: Illustration of the aperture problem. Two scatterers placed at opposite
elevation angles (a and b) lead to the same image (c). In this situation, the returns
coming from the scatterers are integrated in the same pixel of the SONAR image with

the same measured intensity.

2.5 Simulation

In order to simulate realistic underwater scenarios, an underwater simulation environment

is needed with the possibility to simulate 2D SONAR data. We present in this section

an overview of the underwater simulation possibilities. We then provide a brief review of

published work on SONAR simulation and exhibit the limitation of existing solutions.

Following this, we present our imaging SONAR simulation framework along with a

qualitative comparison between real and simulated data.

2.5.1 Choice of the simulation environment

Review

In order to provide a realistic 3D underwater environment, sensor simulation algorithms

need to be integrated in a simulation environment. A review of commercial and open-

source unmanned vehicle simulators is proposed in Craighead et al. [2007]. The authors

highlight the recent trend of using frameworks derived from commercial game engines for

real-time physics-based simulation and the presence of many open-source solutions. In
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the underwater domain, a high-level and non-exhaustive review of AUV simulators has

been presented in Matsebe et al. [2008]. In our case, we are interested in an open-source

simulation environment in order to allow easy extension and integration of third-party

libraries. The simulation environment needs to offer near real-time simulation of multiple

sensors and easy configuration of the 3D scenario. After evaluating the different open-

source underwater simulation environments available, decision was made to use UWSim

(Prats et al. [2012]).

UWSim

The UWSim simulation environment offers the simulation of various sensors (Lab [2012])

such as single and stereo video camera, single-beam range reading, structured light

projector, object picker, DVL, IMU, GPS and force sensor. The environment supports

the simultaneous simulation of multiple vehicles at a time. Physics simulation is provided

through the use of OSG library (Osfield et al. [2004]). As visible in figure 2.16, the

simulated scene can be defined by a set of CAD models, allowing easy modelling of

various real-life situations such as offshore inspections, archaeological surveys, shipwreck

inspection, etc. Importantly, UWSim implementation is open-source, making its extension

and maintenance by a third party easy. The simulator makes use of ROS framework

where new functionalities can be easily added via the implementation of new software

modules called nodes.

2.5.2 2D SONAR simulation

Review

In order to simulate the SONAR imaging process, various approaches have been inves-

tigated. Although popular in many simulation applications, finite elements methods

are impractical when considering small wavelengths due to a very high computing cost.

Frequency domain approaches have been used such as the SIGMAS simulator presented

in Groen [2006]. Interestingly, this approach enables easy integration of the beamforming

process (match filtering) and of the sensor physical apertures. Following this approach,

the authors of Coiras et al. [2009] presented a GPU implementation allowing fast simula-

tion of a side-scan of a few hundreds kHz. The Sonar Simulation Toolset, a ray-based

SONAR modelling framework is presented in Goddard [2008]. This framework focuses

on fidelity but does not offer real-time data generation. Recently, raytracing-based
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Figure 2.16: Simulation of an offshore field with UWSim. A set of CAD models offer
realistic 3D representations of oil-field structures.

SONAR simulation methods have been applied to various kind of SONARs [Bell, 1997,

Sac et al., 2015] enabling near real-time image generation through discretization of the

SONAR beam. A major drawback of ray-tracing approaches applied to SONARs is

their discrete and spherical sampling approach which requires high sampling resolutions

to avoid subsampling aliasing artefacts. In order to address this issue, improvements

of raytracing techniques have been presented in Gueriot et al. [2007] where a so-called

tube-tracing technique is used, a tube being defined as a 3D region bounded by an

ensemble of rays. Using a tube-tracing technique therefore enables to sample volumes

instead of points at a slightly higher computing resource cost. Interestingly, the authors

adopter a transducer-wise simulation enabling the simulation of multi-path effects as well

as textures due to features smaller than the pixel resolution. Although these raytracing

simulators offer realistic intensity shading, no real-time processing is demonstrated. In

addition to this, no sensor-specific noise pattern is modelled.

2D Imaging SONAR simulation

In its base version, UWSim only provides very basic multibeam simulation, featuring

no vertical aperture modelling. The multibeam readings are then essentially multiple
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range readings with no integration along the elevation direction. In order to allow for

simulation of imaging SONARs of any aperture, we implemented a SONAR simulation

incorporating the imaging model described in 2.4. The implementation is based on a

raytracing technique where the SONAR footprint is discretized in an ensemble of rays

{℘ij = ℘(φi, θj)}1≤i≤N
1≤j≤M

at different bearing angles φi (along the horizontal aperture) and

elevation angles (along the vertical aperture) θj such that N = Ah
φres

and M = Av
θres

with

Ah and Av the respective horizontal and vertical apertures of the sensor, φres and θres

the angular resolutions considered for sampling the scene. In order to prevent aliasing

issues, a jittered sampling (Dippé and Wold [1985]) approach is followed by defining each

angle as following a uniform distribution:

φi ∼ U(−Ah
2

+ (i− 1).φres,−
Ah
2

+ i.φres) (2.14)

θj ∼ U(−Av
2

+ (j − 1).φres,−
Av
2

+ j.φres) (2.15)

where U(a, b) is the uniform distribution on the interval [a, b].

Each ray is then defined by a normalized vector going from the sensor acoustic centre

in the direction (φi, θj) w.r.t. the sensor frame. Each ray is then thrown at the scene

using OSG library raytracing functions. In case of intersection with an element in

the scene, OSG provides the 3D coordinates of the intersection point associated with

the local normal which is used to compute the reflected intensity following Lambert

law as detailed in equation 2.6. Depending on the value of the elevation angle θj , an

attenuation factor is applied using a Bessel function as in equation 2.8. The resulting

intensity is then accumulated in a N × P polar image in the corresponding pixel at (r, φ)

following a discretization in the range domain with each pixel being of size rres × φres

and rres = rmax−rmin
P . Once all the rays thrown, a predefined scaling of the intensity is

applied based on the final quantization of the image (8 or 16 bits) and the maximum

level measurable (akin to the physical sensor combined gain in emission and reception).

Noise simulation

Once the raytracing image generated, various noise models can be overlaid to provide

sensor-specific simulation. In the case of multiple noise sources, the noise distribution

often tends to be Gaussian. In this situation, the noise pattern can be measured using a

sequence of SONAR images recorded in open water. This sequence can then be used to

estimate the first two moments of the noise distribution (µ, σ) at each pixel in the SONAR
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(a)

(b)

(c)

Figure 2.17: SONAR noise measurement from a sequence of open-water images. The
images are displayed in polar representation. a) Single SONAR image. b) Mean noise

intensity values. c) Standard deviation of the noise intensity values.
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image. Through this process, two images can be generated, one representing the mean

noise intensities m(r, φ) and the second one representing the standard deviation σ(r, φ)

of the noise intensities. As an illustration, figure 2.17 presents a noise measurement

using BlueView images acquired in an empty scene in the sea. The images are displayed

in polar coordinates (range × bearing angle). 700 images have been used to obtain

a robust statistical estimation. The images are displayed in JetMap intensities where

red represents the highest intensity and blue the lowest. The images exhibit significant

non-uniformity in the noise spatial distribution. 7 vertical noise stripes are clearly visible

with gradual fading on their sides. Based on these statistics, random samples can be

drawn for each pixel to emulate the sensor typical noise realisation. The noise data can

then be added to the simulated image.

In order to feature a smoother noise model, less specific to the sensor, we chose to use the

measurements as a reference for modelling the noise in BlueView images. We modelled

the noise as 7 noise stripes with Gaussian intensities of varying mean and standard

deviation values at each range and bearing angle, the angular intensity fading being

obtained by following a Gaussian distribution around the central bearing angle of each

noise stripe.

Simulation results

We provide here a comparison of simulated and real data acquired in similar conditions.

As illustrated in figure 2.18, the SONAR is mounted in a forward-looking configuration,

facing a vertical pipeline. The red line depicts the vehicle trajectory during the inspection

of the structure. The green lines delimit the sensor aperture in horizontal and vertical

directions. The simulated SONAR features a vertical aperture of 20◦ and a horizontal

aperture (or field of view) of 130◦. The distance between the sensor and the structure

is of 3 metres, the range resolution is 2cm and the bearing resolution is 0.2◦ while the

elevation angle resolution is 0.01◦. The SONAR maximum range is set to 7 metres.

Figure 2.19-a shows the output of the raytracing algorithm where intensities due to

the beam pattern and Lambert’s law are evaluated. Figure 2.19-b depicts the same

image with added BlueView-type noise pattern. Figure 2.19-c exhibits a real BlueView

P900-130 image acquired in similar conditions, facing a vertical riser featuring advanced

marine growth, therefore having a more complex geometry. In spite of this, the images

between figures 2.19-a and 2.19-c exhibits similar intensity shading and noise.

The importance of jittered sampling is visible when observing a surface at low grazing
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Figure 2.18: Simulated pipeline inspection for forward-looking SONAR simulation. As
visible with the green lines, the simulated SONAR features a 130◦ horizontal aperture

and 20◦ vertical aperture.

angles. Figure 2.20 illustrates this on the observation of a flat surface (top side of a

cube) with a SONAR. Figure 2.20-a shows the scene to be raytraced by the SONAR

simulation algorithm. We present two simulated images, generated at the same spatial

resolution and from the same point of view. When sampling on a regular grid, visible

aliasing appears on the simulated image as shown in Figure 2.20-b. As visible in figure

2.20-c, this phenomenon disappears when using jittered sampling. On a recent hardware

platform (Intel Core i7-4700MQ processor), these images were generated at an average

rate of 2Hz, enabling near real-time SONAR simulation. The raytracing process was

not multithreaded and the memory usage was limited to a few hundreds MB of RAM,

making its integration on small hardware platforms possible.
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(a)

(b)

(c)

Figure 2.19: Comparaison between simulated SONAR data and real data a) Simulated
SONAR image with no noise. b) Simulated SONAR image with BlueView-type noise

pattern. c) Real BlueView P900-130 image.
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(a)

(b)

(c)

Figure 2.20: Illustration of the importance of jittered sampling to prevent aliasing.
a) Observation of a surface at low grazing angle. b) Simulated SONAR image with
regular sampling, exhibiting visible aliasing. c) Simulated SONAR image with jittered

sampling.
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2.6 Conclusions

In this chapter, we first detailed the principles of SONAR sensing. In order to detail

these principles, the various physical phenomena involved in acoustic sensing have been

modelled through the description of the emission, the propagation and the reception

processes. At each step, a generic mathematical model was presented, deriving the model

of a simple acoustic transducer, suitable to describe any type of SONAR.

We presented a review of the different types of SONARs as well as their applications.

Importantly, we exhibited the interest of studying the use of 2D imaging SONARS for

3D reconstruction of the scene due to their contained cost compared to 3D SONARS,

their large footprints and short to large range sensing capability. Thanks to these

characteristics, 2D imaging SONARs are often the sensor chosen to provide sensing in

many fundamental applications such as collision avoidance, mapping, target tracking or

seabed observation. As a consequence, these sensors are frequently integrated on surface

and underwater platforms which makes the acquisition of experimental data easier and

the impact of advances in imaging SONAR-based techniques direct.

In light of this, a mathematical model for 2D imaging SONARs was then presented,

associating the various elementary models described previously with the specificities of

2D imaging sensors. In particular, the final imaging model exhibits a dependency on the

incidence angle to the scatterers surface as well as an integration process along the vertical

aperture of the sensor. From these observations result two main consequences. Firstly,

the appearance of a scene in SONAR measurements is highly variable and dependent on

the position of the sensor. Secondly, the 3D to 2D compression through an integration

process makes the estimation of the 3D position of a scatterer along the vertical aperture

inherently ill-posed. We illustrated this so-called aperture problem with an example

where two different situations lead to a similar SONAR measurement to show the a-priori

impossibility to obtain 3D information from a single image.

Finally, we introduced our 2D imaging SONAR simulation framework based on UWSim,

an open-source underwater simulation environment. Based on the imaging model pre-

sented previously in this chapter, this framework provided the capability of imaging

any simulated scene with sensor-specific noise model based on a previous modelling of

the sensor noise characteristics. We provided details on the implementation based on a



Chapter 2. Sonar principles and simulation 41

raytracing method as well as a comparison between simulated and real data and showed

that unlike existing SONAR simulation solutions, our simulation provides near real-time

simulation with realistic noise model.



Chapter 3

Literature review on 3D

reconstruction from SONAR data

3.1 Introduction

Thanks to favourable propagation properties in water, SONARs have been widely

employed for reliable range measurement in multiple dimensions. The ability to obtain

an accurate 3D representation of the environment is of prime importance in many

applications such as mission planning, underwater navigation, environment monitoring,

mine countermeasure, archaeology, marine structure maintenance, cave mapping or

fishing.

The increasingly large offer of commercially available sensors enabled the development of

many scientific and industrial research projects. We provide here a review and analysis

of the latest advances in 3D reconstruction from SONAR sensors. In order to highlight

the specificities and potential of each type of sensor, we chose to classify our review in

five categories representing different types of sensors. We then present our analysis on

the pros and cons of each modality and technique used so as to set the context of our

work relatively to the current state of the art.

42
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3.2 Single-beam echosounder

Single-beam echosounder provide range readings in a single direction, resulting in a

small footprint. Their use for 3D reconstruction therefore requires mechanical steering

to cover the full space. This cost efficient solution has been employed to study the

behaviour of fish populations from a fixed platform in Gauthier et al. [1997] using a

200kHz echosounder featuring an 11◦ beam aperture. The study presents quantitative

results and exhibits the limit of this method such as the difficulty of discriminating

targets due to a large beamwidth and target movement during the scanning process

which led to multiple recordings of a same target.

While possible on a fixed platform, the use of mechanically steered echo-sounder is made

difficult when placed on a moving platform such as an underwater vehicle, requiring

accurate relative positioning between the beams and increasing the stochasticity of the

backscattered signal. In order to reduce these effects, series of sequential pings can be

averaged as in Snellen et al. [2011] where a single-beam 38 kHz Kongsberg echosounder

was used to perform sediment classification from a backscatter model inversion. When

averaging the results, a trade-off between robust estimation and spatial accuracy is made,

therefore limiting the employability of single-beam echo sounders. Recently, Bichucher

et al. [2015] demonstrated the ability to simultaneously obtain a bathymetry and correct

for slow navigation drift only using a 600 kHz Teledyne RDI Explorer DVL which makes

use of four beams.

In general and for 3D sensing purposes, a small beam width provides better spatial

accuracy but require higher sampling rate, therefore slower sensor motion. For this reason,

single-beam echosounders are rarely used for 3D reconstruction but rather employed for

low-resolution data acquisition.

3.3 3D from side-scan SONARs

While technically simple, side-scan SONARs only provide time-based backscatter samples

of the 3D scene, effectively loosing the elevation angle. In order to perform the conversion

from the so-called slant range data to horizontal range data, a flat seabed approximation

is commonly used. In general and in the case of a more complex 3D seabed (prominent
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3D features such as large rocks or man-made structures), this assumption does not hold

true and additional information is needed to recover the 3D information. For this reason,

the combination of sidescan data with an additional bathymetry system has been studied

in Gueriot [2000] where bathymetric information acquired by a multi-beam echosounder

has been associated to side-scan intensities to generate 3D seabed mosaics with additional

texture information. Due to the additional bathymetry acquisition, this approach is

in practice considerably more time-consuming and expensive. In absence of additional

sensors, the recovery of 3D information from side-scan data is in general ill-posed and

some prior information is needed.

3.3.1 Shadow based estimation methods

In Reed et al. [2004] the shape of objects lying on a flat seabed was estimated from

matching the shadow visible behind the objects to simulated shadows generated from a

given set of CAD models. Inspired by the early work of Martin and Aggarwal [1983],

the use of acoustic shadows was made in Sun et al. [2008] where a Markov random

field helped to classify each pixel in one of the three following categories: shadow (no

backscattered energy), echo (strong reflection) or background (low-intensity reflection).

From this segmentation, a set of occluding contours from different points of views is

obtained and used to bound the volume and recover the height information. A reflection

map can then be computed by tomography. Results are obtained from simulated data.

While interesting, this method requires a circular sampling around the object of interest,

which in the case of a side-scan SONAR is very impractical and inefficient in terms of

time and surface coverage.

3.3.2 Intensity model-based methods

Following the SONAR model, the backscattered acoustic intensity is proportional to the

incidence angle of the acoustic wave on the local surface. Based on this observation,

shape-from-shading techniques aim at deducing the 3D geometry by inverting the intensity

model. Early attempts as in Langer and Hebert [1991] were propagation based: assuming

initial values for altitude and slope at the first return, the slope of the following pixels was

estimated from the intensity and the elevation values deduced from the slope. Although

simple, this technique exhibits a few drawbacks such as error propagation with growing
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range, assumed connectivity between successive pixels. The assumed reflectivity model

being often non-linear, Durá et al. [2004] presented a linear approach to the shape-from-

shading technique, taking advantage of a linear frequency domain model as derived in Bell

et al. [1999]. Maximum likelihood estimation approaches (such as energy minimization)

aim at matching a model to the observed data by searching for the configuration that

minimizes the distance between the model and the data. In Coiras et al. [2007], a

side-scan SONAR intensity model is formulated and matched to the observation by the

use of an likelihood-maximization optimization procedure. The optimization enables

the estimation of the model parameters (seabed reflectivity, side-scan beam pattern

and seabed altitude), effectively providing a direct 3D representation of the seabed as

shown in figure 3.1. An extension of this technique for arbitrary vehicle motion has been

Figure 3.1: Illustration of a 3D reconstruction from side-scan SONAR - Coiras et al.
[2007]. a) Original side-scan image. b) Model after convergence. c) Elevation map. d)

Corresponding perspective view of the textured 3D surface.

presented in Woock [2011].
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3.3.3 Geometrical model-based method

Depending on the operating scenario, side-scan measurements can be affected by well-

known multi-path effects, effectively integrating reflections coming from multiple direc-

tions such as a fish, the seabed or the sea surface. As shown in Saucan et al. [2015], the

ability to predict the DOA (Direction Of Arrival) enables 3D reconstructions at a much

higher level of detail. The authors present a so-called echo-tracking method based on a

set of geometrical models expected in the scene. Each measurement is tested against all

models and a tracking approach helps to regularize the observations. As can be seen in

figure 3.2, experimental results from real data exhibit accurate 3D reconstruction.

Figure 3.2: Illustration of a 3D reconstruction from side-scan SONAR with model
prediction - Saucan et al. [2015]. a) Reconstructed bathymetry. b) Selected model. c)

Original side-scan image.

3.3.4 3D side-scan

Inspired by the principle of SAS (Synthetical Aperture SONAR) where the angle of

reflected waves is estimated by interferometry, the authors of Griffiths et al. [1997]
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presented a 3D side-scan system. The prototype sensor has been tested in a controlled

environment, yielding low resolution reconstruction. The main reason for the limited

accuracy of this configuration is well-know in the SAS community, as these systems

require very accurate knowledge of the sensor position (to a fraction of the wavelength)

equivalent at best to mm-level navigation accuracy which is currently impossible to

obtain on underwater platforms.

For this reason, this technology has only been punctually applied, both commercially as

in Hartley et al. [1993] and for research purposes (Sæbø et al. [2013]) as illustrated in

figure 3.3.

(a)

(b)

(c)

Figure 3.3: Illustration of a interferometric SAS system - Sæbø et al. [2013]. a) SAS
image. b) Interferometric coherence image. c) Estimated bathymetry using a complex

cross correlation technique.

Although widely used for their long-range imaging capabilities, the operation of side-

scan SONARs for 3D reconstruction purposes remains marginal and is based on the

assumption that each range reading corresponds to a single altitude on the seabed,

therefore restricting it to the observation of simple and smooth surfaces. However, in

these situations, good results have been obtained by taking advantage of an accurate

intensity model and adequate inversion methods.
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3.4 3D from pencil-beam imaging SONARs

Nowadays commonly used for the study of ecosystems and fishing (Gerlotto et al. [2000]),

pencil-beam multibeam SONARs offer accurate range and bearing readings thanks to

their unidimensional array of transducers. This results in accurate 2D sensing with low

uncertainty along the remaining dimension due to very small apertures (typically 0.5◦ to

1.5◦). Direct 3D sensing can then be obtained by combining the 2D pencil-beam SONAR

images with a motion along the missing direction. The reconstruction procedure in

this case is a simple projection of the range profile represented in the acquired image.

This profile which is essentially an ensemble of range readings (one per bearing) is

typically obtained by selecting the first return (value higher than a given threshold) as

in Newman and Durrant-Whyte [1998] or the maximum intensity along the beam. As a

result, this configuration is widely used to perform underwater 3D sensing at a range

of up to 100 metres as presented in Gerlotto et al. [1999] where the authors applied

this technique to the observation of fish schools in 3D. Since their first non-military

application (Farr [1980]), pencil-beam SONARs have been frequently used to acquire

bathymetry data both from the surface when mounted on a boat (Vaneck et al. [1996])

or an AUV (Grasmueck et al. [2006]). In this context, the accuracy of the map is usually

limited by the accuracy of the navigation data but multiple research efforts showed

that accurate maps could be obtained when combining the acquisition of multi-beam

data with a SLAM approach as in [Barkby et al., 2011, Palomer et al., 2016, Roman

and Singh, 2005]. Cave reconstruction was explored by Mallios et al. [2015] using a

mechanically scanned imaging sonar with a 1◦ beam width. A high-frequency multi-beam

SONAR, a BlueView MB-2250, has been used in Papadopoulos et al. [2011] to map a

marine structure simultaneously underwater and above water using a LIDAR sensor

(see figure 3.4). Interestingly, no navigation sensor such as DVL or GPS was used to

position the acquired data. The authors performed the mapping using a scan registration

technique from LIDAR data and presented a 10cm resolution 3D reconstruction. To the

exception of this study, multibeam-based 3D reconstructions require navigation data

to enable multiviews data association. Conversely when operating at low frequency,

acoustic waves penetrate further in the seabed. Low-frequency multi-beam SONARs like

the Kongsberg Simrad EM1002S can therefore provide both bathymetry and backscatter

information as detailed in Brown and Blondel [2009]. In [am Ende, 2001, Stone et al.,

2000], cave mapping was achieved using the DWM (Digital Wall Mapper), a diver-assisted
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(a) (b)

Figure 3.4: Illustration of a 3D reconstruction from pencil-beam SONAR and LIDAR
data - Papadopoulos et al. [2011]. a) Reconstructed structure. b) Reconstructed surface.

Figure 3.5: Illustration of bathymetry and backscatter data obtained with a pencil-
beam SONAR - Brown and Blondel [2009]. The bathymetry (visible on the left side)
and the backscatter data (visible on the right side) are both acquired from a single

pencil-beam SONAR, the Simrad EM1002S.

torpedo-shaped instrument featuring acoustic sensing capability as well as a propeller.

The mapping was done using thirty-two 2◦ aperture transducers, helically arrayed around

the nose of the instrument. After manual registration of the acquired point clouds, results

exhibit good large-scale mapping ability with a 21km long mapped dataset as can be

seen in 3.6.

Similarly, a set of 54 pencil-beam transducers has been used in Fairfield et al. [2007] to

map underwater tunnels. While this modality provides direct 360◦ mapping capability, it

requires specific integration on the vehicle.
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(a) (b)

Figure 3.6: Illustration of a 3D cave mapping from an array of narrow beam transducers
- am Ende [2001]. a) The Digital Wall Mapper instrument, featuring 32 helically arrayed
narrow beam transducers. b) Illustration of a 3D reconstruction of the entrance of a

cave.

Due to their small footprint, pencil-beam imaging SONARs have been widely used for

bathymetric measurements and short range marine structure reconstruction. A trade-off

is then achieved in the design of the sensor to provide either high range accuracy with

low maximum range when operating at high frequency or on the contrary lower range

accuracy but longer maximum range when operating at low frequency.

3.5 3D from wide-beam imaging SONARs

Unlike pencil-beam SONARs, wide-beam imaging SONARs provide typical apertures of

7◦ to 20◦. Wide-beam imaging SONARs therefore ensonify large volumes of water at a

time, providing information on large amounts of 3D points in the observed scene.

Due to their larger aperture, wide-beam SONARs produce integral intensity values that

result from a summation along the vertical aperture, effectively producing a blurring

effect. Each measurement therefore potentially corresponds to reflections coming from

multiple points in the 3D scene. The 3D reconstruction process is therefore an ill-posed

problem and requires additional information to be solved.
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3.5.1 Non linear methods

In a similar way to reconstruction from side-scan data, various approaches have been

investigated such as the use of acoustic shadows in Zerr and Stage [1996] where the

authors reconstructed a small object placed on the ground from a set of 2D images.

These images were acquired from a set of positions located on a circle around the object,

separated by 5◦ steps. For each image, the pixels were classified into 3 categories (echo,

shadow or background) using a Markov random field and intensity thresholds. The

shadows and sensor positions were then used to bound the object volume in each point

of view. Good results were obtained in a controlled environment featuring a flat ground

where a 360◦ rotation around the object was possible.

Similarly, Aykin and Negahdaripour [2013, 2016] evaluated the reconstruction of objects

laid on a seafloor from multiple views around the objects taken at both multiple yaw

angles and roll angles. In this situation, the shape of the observed is obtained by

successive volume bounding from a background, return, shadow segmentation. The roll

angle in the sensor enables to take advantage of the high bearing resolution of the sensor

to compensate for the uncertainty along the vertical axis. Not only this method assumed

the presence of a background surface to use the shadow information but it also required

roll motions and a large rotation around the object which are both impractical when

inspecting real marine environments with an AUV.

3.5.2 Imaging model inversion

In Aykin and Negahdaripour [2013], the SONAR imaging model is inverted to recover

the missing elevation of range readings from the measured acoustic intensity. Controlled

environment experiments are presented, exhibiting reconstructions of small objects with

limited accuracy and visible distortion in the vertical direction. Due to the impossibility

of computing the elevation behind acoustic shadows, this work is also based on the

assumption that the reconstructed objects feature smooth surfaces, varying monotonically

in terms of distance from the sonar which does not hold true in general.
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3.5.3 Opti-acoustic methods

As reviewed in Ferreira et al. [2016], recent improvements in SONAR sensors accuracy

paved the way to easier association with optical sensors. While SONARs provide accurate

range measurement and uncertain elevation information, optical cameras offer by design

high angular resolution in elevation and bearing but no depth information. Combining

these two sensors therefore enables instant 3D sensing. When using two different sensors,

arises the need of joint calibration to ensure geometrical consistency when performing

3D reconstructing. In this situation, standard calibration such as the Direct Linear

Transform (Hartley and Zisserman [2003]) appear impractical due to the difference in

spatial resolution and acoustic noise. As detailed in Hurtós et al. [2010], alternative

calibration methods can be employed to achieve consistent mapping. In Babaee and

Negahdaripour [2015], a so-called opti-acoustic imaging system has been used to provide

observations both in the optical and in the acoustic domain. Through the use of 2D

occluding contour correspondences, a 3D occluding rim is defined and opti-acoustic

samples are registered by bundle adjustment. From this, a simple surface interpolation

was employed to reconstruct the surface of small coral rocks in a controlled environment.

As can be observed in figure 3.7, the reconstruction results exhibit decent accuracy but

require large rotations around the objects and assume contours visibility in both sensors

which implies in particular, having the SONAR pointed in a grazing configuration and

low water turbidity to allow for sharp optical imaging.

Figure 3.7: Illustration of reconstructed stone from combined multiple wide-beam
SONAR and optical camera observations during a 360◦ rotation around the stone -

Babaee and Negahdaripour [2015].
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In Ozog et al. [2015], prior information on the object to be reconstructed was given by

either a CAD model or a video-based 3D reconstruction. A Didson imaging SONAR

was used for its large footprint when projected on a ship hull section. The prior map

was projected in the SONAR image plane to associate the 3D position to the acoustic

measurement in the SONAR image, based on the known sensor position. More precisely,

for each mesh element of the prior map, the four best views were selected and the

acoustic intensities were blended based on their distance to the mesh sampled points. As

illustrated in figure 3.8, this results in a large 3D map, textured with acoustic intensities.

While this technique exhibits interesting results at large scale, no small scale error analysis

is made, due to the lack of ground truth. Furthermore, this approach is entirely based

on the use of an accurate prior map which is in general hard to obtain.

Figure 3.8: Illustration of ship hull mosaic obtained with a wide-beam imaging SONAR
- Ozog et al. [2015]. The back-projected SONAR footprint appears much larger than

the camera footprint, enabling faster mosaicing.

3.5.4 Feature-based methods

Recent work (Huang and Kaess [2015]) investigated the application of structure from

motion techniques to Didson SONAR data using manually selected and associated feature

points. While interesting, this approach relies on the availability of good acoustic features

and accurate associations. In SONAR imagery, the variability of the appearance of 3D

points based on the position of the sensor is well known. In addition to this, measurement

noise and frequent acoustic effects such as multi-path ringing make the observed intensity

prone to high variations from one point of view to another. As a consequence, a fully
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automated processing with acoustic feature computation and an automated corresponding

association is likely to be unreliable, making acoustic structure from motion impractical.

In a similar way and inspired by computer vision techniques, Brahim et al. [2011]

presented a reconstruction technique based on stereo-matching between two SONAR

images. Building up on their previous work on feature point extraction (Brahim et al.

[2010]) which presents a feature extraction method based on multiple frames to reduce

speckle noise, the author detailed an assessment of the Didson SONAR projective

model and a 3D reconstruction method based on a evolutionary optimization algorithm.

The results exhibit very sparse 3D reconstruction, only allowing for basic structural

representation featuring the corners of the object. Although sparse, feature-based

methods enable navigation-free registration through feature matching.

3.5.5 Acoustic stereo imaging

In Assalih et al. [2013], ASI (Acoustic Stereo Imaging) has been used to obtain real-time

3D reconstruction from two imaging SONARs. Knowing the transformation between the

two sensors, the 3D position can be estimated by triangulation. The results from an

experiment made in a controlled environment exhibit potential good accuracy but high

variability in the results. SONARs being expensive sensors, embedding two sensors on a

vehicle is impractical but assuming the scene is static and good position information,

one moving sensor could achieve the same results. The remaining problem lies in data

association across multiple points of view when dealing with uncertain positions which

has not been addressed in this study.

Similarly, the use of two SONARs has been investigated in Horner et al. [2009] where two

different sensors were mounted in orthogonal directions, providing a direct way to obtain

the 3D coordinates of the points lying at the intersection of the two footprints. Through

the use of a Bayesian filtering, an occupancy grid is iteratively built, providing an online

obstacle avoidance method. Experimental results are demonstrated on a navigation

sequence under a bridge, demonstrating a path-planning-free navigation in presence of

obstacles. As illustrated in 3.9, only low-resolution mapping is achieved and comes at

the cost of a helical trajectory.
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(a) (b)

Figure 3.9: Illustration of dual wide-beam SONAR 3D occupancy estimation - Horner
et al. [2009]. a) The helical trajectory (green) enables to ensonify surrounding hazards
while maintaining the desired forward heading. b) Estimated occupancy grid of the

scene after reconstruction.

3.5.6 Acoustic concentrator lens

A Didson sonar has been used in Mizuno and Asada [2014] combined with a 3◦ concentrator

lens in order to reduce the aperture, enabling direct 3D reconstruction. Motion correction

using additional sensors and 3D mosaicing was then performed to create a 3D map of a

lake. As presented in figure 3.10, a segmentation was made using a difference of Gaussian

methods, enabling the classification of voxels in three categories: seabed and two types

of aquatic plants present in the lake (Chara globularis and Elodea muttallii).
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Figure 3.10: Illustration of reconstruction of aquatic plants using a 3◦ concentrator
lens mounted on a boat - Mizuno and Asada [2014]. The reconstruction exhibits two

different types of plants, Chara globularis and Elodea muttallii.

3.6 3D SONARs

Due to the uncertainty along the elevation axis when using unidimensional arrays, the

interest in 2D arrays of hydrophones has grown considerably in the last few years.

3.6.1 Bio-inspired 3D SONARs

Inspired by the human eye, Rosenblum et al. [1991] presented a 3D SONAR composed of

an acoustic lens focusing the incoming waves on small transducers laid on a half-sphere

(see figure 3.11), in a similar way to the human retina. Direct reconstruction can then

be obtained and a simple threshold enables the separation of noise and acoustic returns.

The authors present results of reconstructed spheres at a voxel resolution of 10cm, mainly

limited by the beamwidth.

3.6.2 Mechanically scanned SONAR

An inexpensive approach to directly observe the 3D space is to rotate a single-beam

along two dimensions. An example of this approach is used in Auran and Malvig
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Figure 3.11: Illustration of a bio-inspired 3D SONAR - Rosenblum et al. [1991]. An
array of transducer receives acoustic waves focused by the acoustic lens.

[1996] where a WesMarSS150 sensor is used, featuring a beam-with of 6.5◦. The sonar

head could be tilted at a wide range of angular configurations (φ ∈ [86◦,180◦] and θ ∈

[0◦,360◦]). The authors present a method to compute connectivity between 3D sonar

returns, low-resolution representation is given. One major limitation is the considerably

large sampling time (100 seconds per full sweep) requiring to stabilise the platform (or

accurately estimate its motion) during the acquisition.

Similar work has been carried on in Roman and Singh [2004] where a pencil beam 2D

scanning sonar producing range images was used to measure 3D bathymetry patches. As

illustrated in figure 3.12-a, these patches were then registered using a scan registration

technique to achieve micro-bathymetric mapping (see figure 3.12-b). Although promising,

a significant amount of time is needed to acquire each patch, restricting this technique to

applications where the sensor can be kept steady or well positioned. For these reasons,

mechanically-scanned sensors are rarely used on moving platforms.

3.6.3 Pencil-beam 2D array

In Jaffe et al. [1995], a 3D SONAR made of 64 pencil-beam (2◦) transducers is presented.

The prototype called FishTV featured a 2◦ angular resolution and a 16◦ field of view,
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(a) (b)

Figure 3.12: Illustration of mechanically-scanned bathymetry system - Roman and
Singh [2004]. a) A 2D mechanically-swept pencil-beam sensor enables the recovery a 3D
patch. b) Illustration of reconstructed terrain bathymetry assembled from 6 patches.

allowing the detection and tracking of zooplankton. Due to the absence of beamforming

processing, the resolution is limited to the transducers aperture and restricts its usage to

tracking species of a few centimetres size.

3.6.4 Interferometric 3D SONARs

In opposition to mechanically scanned SONARs, the steering process can be obtained

electronically from a bidimensional array of transducers as presented in Zimmerman

[2004]. This method is often refereed to as interferometry. In Yufit and Maillard [2013],

a prototype of a so-called FLBS (Forward Looking Bathymetric SONAR) made of three

SONAR arrays is presented, allowing the estimation of elevation information by phase

difference (see figure 3.13-a). As illustrated in figure 3.13-b, the device allowed for

long-range reconstruction (60 metres away from the target) with a resolution of 10cm.

Similar solutions are now commercially available such as the Tritech Eclipse. This sensor

was used in Bülow and Birk [2011] where a frequency-based method was presented to

register multiple 3D scans. The reconstructed data shows low-resolution 3D information

but coarse geometrical consistency. Since its first presentation in 1996 (Hansen and

Andersen [1996]) as a 3D acoustic camera, the Echoscope sensor has seen its performance

improving. Recently, the Coda Echoscope technology presented in Davis and Lugsdin

[2005] showed very promising results (see fig3.14), exhibiting an improved 3D resolution
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(a) (b)

Figure 3.13: Illustration of FLBS system - Yufit and Maillard [2013]. a) Elevation
estimation of the targets (spheres) is achieved by phase difference measurement with
the two receiving arrays of transducers (respectively represented in red and blue). b)
Illustration of FLBS long-range reconstruction. The reconstruction exhibits two concrete

cylindrical blocs laid on the seabed.

of up to 1cm. Operating at 375kHz, long-range (up to 200 metres) 3D reconstruction can

also be achieved. Thanks to its instant 3D sensing capability, this sensor has been used

in recent research work such as fast 3D mosaicing of a shipwreck (Hansen et al. [2005]),

real-time positioning (Woodward et al. [2010]) or the study of ship wakes (Soloviev et al.

[2012]). In order to address the noise in the Echoscope range images, a method based on

Markov Random Fields has been applied in Murino et al. [1998] to obtain a measure

of confidence on the range readings. An iterative optimization enabled the recovery of

centimetre-level accuracy range readings, greatly improving the 3D representation of

small objects. In spite of its attractive performance, the Echoscope remains an expensive

and relatively large sensor which makes its integration on AUVs or cost-efficient platforms

difficult. In order to address the size issue, recent research work have adopted higher

frequency designs such as in Josserand and Wolley [2011] where a 8 x 8 cm 2D SONAR

array is presented with a spatial resolution of 2.5 cm in range, 1◦ in azimuth and 1◦ in

elevation. The authors took advantage of a FSPA (Frequency Steered Phased Array)

technology enabling beam steering in different directions depending on the applied

frequency. Tests in water tank using a broadband 2.25 MHz transducer are presented,

showing fairly good accuracy 3D images as can be seen in figure 3.15.
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(a) (b)

Figure 3.14: Illustration of the Coda Echoscope system - Davis and Lugsdin [2005]. a)
The Coda Echoscope sensor is composed of a 2D array of transducers. b) Illustration of
a single-pass 3D recontruction obtained with the Echoscope while inspecting a harbour.

The pointcloud exhibits multiple pillars and a detailed rocky seabed.

(a) (b) (c)

Figure 3.15: Illustration of a high-frequency FSPA SONAR image - Josserand and
Wolley [2011]. a) Objects placed in a water tank for reconstruction. b) 3D Image

obtained by frequency beam-steering. c) Same 3D image from a side point of view.
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3.7 Summary

We present in table 3.1 a summary of the different 3D reconstruction methods presented

in this chapter and exhibit the advantages and inconvenients of each approach. In the

context of observations gathered by and AUV and in spite of their high resolutions,

the restrictions on bulkiness prohibits the use of 3D SONARs. The observation of

moving elements and the necessity to react to changes in the environment (dynamic

path planning) make mechanically steered sensors unpractical. Shadow-based techniques

require a background and knowledge on its shape which restricts their use to flat seabed

inspections but do not allow for instance the inspection of vertical pipelines. 3D SAS

approaches provide high-resolution reconstructions but require mm-level navigation

accuracy which when operating at high-frequency is impossible to achieve on AUVs with

current navigation systems. The employment of multiple sensors feature the inconvenients

of each sensing modality and require a joint calibration. Feature-based attempts exhibited

low-resolution reconstructions. As opposed to these methods, model-to-data matching

methods exhibit robustness to outliers and noise and have the potential to offer accurate

reconstruction provided a good sensing model is available. To the exception of 3D

SONARs and feature-based methods, all methods require navigation data (DVL, INS or

USBL-based) to estimate the displacement of the sensor between successive views.
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Pros Cons

Direct sensing
through

mechanical
steering

- low cost

- low framerate
- limited to slow changing conditions
(slow motion of the vehicle
and elements in the scene)

Shadow-
based

and shape-
from-shading

- can be obtained using
respectively low-cost
(sidescan) or high-
resolution (multibeam)
sensors.

- requires the presence of a shadow
on a known background
(typically assumed to be a flat
seabed)
- requires accurate imaging model
- requires accurate navigation

model-to-data
matching

- can be obtained using
respectively low-cost
(sidescan) or high-
resolution (multibeam)
sensors.
- robust to outliers and noise
in data (image or navigation)

- requires accurate modelling
- optimisation approaches are
computionally expensive

3D SAS - high resolution (cm level)
- requires perfect position estimation
(mm-level)

multi-sensor
(multiple sonars
or opti-acoustic)

- can leverage strenghts of
multiple modalities such as
range resolution for SONARs
and elevation/azimuth angles
resolution for video cameras

- increased cost due to multiple
sensors
- requires joint calibration
- often limited by disadvantages of
both sensors
- might require multiple inspections

feature-based
- can be performed without
navigation input (feature
matching)

- low resolution (sparse features)
- sensitive to appearance variability
of SONAR data

direct 2.5D
using an 2D
transducer
array (3D
SONAR)

- high resolution (cm level)
- does not necessarily require
navigation input
(registration by 3D matching)

- expensive sensor
- bulky

Table 3.1: Comparison of state-of-the-art 3D reconstruction methods
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3.8 Conclusions

The problem of 3D reconstruction from SONAR sensors has been studied regularly for

now more than three decades, involving different sensor configurations. Recent advances

in 2D array processing techniques have paved the way to the development of 3D SONARs,

providing direct and real-time 3D information at ranges of up to 200m. Mechanically-

steered SONARs offer inexpensive solutions but require accurate position knowledge

during the scanning process, mainly restricting their use to steady platforms or low

refreshing rate applications. In comparison to these sensors, multiple interferometric 3D

SONARs have been successfully developed and commercially used in the last few years.

These sensors now offer centimetre-level accuracy but remain rarely embedded on AUV

platforms due to their large size and high cost.

Inexpensive and technically simple single-beam sensors such as single-beam echosounders

and side-scan SONARs are often embedded on surface and underwater platforms. In

spite of their popularity, they remain rarely used for 3D sensing, either due to their small

footprint (single-beam echosounder) or to the uncertainty on the angle of arrival in the

case of side-scan SONARs.

Since spatial accuracy generally comes at the cost of a small footprint, small-aperture

multibeam (or pencil-beam) imaging SONARs offer an interesting trade-off by combining

an array of high-frequency transducers with beamforming techniques to generate 2D

images with low uncertainty in every 3D direction, at ranges of up to a few tens of

metres. These sensors offering direct 3D sensing capabilities, they have been widely

used for bathymetric applications and marine structure inspections. The accuracy of the

3D reconstruction is in this case limited by navigation accuracy, restricting its use to

local mapping. In the case of large mapping applications, pencil-beam sensors remain of

interest but require the use of registration techniques applied between multiples views,

increasing the operation time. Furthermore, the small footprint of pencil-beam sensors

leads to overall lower scene coverage rate, leaving gaps between scans and unobserved

surfaces when observed at grazing angles.

Conversely, wide-aperture imaging SONARs provide larger footprints and are for this

reason widely used for seabed imaging and monitoring applications. The ability of

scouring large volumes of water at a time comes at the cost of an increased uncertainty
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in the elevation direction. In order to solve for this uncertainty, additional equipment

such as optical camera, acoustic lenses or a second SONAR has been used, increasing the

cost, embedded payload and the practical operational complexity. In particular, the need

for multi-sensor calibration as well as the differences in resolutions and noise limited the

reconstruction accuracy. When restricted to the use of a single wide-beam SONAR, prior

assumptions needed to be considered.

In order to solve this ill-posed problem, non-linear methods have been employed using

multiple point of views to bound the volume of the object. When no full rotation around

the object can be done, sensor imaging models have been used (both in wide-beam and

side-scan SONARs) to recover the shape from the observed intensity shading. In each

of these situations, the reconstruction was obtained based on the presence of shadows

and assumptions on the background (seabed). When a detailed imaging model was

assumed, the a-priori lack of knowledge of the key elements such as the reflectivity

of the elements, the beam pattern or geometry of the object required to either make

strong assumptions or adopt a partial modelling, making the inversion ill-posed and

computationally expensive. Inspired by optical reconstruction techniques, feature-based

approaches have been investigated with relatively little success due to the nature of

SONAR imagery, only providing sparse reconstructions.

3D reconstruction from SONAR data is therefore a large topic where multiple trade-offs

between accuracy, operation time, processing time and cost of the equipment need to be

made. Our work focuses on 3D reconstruction from imaging SONARs of any vertical

aperture, investigating in particular the trade-off between spatial coverage and accuracy

when using imaging SONARs. Importantly, the use of a single sensor of any vertical

aperture enables to leverage the presence of wide-aperture imaging SONARs which are

commonly embedded on ROV and AUVs for monitoring and collision avoidance and

avoids excessive costs of integrating bulky and expensive additional sensors such as 3D

SONARs. In this study, we assume the availibility of navigation data but do not require

mm-level accuracy as typically required by SAS techniques. This enables reconstruction

of data acquired by standard ROV and AUVs where navigation is based on inexpensive

DVLs. Thanks to their high-frequency designs, 2D imaging SONARs typically acquire

short-range (1 to 20m distance) measurements in a few tenths of milliseconds (20m-long

two-way propagation takes 30ms). We consider vehicle motions of up to 20cm/s meaning

that the motion during the acquisition amounts to a few millimeters only and can
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therefore be ignored. In contrast to previous work, our reconstruction techniques do

not assume the presence of shadows or background in the image. Our methods do not

require any strong constraint on the motion of the vehicle but require a set of observation

acquired along the direction of uncertainty of the sensor (elevation angle). Our methods

are based on a simple imaging model and the use of optimization (deconvolution method

described in chapter 5 allows modelling error mitigation) and do not rely on feature

observation.



Chapter 4

3D reconstruction by space

carving

4.1 Introduction

As detailed in chapter 2, the 2D imaging SONAR model compresses 3D information on

a 2D plane through an integration along the vertical direction. While this integration

enables the observation of a large number of scatterers at a time, it makes the recon-

struction of the initial 3D scene from a single SONAR image ill-posed. In this context,

additional views of the scene and a data association technique are required to address

the reconstruction problem.

In chapter 3, we provided a summary of the research work previously carried on 3D

reconstruction from SONAR data. In particular when measuring bathymetry, previous

reconstruction techniques from 2D imaging sensors are limited to small-aperture sensors

from which range profiles can be extracted and approximated to a 3D profile. When using

wide-beam sensors, state-of-the-art reconstruction techniques (Aykin and Negahdaripour

[2016], Zerr and Stage [1996]) estimate the information on the last dimension by taking

advantage of the acoustic shadow visible when the object is placed on a flat surface. This

assumption makes the 3D reconstruction impossible when the objects are not surrounded

by any flat surfaces. In addition to this, the reconstruction is obtained from a set of

observations acquired by successive rotations around the object as well as a rotation of

the sensor in the case of Aykin and Negahdaripour [2016]. When observing a marine

66
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environment with an AUV, this is in general impractical either due to the uncertainty on

the environment or the geometry of the scene.

In this chapter, we present a non-linear 3D reconstruction technique enabling the

reconstruction of the 3D scene from a set of observations at known positions. As opposed

to previously mentioned methods, our 3D reconstruction technique does not require any

background to estimate the elevation information.

We first formulate the reconstruction problem as the estimation of the reflectivity from a

set of integral measurements. We then present the so-called space carving reconstruction

method by deriving the theoretical background based on the 2D SONAR imaging model.

We introduce a three-step carving algorithm allowing online 3D reconstruction during

the inspection process with little constraint on the trajectory. We assess the quality of

the reconstruction on both simulated and real datasets with sensors of different vertical

apertures, respectively representing a pencil-beam and a wide-beam SONAR. While

assessing the quality of the reconstruction, we provide both qualitative and quantitative

analysis. We finally assess the viability of the reconstruction technique for real-world

objects reconstruction using both water tank and field data on multiple man-made

structures including real oil field structures.

4.2 Formulation of the reconstruction problem

Based on the imaging model of a 2D SONAR, we formulate here the reconstruction

problem. Recalling the SONAR imaging model presented in equation 2.13:

ISonar(r, φ) = I0

∫
Av

Bv(θ)
2 Ss(r, θ, φ) µ(r, θ, φ)

~vθφ.~nrθφ
‖~vθφ‖ ‖~nrθφ‖

dθ

We adopt the following notation:

f(r, φ, θ) = Ss(r, θ, φ) µ(r, θ, φ)
~vθφ.~nrθφ
‖~vθφ‖ ‖~nrθφ‖

Through this notation, we formulate the reconstruction problem as the estimation of the

space occupancy at a point P from a set of observations of f acquired in different points
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of views, each measurement at f(r, φ, θ) being blurred by the vertical aperture Av:

ISonar(r, φ) = I0

∫
Av

Bv(θ)
2 f(r, φ, θ) dθ (4.1)

Although ~nrθφ is a-priori unknown, the range of observation angles defined by the vectors

~vθφ and ~nrθφ at each point in the scene can be assumed to be small due to the limited

vertical aperture of the sensor (maximum 20◦). Under these conditions, the dot product

~vθφ.~nrθφ varies little and can be considered as constant accross all observations. This

assumption allows us to estimate f independently from the orientation of the surface

with respect to the sensor. This latter combined with the assumption of locally accurate

navigation data (maximum 2cm drift per meter) provides photo-consistency. Note that

the orientation-independent model is equivalent to considering the scatterers as observed

locally as being small spheres of equal sizes exhibiting different albedos depending on the

type of material and whether or not the space is occupied by a solid material or water:

∀ (r, θ, φ) ∈ [0,∞[× [−π, π[× [−π, π[ Ss(r, θ, φ)
~vθφ.~nrθφ
‖~vθφ‖ ‖~nrθφ‖

= C (4.2)

with C a constant value. Intuitively, this modelling is equivalent to considering the

reflectivity as a first order approximation for the occupancy and is supported by the

fact that we base our reconstruction method on multiple observations of the same points

with little diversity in point of views thus enabling consistent estimation of C:

f(r, φ, θ) ≈ C µ(r, θ, φ) (4.3)

We therefore aim at estimating the space occupancy through the estimation of the

reflectivity from a set of blurred observations.

4.3 Space carving

In this section, a presentation of the carving reconstruction technique is given. Based on

the imaging model of the SONAR, we first present the theoretical background of the

carving technique. We then provide an illustration on a simple example of the carving

principle.
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4.3.1 Theory

Based on equation 4.1, one can consider subdivisions of the vertical aperture Av in p

uniform sections Θi of size ∆θ = (θ2 − θ1)/p such that:

[θ1, θ2] =

p⋃
i=1

Θi = [θ1, θ1 + ∆θ] ∪ · · · ∪ [θ1 + (p− 1)∆θ, θ2]

and

ISonar(r, φ) =

p∑
i=1

∫
Θi

Bv(θ)
2 f(r, θ, φ) dθ =

p∑
i=1

ςi(r, φ) (4.4)

with

σi(r, φ) =

∫
Θi

Bv(θ)
2 f(r, θ, φ)

Due to the positivity of f , each subsection integral ςi(r, φ) is positive and for small

enough subdivision Θi, one can assume (Riemann quadrature):

ςi(r, φ) ≈ KΘi Bv(θi)
2 f(r, θi, φ)

with θi being Θi midpoint and KΘi being a measure of the size of the integration domain

Θi. For simplicity and since we aim at estimating voxels of equal sizes, we consider,

without loss of generality KΘi as a constant equal to 1.

From this approximation, results the following inequalities:

∀i ∈ [[1, p]]; 0 ≤ f(r, θi, φ) ≤ ISonar(r, φ)

Bv(θi)2
(4.5)

Each observation provides an upper limit to the intensity reflected by the scattering

points within the vertical aperture of the sensor and in particular in the case of N

observations {Ik}1≤k≤N of the same point P from different elevation angles {θk}1≤k≤N ,

we have:

0 ≤ f(P ) ≤ min
1≤k≤N

Ik
Bv(θi)2

(4.6)

An estimated upper bound to f(P ) is therefore given by the observation of a mini-

mum scaled intensity. The estimation of this upper bound from the set of observations
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{Ik}1≤k≤N and their associated vertical angles of observation θi constitutes a reconstruc-

tion method. Since this non-linear approach relies on the observation of empty spaces to

bound the function f , we refer to it as space carving.

4.3.2 Illustration of the carving reconstruction principle

In 4.1, an illustration of the carving reconstruction technique is provided. As shown

in figures 4.1-a and 4.1-b, the acquisition process is performed along the direction of

uncertainty caused by the vertical aperture of the 2D multibeam sensor. This direction

is perpendicular to the image plane of the sensor at each measurement and referred to

as the U-axis. Note that this axis is represented here as a vertical axis but could in

practise correspond to any 3D line as it only depends on the orientation of the sensor.

The scene is observed from 4 locations at different altitudes under an horizontal angle φ

and at a range r. The overlap between the footprints enable multiple observations of

the points located on the U-axis. Figure 4.1-c exhibits the multiple intensities measured

when moving along the Z-axis while figure 4.1-d presents the reconstructed axis using

the carving principle.
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Figure 4.1: Carving reconstruction principle.
a) Geometry of samples acquisition along the direction of uncertainty of the sensor:
U-axis. 4 measurements are made at different vertical positions z1, z2 and z3. b)
The samples provide multiple observations of the surface of the object. Due to the
vertical aperture of the sensor Av, the spatial extent of the measurements exhibit
overlapping areas. c) Depending on the presence of scatterers in the aperture of the
sensor, the samples feature different intensities ranging from low to high intensities.
d) The reconstruction of the observations along the axis U is obtained by keeping the
minimum observed intensity for each vertical section. The observation of empty spaces

(white intensity) provide a spatial boundary to the object.
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4.4 Space carving algorithm

In addition to the principle presented in the previous section and due to the nature of

SONAR imaging, several additional processing steps are needed. We present here the

multiple steps of the practical algorithm implementing the space carving technique.

4.4.1 Overview

As illustrated in figure 4.2, the carving reconstruction algorithm is composed of three

major steps. The first two steps aim at generating a temporary map of the environment

SONAR image 
acquisition

Vehicle moving in the 
direction of uncertainty 

(SONAR vertical 
aperture)

Spherical expansion 
following the SONAR 

imaging model.

Data association : map 
update keeping the 
lowest value in each 

voxel

Inspection 
completed ? 

No

Yes

Occlusion resolution, 
associating each return 

along the vertical 
aperture to the map

External action

Algorithm step

User or external logic 
input

Figure 4.2: Carving algorithm diagram. The 3-step carving algorithm features two
initial steps applied each time new data is acquired. While these two steps provide
an initial temporary estimate of the occupancy, the occlusions happening during the
imaging process are not solved at this point. Once enough data has been acquired, a

final occlusion resolution step provides the final map.

and are applied each time new data is acquired. Based on the SONAR imaging model,

a spherical expansion of the 2D SONAR image to a 3D discrete representation is first

performed. Then the carving filtering rule is applied by comparing the new 3D data

to the current estimate of the map and keeping the lowest observed intensity. New

measurements are then acquired at various positions along the direction of uncertainty
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(vertical aperture) to refine the map until the inspection is judged to be completed. Once

this condition satisfied, a last step called occlusion resolution is applied to generate the

final map, taking into account the occlusions happening during the imaging process.

4.4.2 Spherical reprojection principle

The SONAR imaging process compresses 3D information into a 2D representation by

summation along the vertical aperture. In order to retrieve a 3D representation of the

scene, the 2D images are first ”expanded” in a spherical way using a 3D rotation. As

illustrated in figure 4.3, for each return at a bearing angle φ, the ensemble of possible

scatterer position is obtained by 3D rotation around the vector ~vφ of a rotation angle

within the vertical aperture [-Av2 ,Av2 ]. The rotation axis vector ~vφ is defined by the cross

product between the bearing direction ~uφ and the unit vector orthogonal to the sonar

plane ~zSonar.

s

Image plane

Ensemble of 
possible 

location of 
scatterers

Pixel

Figure 4.3: Spherical reprojection. For each pixel, the ensemble of possible scatterers
related to it is obtained by applying a 3D rotation of the pixel centre around the axis

described by the vector ~vφ.

Once the spatial extent of potential scatterers defined, the resulting spherical arc is then

discretized at a given angular resolution θres. As visible in figure 4.4, the discretization

step provides multiple 3D points for each pixel.
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s
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ensemble of 

possible 
location of 
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Figure 4.4: Scatterer candidates. The ensemble of possible scatterer position for the
pixel is discretized at a given angular resolution, providing a set of 3D points for each

pixel.

Importantly, an intensity is assigned to each generated 3D point based on its elevation

angle following the upper bound described in equation 4.5:

I(r, φ, θ) =
IPixel(r, φ)

Bv(θi)2
(4.7)

This representation enables direct 3D filtering by maintaining at each time the estimated

upper upper bound for the observed intensity at a 3D location.

4.4.3 Occlusions and conservative reprojection

As described in section 2.2.5, the absence of acoustic return at a given point can either

be the result of open-water propagation of the emitted wave or a shadowing effect due

to the presence of an object in between the sensor and the point considered. As result

and when operating a spherical reprojection of a zero intensity pixel, it is necessary to

check for potential occlusion. In this situation, a conservative reprojection where zero

intensity pixels are projected only when no non-zero intensity pixel is present in between

the considered pixel and the sensor is needed.

Figure 4.5 provides an illustration of the conservative reprojection rule where the pixels

measured along the directions ~u1 and ~u2 are expanded to 3D. In the first case, no

acoustic return has been measured along the ~u1 direction, all intensities can therefore be

reprojected. In the second case, the axis directed by ~u2 features two acoustic returns
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which can be both reprojected. In the last situation, an empty pixel is measured behind

an acoustic return, since it could be due to both an absence of scatterer or an occlusion

by a scatterer at shorter range (the scatterer leading to the return at shorter range), no

reprojection is operated.

s

reprojection of empty 
pixels since no return 
has been measured

empty pixel and located after a 
return : no reprojection

Figure 4.5: Conservative reprojection. In order to account for potential occlusions
when expanding a SONAR image to 3D, empty pixels are only reprojected if no acoustic
return has been measured between its position and the sensor. The pixels measured
along the directions ~u1 and ~u2 are therefore reprojected while the empty measurement
on ~u3 is not expanded due to a full pixel measured at shorter range in this direction.

This conservative reprojection rule enables to obtain a set of hypothetical locations

for scatterers in 3D. At this stage, each 3D point generated represents a possible

source of backscattering with an associated intensity representing its a-priori maximum

backscattering strength or reflectivity.

4.4.4 3D data storage and Min-filtering

Once a 3D representation obtained, a 3D map gathering the multiple observations

obtained is maintained. In order to enable search and general processing operations, a

structured representation is needed. 3D data in general requires large amounts of memory

making a full regular gridded cube inconvenient. For this reason, an octree structure

(Meagher [1982]) is chosen to provide a lightweight representation. An Octree is a k-d

tree structure with nodes splitting in 3D, producing 8 partitions. It is constructed by

recursively subdividing space into eight cells until a limit condition is met. This condition

can either be a pre-defined number of elements or a maximum tree depth. As illustrated
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in figure 4.6, the possibility not to allocate certain child nodes allows sparsity of the data

and decreases the memory usage in comparison to regular grids.

Octree level 1

Octree level 2

Octree level 3

(a) (b)

Figure 4.6: Octree structure. Compared to a regular grid (a), an octree structure (b)
enables a lightweight memory usage by decreasing the number of levels required to store

unoccupied cells.

Once a new SONAR image has been expanded to a 3D representation, the set of 3D

points is added to the map. When adding a point to the map, if the voxel the new

point fall into had previously been populated by another measurement, the carving

method is applied: the intensity associated to the considered voxel is the lowest estimated

reflectivity of the two measurements. Thus if the new reflectivity measurement appears

to be lower, its value will be affected to the voxel, otherwise, the previous measurement

will be kept. If the new measurement appears to fall into a previously observed voxel,

the intensity of the voxel is initialised to the first measurement.

Each time a new measurement is added, the map representing the best current estimate

of the reflectivity is updated. Once enough samples acquired (end of inspection), this

temporary map is processed to solve the occlusions happening during the inspection.

4.4.5 Occlusion resolution

As illustrated in figure 4.5, when multiple returns are measured on the same bearing axis

(as visible on the axis directed by ~u2), each return is reprojected along the entire vertical

aperture. This situation reflects the a-priori possibility of presence of scatterers at each

elevation angle for each return. Due to the occlusion phenomenon described in section

2.2.5, it is impossible to observe from the same point of view two consecutive scatterers
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aligned with the SONAR location. Therefore, following the conservative reprojection of

the samples and their association in a map, there is a need for handling the potential

occlusions that happened during the imaging process by explicitly associating each pixel

to a set of scatterers located along the vertical aperture. The occlusion resolution step

aims at generating a final map of the scene by only retaining the observed surface of the

objects (front scatterers).

Once the initial map obtained, it is possible to solve the occlusions occurring at each

point of view by comparing the SONAR images to the map. As illustrated in figure 5.29,

associating each pixel to a set of 3D points along the vertical aperture enables to label

points in the map as observed or shadowed. Iterating from short to long range along

each bearing direction, the vertical aperture is divided in a set of intervals labelled in

two categories: free or occluded. Based on this labelling, the points in the map falling

into the footprint of the pixels can be labelled as observed or shadowed by a previous

scatterer along the propagation direction. As illustrated in figure 4.8 the points identified

each pixel is associated to a set of 3D points in the 
maps

point in the 
inital map

free section

occlusion

Figure 4.7: Occlusion resolution method. Each image is reprojected in 3D and
compared to the map previously built. Iterating from the lowest range to the maximum
range to the SONAR location along the ~u1 direction, each pixel is projected and
associated to an interval or a set of intervals in the vertical aperture. Once these
intervals labelled as free or occluded, the points in the map are labelled as observed or

shadowed.

as shadowed or observed in the image, only the points observed are kept and added to

the final map, effectively retaining the front surface points of the object. Since some

points can appear in multiple images, a voxel-based filtering is applied when adding each
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s

point in the 
final map

Figure 4.8: Solved occlusions. Once the points in the map labelled, only the points
observed in the SONAR image considered are retained and added to the final map.

new set of points to the final map, keeping one point per voxel. An intensity value is

kept for each point, keeping once again the lowest reflectivity observed (carving rule).

4.4.6 Non-uniform and non-regular sampling

Due to the imaging SONAR geometry model (see figure 4.9), each measurement provides

samples spaced at regular ∆r range intervals and ∆φ horizontal aperture angular intervals

leading to a non-uniform and non-regular sampling in the cartesian space. Similarly, the

sampling period in the remaining dimension (along the vertical aperture) is assumed

to be performed at any sampling period ∆z. While the samples density is anisotropic,

octree structures represent a regularly sampled grid. In order to optimize the space

usage, samples are stored at cartesian resolutions (∆u,∆v,∆w) as described in figure

4.10. In order to adapt to the spherical samples to the uniform representation of an

octree, a scaling is applied in every direction making the resolutions in all dimensions

equal to the minimum resolution ∆o = min(∆u,∆v,∆w). The points are then stored in

an octree enabling the carving processing at ∆o resolution. When generating the final

map, an inverse scaling is applied on the map to restore the anisotropic resolutions on

(u,v,w) grid.
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Figure 4.9: Non-uniform sampling. Due to the SONAR imaging geometry, the
cartesian space XYZ is sampled regularly in spherical coordinates at regular ∆r range

intervals and ∆φ horizontal aperture angular intervals.

s

Figure 4.10: Cartesian gridding. In order to adapt to the regular sampling of an
Octree, a cartesian grid based on the first sample is used.
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4.4.7 Image denoising and intensity threshold

When reconstructing from noisy images, the observation of empty spaces is made difficult

by noisy measurements. In order to enable the distinction between noise and data, a

denoising process can be applied in two ways.

Statistical denoising of the input samples

As described in section 2.5.2, a noise model can be obtained from a set of open-water

observations by estimating the first two moments of the noise distribution at each location

in the image (r, φ). The denoising criteria being scaled on the local noise characteristics

(m,σ), this method is adapted to the non-uniformity of typical SONAR noise patterns.

Once the noise distribution known, a probability of the pixel to represent noise can be

computed using the Z-test value:

ZScore(r, φ) =
I(r, φ)−m

σ
> T (4.8)

with T being a user defined threshold. As illustrated in table 4.1, applying a threshold

typically chosen between 2 and 3σ to a gaussian noise distribution enables to suppress

most of the noise measurements.

T % of noise points removed

1 σ 84.1

2 σ 97.7

3 σ 99.9

Table 4.1: Proportion of points removed by a Z-test of threshold T on a gaussian
noise distribution: percentage of points equivalent to the complementary cumulative

distribution function of a gaussian distribution evaluated at respectively (σ, 2σ, 3σ).

Static threshold

Once the temporary map generated, a set of 3D points with associated intensities is

obtained. At this stage, a static threshold can be applied to remove the points of lowest

intensity without needing any prior knowledge on the noise model.

4.4.8 Implementation

The carving algorithm has been implemented in C++ to allow for high execution speed,

object-oriented programming with the possibility to build on a large range of open-source

libraries, providing interfaces to various hardware platforms as well as many standard
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data types and protocols. An implementation in C++ therefore makes easier a future

integration on an underwater vehicle for field data validation trials. Our implementation

took advantage of the OpenCV library (Bradski et al. [2000]) for fast 2D image processing

and data structures. Similarly, our implementation relies on the Point Cloud Library

(Rusu and Cousins [2011]), commonly used for 3D processing applications such as object

recognition, 3D reconstruction, SLAM, etc. In particular, PCL offers many 3D data-

related data types and structures as well as multiple implementations of the Octree

structure. As presented in section 2.5.1, our sonar simulation framework is based on ROS

middleware as well as a library developed in the Heriot Watt Ocean System Laboratory

implementing multiple basic functionalities of an underwater vehicle such as point to

point navigation, thruster control and human interfaces to add functionalities to the

UWSim framework.

4.5 Simulation results

We present here simulation results obtained with the UWSim environment. First, the

reference models used in the simulation environments are presented. Following this and

in order to validate the concept of carving method and occlusion resolution, simulated

experiments are presented with noise-free images. Both qualitative and quantitative

analysis are presented. A short study of the influence of noise is then presented in order

to evaluate the suitability to the reconstruction method to real data.

4.5.1 Reference models used in simulation

In order to evaluate the reconstruction method, four reference models were used allowing

both qualitative and quantitative analysis on objects of different shapes and sizes. As

illustrated in figure 4.11, the reference models represent medium to large man-made

objects similar to typical underwater man-made objects and exhibit different levels of

details. The first object is a simple sphere featuring a full range of angles of incidence to

the surface, similar to a buoy. The second object is a cylinder equipped with a wheel valve

as could be found on a oil field. The third object typically represents a pillar as could

be found supporting a bridge or a heavy man-made structure. The last reference model
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Figure 4.11: Reference CAD models used in simulation. a) 1m diameter sphere. b)
50cm diameter cylindrical tank with a wheel valve. c) Pillar model with a 2m wide
base and a 60cm wide top. d) 2m large oil-field structure mounted on a vertical axis

exhibiting 40cm diameter buoyancies.

represents a typical oil-field structure, exhibiting more details and featuring cylindrical

buoyancies as frequently found on underwater man-made floating structures.

4.5.2 Noise-free simulation results

In order to simulate both a pencil-beam imaging SONAR and a wide-aperture SONAR,

experiments were made with both a 1◦ and a 10◦ vertical aperture simulated SONAR.

The sensor featured a range resolution of 2cm and a bearing resolution of 0.2◦. Figure



Chapter 4. 3D reconstruction by space carving 83

4.12 presents reconstruction results obtained with respectively a pencil-beam sensor

(b,e,h,k) and wide-beam sensor (c,f,i,l).

4.5.2.1 Quantitative analysis metrics

In order to quantify the accuracy of the 3D reconstructions, a study of the error (distance

of each reconstructed point to the CAD model) distribution is necessary. Figure 4.13

depicts a typical distribution of the reconstruction error, obtained from the unsigned

reconstruction errors of the four models presented in section 4.5.1 at a fixed vertical

sampling period of 1cm and a 10◦ vertical aperture SONAR. As visible in the figure,

the distribution exhibits a large tail due to the presence of outliers. When using noise-

corrupted images as in real data, the presence of outliers is typically expected to increase

making necessary the use of a set of robust metrics to study the reconstruction error.

As a consequence, four metrics were chosen to compare the final point clouds to the

original CAD models:

a) Unsigned median error: as well known in statistical analysis, the mean estimator of

a heavy-tailed distribution leads to artificially high values due to the exaggerated

weight of the outliers. In this situation, the mean estimate reflects more the presence

of outliers (small part of the population) than the typical values as can be observed

in a large part of the population. In comparison to the mean error, the median value

offers more robustness to the estimate of the statistical error in presence of outliers

by considering the error value of the most typical point of the distribution: its central

point.

b) Surface coverage: while the distance of the reconstructed points to the CAD models is

a measure of the precision of the reconstruction, figure 4.12 illustrates the differences

in surface coverage of the inspected object: the reconstruction obtained using a

pencil-beam sensor typically leads to good reconstruction accuracy (4.12-e) but low

overall surface coverage compared to a wide-beam sensor (4.12-f). When reviewing

the quality of a 3D reconstruction, there is therefore a need to take into account

the proportion of reconstructed surface. A good estimate of the coverage is given by

computing the number of points on the surface of the model for which a reconstructed

point can be found within a given radius rc. We typically chose rc = 3 cm. The
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Figure 4.12: 3D carving reconstruction from noise-free simulated data obtained after
inspection of the four reference models. Reconstructions of the CAD models (a,d,g,j)

using the pencil-beam sensor (b,e,h,k) and a wide-beam sensor (c,f,i,l).
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Figure 4.13: Typical reconstruction error distribution obtained from averaging the
error distributions obtained with the four reference models with a 1cm vertical sampling
period and a 10◦ vertical aperture SONAR. The distribution exhibits a large tail resulting

in a mean value higher than its median value.

estimate of the surface coverage is then typically expressed as a percentage of the

model surface.

c) Proportion of outliers: when using wide-aperture sensors and a-fortiori in noisy

environments, the presence of reconstructed points far from the original model is

commonly observed. In order to quantify the presence of these outliers, a threshold

radius ro is set. Any reconstructed point being further than ro from the CAD model

is considered as an outlier, the overall metric being the proportion of points satisfying

the outlier condition.

d) Unsigned median error to coverage ratio: since the first two metrics, median error and

coverage often appear to be traded for each other when choosing a sensing modality,

there is interest in using a combined metric providing a way to compare sensors of

different footprint sizes.

In all our experiments, CAD models constitute our ground truth for both qualitative and

quantitive analysis. Their accuracy, both in terms of geometry and position in the scene

is therefore of prime importance. When considering simulated data, the positions of the

structures are defined by the user in UWSim. Similarly, the sensor offset and the position

of the vehicle is known since provided by the simulator. The structures observed are
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observed through direct raytracing of the CAD models therefore both the geometry of

the structures and their position are known in advance and can be directly compared to

the reconstructed point clouds without need for registration. When considering real data

acquired in water tank, no quantitative analysis was performed due to the absence of

accurate 3D CAD models. On the contrary, field experiments (described in section 4.7.2)

were performed on custom-made structures for which 3D CAD models were generated

(provided by the manufacturer) at a sub-centimeter accuracy. These structures were

cleaned prior to deployment on the field of experiments to avoid any alteration of the

geometry by marine growth and sand accumulation. Quantitative results obtained on

this dataset (see table 6.1) were then obtained by co-registration of multiple point clouds

(see section 6.2.2.1) and registration of the CAD models to the point clouds using the

methods described in section 6.3.2.5. In both cases the results were carefully checked

and provided the same level of accuracy as manually registered CAD-models.

4.5.2.2 Quantitative results

We present here a quantitative analysis of the carving reconstruction technique using the

four metrics presented in section 4.5.2.1. As illustrated in figure 4.14, the reconstruction

median error with a wide-beam sensor is roughly twice as high as when using a pencil-

beam sensor. When considering large sampling periods, the difference in error increases

due to constant error values when using a pencil-beam sensor.

In addition to a 10◦ vs 1◦comparisons, experiments were made with sensors of wider aper-

ture (respectively 20◦and 30◦). Figure 4.15 shows the increase in median reconstruction

error when considering larger vertical aperture sensors.

As shown in figure 4.16, the surface coverage decreases when considering larger sampling

periods with values roughly twice as high when using a wide-beam sensor except on the

sphere structure.

Figure 4.17 shows the increase in surface coverage when considering sensors of larger

vertical apertures.

As can be observed in figure 4.18, when combining the two metrics, similar values are

obtained at low sampling periods (up to 5cm). Larger differences are observed at higher

sampling periods.
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Figure 4.14: Median error versus vertical sampling period average on all models for
different apertures with two different sensors: pencil-beam (magenta) and wide-beam
(blue). For small sampling periods, the reconstruction error of the 10◦ aperture sensor

is roughly twice as high as when using a 1◦ sensor.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Z sampling period (meters)

0

0.01

0.02

0.03

0.04

0.05

M
e

d
ia

n
 e

rr
o

r 
(c

m
)

1°

10°

20°

30°

Figure 4.15: Median error versus averaged on CAD all models vertical sampling period
for different sensor apertures.
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Figure 4.16: Surface coverage versus vertical sampling period. The surface coverage
yielded when using a pencil-beam sensor is twice as low as when using a wide-beam

sensor except on the sphere object where a similar coverages are observed.
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Figure 4.17: Surface coverage averaged on all CAD models versus vertical sampling
period for different sensor apertures. Increasing the aperture consistently increases the

surface coverage of the reconstructions.
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Figure 4.18: Median error to coverage ratio versus vertical sampling period. Similar
values are observed when at low sampling periods (up to 5cm) with larger variations

when using large sampling periods.

As illustrated in figure 4.19, the median error to coverage ratio of reconstructions obtained

with various apertures are very similar at low sampling periods.
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Figure 4.19: Median error to coverage ratio averaged on all CAD models versus
vertical sampling period for different sensor vertical apertures.

When studying the presence of outliers (fig.4.20), it can be observed that the use of a
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pencil-beam sensor leads to less than 1% of outliers. Reconstructions from wide-beam

sensors contain larger proportions of outliers but remain lower than 15% (at most) when

using small sampling periods.
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Figure 4.20: Presence of outliers versus vertical sampling period using a pencil-beam
sensor and a wide-beam sensor.

4.5.2.3 Analysis

On a qualitative level, the reconstructions from noise-free data presented in figure 4.12

showed the difference between a wide and a pencil-beam sensor. The pencil-beam

reconstructions (b,e,h,k) exhibit good resolution but only partial reconstructions: in

particular, figures (e,h,k) show the impossibility of observing horizontal surfaces. In

opposition to this, the wide-beam reconstructions (c,f,i,l) offer increased coverage at the

cost of lower geometrical details.

As visible in figures 4.14 and 4.16, opposite behaviours of the two first metrics are

observed when using various sampling periods resulting in similar median to coverage

ratio values (see figure 4.18). While the use of a wide-beam sensor provides higher

surface coverage by scouring large amounts of water at a time, the width of the aperture

induces a blurring in the observations making the recovery of the initial 3D geometry

more complicated. This result therefore shows the interest of the carving reconstruction
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method where overall similar results are obtained with a wide-aperture SONAR as when

using a pencil-beam sensor.

Figures 4.15 and 4.17 showed that this result remained valid when considering sensors

of increasingly larger apertures. As a result figure 4.19 exhibited very similar error to

coverage values for all sensors at low sampling period (under 5cm). When considering

larger sampling periods, an increase in discrepancy in the median error and error to

coverage plots is observed, due to the larger blurring effect of large apertures not being

compensated by a high sampling resolution along the direction of uncertainty.

It can be observed on figure 4.14 that constant median errors are obtained when using a

pencil-beam sensor. While this result might sound counter-intuitive at first, it is due to

the fact that the very small aperture of a pencil-beam SONAR (1◦) results in a very small

vertical 3D spread of the samples in comparison to wider apertures. As a result, when

considering large sampling periods, gaps appear between each samples, slowly decreasing

the surface coverage but without significantly increasing the final reconstruction error.

For this reason, reconstruction of structures featuring a larger proportion of horizontal

surface such as the pillar and the bottle exhibit large variations of errors when using a

wide-aperture sensor. On the opposite, objects offering no tangential incidence angle such

as the sphere lead to very similar reconstruction metrics, independently of the chosen

sensor.

Similarly, it can be observed that pencil-beam reconstructions do not feature any outliers

due to a low vertical spread. On the contrary, the vertical uncertainty of wide-aperture

sensors naturally tend to generate outliers that can only be avoided by sampling at high

rate along the direction of uncertainty.

4.5.3 Noise corrupted simulation results

In presence of noisy data, a pixel-wise Z-test denoising step is applied before the re-

construction. As illustrated in figure 4.21, applying the Z-test denoising with a given

threshold (T = 3) enables to suppress most of the noise present in the image by removing

a high percentage (99%) of noise points. In opposition to a uniform thresholding of the

image, the spatially-varying noise model removes the sensor-specific noise pattern in both

high and low SNR regions.
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(a) (b)

Figure 4.21: Z-test denoising on a simulated image with a threshold T = 3. The Z-test
filter removes most of the noise points at the risk of removing data points in areas of

low SNR.

As visible in figure 4.22, the quality of 3D reconstructions is affected by the SNR of

the input images: the median error remains stable but the surface coverage decreases

significantly at low SNR values.
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Figure 4.22: Median error and coverage versus SNR. Decreasing the SNR of input
images does not significantly affect the median error but decreases the surface coverage

rate.

The proportion of outliers remains stable when the noise level increases as visible in

figure 4.23. As a result of the coverage decrease, the median to coverage ratio follows the

input SNR levels in a similar way.
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Figure 4.23: Median error to coverage ratio and outliers versus SNR. Due to the
decrease in coverage at low SNR, the median to coverage ratio follows the same trend

as the coverage while the proportion of outliers remains stable (around 5%).

4.6 Water tank experimental results

In order to evaluate the performance of the 3D reconstruction algorithm on real SONAR

data, we performed tests in Heriot Watt University Ocean Systems Laboratory tank

equipped with a sensor positioning system. In comparison to a simulated environment,

the SONAR imagery is typically expected to exhibit additional artefacts due to local

noise sources and multipaths effects in closed environments. While the imaging quality

is therefore expected to be lower, the navigation remains very accurate thanks to the use

of an electronic positioning system.

In this section, we first detail here the experimental configuration used for our tests. We

then present the 3D reconstruction results obtained with multiple objects.

4.6.1 Experimental setup

We gathered real data using two different SONAR heads to scan reference objects that

were submerged in a small (4 m × 3 m × 2 m) concrete water tank. As shown in figure

4.24, a 2D plotter mechanism with a programmable interface for motion control, was

used to accurately position the sonar head along two axis in the horizontal plane.
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plotter rails

object 
sensor

plotter head

water tank

(a) (b)

Figure 4.24: Heriot-Watt University OSL water tank. a) 4 m × 3 m × 2 m water
tank used for experiments. b) 2D plotter mechanism with a BlueView SONAR mounted
on its head. The object (Hyball ROV) is being disposed on the bottom of the tank.

The sensors were connected by Ethernet and dedicated ROS nodes were implemented to

allow configuration and data reception at a rate of 5 Hz. Similarly, the plotter mechanism

provided position readings at a rate of 10 Hz. A step function of constant speed was

applied as a command to the plotter, providing uniform samples along the axis of

movement. In order to ensure accurate coherency between the position readings and the

SONAR images, a synchronization step was applied by applying a bilinear interpolation

at the imaging time using the two closest positions (see figure 4.25). We collected data on

time (sc)

plotter readings
SONAR readings

Figure 4.25: Synchronization of position and SONAR samples. In order to deter-
mine the exact position of the sensor when acquiring the SONAR images, a bilinear

interpolation is performed using the two closest positions.

a variety of objects immersed in the tank. For each object, we repeated the experiment

with two different sensors mounted on the plotter head: a BlueView MB2250 featuring a

small (1◦) vertical aperture and an ARIS Explorer 3000 offering a large aperture (14◦).

As detailed in table 4.2, the two sensors feature very different aperture sizes.

In each case, the sonar was mounted in a downward-looking configuration enabling the

acquisition of vertical slices of objects placed on the bottom of the tank. The sampling

resolution between successive images was set to 4 mm for both sensors. As illustrated in
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BlueView MB2250 Aris Explorer 3000

Frequency 2.25 MHz 3.0 MHz

Horizontal aperture (Ah) 76◦ 30◦

Vertical aperture (Av) 1◦ 14◦

Beam width 1 × 1◦ 0.25 × 0.25◦

Number of beams 256 128

Max. update rate 40 Hz 15 Hz

Power 15 Watts 80 Watts

Depth rating 1000 m 300 m

Size 22.6 cm × 11.9 cm × 10.9 cm 26 cm × 16 cm × 14 cm

Weight in air 3.67 kg 5.17 kg

Weight in water -0.09 kg 1.06 kg

Table 4.2: Specifications of the two sensors used for tank experiments.

table 4.3, the two sensors were configured to feature similar imaging settings: similar

bearing and range resolutions are obtained at identical frame rates, the offset in minimum

and maximum ranges being due to different sensor sizes and positioning on the plotter

head. The plotter shifted the sensor along the long edge of the water tank, over a distance

of maximum 2 meters (depending on the size of the object inspected). Acquisitions of

complete sequences using both sensors therefore took a maximum of a 100 seconds per

object.

BlueView MB2250 Aris Explorer 3000

Min / Max FOV -38.14◦ / 38.14◦ -15◦ / 15◦

Min range 0.25 m 0.67 m

Max range 1.4 m 1.66 m

Range resolution 0.6 cm 0.3 cm

Bearing resolution 0.15◦ 0.23◦

Image width 512 128

Image height 174 341

Update rate 5 Hz 5 Hz

Table 4.3: Imaging settings for the two SONAR sensors during the water tank
experiments.

As shown in figure 4.26, the objects placed in the tank consisted of an aluminium

sphere of radius 15cm, a metal cylinder with 10cm radius and 1.5 m long, a rectangular

parallelepiped (1 m × 0.2 × 0.2 m) on top of which a ROV shell was placed irregularly

and a Hyball ROV (1 m × 0.5 m × 0.5 m). One or more ropes were attached to

each object in order to allow easy deployment and recovery. Although simple, the

shapes of the first two objects (figures 4.26-a,b) are frequently found in man-exploited

marine environments where buoys and pipelines are commonly used. The two following
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(a) (b)

(c) (d)

Figure 4.26: Reference objects used for tank experiment. All objects were secured
by one of more ropes. a) 30 cm diameter aluminium sphere. b) 1.5 m long × 20 cm
diameter. c) 1 m × 0.2 × 0.2 m rectangular parallelepiped with an ROV shell layed on

its top. d) Hyball ROV (1 m × 0.5 m × 0.5 m).

configurations (figures 4.26-c,d) exhibit more complex shapes enabling the evaluation

of the capacity of the algorithm to reconstruct smaller details. Interestingly, the two

configurations feature elements coming from underwater vehicles, therefore simulating a

vehicle recovery operation by a SONAR guided system.
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4.6.2 Experimental results

Reconstruction experiments were carried at 4 mm sampling rate for the BlueView MB2250

and 1.2 cm for the ARIS Explorer 3000. The difference in sampling rate is justified

by the difference in aperture. Sub-centimeter reconstructions using the ARIS sensor

did not show any significant improvement in the accuracy of the reconstruction. On

the contrary, due to the very short range of observation, the 1◦ aperture Blueview

sensor required to be used at low sampling rate to exhibit significant overlap between

successive measurements. The results of 3D reconstruction using the carving method

are presented in figure 4.27. Figures 4.27-a,c,e,g present the reconstructions obtained

from the pencil-beam SONAR (BlueView MB2250) whereas figures 4.27-b,d,f,h show the

equivalent reconstructions obtained with a wide-beam SONAR (Aris Explorer 3000).

4.6.3 Analysis

While no quantitative analysis is made due to the absence of CAD models, a visual

analysis enables to confirm the trends observed in simulations. As could be expected

based on the simulation results, the reconstructions from the pencil-beam sensor exhibit

better geometrical accuracy with a better ability to reconstruct small details. Similarly

the number of outliers is visually larger in wide-beam reconstructions. Although both

sensors provided good coverage of the structures due to high sampling rate along the

vertical aperture, the reconstruction obtained from the pencil-beam sensor exhibit a few

holes. In particular, figures 4.27-a and 4.27-g exhibits more gaps than their equivalent

reconstruction from wide-beam samples (figures 4.27-b and 4.27-h).

Although in comparison to simulated results, a lower geometrical accuracy can be

observed, the reader should bear in mind the differences in scales between the objects:

the sphere used in simulation was featuring a 1m diameter while the pseudo-sphere in the

tank is 30cm wide. Similarly the details on the ROV Hyball are typically at centimetre

level while the oil-field riser structure presented in simulation featured larger geometrical

elements. Although a difference in range resolution could appear to be favourable to

the tank configuration with sub-centimetre range resolutions in comparison to 2cm in

simulation, these high resolutions are at the upper limit of the resolving capacity of the

sensors, coming at the cost of lower resilience to noise.
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Figure 4.27: 3D carving reconstructions from tank data of several reference objects
(rows) and two sensors of different vertical aperture (columns).
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A further analysis on the differences between the simulated results and real data as well

as a comparison between the wide-beam and narrow-beam sensors, are presented in

section 5.7.

4.7 Field results

In this section, we present 3D reconstruction results obtained using the carving method

on two sets of real field data by an Autonomous Underwater Vehicle. In comparison to

the data obtained from tank experiment, data acquired on a real underwater vehicle offer

the possibility to evaluate the quality of SONAR imaging in an uncontrolled environment

and in presence of larger objects. In particular the presence the of marine growth,

water pollution and marine wildlife is frequently observed. In addition to this, vehicle

positioning and navigation remains a challenge in GPS denied environments such as

under water, impacting the estimate of the position of the sensor and therefore the 3D

reconstruction.

We first introduce the AUV prototype along with the multiple sensors needed for the

data gathering. We then present 3D reconstruction results obtained on multiple oil-field

underwater structures.

4.7.1 The Autonomous Inspection Vehicle prototype

In partnership with SeeByte, Subsea7 has been developing an AUV adapted to oil

field structures inspection and maintenance. This vehicle, called AIV for Autonomous

Inspection Vehicle, is designed to achieve up to 24 hours of autonomous surveying and

potential interventions at depth of up to 3000 metres. As illustrated in figure 4.28, the

vehicle is equipped with two BlueView P900-130 forward looking wide-aperture imaging

SONARs (see table 4.4) respectively mounted horizontally and vertically. In addition to

this, a pencil-beam BlueView MB2250 SONAR (see specification in table 4.2) is mounted

in a downward looking configuration for bathymetry sensing.

Two colour cameras are embedded too, respectively in a forward-looking and a downward-

looking configuration. The AIV prototype is equipped with 5 thrusters providing control in

X,Y, Z and Y aw. The vehicle aims at performing fully autonomous or semi-autonomous

mission in both tetherless configuration or via limited acoustic communications. The AIV
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Figure 4.28: Synchronization of position and SONAR samples. In order to deter-
mine the exact position of the sensor when acquiring the SONAR images, a bilinear

interpolation is performed using the two closest positions.

Frequency 900 kHz

Horizontal aperture (Ah) 130◦

Vertical aperture (Av) 20◦

Beam width 1 × 1◦

Number of beams 768

Range resolution 2.5 cm

Max. update rate 15 Hz

Power 19 Watts

Depth rating 1000 m

Size 31.5 cm × 12.7 cm

Weight in air 4.35 kg

Weight in water 0.6 kg

Table 4.4: Specifications of the BlueView P900-130 embedded on the AIV.

typically provides structure inspection capability at ranges of 1.5 to 3 metres. The vehicle

navigation is obtained from integrating readings from multiple sensors. Bottom-lock

velocities are provided by a DVL (Doppler Velocity Log), depth is read from a pressure

sensor while orientation estimation is obtained using a compass and a gyroscope. The

vehicle is transported in a basket enabling direct deployment on the seabed from a

surface vessel. Normal recovery of the vehicle is operated by autonomous docking of the

vehicle into the basket. For emergency situations, the vehicle is equipped of satellite

communication interface to allow recovery from the sea surface.

The vehicle autonomy framework developed by SeeByte provides mission planning based

on a simplified model of the environment called world model. This world model typically

features local bathymetry, tidal information and CAD model representations of the
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structures of interest. Based on the world model, side or top inspections of the structures

can be planned in advanced and simulated with a hardware-in-the-loop simulator. Once

the mission started, the vehicle leaves its basket, approaches the structures of interest

while avoiding potential obstacles via a SONAR-based collision avoidance module. Once

the vehicle located in the vicinity of an underwater structure, online relocalisation is

performed using forward-looking SONAR images, enabling side or top structure inspection

within safety margins. Within the limits of the navigation system, the structure inspection

capability enables both horizontal and vertical pipeline tracking and inspection. Once

the mission completed, the vehicle autonomously docks itself into the basket for recovery.

Offline data analysis can then be performed allowing video inspection of the structures

by an operator.

4.7.2 Lake field trials

The first set of trials were conducted in Loch Eil in Fort William, Scotland. On the site

of the trials, three metallic structures mimicking typical oil field structures as well as

two pipeline sections were placed on the seabed at a depth of around 30 metres. As

illustrated in figure 4.29, the structures feature similar dimensions as the structures used

in simulation. For clarity, we refer to these structures respectively as the box structure

(figure 4.29-a), the brick structure (figure 4.29-b) and the grillage structure (figure 4.29-c).

4.7.2.1 Pencil-beam SONAR inspection

The first experiment consisted in using the downward-looking pencil-beam SONAR

located at the bottom of the vehicle to perform a top inspection of each structure present

on the field. The along-track sampling period was 4cm with an average distance to the

seabed of 5 metres. Following this configuration, the full field was inspected in an hour

time.

Using the carving reconstruction technique, each structure has been reconstructed. Figure

4.30 presents the reconstructions of each structure.
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Figure 4.29: Lake field trials reference structures. Three metallic structures mimicking
oil field structures (the box structure (a), the brick structure (b) and the grillage

structure (c)) were deployed on the site of the trials along with two pipelines (d,e).

4.7.2.2 Wide-beam SONAR inspection

In addition to downward-looking pencil-beam images, the data gathered during the AIV

trials featured a set of forward-looking views of the box structures with small vertical

movement. Figure 4.31 presents a depth map representation of the carving reconstruction

of the box structure from a small set of samples (30 images).

4.7.3 Offshore trials

A second set of field data was gathered by the AIV during offshore tests including oil field

structure inspection, pipeline inspection and seabed mapping. In comparison to in-lake

trials, the operation of underwater vehicles is made more difficult offshore due to deeper
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(a) (b)

(c) (d)

Figure 4.30: Loch Eil trials pencil-beam carving reconstructions. 3D carving recon-
structions of the box structure (a), the brick structure (b), the grillage (c) and the large

pipeline (d). The points are color-coded based on their altitude (Z).

locations, stronger water currents and in our case more advanced marine growth. While

the presence of marine growth is not a particular problem for the reconstruction process,

it makes detailed assessment of the quality of the reconstruction more complicated as

well as any kind of shape-based processing such as automatic tracking and recognition.

While the data was gathered using AIV-specific tracking and planning algorithm, the

navigation data is accurate enough to perform 3D reconstruction over a few metres.
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(a) (b)

Figure 4.31: Depth map representation of a 3D carving reconstruction of the box
structure from FLS samples (b) in comparison to its CAD model (a).

4.7.3.1 Pencil-beam SONAR inspection

Seabed inspection data using the downward looking was operated above buried pipelines,

covered by hard mattresses and sand bags. The inspection was operated at an along track

sampling resolution of 3 to 4 cm and at a distance of 1 to 2 metres. Figure 4.32 shows

the carving reconstruction of the mattress and the sand bag as well as two video frames

of the same objects. Objects of only a few centimetres such as the small rounded rock are

noticeable in the SONAR reconstruction and can be visually compared to observations

made from a low-resolution underwater camera. The reconstruction exhibits noticeable

gaps between each samples due to the narrow vertical aperture of the sensor as predicted

in simulation.

4.7.3.2 Wide-beam SONAR inspection

Polygonal structure

The data gathered by the AIV during offshore trials also featured forward looking images

of a 6 m large and 8m tall polygonal structure with advanced marine growth. The

structure was fully inspected during six vertical inspection sections performed at different

angles around the structure, covering the full surface of the structure. The average
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two samples

rock mattress

sand bags

Figure 4.32: 3D carving reconstruction of a pipeline and its mattress from pencil-beam
samples compared with video data of the same objects.

vertical sampling period was 4 cm and multiple views all around the structure were

acquired. The result of a carving reconstruction obtained using the SONAR dataset are

shown in figure 4.33. In addition to this, part of one of the faces of the structure appears

2.8 m

8.7 m

6.3 m

(a) (b)

Figure 4.33: 3D carving reconstruction of a polygonal structure. a) CAD model of
the observed structure, b) reconstructed point cloud using the carving technique.

as missing. The rest of the structure appears densely covered.
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Riser pipeline

Another dataset was gathered while inspecting vertical pipelines called risers. The

average vertical sampling period was 7 cm with a distance to the pipeline ranging from

3 to 5 meters. These risers typically feature a 50 cm diameter and are kept buoyant

by large buoyancy (1m diameter in this case). In this sequence, the data was recorded

over a vertical movement of around 15 m. Figure 4.34 shows a depth map rendering a

3D reconstruction of a riser using the carving technique. The point cloud exhibits two

Mooring chains

Riser pipeline

Buoyancy

Anchoring weights

Figure 4.34: Depth map of a 3D carving reconstruction of a riser pipeline. The point
cloud exhibits the curved riser, two mooring chains going from the riser to the anchoring

system. A buoyancy is visible at the top of the point cloud.

mooring chains used for stabilisation of the riser. These chains go from the riser itself to

an anchoring point on the seabed. The riser appears as a curved half-cylinder on which

buoyancies are placed every couple of meters for hydrodynamical balance, as visible on

top of the reconstruction.
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4.7.4 Computing resource usage

In terms of computational cost, the space carving algorithm processes an image and

updates the map every 500ms using an Intel Core i7-4700MQ processor. It is worth

noting here that this process is not multi-threaded at the moment, we could therefore

expect to be able to process nearly 8 images in this amount of time on this processor.

500ms per iteration remains compatible with a typical underwater structure inspection

where vehicles are required to adopt slow motions. After the inspection finished, the

occlusion resolution step is run taking an average of one second for each image. This

step being multi-threaded (8 threads) it only take 15 seconds to generate the final map

from 100 input images. This is an acceptable overall processing time for real operations.

Due to the very important number of points being processed and stored (every pixel of

an image generates a hundred reprojections along the vertical aperture), up to 16Gb

of RAM can be used at the end of a reconstruction with a lot of samples. While this

memory usage is relatively high, the reconstruction of small sequences (100 images) takes

around 2Gb of memory, therefore remains affordable in an embedded environment. In

addition to this, the sequences of input images can always be split up in a few small sets

of images, limiting the memory requirements.

4.7.5 Analysis

Carving reconstructions on real field experiments exhibited a good level of detail with

SONAR sensors of any vertical aperture. The locally-contained navigation drift assump-

tion appears to be valid, enabling accurate reconstruction during an inspection of a few

metres. As a result, it is possible to reconstruct large man-made structures such as oil

field structures with the resulting reconstructions exhibiting enough detail for human

eye recognition of the structure or even identification of small geometrical details such as

parts of the structures.

3D reconstructions issued from pencil-beam SONAR data exhibit a lot of details, typically

comparable to low resolutions underwater cameras in clear conditions as demonstrated in

figure 4.32 but also exhibit decreased coverage in comparison to wide-aperture SONAR

data (see figure 4.33). 3D reconstructions with wide-beam SONAR data exhibit a lower

level of details and appear to be more sensitive to the sampling scheme as exhibited by
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figure 4.31. Provided the sampling along the direction of uncertainty can be performed

at sufficiently high rate, the reconstruction results exhibit an increased surface coverage

in comparison to pencil-beam SONAR. Importantly, a single wide-beam forward-looking

SONAR such as the one embedded on the AIV provided 3D reconstruction of the structure

of interest during the inspection of vertical structures while permitting additional mission-

specific processing such as 2D tracking of the structures and collision avoidance.
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4.8 Conclusions

In this chapter, we presented a 3D reconstruction technique from imaging SONAR

based on the idea of space carving. First we formulated the reconstruction problem as

the estimation of the reflectivity from a set of blurred measurements. Based on this

formulation, we derive the concept of space carving which estimates an upper bound to

the reflectivity by considering the minimum intensity observed at each point, scaled by

the radiating pattern of the sensor.

We then presented a three steps space carving algorithm enabling the 3D reconstruction

to be performed during the acquisition of new samples. This carving algorithm enables

to address the occlusion phenomenon occurring during the SONAR imaging process by

performing a so-called conservative spherical reprojection and performing a last pass

to explicitly associate each observation to sections of the vertical aperture. In addition

to this, our algorithm achieves efficient storage by operating a 3D scaling between the

irregular sampling inherent to SONAR imaging model and the regular sampling grid of

an Octree structure.

In order to evaluate the performance of the reconstruction algorithm, tests in a simulation

environment were performed on a set of reference objects mimicking man-made objects

frequently found in a marine environment. A quantitative analysis of the reconstruction

results was first performed on noise-free data with two sensors of different aperture,

respectively representing a pencil-beam SONAR and a wide-beam SONAR. Importantly,

four metrics were used to provide a complete view of the reconstruction quality by

not only considering the geometrical error but also evaluating the surface coverage of

the inspected object as well as the presence of outliers in the final point cloud. The

quantitative analysis showed that the uncertainty resulting from the vertical aperture

of the sensor could be addressed by sampling at high enough rate along the direction

of uncertainty. In particular, when considering small enough sampling periods, similar

reconstruction quality could be obtained with both a pencil-beam and a wide-aperture

SONAR: while pencil-beam SONARs naturally provide lower uncertainty on the Z axis,

the small increase in error occurring when using wide-aperture SONAR is balanced by

an increased surface coverage of the structure.
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We then evaluated the carving reconstruction technique on real data. First, data acquired

in a water tank with four small reference objects and two different SONAR heads was

used to evaluate the quality of reconstruction in a challenging, closed environment,

leading to SONAR images featuring increased levels of noise and multi-path effects. The

four objects were successfully reconstructed and appear as recognisable using both the

pencil-beam and the wide-beam sensor. In order to test the reconstruction method in a

real operation environment, field data was gathered by an AUV prototype in two different

locations. While the first set presented in-lake field data featuring low water currents

and marine growth-free structures, the second dataset was gathered on a real offshore oil

field providing inspection data of structures such as pipelines, risers and typical oil field

structures. Water tank experiments exhibited the difficulty of reconstructing small objects

with a high level of details when operating in acoustically challenging environments

whereas real field data tests showed good reconstruction accuracy with enough details to

allow for clear human-eye recognition of the structures. Similarly, tests made with both

a pencil-beam and a wide-beam imaging SONAR showed the improvement in resolution

when using pencil-beam SONAR but also showed the viability of using a wide-beam

SONAR to recover 3D shapes of large objects with a slightly lower level of details. In

particular, our field results showed the importance of the along-track sampling rate and

the advantage of wide-aperture SONARs when operating at low sampling rates.



Chapter 5

Reconstruction as a deconvolution

5.1 Introduction

In chapter 4, we presented a non-linear reconstruction method based on a space carving

approach. This technique allowed an iterative, per-sample reconstruction of the scene

from observations taken at different positions along the direction of uncertainty without

strict constraints on the sampling positions. On the contrary and as detailed in chapter

3, SAS methods (Sæbø et al. [2013]) traditionally rely on very strict sampling scheme

with rectilinear and uniform motion (to a fraction of wavelength accuracy) making

their use on AUVs often impractical. Although 2D SONAR do not provide direct

phase information, therefore prohibiting the use of SAS techniques, the reconstruction

from multiple overlapping observations is common to our aperture problem. Model-

based methods such as Coiras et al. [2007] showed their interest in estimating multiple

parameters from a model-to-data iterative matching.

Inspired by this, we propose in this chapter to model the observation process using a

rectilinear and uniform sampling scheme to reformulate the 3D reconstruction problem

as a deconvolution.

Based on the SONAR imaging model, we first reformulate the observation process along

a vertical line as a convolution with an unknown and spatially-varying kernel and exhibit

the illness of the reconstruction problem. Through a short review, we provide references

on the state of the art of deconvolution techniques. In order to address the complexity

of the deconvolution process, simple assumptions are made, enabling the formulation of

111
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the reconstruction problem as a constrained sparse linear system optimization. Similarly

to the space carving algorithm, experiments made on simulated data as well as two

real datasets are presented and analysed. We demonstrate the interest and limitations

of adding regularization to the deconvolution method. We finally present a complete

analysis of the results with a particular focus on comparing the space carving and the

deconvolution methods, as well as a comparison between the use of pencil-beam and

wide-beam sensors for 3D reconstructions.
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5.2 Formulation as a spatially-variant blind deconvolution

problem

In this section, we formulate the imaging process as a spatially-variant convolution.

Inspired by synthetic aperture imaging, we propose to obtain the images by relocating

the source along a direction orthogonal to the range as well as the sensor array. Without

loss of generality, we depict this chosen direction as aligned with the vertical Z-axis, as

illustrated in figure 5.1-a. When acquiring multiple samples along a direction orthogonal

X
Y

Z

U

Z

Y

U
surface

blur
U

1

0

(a) (b) (c)

Figure 5.1: SONAR imaging model as a convolution along the U axis. When acquiring
multiple samples along a direction orthogonal to the image plane (a), the measuring
process at range r and bearing angle φ can be seen as a spatially variant convolution
along the U axis (b) with a beam pattern attenuation (βr), the vertical aperture of the
sensor blurring the observations by summation (integration) along the U axis and a
reflectivity ρ depending on the local normal ~nrφu and the point of view, the observations

being then integrated on the surface indicator function Srφ (c).

to the image plane, the measuring process at range r and bearing angle φ can be seen as

a spatially-variant convolution along the U axis (see figure 5.1-b) with a beam pattern

attenuation βr scaling the returns along the vertical aperture of the sensor. The vertical

aperture blurs the observations by integration along the U axis. The reflectivity ρ depends

on the local normal ~nrφu as well as the point of view making the convolution spatially

variant. Finally, as depicted in figure 5.1-c, the observations are then integrated on the

surface indicator function Srφ.

By tailoring equation 2.13, we reformulate the imaging model as a convolution:

ISonar(r, φ) = I0

∫
Av

Bv(θ)
2 Ss(r, θ, φ) µ(r, θ, φ)

~vθφ.~nrθφ
‖~vθφ‖ ‖~nrθφ‖

dθ
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First, we introduce the Z-coordinate zi of the sensor array. We also assume that the

SONAR wavefronts arriving at the scanned geometry are close to planar (far-field

assumption - Aykin and Negahdaripour [2013]). Under this assumption, the integration

domain is approximated to be parallel to the Z-axis. Finally, we replace the cosine term

(
~vθφ.~nrθφ
‖~vθφ‖ ‖~nrθφ‖) with a general reflectivity function ρ which subsumes the cosine. Thus,

equation 2.13 transforms into equation 5.1:

I(z, r, φ) = I0

z+∆zr∫
z−∆zr

βr(u− z) S(u, r, φ) ρ(z, u, ~nrφu) du (5.1)

where ∆zr ≈ r tan θ2−θ1
2 with Av = [θ1, θ2]. βr is the warped beam pattern over the

wavefront at distance r, ρ is the reflectivity function evaluated for retro-reflection from

the source to the point at u where the surface has a normal ~nrφu and S(u, r, φ) is a binary

function that is unity if there is a surface at a distance of r from the source, along the

bearing φ and offset by u in the Z-direction and zero otherwise. Although the coordinate

system appears confusing due to a mixture of cylindrical and Cartesian coordinates,

recall that r and φ are common to all images taken by relocating the source along the

Z-axis. z represents the height at which the source is placed and u is the height at which

the reflector is located.

The variation in the measured images at some fixed pixel, Ir,φ as a function of the source

position z is:

Irφ(z) =

z+∆zr∫
z−∆zr

βr(u− z) Srφ(u) ρ(z, u, ~nrφu) du (5.2)

where Srφ(u) corresponds to an indicator function that is unity if there is a surface at

height u corresponding to the range r from the Z-axis and bearing φ wrt ~v (see the plot

in figure 5.1). For a given sensor, βr is known but the following two terms in the integral

depend on the geometry (surface indicator function and surface normal respectively).

Equation 5.2 suggests that, for a set of SONAR images acquired along the Z direction,

the values at each pixel over z represent a convolved version of the surface indicator

function. The kernel of the convolution has two components: a fixed component (βr)

which is known (bessel function described in section 2.2.8) and ρ a spatially-varying

and data-dependent modulating term defined by the BRDF at the angle of observation

(incidence angle relatively to the surface normal). Since we assume the reflectivity
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distribution as diffuse, ρ follows the lambertian model (cosine term described in section

2.2.4) but its estimation remains spatially-variant (over z). While the direction of arrival

of the emitted sound pulse is known, the shape and position of scatterers in the scenes

is a-priori unkown making the surface normal at the location of each acoustic unkown.

Therefore without any knowledge on the shape of the object and due to the specifity

of the SONAR imaging process (dependency on the normals) the convolution kernel is

unknown. Reconstructing surface points S from the sole observations of Irφ(z) is therefore

equivalent to a blind-deconvolution where the kernel is spatially-varying.

5.3 Review on deconvolution methods

In this section, we present an overview of state-of-the-art deconvolution methods as

well as their limitations. Similarly to the SONAR imaging process, we consider the

convolution of an input signal by a kernel h. This kernel is commonly represented by a

point spread function which is the result of a convolution of this kernel with an impulse.

The point spread function is so-called for its typical blurring behaviour where an impulse

is converted in a wider (lower frequency) output signal, effectively spreading the energy of

the incoming signal. Similarly, the convolution process described in section 5.2 blurs the

acoustic returns coming from different elevations angles through an integration process.

For this reason, the convolution kernel is referred here as a blurring kernel.

5.3.1 Fourier-based inversion

When considering the following convolution of an input function f by a blurring kernel h

resulting in observations g:

g(t) = (h ∗ f)(t) =

∫ +∞

−∞
h(t− u) f(u) du (5.3)

and its associated formulation in the frequency domain:

G(w) = F [g(t)] = F [(h ∗ f)(t)] = H(w).F (w) (5.4)
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A natural solution for the estimation of f is then given by a direct Fourier inversion:

f̂(t) = F−1[F (w)] = F−1

[
G(w)

H(w)

]
(5.5)

While simple, this solution generally leads to visible artefacts and noise amplification due

to the lowpass behaviour of the blurring function h, resulting in low Fourier coefficients

at high frequencies w.

When an estimate of the noise can be obtained, the following model is assumed:

g(t) = (h ∗ f)(t) + n(t) (5.6)

The Wiener filter provides an optimal deconvolution filter by minimising the least square

error between f and f̂ , leading to:

F̂ (w) = D(w).G(w) (5.7)

with

D(w) =
H∗(w)

|H(w)|2 +K(w)
(5.8)

and

K(w) =
|N(w)|2

|F (w)|2
(5.9)

While the Wiener filter provides the optimal trade-off between noise attenuation (smooth-

ing) and inverse filtering, it requires an estimate of both the blurring function h and the

noise characteristics n.

5.3.2 Bayesian inference and MAP formulation

In practice, the blurring kernel h and the noise model n are often modelled mathematically

making particular approximations based on the application. In order to take into account

the approximations made in the modelling, the reconstruction of f can be formulated by

the posterior distribution of f given the observations of g. Using Bayesian inference, this

distribution can be expressed as:

p(f | g) = p(g | f)
p(f)

p(g)
∝ p(g | f) p(f) (5.10)
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where p(g | f) represents the likelihood of observing g with f as an input and p(f)

represents a prior assumption on the distribution of f . This simple formulation offers the

possibility to obtain the distribution of the function to be reconstructed by modelling

the convolution process in the likelihood term and the estimated characteristics of the

signal to be reconstructed in the prior information term.

5.3.2.1 MAP formulation

Based on this formulation an estimate of the optimal f is given by a Maximum A

Posteriori (MAP) estimation:

f̂MAP = arg max
f

p(f | g) = arg max
f

p(g | f) p(f) (5.11)

In practice, p(g | f) and p(f) are commonly assumed to be convex functions ψLikelihood

and ψPrior such that:

ψLikelihood(f) = exp(−‖g −Af‖p) (5.12)

representing the difference between the observations g and the blurring operator A

modulating the input f and:

ψPrior(f) = λ exp(−‖f‖k) (5.13)

with p and k defining the norms to model the probability distributions.

In this context, estimating the maximum value of the probability is equivalent to

estimating the minimum of its negative logarithm (log-likelihood):

f̂MAP = arg max
f

ψLikelihood(f).ψPrior(f) = arg min
f

‖g −Af‖p + λ ‖f‖k (5.14)

Adopting a MAP formulation, the deconvolution then amounts to minimizing a linear

system modelling the convolution process and making assumptions on the function f to

be estimated. Due to its capacity to model the properties of the solution, independently

of the likelihood convergence, the prior term is often called regularization term while

the likelihood term is frequently referred to as data fidelity term. The choice of p and k
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then determines the smoothness or the sparsity of the estimated optimum. Due to its

interesting properties (differentiability and smoothness promotion), a L2 norm is often

chosen for the data fidelity term resulting in the following MAP formulation:

f̂ = arg min
f

(g −Af)2 + λ ‖f‖k (5.15)

where the estimated function f̂ is obtained by least square minimization akin to an

energy minimization. The choice of k then leads to various regularization schemes.

5.3.2.2 Regularization

A common regularization strategy is to employ a L2 norm loss term, effectively selecting

the solution of minimum energy:

f̂ = arg min
f

(g −Af)2 + λ ‖f‖2 (5.16)

This regularization scheme, often referred to as Tikhonov regularization (Tikhonov et al.

[2013]) or ridge regression (Hoerl and Kennard [1970]) offers the interest of having an

analytical solution, therefore not requiring to apply any optimization algorithm.

While the Tikhonov regularization term typically imposes smoothness on the solution,

sparsity is frequently desired in imaging problems where sharp transitions (edges) in the

original signal are assumed. In this context, a natural sparsity operator is the L0 norm,

equivalent to the number of non-zero elements in f:

f̂ = arg min
f

(g −Af)2 + λ ‖f‖0 (5.17)

It can be showed that this minimization problem is a NP-hard problem (Natarajan

[1995]) making its resolution costly if not impossible.

In order to address this problem, L1 minimization also called basis pursuit or Lasso

minimization (Tibshirani [1996]) is often used to impose sparsity:

f̂ = arg min
f

(g −Af)2 + λ ‖f‖1 (5.18)
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Although convex, the L1 norm remains non differentiable at 0 but the use of a proximal

operator enables to reformulate the problem under a smooth (therefore differentiable)

approximation around the corner point.

Other regularization operations based on the gradient of the function have been studied.

In particular, the total variation regularization (Rudin et al. [1992]) aims at imposing

sparsity on the gradient of the function:

f̂ = arg min
f

(g −Af)2 + λ ‖∇f‖1 (5.19)

therefore imposing sparsity on the number of transitions in the input signal. As a

consequence, the use of total variation regularization results in a piecewise constant

solution often adapted to describing quantized signals such as images.

In any regularization strategy, the regularization term is weighted by the scalar λ

dedicated to balance the data fidelity term g − Af and the regularity of the solution.

While setting λ to zero is equivalent to consider the problem as perfectly modelled,

regularization-free problem, in most cases the λ coefficient needs to be determined

empirically. As a consequence, while regularization is often desirable in presence of

noise corrupted observations or approximate modelling of the problem, its practical use

requires some tuning. Therefore and considering the 3D reconstruction problem from

potentially different imaging sources (different sensors), the need for regularization needs

to be traded with the necessity of a fully automated processing reconstruction technique.

5.3.3 Blind deconvolution methods

When the blurring kernel is unknown, the deconvolution problem is referred to as a blind

deconvolution. In this situation, both the original signal f and the blurring matrix A

need to be estimated:

f̂ = arg min
f,A

(g −Af)2 + λ ‖f‖k (5.20)

This formulation results in an inherently ill-posed problem. When the blurring kernel

cannot be estimated directly from the observations or external measurements (Joshi et al.

[2010]), iterative methods can be employed where A and f are iteratively refined one after

the other. Although widely investigated, a recent review on blind deconvolution methods

(Levin et al. [2009]) highlighted the limitations of current methods as favouring no-blur
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kernels and recall that most of the current methods assume spatially-invariant blurring

(Cannon [1976], Chan and Wong [1998], Krishnan et al. [2011]) which often appears to be

unrealistic. As discussed in Harmeling et al. [2010], spatially-variant blind deconvolution

is a much more complex problem than spatially invariant deconvolution, to which no

generic solution has been obtained so far. More generally, blind deconvolution problems

are addressed in an application-specific way by making assumptions on the shape of the

kernel.

5.4 Sparse linear system of the 3D reconstruction problem

We address the 3D reconstruction deconvolution problem using a sparse linear system

formulation. For 1 ≤ i ≤ N , let zi be the Z coordinate of the sensor location for the

ith acquisition and let I(zi) denote the corresponding image. Figure 5.2 illustrates the

geometry of a measurement at a range r and a range resolution ∆r. We observe that the

Z U

Y

Figure 5.2: Validity of the rectilinear approximation based on the vertical aperture
Av and the range resolution ∆r.

points lying along the vertical aperture can considered as aligned on a vertical axis when

the following condition is satisfied:

Av ≤ 2 arccos

(
1− ∆r

2r

)
(5.21)

In further sections, this approximation will be refereed to as rectilinear approximation

and will be studied in section 5.6. Typical observation ranges considered in this study

are around 2 metres and a standard range resolution for imaging SONAR is 2cm. Based

on equation 5.21, the rectilinear approximation is valid for apertures smaller than 22◦
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which in practice coincides with the applications presented in this study. As a result we

consider that the vector of values {Irφ(zi)}1≤i≤N corresponds to measured reflectivities

of the surfaces along a line parallel to the Z-axis at a distance of r from it. We call this

the u-axis, since it corresponds to the variable of integration u in equation 5.2.

Let the u-axis be discretized into P segments. P may be used as a parameter that

controls the approximation. For large enough P , we assume that the variation of all

three components of the integrand in equation 5.2 are negligible within each of these

segments and that they are mutually uncorrelated. Then, the integral can be replaced

by a summation:

Irφ(zi) =

P∑
j=1

β̃ij ρ̃
i
jrφ S̃jrφ (5.22)

where β̃ij , ρ̃
i
jrφ and S̃jrφ are expected values of β̃r(u), Srφ(u) and ρ(z, u, ~nrφu) over the

jth segment on the u-axis relative to the sensor placed at zi. Given N images, we can

then write:

I = AN×P . b (5.23)

where A is a matrix with Aij = β̃ij ρ̃
i
jrφ , b is a vector with bj = S̃jrφ, j = 1, 2, 3, .., P ,

which indicates the presence of a surface in the jth segment along the u-axis. Since

the beam pattern is only non-zero for an interval corresponding to the width of the

aperture projected onto the u-axis, the matrix A is sparse and the vertical footprint of

each measurement on the U-axis only contains K segments.

A graphical interpretation of the linear system is presented in figure 5.3 where 6 measure-

ments are taken along the Z-axis to estimate the surface indicator values on 8 segments

along the U-axis. In this situation, each i-th measurement at range r can be subdivided

in 3 segments and represented as the sum of the bj coefficients with i ≤ j ≤ i+K − 1

weighted by their associated beam pattern coefficients β̃ij and reflectivity coefficients

ρ̃ijrφ.

While P defines the resolution of the reconstruction along the U-axis, in practice its

choice is driven by the number of observations available at a given range (see figure

5.4). In a similar way to Shannon sampling theorem (Shannon [1949]) and in absence

of additional information on the function to be reconstructed, the maximum resolution
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N = 6 
images

P = 8 segments

K = 3 
subdivisions

Figure 5.3: Graphical representation of the linear system formulation. The surface
presence coefficients of P = 8 segments are estimated by describing the measurement

process of N = 6 images through a linear system.
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Figure 5.4: Range dependent vertical resolution. For a given vertical aperture and
sampling period along the vertical axis, the number of observations at a point is

range-dependent.
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along the vertical axis is limited by the number of observations available for the point

considered. Given a vertical sampling period ∆z and a vertical aperture Av, it can be

shown graphically that the minimum range rmin for which K observations are available

satisfies:

rmin =
K ∆z

2 tan(Av2 )
(5.24)

As a result and in order to reconstruct at a range r, we choose K as:

K =

⌊
2 r tan(Av2 )

∆z

⌋
(5.25)

In this situation, the number of segments reconstructed along the U axis from N images

is given by :

P = N + K − 1 (5.26)

Therefore, this reconstruction technique provides a way to estimate P segments of the

vertical aperture from N measurements, the number of segments increasing with the

distance to the sensor. However, it is important to note that the size of the segment is

constant across ranges and equal to the sampling period along the vertical axis ∆z. As a

consequence this method provides range-independent along-track resolution from any

vertical aperture Av.

5.5 3D reconstruction as a constrained optimization

As described in equation 5.23, the 3D reconstruction of the surfaces is equivalent to

estimating b given I and A. The reconstruction of surfaces from SONAR measurements

is a blind deconvolution problem (see section 5.2) since the coefficients ρ̃ijrφ depend on

the shape of the object and therefore remain unknown. Therefore and in order to solve

this linear system, our implementation includes additional assumptions and constraints.

In this section, we present the assumptions enabling the resolution of the sparse linear

system formulation. We then discuss the choice of the regularization strategy and

formulate the 3D reconstruction problem as an constrained MAP optimization. We then

present two optional steps respectively adapted to operating reconstruction from noisy

data and addressing deconvolution ringings.
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5.5.1 Approximations

The elements in the matrix contain the coefficients ρ̃ijrφ which are dependent on the

reflectivity distribution function of the object. Although, under the Lambertian assump-

tions, these terms would reduce to cosines, their calculation requires knowledge of surface

normals which are a-priori unknown. We observed that ignoring them (setting them

to unity) yields results that are comparable to more complex treatment. Therefore and

similarly to the assumptions made in the space carving method (see section 4.2), we

choose to assume the imaging model as view point independent and replace the A matrix

by an approximate model of the imaging process A? such that :

A?ij = β̃ij (5.27)

5.5.2 Regularization

While regularization enables to constrain the solution of the problem, it needs to be

adapted to the expected characteristics of the solution. Since the surface function to be

reconstructed can typically be represented as a rectangular function, sparsity is desired to

enforce a sparse solution and reduce typical deconvolution ringing and blurring artefacts

(Liu and Jia [2008], Shan et al. [2008]).

Although L1 regularization is commonly employed in optimization as a way to impose

sparsity, recent study (Slawski et al. [2013]) suggests that applying a non-negativity

constraint is sufficient to impose sparsity when the model matrix A has certain properties

which appear to be satisfied in the case of a typical deconvolution problem. In order to

evaluate the interest of imposing sparsity we therefore choose to add a L1 regularization

constraint as an option.

5.5.3 Positivity constraint

In addition to regularization constraints, additional constraints can be expressed on

the domain of the solution. In particular, a positivity constraint is often assumed in

imaging problems. Following the convolution model presented in equation 5.2, the

observed function is positive. We therefore formulate the 3D reconstruction problem as
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an optimization problem with a positivity constraint:

b̂ = arg min
b ≥ 0

‖A? b− I‖2 + λ ‖b‖1 (5.28)

This L2 optimization with positivity constraint is commonly referred to as a Non-Negative

Least Square (NNLS) optimization problem.

5.5.4 Denoising and de-ringing

Z-test denoising of the measurements

In order to reconstruct surfaces from noisy data, we apply the same denoising technique as

described in section 4.4.7, based on a Z-test and estimates of the first two moments m(r, φ)

and σ(r, φ) obtained in open-water. The Z-test is then applied on the measurement

vector I to discard (set to zero) values lying in the noise distribution.

De-ringing of the solution

Since we solve for the discretized version b of a surface indicator function S across a

slice in range (and bearing), the function we aim to reconstruct is typically composed of

impulses where there is a surface. Consequently, the reconstruction of its discrete version

via the above least squares formulation leads to severe ringing artifacts that cause ’halo’

structures. To identify and eliminate these artefacts, we test segments in space where b

is non-zero to ensure that they were not observed to be ’free space’ in any of the input

images. Similarly to the space carving method presented in 4, if they were observed to

contain no reflectivity in one unoccluded view, we set the corresponding element of b to

zero.

5.5.5 Implementation

The input to our algorithm is N 2D SONAR images acquired using the same beam

direction (bearing), the same x and y coordinates but from depths zi, i = 1, 2, ..., N .

We implemented the deconvolution reconstruction approach in C++ with a similar

interface to our space carving implementation, allowing easy comparison between the

two methods. Importantly, no 3D structure is needed for storage since each slice at

(r, φ) is reconstructed independently from each other. The reconstruction is obtained

using all the measurements, prohibiting an iterative reconstruction of the environment
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by successive updates on the scene. The NNLS optimization is performed using an

open-source solver Lawson and Hanson [1974]. In order to add L1 regularization, a

MATLAB implementation (Kwangmoo Koh and Boyd [2008]) of the truncated Newton

interior-point method (Kim et al. [2007]) is used.

5.6 Results

5.6.1 Simulation

In this section, we present experimental results obtained with noise-free simulated data

using the deconvolution methods without regularization with a vertical sampling period

of 1cm. The same four reference models as the ones presented in section 4.5.1 have been

inspected with two sensors of respective vertical apertures 1◦ and 10◦.

Figure 5.5 presents reconstruction results obtained with both sensors on noise-free data.

Conversely, pencil-beam reconstructions exhibit finer reconstructions on small parts of

the structures such as the wheel valve in figure 5.5-e and the side tubes on figure 5.5-k.

In order to visually compare the deconvolution reconstruction to the space carving

technique, we present in figure 5.6 the point clouds obtained with both methods and

both sensors.

5.6.1.1 Quantitative results of noise-free reconstructions

As performed with the space carving method, we present here a quantitative analysis

with various vertical sampling period. In order to evaluate the performance of the

deconvolution method and compare it to the space carving result, we based our analysis

on the same four metrics presented in section 4.5.2.1.

Similarly to the carving reconstruction results, the median error of the deconvolution

reconstruction (see figure 5.7) increases with larger sampling periods when using a

wide-beam SONAR. On the contrary, when using a pencil-beam sensor, the median

reconstruction error does not appear to depend on the sampling period with constant

error values under 1cm.
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CAD model Av = 1◦ Av = 10◦

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: 3D deconvolution reconstruction from noise-free simulated data obtained
after inspection of the four reference models. CAD models (a,d,g,j), pencil-beam SONAR

reconstructions (b,e,h,k) and wide-beam sensor reconstructions (c,f,i,l).
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Figure 5.6: 3D reconstruction results from simulated SONAR images using our two
algorithms with two sensors of different vertical aperture: Pencil-beam reconstructions
(a-h) and wide-beam reconstructions (i-p). Our algorithms reconstructed point clouds
using the deconvolution method (a-d and i-l) and the space carving technique (e-h and

m-p).
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Figure 5.7: Median error of the deconvolution reconstructions versus vertical sampling
period on all models with two different sensors: pencil-beam (magenta) and wide-beam
(blue). Similar reconstruction errors are obtained when considering small sampling
periods but the error when using a pencil-beam sensor does not appear to depend on

the sampling period.

As visible in figure 5.8, the surface coverage decreases monotonically with larger sampling

periods. Similarly to the carving results and in comparison to when using a pencil-beam

SONAR, surface coverage values are roughly twice as high when using a wide-beam

sensor except on the sphere structure. As can be observed in figure 5.9, when combining

the two previous metrics in a single median error to coverage ratio, very similar results

are obtained with the two sensors at each vertical sampling period. The increase in

coverage obtained when using a wide-beam sensor is balanced by a decrease in accuracy

in comparison to pencil-beam SONARs. As illustrated in figure (5.10), pencil-beam

reconstructions are outlier-free whereas reconstructions from wide-beam sensors generate

a small proportion of outliers with increasing presence at larger sampling periods.

We present in figure 5.11 a comparative analysis between the deconvolution and the

space carving reconstruction technique with both a pencil-beam and a wide-beam sensor

at multiple sampling periods. In order to compare the two algorithms, the four reference

metrics were averaged over the multiple structures used in simulation. Figure 5.11-a

shows similar reconstruction accuracy using both methods while 5.11-b exhibits the

increase in surface coverage when using the deconvolution method over the space carving

method. As a consequence, the median error to coverage metric shows lower values when



Chapter 5. Reconstruction as a deconvolution 130

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Z sampling period (meters)

0

10

20

30

40

50

60

C
o

v
e

ra
g

e
 (

%
)

Sphere 1°

Sphere 10°

Bottle 1°

Bottle 10°

Pillar 1°

Pillar 10°

Riser 1°

Riser 10°

Figure 5.8: Surface coverage of the deconvolution reconstructions versus vertical
sampling period. The surface coverage yielded when using a pencil-beam sensor is twice
as low as when using a wide-beam sensor except on the sphere object where a similar

coverages are observed.
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Figure 5.9: Median error to coverage ratio of the deconvolution reconstructions versus
vertical sampling period. The reconstructions obtained with the two sensors exhibit

similar median to coverage values.
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Figure 5.10: Presence of outliers in the deconvolution reconstructions versus vertical
sampling period. While no outliers appear in pencil-beam reconstructions, a small
proportion of outliers is observed in wide-beam reconstructions, particularly when

considering large vertical sampling periods.

using the deconvolution method. Figure 5.11-d shows similar outliers rates for both

reconstruction methods.

Importance of satisfying the rectilinear approximation

We present here quantitative results obtained when considering larger vertical apertures

than imposed by the rectilinear approximation. Figure 5.12 shows median errors and

coverage values for sensors of respective vertical apertures 1◦, 10◦, 20◦and 30◦. Figure 5.13

represents the error to coverage values obtained with the four sensors. As illustrated in

figure 5.14, when the conditions of observation do not enable the rectilinear approximation

to remain valid, significant artefacts can be observed on vertical surfaces.

5.6.1.2 Analysis

Qualitatively, the deconvolution method exhibit a good level of geometrical details with

a higher coverage of horizontal surfaces when using the wide-beam sensor (figure 5.5-f)

in comparison to pencil-beam reconstructions (figure 5.5-e). The visual comparison of

these results showed the impossibility of observing horizontal surfaces with a pencil-

beam SONAR (e) while the equivalent wide-beam reconstruction (f) exhibits increased
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Figure 5.11: Averaged quantitative results of deconvolution vs space carving simulated
reconstructions. The four reference metrics averaged over all structures are presented for
both algorithms (different pattern) and both sensors (different colours). While similar
median errors are obtained with both reconstruction techniques (a), the deconvolution
offers significantly higher surface coverage (b) with both the pencil-beam and the wide-
beam sensor. As a result, the combined median error to coverage metric (c) appears
consistently lower using the deconvolution method. Outlier rates appear similar with

both algorithms (d).
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Figure 5.12: (a) Median error versus vertical sampling period averaged on all models
for different sensor apertures. The reconstruction error when using a 30◦ sensor appears
consistently higher than when considering smaller apertures. (b) Coverage versus vertical
sampling period averaged on all models for different sensor apertures. The coverage

value when using a 30◦ sensor appears just as low as when using a 1◦ sensor.
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Figure 5.13: Median error to coverage ratio averaged on all CAD models versus vertical
sampling period for different sensor vertical apertures. Applying the deconvolution
method to a 30◦vertical aperture sensor provides significantly higher error rates in
comparison to smaller apertures, in particular at low vertical sampling period (up to

5cm).

gaps

Figure 5.14: Illustration of a degraded deconvolution reconstruction due to the
rectilinear approximation: when using a 30◦vertical aperture sensor and a 0.01cm
sampling resolution at more than 2 metres range, the rectilinear approximation does

not remain valid and generates significant gaps on vertical (rectilinear) surfaces.
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coverage but lower geometrical details as visible on the wheel valve. Similarly when

comparing the two reconstructions methods in figure 5.6, the point clouds obtained with

the deconvolution method exhibit better regularity (see sphere figures (a,i) vs figures

(e,m)) resulting in an overall denser appearance. Horizontal surfaces appear better

covered as visible on the pillar figures (c,k) compared to figures (g,o). The edges of the

structures also appear sharper as can be observed in the riser structure (figures (d,l) vs

(h,p)).

The quantitative results showed the consistent higher surface coverage obtained when

using the deconvolution method. Similar median errors were obtained with the space carv-

ing method resulting in overall better 3D reconstructions when using the deconvolution

technique. Regarding the difference in performance when using different sensors, figure

5.11-a and figure 5.11-b confirmed the results previously obtained with the separated

analysis of the two algorithms exhibiting the improvement in surface coverage when using

a wide-beam sensor at the cost of a decrease in reconstruction accuracy. Figure 5.11-c

offered an interesting perspective on the choice of the sensor for 3D reconstruction by

exhibiting better overall reconstruction metric when using a wide-beam sensor and the

deconvolution reconstruction technique for sampling rates of up to 7cm. Not only this

counter-intuitive result showed the good performance of the deconvolution algorithm by

solving for vertical uncertainty but it also justifies the use of wide-aperture sensors for 3D

reconstruction by levering their larger footprint at the cost of small decrease in accuracy

with a small proportion of outliers (figure 5.11-d). Finally and as could be expected

from the rectilinear assumption, figure 5.13 showed that the deconvolution method does

not perform well when considering larger vertical apertures (≥ 22◦ in the case of our

test scenario). The employment of this method should therefore be conditioned by the

satisfaction of the rectilinear assumption which in turn will impose a maximum vertical

aperture or conversely, shorter measurement range or lower range resolution.

5.6.2 Tank experiment

Since the experiment made in Heriot Watt University water tank (see section 4.6.1 for

description) was obtained using a rectilinear motion of the sensor with uniform sampling,

the deconvolution reconstruction techniques is applicable directly to the dataset with

both the BlueView MB2250 and the Aris Explorer 3000.
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We present the results of 3D reconstruction using the deconvolution method on the

tank dataset in figure 5.15. Figures 5.15-a,c,e,g present the reconstructions obtained

from the pencil-beam SONAR (BlueView MB2250) whereas figures 5.15-b,d,f,h show the

equivalent reconstructions obtained with a wide-beam SONAR (Aris Explorer 3000). In

order to visualize the difference between the deconvolution results and the space carving

results, figure 5.16 compares the tank reconstruction results with both sensors and two

structures: the sphere and the Hyball ROV.

5.6.2.1 Analysis

The accuracy of the 3D reconstruction using the deconvolution method is similar or

better than the space carving. In particular, the reconstruction of the sphere obtained

with the Aris Explorer (figure 5.15-b) exhibits greater detail than its equivalent with

the BlueView MB2250 with a very clear rope laying on top and side of the sphere.

The pencil-beam reconstruction of the sphere exhibits good shape coherency but suffers

from holes in the 3D point cloud which would result in a lower surface coverage. A

similar observation can be made on the Hyball ROV example (figure 5.15-g-h), where

the wide-beam reconstruction appear more complete than their pencil-beam equivalent.

While the cylinder structure does not offer many features, the rope can again be noticed

in the wide-beam reconstruction which is not the case in the pencil-beam reconstruction.

Although the wide-beam deconvolution reconstructions exhibit a good level of details,

a greater amount of outliers can be observed, cluttering the representation (see figure

5.15-f).

The differences between the two reconstruction methods can be visualised in figure 5.16:

when using the pencil-beam, the deconvolution reconstructions appear fuller and the

wide-beam deconvolution reconstructions exhibit more detail with sharper edges than

their space carving equivalent. The sphere and rope reconstruction (figure 5.16-e) is

thus sharper than its carving reconstruction equivalent (figure 5.16-g). In accordance to

the simulation result, the difference between the two reconstruction techniques is more

noticeable when using a wide-beam SONAR. Although the deconvolution reconstruction

generate a small proportion of outliers, these latter appear sparsely as opposed to the

space carving reconstruction results where outliers tend to be grouped in blocks.
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Figure 5.15: 3D deconvolution reconstruction from tank data with several reference
objects (rows) and two sensors of different vertical aperture (columns).
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Figure 5.16: Comparison of 3D reconstruction from tank data with deconvolution and
space carving methods. Two objects are being compared: the sphere (first column) and
the Hyball ROV (second column) with both pencil-beam (a-d) and wide-beam sensors

(e-h).



Chapter 5. Reconstruction as a deconvolution 138

5.6.3 Field data

We present here reconstruction results obtained with field data gathered by the AIV pro-

totype (see section 4.7.1). The vehicle performed inspections using two different acoustic

sensors, a downward-looking pencil-beam BlueView MB2250 (1◦ vertical aperture) and

a forward-looking wide-beam BlueView P900-130 (20◦ vertical aperture). While the

wide-beam sensor featured a large enough footprint for the deconvolution method to

apply (significant overlap with K ≥ 2), pencil-beam images were generally acquired at

low sampling rate (4cm) leading to a small overlap between each consecutive samples.

5.6.3.1 Lake trials

The first field dataset was acquired during AIV lake trials (see description in section

4.7.2).

Pencil-beam reconstruction

We present in figure 5.17 an example of deconvolution reconstruction using the pencil-

beam sensor with a small overlap (2 ≤ K ≤ 3) obtained while performing a top

inspection of the box structure. Due to the small overlap between consecutive samples
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Figure 5.17: Comparison of 3D deconvolution reconstruction (b) of the box structure
versus its equivalent carving reconstruction (c) using pencil-beam data (BlueView
MB2250). Both points clouds are represented as depth map. a) Reference CAD model

of the inspected structure.

(small aperture and low sampling rate), the two reconstructions are very similar. Unlike

the space carving where points are located following the imaging model and the position

of the sensor at the time of the sampling, the deconvolution method assume a rectilinear

and uniform motion leading to very clear scanning lines in the reconstructed point cloud.
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Wide-beam reconstruction

In addition to pencil-beam reconstructions, we applied the deconvolution reconstruction

technique to the field dataset gathered by the AIV project using the wide-beam BlueView

P900-130. Although not strictly rectilinear (± 2cm) and not strictly uniform (± 2cm),

the meter long vertical movement of the vehicle while inspecting the box structure was

approximated by a vertical and uniform motion in order to satisfy the deconvolution

model.

Figure 5.18 shows the deconvolution reconstruction of the box structure (5.18-b) in

comparison to its CAD model (5.18-a) and the space carving reconstruction (5.18-c).

In comparison to the space carving reconstruction, the deconvolution reconstruction
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Figure 5.18: Comparison of 3D deconvolution reconstruction (b) of the box structure
versus its equivalent carving reconstruction (c) using wide-beam data (BlueView P900-
130). Both points clouds are represented as depth map. a) Reference CAD model of the

inspected structure.

appears to be more regular and features both the outer box and the inner box. The

carving reconstruction does not exhibit the full inner box and appears more cluttered.

As observed previously in the tank experimental results, the outliers structure differs

between the two reconstruction techniques: although very visible, the outliers present

in the deconvolution reconstruction appears to be more spread than the outliers in the

carving reconstruction as clustered in groups of vertical orientation.

5.6.3.2 Offshore trials

The 360◦ offshore field inspection data around the polygonal structure described in

section 4.7.3 was reconstructed to evaluate the deconvolution algorithm performance on

a large structure (8m high) observed at low sampling rate. As visible in figure 5.19-b,
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the deconvolution reconstruction is dense and appears coherent with the CAD model

(5.19-a). In comparison, the space carving reconstruction (c) features a little less outliers
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Figure 5.19: Comparison of 3D deconvolution reconstruction (b) of the polygonal
structure versus its equivalent carving reconstruction (c). a) Reference CAD model of

the inspected structure.

but a few points are missing on one face of the structure while this is not the case in the

deconvolution point cloud. Similarly to the observations made with the tank and lake

experiments, the outliers spatial distributions differ in the two point clouds. A larger

number of outliers is observed at the extremities of the point cloud (bottom and top)

in the deconvolution reconstruction while the outliers in the space carving point cloud

appear more uniformly spread along the Z-direction.

5.6.4 Influence of regularization

In this section, we study the influence of added regularization on 3D reconstruction

results using the deconvolution technique. Following the description of results on both

simulated and real data, we highlight the practical limitations of regularization.

5.6.4.1 Regularized reconstruction

The choice of the regularization parameter λ balances the importance given to the data

fidelity (relatively to the imaging model) versus the regularity of the solution. We present

here results obtained with various values of λ, expressed as a fraction of λmax where

λmax is the maximum value of lambda that make the solution non-zeros (defined in

Kwangmoo Koh and Boyd [2008]).
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Simulated data

We present here a regularized reconstruction of the sphere structure and focus in particular

on the inside of the object. As illustrated in figure 5.20, adding regularization to the

optimization process enables to impose sparsity. When imposing sparsity, not only the

ringing artefacts
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(a) No regularization (b) λ = 0.5 λmax (c) No regularization (d) λ = 0.5 λmax

Figure 5.20: Illustration of the influence of the L1 regularization on noise-free simulated
data. Figures (a,b) show a vertical slice (x = 0 plane) of the reconstructed sphere while
figures (c,d) show the inside of the fully reconstructed sphere (back view). In comparison
to unregularized reconstructions (a,c), the surface of the regularized reconstructions
(b,d) appears to be thinner. In addition to a thinner surface, the regularization removes
the deconvolution ringing artefacts observed inside the spheres in figures (a) and (c).

regularization provides a thinner object surface (as visible in figures 5.20-a,b with the

vertical slices of the object) but it also enables to suppress the deconvolution ringing

artefacts (see depth maps of the inside of the sphere in figures 5.20-c,d) as frequently

observed in the presence of sharp edges (pulse along the Z-direction). As detailed in table

5.1, the regularization improves the reconstruction error by 30% without changing the

coverage. As could be expected from the visual analysis, the regularization also reduces

No regularization L1 regularization

Median error (cm) 0.9 0.65

Coverage (%) 43.79 43.77

Outliers (%) 2.164 0.019

Table 5.1: Influence of L1 regularization (λ = 0.5 λmax) on the reconstruction of a
sphere.

the proportion of outliers by suppressing the ringing artefacts.

Tank data

As illustrated in figure 5.21, we applied the regularized deconvolution algorithm to the
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aluminium sphere dataset gathered in the water tank provides a reconstruction of the

sphere that appears more dense (top surface of the object more densely represented) and

the object size varies slightly (5%) along the scanning direction.

(a) λ = 0 (b) λ = 0.1 λmax (c) λ = 0.5 λmax

36 cm 35 cm 34 cm

(d) (e) (f)

Figure 5.21: Illustration of the influence of the L1 regularization term. In comparison
to the regularization-free reconstruction (a), the mild regularization (b) appears more
dense. Using a strong regularization term (c) enables an even more dense reconstruction
making the object size smaller along the scanning direction. The regularization also has

a clustering effect as observed in the top views of the reconstructions (d,e,f).

Field data

As illustrated in figure 5.22, applying L1 regularization on the reconstruction of the

wide-beam dataset of the box structure leads to a sparser 3D representation.

5.6.4.2 Limitations

While L1 regularization is commonly employed in optimization problems as a way

to impose sparsity, recent study (Slawski et al. [2013]) suggests that applying a non-

negativity constraint is sufficient to promote sparsity when the model matrix A has



Chapter 5. Reconstruction as a deconvolution 143

(a) No regularization (b) λ = 0.1 λmax

Figure 5.22: Illustration of the influence of the L1 regularization term. In comparison
to the unregularized reconstruction (a), the regularized reconstruction (b) appears more

sparse.

certain properties which appear to be satisfied in the case of a typical deconvolution

problem. Our experiments showed the interest of using L1 regularization to impose

further sparsity but also highlighted the limitations of regularization.

Reconstruction of smooth surfaces along the sampling direction

Although sparsity promotion is desired when reconstructing rectangular functions as

occurring when observing a surface in a non-orthogonal way, surfaces that appear

continuous along the sampling direction should be reconstructed as smooth sections

rather than sparse sets of points. This situation is illustrated in figure 5.23 where gaps

appear on the front surface of the reconstructed cube when using L1 regularization due

to the enforcement of sparsity on a solution that should appear as continuous. In this
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Figure 5.23: Limitations of sparsity promotion with L1 regularization. In comparison
to the CAD model (a), the unregularized reconstruction (b) appears complete while the
L1 regularized deconvolution (c,d) exhibits gaps on the front face of the cube due to

sparsity promotion.



Chapter 5. Reconstruction as a deconvolution 144

situation, unregularized deconvolution (figure 5.23-b) provides an accurate reconstruction

of the object. L1 regularization is therefore not suited for reconstructing a planar

section observed perpendicularly such as a wall or a flat seabed. As a consequence, L1

regularization can only be applied in specific situations.

Total variation regularization

In order to obtain a regularization formulation that promotes both sharp edges (sparsity)

and smoothness (continuity), the total variation regularization term (Rudin et al. [1992])

can be employed. By effectively imposing sparsity on the derivative of the function

along the direction of deconvolution, the total variation approach typically reduces the

number of transitions in the reconstructed signal, resulting in a formulation adapted to

the description of quantized signals. In practice, our experiments on simulated data with

a total variation regularization strategy highlighted the difficulty of the choice of the

regularization parameter. In particular, the simulated sphere, featuring a wide range of

surface normals provided range-dependent PSF (Point Spread Functions) for which no

common regularization parameter was found.

Regularization parameter choice

In general, experiments made with TV and L1 regularization showed that the choice

of the regularization parameter λ was not straight forward and appears to depend on

the level of noise in the input data as well as the PSF. As a consequence, λ is obtained

empirically after several iterations with different values.

5.6.5 De-ringing and denoising

In addition to regularization, two optional processing steps can be added to improve the

quality of the reconstruction. As described in section 5.5.4, a denoising step based on a

previously established sensor-specific noise model is applied directly on the input SONAR

images before the reconstruction process. Similarly a de-ringing step is applied after

reconstruction to suppress ringing artefacts by comparing the reconstructed values to open

water observations in the input SONAR images. In order to illustrate the importance of

these two steps, figure 5.24 shows reconstruction results on the aluminium sphere dataset

with and without deringing or denoising. As visible in figure 5.24-b, visible ringing

artefacts remain when no deringing is performed. Figure 5.24-d shows the importance of
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Figure 5.24: Illustration of the importance of de-ringing and denoising steps.

combined deringing and denoising in comparison to the original reconstruction (figure

5.24-a).

5.6.6 Beam pattern thresholding

The function β ideally contains a step profile in the Fourier domain (low-pass filter). As

a consequence, the typical beam patterns used for the sensors are Bessel functions. While

these patterns are known a priori, for any given sensor, we observed that they do not

play a major role in the approximation. We observed that providing no beam-pattern

adjustment produced lower ringing artefacts than when quantized approximations of the

beam pattern were used (see figure 5.25). As visible in this example, considering a flat

beam pattern (β = C) reduces the amount of ringing artefacts inside the objects at the
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Figure 5.25: Influence of the beam pattern profile. While the profile of the ideal beam
pattern β follows a Bessel function (sinc), experiments were made with a flat beam
pattern assumption during the deconvolution (b,d) reducing ringing artefacts while
increasing the width of the reconstructed surface. Deconvolution results obtained with

a Bessel profile assumption (a,c) exhibit strong ringing artefacts inside the object.

cost of a slightly thicker surface. While unexpected at first, this result can be interpreted

physically by recalling the underlying modelling of the problem: the optimization provides

the best solution given the constraints modelled in the A matrix. Setting the beam

pattern to a Bessel function imposes a directivity constraint, making the residual error

after optimization more likely to be part of an outlier. Conversely, assuming a flat beam

pattern amounts to consider the sensing model as uniform along the vertical axis (no

directivity), making the residual error more likely to be spread uniformly along the

vertical axis. As a result and due to the natural sparsity of NNLS solutions (Slawski

et al. [2013]), this residual error appears grouped with the reconstructed function leading

to a thicker surface in this example.

While ringing artefacts outside the objects can be removed using our deringing method,

artefacts inside of the object remain a-priori hard to treat in a post-reconstruction

processing step. In light of this, choice can be made to adopt a flat beam pattern to

minimize deconvolution ringing artefacts as well as reducing the computational cost. On

the other hand, a deconvolution with a quantized Bessel function as a beam pattern

can be adopted to provide a better reconstruction of the surface at the cost of stronger

artefacts.
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5.6.7 Multiple pass deconvolution

The results presented in the previous section were deconvolution results obtained using a

simplified convolution model (A?ij = β̃ij) assuming constant reflectivity along the direction

of convolution. Based on this simplified, first-pass deconvolution, the geometry of the

object can be identified as well as additional noise and deconvolution artefacts. We

investigated here the possibility of using these point clouds as an input to a second

deconvolution pass to either provide an estimate of the object normals or information of

occlusion.

5.6.7.1 Normal-based kernel

In order to describe better the insonification of the surface of the objects, the reflectivity

can be estimated assuming a Lambertian model (see section 2.2.4) and observing the

surface normals at each point reconstructed during the first deconvolution pass. As

illustrated in figure 5.26, in this situation, the coefficients of the simplified convolution

matrix (A?ij)1≤i≤N
1≤j≤P

are scaled by the Lambertian coefficient cos(αj) depending on the

point of view ~v(θij) and the normal at the point considered ~n. Following the estimation of

Z

X

sampling 
along Z

Figure 5.26: Multipass deconvolution - normal based deconvolution. When performing
a second-pass deconvolution, the normals (~n) at each point can be estimated and used

to describe the reflectivity (Lambertian model cos(αj)) in the convolution kernel.

the normals at each point using an Single Value Decomposition (SVD) description within
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a small neighbourhood (5cm), a more refined convolution matrix (A⊥ij)1≤i≤N
1≤j≤P

is then

obtained by the product of the reflectivity coefficients and the beam pattern coefficients

β̃ij .

5.6.7.2 Occlusion-based kernel

Since the geometry of the object to be reconstructed is a-priori unknown, the occlusions

occurring during the acquisition of each sample cannot be modelled in the convolution

formulation. Once the first deconvolution reconstruction obtained, the geometry of the

object is however clearly visible and exhibits many potential occlusions. Similarly to the

occlusion resolution algorithm presented in section 4.4.5, this initial 3D representation

can therefore be used to provide information on the occluded points to reduce their

estimate contribution to the measurement.

As illustrated in figure 5.27, the contribution in the (A?ij)1≤i≤N
1≤j≤P

is modulated by a binary

coefficient δij . In case of occlusion along the path (source position Si to the considered

Z

X

sampling 
along Z

Figure 5.27: Multipass deconvolution - occlusion based deconvolution. When per-
forming a second-pass deconvolution, the occlusion occurring along the path of each
measurement ~v can be estimated and used to modulate the reflectivity by adding a

binary coefficient δij in the convolution kernel.

point), the binary coefficient is set to 0, suppressing the contribution of the point to the

measurement. Conversely, in absence of occlusion, the coefficient is neutral (δij = 1),

enabling a normal contribution following (A?ij) model.
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As illustrated in figure 5.28-b, the reconstruction of the sphere using a normal-based

kernel enables to reduce the presence of ringing artefacts and makes the surface slightly

thinner but still feature a relatively thick and hollow surface which remains unrealistic.

Adding the occlusion information (see figure 5.28-c), the surface appears much thinner

hollow surface

ringing artefacts
gaps

(a) Flat kernel (b) Normals (c) Normals + occlusions

Figure 5.28: Normal and occlusion-based deconvolution. In comparison to the
deconvolution using a flat kernel (a), the addition of normal values in the kernel (b)
leads to thinner reconstructions with a few remaining artefacts. Adding occlusion
information in the kernel (c) provides a very thin surface but a few gaps appear in the

reconstruction.

but leads to significant gaps in the reconstructed surface. Although the use of a kernel

modelling occlusions and surface normals appears beneficial to the recovery of a thin

surface, undesired gaps appear in the reconstruction.

5.6.7.3 Post-reconstruction occlusion resolution

While the deringing method enables the removal of outliers in case where open water was

observed, outliers consistently appear inside the reconstructed objects. In this situation,

applying the occlusion resolution method described in section 4.4.5 directly on the final

point cloud enables to retain the front surface of the object.

As visible in figure 5.29, applying the deconvolution resolution algorithm on the recon-

struction enables to remove outliers lying in the inner part of the object and recover a
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thinner front surface of the object. On the other hand, the occlusion resolution algorithm

Z

X

Z

X

Z

X

Y

Z

X

Y

(a) initial (b) occlusion (c) initial (d) occlusion
reconstruction resolution reconstruction resolution

Figure 5.29: Occlusion resolution on deconvolution reconstruction. In comparison
to the initial deconvolution reconstruction (a,c), applying the occlusion resolution on
the point cloud enables to remove most of the outliers inside the object (b,c), obtain a

thinner surface at the cost of a few gaps on the surface of the object.

remain imperfect: raytracing in the 3D space is done at a limited resolution along both

vertical and horizontal aperture, the initial 3D reconstruction is obtained at a limited

resolution, leaving small gaps in the 3D representation. Due to these imperfections, a

few outliers remain present behind the front surface of the object. Furthermore, gaps

inevitably appear in the regions observed at grazing angle such as the top and bottom of

the sphere where the vertical resolution hampers the occlusion resolution.

5.6.7.4 Limitations

While these iterative reconstruction approaches present some theoretical interest, their

practical use is limited by several drawbacks.

Although simple on noise-free simulated data, the normal estimation, typically based

on an SVD estimation, is made complicated on real data due to the presence of noise

and outliers. Similarly and in addition to being limited by the raytracing resolution

and the first 3D representation resolution, the occlusion estimation is sensitive to noise

and outliers. Since it is a-priori impossible to completely separate noise from data, the

occlusion estimation remains inevitably imperfect on noisy data. These limitations on

estimating respectively the normals and the occlusions both result in adding noise to
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the convolution model. As a consequence, the deconvolution through the optimization

process is made more difficult, requiring increased regularization.

5.6.8 Computing resource usage

A sequential implementation of our algorithm typically takes about 15 seconds for a real

dataset consisting of 128 frames on an Intel Core i7-4700MQ CPU(2.40GHz) processor

with 16GB RAM. In comparison, carving takes about 32 seconds for the same data. Both

denoising and deringing are important steps in our pipeline (see figure 5.24) but they only

require about 1 second of computation each. The least squares sparse solver at the crux

of our deconvolution formulation is simple and efficient. Our method is parallelizable, as

is the space carving, since we solve independent systems at each (r, φ) along the U -axis.

5.7 Analysis

5.7.1 3D reconstruction from SONAR for real world observations

As described in the experimental results section (5.6), similar observations were made

about simulated reconstructions and real reconstructions. In both cases, the use of a

reduced beam aperture or a higher sampling period enabled higher resolutions. Similarly,

the use of wide-beam sensors provided increased surface coverage of the objects at

every sampling rate and enabled to obtain 3D reconstruction comparable in quality to

pencil-beam reconstructions.

Water tank reconstructions While these similarities have been observed, additional

artefacts appeared visible in the water tank reconstructions. As described in section 2.2,

real SONAR imagery typically features various acoustic phenomena such as multipath

propagation, crosstalk between different transducers on the same array, transducer

induced distortion, environment-related and sensor-specific noise pattern. The dataset

acquired in Heriot Watt water tank illustrates these phenomena as showed in figure 5.30.

These acoustic artefacts severely pollute the initial 2D images and therefore inevitably

impact the quality of the 3D reconstructions. Although impossible to remove using

image processing techniques (see section 2.2.6), these artefacts mainly appear due to the
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(a) (b) (c) (d) (e) (f)

Figure 5.30: Polar images obtained using an ARIS Explorer 3000 sonar in our water
tank: a-b-c) Sphere d-e-f) Hyball ROV. The main curve (red and yellow) at the bottom
is the ground plane, the inspected objects are observed surrounded by strong multipath

artefacts due to operating in a small and closed environment.

presence of a large number of scatterers in the vicinity of the sensor and are therefore

environment-dependent.

Real field observation When operating on a real field, the environment naturally

features less scatterers, reducing the probability of multi-bounce measurements. In this

situation, artefacts can still appear but are mainly due to the geometry of the observed

structure as illustrated in figure 5.31. Since these artefacts are generated by the structure

front surface 
of the box 

multipath 
artefact

polygonal 
structure

sensor-specific 
noisemultipath artefact

(a) box structure inspection (b) polygonal structure inspection

Figure 5.31: Images acquired using a Blueview P900-130 sonar during our field
experiments: a) Box structure. b) Polygonal structure. Although, in both cases
the images feature multipath artefacts, they are created by particular geometries of
the inspected structure rather than the environment itself and therefore appear less

consistently.

itself rather than the environment (as in the water tank experiment), they appear less

consistently and therefore have less impact on the 3D reconstruction process. Although in

the case of a sensor embedded on an AUV, the quality of the 3D reconstruction naturally
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depends on the accuracy of the navigation data, our experiments showed the ability of

obtaining a centimetre-level 3D representation of field structures using standard imaging

SONAR and embedded navigation systems. This representation provides enough details

for visual recognition of the objects and in some cases structure part identification. As a

result, both of our algorithms appear suitable for real world 3D sensing.

5.7.2 Deconvolution versus space carving technique

Performance As shown on our simulated results, the deconvolution method roughly

offers the same reconstruction accuracy as the space carving while yielding better surface

coverage with both sensors. Real data experiments confirmed these results and exhibited

better regularity of the deconvolution reconstruction. In addition to these differences,

the deconvolution formulation provides the possibility of adding regularization in order

to manually enforce constraints on the solution such as sparsity along the direction of

deconvolution.

Practical usage Along with these qualitative differences, the two algorithms differ

by their practicalities: the space carving algorithm enables online iterative mapping by

maintaining a temporary 3D representation while the deconvolution algorithm requires

to have all the samples available before starting (batch processing). The space carving

operates 3D reconstruction from samples acquired along any trajectory and sampling

scheme while the deconvolution formulation requires a rectilinear motion and a uniform

sampling along the direction of uncertainty of the sensor (vertical aperture).

Resource usage Due to their differences in implementation, the two algorithms feature

different resources usage. Although based on an efficient storage structure (Octree),

the space carving algorithm requires large amounts of memory (up to 16GB) while the

deconvolution implementation typically only requires 2GB but appears less scalable

(relatively to the number of input images). The computation time of both methods is

affected by the presence of noise in the input data: the denoising step on the input

samples enables to speed up the reconstruction process. Our two algorithms therefore

feature complementary characteristics in term of resource usage.
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5.7.3 Optimization of the sensing strategy

Both simulated and real data experimental results provided information of interest for

the optimization of the 3D sensing strategy.

A pre-diving tool for sensor selection and parameters optimization Through

the use of CAD models and physics modelling, the simulation environment enables to

recreate various real world situations. Thanks to this, both algorithms have been tested

in various configurations. In this situation, the use of metrics to evaluate both the

geometrical accuracy and the usage of computing resources provide a pre-dive estimation

of the performances of the system. Given a CAD model (or a set of CAD models) of

the object of interest, the simulation environment enables to explore various inspection

configurations. As illustrated in figure 5.32-a, inspection characteristics such as the

sampling period, the stand-off distance to the structure or the inspection path can be

jointly evaluated. Similarly, sensors of different specifications (vertical aperture, range
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(a) Error to coverage ratio of a 10◦ sensor (b) Error to coverage ratio of a 10◦

sensor over a 1◦ sensor

Figure 5.32: Illustration of parameters exploration in a simulation environment on a
given situation (inspection of the riser structure). a) Error to coverage ratio obtained
with a 10◦ aperture sensor at various sampling periods and stand-off distances. b)
Comparison of the reconstruction accuracy obtained with a wide-beam sensor (10◦) and

a pencil-beam sensor (1◦) exhibiting up to 40% difference.

and bearing resolution, SNR) can be compared as shown in figure 5.32-b. Based on

this pre-dive study, a sensor can be chosen for optimizing a given metric (coverage,

reconstruction error, inspection time, outliers, error to coverage ratio, error × inspection

time, size of generated data, etc.) while satisfying some hard constraints (minimum

stand-off distance, limited degree of freedom while moving the vehicle, etc).
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Wide-beam versus pencil-beam sensor As presented in the previous section, the

choice of the sensor can be explored in specific situations (particular structure to be

inspected, constraints on the inspection, etc.) using the simulation environment. In

addition to this tool, experiments carried with real data highlighted the differences in

3D reconstruction performances (see section 5.6.1.1). While pencil-beam sensors enable

better reconstruction accuracy, the resulting surface coverage remains lower or requires to

operate at very high sampling rate. Conversely, wide-beam sensors provide information

on large amounts of water, yielding better surface coverage at the cost of a slightly higher

reconstruction error.

Overall, the reconstruction results obtained with the two sensors appear comparable

and provide elements to choose one sensor or another depending on the application. In

situations where priority is given to the accuracy of the results (such as 3D mapping

for object recognition), a pencil-beam sensor will be selected. On the contrary, when

a slightly less accurate representation can be tolerated (pipeline tracking, occupancy

mapping) or when higher coverage of the scene is preferred (limited sampling rate due to

a minimum vehicle speed), a wide-beam sensor will be employed.

In most practical situations, the cost and bulk of the equipment are of first concern:

the payload of underwater vehicles is often limited by the amount of space available on

board, therefore requiring a selection of versatile sensors. In this context, we showed

that performing 3D reconstruction from a wide-beam sensor was made possible using

our two algorithms with results comparable to pencil-beam. Since wide-beam sensors are

commonly embedded on vehicles for performing robust online obstacle avoidance, our

algorithms avoid the addition of another expensive and bulky sensor.

Finally and driven by the increasing density of electronic equipment integrated on the

vehicles, power consumption is nowadays becoming increasingly more and more important.

In this context, a case by case study of each sensor can be performed and compared to

their reconstruction performances to achieve the desired trade-off.
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5.8 Conclusions

In this chapter, we presented a second 3D reconstruction method from imaging SONAR

data based on a sparse linear system optimization. Following a formulation of the imaging

problem as a convolution along the direction of uncertainty, the 3D reconstruction

problem is formulated as a spatially-varying blind deconvolution. In order to address

the complexity of the 3D reconstruction problem with a convolution kernel based on

the geometry of the observed scene, simple assumptions leaded to a formulation as a

constrained optimization of a linear system.

In order to evaluate the performance of the deconvolution algorithm, a quantitative anal-

ysis of deconvolution reconstructions from noise-free simulated SONAR data was made,

exhibiting similar reconstruction accuracy to the space carving method with increased

surface coverage. While featuring visible acoustic artefacts, water tank experiments

showed the ability to obtain 3D reconstructions with an increased level of detail in

comparison to space carving method. Field experiments demonstrated the ability to

use the deconvolution reconstruction method on data acquired by an AUV with limited

motion control and navigation accuracy. The influence of regularization was studied,

exhibiting increased sparsity as well as limitations in reconstructing flat surfaces along

the direction of uncertainty.

A comparative analysis between our two algorithms showed the interest in using the

deconvolution method over the space carving method to obtain a better surface coverage.

Overall, the two algorithms exhibited comparable performances and featured complemen-

tary practical usage constraints. Since maintaining a temporary occupancy map of the

scene, the space carving algorithms enables online reconstruction by iteratively adding

new information at the cost of a high memory usage. Conversely, the deconvolution

method does not require a lot of memory but needs all the input samples at the same

time. The space carving method enables reconstruction along any trajectory and sam-

pling scheme while the deconvolution technique requires rectilinear motions and uniform

sampling.

We then presented the simulation environment as a pre-dive tool to optimize the sensing

strategy and in particular to give elements towards the choice of the most adapted sensor

in a given situation. We discussed the pros and cons of using a pencil-beam versus
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a wide-beam sensor for 3D reconstruction purposes depending on the priority given

on the accuracy of the reconstruction, the cost and bulk of the sensor or the power

consumption. In particular, a pencil-beam sensor will offer higher accuracy but requires

high sampling rates to achieve good surface coverage and is in general only used for 3D

mapping. Wide-beam sensors are on the other hand commonly embedded on underwater

vehicles in forward looking configurations for obstacle avoidance and target tracking. In

this situation, our algorithms enable 3D reconstruction from wide-beam SONAR data,

avoiding the need for additional sensor.

Finally, the 3D reconstruction results obtained with both of our methods exhibit enough

detail for visual recognition of the objects or parts of large structures. In particular, our

3D reconstruction offer enough information for obtaining higher level knowledge on the

scene.



Chapter 6

Object recognition in underwater

scenes using SONAR data

”Para que as coisas existam duas

condições são necessárias, que homem

as veja e homem lhes ponha nome.”

A Jangada De Pedra - José Saramago,

1986

6.1 Introduction

In chapters 4 and 5, we introduced two 3D reconstruction methods from 2D SONAR

images and showed their interest for object recognition and semantic interpretation.

Based on these results, we present here a few applications.

We first present a 3D registration technique based on a bundle adjustment of 2D elevation

maps of overlapping swathes. Using field data, we show the interest of this technique

to compensate for navigation drift when covering large areas, effectively extending our

reconstruction methods to the mapping of large underwater areas.

Following the reconstruction of large scenes, we investigate two model-based object

recognition methods. The first approach, based on the full 3D point cloud representation,

takes advantage of standard matching methods while the second approach proposes

158
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to reduce the complexity of the recognition problem by adopting an elevation map

representation. This second method takes advantage of a lightweight rotation-invariant

histogram description, offering fast model recognition and matching in large scenes. Using

field experimental data, we demonstrate the first CAD-model-based underwater object

recognition method.

Once the ability of mapping and labelling large scenes demonstrated, we present a few

applications taking advantage of semantic labels. We first demonstrate the generation of

lightweight yet accurate maps of the environment. We then discuss applications to the

navigation and path planning problems as well as higher-level reasoning for the operation

of AUVs in partially structured environments.

We finally explore the possibilities of multi-modal sensing with the mapping of video

data on the 3D representation of the environment and discuss some applications.

6.2 Large field 3D reconstruction through local registra-

tion

Due to significant navigation drift, the 3D reconstructions of the environment from data

gathered by an underwater vehicle over distances greater than a few metres exhibit

significant artefacts. As illustrated in figure 6.1, in absence of navigation correction

between two overlapping 30 metres long swathes, the 3D reconstruction of the structures

feature visible geometrical inconsistencies. In these situations, there is therefore a need

misplaced 
3D points
(2nd pass)

1st pass
reconstruction

(a) (b)

Figure 6.1: 3D reconstruction artefacts due to navigation drift. In comparison to the
CAD model (b), the 3D reconstruction obtained by superposing two successive swathes

(a) exhibit visible artefacts.
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to simultaneously perform 3D reconstruction and navigation correction. Since in general,

the 3D reconstruction exhibits enough features to allow for manual matching, we propose

here a method for automated reconstruction and relocalisation (navigation correction),

similar to a Simultaneous Localization And Mapping (SLAM) technique. Similarly to

chapters 4 and 5, we assume a local navigation accuracy equivalent to 1% drift, therefore

enabling centimeter-level drift accuracy over a meter of travel distance. Due to the

necessity of correcting for navigation drift after a few meters, we assume significant

overlap is present in the data to allow for manual registration by a human operator.

6.2.1 Elevation map generation

In order to reduce the dimensionality of the 6D matching problem, we adopt a 2D

representation defined by elevation maps. When observing areas where sensor motion

is restricted to a half-space such as when inspecting a seabed, elevation maps offer a

lightweight representation of the environment by storing only the highest observed height

at each (North,East) point, resulting in a (North,East,Depth) 2D image. These elevation

maps are generated at a given resolution in North and East and can store depths values

in either a floating point representation or at a lower resolution, quantized representation

such as unsigned 16bits, reducing the weight of the representation. As illustrated in

figure 6.2, a 3D representation requiring 7MB storage can be converted to a 780 kB 2D

elevation map representation by subsampling at 2cm resolution along North and East

and quantizing on 16bits in Depth. In addition to enabling easier access and processing

of the data, adopting a fixed resolution 2D structure representation enables to trade-off

accuracy for weight.

6.2.2 3D registration through bundle adjustment

In order to correct for navigation drift, we adopt a bundle-adjustment strategy by

considering the navigation drift negligible over a few meters but requiring position

adjustment after larger scale motion. In the context of a vehicle following a typical

lawnmower pattern (see figure 6.3), we propose to relocate each new reconstructed

swath relatively to the previous one by operating a 3D matching along the 3 reference

directions (North,East,Depth). This approach is motivated by the observation that Yaw

angle estimation is generally very accurate (fraction of a degree accuracy) when using
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(a)

(b)

Figure 6.2: Elevation map generation. The 37 × 6 metres full 3D representation (a)
is converted into an equivalent 2D elevation map generated at 2cm resolution providing

a much lighter representation (780 kB vs 7MB).
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Figure 6.3: Lawnmower inspection pattern.
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embedded compass systems, the angular variation on the two remaining axis (Pitch and

Roll) remaining negligible.

6.2.2.1 2D matching

The registration process is performed relatively to the origin of the first swath (initial

position of the vehicle). We then consider small swathes (30 metres long) which allows us

to assume the navigation estimation over this length to be fairly accurate. A registration

is then only needed between consecutive swathes when the vehicles operates a U-turn

at the end of each line where consequent drift has been observed. In this context,

each new swath provides a new elevation map and the registration problem is then

formulated as a minimization of the unsigned median distance between two elevation (or

depth) distributions. In order to ensure completeness, the distributions are registered by

considering only the points appearing in both elevation maps for each given translation

(δN , δE) over a finite set of translations corresponding to a discretization over a predefined

North,East interval [−∆Nmax,∆Nmax] × [−∆Emax,∆Emax] at the resolution of the

elevation maps. Due to the low dimensionality of the problem, the position of each

new map is tested exhaustively in [−∆Nmax,∆Nmax]× [−∆Emax,∆Emax]. Importantly

and in order to account for potential elevation offsets due to SONAR miscalibration

and pressure sensor inaccuracy, the depth distributions of the overlapping submaps are

previously aligned by matching their signed median values (see figure 6.4), providing an

offset value ζ(δN ,δE):

ζ(δN ,δE) = Median

[
Z2(i, j)− Z1(i+ δN , j + δE)

]
max(0,−δN )≤i≤min(N2,N1−δN )
max(0,−δE)≤j≤min(M2,M1−δE)

(6.1)

where Z1 and Z2 are the two elevation maps, respectively of sizes N1×M1 and N2×M2.

As described in equation 6.2, the optimal registration (δ?N , δ
?
E) is then selected as the

translation resulting in the minimum median value of the unsigned depth distance

distribution computed on the overlapping area:

(δ?N , δ
?
E) = arg min

δN ,δE

(
Median

[
|Z2(i, j)−Z1(i+δN , j+δE)+ζ(δN ,δE)|

]
max(0,−δN )≤i≤min(N2,N1−δN )
max(0,−δE)≤j≤min(M2,M1−δE)

)
(6.2)
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Figure 6.4: Median-based swath registration. Following the alignment of depths
distribution, the distance between two patches is evaluated using the median of the

unsigned distance distribution computed on the overlapping area.

Following this approach, each new map is registered to the previous one and the final 3D

map is then given by combining all the co-registered 3D swathes.

6.2.2.2 Experimental results

We present in this section field experimental results based on a dataset acquired in

Loch Eil in Scotland. The data was gathered by the Subsea7 AIV (see section 4.7.1 for

description) prototype during validation trials. Prior to the experiment, three oil-field

type structures as well as two pipelines were laid on the seabed with various orientations.

The structures and the pipelines were deployed on the seabed forming a field area of 50

× 34 metres. As visible in figure 6.5, the structures were laid with arbitrary orientations

with pipelines placed in between each structures mimicking connectivity between the

structures. The pipelines appeared half buried in the seafloor composed of mud and

rocks. As visible in figure 6.6, a lawnmower pattern was followed by the AUV along

the East-West axis. In this configuration, the full field was inspected in an hour time.

The data used for this experiment was acquired by the BlueView MB2250 SONAR

mounted in a downward configuration featuring a pencil-beam vertical aperture of 1◦ and

an horizontal aperture of around 80◦. The along-track sampling period was 4cm with

an average range to the seabed of 5m. Due to the small overlap between each sample,

the space carving reconstruction technique (see chapter 4) was used. The navigation
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Figure 6.5: Loch Eil trials field map exhibiting the three reference structures and two
pipelines connecting them.
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Figure 6.6: Loch Eil trials field inspection pattern. The pattern lawnmower pattern
followed by the AUV enables a top inspection of the full field in an hour time.
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data was provided by a module integrating the readings of three sensors: bottom-lock

velocities were provided by a DVL (Doppler Velocity Log), depth measurements were

given by a pressure sensor while the estimation of the vehicle orientation relied on a

compass and a gyroscope.

The swathes elevation maps were generated at 1cm resolution in North/East. Since the

along-track sampling period is only 4cm on average, some gaps are apparent on the map.

The bundle adjustment was therefore operated at 1cm resolution, discarding undefined

points. To illustrate the benefits of the registration between swathes, figure 6.7 shows

the 3D reconstructions of two structures and a pipeline before (figure 6.7a-c-e) and after

registration (figure 6.7b-d-f). In the case of the original example depicted in figure 6.1,

the registration leaded to a shift of 24cm in North and 2cm in East (figure 6.7-b vs 6.7-a).

While assembling all the swathes, the whole field was reconstructed with a maximum

registration shift of 38cm in North and 18cm in East. The full reconstruction of the field

is depicted in figure 6.8. In addition to the three structures and two pipelines deployed

on the field, the reconstruction exhibits two trenches of about 30cm depth.

Accuracy assessment

While the benefits of applying our SLAM technique on this experiment can be visually

assessed in figure 6.7, no accurate prior map of the field was given as a comparison. No

additional localization system such as USBL was deployed on the field of trials, making

a quantitative analysis restricted to the comparison of each structure to its rough CAD

model. When doing this, the CAD models need to be aligned to the 3D reconstruction

requiring either manual input or an automated matching method. In both cases, the

distance obtained by comparing the point cloud to its registered model includes the 3D

reconstruction error, the registration error and the model matching error. For this reason,

we choose to provide details on these values in section 6.3.2.7.

6.2.2.3 Applications

SLAM-issued 3D reconstruction point clouds provide direct visual rendering of the

environment of interest to human operator for exploration, operation planning such as

man-made structure or vehicle deployment. In addition to this, the 3D representation

can be used as an input to automated online navigation and path planning.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Illustration of field 3D reconstructions after swathes registration. a-c-e)
3D reconstruction of a structure without registration. b-d-f) Registering the two swathes
containing the structures (a,b and e,f) pipeline (c,d) enables to recover a consistent 3D

reconstruction.
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Figure 6.8: Complete reconstruction of the field of trials in Fort William.

The first outcome of applying a SLAM method while inspecting a field is the ability to

correct for navigation drift using observation. These so-called terrain-based navigation

methods have been widely studied (Kinsey et al. [2006]), both in presence of prior

knowledge on the environment (Eustice et al. [2005], Williams and Mahon [2003]) or

with concurrent generation of landmark maps (Roman [2005]). These methods therefore

enable accurate positioning from 3D sensing.

Similarly, 3D space occupancy information is of interest to vehicle motion planning

by generating exclusion zones and applying optimal path planning methods such as

navigation functions (Latombe [2012]).

The 3D point clouds resulting from reconstruction of the field do not provide any direct

semantic information but the structures visible in our field results are clearly identifiable

by a human operator making possible a manual labelling of the field by an operator

(such as the map presented in figure 6.5) in order to assist higher level tasks. Due to

the variability of appearance of the objects in the scene, the potentially large size of the

reconstructed area and the cost in time induced by vehicle recovery for data analysis by

a human operator, there is a great interest in being able to obtain semantic information

on the scene automatically.
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6.3 CAD-model-based object recognition

Following the extension of our local 3D reconstruction methods to larger scale inspections,

we propose to extract semantic knowledge from the 3D representation of the environment.

Due to the difficulties of acquiring an accurate 3D representation of underwater envi-

ronments, most underwater semantic mapping approaches have been based on texture

characterisation rather than geometry analysis. Reflectivity maps have been estimated to

characterise seabed areas (Chen et al. [2008]) and marine habitat (Kenny et al. [2003]).

The estimation of the physical properties of sediments typically require SONAR sensors

operating at low frequencies (10Hz to 10 kHz) to allow for subsurface penetration (Schock

[2004]). Low-frequency designs limit the range accuracy of the sensor therefore its

usability for the estimation of the 3D geometry of the environment.

When operating at higher frequencies, the geometrical information has been used to

classify marine vegetation (Mizuno and Asada [2014] using a texture classification in

the 2D images. Following the idea of adopting a plane-based representation (Birk et al.

[2010]), a two-level semantic annotation of the environment was presented in Pfingsthorn

et al. [2011]. In this study, planes were first fitted to operate a rough classification of the

areas into generic categories (seabed, wall) while a second step focused on the type of

object by analysing the local normals distributions. While interesting, this method is

limited to providing a global characterisation of the environment but do not provide fine

semantic information inside each area. In particular, this approach does not address the

detection of man-made objects in the scene.

In contrast to these studies, we propose to extract semantic knowledge from the 3D

representation of underwater environments by operating a 3D matching of a set of rough

CAD models representing known man-made structures or parts. We formulate the

problem as a 6D problem where the scene can be observed as full 3D such as a vertical

pipeline around which the vehicle could turn to see both sides. In this context both

translation and rotation information of the structure are unkown but we assume rough

knowledge on the size of the pipeline / buoyancy. Note that due to the limited resolution

of underwater observations and the potential presence of marine growth, the shape and

size of submerged objects varies in time and can therefore only be assumed to be known

to a limited level of accuracy (centimer-level or more).
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6.3.1 Model recognition in the 3D scene

While the most common approach to perform object recognition in the air is feature

description and matching (Bay et al. [2006], Drost et al. [2010], Johnson and Hebert

[1999], Lowe [1999]), these techniques exhibit several drawbacks prohibiting their use for

model-based object recognition in underwater reconstructions. Since feature description

methods aim at characterising the local geometry around a point, most of the descriptors

require computation of surface normals. The presence of noise and outliers in the 3D

reconstruction of underwater scenes makes the estimation of normals challenging if not

impossible. In addition to this robustness challenge, the surface of objects submerged

for more than a few weeks or months commonly features marine growth or dirt. As

illustrated in figure 6.9, marine growth significantly alters the appearance of the structures

by modifying their shape. Finally due to the variability of the appearance of objects when

Figure 6.9: Marine growth on the buoyancy of a riser structure. The cylindrical shape
of the original buoyancy now appears very irregular.

observed with SONARs, the feature description of an underwater measurement needs

to be robust to noise. For this reason and although 3D reconstructions from SONAR

feature limited accuracy, the use of a higher resolution sensing modality in presence of

marine growth would not simplify the object recognition. In particular, the a-priori

knowledge on the geometry of the object of interest is typically is at best expected to

consistitude in a CAD model of the object before deployment. Therefore due to the

simplicity of the initial CAD model and the variability of the appearance of submerged

object, the description of the local geometry does not provide any reliable information.
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Following unsuccessful initial experiments using standard feature-based methods (Bay

et al. [2006], Rublee et al. [2011]) and due to the low resolution and noisiness of underwater

reconstructions, we chose to address the object recognition problem by applying direct

model matching techniques. Although naive, this approach will constitute a reference to

compare to the method described in section 6.3.2. Direct 3D matching techniques are

prone to sub-optimality and computationally intensive due to the high dimensionality of

the model matching problem: 3 degrees of freedom in rotation, 3 degrees of freedom in

translation and one more degree of freedom for the choice of the candidate object. In

order to address this, we reduce the number of model matching to operate by dividing the

scene in subspaces and discarding the candidate subspaces with unrealistic characteristics.

6.3.1.1 Scene partitioning and subspace analysis

In order to address the complexity of matching in 3D, the search space (full scene) is

divided into equally sized subspaces. In order to avoid privileging any direction when

sampling, each subspace is spherical with a radius rsubspace defined as the minimum size

allowing any 3D rotation of the model inside the subspace. rsubspace is therefore defined

by the size of the object and the 3D space ”lost” while sampling the scene at a low

resolution (grid spacing between two subspaces):

rsubspace = rmodel +

√
3

2
. T (6.3)

where rmodel is the radius of the bounding sphere of the model (distance between its

centre and its furthest point) and T is the sampling period, generally expressed as a

fraction of rmodel.

Following this sampling scheme of the scene, each subspace represents a region potentially

containing the object of interest and at least one of them contains the whole structure.

Depending on the size of the object in comparison to the size of the scene, a large number

of subspaces can be generated at this stage, making a direct 3D matching on each of

them prohibitive. In order to decrease the number of potential candidates, each subspace

is first evaluated on simple metrics representing necessary conditions for representing the

object.
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Oriented Bounding Box (OBB)

The OBB of the model must fit in the OBB of the subspace. The two OBBs are

computed based on their Singular Value Decomposition and the centroid of the each

point cloud. The sizes of the sides are then obtained by measuring the furthest point

along each direction. The 3 resulting values are finally sorted by decreasing order and

compared between the two point clouds. Storing these values in two 3D vectors `subspace

and `model, we therefore respectively have `subspace[1] ≥ `subspace[2] ≥ `subspace[3] and

`model[1] ≥ `model[2] ≥ `model[3]. We then evaluate the following criteria:

`model[1] ≤ αfit . `subspace[1]

`model[2] ≤ αfit . `subspace[2]

`model[3] ≤ αfit . `subspace[3]

(6.4)

with αfit being a margin coefficient.

Minimum volume

Based on the OBBs, the volume of the bounding box of the subspace can be compared

to the volume of the model. Due to noise and potential background around the object

(seabed, rope, etc.), the volume of the subspace is expected to be high enough compared

to the volume of the model:

Vsubspaces ≥ αvolume . Vmodel (6.5)

with αvolume < 1 a margin coefficient.

Number of points in the cloud

A minimum number of points in the cloud is desired to represent the geometry accurately.

This criteria is typically designed to discard subspaces containing only a few outliers

points. Formally, the decision is made based on a simple threshold:

Nsubspaces ≥ Nmin (6.6)

with Nsubspaces and Nmin respectively being the number of point in the subspaces and

the minimum number of points allowed for representing accurately the object.

Space occupancy

By parsing the point cloud in a regular grid representation, an estimation of the volume
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of the point cloud can be measured by counting the number of occupied voxels. The two

occupancies Osubspace and Omodel can then be compared by:

Osubspace ≥ αoccupancy . Omodel (6.7)

with αoccupancy the margin coefficient on occupancy, typically chosen as lower than

1. If one of these criterias is not satisfied, the subspace is then discarded as not

realistically representing the model. On the contrary, subspaces satisfying all these

minimum thresholds are kept for further evaluation using a direct 3D matching method.

6.3.1.2 Direct 3D matching

3D model matching techniques are typically divided into two main categories. RANSAC-

inspired, voting techniques where each degree of freedom is quantized, triplets of points are

chosen respectively in the model and the data point clouds, the transformation is computed

and a vote is added in a voting table. The optimal transform is then obtained selecting the

transform with the highest number of votes. Although independent of the initial positions

of the model and data point clouds, these methods are computationally expensive. The

second approach to the matching problem aims at solving the correspondence problem:

given a point in the data point cloud, find a point in the model point cloud that

corresponds to it. Once enough correspondences are computed, a rigid transform can

then be computed in such a way to minimize the distance between corresponding points.

The most common way to associate 3D points relies on the description of the local

geometry and feature matching. These methods require accurate 3D representation with

low noise levels and high similarity between the model and the scene which cannot be

assumed in the case of underwater environments.

In this situation, a simple approach is to consider the closest points in the dataset as

correspondences. Following this idea, the ICP (Iterative Closest Point) method (Besl and

McKay [1992]) iteratively perform registration between two point cloud by minimizing

the L2 distance between each point and its closest neighbours. Since its introduction in

1992, many variants emerged, decreasing the time needed for registration (Rusinkiewicz

and Levoy [2001]) or increasing robustness to noise, outliers and sparse datasets (Trucco

et al. [1999]). While ICP allows for fast registration between two close point clouds, it

is not guaranteed to converge to the global optimal registration but rather the closest
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optimum. This technique is therefore restricted to situations where the two points clouds

are already relatively well positioned. This is the case for local registration applications

such as aligning two successive acquisitions from a sensor and provide some sensor

motion correction. In order to address this sub-optimality issue, global optimum ICP

methods have been investigated such as the Go-ICP method (Yang et al. [2013]). The

Go-ICP algorithm achieves global optimality by using a branch and bound technique to

explore the 6 degrees of freedom space composed by SE(3)× SO(3). This branch and

bound technique enables an efficient exploration of the solution space by bounding the

registration error and focusing on solution subspaces. The ICP technique is then used

to perform a fine local registration. This method proves to outperform ICP in terms of

registration error at the cost of a longer processing time. Resilience to outliers as well as

the application to 3D object localization have also been investigated by the authors with

promising results.

Considering the characteristics of underwater 3D reconstructions, we choose to operate

model matching in each subspace using the ICP technique when some prior information

is known about the most likely orientation of the model in the scene, with low clutter

generating local minimas. On the contrary, the Go-ICP method can be chosen when

no initial assumption can be made on the scene. The C++ implementation of the ICP

method was provided by the PCL library (Rusu and Cousins [2011]). The registration of

CAD models to the 3D points clouds of the scene is operated by first operating a regular

sampling of the CAD model at a high resolution (1cm), applying a subsampling at a

fixed resolution (typically 3cm) on both points clouds in order to reduce the amount of

computation and finally operate a point-cloud-to-point-cloud registration. We modified

the C++ implementation of Go-ICP provided by the authors of Yang et al. [2013] to allow

for shorter branch and bound search by adding a user-defined threshold on the lower

bound, representing the expected matching accuracy.

6.3.1.3 Experiments

We performed experiments on both simulated and real data to evaluate the accuracy and

resource consumption of this approach. The first set of experiments was performed on

3D reconstruction issued from noise-free simulation data. The 3D reconstruction point

clouds were representing a vertical pipeline (riser) with one or multiple buoyancies for
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which a rough CAD model (half a cylinder) was provided. In the case where multiple

objects are expected to be present in the scene, a threshold on the error to CAD model

after matching is set to represent a decision on whether or not the object of interest was

found. The subspaces were generated at the period T = 0.5.rmodel, the OBB fitting

criteria was set to αfit = 1.2, αvolume = 0.6, Nmin = 10 and αoccupancy = 0.6. As

illustrated in figure 6.10, this method enables to successfully detect the buoyancies in the

point cloud using ICP on respectively 8 (out of 19) and 18 (out of 59) subspaces with

an average matching error of 3.5cm. Both detections are achieved in less than a second

(a) (b)

Figure 6.10: Buoyancy detection in 3D on simulated data. When inspecting a vertical
structure, the ICP method enables to detect the position of one (a) or multiple buoyancies
(b) using the subspace analysis and the ICP method. The subspaces are represented by
their bounding boxes in green while the matched CAD models are represented in red.

on an Intel Core i7-4700MQ CPU(2.40GHz) processor, typically using under a 100MB

memory.

The second set of experiments was performed on field 3D reconstruction issued from

AIV data, naturally featuring higher level of noise and outliers. We first applied our

ICP-based 3D reconstruction method on two different datasets where the object is clearly

visually identifiable. The first 3D reconstruction was presented in section 4.7.3.2 (figure

4.34) and features a pipeline, two mooring chains and a buoyancy at the top of the

reconstruction. As visible in figure 6.11-a, the buoyancy is successfully detected. The

detection algorithm discarded 144 (out of 226) subspaces and provided the best match of

a 50cm diameter half cylinder in 19 seconds with an average matching error of 5.4cm,

the model being initially oriented along the vertical direction making a 30◦ angle with
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the orientation of the buoyancy in the point cloud. Similarly and as illustrated in figure

6.11-b, we applied the pipeline detection on a 34m long pipeline reconstruction where the

pipeline was standing above the seabed (20cm higher) with a 30cm diameter half cylinder

CAD model. In this situation, the pipeline was detected all the way through the point

(a) (b)

Figure 6.11: Buoyancy detection in 3D on field data. The buoyancy present in the
riser reconstruction (a) is detected succesfully in a 19 sec while the 34m long section

pipeline takes nearly 20mn processing time for recognition in similar conditions.

cloud in 3 minutes and 36 seconds. When the object of interest can be expected to stand

out from the rest of the scene (low clutter) such as in the two previous examples, the

ICP-based recognition algorithm provides a fast and efficient way to detect the object.

In order to evaluate the performance of this technique on a more complex situation,

we applied it to a reconstruction of a buried pipeline. In this situation, the pipeline is

covered by either sand or a protection (rock mattress) making its recognition significantly

more challenging.The typical curve representing a buried object is then surrounded by

a seabed which can a-priori feature various geometries. The CAD model was initially

orientated along the axis of the subspace grid, therefore rotated by 45◦ relatively to

the pipeline in the point cloud. As illustrated in figure 6.12-a, applying the ICP-based

recognition algorithm enables to detect the pipeline at each point in the point cloud. The

orientation of each instance of matched CAD model appears slightly misaligned (up to

20◦ ) in some cases due to the influence of the seabed points. In this situation, replacing

simple ICP registration by a globally optimal Go-ICP method (see figure 6.12-b) enables

a better registration at the cost of a longer processing time (21 mn versus 8 min 23
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sc). The use of Go-ICP also leads to outliers in the detection process as visible in figure
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Figure 6.12: Buried pipeline detection on field data with both algorithms: ICP (a) and
Go-ICP (b). Registration with ICP provides lower angular accuracy due to the influence
of seabed points creating local minimums whereas the use of the globally-optimal Go-ICP
method provides better registration at the cost of a few outliers due to geometrical

similarity with the seabed.

6.12-b where a detection was obtained on the left side of the main pipeline due to the

curvature of the seabed in this area.

In order to evaluate the recognition of objects in larger scenes, recognition results of

model matching to the field reconstruction of Fort William trials (see section 6.2.2.2,
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figure 6.8) are presented in appendix 6.7. In this situation the localization was only

partially successful (2 structures out of 3) and required prohibitive computing durations.

6.3.1.4 Applications and limitations

In light of these experiments, direct applications of this simple model matching technique

can be deducted as well as some practical limitations.

As shown by the experimental results, it is possible to recognise simple shapes such as

pipelines and buoyancies in real field 3D reconstructions obtained from SONAR data.

These results show the ability to perform model-based semantic labelling of the 3D scene.

The ability to detect pipelines consistently in different configurations allows 3D pipeline

tracking. When additional prior knowledge is available, the ability to detect parts of the

structures such as buoyancies on the riser dataset could enable online relocalisation of

the AUV relatively to these elements as well as part-specific application such as leak

detection or manipulation.

In practice the detection accuracy is limited by the sensitivity to local optimums of the

ICP method. Although a globally-optimal method such as Go-ICP can address this

problem, this comes at the cost of an increase in computation cost. More generally,

the scalability appears to be the main limitation of this method as illustrated with the

buried pipeline example where a few minutes are required to process an area inspected

by the AUV in less than a minute. Although a few minutes of processing time can

be acceptable when detecting one structure, a more general application scenario would

involve a library of model of potentials objects of interest (with possibly different sizes)

making semantic mapping from a large library computationally expansive. In addition to

this, while large objects appear to be easily detectable due to their larger size compared

to the whole scene (fewer subspaces), they also feature more points making the matching

process more costly. On the other hand detecting a small object in a comparatively

large field results remains computationally intensive process due to the high number of

candidate subspaces. As illustrated in section 6.7, structure recognition on Fort William

field was only partially successful and required large computing durations. A common

practice to reduce the computational footprint when performing 3D data processing is

to operate a prior downsampling of both the model and the data point cloud but this

comes at the cost of lower registration accuracy and in particular the possibility to miss
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the initial global optimal registration. When considering large number of points such

as the 6 millions points of this field, a considerably larger amount of memory is needed

(typically 3.5 GB). Experimental results also showed the limited efficiency of the subspace

analysis conducted prior the matching due to the sensitivity to the appearance of the

input data: when buried, only part of the object might be visible on one hand but the

seabed leads to a large bounding box on the other hand. The simple criterias on volume

and occupancy are sensitive to the initial coverage of the structure, itself depending on

the type of inspection and sensor operated.

6.3.2 Structure recognition in 2D space

In order to address the scalability issue, we chose to approach the recognition problem

using a lighter representation. Most man-made underwater structures or objects can

be recognised in 3D reconstructions from SONAR samples acquired in half a 3D space:

seabed inspection is naturally restricted to motions in half a space and typically performed

by acquiring range observations along a lawnmower pattern (see description in section

6.2.2.2), single-pass inspections of vertical structures (such as the vertical riser inspection

presented in figure 4.34) typically provide range information acquired along a 3D axis,

the inspection of ship hulls or vertical walls typically feature similar properties. In

this situation, the aspect of the objects of interest can be generally assumed: offshore

structures can be laid on the seabed with an arbitrary yaw angle but cannot be deployed

upside-down. Therefore the objects can typically be expected to be observed under

4D points of view (3 translations, one rotation (yaw angle) on the plane separating

the two half-spaces) by neglecting rotation on the two remaining rotation axis. A full

3D representation such as a point cloud is then unnecessarily detailed and memory

consuming. In light of this, we chose to adopt a 2D representation of both the scene and

the model by using elevation (range distance) maps as presented in section 6.2.1. In order

to address the problem of variable appearance of underwater observations described in

section 6.3.1, we chose to adopt a global description of small 2D patches rather than a

local (pointwise) feature description.
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6.3.2.1 Overview of main feature description methods

Feature description aims at characterising a set of samples by operating a projection

from the data domain (images, 3D point clouds, etc.) to a feature domain, represented

by a vector of descriptors. The set of samples to describe is typically defined as the

neighbourhood of a point by selecting a fixed number of points or all points within a

given radius. The description then consists in characterising the neighbourhood through

a simple operation applied on the input data. Importantly, the descriptor needs to be

specific enough to capture the information of interest (such as the shape of the data

samples) and enable the distinction between a salient point and the background (area

where no point of interest lies). On the other hand and depending on the application, the

description is often required to provide invariance to the point of view (rotation and scale

invariance) as well as variability associated to the observation process such as the noise

and outliers present in the data. Therefore the desired characteristics for a descriptor

depend on the target application and the characteristics of the data.

Both in 2D and 3D domains, a considerable amount of research effort has been carried

on feature description. The earliest attempts at feature detection focused on detecting

low-level salient patterns such as edges Canny [1986], corners Harris and Stephens [1988],

Shi et al. [1994]. Inspired by these methods, modern feature description combines

multiple description values to provide a detailed description. Importantly, the problem

of invariance to the point of view has been investigated actively. Scale invariance, as

obtained by difference of Gaussian Lindeberg [1998] and a pyramidal approach led to

the popular SIFT features Lowe [1999]. RIFT descriptors Lazebnik et al. [2004] provide

rotation invariance by describing each point on a set of concentric rings within which a

histogram of gradient is computed. SURF description improved on RIFT and SIFT by

combining both scale and rotation invariance in a computationally efficient manner by

using integral images. Histograms are commonly employed in feature description as a way

to obtain dimensionality reduction and robustness to noise (due to the bining process).

When considering 3D data, so-called oriented descriptors base their description on the

oriented normal of the local patch, effectively providing orientation invariance. Following

this approach, NARF descriptor Steder et al. [2011] extended SIFT by operating a

description on a star pattern around the normal of the keypoint. In order to capture

relations between neighbour points on a surface, pairs of points have been employed such



Chapter 6. Object recognition in underwater scenes using SONAR data 180

as in surflet-pair histograms Wahl et al. [2003] and Fast Point Features Histograms Rusu

et al. [2009] where pair-wise description provides information on the local curvature.

6.3.2.2 2D histogram based description

Although lower in dimension, we expect to solve the resulting 4D matching problem in a

scalable way. We choose to adopt a similar approach to the subspace analysis presented

in section 6.3.1.1 by taking advantage of a rotation-invariant histogram description of

each subspace and comparing it to the description of the model to infer the most likely

location of the model in the scene. We assume the top of the structures to contain

enough features and to be completely observed in order to enable visual recognition using

a simulated view of their CAD model.

6.3.2.3 Structure description

In order to account for potential yaw rotations of the model in the scene, we adopt

a rotation-invariant description of the model by characterizing elevation values on

N complimentary circular regions as depicted in figure 6.13. So as to obtain a fine

(a) (b) (c) (d) (e) (f) (g)

Figure 6.13: Model description on N circular regions. The elevation map of the CAD
model (a) is described using a rotation invariant descriptor computed on multiple (N =

6 in this example) complementary circular areas.

characterisation, we compute elevation histograms on each circular area, therefore

reducing dimensionality through the use of histograms while preserving geometrical

characteristics by separating the descriptions at each radius. The histograms are computed

at a fixed depth resolution represented in P bins set so as to provide specificity while

allowing noise-robustness (difference between measurement and CAD model).

6.3.2.4 Structure recognition

Once the object of interest described, we propose to find it in the scene by comparing it

to each location in the scene map. Following the same idea used when partitioning the
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3D space (see section 6.3.1.1), the scene is partitioned in multiple 2D circular patches,

sampled at a sampling period along two axis orthogonal to the depth axis TNE . Similarly

to the partionning described in section 6.3.1.1, the radius of the patches rpatch is defined

by:

rpatch = rmodel +

√
2

2
. TNE (6.8)

with rmodel being the radius of the model as defined in section 6.3.1.1.

Using this sampling scheme and due to the completeness assumption (the top of the

whole structure is visible in the data), at least one patch is guaranteed to contain the

whole reconstructed structure. The recognition step then aims at finding this patch

by selecting the patch that resembles the model the most. Following the description

method presented in section 6.3.2.3, each patch is characterized in a rotation invariant

way using an ensemble of histograms computed on complementary circular patches.

Although multiple shapes can lead to the same description, the use of multiple circular

patches ensures the specificity of the description while computing the histogram over

the whole circular patch ensures rotation and small-noise invariance through the bining

process. Since the CAD model does not initially have any absolute depth, the same

depth alignment method as used in our SLAM method (see section 6.2.2.1, equation

6.1) is applied. Following the alignment of the depths of the model and the patch, the

Earth Mover’s Distance metric (Rubner et al. [2000]) is used to quantify their similarity

on each circular region. As illustrated in figure 6.14, N distances are then obtained

and concatenated in a vector. The euclidean norm of this vector is then chosen as the

similarity score. The candidate patch with the lowest score is finally selected as being

the best representation of the model in the scene.

6.3.2.5 Model matching

Once the best patch obtained, the CAD model is finely registered in the region of

recognition with a two-step registration method.

Due to the small size of the region, an exhaustive 4D (North,East,Depth, Y aw) is first

applied with structure Y aw (θ angle) varying in [0◦, 180◦] or [0◦, 360◦] angular intervals

depending on the symmetries of the object. The depth of the model is set following the

same method as described before (signed median matching described in section 6.2.2.1,



Chapter 6. Object recognition in underwater scenes using SONAR data 182

H
is

to
g

ra
m

s

distance

Stencil
(multiscale)

Model Measured
(field data patch)

Distance
vector

C
ir

cu
la

r 
a
re

a
s

Figure 6.14: Histogram-based model recognition method. Each field subdivision is
compared to the model using a histogram comparison for which we use Earth Mover’s
Distance (EMD). The distances are computed on a set of multiscale circular areas to
ensure rotation invariance. The norm of the distance vector of EMD distances [d1,...,dN ]

is used as a similarity score.

equation 6.1, defining ζ(δN ,δE)). The optimal registration (δ?N , δ
?
E , θ

?) is then selected as

the minimum euclidean distance between the depths maps of the transformed model

Zmodel and the field patch Zmap:

(δ?N , δ
?
E , θ

?) = arg min
δN ,δE ,θ

‖Zmodel(i, j, θ)− Zmap(i+ δN , j + δE) + ζ(δN ,δE)‖2 (6.9)

In order to account for possible offsets in the remaining two angular dimensions (Pitch

and Roll), a robust ICP-based method (Masuda et al. [1996]) discarding the furthest

points (outliers) is applied.

6.3.2.6 Implementation and optimizations

We implemented the 2D space model matching in C++ with the OpenCV library (Bradski

et al. [2000]). The input to the algorithm is the CAD model of the structures / objects

of interest, the 3D point cloud of the scene as well as the resolution of the elevation map
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∆NE , the width of circular regions, the depth resolution used for the histograms and the

sampling period TNE .

When a set of CAD models is available to describe the scene, the computational cost

can be reduced by optimizing the modelling sequence: the structures are in this case

detected in the scene sequentially and in decreasing size order, allowing the removal of

large areas of the field after their detection.

Since our recognition approach is based on the minimization of a similarity score,

estimating a lower bound to this score before completing the histogram comparison

enables to discard wrong solution at an earlier stage. Our similarity score being an

euclidean distance of a N-dimensional vector, the temporary distance given by computing

the distance on k elements (1 ≤ k ≤ N) naturally provides a lower bound to the

similarity distance. We therefore estimate the similarity of the patches at each step by

computing partial distances with increasing k numbers, aborting the comparison when

the distance appears larger than the current minimum distance found.

6.3.2.7 Experimental results on field data

We present here results of structure recognition on the 3D reconstruction of the field

of AIV trials in Fort William (see figure 6.8). The entire point cloud was converted

to an elevation and the method-recognition method is applied to the entire map. The

resolution of the elevation map was set to 8cm, the width of the circular patches set to

24cm, the depth resolution for the histogram bins was 1cm.

As illustrated in figure 6.15, the three CAD models (a,b,c) of the structures present on

the field are first converted to elevation maps (d,e,f). The recognition algorithm then

successfully finds the best patches (g,h,i) in the field. Following the detection of each

model, the two-step registration technique is applied. As shown in figure 6.16-a-c, the

4D matching based on the elevation maps provides a rough registration on a fixed grid

(8cm period in North and East and Yaw angles steps of 5◦) exhibiting small angular

and translation offsets. The ICP-based second registration step then corrects for the

remaining gaps as can be observed in figure 6.16-d-f.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15: Model-based recognition in 2D space field results. a-b-c) The CAD models
used as prior information for the object recognition step are converted to elevation maps
(d-e-f) to perform a structure recognition step on the full field, leading to the selection

of the three most similar patches representing the structures of interest (g-h-i).

Table 6.1 gathers distance metrics between the registered point cloud and their CAD

models, exhibiting an average 40% improvement in registration when using ICP with a

final average median error under 3cm.

Structure 1 Structure 2 Structure 3

Step 1 8.3 (8.6) 5.2 (7.5) 2.7 (4.1)

Step 2 2.4 (3.7) 4.1 (5.4) 1.8 (2.6)

Table 6.1: Unsigned median distances (and mean distances) in cm between the
reconstructed structures and their CAD models after each registration step.
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Figure 6.16: Two-step model registration. a-b-c) The 4D registration based on the
elevation map representation provides a first rough registration of the model (represented
in black) on a fixed 4D grid. d-e-f) The second registration step, based on ICP, provides

a full 6D registration.

6.3.2.8 Performance and limitations

The experimental results were obtained on a recent hardware configuration (Intel i7-

4700MQ processor with 16GB RAM). On this platform, the identification of the two first

structures was performed in 30sc at ∆NE = 8cm while the last and larger structure

(grillage) required up to 9mn. Similarly the model registration of each structure took

from 1 to 15mn. These durations depend on the size of the structure, the sampling

resolution and on the symmetry to define the angular range of the first matching step.

As illustrated in figure 6.17, multi-resolution tests showed the robustness of the detection

and matching performances at sampling resolutions ranging from 4 to 12cm while the

average computing time directly depends on the choice of the sampling period. During

our experiments, the choice of the number of histogram bins did not appear determinant.

Therefore and after further engineering, the choice of these parameters could be adapted

to the specific situation based on the available computing resources, the size of the field,

the size of the structures and the time constraints.
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Figure 6.17: Influence of the sampling period TNE on matching error (magenta) and
computing time (blue). The median distance between the model and the reconstruction
after the structure recognition and the first registration step appears to be limited by
the frame rate used during the survey (4cm sampling along track resolution). The

computing time naturally increases with higher sampling resolutions.

Although two pipelines were present on the field of trials, the method described here

only enabled to identify and match accurately the biggest one of the two (25cm radius

vs 10cm radius). This is due to the high eccentricity of the pipelines resulting in circular

patches mainly filled by seabed points. Therefore the percentage of points representing

the structure remains very low, providing a noisy description of the object. In the case

of a pipeline, a simple line detection algorithm applied to the elevation map of the field

would be more adapted to the description of this specific geometry.

6.3.3 Applications

In comparison to the field reconstruction presented in figure 6.8, applying a model-based

object recognition to the scene provides higher level, functional information on the

elements of interest. Obtaining a semantic interpretation is of great interest for assisting

the operation of AUV in unknown or partially unknown environments. In particular,

the knowledge of semantic information paves the way to higher level applications such

as landmark-based navigation, online world modelling, automated hazard detection or

autonomous manipulation.
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World modelling

Based on the recognition and registration of CAD models in the scene (both in 2D and

3D space), simple metrics can be employed to assess the fidelity of the model to the

reconstructed object. Knowing the accuracy of the observation system (sensor accuracy,

positioning and navigation systems), these metrics can then be used as an input to

decision on the most adapted model for the scene. As an example, the matching errors

presented in table 6.1 correspond to typical reconstruction error from SONAR data and

are coherent with centimetre level range accuracies of the sensors employed, making the

representation of these reconstructions by the models legitimate.

As a result, the 3D point cloud representation of the environment can be represented

by a simplified representation based on the CAD models of the objects of interest, the

remaining points representing natural features such as the seabed can then be replaced

by a smooth representation such as a Poisson surface (Kazhdan et al. [2006]). In order to

illustrate this, figure 6.18 presents two world models generated (b,c) generated at different

levels of details from the raw 3D point cloud (a). In comparison to the initial point

cloud (600MB), the first world model (figure 6.18-b) provides an accurate continuous

representation of similar size (500MB) while the second world model (figure 6.18-c)

exhibits a simplified representation, only requiring 5MB of storage space. In addition

to visual 3D representations, a simple graph representation can be generated by simply

representing the position of the objects of interest with potential connectivity between

these objects, providing simple summary on the inspection results.

Through the generation of a simplified, yet accurate representation of the world, a

high-level map of the world is obtained and can be integrated in both offline and online

processing. A concrete application of world modelling to a real field situation comes from

the difficulty to operate an AUV on old partially structured environments such as an oil

field. In this situation, not only the appearance of the structures change (due to corrosion

or marine growth as illustrated in figure 6.9) but the position of the objects can also differ

from previous observations due to water currents affecting mobile structures (such as riser

structures) and limited navigation and sensing accuracy during the previous observations.

More generally and due to the frequent use of human-controlled ROVs, little information

is in general available for the deployment of AUVs. As a consequence, the operation of

AUVs on such fields often relies on rough world representation featuring approximate

structure positions and orientations. Since the value of underwater structures and
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a)

b)

c)

Figure 6.18: Illustration of World model generation. The color-coded reconstructed
point cloud (6.97M points) of the full field (a) can be represented by the set of registered
CAD models and a surface representation of the seabed generated at various levels of

details: b) 5.95M points and 11.9M faces, c) 33k points and 65k faces.
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equipment is high, safety margins are commonly required in every operation in such

environment. In this situation, uncertainty on the prior model of the world makes

autonomous operation significantly more complicated. In this context, the ability to

generate an accurate world model that can be embedded on an resource-limited vehicle

is of great interest. The operation of an AUV on a real field can therefore be made

significantly safer by previously operating a complete 3D mapping of the field at a

safe distance (5m in our field experiment), followed by semantic annotation such as

demonstrated in our experiments.

Navigation and mission planning

Raw 3D point cloud representations of the environment primarily provide information

on space occupancy enabling navigation correction based on the features of the terrain,

path planning and collision avoidance. In comparison to this, semantic information such

as knowledge on the location of a known structure on a field enables landmark-based

relocalisation. Given a map of a field with a few landmarks (such as man-made structures)

and a description of these landmarks (CAD model), the inevitable drift generated by

dead-reckoning navigation can be compensated by the observation of these landmarks

with any sensing modality. In particular, we showed that the use of standard SONAR and

navigation sensors enabled the generation of a representation with enough information

for landmark detection and world model generation. A top inspection with a downward-

looking imaging SONAR provides sufficient information for structure matching, once the

model matched, the position and orientation of the model with respect to the vehicle

can be compared to the prior map enabling relocation of the vehicle with an accuracy

level only depending on the matching and reconstruction method (centimetre-level).

Similarly, knowledge on the position and orientation of each object of interest can be

used directly for optimized path planning. When inspecting an object, the path planning

can be optimized based on the shape of the object (Xi and Shu [1999]), the sensor

characteristics, the vehicle mobility and the requirements on the output data (Yang and

Luo [2004]).

High-level reasoning

Based on prior information, knowledge on the nature of an object can be used for

object-specific applications. In the case of our field experiments, the presence of two

oil-field structures make likely the presence of connectivity between them (pipeline or



Chapter 6. Object recognition in underwater scenes using SONAR data 190

cables). Specific tasks such as leak detection can then be carried around this structure.

Similarly manipulation on structure parts such as a valve can be planned based on the

identification of a structure and its orientation: the location and type of a specific part

can be deduced and used for model based manipulation (Hasegawa et al. [1992]).

6.4 Optical mapping from 3D information

Once a 3D representation of the world acquired from imaging SONAR data, the vi-

sualization of the environment is limited to information on 3D geometry of the scene

whereas in practice, visual observation of the real world by human being provides colour

information. In order to add optical information, we investigated the direct mapping of

video images (see figure 6.19-b) on the 3D representation acquired during the AIV trials

in Fort William (such as illustrated in figure 6.19-a).

(a) (b)

Figure 6.19: Association of a 3D representation (a) and video data (b) obtained
during AIV trials using a downward-looking M12 CATHX video camera.

In the case where a video camera and a depth sensor such as a SONAR are both present

on the same vehicle, it is possible to simultaneously acquire data for 3D reconstruction

of the scene as well as colour information. In this situation and when the position of the

two sensors on the vehicle are known, both informations can be directly co-registered.

When both datasets are acquired at the same time, the knowledge of sensors offsets

is sufficient to relate the data acquired with the two sensing modalities. When on

the contrary, a reconstruction acquired during a previous survey is used for reference

3D representation, the presence of both sensors on a vehicle make possible the spatial
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registration of the vehicle relatively to the previous representation by registering the

previous 3D reconstruction to the result of the new survey. In this situation, a registration

such as described in the SLAM method (see section 6.2.2.1) will be employed.

6.4.1 Video mapping on 3D reconstruction from SONAR

Once the 3D reconstruction of a structure (see figure 6.19-a) obtained from a series

of range readings (SONAR images), the video data is simply projected onto the 3D

reconstruction through the 3D raytracing of each pixel. The 3D point cloud is parsed

in an Octree, providing a structure enabling look-up requests and raytracing using

PCL implementation. The field dataset obtained while performing a top inspection of

the brick structure was used to evaluate the performance of video mapping on the 3D

reconstruction from BlueView MB2250 images. Video frames were captured at 2Hz

corresponding to a motion of approximately 20cm between each frame. As illustrated in

figure 6.21, the spatial resolution of the resulting representation is limited by the low

resolution of the initial SONAR reconstruction. In this situation, the high resolution of

the video data does not bring more spatial information but the colour information on

the point cloud could be used for semantic interpretation. Assuming that the colour of

the structure is known in advance and that it differs from the background colour, the

colour information could be used for segmenting the man-made objects from the natural

elements. In particular, the location of the structures could be detected in the colour

space directly and used as a prior for model matching initialization, avoiding a costly

search and matching on the point cloud of the whole field.

6.4.2 Model-based video mapping

As presented in section 6.3.2.7, the 3D reconstruction obtained from SONAR data exhibit

enough detail for accurate model-based object recognition and model registration. Once

registered to the scene, the CAD model provides reference 3D information at a much

higher resolution than the SONAR 3D reconstruction. We therefore applied the video

projection of the same sequence on the registered brick model (see registered model on

figure 6.16-d) by discretizing the CAD model in a 1cm resolution octree. As visible in

figure 6.21-a, the resulting representation exhibits a much higher level of details than the

SONAR based coloured point cloud presented in figure 6.21. Due to small scale navigation
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Figure 6.20: Illustration of a video projection on a 3D reconstruction from SONAR
data. The spatial resolution is limited by the resolution of the SONAR reconstruction.

drift, a few gaps discontinuities appear (see long edge of the top of the structure). A

second test sequence acquired while observing the same structure at slightly shorter

range was mapped on the model (see figure 6.21-b). Due to the limited resolution of the

Octree and the limitation of the raytracing algorithm in detecting collisions, a few points

appear to be raytraced behind the front surface of the object, as visible at the bottom

of the structure. This limitation could be overcome by raytracing directly onto the 3D

surface representation (mesh) using a different raytracing implementation.

6.4.3 Discussion

While the spatial resolution of the result depends directly on the navigation accuracy

and the initial 3D representation, the experiments made with the CAD model as refer-

ence 3D information showed the possibility of obtaining a high resolution coloured 3D

representation of an underwater structure using two different sensing modalities. In this

situation, the small navigation drift present in the dataset becomes visible but could
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(a) (b)

Figure 6.21: Illustration of a video projection on a registered CAD model. The top of
the structure exhibits a high level of visual features. Although unobserved, the bottom
of the structure features sparse lines due to the limited resolution of the representation

used for the CAD model.

be addressed by previously measuring the camera calibration matrix and co-registering

the images (bundle-adjustment), effectively taking advantage visual features to reduce

navigation drift when inspecting structures.

In situations where no model is available or when the geometry of the structure is

expected to be significantly different from the initial model (presence of marine growth,

corrosion, damaged structure, etc.), the resulting point cloud will be of low interest for

direct visual inspection by a human operator but could still be used as an additional

input for semantic labelling based on the colour contrast between man-made structures

and typical backgrounds such as rocky or sandy seabeds.

On the contrary, when a model of the observed object is available, a low-resolution sensing

modality such as a SONAR or a low resolution video camera can be used to perform object

recognition and model registration. In situations where the model provides a realistic

representation of the object at the time of inspection, high-resolution coloured renderings

can be obtained using direct video projection. Additionally, model-based experiments

showed the potential of using a high-resolution sensing modality such as a LASER,

providing accurate 3D colour representations. Whether based on an accurate CAD

model or using a high resolution sensor, video projection enables direct visual inspection

of coloured 3D objects by a human operator, avoiding the need for frame-by-frame
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inspection as commonly done. A multi-modal dataset acquired during a multi-hours

field inspection could therefore be summarized into a single 3D coloured representation,

considerably reducing the amount of time required for inspection by a human operator.

This technique has direct applications to maintenance of man-made underwater structures

such as oil field rigs.

These results points to interesting directions of research such as change detection where

multiple reconstructions taken at different times could be compared both in terms of

geometry and in terms of colour to detect significant changes in shape and appearance,

with direct applications such as automated fault detection or mine detections.
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6.5 Conclusions

In this chapter, we presented a few applications of 3D reconstruction from SONAR

data, enabling semantic mapping of large areas with an AUV equipped of a standard 2D

imaging SONAR.

We first extended the 3D reconstruction techniques to the mapping of large areas through

a registration process enabling the mitigation of navigation drift. We demonstrated

the benefits of this method on a medium-size field of which a large 3D point cloud

representation was obtained, exhibiting better geometrical consistency in comparison to

the raw reconstruction. The resulting reconstruction exhibited enough detail for being

an input to navigation, path planning methods as well as semantic labelling, therefore

enabling more autonomy in SONAR-equipped vehicles.

We demonstrated the possibility to obtain a semantic interpretation of the reconstructed

scene through the knowledge of rough CAD model representations and two object

recognition and matching techniques. Experimental results with the first method,

operating matching in the 3D space, showed the recognition of simple shapes in presence

of marine growth with direct applications to pipeline tracking. While the first method was

limited to recognition in small scenes due to a computationally intensive implementation,

the second method proposed to perform model-based structure recognition in large scenes

through the use of a lightweight elevation map representation. Using this technique,

experimental results on data acquired by an AUV showed the capacity to quickly identify

each structure present in the scene and locate them in 6D with a centimetre-level accuracy,

comparable to the SONAR sensor and local navigation accuracies.

Once the structures identified and located, we demonstrated the interest of semantic

labelling for the generation of accurate 3D models of the world with semantic meaning.

In comparison with traditional point clouds, semantic world models provide a lightweight

and meaningful representation with applications to model-based relocalisation, optimized

object inspection through model-based path planning as well as object-specific tasks such

as manipulation.

We finally presented experimental results of video mapping on the 3D representations

acquired of the structures of interest on the field of trials. Through this experiment, we

showed the interest of performing model-based video mapping with results enabling direct
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visual inspection by an operator. While restrained to situations where an accurate model

of the object is available, these results suggested that the use of a high resolution sensing

modality such as a laser scanner would provide similar coloured 3D representations

enabling detailed visual inspection as well as more automated assessment process such

as change detection between multiple observations of important parts or structures such

as oil rigs or military equipments.



Conclusion and future work

”Science may set limits to knowledge,

but should not set limits to

imagination.”

Bertrand Russell

6.6 Summary

In this thesis, we pushed the state-of-the-art of 3D semantic mapping in underwater

environments. Due to the limitations of optical sensing in water, we chose to focus on

the extraction of 3D information using acoustic sensing.

In chapter 2, we modelled mathematically the emission, propagation and observation

process of an acoustic wave in the water leading to a generic model for a single acoustic

transducer. We reviewed the different types of SONAR sensors and highlighted the

interest in using 2D imaging SONARs providing large footprint, short to long range

sensing capability in a contained size, enabling their integration in the smallest underwater

platforms. We provided a mathematical model for 2D imaging SONAR measurements,

highlighting a dependency on the angle of insonification on the surface of the object

resulting in intensities that depend on the shape of the object as well as the position

of observation relatively to the object. In particular, we present the aperture problem

inherent to the integration along the vertical aperture, resulting in the loss of information

along one direction. Through the description of the imaging model and the resulting

aperture problem, we show the ill-posed nature of the 3D reconstruction problem from

2D samples and justify the impossibility to recover the initial 3D representation from a

single 2D image without additional information. We presented a 2D SONAR simulation

197
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framework, integrated in UWSim simulation environment enabling the simulation of

realistic scenarios such as the inspection of an oil rig. Through the use of a raytracing

method and a configurable noise model, our SONAR simulation framework provided

images comparable to real SONAR images such as BlueView multibeam sensors.

Once the 3D reconstruction problem introduced, we provided a review in chapter 3 on

the state-of-the-art in 3D reconstruction from SONAR data. While the small footprint

of pencil-beam SONARs provide low uncertainty along the vertical aperture, this comes

at the cost of a low coverage or conversely the need for slower inspections (high sampling

rate). When using wide-aperture multibeam sensors, the 3D reconstruction of objects

has been explored through multiple methods. Shadow-based reconstructions and more

generally, shape from shading methods take advantage of the assumed shading model

and match it to the data either by segmentation of the image in different classes (shadow,

background, object) or by an optimization. In each case, strong assumptions on the

background are taken (presence of a flat seabed to observe the shadow). Non-linear

methods have been explored to reconstruct the object by iteratively bounding its volume

but required a large number of observations taken all around the object. Feature-based

methods have been explored with little success, providing very sparse reconstructions

and requiring accurate geometrical calibration. 3D reconstruction based on the prior

knowledge of a CAD model has been explored but remain of limited usage in unknown or

partially-unknown environments. The use of multiple sensors, including the combination

of optical and acoustic sensing modalities showed limitations in the calibration process

due to differences in resolution and sensor noise. 3D reconstruction from acoustic stereo

imaging has been investigated but exhibited reconstructions of limited accuracy. 3D

SONAR sensors have been successfully developed, showing good reconstructions results

but to this date they remain bulky and expensive, prohibiting their use on small to

medium-size underwater platforms.

Following the review of 3D reconstruction methods, we presented in chapter 4 our first

3D reconstruction method based on a non-linear formulation enabling the reconstruction

through the observation of empty spaces. In comparison to state-of-the-art methods, this

method does not operate on shadow information hence does not require the objects to be

placed on a flat surface such as a seabed. In addition to this, the method applies to sensors

of any vertical aperture and no strong constraint is required on the sampling scheme.

This so-called space carving technique enables an online reconstruction of the scene by
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maintaining a temporary map and iteratively adding new observations. An occlusion

resolution post-processing is then applied to provide the final map by retaining only the

observed part of the scene (front surface of the objects). Through both a qualitative

and quantitative analysis, we demonstrated the performance of this method on both

simulated and real data with centimetre-level 3D resolution with both pencil-beam and

wide-beam sensors. Using a sensor noise modelling step in open water, resilience to

noise is achieved at diverse SNR levels, providing constant reconstruction error and

outlier rate (5%) but a decreasing coverage (down to 10% at a SNR of 5dB). Importantly,

this reconstruction approach requires a low computational cost (500ms per update on a

single-threaded configuration) but required up to 16 Gb in the current implementation

and for a large datasets (1000 samples).

Inspired by SAS techniques, we presented in chapter 5 a new formulation of the 3D

reconstruction problem from a set of samples acquired along a straight line at regular

sampling steps. In comparison to state-the-art reconstruction methods and similarly to

the carving method, the deconvolution approach does not require large rotations around

the object or shadow information. Based on this sampling assumption, we reformulated

the reconstruction problem as a spatially-varying blind deconvolution. In order to solve

this notoriously complicated problem, we adopted a model-to-data matching approach and

a non-negative least square optimization implementation. We investigated the interest of

adding regularization to the optimization process. We presented reconstruction results on

simulated and real data and performed a quantitative analysis exhibiting an increase in

surface coverage when using the deconvolution approach over the space carving method.

In spite of the sampling constraint, field experiments demonstrated the ability to use the

deconvolution method in conditions where the sampling scheme is not strictly followed

with equivalent or better results than the space carving method. The interest of added

regularization was exhibited on real data as well as limitations on the choice of the

regularization parameter and unneeded sparsity promotion. A comparative study of our

two reconstruction methods was presented highlighting the practical differences in usage:

the space carving method offers unconstrained sampling scheme and sample per sample

reconstruction while the deconvolution formulation required stricter sampling and the

provision of all the samples at once (batch processing). While leading to comparable

reconstruction errors, the two methods differ on the surface coverage (up to twice as

large) yielded and the outliers structure. Practical differences were also shown due to
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the low computing resources requirements of the deconvolution approach (typically 2Gb)

but with a lower scalibility (large number of samples require long processing time due to

the complexity of large optimization problems). We finally highlighted the interest in

using the simulation environment as a pre-mission tool to optimize the sensing strategy

and choose the most adequate sensor relatively to a specific situation. In particular, our

quantitative analysis exhibited the interest in using commonly embedded wide-aperture

SONARs to provide 3D reconstructions with higher surface coverage than pencil-beam

sensors (typically 50% increase between 1◦ and 10◦ sensors), traditionally added on the

vehicle for specific applications.

The results presented in chapter 4 and 5 exhibiting enough detail for visual recognition

of the objects, we presented in chapter 6 our efforts toward the extraction of semantic

information from the reconstruction of a 3D underwater scene. We first extended our

3D reconstruction work to the mapping of large area by mitigating the navigation drift

observed after a few tens metres motion by applying a registration of reconstructed

swathes. We demonstrated this SLAM technique on a medium-size field (50 × 34 metres)

and exhibited the improvement in geometrical accuracy on a few visual landmarks

(oil-field structures) present on the field in spite of significant navigation drift (38cm in

North and 18cm in East). We presented an inital experimental approach to structure

recognition in SONAR point clouds using direct CAD model matching (ICP and Go-ICP)

and exhibited their prohibitive computational cost due to the high dimensionality of the

problem (20mn matching time for a small scene). Based on the full field reconstruction

operated through the bundle-adjustment technique, we demonstrated the first model-

based underwater semantic mapping enabling the recognition and localisation of three

structures of interest present on the field with a processing that requires a few minutes

only. The median registration error obtained over three structures was under 3cm and

included reconstruction and measurement uncertainty as well as low-scale navigation

drift. Based on this structure recognition, we showed that lightweight yet geometrically

accurate and semantically meaningful maps could be generated with a representation

memory footprint reducing from 600MB to 5MB. This world modelling method enables

to provide a first representation of unknown environments, frequently encountered when

operating in offshore environments such as oil rigs. In addition to this, these semantic

maps are of use for both offline mission planning and online navigation and path planning.

Taking advantage of the accurate registration of the models of the structure, we finally
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showed the potential of video mapping on CAD model to obtain dense coloured 3D

representations at much higher resolution (cm-level) than the initial 3D representation

obtained from SONAR data (3cm resolution).

6.7 Future work

In chapter 2, we presented our 2D SONAR simulation results. Due to their intensive

computing resource usage, multipath returns were not included in our simulation. As

a result the simulation of objects in closed environments such as a water tank appears

unrealistic. In addition to this, the beamforming process was not modelled as such.

As a result a visible difference in sharpness appears between the simulated data and

typical real images. In general the modelling of physical process is always limited to

a certain accuracy and needs to be traded off with resource usage. Recently, machine

learning techniques (Shrivastava et al. [2016]) have shown their interest for bridging the

gap between mathematical models and real data, enabling the generation of sensor or

environment-specific realistic data in a simulated environment. We believe that such

techniques could be applied to our simulation framework.

Due to the nature of the space carving method presented in chapter 3, the quality of

the reconstruction is sensitive to the accuracy of the positioning: the observation of an

empty space wrongly located due to navigation inaccuracy results in wrongly deleting 3D

occupied points. In this situation, the integration of an estimate of navigation accuracy

such as typically provided by Kalman filters could prevent this phenomenon. Similarly,

adding regularity constraints when performing the occlusion resolution could prevent the

generation of holes in surfaces observed at grazing angle. Finally, the carving algorithm

being effectively a volume bounding technique could rely on a volume representation

rather than a 3D point grid. Direct meshes could potentially be generated instead of

using suboptimal 3D grids.

The deconvolution method presented in chapter 4 is limited to rectilinear and uniform

sampling along the direction of uncertainty. A formulation allowing more general motions

would benefit to its use on an AUV with trajectories constrained by the environment.

While the results of our SLAM implementation presented in chapter 5 exhibited good

accuracy, a comparison to USBL localisation on a few scenario would enable to assess the
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robustness of the technique. In particular, a study of the minimum overlap between each

consecutive swathes and the minimum amount of features on the seabed (relatively to

the sensor accuracy) would be beneficial to a further integration on an operational AUV.

Based on our first semantic mapping results on the field of trials presented in chapter 5,

there is an interest in expanding the object recognition to a wider range of submerged

objects. Oil and gas offshore field typically feature tenths of different structures, mine

countermeasure operations aim at detecting mines of various shapes. In this situation,

the ability to operate recognition from a large set of models is of direct interest for

automated classification. In addition to variation in shapes, underwater structures can

be found in various sizes: pipelines, cables as well as underwater mines need to be

detected in a scale invariant way. There is therefore an interest to extend our work to

the scale-invariant recognition of objects from a large catalogue of models. In addition

to larger scale recognition, the recognition of structure parts such as valves and switches

would enable autonomous manipulation and detailed inspection. Taking advantage of

accurate sensing modalities such as LIDARs would therefore enable a multi-level semantic

mapping. In each of these situations, the online semantic labelling enables online or

offline automated decision and manipulation, reducing considerably both the workload

and stress of human operators as well as operation time. Building up on our first results,

we therefore plan to extend our research by the use of different sensing modalities and a

wider range of 3D models.

In chapter 5 we presented our initial results on model-based video mapping. Exploring

the video mapping possibilities on a finer 3D representation such as obtained from

underwater LIDARs is of interest to provide photorealistic 3D representation for visual

inspection and recognition of underwater structures by human operators. Conversely, the

use of both geometrical features and video information could be explored for correcting

the local navigation drift occurring when inspecting a structure.



Examples of commercial 2D

SONARs specifications
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[Specifications of typical 2D wide-aperture SONARs]
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Table 2: Specifications of typical 2D wide-aperture SONARs



Model-based field structure 3D

recognition and matching

Using the method described in section 6.3.1, the three CAD models were used as an input

to the algorithm as well as the field reconstruction of Fort William AIV trials presented

in section 6.2.2.2-figure 6.8. After downsampling the input data at 3cm resolution,

the ICP-based detection respectively took 29mn20sc for the box structure and 2h for

the grillage structure with successful registration. In case of the brick structure, the

ICP-base registration did not converge to the position of the brick structure, rather the

box structure due to a local minimum.
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Figure 22: Structure detection on FW AIV trials field reconstruction using ICP-based
recognition algorithm.
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Dippé, M. A. and Wold, E. H. (1985). Antialiasing through stochastic sampling. ACM

Siggraph Computer Graphics, 19(3):69–78.

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally:

Efficient and robust 3d object recognition. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 998–1005. Ieee.
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