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ABSTRACT 

 
The study presented in this thesis addresses a critical shortfall of Digital Core Analysis 

(DCA) in the petro-physical characterisation of natural rock samples that exhibit complex 

and spatially non-separable multi-scale arrangements of mineral grains of variable sizes 

and chemical compositions. Since those multi-scale arrangements define non-stationary 

(heterogeneous) grain-pore distributions, they must be characterised on sufficiently large 

sample volumes for sample reconstruction at pore and grain scales, to simulate the fluid 

flow processes for predicting petro-physical properties. Such characterisations can only 

be done in a multi-stage manner at multi-scales and multi-locations on a sample, due to 

the mutual constraints of the imaging field of view and resolution. Typical multi-scale 

approaches fuse images from various sources based on shared features (e.g. 

disproportionately large grains) as cross-scale references, but have limited application 

when the shared features are less obvious (non-separable) across multi-scale images. For 

common cross-lamination in sandstone rocks that exhibit hierarchical structures 

controlling grain-pore distribution and are demarcated by physical features such as inter-

/intra-lamina (set) bounding surfaces, a multi-scale DCA workflow would be ideally 

suited for the petro-physical characterisation but would be challenging to apply when the 

visibility of cross-scale shared features (bounding surfaces) is weak. 

This work argues that the workflow needs to have the following elements: 1) a multi-

scale spatial sampling/characterisation procedure; 2) a way to maintain correct cross-scale 

spatial correlation among individual sampled datasets through shared features, as 

reference to the same sample, and 3) a stochastic reconstruction procedure that honours 

the multiscale structures identified in 1) and correlated in 2), and reconstructs the pore-

grain-scale non-stationarity they expressed across the correlated datasets. The work 

presented in this thesis focuses on cross-lamination in sandstone rocks to identify 

challenges arising to multi-scale characterisation and to develop a suitable hierarchical 

DCA workflow. For this purpose, an outcrop tight Aeolian cross-laminated sandstone 

sample of 6x6x6 cm3 that includes representative hierarchical structures was chosen.  

The key achievements are: 1) a suitable imaging-based exploratory and recursive 

sampling and characterisation procedure to maximise correlation between datasets.  

Analysis on the resultant multi-scale datasets showed that sharp and gradual grain 

compositions change between adjacent laminasets (inter-laminaset) and laminae (intra-

laminaset), respectively, to form thin but finite-thickness bounding surfaces, which are 



ideally suited as shared physical features.  However, challenges are identified including 

a) the inter-laminaset bounding surfaces are obscured by “artefacts” and cannot be 

enhanced by existing techniques and b) intra-laminaset bounding surfaces are hard to be 

even observed because of gradual composition variation. 2) To identify the two types of 

bounding surfaces as shared features to help registration, two new techniques were 

developed by exploring geological knowledge on structural morphology and mineral 

compositions, respectively, and were shown to be able to successfully identify and extract 

shared inter- and intra-laminaset bounding surfaces. 3) For a pair of realisations of 

sampled inter- and intra-laminaset bounding surfaces and estimated grain-pore 

distribution information, a non-stationary index map of grain texture (size and 

orientation) on the whole sample domain can be constructed to define the mean of affinity 

transformations for stochastically populating stationary (homogeneous) grain and pore 

structures by a reconstruction method which is implemented based on Multiple Points 

Statistics (MPS). One reconstructed pore-grain model was obtained in this work and 

contains 11900x11900x11900 voxels at a voxel resolution of 4 µm. This model was 

verified to capture key pore-grain variations associated with the characterised lamination 

structures. 
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1 

 INTRODUCTION 

Digital Core Analysis (DCA) (or Digital Rock Physics (DRP)) refers generally in the 

literature to an approach or a technology for analysing and predicting the physical 

properties of rock samples; it applies a chain of modelling operations on a given sample 

from sample imaging, image-based characterisation, to tomographic reconstruction, to be 

followed by high-fidelity numerical simulations of physicochemical processes on the 

reconstructed models.  The simulated physical properties of rocks could be applied to a 

wider scientific community, for example upscaling into field-scale reservoir simulation 

to assist hydrocarbon recovery and CO2 storage in the petroleum industry (Blunt et al., 

2013) or monitoring and predicting water resources and pollution in environmental 

science ((Schnaar and Brusseau, 2006)). DCA possesses many advantages over 

traditional laboratory-based testing techniques; it is low-cost, efficient, repeatable and 

capable of performing numerical experiments under conditions that cannot be achieved 

in lab-based testing to answer ‘what-if’ questions and apply the answers to wider research 

communities to predict production or prevent hazards in different scenarios.  In past 

decades, DCA has evolved to become an indispensable tool, especially to study the 

controls exerted by pore structures of a sample on fluid flow and to predict sample flow 

properties for sub-surface engineering such as greenhouse sequestration and geo-energy 

resource extraction (see Blunt et al. (2013) for a review).  

However, the use of DCA in fluid flow study is limited primarily to small rock samples 

with homogeneous pore structures (i.e. properties like porosity and pore size), referred to 

as stationary in this work by having a constant mean and covariance between any two 

points of the same distance within the sampled domain. This is because a single high-

resolution imaging acquisition on such a sample is adequate to construct a representative 

stationary pore-scale model accurately enough to model the essence of the flow. For 

conventional clastic reservoir rocks with an average pore diameter of tens of microns, the 

best X-ray tomographic imaging instrument can resolve pores of that average size but 

only on a sample whose volume is about 2x2x2 cm3, due to the mutual constraint between 

Field of View (FoV) and the image resolution. Progress has been made to resolve smaller 

pores below that average by utilising additional higher resolution images. This leads to a 

multiscale DCA approach in which different imaging techniques are applied on the same 

or different FoVs of the same sample at different resolutions; those datasets must be 

spatially correlated with one another to reconstruct models for that sample for numerical 
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simulation of fluid flow at the pore scale. Multiscale DCA has been applied for the multi-

scale characterisation of carbonate rock samples, using disproportionally large individual 

grains and/or pores as shared references for registering (spatially correlating two or more 

datasets in one coordinate system) coarse and fine datasets where the maximum-to-

minimum resolution ratio of any two datasets to be integrated is about 10. Within such a 

scale range, the smallest intra-grain-pore properties are assumed to be stationary, and 

stochastically “decorated” into resolved larger inter-grain-pore structures. Sok et al. 

(2010) characterised a carbonate rock sample in this way by integrating different imaging 

techniques, including micro X-ray computed tomography (XRT), backscattered SEM 

(BSEM), and focused ion beam SEM (FIB-SEM). This approach, however, has not been 

applied to geologically complex samples. A cross-lamination in sandstones may contain 

non-separable hierarchical structures at an overall length scale of more than tens of cm, 

but they constrain the non-stationarity (the antonym of defined stationarity, representing 

heterogeneous properties) of grain-pore properties distributions where grains size 

variations may be relatively gentle, ranging from a few tens to hundreds of microns. This 

makes it impossible to find disproportionally large grains or pores as references for 

registration. But how to expand DCA to characterise such large structures and associated 

non-stationarity has not be considered, except for a few very simple cases (e.g. planar 

lamination, studied by (McDougall and Sorbie, 1993)). Therefore, the work of this thesis 

is designed to investigate and develop an appropriate approach to expand DCA for generic 

cross-lamination in sandstones.       

In sandstones, the cross-lamination is the most commonly observable smallest structure. 

It is composed of a sequence of layers of sand-rich sediments that contains a variable 

proportion of silts and clays in a hierarchical manner. Each layer is about millimetres to 

centimetres thick and is called a lamina. Due to the cyclic nature of deposition and 

transportation, cyclic grain texture (e.g. size, orientation and shape) variation, referred to 

as grading, appears in each lamina and a lamina typically belongs to a conformable set of 

the successive laminae, referred to as a laminaset. Each laminaset has thickness varying 

from centimetres to decimetres, and in it, each lamina may appear to be parallel to the 

overall stratification plane, referred to as planar laminae, or locally at an angle 

(intersection angle) to that plane, referred to as curved laminae. The curved lamina is 

often due to changes in the topography of the depositional surface, referred to as the 

bedform. In a cross-lamination, the separation between two adjacent laminasets or 
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laminae is marked by a physical inter-laminaset bounding surface (inter-LBS) or intra-

laminaset bounding surface (intra-LBS) of a finite thickness, respectively. An inter-LBS 

is often associated with a dramatic geological event of erosion, nondeposition, or abrupt 

change in lithology, and therefore, is often associated with a rather large contrast in grain 

texture and composition between the inter-LBS and respective main bodies it separates. 

That contrast is likely to be enhanced, as it induces preferential change to inter-LBS grain-

pore structures and grain-pore surface properties in subsequent diagenetic processes, 

making it possible to identify an inter-LBS by a suitable imaging means, with high 

certainty. On the other hand, cyclic and gradual transitions result in only a subtle contrast 

in grain texture and composition between the laminae an intra-LBS separates; this makes 

it difficult to observe an intra-LBS by any imaging means, let alone to measure it with 

any high certainty (Ghous et al., 2005).      

The hierarchical depositional structures in cross-lamination typify the spatial non-

stationary variation of the topology and geometry of the pore space and pore surface 

properties, and therefore control pore-scale fluid flow. For a representative cross-

lamination sample of tens of centimetres in dimension, laboratory experiments enable the 

manifestation of pore-scale multiple fluids flows to be observed as heterogeneous and 

anisotropic flow fields at the sample scale and thus the volume fraction of different phases 

can be estimated (Huang et al., 1995). Because of the hierarchical nature of cross-

lamination, it is important to understand its collective controls on single and multiphase 

fluid flow in order to gain knowledge about the relative importance of different geological 

features at respective scales in a hierarchy. Such understanding is needed to design a field 

sampling scheme and to make a prediction of flow properties of samples using the most 

appropriate approaches (Corbett et al., 1992, Ringrose et al., 1993).  

DCA has been employed to establish links between the observed flow patterns and the 

underlying pore structures; however, only for a planar lamination or a few laminae on 

small samples so far (McDougall and Sorbie, 1993, Ghous et al., 2005). The challenges 

that cross-lamination poses to DCA arise from the complexity of its internal hierarchical 

structures and gradual transition in grain properties across its sub-structures. These two 

factors mean that the smallest substructures, laminae, in a cross-lamination, are not 

distinguishable from one another at pore scale, and may not be separated reliably at the 

lamina scale either. Therefore, a cross-lamination needs to be treated as a non-separable 

representative elementary volume (REV) to capture the integrity of its pore space. To 
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reconstruct such a REV, one may apply the concept of the “geo-pseudo” approach that 

was originally devised for top-down sampling and characterisation of complex cross-

bedding and modelling of fluid flow behaviours (Corbett et al., 1992; Ringrose et al., 

1996).  The concept of the “geo-pseudo” approach was adopted to develope a top-down 

exploratory and recursive hierarchical sampling scheme by considering problems of 

“where, at what scale and how many samples should be taken” in order to capture spatial 

arrangements. This scheme utilises industrial X-ray computerised tomography (XCT), 

scanning electron microscopy (SEM) and micro-XCT to capture inter- and intra-

laminaset structures and inter- and intra-lamina lithology texture (i.e. grain texture + 

composition) variation, respectively, which together control non-stationary spatial 

distribution of grains and pores in terms of their properties for the sample, while the latter 

also captures local representative stationary (homogeneous) grain-pore distributions. 

The overall objective of this thesis is to expand the multiscale DCA on representative 

cross-lamination by developing a suitable hierarchical DCA workflow that incorporates 

the “geo-pseudo” concept and enabling techniques for reconstructing cross-laminated 

samples at pore-grain scales. It is argued that, given the hierarchical nature of cross-

lamination, a suitable hierarchical DCA workflow needs to have the following sequence 

of elements: 1) a multi-scale spatial sampling and characterisation scheme; 2) a 

mechanism to register individual datasets that are obtained by sampling through identified 

shared features; and 3) a stochastic reconstruction procedure that honours the multiscale 

structures identified in 1) and correlated in 2), and the pore-grain-scale non-stationarity 

they express.  

A suitable imaging-based sampling and characterisation scheme needs to ensure that the 

key structural characteristics, which express the non-stationarity of pores and grains, can 

be estimated on individual sub-samples, in a manner consistent with their spatial 

relationships at localities and scales appropriate to each structure, reliably, from a number 

of sub-samples on each structure. However, to characterise spatially correlated 

distributions among datasets yielded through sampling, a suitable mechanism must be 

established to register them onto the same coordinates, to ensure correctly cross-scale 

spatial correlation. Shared physical references for any pair of datasets are needed for this 

purpose. The best candidates are inter-LBS and intra-LBS, and therefore the sampling 

scheme must be designed so that some LBSs can be revealed and identified in all datasets. 

With spatially correlated datasets, a procedure is needed to ‘fuse’ derived spatial 
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information for pore-grain-scale reconstruction of a sample. This procedure must deal 

with the local stationarity, together with consideration of the randomness and global non-

stationarity of pore and grain distributions associated with hierarchical structures. The 

procedure must be implemented for parallel reconstruction, given the sheer size of the 

reconstruction domain. Clearly, the interrelation among the three elements means that any 

solution to address one issue that exists in one element influences the options available to 

address another.  

For a cross-laminated sample, key research questions/issues related to each of the 

elements in a workflow may be identified as follows: 

Sub-sampling and characterisation  

 What hierarchical structures of cross-lamination are observable? and how do they 

spatially relate to one another at corresponding scales? and how could they be 

explored consistently? The geology of cross-lamination determines what 

structures can exist but does not guarantee that they are observable, collectively, 

by imaging techniques. This means an exploratory analysis is always a necessary 

component of this workflow, at each sub-sampling scale. Based on the geo-pseodo 

concept, a top-down exploratory and recursive sampling approach is the most 

appropriate because: 1) a larger structure is likely to influence the fluid flow more 

strongly than the smaller one does and to be observed with a higher level of 

certainty; 2) the challenge in identifying non-separable structure and 

representative subsample volume could be decreased by employing “where, what 

scale and how many” questions at each sub-sampling scale; and 3) typical 

sampling approaches like those of Sok et al. (2010) or De Boever et al. (2015), 

where the sampling was designed without exploratory analysis and recursively 

collecting information, have limited application in studying complex cross-

lamination with non-separable hierarchical structures.           

 What parameters are appropriate and geologically meaningful to describe the 

structures individually and collectively, and how may they be best estimated using 

what imaging techniques? The geologists have identified appropriate parameters 

in the geological context and the real question of concern here is to come up with 

a design of image acquisition and characterisation to maximise the ability to 

estimate them by the most cost-effective means, reliably and robustly.  
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 What are the geologically meaningful characteristics shared across acquired 

images that are useful as spatial references for registration? Identifying such 

characteristics at the right scales is the critical requirement for a multiscale DCA. 

 What would be the most appropriate scheme to carry out image acquisition so that 

a sample of concern can be subsequently characterised sufficiently on datasets to 

provide quantitative information about that sample? 

Identification of shared features and image registration  

 Does any geological feature express itself in such way across image datasets that 

it can be observed and extracted with high confidence at a comparable image 

resolution? As will be reviewed in Chapter 2 of this thesis, inter-LBSs and/or 

intra-LBSs are the best candidates with the most expressive grain properties being 

not the grain texture, as in the case of vuggy carbonate rocks (Sok et al., 2010), 

but the grain composition.  

 Does any existing enhancement and extraction technique apply well on all 

datasets? And if not, how may new techniques be devised by maximising 

compositional information in the datasets that are consistent with geological 

knowledge about LBSs, while accounting for uncertainty? These questions arise 

because the compositional expression of an inter-LBS or intra-LBS would differ 

in datasets acquired by different imaging techniques at different FoVs, resolution 

and locations, and is thus subject to variable degrees of uncertainty.       

Stochastic Pore-grain reconstruction  

Supposing all the necessary datasets have been registered in the same coordinate system 

and been characterised individually and collectively, the following questions need to be 

considered for stochastic reconstruction: 

 How could grain-pore non-stationarity that is expressed by the spatial 

relationships of structures be represented and modelled in stochastic 

reconstruction procedures? Conceptually, the non-stationarity may be represented 

as a volumetric index map on the sample domain, where each index links to a set 

of parameters that define the grain-pore non-stationarity at a point in space with 

respect to a local stationary distribution. For the cross-lamination of concern in 

this work, such an index map may be constructed from the characterisations of 

sample global structures and local pore-grain distributions, in accordance with 
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geological knowledge. Note that an index map can only be considered at best as 

a realisation of unknown truth with variable degrees of uncertainty associated.       

 What geostatistical modelling techniques and procedures are suitable for 

reconstruction? As will be reviewed in Chapter 2, not all stochastic reconstruction 

techniques are designed to handle an index map such as described above, while 

some of them can do so, to some degree.  

 Given a suitable procedure, how can it be implemented to perform reconstruction 

efficiently? For the sheer size of the targeted model, reconstruction needs to be 

conducted by parallel processing.       

What issues remain as obstacles to such tasks and what technique needs to be developed 

are all due to be answered in the review.    

The work of this thesis is designed to address research questions and key challenges and 

to develop a generic multiscale DCA workflow. By doing so, this work develops 1) a top-

down sampling scheme based on the key concept of “geo-pseudo” to address non-

separable hierarchical structures of lamination; 2) enabling techniques to reveal shared 

features from multi-scale images for registration, and 3) a stochastic procedure to 

reconstruct the non-stationarity associated with cross-laminated samples at pore scales. 

The workflow being developed ensures that structure-constrained grain-pore variations 

of a sample can be captured adequately and consistently by hierarchical sub-sampling for 

multiscale correlative characterisation and pore-scale stochastic reconstruction of that 

sample. To meet the objective and to demonstrate the workflow, a tight aeolian cross-

laminated sandstone sample is used throughout this work. A preliminary exploratory 

analysis on this sample, to be given in Chapter 3, confirms that the sample contains a 

mixture of hierarchical structures of curved or planar laminasets, lamina and inter- and 

intra-lamina grading, and is large enough to be considered as a representative volume of 

cross-lamination.  

The thesis is organised as follows.  

Chapter 1, the present chapter, has outlined the objective of this thesis work and its 

importance.    

Chapter 2 presents a literature review into the background in the subject fields of this 

research. It covers the following aspects:  
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1) The geometric, topological and topographic characteristics of geological hierarchical 

structures, with respect to laminasets, laminae in a laminaset and grain grading in and 

across laminae, in typical wind ripple (Aeolian) cross-lamination. Parameters that 

geologists use to measure the characteristics of individual structures and the relationships 

between structures, in relation to the bedform, paleo-flow direction, sedimentary direction 

and other factors, are summarised.  Characteristic lithology texture variations prior to 

diagenesis are reviewed, along with significant changes to them during diagenesis. 

Potential issues that may arise in identification of inter-LBSs and intra-LBS are 

considered as: a) inter-LBSs may be distracted by unconnected cementation, a mixture of 

different minerals that may appear similar on images, and erosion and bioturbation b) 

intra-LBS may less observable because of gradual grain texture variation. The review of 

the nature of cross-lamination also implies that all laminae appear to be similar 

geometrically, down to the grain scale, across a set of neighbouring laminasets that are 

accumulated on the same bedform surface, and therefore, have similar parameters such 

as laminaset/ lamina thickness, intersection angle and grading gradient (the rate of 

increase/ decrease of grain size over distance at a direction perpendicular to the 

depositional surface) according to Reading (2009) or Allen (1982)). 

2)  DCA is reviewed along with key categories of DCA techniques: imaging, 

characterisation, reconstruction and numerical simulation. Essential imaging techniques 

(XCT, SEM/ Energy Dispersive X-ray Spectroscopy (EDS)) are reviewed by 

emphasising their individual strengths for specific rock characterisations and their 

properties in terms of the size of their FoV and their resolutions, with a view on 

establishing how they may fit multiscale DCA collectively for top-down sampling. 

Commonly applied characterisation techniques in DCA, which are also applicable to 

lamination, are highlighted and so are stochastic reconstruction techniques.  

3)  The limitations of current DCA techniques for cross-lamination characterisation are 

identified and analysed, and these are: a) a representative element volume of cross-

lamination is often too large to permit a single image acquisition to sample the full 

hierarchical structures at a pore-grain resolution, due to the mutual constraints of FoV 

and image resolution; one must design a systematic multiple sub-sampling scheme first; 

b) in the case of multiscale image datasets obtained from sampling, some of them may 

not resolve any pores or grains at all, and therefore characterisations must be expanded to 

analyse not only those datasets individually, but also all datasets, collectively. One 
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particular requirement to meet for a collective analysis is that all datasets of concern must 

be registered on the same coordinates through shared geological features. Inter- LBSs and 

intra-LBSs are the best candidate as shared features, but may not appear prominent in 

some datasets, due to the distraction in connectivity and weak contrasts in lithology 

texture variations. Characterisation must be equipped with tools for enhancing Inter-LBSs 

and intra-LBSs in respective images and extracting them for image registration.  3) after 

extracting information about a sample from characterisations of subsamples, that sample 

may only be sensibly reconstructed by a stochastic process. In traditional DCA 

reconstruction, the occurrence of a pore or grain in space is assumed to follow a stationary 

process with a homogeneous lithology texture in the reconstruction domain. For a 

representative domain of cross-lamination, its grain-pore distribution is non-stationary 

across the sub-domains of the hierarchical structures, and non-stationarity must be 

represented, as a volumetric index map, and incorporated in a stochastic reconstruction 

process, by applying affinity transformation to a non-stationary process. The foreseen 

large pore-scale model makes reconstruction less trackable and it must be done in parallel. 

Chapter 3 reports the development of a top-down subsampling scheme for the tight 

Aeolian cross-laminated sandstone sample with an average grain size between a few tens 

to hundreds of microns in a representative volume of 6x6x6cm3.  For generic application 

to other samples, although the scale difference between average grain sizes and 

representative volume may vary for different depositional environments, the general idea 

of the developed top-down sampling scheme could apply. The geology of the sample is 

first described, followed by a report of a preliminary exploratory analysis on the sample 

that was designed to reveal the geological characteristics for any cross-laminated sample 

using rather traditional petrographic techniques. The analysis reveals 1) the sample 

contains upper curved and bottom planar laminasets and all expected geological 

structures, including grain grading and lithology variations; and 2) the sample forms a 

representative element volume; and 3) key parameters can be estimated on images 

obtained by specific imaging techniques. The results of the analysis conclude that the best 

candidates as shared geological features are inter-LBSs, and a suitable top-down sampling 

scheme should make use of 1) low-resolution XRT (MXCT) to image the whole sample 

to capture global distributions of inter-LBSs; 2) high-resolution SEM/EDS to image a 

large area of a sample surface to characterise intra-LBSs with respect to the corresponding 

base inter-LBSs and lithology textures; and 3) high-resolution XRT (μXRT) to capture 
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grain grading within and across laminae and local stationary pore-grain distributions. The 

results also include the estimates of lamina curvature and lamina intersection angle to the 

corresponding base inter-LBS. 

The top-down sampling was carried out to yield three datasets. The analysis through 

macro/industrial X-Ray Computed Tomography (MXRT) confirmed that the structures 

of inter-laminasets were constant across the domain for curved and planar laminasets on 

the top and bottom of the sample, respectively. Inter-LBSs were captured with high 

certainty regarding their exact positions but lower certainty in their individual thickness, 

continuity and their connectivity, and are the best candidates as shared features for 

registration. On a large surface area perpendicular to the paleo-flow direction, SEM/EDS 

images were taken at a high resolution (1 µm2/pixel), to resolve lithology texture 

variations within and across the structures that are also present in MXRT. The analysis 

on SEM/EDS images showed that even inter-LBSs are severely obscured in BSEM 

images due to high grain lithology variation. However, from corresponding EDS images, 

the lithology variation is confirmed to be associated with Haematite (Fe2O3) and Dolomite 

(CaMg(CO3)2) grains that appear along inter-LBSs, and can then be explored to extract 

inter-LBSs for registering SEM/EDS with MXRT.  It is confirmed that most intra-LBSs 

cannot be identified with great confidence, although they may be inferred from 

measurable parameters, including lamina thickness and intersection angle. µXRT 

contains images obtained on several core plugs of 3-5 mm in diameter, to augment 

SEM/EDS with 3D pore-grain distributions within and across laminae. These plugs were 

taken at physical locations sufficiently close to a thin-section and were ensured to 

intersect inter-LBSs. Parameters estimated include grain size, grading gradient and grain 

orientation variation during grading. It is argued that some of the images are good for 

training local stationary processes that are needed for reconstruction.  Operational details 

relating to each dataset are documented and summarised, along with important lessons 

learnt during the design of the sampling procedure of optimising the drilling location and 

condition of sub-core plugs.                    

Chapter 4 reports the development of two solutions to address the issues concerning the 

extraction of ‘well-behaved’ Inter-LBSs from MXRT and SEM/EDS, respectively, as 

shared features to register them so that they can be used to define a non-stationary index 

map for reconstruction. The first solution overcomes the inter-LBS discontinuity by 

removing high-frequency grey-scale variations in MXRT which correspond to small ‘fake’ 
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gaps, but retaining the low-frequency ones, large ‘true’ gaps. This is done by a special 

supervised classification scheme for piece-wise linear features, through a sequence of 2D 

image slices, one by one. In this scheme, classifiers for linear features are trained using 

training images in which ground-truth linear features are defined, so that their continuity 

with respect to the small and large gaps in the ground-truth can be learned by a machine-

learning algorithm in a suitable image feature space. 

Note that the solution is only described and discussed here in such details that a technical 

appreciation can be made, with additional technical details given in an Appendix. The 

continuity-enhanced inter-LBSs from MXRT extracted by this solution are analysed to 

reveal their connectivity and associated holes likely relating to discrete geological 

cementing events, such as erosion and bioturbation.            

The second solution explores grain lithological variations associated with inter-LBSs in 

SEM/EDS, in order to enhance their extraction. It overcomes the issue that, when a SEM 

image is rescaled or upscaled by either linear or nonlinear (cubic) scaling, the resultant 

images may not retain even weak information on the inter-LBSs useful for registration. 

Inspired by the fact that X-ray imaging can retain the inter-LBSs on a 2D slice in a low-

resolution image like MXRT, the idea behind this solution is to treat an EDS image as a 

sample where each pixel possesses the mass of one or more chemical elements, and to 

calculate an effective mass attenuation coefficient for each coarse grid pixel using a 

weighted average of elemental mass attenuation coefficients using filtered chemical 

elements respecting its geological nature. For each coarse pixel, a weighting factor for 

each element is calculated from the sum of its atomic mass overall, underlining fine pixels 

normalised by summing them over all elements. This solution is demonstrated to retain 

some inter-LBSs at the same resolution to MXRT, because of the presence of the heavier 

iron element along them. With matching inter-LBSs identified in both MXRT and 

SEM/EDS, both datasets are registered for defining a trend map of grain variation for 

reconstruction.     

Chapter 5 reports the development of a stochastic reconstruction procedure based on 

Multiple-Point Statistics (MPS) for reconstructing a full 3D grain-pore model for the 

sample, considering the grain non-stationarity associated with hierarchical structures. A 

non-stationary index map is defined using information and data obtained in previous 

chapters as follows: 1) take a realisation of inter-LBSs to define the inter-laminasets; 2) 

distribute intra-LBSs with respect to inter-LBSs, according to estimated parameters to 
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define laminae in each laminaset; 3) populate the grain grading gradient within and grain 

orientation for each and every lamina; 4) choose a sub-domain of the µXRT to serve 

training datasets of the local stationary grain-pore distribution.  Such a non-stationary 

index map represents non-stationarity as a discrete volumetric trend map, and its indexes 

are converted in the forms of affinity transformation to the local stationary grain-pore 

distribution. The single normal equation simulation (SNESIM) (Strebelle, 2002) is 

employed to implement MPS reconstruction. To reconstruct the sample at the pore scale 

at a resolution of 4 µm, the reconstruction domain is 11900x11900x11900 voxels. To 

speed up reconstruction, a parallel processing reconstruction procedure is implemented 

based on an efficient domain decomposition and an ordering scheme to minimise the 

latency of synchronisation.  This model is verified to capture, qualitatively and 

quantitatively, key pore-grain variations associated with the characterised lamination 

structures. 

Chapter 6 draws conclusions, identifies limitations and suggests further developments of 

the work. 
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 LITERATURE REVIEW AND IDENTIFICATION 

OF RESEARCH CHALLENGES  

This chapter presents a literature review into the background of the subject of this research.  

It covers the following aspects: 1) the nature of the geological hierarchical structures of 

cross-lamination with respect to non-stationary pore-grain spatial distributions and 

identifying potential markers of hierarchical structures that would serve multiscale 

sampling and reconstruction; 2) the state of the art of Digital Core Analysis (DCA) for 

multiscale imaging, pore-scale characterisation and reconstruction of the internal 

structures of porous media in a generic view; and 3) examining and identifying limitations 

of multiple-scale DCA for a representative sample, and reviewing potential solutions that 

would serve in top-down sampling and characterisation, identification of shared features 

and non-stationary stochastic reconstruction.  A summary leading to a conceptual design 

of a hierarchical DCA workflow is presented at the end of this chapter.     

2.1 Lamination  

The aim of this section is to review the characteristics of lamination, focusing on what 

hierarchical  structures there are, how they are related to each other spatially at respective 

scales and in terms of lithology texture variations. It also aims to review what parameters 

are used to characterise individual structures and their relationships, spatial relationship 

and how those parameters imply non-stationarity or stationarity of grain-pore character. 

As lithology variation creates a potential marker of hierarchical structures, its physical 

nature needs to be understood through the literature and potential issues that could distract 

the identification of such markers need to be discussed. 

In sedimentary rocks, lamination is a small scale sequence of fine layers of preserved 

sediments, called laminae.  A lamina contains grains whose orientations, sizes and 

compositions occur in cyclic and gradual transitions, and due to the cyclic nature of 

deposition, it usually belongs to a conformable set of successive laminae, called a 

laminaset.  Each laminaset is separated from its adjacent one by an inter-LBS that marks 

a sudden change due to a different geological event, such as erosion, non-deposition or 

abrupt sediments in lithology and perhaps more significant compositional change by 

diagenesis. Within a laminaset, a lamina is separated from its adjacent lamina by an intra-

LBS, potentially highlighted by grain texture changes.  The simplest form of lamination 

is planar lamination, also called horizontal, parallel, and flat lamination (as illustrated in 

Figure 2.1), in which flat laminae and laminasets are stacked parallel to each other.  More 
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complicated is cross-lamination, in which laminae and laminasets are inclined and 

intersect with each other; this could be developed when the flow (paleocurrent) has 

shaped the depositional surface, referred to as the bedform, in sedimentary environments 

such as alluvial fans, and aeolian, fluvial, deltaic, shallow marine and deep-water clastic 

deposits.  For the purpose of developing a multiscale DCA workflow for characterising 

general cross-lamination, this work takes an aeolian cross-laminated sandstone sample as 

an example, and therefore, the following discussion is focused on aeolian lamination.   

 

Figure 2.1 Example of planar lamination and corresponding terminologies: Harms et al. (1982) 

2.1.1 Hierarchical structure of cross-lamination in aeolian environment 

Laminasets  

Aeolian lamination is a result of sequential deposition of sediments whose hierarchical 

structures and grain textures vary with the energy of the wind that transported the 

sediments.  A dedicated introduction to the formation of hierarchical structures of aeolian 

lamination can be found in books such as those by Reading (2009) or Allen (1982) and 

the key elements are summarised here.  According to Makse (2000), “Subject to the 

effects of wind, a flat sandy surface is unstable and evolves into a regular periodic pattern 

of wavelength of the order of 10 cm and height of a few centimetres” (see Figure 2.2(A) 

for an example of aeolian ripple and Figure 2.2(B) for typical wavelengths and 

corresponding grain size associated with aeolian ripple).  The ripple waves are typically 

formed along the wind (paleocurrent) direction, which is the first important parameter 

that should be estimated, and based on which the 3D waveform can be described by 

wavelength and wave height at 2D cross-sections perpendicular to or parallel to the 

paleocurrent direction respectively.  On a piece of a rock sample, the estimation of 

paleocurrent direction can be performed based on observing the geometry of the 

preserved laminations at different cross-sections.  Typically, distinctive straight-crested 
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and curved-crested forms (see Figure 2.3(A-B)) of a laminaset can be observed from 

cross-sections perpendicular to the paleocurrent direction, with the former corresponding 

to lower wind velocities and the latter to higher velocities, and thus, the paleocurrent 

direction can be estimated.  As shown in Figure 2.3(A-B) both straight-crested and 

curved-crested forms have elongated laminasets observable from the cross-section 

parallel to the paleocurrent direction and each laminaset contains a set of parallel laminae 

intersecting with the laminaset, while at cross-section perpendicular to the paleocurrent 

direction, laminae are parallel to the erosion surface of the laminaset they belong to.  The 

wave height can be measured in a cross-section perpendicular to the paleocurrent, which 

is equivalent to the laminaset’s thickness, and the wavelength can be estimated between 

two neighbouring wave peaks or valley points based on the laminaset’s erosion surface 

observed in a cross-section parallel to the paleocurrent.      

 

Figure 2.2 (A) Wind sand ripples on a sandy surface in Death Valley National Park, California Makse 

(2000) and (B) Sediment grain size versus wavelength in wind-generated bedforms:  Corbett et al. (2005) 

after Wilson (1972). 

 

Figure 2.3; (A) Straight-crested horizontal planar cross-lamination/bedding; (B) curved-crested trough 

cross-lamination/bedding: Allen (1982); and (C) profile and internal structure of a well-developed ripple: 

Corbett et al. (2005) after Allen (1973). 

Lamina 
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When the wind current passes over, grains roll over the crest from upwind of the wave, 

referred to as the stoss side, to downwind, referred to as the lee side, causing the ripple to 

migrate in the direction of wind (see Figure 2.3(C) for an explanation of this terminology 

on a 2D cross-section parallel to the paleocurrent direction).  As a ripple migrates 

downwind, the accumulation of grains on the lee side is preserved in the form of planar 

or upwardly concave layers.  Due to the periodic changes of wind energy, the size of 

grains being transported varies gradually and periodically and the process is referred to 

as grading.  Periodic grading leaves a set of successive accumulated layers parallel to the 

lee side; each layer with a cycle of grading is referred to as a lamina.  The thickness of a 

lamina is one important geometrical parameter that can be estimated between intra-LBSs 

that separate laminae.  However, due to gradual grain size change, an intra-LBS is often 

hard to identify directly, but it is possible to infer lamina thickness based on the circulated 

variation of grain size.  As the ripple migrates in the downwind direction the stoss sides 

are continuously eroded.  If the sediment supply is less than the rate of erosion, very few 

laminae will be preserved.  However, if the rate of sediment supply is more than the rate 

of sediment removal, a set of laminae, i.e. a laminaset, will be preserved.  When 

depositional conditions like wind direction change, the preserved laminaset will be “cut 

off” and leaves an erosion surface.  New laminasets are then formed on the erosion 

surface, leaving the laminae within a laminaset parallel to each other and intersecting with 

the erosive sedimentary surfaces that separate laminasets.  Therefore, the other important 

parameter describing laminae is the preserved apparent intersecting angle observable at 

cross-section parallel to the paleocurrent.  According to Allen (1982) and Reading (2009), 

laminae typically have the same or similar intra-lamina grain-pore texture, lamina 

thickness and intersecting angle, typically between 20°-30°, across several neighbouring 

laminasets. 

Grading 

Grain sorting falls into a spectrum between two extreme forms where grains either 

become finer or coarser as they move upwards in a lamina, referred to as normal grading 

and inverse grading respectively, and these differences are known to relate to transport 

mechanisms, grainflow and grainfall, respectively (Allen, 1982, Reading, 2009).     

Normal grading starts with a new flow which erodes the underlying layer with larger 

grains to be deposited at high wind energy first and successively smaller grains as the 

energy gets lower.  Inverse grading is commonly associated with wind ripple lamination 
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where low wind energy tends only to cause grains to fall down from the crests on the 

concave-upward slip faces by siltation, resulting in smaller grains to jumping further 

down toward the lower-impact-energy trough. Grading appears in a stack of ~1-2 grains 

thick layers parallel to the lee side of a ripple; however, according to Hunter (1977), layers 

would stack on the stoss side if the wind reverses its direction or on both sides if the wind 

blows in an oblique direction. Given a sample, the grading direction can be determined 

from a cross-section parallel to the paleocurrent direction, while grading gradient and 

lamina thickness may be estimated on a cross-section perpendicular to the paleocurrent 

(see Figure 2.3(A-B) for illustration).  

2.1.2 Lithology texture of a lamina and impact on flow:  

Lithology texture refers here to both grain texture and composition in a lamina, and it 

controls the heterogeneity of porosity and the anisotropy of local permeability. Variation 

in lithology texture is closely associated with every structure in lamination, as that 

variation gives rise to observable patterns and therefore the structures collectively control 

fluid flow within and across the lamination. Key grain textures of concern are grain size, 

orientation and shape, which are explained as follows.  

1) Grain size is typically characterised by a pair of long and short axes of a non-spherical 

grain or the diameter of a spherical grain. Grain size in fine aeolian sandstone is around 

100s µm in diameter (Allen, 1982, Reading, 2009).  It is well-known that the permeability 

of sandstone tends to positively correlate with grain sizes (Beard and Weyl, 1973, Corbett 

et al., 2005),  which positively correlates with the size of pores and pore throats.  

Therefore, the variation in grain size and sorting in lamination may significantly alter 

flow direction.   

2) Non-spherical grains may be deposited with a preferred orientation, with their long 

axes either parallel or perpendicular to the paleo-current direction.  In lamination, Rees 

(1968) pointed out that the longest grain axes are approximately aligned in the direction 

of paleocurrent along the lee side surface, for a curved ripple system, as a result of grain 

interaction during deposition from grain flow (Taira, 1989).  Therefore, the preferred 

orientation may be characterised by both visual observations or quantifying the spatial 

variation of grain orientations in relation to inclined ripple laminae.  The orientation of 

long axes can be estimated according to the measured intersection angle of the laminae.  

According to Baas et al. (2007) grain orientation is likely to affect the anisotropy of 

permeability, as the fluid flows more easily along the preferred orientation than across. 



Chapter 2: Literature review and identification of research challenges  

18 

 

3) Grain shape is usually described by the circularity of a grain correlated to the ratio of 

its area and the square of the perimeter. Characterising the spatial variation of grain shape 

in relationship to a lamina could be taken as additional evidence of preferred orientation, 

because preferred orientation only occurs for non-spherical grains, which can be 

distinguished from spherical grains by shape. 

4) Apart from grain texture variations, grain composition variations are often strongly 

correlated with LBSs in a lamination layer, which often has preferred cementation during 

diagenesis, depending on the depositional environment.  In an aeolian lamination in a 

desert environment, Authigenic dolomite (CaMg(CO3)2) along with haematite (Fe2O3) 

are preferentially cemented at the finely laminated bounding surface layer and mark LBS 

in distinctive reddish or brownish colour under natural light (Walker, 1967, Glennie et 

al., 1978).  Using Gibbs Free Energy theory or the "ageing" process, Van Houten (1961) 

explained this phenomenon as due to the fact that ferric hydroxides stay longer in the low 

permeability bounding surface layer and will transform into red coloured haematite 

pigment with time.  According to  Walker and Waugh (1973) and Walker (1976), the 

erosional inter-LBS is often subject to more significant diagenesis than intra-LBS, due to 

the more abrupt permeability change.   

The complex hierarchy of lamina and laminasets in a lamination as expressed as lithology 

texture variation gives rise to the variable anisotropy of fluid flow and flow properties, 

and thus affects, as stated in: “in which direction the rock is most permeable, and also to 

what degree fluids will be trapped within a reservoir” (Corbett et al., 2005).  According 

to Baas et al. (2007), the permeability is generally higher parallel to the paleo flow 

direction, and lower perpendicular to the paleo flow direction. In a laboratory experiment 

of water injection at low flow rates into a water-wet, cross-laminated heterogeneous 

aeolian sandstone slab with inter-lamina permeability contrast of up to 1 order of 

magnitude, Huang et al. (1995) monitored the water and oil interface when water was 

injected to displace oil by computerized-tomography (CT) and observed oil being trapped 

in high permeability laminae, because in low permeability laminae, capillary action traps 

more oil, by as much as 30% to 50%. This shows the importance of the structures of 

lamination on fluid flow.    

2.1.3 Features that mark or hide hierarchical structures 

As explained in the above discussion, in a rock sample, lamina and laminasets are marked 

by the surfaces separating them.  In an inverse grading system, which is more common 
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for an aeolian ripple developed lamination, the inter- or intra-LBS is a fine-grained layer 

with grains as thin as ~1-2 grains thick and with grain sizes coarsening up across layers 

stacking sequentially on the inter- or intra-LBS, according to De Boever et al. (2015).  A 

surface that separates a pair of laminae and is expressed as grain texture changes is often 

referred to as an intra-LBS. The more significant lithology change between two 

laminasets is associated with the erosional surface and is referred to as an inter-LBS (see 

labelled example in Figure 2.3(B-C)).  Inter- and intra-LBSs, as the markers of preserved 

laminaset structures, are of critical elements of concern in the characterisation and 

modelling process (Rubin and Carter, 1987) and can serve as a cross-scale reference for 

developing a multiscale DCA workflow.  The observability of bounding surfaces, may be 

affected by a set of factors, as follows: 

1) the degree of compositional variability: inter-LBSs are often more readily observed 

than intra-LBSs because the former contain compositionally more distinctive deposits 

within rather than around them, than Intra-LBSs do.  However, the compositional 

variation at the bounding surface may not always provide enough contrasting information 

to make lamination visible, according to Campbell (1967). In his study on a homogeneous 

sandstone samples by X-ray imaging, Hamblin (1965) demonstrated that the lamination 

with little texture and composition variation leads to a less visible hierarchical structure. 

2) the style of cementation: cementation tends to enhance the compositional variations 

across a bounding surface and to make the surface to appear “continuous” with grain 

particles transformed as a result of diagenesis. Those particles appear to “insert” 

themselves between the original deposited fine layers of grains in an evenly distributed 

way.  Physical structures may appear in observation as noises waiting to be identified.    

3) co-diagenesis process:  lamination may favour another set of diagenesis processes and 

when different diagenesis processes work simultaneously, they may lead to distractions 

in the identification of bounding surface.  For example, feldspars would present similarly 

to the previously discussed haematite and dolomite that potentially highlight inter-LBS 

in a density-sensitive image, because of their similar density. Feldspar is one of the most 

commonly occurring diagenetic phases in aeolian sandstone (Waugh, 1978) and, 

according to De Boever et al. (2015), is often evenly distributed within a sample.  

Therefore, feldspar may create evenly distributed noises and its impact on the 

identification of inter-LBS needs to be identified. 



Chapter 2: Literature review and identification of research challenges  

20 

 

4) Disturbance to the continuing bounding surface:  both erosion and bioturbation may 

create “discontinuities” on individual bounding surfaces and across a set of laminae or 

laminasets, as tunnels, respectively. According to Johnson (1990), the effects of 

bioturbation change grain texture and sorting.  

As discussed in this section, the key to characterising lamination is characterisation of 

hierarchical structures to estimate a set of parameters, as summarised in Table 2.1.  The 

process of measuring, estimating and inferring parameters depends on features which 

mark of hierarchical structures, i.e. inter- and intra-LBS. Two factors that potentially 

contribute to characterisation of LBSs are: sudden variation of grain-pore geometry 

texture and compositional variation of haematite, together with dolomite, preferentially 

occurring at inter-LBS.  Although bounding surfaces have been identified the best 

candidates indicating hierarchical structures, potential challenges exist, due to texture 

variation or distractions, as discussed.  This section has identified appropriate parameters 

in the geological context and the real question of concern here is to come up with a design 

of image acquisition and characterisation to maximise the ability to estimate them by the 

most cost-effective means, reliably and robustly, which is to be studied in next section. 

Table 2-1 Anticipated parameters to describe hierarchical lamination structures. 

Laminaset 
Estimate paleocurrent direction, wavelength parallel to and wave height at 

cross-section perpendicular to paleocurrent  

Lamina 
Estimate intersection angle parallel to paleo face and lamina thickness at 

cross-section perpendicular to paleocurrent  

Grading 
Estimate grading direction parallel to and grading gradient at cross-section 

perpendicular to paleocurrent  

 

2.2 DCA  

Digital core analysis (DCA) characterises the pore structures of a sample by imaging, 

image processing, and grain-pore reconstruction. A reconstructed grain and pore model 

can then be ‘transformed’ into a simpler model (e.g. a pore network model, (Jiang et al., 

2007) on which multi-phase fluid flow processes and others can be simulated to predict 

properties of that sample (e.g. van Dijke and Sorbie (2003), McDougall and Sorbie (1993) 

or McDougall and Sorbie (1999)). This section reviews what existing characterisation 

techniques are commonly used in DCA and how they may be best used to image 

geological features of lamination, to identify and measure those features, and to 

reconstruct grain-pore models for a sample. It also identifies the limitations of those 
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techniques when they are extended for multi-scale characterisation with respect to 

lamination.    

2.2.1 Imaging techniques 

 A wide range of imaging techniques are used in DCA characterisation. As the intention 

of this work is to demonstrate how to make use of the most cost-effective techniques to 

perform multiscale grain-pore characterisation for cross-lamination, only those 

techniques to be used in this work are reviewed briefly here, and their advantages and 

disadvantages will be summarised at the end.   

2.2.1.1 Optical microscopy   

Optical microscopy has long been used in petrographic analysis (e.g. (Chisholm, 1911, 

Andriani and Walsh, 2002). It is a type of microscope which uses visible light and a 

system of lenses to magnify images of transmitted light through a thin-section of a sample. 

A standard thin-section is about 2-4 cm wide and long with a thickness of 30 μm. 

According to Heintzmann and Ficz (2006), an optical microscope can provide resolution 

down to 0.23 μm, thus covering most grain-pore features of a fine clastic sandstone whose 

grains are typically over 0.1mm in diameter.  An optical microscope enables a sample to 

be imaged at high resolution but low cost, and is, therefore, ideal for an exploratory study 

on grain-pore features.   

Optical microscopes can be used with different light sources.  Fluorescent and polarized 

lights are the two most popular light sources, especially for rock and mineral studies, 

among the many others, and can help distinguish mineral types associated with 

hierarchical structures of lamination for basic compositional analysis. Therefore a 

microscopy that supports these two types of lights is an important candidate for exploring 

compositional variations. Nishiyama and Kusuda (1994) claim that fluorescent 

microscopy appears to provide more distinguishability in pore spaces. Bultreys et al. 

(2016) note that when a sample is embedded in a blue coloured dye before making a thin 

section it can colour pores into brighter blue colour and yield higher contrast with the 

mostly greyscale minerals, to help analyse pores. However, an optical microscope tends 

to have a too small field of view (typically several thousand pixels at each dimension) to 

achieve high resolution for making statistical quantitative measurements over a large 

representative area or volume. This can be overcome by applying modern scanning 

optical microscopy.  
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Petrographic analysis is often combined with visual characterisation on a larger sample 

by exploring the differences of mineral grains in their reflection index and the differences 

in capillary force of variable pores. For iron and dolomite cemented LBSs, red or dark 

brown coloured LBSs would be observable under natural light. Although the smallest 

particle visible to the human eye is around 0.5um according to Curcio et al. (1990), the 

human eye can recognise a structure geometry as small as 100um (roughly the diameter 

of human hair), which is about a thickness of ~1-2 grains in a LBS in aeolian sandstone. 

To identify LBSs one may wet the surface of the sample with a wetting fluid, water for 

sandstones, to explore differential wet marks due to capillary force variation (Reading, 

2009). Visual characterisation can provide a rich set of information about the lamination, 

and is a good exploratory technique. 

2.2.1.2 Scanning Electron Microscopy (SEM) with energy-dispersive X-ray 

spectroscopy (EDS) 

A SEM is a type of electron microscope that produces 2D images of a thin section sample 

by scanning it with a focused beam of electrons. An incident beam electron may pass 

through the sample without colliding with any atom in the sample atom, or may collide 

with an atom or the nucleus of the atom. In the latter two cases, the collisions lead to the 

emission of an electron, called a secondary electron, or the reflection of the incident 

electron, now referred to the backscattered electron, to be captured by dedicated detectors. 

Since a depression on the surface tends to trap secondary electrons and prevent them from 

being detected, the spatial variation in its counts taken during a period reflects the surface 

topography. On the other hand, since a low atomic weight element reflects fewer 

backscattered electrons than a high atomic weight element does during the same period, 

the count of backscattered electrons correlates mainly to density variation, and surface 

topography variation to a much less degree, as only a small number of backscattered 

electrons may be trapped by the surface topography. The electron beam position is 

combined with the detected signal to produce one dot on a phosphor screen, a pixel on a 

respective Secondary Electron (SE) image or Back Scattered Electron (BSE or BSEM) 

image. For each pixel, it is associated with an intensity value determined from accounts 

of detected signal, and the SE image value reflects the degree of depression while the 

BSE value is a BSE coefficient determined based on the work of Müller (1954), so that 

in terms of the atomic number, heavy (high atomic number) elements appear brighter in 

the image than lighter ones.    
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Furthermore, X-rays may be released along with the secondary electron emission, if an 

electron collides with an inner shell of an atom, which is forced to stabilise itself by 

allowing an outer electron to drop into that inner shell by releasing the extra energy of 

that outer shell electron. That extra energy is released in the form of X-ray. The emitted 

X-ray can be detected by Energy Dispersive Spectroscopy (EDS) to allow observers to 

identify what those particular elements are and their relative proportions in terms of 

atomic % at an emission spot area of around 1 μm in diameter. Reviews of SEM have 

been provided by Lloyd (1987) and Goldstein (2003).  

An SE image is very useful for analysing the topography of a sample, as the image 

provides a 3D-like surface appearance (Reed, 2005), while a BSE image is used for 

analysing the variation of the atomic number (Z) element of the sample (Lawes, 1987). 

An EDS image provides information on chemical elements and proportions for more 

accurate composition characterisation. BSE and EDS images would be important sources 

of data for this work, to identify inter-LBSs, if they are preferentially cemented with 

relative heavier iron and dolomite, as demonstrated by De Boever et al. (2015), with a 

BSE image.  As discussed, iron and dolomite are a result of diagenesis, which is one of 

the foundational reasons for the lithology variations in lamination. Therefore, EDS is 

important because the mineral elementary distribution in EDS is associated with the 

diagenesis process, as shown by Almarzooq et al. (2014). 

Depending on the size of the phosphor screen, SEM can only scan a small area less than 

10 mm2 at a resolution of about 1 µm2/ pixel. For a standard thin section, multiple scans 

can be performed to cover the whole area of the sample to yield a set of tiled images. 

Those images can then be stitched together to form an image at a submicron resolution 

on a large cm-scale FoV of a sample. Such SEM images are crucial for this work, as they 

can provide data about both grain and pore structures in the context of the hierarchical 

structures of lamination, including laminasets and their laminae, and serve as intermediate 

datasets to link with both high and low-resolution datasets for multiscale DCA 

characterisation.   

Imaging artefacts may be induced in several ways but one of the key causes is the charging 

effect. The charging effect takes place on non-conductive materials as a result of the 

accumulation of static electric charges on the specimen’s surface. This static charge 

influences the electron signals and thus image information. Several methods are adopted 

during the sample preparation and imaging in order to reduce the charging effect, 



Chapter 2: Literature review and identification of research challenges  

24 

 

including coating non-conducting samples, geomaterials, with a thin conductive film 

(Robinson and Nickel, 1979). Carbon has been used as a coating element, as it has a 

relatively small effect on the X-ray spectrum and is good for EDS imaging (Reed, 2005). 

However carbon coating still has limitation, because it does not help increase the 

secondary electrons and therefore reduce artefacts due to the low secondary-electron yield 

like gold (Bultreys et al., 2016).  

2.2.1.3 X-ray computed tomography (XRT) 

X-ray Computed Tomography (X-Ray CT or XRT) is a type of non-destructive 3D 

imaging technique. In tomographic imaging, X-rays are directed at a sample from many 

orientations and the decrease in X-ray intensity is measured along a series of linear paths. 

The intensity reduction is described as a function of X-ray energy, path length, and 

material linear attenuation coefficient. From the acquired data of intensity reduction, 

computer algorithms can be used to reconstruct the distribution of X-ray attenuation 

coefficients in the sample volume being imaged for calculating normalised attenuation, 

called Hounsfield number or CT number, (Hounsfield, 1973), which is saved as intensity 

in a 3D grey-scale image. The image intensity is positively related to the atomic number 

(Z) of material at a voxel, and appears brighter for denser than for lighter materials 

(Herman, 2009).  

High-resolution X-ray imaging has long been used to study smaller scale internal grains 

of rock samples (Dunsmuir et al., 1991). The resolution achieved by X-ray CT is directly 

related to the sample size, and the ratio of sample size  to resolution is of the order of 103 

(see Table 2.2 of Ketcham and Carlson (2001).  According to Cnudde and Boone (2013), 

the applications of X-ray CT can be classified based on the sample size of the study.  For 

typical centimetre to decimetre scale core samples, industrial CT or Macro X-ray CT 

(MXRT) with high-energy X-rays could be applied to achieve a voxel resolution of over 

100 microns. At such resolution, most of the pores or grains cannot be resolved, but the 

pattern of closely arranged grains of similar composition may be apparent, because the 

intensity at each voxel reflects the average atomic numbers in the corresponding small 

sample volume. X-ray CT instruments have been developed to achieve a high voxel 

resolution around 1 micron down to 0.5 micron, and are here referred to as micro-X-ray 

CT (µXRT).  

Table 2-2 General relationship between scale of observation and resolution (Ketcham and Carlson, 2001) 
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X-ray CT imaging has a wide range of applications in geoscience (see the survey of 

Ketcham and Carlson (2001)). According to Cnudde and Boone (2013): “when one is 

performing X-ray CT on core samples, the surface, as well as the internal features, 

including bedding features, sedimentary structures, natural and coring-induced fractures, 

cement distribution, small-scale grain size variation and density variation, can now be 

analysed” (summarised from Coles et al. (1991). This study attempts to make use of both 

Macro-XRT (MXRT) and micro-XRT instruments to identify structural patterns at mm 

to cm scales and grains and pores at µm scale, respectively, in conjunction with SEM and 

optical microscopy. 

Several imaging artefacts may occur in XRT imaging and affect accurate characterisation 

of a sample. Among them, the common artefacts are ring and hardening effects. Ring 

artefacts are due to the mis-calibration of the detector or a defective detector, such as a 

sensitivity difference in the pixels of the detector.  This results in rings centred on the 

centre of rotation. The ring artefacts appear as complete or partial circular strikes in the 

image. Figure 2.4(A) shows an example of the ring effect. Turpeinen (2015) noted that 

“ring artefacts are dominant scanner-based artefacts that can disturb the segmentation”. 

Typically, ring artefacts can be reduced by applying filters, according to Herman (2009). 

To characterise lamination in this work, one must also consider the distortion caused by 

the ring artefacts to the continuity of bounding surfaces. 

The hardening effect is a common artefact in XRT imaging using polychromatic x-ray 

beams. According to Herman (2009) the attenuation, μ, at a fixed point will always be 

greater for photons with lower energy.  However, the energy spectrum of the x-ray beam 

changes (hardens) as it passes through the object.  X-ray beams reaching a particular point 

inside the body from different directions are likely to have different spectra and thus will 

be attenuated differently. This makes it difficult to assign a single value to the attenuation 

coefficient at that point. Hardening effects could occur globally for a homogeneous 

sample and locally for an inhomogeneous sample. The global hardening effect leads to 



Chapter 2: Literature review and identification of research challenges  

26 

 

the edges of an object appearing brighter than the centre, a cupping effect (see Figure 

2.4(B) for an example).  The local hardening effect leads to streaks and dark bands that 

appear around dense objects.  Achterhold et al. (2013) explain that the presence of streaks 

and dark bands occurs because local absorption depends on the neighbouring material.  

The global hardening effect can be corrected by removing the background or simply 

cutting off the edge. On the other hand, the local hardening effect is much harder to 

mitigate and calls for application of a range of techniques, such as normalising the image 

by the average of beam hardening, dual energy scans to derive a virtual monochromatic 

image, and installing an anti-scatter grid in front the detector to deal with local scattering 

associated with heavy elements.      

 

Figure 2.4 Examples of artefacts: (A) Ring artefacts on a paper sample; (B) The effect of beam hardening 

on a  bone sample, in which the edges of the bone appear brighter than the inner material; (C) Streaks and 

shadows around metal inside a bentonite sample: Turpeinen (2015). 

Local hardening effects can make it difficult to interpret images for particular features in 

lamination, such as an iron-concentrated bounding surface. In an MXRT image, the 

brighter spot of a heavier iron particle may appear larger than its true physical size, due 

to the scattering, and those iron particles that are actually scattered along the surface 

collectively appear as a continuous surface in the image.  See Damcı and Çağatay (2016) 

for an example, where they imaged brighter iron particles in MXRT on a core sample at 

60 µm voxel resolution and inferred the existence of continuous bounding surfaces by 

visual observation.  On a laminated sandstone containing a plausible planar finite-

thickness surface between laminae visualised from its side wall, De Boever et al. (2015) 

found that, due to grain-pore composition variation at the surface, a low-resolution XRT 

image contained useful signals on the existence of that surface in 3D which could not be 

confirmed based on grain texture analysis on a high-resolution image. This effect could 

be a useful indicator of the possible existence of a true bounding surface and its 
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approximate location, but must be accounted for when making an interpretation. In other 

words, the existence of a bounding surface must be confirmed by other techniques. On 

the other hand, for some heavier minerals that happen to be distributed evenly across the 

space, like feldspars, in some cases, they can induce local hardening, and for those close 

to a bounding surface, they induce scatters that overshadow the signals of other particles 

in the surface, leading to incorrect interpretation. Therefore, the role of mineral 

compositions needs to be investigated by other means to reveal true information on an 

image.       

Furthermore, local hardening can cause a strong “blurring” effect at the interface of two 

grains when the acquisition is made at a low resolution, and this can introduce uncertainty 

if that interface is to be used as a reference. Figure 2.5 illustrates one example from 

Latham et al. (2008) where the author intends to register a µXRT image and a BSEM 

image acquired on the same sample at their respective resolutions.  For the interest of this 

work, Figure 2.5 is further explained with iron and feldspar distinguished and labelled 

based on the geometric appearance that iron appears as cementation while feldspar 

appears as an elongated particle.  For the registered Micro X-Ray Computed Tomography 

(μ-XRT) image on the right, the brighter part has mixed highlighted iron and feldspar as 

a result of the “blurring” effect, which can, however, be distinguished from the BSEM 

image on the left.  One should note that in Figure 2.5 μ-XRT is applied; therefore, the 

resolution of the XRT image is still relatively high (2.69 µm3/voxel) while the distraction 

of feldspar could be more significant for the MXRT image whose resolution is lower and 

has enlarged the local hardening “blurring” effect. 

 

Figure 2.5 High-resolution BSEM image region at 0.1 µm2/voxel (left) and registered region of micro-

XRT 3D image at  (right) at 2.69 µm3/voxel: Latham et al. (2008) 
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The above-discussed artefacts are caused by the physical nature of imaging: the average 

imaging nature of the limited size of pixels also induces artefacts that infect the 

characterisation of porous media. When the resolution is low, and for porous media, an 

uncaptured pore below pixel size will partially fill the pixel and the obtained intensity 

would be averaged and thus smaller than the true material density; such an impact is 

referred to as the partial-volume effect.  The averaging also means neighbouring pixels 

do not represent the true material density, and these are referred to as finite resolution 

induced blurring effects. 

2.2.1.4 Summary 

Table 2.3 summarises imaging techniques commonly used in DCA with respect to the 

following aspects: field of view, resolution, possible uses for lamination characterisation, 

sensitivity on dolomite and haematite or grain-pore geometry, advantages and 

disadvantages. Some of these aspects will be elaborated with the analysis in a later 

section.  
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Table 2-3 Summary of DCA imaging techniques (Dolomite and Haematite: D&H; Grain-Pore geometry: 

G-P geo) 

Techniqu

es 

Sample 

field of 

view 

Resol

ution 

Interests of 

observation in 

lamination 

Sensitivity 

on D&H or 

G-P geo 

Advantages 
Disadvan

tages 

Visual 

observati

on 

Hand-

specimen 

sample at 

any size 

> 100 

Micro 

pixels 

Surface view 

of inter- and 

intra-LBS 

D&H 

present red 

colour 

Large field 

of view to 

identify 

structure 

Coarse 

surface 

view 

only 

Optical 

microsco

pe 

(Fluoresc

ence and 

polarized 

light) 

Thin 

section at 

2-4 cm 

with 

thickness=

30 μm 

Down 

to 

0.23 

µm2/ 

voxel 

G-P and 

mineral 

variation 

associated 

with lamina 

D&H by 

composition 

sensitive 

feature 

Cheap, 

quick fine-

scale 2D 

observation 

Limited 

FoV, 

lack 3D 

SE 

Non-

polished 

sample 

clastic 

Down 

to 1 

nm2/ 

voxel 

G-P 3D 

surface 

G-P geo 

3D-like 

surface look 

Quick fine-

scale 3D 

surface 

topology 

Small 

FoV 

BSEM 

Coated 

thin 

section at 

2-4 cm 

with 

thickness 

=30 μm 

Down 

to 100 

nm2/ 

voxel 

G-P 2D 

surface 

G-P geo 2D 

quantitative 

Large FoV 

potential for 

registration, 

2D G-P 

observation 

Lack 3D, 

coating 

may 

distract 

true 

distributi

on 

EDS 

Thin 

section at 

2-4 cm 

with 

thickness 

=30 μm 

Down 

to 100 

nm2/ 

voxel 

G-P 2D 

surface 

D&H in 

colour map 

Extend 

BSEM with 

composition

al 

distribution 

and improve 

correlation 

Lack 3D 

Macro 

X-RT 

Centimetre 

to 

decimetre 

scale core 

sample 

> 100 

µm3/ 

voxel 

Internal 3D of 

Hierarchical 

structures: 

Inter- and 

intra-LBS 

D&H 

brighter 

intensity 

Internal 3D 

of structure; 

Density 

sensitive 

nature on 

D&H 

Artefacts 

may alter 

presentat

ion of 

mineral 

distributi

on 

Micro X-

RT 

Millimetre

-scale core 

plug 

Sever

al 

µm3/ 

voxel 

G-P 3D G-P geo 3D 
Internal 3D 

of G-P 

Small 

FoV 
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2.2.2 Image characterisation 

In the previous section, common techniques for imaging acquisition have been reviewed.  

The focus of this section is on how to analyse them for the purpose of pore-scale 

characterisation by image processing. Such characterisation is concerned with exploring 

grains and pores in term of their structures and measuring their morphology in terms of 

shape, geometry and topology. In order to review this sub-field concisely and point to this 

study, all images are considered to be grey-scale intensity images and at each pixel or 

voxel, the intensity value is related to the physical properties of a material, such as 

reflection index (optical), depth of depression (secondary electron), backscattered 

electrons (BSEM), chemical element composition (EDS), absolute or normalised 

attenuation (XRT). The common process in image characterisation is 1) to pre-process 

images to enhance the features of interest; 2) to segment interesting features from the rest; 

3) to measure features’ morphology to quantify them. Many image processing techniques 

exist in general-purpose or dedicated image processing packages and can be used for this 

purpose (e.g. Avizo (www.Avizo.com); Fiji, or imageJ, (www.Fiji.sc) (Schindelin et al., 

2012).    

In the sub-sections that follow, key technical approaches which have been developed for 

each of these three elements, and are also relevant to this work, are reviewed. For recent 

dedicated reviews on digital image characterisation, the reader is referred to Andrä et al. 

(2013) or Turpeinen (2015).  

2.2.2.1 Pre-processing 

Images acquired on a sample typically contain noise and the aim of the pre-processing is 

to improve the signal-to-noise ratio (SNR) of an image so that features of concern, such 

as grains and pores, can subsequently be segmented correctly, with high certainty. Since 

many types of noises can arise in a typical rock image, it is difficult to filter out all types 

of noises by a single filter. Many filters have been tested in the past, but two of these turn 

out to be applicable to a wide range of rock images, and they are median filter and 

anisotropic diffusion (AD) filter (Andrä et al., 2013). The median filter replaces each 

original intensity at a point in an image by the median value of its neighbouring intensities 

(Francus, 1998, Van Den Berg et al., 2003) and can effectively reduce the random noise 

at each point with an abnormal intensity with respect to those at its surroundings, but is 

not so effective to preserve thin features like boundary contact between grains (Ghous et 

al., 2005). An AD filter has been applied to rock images (Ghous et al., 2005, Ismail et al., 

http://www.avizo.com/
http://www.fiji.sc/
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2013, Botha et al., 2015) to overcome the limitation of the median filter. Unlike the 

median filter, an AD filter diffuses the intensity at one point to its surroundings in an 

anisotropic manner, to avoid diffusing across the edge of objects, and so it ensures robust 

noise removal inside grains and grain edge contacts to be preserved. Figure 2.6 shows an 

example of an X-ray image before and after an AD filter is applied, to illustrate 

enhancement in contrast and preservation of edge contacts.  For a recent review of digital 

rock image feature enhancing techniques, the reader is referred to Andrä et al. (2013). 

 

Figure 2.6 Left: original data set.  Right: after anisotropic diffusion filters: Ghous et al. (2005). 

2.2.2.2 Segmentation 

The image segmentation is concerned with separating a feature or features of the same 

type from one another and from the rest in a pre-processed image.  The simplest 

assumption to be made here is that there is a threshold intensity that separates the 

intensities of some features from the rest. This assumption may work only in the case 

where there is a contrast between the intensity of a feature and that of the others.  For an 

XRT or BSEM image, segmentation is concerned with separating grains and pores. 

Because pores and grains have very different intensities, relating to the atomic number, a 

threshold may be easily identified from an intensity history of an image, if there is a single 

lowest frequency between two higher frequency intervals corresponding to low-pore and 

high grain-intensities. In this case, methods that can calculate the optimal threshold in a 

bi-modal histogram, such as the Otsu method (Otsu, 1975), are widely used for grain-

pore segmentation (Blunt et al., 2013, Wildenschild and Sheppard, 2013). However, the 

intensity histogram of a rock image is multi-modal, due to the sample’s composition 

variation, noises, the partial-volume effects occurring in the mixture of under-resolved 

pores and grains, and finite resolution induced blurring effects. This means that 

segmentation must consider multiple local thresholds. The watershed segmentation (see 
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Barnes et al. (2014) for a recent review) has found its use in this case. In watershed 

segmentation, an intensity map is treated as a topographic map including high point peaks 

and low point valleys, on which water can flow down towards valleys, and with the 

accumulation of water, the separation between accumulated water and air is defined as 

the waterline. Many watershed algorithms have been devised to deal with topography of 

different complexities. A basic watershed algorithm evenly fills (from the “sky”) water 

on the topographic map, and to determine a boundary each time, the waterline in 

neighbouring valleys meet, so as to separate features.  In grain and pore segmentation, 

the watershed algorithm can be applied on a distance map of the grey scale image, where 

pixel values are lowest (valley) at the centre of grains or pores, but highest (mountain 

peak) at the edge between grains and pores.  The typical watershed algorithm identifies 

each and every peak in the topographic map, which may generate unwanted boundaries.  

The marker-based watershed algorithm proposed by Beucher and Meyer (1992) can deal 

with such a situation by subjectively selecting valley points as seed points, referred to as 

markers, for each feature, and then the watershed algorithm pushes the waterline on the 

intensity map from selected markers and only defines a boundary when meeting with the 

waterline from neighbouring markers.   

When a segmentation method does not guarantee to segment grains from one another, 

other methods for separating grains needs to be applied before accurate measurements 

regarding grains can be made (Ismail et al., 2013). A typical method is based on cycles 

of erosion and dilation operations proposed by Russ and Woods (1995). However, Van 

Den Berg et al. (2003) claims the erosion of the grain phase may lead to over-segmented 

pores. Andrä et al. (2013) suggest another separation method, implemented in Avizo 

software, can more efficiently separate grains. The approach first calculates, on a 

segmented grain-pore image, the distance of each pixel to the closest centre of a grain, 

referred to as a distance map. Then the watershed algorithm is applied on a distance map 

to define boundaries between grains to separate grain particles.   

Recently, Andrä et al. (2013) compared a watershed segmentation with grain separation 

on images after applying an AD filter, implemented in Avizo software, and the Otsu 

thresholding on the same images after applying the median filter, implemented in Fiji 

software, and claimed both approaches would work efficiently on grain-pore 

segmentation.  In this work, it is believed that the former is more efficient for grain 

segmentation purposes because it separate grains which are connected to one another at 
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local touching points. However, the latter is more appropriate for pore segmentation 

because it is efficient from a computer simulation point of view and more accurate in 

segmenting pore space by avoiding an increase in porosity when removing touching 

points during separation. Therefore, in this work, both approaches are used, for grain and 

pore segmentation respectively.  

2.2.2.3 Grain-pore measurements 

When features of interest such as grains or pores have been segmented out from an image, 

morphologic properties can be measured from a segmented image for quantitative 

characterisation. A number of quantitative measurements may be made for grains and 

pores, as summarised in Turpeinen (2015). Only a few measurements relevant to this 

work are summarised in Table 2.4 for 2D and 3D images. For a segmented grain-pore 

image, area/volume can be calculated for each separated individual particle of grain or 

pore, reflecting their size. The area/ volume fraction can be calculated for either the grain 

or pore phase in an image or selected area and reflects the porosity of each phase. 

Orientation and circularity are measurements only to characterise the grain phase.  

Orientation is the preferred orientation of each individual grain, characterised by the 

major and minor axes of a fitted ellipse (see Figure 2.7 (left) for illustration).  3D 

measurements of orientation are defined as spherical coordinates (see Figure 2.7 (right) 

for illustration).  Circularity is defined as dimensionless measurements correlated to the 

ratio of the area over perimeter square, and with a value of 1 indicating a perfect circle 

and 0 indicating an increasingly elongated shape. Circularity reflects elongated grains as 

secondary evidence of preferred orientation.  

Table 2-4 2/3D measurements and associated features  

Dimension Size Orientation Shape Size in porosity 

2D Area Orientation Circularity Area Fraction 

3D Volume Orientation phi Circularity Volume Fraction 
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Figure 2.7 left: an illustration of measurement in an 800x800 pixels^2 sampling window with overlay 

mask and ellipses filled; right: Spherical coordinates (r, θ, φ) are often used in mathematics: radial 

distance r, azimuthal angle θ, and polar angle φ.  The meanings of θ and φ have been swapped compared 

to the physics convention (see (Moon and Spencer, 2012). 

Techniques for making grain measurements have been well-established for segmented 

images and implemented in software packages like Avizo and Fiji. However, when the 

statistics of those measurements of grains are of interest, special care must be taken to 

ensure the statistics for specific measurements are meaningful and representative.  With 

respect to estimating preferred grain orientation, researchers (Baas 2000, Baas et al.  

2007) have considered the case where a sample contains a mixture of large and small 

grain particles. Since large grains tend to function as load-bearing framework grains while 

small grain particles tend to fill between the large grains, the orientations of the large 

grains should be representative, and tend to be much less random than those of the small 

grains (Pettijohn, 1987, Branney and Kokelaar, 2002). Therefore, in this case only large 

grains should be considered, although there is no guidance for setting a threshold to divide 

large and small grains (Baas et al., 2007). For the preferred orientation, it is noted that the 

arithmetic means of all large grain orientations is not useful but a quadrant-based average 

orientation should be used, as suggested by Baas (2000). 

2.2.2.4 Trend of grain textures by sampling 

In a sample where the grain textures exhibit spatial, non-stationary (heterogeneous) 

distribution, there is a need to characterise the spatial trend for each grain texture 

measurement from a segmented image. A spatial trend may be used to register this image 

and others that are acquired at low resolutions. Given an image, a spatial trend may be 

evaluated over a set of sampling windows that together cover that image. To define those 

windows, the following parameters must be considered: sampling window size and 

interval.  

A sampling window must be not only large enough so that statistics estimated on that 

window become meaningful and stable from noises (Anguy et al., 1994, Buchter et al., 



Chapter 2: Literature review and identification of research challenges  

35 

 

1994) but also small enough so that the measured statistics estimate local stationary 

distributions. With respect to determining the trend of grain grading in lamination, both 

(Van Den Berg et al., 2003, Ghous et al., 2005) set their sampling window size to the 

thickness of the thinnest lamina. To determine a representative window size, a heuristic 

procedure may be derived to calculate some statistics on windows of a certain size while 

adjusting that size until given criteria are satisfied. Such criteria may be defined as the 

inequality of the coefficient of variation (Cv) and the ratio of standard deviation to mean, 

for selected measurement(s) in windows.  

The sampling interval determines how far one window should be away from another 

during sampling, and how safely the quantities derived on the two windows can be 

interpreted as a smooth variation in the window size. For sampling structures in 

laminations, Naruse and Masuda (2006) suggest that a sampling interval should be as 

large as possible, to reduce computation cost, as long as it is no larger than the thickness 

of a structure, to ensure its true smooth variation is captured seamlessly. Ghous et al. 

(2005) use an extreme interval of one pixel on the µXRT image to capture the detailed 

variation of the sampling window size at a cost of high computation.       

For hierarchical structures like cross-lamination, sampling needs to be performed for each 

specific structural feature. The principles for determining window size and interval given 

above must be applied with respect to the distributions of each corresponding feature. 

This means that the windows go along the feature. For a given feature observable at a 

coarser scale than grains, such as an LBS or lamina, the exploratory analysis may be 

applied to identify them (see Chapter 3 for elaboration).   

2.2.3 Pore structure reconstruction 

Pore structure reconstruction is concerned with generating one or more sets of image 

realisations that honour information about a sample obtained from the image 

characterisation summarised above, so as to perform sensitivity analyses at different 

scenarios and reduce the cost of taking additional samples and images. Due to the 

complexity of a real rock sample, a reconstructed volume is a simplified version of that 

sample, in the best manner that is practical. For modelling fluid flow through the pore 

space of a sample, most reconstruction techniques generate a model that resembles the 

observed pore space of a sample only in terms of statistical geometry properties.  All 

reconstruction methods are stochastic in nature, as statistical geometry properties about a 

sample are incomplete, and obtained only in its subdomain. It is worth noting that many 
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other important flow-influencing factors, such as the mineralogy of the pore space and 

thus the wettability of pore surfaces, are not considered in the reconstruction and thus will 

not be discussed in this work, although their effects may be explored through sensitivity 

analysis in flow modelling, in a manner that does not reflect their true spatial distributions. 

Stochastic simulation techniques have been developed for grain-pore reconstruction by 

matching statistical correlation functions, low-order microstructural descriptors, such as 

autocorrelation function, two-point probability function and lineal-path function for pores 

and grains (Liang et al., 1998, Yeong and Torquato, 1998, Torquato, 2002). When 

statistical correlation functions may be estimated from segmented images acquired on a 

sample, a stochastic simulation, like simulated annealing, is performed to match multiple 

functions simultaneously. This approach may fail to reproduce the long-range 

connectivity of pore space, in particular for a low-porosity system (Okabe and Blunt, 

2004). 

Process-based reconstruction stochastically simulates grain deposition, compaction and 

cementation (Bryant and Blunt, 1992, Bryant et al., 1993, Øren and Bakke, 2002) 

sequentially for each specific depositional environment.  For a sample, imaging and 

image characterisation are utilised to derive information on grain textures and lithology, 

grain correlation, and styles of compaction and cementation, to set up a stochastic 

simulation. The outcome of this reconstruction is a set of contacting grains that may be 

cemented. These results can be discretised into image volume. For an actual sandstone, it 

has been shown that this approach reproduces adequately important intrinsic properties, 

such as the degree of connectivity, the specific internal surface, and the two-point 

correlation function (Øren and Bakke, 2002). This approach is dependent on the 

depositional process.     

Pattern-based reconstruction attempts to reproduce the grain-pore structures for a sample 

to match grain-pore patterns, on a fixed-sized window, observed in segmented images for 

that sample, referred to as training images. A stochastic simulation is then performed to 

assign a label of pore or grain to each voxel in the simulation domain, so as to maximize 

the reproduction of the ‘most likely pattern’ at that location with respect to all other labels 

in the window. The ‘most likely pattern’ is defined as specific to each scheme and 

determined from the training images. (Wu et al., 2004, Wu et al., 2006) developed an 

efficient Markov Chain Monte Carlo (MCMC) simulation scheme in which pores are 

assumed as a Markov random field and the ‘most likely pattern’ is determined to reach 
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the highest transition probability from one pattern to another. Multiple-Point Simulations 

(MPS) were applied by (Okabe and Blunt, 2004, Hajizadeh et al., 2011) and the ‘most 

likely pattern’ is determined by the highest probability of all possible patterns. Both 

schemes have been shown to be able to reproduce observed grain-pore patterns, 

connectivity and correlation functions.  

All the methods mentioned above are designed to deal with stationary spatial distributions 

in the domain, based on the given sample and can, therefore, reproduce grain and pore 

structures well for homogeneous samples. However, they cannot handle non-stationary 

grain textures across a set of sub-domains and must be adapted if they are to be used to 

reproduce grain and pore structures for strongly heterogeneous samples, such as the 

laminated sandstones of concern in this work.  

2.3 DCA for multiscale characterisation: key challenges and approaches for 

solutions  

The DCA characterisation techniques reviewed above have limited use in characterising 

samples that contain multiscale geological structures, like cross-lamination. In this 

section, DCA’s limitations for multiscale characterisation are examined to identify key 

challenges faced in DCA and to propose plausible approaches to develop the needed 

solutions. This is done according to the three categories of research questions given in 

Chapter 1. 

2.3.1 Sub-sampling and characterisation 

As summarised in section 1.2.1, standard DCA imaging techniques are devised mainly 

for the purpose of capturing internal structures of grains (their compositions and pores). 

If a tomogram of a laminated sandstone sample is to be acquired, a µ-XRT would be the 

most suitable tool. However, if resolving shapes of pores of 1 µm in diameter is sought, 

a sample must be smaller than around 1 mm in diameter (estimated based on an imaging 

field of view of 1000x1000x1000 voxels3 in typical µ-XRT facilities). On a sample of 

such size imaged at that resolution, individual features can be studied in detail, as 

demonstrated in previous work (Van Den Berg et al., 2003, Ghous et al., 2005), with 

respect to the laminae.  However, it is not possible to tell what hierarchical  structures 

exist and are observed, let alone how they spatially relate to one another at corresponding 

scales and how they could be explored consistently. To answer these questions, it would 

be ideal if a tomogram could be acquired on a sample large enough to encapsulate a full 

set of plausible structures of interest. An MXRT is capable of making an acquisition on a 
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large sample but at much lower resolution, insufficient to resolve a thin feature of a few 

grains thick, such as LBSs. Nevertheless,  if a LBS does contain a high proportion of a 

high atomic number heavy element (e.g. iron) in grain particles along with it, the thin 

feature may stand out on an acquired tomogram, because the heavy particles influence 

the average attenuation disproportionately and the X-ray scattering effect induced by 

heavy elements, as mentioned in 1.2.2.  

What has been argued above is that there is no single imaging technique that can meet the 

needs of characterising a laminated sample and thus, multiple imaging techniques must 

also be applied at different scales and resolutions collaboratively to achieve the goals 

stated in the research questions in relation to sub-sampling and characterisation. The 

principle considerations should take place at three levels as follows.  

Methodology 

The research questions range from being exploratory (e.g. what features are there?) to 

quantitative (e.g. how thick are laminae on average?) in nature, and exploratory ones must 

be answered first. For a new sample, the sub-sampling and characterisation must be 

carried out by a combination of exploratory analysis and quantitative analysis. An 

exploratory analysis is always needed to reveal what may exist in what forms, to define 

what is needed next – quantitative or exploratory analysis.   

Procedure  

Given the hierarchical structures anticipated in a laminated sample, what structures 

should be considered, and in what order? Based on the geo-pseudo concept, a top-down 

sampling approach is the most appropriate, as a larger structure is likely to influence the 

fluid flow more strongly than the smaller one does and to be observed with a higher level 

of certainty. A top-down sampling needs to be carried out overlapping sub-domains, so 

that all resultant image datasets can be registered onto the same coordinate system, if 

shared features can be identified among them.     

Techniques 

In order to investigate what hierarchical structures there are in a sample, an exploratory 

analysis must be carried out on a sample large enough to encapsulate a set of possible 

structures of interest. From a cost-effectiveness point of view, one should consider 

applying visual inspection and classical petrographic techniques, as reviewed previously, 

to explore a sample for signs of geological features and relationships before applying 
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more sophisticated and more costly techniques when needed to progress. The exact 

sequence of techniques to be applied should be decided interactively for each specific 

sample. Based on the previous work of De Boever et al. (2015) (they focus on single 

bounding surface only; also see discussion later), for any quantitative characterisation of 

a cross-laminated sample, a minimum set of imaging tools would need to include 

SEM/EDS and M/µXRT.  

2.3.2 Identification of shared features and image registration  

Sub-sampling and characterisation result in a set of enhanced and characterised image 

datasets, and these must be registered to characterise the whole sample. A critical question 

of concern is whether shared geological features can actually be identified from those 

image datasets with high certainty.  

For vuggy carbonate rocks, it has been demonstrated that grain textures are a good shared 

feature. Sok et al. (2010) imaged a carbonate rock sample using a micro X-ray tomogram, 

BSEM, and focused ion beam SEM (FIB-SEM), at the maximum-to-minimum resolution 

ratio of about 10, and integrated them using a disproportionally large grain as the 

reference. As reviewed above, in a laminated aeolian sandstone sample, grain textures are 

not suitable candidates as shared features because grain textures are rather homogeneous, 

with weakly non- stationarity within each structure. However, grain composition 

variation along thin inter-LBSs makes these the best-shared features, as they can be 

observed and identified in low-resolution MXRT images as ‘trends’.  

This situation is well illustrated using the SEM and µXRT images obtained by De Boever 

et al. (2015). Figure 2.8 shows those images, all acquired from the same sample with a 

likely planar bounding surface between two vertically-stacked laminae. Figure 2.8(A-B) 

shows BSEM and EDS images on a vertical face cutting through the surface with respect 

to the sample orientation, given in Figure 2.8(F), in which the strong planar cloud of 

unevenly distributed brighter light-grey ‘dots’ suggests the existence of a surface. Note 

that in Figure 2.8(A), there is no indication of the existence of that surface, but in Figure 

2.8(B) there is a linear pattern of higher concentration of scattered red pixels of iron-rich 

elements that suggest that a surface may be located here, in consistency with geological 

understanding. The same observations can be made in Figure 2.8(C-E).  
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Figure 2.8 SEM images and the µXRT image acquired with respect to a bounding surface (De Boever et 

al., 2015). (A-B) BSEM image and corresponding EDS map at 1.08 µm2/voxel.  Blue = quartz, green = 

clays and feldspars, red = iron oxides; (C) zoomed-in view of BSEM image; (D) zoomed-in view of EDS 

map; (E) simplified EDS map so that grains can be identified individually as different minerals; (F) 

µXRT with a resolution of 8.9 µm3/voxel. Note that the partially transparent full sample view reveals that 

dense minerals, represented in lighter grey, are unevenly distributed throughout the sample 

For the image datasets of De Boever et al. (2015), the tasks of identifying inter-LBSs can 

be defined as to reconstruct a bounding surface from the planar cloud of bright dots in 

µXRT image and SEM images, respectively, where the reconstructed bounding surface 

and curve are defined on respective images with the same resolution as the µXRT image. 

The identified bounding surface can then serve as a reference to register high- and low-

resolution images to fuse grain-pore structures into structured lamination. So far, neither 

of these two tasks has been considered for image registration. The major challenges are 

due to the scarcity and irregularity of ‘good’ signals, as consequences of the complex 

geology associated with inter-LBSs and induced artefacts in imaging and image 

processing.  

In the sections that follow, the issues relating to the reconstruction of bounding surfaces 

and curves from XRT and SEM images, respectively, are elucidated first, followed by a 

brief summary of relevant techniques that may be adopted for reconstruction.   

2.3.2.1 Challenge-1: Reconstructing a bounding surface from XRT 

In a low-resolution XRT image in which a bounding surface appears as a surface-like 

cloud of bright ‘dots’, those “dots” can appear scarce and/or irregular for a number of 

reasons. As reviewed previously, the scarcity of ‘dots’ may reflect the true geological 

distribution of a small number of heavier grain elements that occur along the surface and 

across the surface within a finite band. Those elements are likely to induce artefacts 

during imaging, such as local hardening effects and scattering effects, which make the 

cloud appear thicker than the LBS should be. The scarcity gives rise to ‘fake’ gaps in the 
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image. The irregularity of ‘dots’, on the other hand, may reflect geological processes such 

as the change in supplied sediments, erosion that took place and bioturbation, and it gives 

rise to large ‘true’ gaps in the image.  

The challenge is how to reconstruct a continuous thin surface to fit through the middle of 

an unknown true surface.  

2.3.2.2 Challenge-2: Reconstructing a bounding surface from SEM images 

A bounding surface may not be recognisable on SEM images at a very high resolution 

when the discrete objects are all observed, unless the images are upscaled. An optimal 

upscaling ratio of a high over a low resolution must be chosen appropriately to bring the 

bounding surface out as a trend. However, in order to register an XRT and SEM images, 

the SEM images must be upscaled to an image at the resolution of the XRT to transform 

features to the same physical scale before applying for image registration. If that 

upscaling ratio is much larger than the optimal upscaling, less information about the 

bounding surface (e.g. heavy grain elements) will be retained, if any, after upscaling. In 

practice, an upscaling ratio is a factor of about 10 when only one bounding surface is 

considered alone (e.g., De Boever et al. (2015) but that ratio can reach up to 100 when 

multiple bounding surfaces are considered together, as the sample has to be much larger. 

As to be illustrated later in Chapter 4, the classical rescaling techniques by either linear 

or nonlinear (cubic) scaling on a BSE image fails to retain any information on a bounding 

surface. The challenge is how to retain information on a bounding surface after upscaling 

to enable reconstruction of one bounding curve for registration.  

2.3.2.3 Relevant techniques for reconstructing a bounding surface from XRT 

The challenges of reconstructing a continuous thin surface to fit through the middle of an 

unknown true surface, while respecting information obtained regarding the various gaps 

are rarely discussed in DCA.  It is, however, similar to the problem of segmenting a piece-

wise linear or planar structure with connectivity preserved, and have been discussed in 

relation to many other subjects, like the segmentation of cracks in mechanical parts 

(Abdel-Qader et al., 2003, Fujita and Hamamoto, 2011) or human bones (Kang et al., 

2003, Descoteaux et al., 2006).  One of the common characters across those studies is 

applying multiple filters to characterise small neighbouring areas, thus segmenting a pixel 

based on multiple local features rather than the pixel intensity itself, so that the thin un-

obvious bounding surface can be recognized from the complicated noisy background.   
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A filter as referred to here is often a small window at a certain size with a specific designed 

mathematical operation on pixel values within the window to describe different aspects 

of neighbouring structure features around the centre pixel.  Considering each filter 

describes different aspects of the structure, a set of filters are often applied together to 

capture different aspects and enhance recognition of the structure.  Two ways of using a 

set of filters generally apply: 1) the set of filters could be applied sequentially to yield a 

grey-scale image with structures enhanced.  On the outcome image, typical segmentation 

approaches may be applied to segment the targeted structures (Lesage et al., 2009, Balafar 

et al., 2010); 2) The other way is to use a set of filters describing different aspects of 

structure in parallel on the original image to yield a set of descriptors of local features 

around each pixel, referred to as feature vectors.  The pixels in the image can, therefore, 

be seen as data points distributed (described) in a multidimensional feature vector field.  

Those data points can then be fed into more sophisticated classification methods to 

classify those data points in the multidimensional feature vector field into different 

groups, and thus the image is segmented. 

The sequential filtering approach has so far achieved limited success in overcoming the 

challenge, because sequentially applying filters to render information in the intensity may 

lose important aspects of structures in the process that capture the true connectivity.  For 

the parallel filtering approach, sophisticated classification methods including 

unsupervised and supervised classification could apply.  The unsupervised method groups 

data in the high-dimensional feature field directly, based on mathematical operations, for 

example, the long-developed K-mean method by MacQueen (1967) groups data based on 

spatial clustering of data in the feature vector field.  Supervised classification, in contrast, 

learns a classifier in the feature vector field from a subset of data with known group 

belongings, referred to as ground truth (Buhmann et al., 1999, Mohri et al., 2012) from 

one or more example image, referred to as a training image, and to predict group 

belongings on a new images, referred to as a testing image.  The supervised approach 

naturally fits this work, because human knowledge about various gaps can be introduced, 

together with a wide range of readily available classification algorithms and is also 

generic, as long as a suitable set of image filters can be established.   

The set of filters, termed a filter-bank, naturally fits the introduced supervised 

classification approach and has been proven to work efficiently on piece-wise linear 

structure segmentation (Xu et al., 2006, Rigamonti et al., 2011b, Becker et al., 2013).  
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This leads to a class of filter-bank based supervised piece-wise linear/planar segmentation 

methods (with a typical workflow shown in Figure 2.9) that share the following common 

characteristics: 1) using a bank of filters to extract features of concern; 2) using training 

images to bring in additional information by given ground truth of pixels whose original 

intensity is less obvious on connectivity in the original images; 3) employing machine-

learning algorithms to learn relationships between features and the ground truth in the 

training images and to construct a classifier to segment the testing image.   

 

Figure 2.9 Typical procedure of supervised classification with filter bank 

Although segmenting a piece-wise linear/planar structure from a noise background by a 

filter bank-based supervised classification has been discussed in many subject areas, 

systematic investigation into why, how and to what extent the approach could be applied 

to improving segmented connectivity in relation to the construction of training images 

and the selection of suitable banks of filters is required.  Clearly, a good understanding of 

these is crucial to develop optimal methods to ultimately overcome the challenge.  This 

work will discuss how a set of controlling factors related to the nature of the challenge of 

segmenting a bounding surface can be used to segment it in a way that will reflect the 

true nature of its connectivity.   

2.3.2.4 Relevant techniques for reconstructing a bounding surface from BSEM 

To retain the trend of a bounding surface, based on the previous review of the nature of 

bounding surfaces, the composition must be considered.  What has been proposed here 

and is to be explored in this work is to identify the controlling factors that highlight a 

bounding surface through geological characterisation. With the assistance of the 

compositional map provided by EDS that can be obtained at identical resolution and FoV 

as BSEM, the composition distribution can be taken into account during upscaling, to 

retain the key patterns of bounding for registration purposes. 
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2.3.3 Non-stationary reconstruction 

Supposing all the necessary datasets are registered at the same coordinate system and 

characterised individually and collectively, the following subsections discuss how the 

pore-grain non-stationarity that is expressed by the spatial relationships of structures can 

be represented and modelled in a stochastic reconstruction procedure. 

2.3.3.1 Geological non-stationary nature and characterisation 

Stationarity is an assumption that is often reasonable for spatial data and commonly used 

in geostatistics (Olea, 2012).  In mathematical terms, there are two types of stationarity, 

according to Deutsch and Journel (1998). One is mean stationarity, where it is assumed 

that the mean is constant between samples and is independent of location. Second-order 

stationarity is the assumption that the covariance between two points is the same for a 

given distance and direction, regardless of which two points are chosen within the sample. 

As reviewed above, the multi-scale arrangements of hierarchical structures define the 

heterogeneity (thus non-stationarity) of grain-pore lithology distributions, including grain 

texture and composition.  It is, therefore, necessary to develop multiscale DCA to 

characterise and reconstruct the local non-stationary grain-pore lithology associated with 

hierarchical lamination structures, to study the combined impact on fluid flow.  Given 

that laminations are formed layer by layer, it can be seen that each ~1-2 grains thick layer 

has homogeneous grain-pore lithology and is the smallest stationary unit.  Among the 

previously reviewed lithology features, as a result of grading, grain textures including 

grain size and orientation vary over layers within laminae and laminasets and can be 

characterised to define non-stationary grain texture variation (Reading, 2009).  Grain 

shape can also be characterised but only as additional evidence of variation in orientation.  

In aeolian lamination, grain composition variations tend to be more prominent than grain 

texture variations between laiminasets, and composition variations can thus be used to 

characterise inter-LBSs and are of use to characterise the pattern of the structures, as 

discussed in 2.1.3.  Although, according to van Dijke et al. (2007), composition 

distribution also affects fluid flow in a more sophisticated way (e.g. pore surface 

wettability), this work will only focus on estimating the variation of grain texture 

parameters to seek simplicity in an initial multiscale characterisation and reconstruction 

workflow, and use the compositional feature only as a signature highlighting hierarchical 

structures. 
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To serve later reconstruction, the non-stationarity may be represented conceptually as a 

volumetric index map on the sample domain, where each index links to a set of parameters 

that define the local mean (stationarity) of the grain-pore textures to instruct stochastic 

reconstruction at a point in space with respect to non-stationary distribution across points.  

For the cross-lamination of concern in this work, such an index map could be constructed 

from characterisations of sample hierarchical laminaset and lamina structures and local 

pore-grain distributions, in accordance with layered grading.  Based on the review, it has 

been established that the inter-LBSs is more likely to be reconstructed directly with 

relatively high certainty in a MXRT image, based on compositional variation.  The 

reconstructed inter-LBSs represent one realisation of laminaset structure distribution in 

contrast to the probability map based approach used by Mohebi et al. (2009), where a set 

of realisations could be reconstructed.  Intra-LBSs may be more difficult to reconstruct 

directly but may be indirectly reconstructed based on measurable parameters, including 

intersection angle and thickness, to infer lamina structure distribution.  In this way, inter- 

and intra-LBSs, as the markers of preserved structures, can be taken as the basis of a non-

stationary trend map of hierarchical structures.  The non-stationary variations within each 

lamina can be estimated by assuming each ~1-2 grains-thick layer as the smallest 

stationary unit; with grading direction characterised, conceptual layers can be 

reconstructed stacking over inter- or intra-LBS.  A volumetric index map can, therefore, 

be defined by assigning non-stationary parameters based on the measured trend of grain 

texture variations, including size variation, by grading gradient and preferred orientations.  

The parameters required to define an index map are summarised in Table 2.5. The key to 

characterisation is, therefore, a data-driven statistical parameter collection to estimate the 

stationary and non-stationary grain-pore texture distribution associated with hierarchical 

structures. 

Table 2-5 Parameters for describing hierarchical lamination structures. 

Laminaset Directly reconstructed from MXRT 

Lamina Indirectly reconstructed by intersecting angle and thickness 

Grading 
Indirectly reconstructed by grading direction, grain size grading gradient 

and preferred orientation distribution 

 

2.3.3.2 Reconstruction: MPS for grain-pore  

Not all stochastic reconstruction techniques are designed to handle an index map as 

described above, although some of them do so to some degree.  With an index map, each 

stationary unit can be seen as a sub-domain, and a stochastic method is expected to have 
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the following characteristics: 1) reconstructing complex but rather stationary grain-pore 

topology and morphology with given examples from a sub-sample, respecting means and 

variograms;  2) transforming a given grain-pore structure based on a set of grain and pore 

geometrical means and variograms assigned to the specific spatial domain; 3) 

personalised regional reconstruction based on defined sub-domains honouring boundary 

connectivity (thus the reconstructed grain-pore-space in different neighbouring regions 

are connected naturally).  

Based on the review in 2.2.3, it was found that the statistical approach has been weak in 

revealing the complex grain-pore structure and the processed approach been lacking in 

generalisability, while the pattern-based approach is worth consideration, as it borrows 

statistics from the patterns of training images directly, rather than 2-point variograms or 

kriging statistics, thus reducing the risk of exporting details irrelevant to target 

heterogeneity by the simplified statistical method (Strebelle, 2002).  Two pattern-based 

approaches, referred to as MCMC (Wu et al., 2004) and MPS by single normal equation 

simulation (SNESIM), developed by Strebelle (2002) have been compared, with full 

details provided in Appendix A.1.  The key conclusions related to this work are: 1) typical 

MCMC does not apply regional sub-domain-based reconstruction with transformation 

while MPS does; 2) MPS regional reconstruction also respects pre-reconstructed grain-

pore structure from neighbouring pre-simulated regions as hard data and therefore, 

connectivity is retained at the boundary between regions.  The regional reconstruction 

advantage of MPS makes it naturally fit for modelling non-stationary grain-pore variation 

associated with hierarchical lamination structures.  Therefore, in this work, MPS is 

employed in the workflow for full 3D pore-space reconstruction.   

A detailed mathematical expression of the MPS reconstruction procedure is given in 

Appendix A.2.  The key steps of MPS are as follows:  1) a fixed size template goes though 

every pixel of the training image to collect image patterns around the central pixel to build 

a patterns library; 2) for each pattern in the library, the probability of the central pixel in 

the state of “1” or “0” can be calculated; 3) on a new canvas, the template visits every 

pixel, in a random path, to establish the state of each visited pixel, condition to the 

neighbouring pattern and the corresponding probability is saved in the library.  It is 

pointed out by both Strebelle (2002) and (Okabe and Blunt, 2004) that the mean and 

variogram of the training image could be reproduced with MPS, thus ensuring the 

stationarity is reproduced in a simulated sub-domain.  Beyond basic MPS, the key 
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regional sub-domain reconstruction features of MPS specific to the interests of this work, 

are as follows:  1) to simulate non-stationarity, regional reconstruction transforms a given 

training image according to the grading nature of the lamination by scaling and rotating 

it correlated to the given index, to give new training images and stochastically reconstruct 

them over the regions;  2) to ensure the transformed structure still connects naturally at 

the boundary between regions, the reconstruction is performed sequentially for the 

regions.  The reconstructed image for one region would be taken as hard data to condition 

the reconstruction of pixels at the boundary of the next region, by extending the domain 

of next region to include hard data from the previous region.  Figure 2.10(A) illustrates a 

training image scaled at three scales, in which the largest pore-space is assigned to the 

bottom region and the smallest to the top region.  A rotation feature rotates the training 

image so that the reconstructed image is also rotated for different regions.  Figure 2.10(B) 

illustrates a training image rotated -30º, 0 º and 30 º to reconstruct the rotated channel 

pattern to the green, blue and red regions respectively.   

 

Figure 2.10 Key features of MPS respecting layered grading nature: A) regional reconstruction with 

training image at different scaling factor; regions are reconstructed sequentially each taking the previous 

reconstructed region as hard data to keep boundary connectivity; B) Training image assigned rotation of -

30º, 0 º, 30 º to green, blue and red regions respectively.  Scaling factor of 3 was also applied to all 

three regions. 

Key features of MPS which contribute to grain-pore-space reconstruction of a grading 

system are summarised in Table 2.6 (based on the SNESIM function built in the SGeMS 

software package (Remy et al., 2009)), which are the template features dealing with its 

potentially heterogeneous grain-pore nature; regional scaling and rotation simulate the 

variation in grain size and orientation associated with grading.  The hard data constrained 

regional simulation ensures connectivity between regionally simulated grading for 

laminae and laminasets. 
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Table 2-6 Summary of key features of the contribution of MPS to pore-space reconstruction of layered 

grading system 

Feature 
Template scan through 

training image 

Hard data 

honoured 

reconstruction 

Regional 

scaling 
Regional rotation 

Advantage 
Handles complex 

structures 

Preserves 

Connectivity  

Simulates 

grading 

size 

Simulates 

grading 

orientation 

 

When using the discussed MPS method to address the challenge of non-stationary grain-

pore reconstruction, another challenge is that the reconstruction of the full 3D pore space 

model could require significant computational power.  Given the multiscale nature of 

lamina sandstone, a microscale model is required for a centimetre scale domain to cover 

representation of the inter-laminasets.  The microscale resolution for a typical fine 

sandstone could be less than 4um^3/voxel to capture pore-space.  For a representative 

cross lamina structure, a model of at least 5cm^3 is required.  Therefore, a full 3D pore-

space model with dimensions of 12500^3 voxels is required.  As a single CPU simulator 

is not practical in solving such a problem, a strategy needs to be developed to perform the 

simulation in parallel.   

2.4 Design of workflow  

This chapter reviewed the literature in general to establish 1) the non-stationary grain-

pore variation associated with hierarchical structures and their features; 2) imaging, 

characterisation and reconstruction methods used in DCA and 3) it has reviewed the 

application of DCA in characterisation of multiscale features of lamination and identified 

potential limitations and challenges that could occur in a general sense along with 

potential solutions.  Because of the complexity of hierarchical structures and their case-

specific relationship with DCA characterisation techniques, for an unknown sample to be 

studied,  any generically applicable workflow must also be sample specific.  The 

workflow must be designed as a combination of exploratory analysis and quantitative 

analysis to confirm structural features of interest, followed by their correlation to 

appropriate DCA techniques, to design a workflow and confirm challenges so as to 

develop solutions. Such a workflow/methodology can be: 1) carry out an exploratory 

analysis (i.e. preliminary analysis) to find out the geological background and coarsest 

structural information at least cost, and then carry out subsampling by a combination of 

exploratory analysis and quantitative analysis, targeting each type of feature anticipated 

respecting general geological knowledge; 2) extract shared features from quantitative 
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datasets, and carry out registration; 3) define a non-stationary index map and perform the 

reconstruction. A workflow specific to an aeolian sandstone sample has been selected in 

this work, each proposed step can be explained as follows: 

Step I: The workflow starts with exploratory analysis by traditional petrography and 

preliminary lithology and compositional analysis using SE, BSEM and EDS to estimate 

the scale range and build an understanding of the spatial distribution of structures and 

identify the potential cross-scale reference.  To characterise the hierarchical structures of 

lamination according to scales of structure in relation to the resolution range of each 

imaging technique, as summarised in Figure 2.11, it is necessary to image the inter-

laminaset of a sample by MXRT and to characterise the inter-laminaset structure.  The 

laminaset structure is potentially highlighted by the preferred cemented iron in inter-LBS, 

which could be identifed in the MXRT image.  The identification of the bounding surface 

allows one to determine how many subsamples are needed for imaging local lithology 

spatial variation, where their sites should be and at what scale each sub-scale of imaging 

should be taken.  According to Figure 2.11, further application of digital BSEM and EDS 

analysis is anticipated to give quantitative measurements covering hierarchical structures 

from laminaset level down to grain-pore in 2D, in order to analyse their spatial 

correlation, together with MXRT images.  These analyses would together determine the 

further sampling configuration of a smaller core plug for 3D μ-XRT analysis.  The 

analysis is again anticipated to correlate with the knowledge of the hierarchical structure 

identified previously.  To assist the spatial correlation of the obtained multiscale datasets 

though registration, the nature of the bounding surface as a potential cross-scale reference 

should also be examined though BSEM and EDS analysis, to idenitify the key challenges 

and suggest solutions in the next step.   
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Figure 2.11 Potential ranges of hierarchical  structures that could be covered by each reviewed digital 

imaging technique 

Step II: The morphology and compositional nature of a bounding surface should have 

been confirmed through the analysis in Step I   From this data, the key challenges of 

identifying bounding surfaces in corresponding datasets (MXRT and BSEM) can be 

identified. In this step image processing techniques need to be developed to extract the 

bounding surface, respecting the morphology and compositional nature, and how they 

will be presented in a different source of images.  

Step III: when bounding surfaces as cross-scale references have been extracted, the 

multiscale datasets need to be spatially integrated.  Before integration, there should be a 

review, to establish if all the information necessary for reconstruction has been obtained.  

The missing information, if any, needs to be defined and supplemented.  An index map 

could be therefore be built respecting the integrated and supplemented information. The 

index in the map should be correlated to the characterised non-stationary lithology 

variation associated with grading in the hierarchical structures of lamination.  Stochastic 

reconstruction respecting the index map should then be implemented using the discussed 

MPS algorithm, by defining sub-domains and transformation parameters according to the 

index map, as a non-stationary control.  Practically, an appropriate parallel processing 

method needs to be developed to ensure the simulation can be done in a realistic time 

frame. 
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After conducting a thorough and comprehensive literature review on DCA, it is concluded 

that there is no existing framework that can lead to successful multiscale characterisation 

when hierarchical structures do not appear to be obvious.  The proposed workflow 

extends typical multiscale DCA by integrating the “geo-pseudo” concept to enhance 

identification of non-obvious hierarchical structures to better spatially correlate 

multiscale data.  The workflow was illustrated on an aeolian fine cross-laminated 

sandstone sample.  It has pushed multiscale study on lamination to a new level and points 

out a new direction to deal with pore-scale geological structures which have not been 

considered previously.  This framework goes beyond those to include local heterogeneity 

with measured permeability at mm scale, but those below millimetres at the pore scale.  

It provides an opportunity to study for the first time the combinational impact of intra- 

and inter-laminaset characterisations at different scales.  The workflow integrates images 

gained from different scales and sources, which instruct a reconstruction of the full pore-

scale model corresponding to heterogeneity and anisotropy at different scales.  The idea 

proposed as a workflow here will be invaluable for the study of non-stationary pore 

systems associated with multiscale spatially non-separable structures. 
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 DEVELOPMENT OF RECURSIVE SUB-

SAMPLING PROCEDURE  

This chapter reports the development of a recursive, imaging-based subsampling 

procedure for hierarchical characterisation of cross-laminations for a given sample.  The 

resultant datasets are intended to contain information sufficient to reconstruct pore and 

grain structures of the sample stochastically.  In this work, the concept of a ‘geo-pseudo 

approach’ is employed to sample critical structures in a top-down fashion.  This implies 

that, for a given sample, the sub-sampling and characterisation must be carried out by a 

combination of exploratory analysis and quantitate analysis.  The locations and 

geometries of one or more structures at one level of the hierarchy must be estimated under 

the constraints of the structures at the previous level of hierarchy (i.e. the one above the 

current level of hierarchy) and together they collectively determine one or more suitable 

imaging instruments to be selected to further subsample those structures at the right FoVs 

and resolutions.   

To explore the nature of cross-lamination and what it imposes on the development of the 

sampling procedure, an Aeolian outcrop sample of Permian-Triassic fine-grained red 

sandstone slab was chosen and was found to be representative, in a preliminary analysis 

(to be summarised below ), in that it: 1) encapsulates all common hierarchical structures 

of cross-laminated sandstones; 2) is large enough to capture the distribution of laminasets 

but compact enough to acquire data using ‘standard’ DCA imaging techniques.  This 

representative sample was used through this study to develop a hierarchical DCA 

workflow.   

In what follows, a geological description of that sample is provided first, to be followed 

by the results of a preliminary analysis to highlight the geological characteristics of the 

sample in terms of hierarchical lamination structures, structure geometry, and the spatial 

variations of mineral grains associated with the structures.  This preliminary analysis 

provides initial information necessary to design the recursive sub-sampling procedure for 

the sample.  How to apply the procedure appropriately is discussed in detail and argued 

with justifications.  From the three datasets obtained following the sampling procedure, a 

conceptual model of the sample is developed to highlight the critical importance of 

finding commonly-shared features for dataset registration, to be considered in the 

following chapter.   
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3.1 Sample description and preliminary analysis 

The preliminary analysis described in this section identified key generic elements to be 

considered for multiscale characterisation and reconstruction by analysis of the geometry 

and composition.  The geometric analysis determined the representative sub-sampling 

volume for multiscale characterisation by investigating generic geometries and scales of 

representative hierarchical structures: interwoven curved and planar laminasets, laminae 

within each set, grading within laminae, and grains and pores within them.  The 

composition analysis determined cross-scale linkage by identifying inter- and intra-LBSs 

that separate hierarchical structures as references.  Based on the preliminary analysis, a 

multiscale top-down characterisation workflow could be designed to obtain three scales 

of recursive sub-sampling, capturing centimetre-scale laminasets, millimetre scale intra-

laminaset laminae, micrometre scale grading within lamina and the grain-pore features 

within them, all with shared parts of bounding surfaces.   

A brownish to reddish fine-grained cross-laminated sandstone slab, about 23 cm high (x-

axis), 6 cm thick (y-axis) and 10 cm wide (z-axis), as shown in Figure 3.1(A), was 

obtained from a quarry at Lochabriggs in southern Scotland.  Based on the geology of the 

region, described by Shotton (1956) and Waugh (1970), the sandstone slab comes from 

the Permian-Triassic geological sequence (see a detailed description in Appendix B.1 ).  

The fine-grained red sandstone with bed/ layered geometry is typically from a hot and 

arid Aeolian environment.  The reddish colour of the sample suggests its iron-rich 

compositional nature, consistent with findings on similar Aeolian sandstones widely 

found in a similar region by Huang et al. (1995) and other places around the world, 

(Walker, 1967).  The dark red, thin laminated structure observed is typically a result of 

authigenic dolomite, along with iron ions (as a result of magnesium in dolomite crystals 

(CaMg (CO3)2), often replaced by iron ions) preferentially cemented at the finely 

laminated bounding surface layer.  Since this work is to develop the workflow, this 

generic fine-grained sample was chosen to ensure 3D XRT imaging could be acquired 

using commonly available instruments, without the loss of generality.   

By visual inspection under natural light, it could be seen that the sample contained 

horizontal planar laminasets at its lower part of the x-axis and curved laminasets at the 

upper part of x-axis, separated by a boundary between both types of laminasets, which 

could not, however, be clearly identified on the surface of the dry sample.  Over 20 

horizontal planar laminasets or laminae could be observed, separated by inter- or intra- 
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LBSs of a few millimetres thickness.  Planar inter- or intra-laminaset structures did not 

appear to be distinguishable, because they have the same geometry.  More than 20 curved 

laminasets could be observed on either the sample’s xy or xz faces in the upper part, as 

they were clearly demarcated by the intersecting and darker reddish inter-LBSs that 

appeared with a thickness (<1mm) thinner than the horizontal part (Figure 3.1(B-C)).  

Some intra-LBSs between laminae could be observed, but with a much weaker contrast 

in colour on the sample’s xz face, each lamina was about a few millimetres thick, 

intersecting the inter-LBS at acute angles.  Paleocurrent direction could be determined as 

perpendicular to the xy surface that has upward curved laminasets (Figure 3.1(B)) and 

inverse to the acute angle between the intersecting intra- and inter-LBSs at the xz surface 

(see paleocurrent direction labelled in Figure 3.1(C)).  Each curved laminaset was about 

a few centimetres thick at xy surface that perpendicular to paleocurrent direction (see 

(Figure 3.1(B)), with wavelength of over 10 centimetres elongated at the xz surface that 

parallel to paleocurrent direction (see Figure 3.1(C))).   

Given the visual structural information above, it is safe to conclude that a sub-volume of 

over 4 cm in height (in the x-axis) and the same thickness (in the y-axis) and width (in 

the z-axis) in the upper part of x-axis of the sample would catch three stacks of curved 

laminasets at different heights, where each stack contains more than one curved 

laminaset.  The width of the sample in the z-axis direction captures a half-wavelength of 

lateral ‘cycling’ laminasets observed on the xz faces, while the thickness is a full curve 

length on the xy faces.  A sub-volume of over 2 cm high (in the x-axis) in the lower part 

of the sample contains a stack of several planar laminasets.  For the purpose of this study, 

i.e. to characterise inter- and intra-laminaset structures and their flow impact, a sub-

volume of 6x6x10cm3 (at the x, t, and z-axis) was taken to contain both curved and planar 

lamiasets, with a 4-to-2 split in height (x-axis) for the upper and lower parts.  This volume 

was further split into two, with 6-to-4 splits in width (z-axis), to yield a 6x6x6 cm3 sub-

volume, L1, highlighted in red in Figure 3.1(A). A thin volume (Tp) has also been taken 

from the counterpart sub-volume of L1 from the xz face, highlighted in yellow in Figure 

3.1(A).  Both sub-volumes contain dozens of planar laminasets and at least 3 stacks of 

curved laminasets of half of their average wavelength, laterally.  The reasoning for 

collecting Tp at xz face is to find potential preferred orientation feature under the 

microscope which in 2D might only be identifiable at cross-section parallel to 

paleocurrent direction.  For a non-spherical grain preferentially lie along paleo current 
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direction, its cross-section would only present differently with non-preferentially laid 

grains at cross-section parallel to paleocurrent direction (this point has been discussed in 

section 2.1.2).   The cross section perpendicular to paleocurrent direction would only 

reveal a nearly circular cross section (low aspect ratio close to 1) for either grains with or 

without preferred orientation feature and make it impossible to observe the variation in 

orientation on the surface.   

L1 and its counterpart sub-volume are considered as ‘identical’ and equally representative 

for developing the workflow, given their generic characteristics.  In what follows, L1 and 

its counterpart sub-volume were then used in the preliminary analysis.  In this analysis, 

L1 was used intact to estimate more quantitatively the ranges of geometrical parameters 

for hierarchical structures, including laminasets and laminae.  The counterpart sub-

volume of L1 was cut into several thin volumes at different depths, to obtain a small chip 

and the top (yellow) volume, Tp, as shown in Figure 3.1(A) to perform the following 

procedure.  The small chip was used to estimate an average grain size and the proportion 

of dominant mineral grains.  An impregnated thin section (about 2x4 cm2 with thickness 

of 30 μm) with blue-stained epoxy resin was made from Tp (also referred to as Tp) and 

imaged using an SEM instrument to first acquire preliminary SE image to estimate grain 

size, and to infer resolutions to perform BSEM and EDS images.  Apart from visual 

manual observation on hierarchical structures, including laminae and layered grading 

within laminae, quantitative estimates on the ranges of pore/ grain sizes, orientation, and 

distribution were derived from the BSEM image.  The trends of compositional 

characteristics in relation to bounding surfaces were revealed from the EDS image.  The 

collective results from this analysis enabled the design of a suitable recursive top-down 

sampling and characterisation for L1, to investigate the REV of hierarchical structures, 

with shared identifiable parts (bounding surfaces) as references of correlation. 
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Figure 3.1 A) 6x10x23 cm3 whole sample and sub-volumes resulting from REV selection and recursive 

sampling; B) an xy view of the sample face perpendicular to the paleocurrent direction and C) an xz view 

of the sample face parallel to the paleocurrent direction. 

3.1.1 Geometry of bounding surfaces from L1 

Early in this stage of the research, the scales of laminaset to lamina and their associated 

bounding surfaces were visually assessed.  Here a classical technique was employed to 

investigate their geometry and estimate more quantitatively the range of each scale.  A 

small amount of water was applied on each surface of L1.  Since the water is expected to 

be the wetting fluid with respect to the air, the water tends to be sucked in faster by smaller 

pores, to give differentially wetted surfaces and therefore optical reflection properties.  

This enhances visual inter- and intra-LBS contrast to the other materials of the sample.  

Figure 3.2 (B-C) shows two side surface views of L1 (Figure 3.2 (A)) to identify and 

measure the geometry of the bounding surface.  Inter-LBS are clearly observed as darker 

reddish transition zones at thicknesses around 1mm or less.  Apart from horizontal planar 

bounding surfaces, inter-LBS geometry is observed as an up-curved shape in the xy face 

perpendicular to paleocurrent direction,  (as labelled in Figure 3.2(B)) and a long inclined 

surface in the xz face parallel to paleocurrent direction, (as labelled in Figure 3.2(C)).  

The different geometries observed on each face confirmed the curved-crested trough 

cross-lamination geometry, as reviewed in section 2.1.1.  A small number of intra-LBSs 

were observed with less clear presentation and only observed on the xz face parallel to 

the paleocurrent direction (as labelled in Figure 3.2(C)).  These observations and 

interpretations are consistent with what is typically believed about the geometrical nature 

of laminated sandstone (Reading, 2009).  Precise measurements on the ranges of their 

respective scales and orientation were made using a ruler and protractor on the wetting-

enhanced sample surfaces and the results are given in Table 3.1.   
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Figure 3.2  (A) L1 with the xy face perpendicular to the paleocurrent direction photted in front; (B) a 

photo taken on the water wetted xy face, perpendicular to the labelled paleocurrent direction in (A), with 

interpreted inter-LBS in yellow dashed lines; (C) a photo taken on wetted xz face parallel to the labelled 

paleocurrent direction in (A) with interpreted inter-LBS in yellow dashed lines and intra-LBS in dark blue 

dashed lines; 

3.1.2 Grain-pore size analysis  

The small chip was taken from the counter-volume of L1 and scanned using the secondary 

electrons (SE) mode of a Zeiss SEM.  The SE image, Figure 3.3, was interpreted by a 

professional petrography analyst, with following results: 1) the overview in Figure 3.3(A) 

suggests clastic grain particles appear to be around 100 μm in diameter with low 

roundness and a sub-angular shape suggesting a potential short distance of transportation.  

The linear-point contact between particles suggests mid-compaction; 2) the overview in 

Figure 3.3(A) suggests the top three mineral grains by proportion are quartz (65%), 

feldspar (25%), and lithic (15%); 3) irregular overgrowth appears on some quartz grains 

(for example, Figure 3.3(B)) suggesting occurrence of diagenesis; 4) intergranular fillings 

appear to be brown clay (2-3%), and patchy calcite (3%) components (for example, Figure 

3.3(C)), suggesting potential occurrence of bioturbation.   
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Figure 3.3 An SEM SE image of a small sample chip A) Sample overview; B) Zoomed in view of 

irregular overgrowth on quartz and C) Zoomed in view of intergranular fillings of calcite 

A high-resolution SEM image obtained for a blue-stained epoxy resin impregnated thin 

section, Tp (Figure 3.4(A)) was used to investigate hierarchical structures of lamina and 

grain and pore variation associated with grading by: 1) manually observing grain-pore 

character variation to identify potential grading and preferred orientation; 2) quantitative 

investigation of grain-pore size and 2D spatial and statistical distribution.  A SEM 

instrument (Quanta FEG 650 SEM) at the Institute of Petroleum Engineering, Heriot-

Watt University, was used to perform multi-scans on an array of marginally overlapping 

sub-areas covering Tp, to produce a set of SEM BSEM images.  Those images were 

registered and stitched together to form a single high-resolution SEM BSEM image 

(Figure 3.4(B)) with the size of 33098x49119 pixels2.  All BSEM images were taken at 

the same resolution of 0.6x0.6 μm2/pixel, capable of fully resolving grains as small as 6 

µm in diameter, or 10 pixels across.   

Manual evaluation 

The BSEM image was firstly evaluated manually by looking at grain-pore size variation 

to identify laminae and layers.  Inter- and intra-LBSs are labelled in Figure 3.4(B) 

manually, with brownish to reddish thin layers observed in image of the thin section under 

natural light in Figure 3.4(A) as references.  The labelling of the bounding surface was 

also based on zooming in and subjectively searching the fine grain-pore layer separating 

laminae or laminasets with distinctively different grain-pore sizes.  The intersection 

angles between the manually plotted inter- and intra-LBS were measured, whose average 
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is 21.70°.  Three 6188x3508 pixels across FoV at locations from either curved or 

horizontal planar laminasets containing intersection of inter- and intra-LBSs (Views-1 to 

3 in Figure 3.4(B)) have been selected to verify manually labelled bounding surfaces with 

more detailed observation on 1) grain size contrast between laminae; 2) potential 

preferred orientation close to bounding surface; 3) the direction of layered grading above 

the bounding surface. 

 

Figure 3.4 (A) 2x3 cm2 blue-stained epoxy resin impregnated thin section containing dozens of horizontal 

planar laminasets at the bottom and 3 curved laminasets at top of the sample; (B) BSEM image with a 

resolution of 0.6x0.6 μm2/ pixel for 33098x49119 pixels^2.  Bounding surfaces are interpreted visually 

from the photo (A) in combination with subjectively searching the fine grain-pore layer separating 

laminae or laminasets with distinctively different grain-pore size.  Inter-LBSs are labelled for the 

horizontal planar and curved part, as H-Inter- and C-Inter- respectively.  Intra-LBSs are labelled for the 

horizontal planar and curved part as h-intra- and c-intra- respectively. 

The three FoVs from both curved and horizontal planar laminasets are illustrated in Figure 

3.5 (A-C); finer grain-pore layers are observed close to the labelled bounding surface 

which separates adjacent regions into laminae with coarser grain-pore space.  Coarsening-

up of grains and pores is observed in the direction further away from the labelled fine 

layer above the intersecting intra- and inter- laminaset bounding in Figure 3.5 (A-C).  The 

thin layer and associated coarsening-up grading occurred above both inter- and intra-

LBSs simultaneously.  This is possible because of the change in direction of the wind, 

which leads to grading on both lee and stoss side, corresponding to intra- and inter-LBS 

respectively.  Figure 3.5 (D-E) gives a further zoomed-in view, centred at the intersection 
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between intra- and inter-LBS, aiming to investigate the potentially preferred orientation.  

A minor degree of preferred orientation is observed above or below the inclined intra-

LBS, but with low confidence.   

 

Figure 3.5 A-C gives Views-1 to 3 highlighted in Figure 3.4(B) of BSEM image with a resolution of 

0.6x0.6 μm2/ pixel for 6188x3508 pixels^2.  Manually-defined bounding surfaces labelled as white line 

named in Figure 3.4(B).  The suspected fine layer above the bounding surface is highlighted in yellow 

dashed line.  D-F gives further zoomed-in view for 2802x1776 pixels^2 of A-C, centred at the 

intersection between intra- and inter-LBS (termed as BS for short in the label in the image) aiming to 

further investigate potentially preferred orientation. 

Quantitative measurement 

The manual observation gives a qualitative suggestion of structure; however, the certainty 

is low because it has introduced too much subjectivity.  For further quantitative 

measurement, the BSEM image was preprocessed using filters, as reviewed in section 

2.3.2, based on the imaging processing software Avizo and Fiji to remove noise resulting 

from image artefacts and to improve the signal-to-noise ratio.  The grains are segmented 

from the pore regions in the processed image using the watershed-based method and then 
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into separate grain particles to be measured (as reviewed in the Avizo approach in section 

2.2.2.2).  Pores are segmented using the Otsu thresholding method, without separation, 

and each separate individual pore-space is measured.  Figure 3.6(A-C) illustrates the 

processed image of a small sub-region of the BSEM image (Figure 3.6(A)) and segmented 

grain particles Figure 3.6(B) and pores Figure 3.6(C).  This detailed analysis is 

documented in Appendix B.2 .  The first threshold of 10 pixels in the area is applied for 

both grain and pore quantification, to exclude artificial noises with small area.  The 

second threshold is chosen for the segmented grains to exclude small grains, as suggested 

by Baas et al. (2007) for more representative grain feature quantification (especially 

orientation).  The inflection point of the grain size histogram has been selected as the 

second threshold, as highlighted in Figure 3.6(D).  Three quantitative measurements were 

performed to investigate: 1) grain size distribution; 2) preferred orientation close to 

bounding surface and 3) overall statistics of grain and pore character on Tp. 

 

Figure 3.6 (A) Zooming in on a grey scale BSEM image (grains in grey and brighter colour and pores in 

black);; (B) segmented grains to be measured (grains in blue and pores in black); (C) segmented pores to 

be measured (grains in blue and pores in black);; (E) Histogram of grain area in pixels^2, part of the range 

(10-50000) is zoomed-in to highlight inflection point by red spot.  

A first quantitative measurement was performed to investigate the spatial distribution of 

grain size in relation to lamina structure to verify the visually plotted bounding surfaces.   

Average grain sizes were measured in 26 sub-regions manually plotted previously, 

representing laminae between the manually determined bounding surfaces in Figure 

3.4(B). The full details of this measurement are given and discussed in Appendix B.2  and 

the main conclusions are summarised as follows: 1) Generally, regions from the 

horizontal planar part have smaller grain size than the curved part; 2) Grain size across 

manually labelled regions appears to be similar within curved and horizontal laminasets, 

suggesting either the lamina feature is similar within each type of laminaset or possible 

inaccuracy of manually labelled regions; 3) The boundary between horizontal and curved 

laminasets appears not clear, because inclined laminae potentially occurred in the 

horizontal laminaset, with low certainty, though. 
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A second quantitative grain orientation measurement was performed to investigate the 

potential preferred alignment of grains along the lamina bounding surface.  Grain 

orientations were measured within lamina regions separated by manually identified 

bounding surfaces at small FoVs (three selected FoVs, as illustrated in Figure 3.4(B)).  

The reason for not applying quantitative measurements to the large FoVs was to reduce 

the possibility of distraction by unidentified laminae with the discussed manual approach 

(see full discussion in Appendix B.2).  With the grains’ long axis orientation calculated, 

the grains for each lamina region were then filtered by orientations of the selected range, 

and the area fraction of filtered grains occupying each corresponding region was 

calculated.  By comparing the grain area fraction for each orientation range over different 

lamina regions, the existence of a preferred orientation could be verified.  Based on the 

full measurement results and discussion in Appendix B.2, for View-1 from the curved 

laminaset, regions close to the inclined LBS are preferentially occupied by grains with 

orientation close to the inclination angle of the inclined LBS.  Therefore, the preferred 

occupation in line with the bounding surface inclination provided evidence of the 

existence of a preferred orientation. This also suggested the manually identified lamina 

regions were with relatively high certainty.  However, there is not such a clear preferred 

occupation observed in View-2 and View-3 which suggests either a preferred orientation 

is less likely to occur or the manually labelled regions may not reflect the true intra-

laminaset geometries for the horizontal laminaset.   

Apart from regional measurements, the overall quantitative measurement of grain and 

pore sizes of Tp is calculated and summarised in Table 3.1 with average grain and pore 

sizes being 76.9 μm and 8.1 μm, identified by the long axes, respectively.  The low grain 

circularity of 0.25 verified the SEM observation of sub-angular shaped grains.  The 

remaining measured grain and pore characters are kept as reference to compare with the 

further measurements from datasets at different direction and resolution.  The geometry 

and scales measured on the hierarchical structures of the laminaset, laminae, and layers 

within the laminae are also summarised in Table 3.1.   
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Table 3-1 Summary of structures observed from analysis (as mentioned in previous section/paragraphs) 

 

The SE analysis implied relatively complex sub-angular geometry of the grains, thus 

suggesting potential anisotropic geometry, therefore, further investigation needed to be 

performed in the perpendicular direction.  The occurrence of diagenesis and bioturbation 

suggested further compositional analysis to look at the spatial distribution of related 

minerals.  BSEM offers manual observation and suggestions on the geometry of laminae 

and direction of grading within laminae in cross-section parallel to paleocurrent direction.  

Generally, the manual observation confirmed the existence of inclined laminae within the 

curved laminaset, with relatively higher certainty, whereas the inclined laminae identified 

manually within the horizontal laminaset, close to the boundary between both types of 

laminaset, are doubted, because they failed to show good agreement with quantitative 

orientation measurement.  This suggests there might be a transitional zone between both 

types of laminaset, where a curved laminaset feature also occurs within the last part of 

horizontal laminaset, but with lower certainty.  The inverse grading for the laminae of the 

curved laminaset observed manually in the cross-section parallel to the paleocurrent 

direction suggests grading layers stacking on both inter- and intra-LBS, because of 

changes in wind direction.  However, grading within the different curved lamina features 

needs further investigation to be performed in the cross-section perpendicular to 

paleocurrent direction.  Manual observation also suggested the bounding surface could 

be as thin as ~1-2 grains thick.  Quantitative investigation of grain-pore size suggested 

relatively similar lamina features within either curved or horizontal laminasets.  The 

preferred orientations are observed based on the manually identified intra- and inter-LBSs 
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for curved laminasets.  An intersecting angle of 21.7º between the manually identified 

intra- and inter-LBSs is measured and smaller than that obtained by the visual observation 

on the L1 surface of 25-30º.  It is therefore suggested that the manually identified 

bounding surface may be less accurate and that more accurate identification of the 

bounding surface is required.  Overall grain and pore size have been quantified to suggest 

0.8 μm is required to cover pore analysis (1/10 pore size is usually used to estimate 

resolution requests). 

The main challenge suggested by this section is to accurately identify the bounding 

surface.  The reason is the boundary between laminae or laminasets is a transitional 

region; therefore, the bounding surface, by definition the layer of finest grain, is hard to 

identify manually based on variation in grain geometry.  It is therefore suggested to carry 

out compositional analysis, as described in the next section. 

3.1.3 Composition Analysis on Tp 

The thin-section Tp was scanned using a SEM with an EDS detector, to characterise 

spatial trends of mineral compositions of grains, with a specific focus on the spatial 

correlation of heavier minerals and bounding surfaces.  For this purpose, a low-resolution 

EDS image of Tp is firstly taken with a resolution of 124x124 μm2/pixel (~1-2 grains in 

diameter across) over the whole sample and yielded a 154x277 pixels square image, as 

shown in Figure 3.7(A).   

In Figure 3.7(A), iron ions, highlighted in green are observed to concentrate at inter-LBS, 

especially for the bottom horizontal planar part in a pattern consistent with the thin, dark 

red layers observed under natural light for Tp (Figure 3.4(A)).  The poorer observation 

for the curved part with low-resolution EDS suggests higher resolution EDS is required 

during recursive sampling and imaging to observe the thinner curved inter-LBS.  This 

confirms the findings in the geological review that iron ions, which form haematite by 

reacting with dolomite during diagenesis, is preferentially cemented at the bounding 

surface and should thus be considered as potential shared features to be included during 

recursive sampling and identified as a cross-scale linkage reference.   

In addition, bioturbations, highlighted by concentration of the randomly occurring 

clusters of Ca ions are observed.  Figure 3.7(B) is a zoomed-in BSEM view, at a similar 

location to the Ca ions cluster identified in EDS, with the area highlighted by the yellow 
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box containing bioturbation.  The pattern of bioturbation observed by EDS is consistent 

with that observed patchily by BSEM.  In BSEM, quantitative measures were performed 

within the labelled area of bioturbation, as well as one neighbouring area with identical 

size, for comparison.  The results proved the arrangement of grains is more coherent for 

the bioturbation area with smaller grain and pore size and lower porosity than surrounding 

areas.  The random occurrence of bioturbation may lead to disturbance on the lamination 

structure, and therefore an impact on fluid flow, and should be considered especially 

during reconstruction and simulation.   

 

Figure 3.7 (A) Coarse EDS overall scanning of TP with a resolution about 124x124 μm2/pixel for 

154x277 pixels^2. 

3.1.4 Conclusions of the preliminary analysis 

Centimetre-scale inter-LBSs were identified visually from the sample surface and 

summarised in Table 3.1.  The geometry of curved laminasets at centimetre scale is 

distinctively different at surface perpendicular to and parallel with the paleocurrent 

direction, which is consistent with the geological expectation of a curved crest tough 

cross-lamination.  Therefore, 3D MXRT imaging is suggested to obtain the internal 

complex structure of curved lamination of L1, especially, to further identify 

representative geometry and recursively design sub-sampling size and location.   

Similarly, Tp offered representative geometric analysis at a cross-section parallel to the 

paleocurrent direction for laminae at millimetre scale and grading within laminae at 

hundreds of micrometres scale and grain-pores at the micrometre scale.  The BSEM was 

found to struggle in identifying the thin inter- and intra-LBS (~1-2 grains thick) 
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accurately.  Low-resolution EDS confirmed the preferred cementation of iron ions at a 

bounding surface could be a potential indicator for identifying the bounding surface layer 

accurately, but higher resolution EDS is required.  The confirmation of preferred 

cementation of iron ions also verified density sensitive MXRT would be helpful to 

identify inter-LBS.  Based on visually identified LBS, grading stacking direction and 

intersection angle are estimated. 

The quantitative measurements based on subjectively defined regions suggested that 

inclined intra-laminaset laminae is more likely to appear in curved laminasets than 

horizontal laminasets and that a transitional zone may exist close to the boundary between 

both types of laminasets.  The existence of a transitional zone is inferred by the fact that 

the inclined laminae feature, which is supposed to be observed in curved laminasets only, 

has also been observed within a horizontal laminaset, at the location close to the curved 

laminaset.  The grain-pore sizes were measured as larger in the curved laminaset than the 

horizontal laminaset, based on manually defined laminae regions, but were relatively 

similar within each type of laminaset. It is therefore suggested laminae and grain-pore 

features are similar within each laminaset but different across, and a transitional zone may 

exist in between where both types of features mix. 

The geometry of the laminae is expected to be different at cross-section perpendicular to 

paleocurrent from that parallel to the paleocurrent; this therefore suggests that further 

investigation should be performed on the cross-section perpendicular to the paleocurrent 

direction to investigate grading.  The complex 2D sub-angular grain geometry implies a 

complex 3D geometry of grains, which could also be investigated in combination with 

further 2D analysis of thin section perpendicular to paleocurrent direction.  Thus, to obtain 

the 3D grain-pore space geometry for the purpose of 3D pore-space reconstruction, 

further sub-sampling of micro core plugs is required..  

To implement these suggestions, a recursive top-down subsampling is required.  REV of 

the laminasets, laminae, layers and grain pores should be considered during sampling at 

each scale, according to the measured structure range in Table 3.1.  In addition, the multi-

scale sampling should contain shared parts of the bounding surface as references for top-

down characterisation and multiscale integration.   
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3.2 Process of recursive sub-sampling  

The preliminary analysis resulted in a set of geometrical estimates about the hierarchical 

structures (see Table 3.1) that are needed for designing and implementing a recursive 

sampling procedure appropriate to the sample.  The two key design principles of a 

recursive sampling procedure, according to the concept of top-down “geo-pseudo”, are: 

1) sampling representative identified hierarchical structures at a coarse scale to further 

identify smaller hierarchical structures at the next finer scale: each sampling is designed 

according to recursively collected hierarchical structure information; and 2) a sub-sample 

taken at a scale must overlap partially with one or more other sub-samples in space taken 

at the same and different scales to capture shared structures of interest and to register 

them.   

By applying these principles to the sample, the recursive sub-sampling procedure starts 

from the sub-volume L1, as the preliminary analysis justifies its representativeness, and 

further subsampling and characterisation to collect hierarchical structures recursively, 

down to the pore and grain scales.  In what follows, the design process is reported here to 

answer the generic questions: Where should one take samples?  How many samples 

should one take?  At which sample sizes should one take samples?  Since the process is 

iterative in nature, involving taking and analysing samples at one scale and making the 

decision for the next scale, consideration is given to not showing details of all analyses, 

in order to avoid distracting the understanding of the process.  For this reason, some 

detailed analyses will be reported in the Appendices.   

3.2.1 Sampling on L1 

6cmx6cmx6cm L1 was introduced, taken to contain both curved and planar laminasets 

with a 4-to-2 split in height (x-axis) on the upper curved and lower planar parts.  L1 has 

been argued to contain the REV of laminaset structures (dozens of planar laminasets and 

3 stacks of curved ones) based on the preliminary surface analysis.  The quantified surface 

measurement summarised in Table 3.1 supports the REV argument, as the 1-2 cm and 1-

4mm laminaset thicknesses measured for the curved and planar laminasets respectively 

are much thinner than the 6cm of the sample height.  From L1, different geometries of 

inter- and intra-LBS were observed at two perpendicular surfaces; 3D XRT imaging is 

therefore suggested to implement the understanding of the internal 3D geometry of the 
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laminaset or its bounding surface and provide suggestions on further subsampling size 

and locations.   

3.2.1.1 Physical sampling and imaging procedure  

L1 is the largest sub-volume involved in this design.  At this scale, the goal is to 

characterise the internal laminaset structures by identifying the inter-LBS, which cannot 

be achieved in the preliminary analysis on the surface or from 2D datasets.  Given the 

volume of L1, a full-size 3D XRT imaging was performed using an industrial MXRT 

machine, nanoVoxel-4000 (by a collaborator at the lab of Beijing Normal University).  

L1 has been scanned by low resolution, at 100x100x100 μm3/voxel, to scan a 

562x550x525 volume (note this resolution is the highest achievable for the industrial CT 

to image the whole sample), but with sufficient resolution to retain a potential identified 

cross-scale linkage: the ~1-2 grains thin (100-200 μm according to Table 3.1) bounding 

surface.  The energy of the XRT imaging is based on “trial and error”, with peak X-ray 

energy level of 0.2 MeV, so that the energy is high enough to penetrate the 6 cm cubic 

sample.  Figure 3.8(A) and Figure 3.9(A) show a reconstructed grey-scale xy slice and 

the whole 3D MXRT volume of L1.  The thin bounding surface is presented in a slightly 

brighter colour (higher X-ray attenuation that implies a heavy mineral) but its contrast 

has been decreased by brighter parts at the boundary of the sample caused by global 

hardening effect.  The global hardening effect can be effectively removed based on the 

concept of the ‘rolling ball’ algorithm described by Sternberg (1983), in which a ball of 

given radius is rolled over the bottom side of the intensity surface (Figure 3.8(A)) to 

remove the uneven background (Figure 3.8(C)) (see Appendix B.3 for a detailed 

discussion).  After the removal of the global hardening effect, bounding surface are 

presented with higher contrast whose intensity surface as in Figure 3.8(B) having a more 

even base (background). 
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Figure 3.8 (A) one 2D raw MXRT image slice of the stack slices obtained by industrial MXRT, where 

pixel values represent attenuation at each point; (B) processed image of A, with global hardening effect 

background removed and presenting clearer bounding surface features in bright curvilinear region; (C) the 

global hardening effect background  has been removed from A.  Below each image is a pixel intensity 

plot along the selected line, as highlighted by yellow 1-pixel wide rectangle.  The horizontal-axis of each 

intensity plot represents distance along the rectangular long axis and the vertical-axis of the intensity plot 

is the pixel intensity.  The red circle in the intensity plot of (A) represents the ball with a diameter of 50 

pixels rolling below the intensity plot, to remove the background. 

3.2.1.2 Image analysis and results, implication on sub-sampling decision 

Figure 3.9(B) shows the 3D XRT image of L1 after hardening was removed from original, 

shown as Figure 3.9(A), and the bounding surface is more obvious.  A simple image 

analysis method (“segmentation editor” plugin in ImageJ) was applied for a preliminary 

visual exploration of the internal laminaset structures.  The method to segment the 3D 

bounding surface starts with the manually traced bounding surface on 10 xy slices evenly 

distributed along z-axis and automatically connects missing bounding surfaces on the 

remaining xy slices by propagation in the Z axis direction, based on similarity of 3D local 

intensity.  Figure 3.9(C) shows the segmented 3D bounding surface, with each separated 

surface labelled in a different colour.  17 horizontal planar surfaces and 9 curved surfaces 

are labelled, which verifies the representativeness of L1.  From Figure 3.9(B-C) 3D it can 

be seen that the bounding surface in the upper curved part presents a clear curved-crested 

trough as a cross-lamination feature, which is consistent with the surface observation.  

Figure 3.10 displays the segmented curved bounding surfaces, one by one, to visually 

analyse their geometry and to infer their sedimentary character.  Because every sample is 

different, the inference and evaluation of the sedimentary character could only be 

correlated to the characteristics reported in the literature in section 2.1.  From Figure 3.10 

only one lunar up-curved surface (pink, on the right) and one almost planar (yellow, on 
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the left) are observed with relatively complete surface geometry, which could be seen as 

the bottom part of an up-curved ripple, while others appear like halves of lunar curved 

bounding surfaces.  The curved surfaces appear to have the same elongation in the 

paleocurrent (Z) direction, as labelled.  The geometry of the segmented bounding surfaces 

confirms the extracted bounding surfaces are mainly inter-LBSs, based on their geometry, 

because intra-LBSs will occur as a set parallel surfaces intersecting at an inter-LBS.  The 

geometry of the laminaset is believed to have similar features within the sample because 

the majority of up-curved crest surfaces are elongated in the same Z direction, and less 

than one wavelength has been captured for all surfaces within the sample. 

 

Figure 3.9(A) 3D XRT of L1 with size 562x550x525 at 100um^3/voxel; (B) Same volume of A after 

global hardening effect has been removed by rolling ball method illustrated in Figure 3.8; (C) sub-

automatically segmented 1st and inter-laminaset  bounding surfaces from (A (27 connected surfaces are 

segmented); separate surfaces are labelled in different colours for better illustration. 

 

Figure 3.10 Curved bounding surfaces displayed separately to analyse the geometry and formation of the 

curved laminaset 
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The scales of the laminasets are measured based on segmented inter-LBS (Figure 3.9(C)) 

(see detailed discussion in Appendix B.3 ) and summarised in the extended Table 3.3.  

The curved laminaset thickness of 3-11 mm is measured between segmented inter-LBS, 

which are slightly thinner than appeared from surface observation.  The measured 

thickness suggests MXRT imaging provides more internal observation and provides 

insights regarding internal bounding surfaces that the surface view could not identify.  

The half wavelength of 5cm which is estimated verifies the preliminary surface 

observation and no full wave of bounding surface was observed in L1.  Horizontal set 

thickness is consistent with the surface view but could still not distinguish inter- or intra-

LBS; therefore, the measurement is applied to both laminaset and lamina thickness in 

Table 3.3.   

The thickness of the bounding surface was measured as <1 mm from the processed image 

(Figure 3.9(B)) and < 2mm from the segmented image (Figure 3.9(C)).  Considering that 

the previous BSEM manual observation estimated the thickness could be as thin as 100-

200 μm, the segmented bounding surface in MXRT is effective to study the laminaset 

geometry because of its larger FoV, but it may lack accuracy in identifying the thickness 

of the thin layer of the bounding surface.  This limitation is mainly caused by low 

resolution and the set of imaging artefacts (e.g. the blurring effect) of XRT, as reviewed 

in section 2.2.1.3.  Apart from increasing resolution, further compositional analysis is 

required, because the imaging artefacts are related to the complex composition and need 

to be studied.  The less accurate identification of the bounding surface layer as the initial 

bottom layer of a lamina may be an obstacle to characterising layered grading within 

those laminae in which the layers have thicknesses less than a thinnest lamina of 1 mm, 

based on previous measurements.  The presentation of bounding surfaces in density-

sensitive XRT verified the concentration of heavier minerals (presented as lower X-ray 

attenuation).  However, the limitation in segmenting the bounding surfaces of LI 

suggested further compositional analysis is needed at a higher resolution to investigate 

the fundamental constitution of the bounding surface and to help develop a more accurate 

segmentation method.   

Simple segmentation is also limited in its ability to keep the connectivity of bounding 

surface in the Z direction (see Figure 3.11 for a comparison of two perpendicular slices).  

The reason is that the simple segmentation method is based on a given traced xy slice and 

auto-propagates in the Z direction, and therefore lacks connectivity examples in the Z 
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direction.  Moreover, intra-laminaset surfaces appear not to be successfully segmented 

with the simple segmentation method in Figure 3.9(C), because of lack of contrast in the 

MXRT image. 

 

Figure 3.11 Two perpendicular side views of the segmented bounding surface of L1 obtained by simple 

segmentation method: A) 263/525 slice of segmented bounding surface in xy direction; B) 275/550 slice 

of segmented bounding surface in xz direction. 

With the internal structure presented in this section, the sample appears to have an up-

curved laminaset deposited after the horizontal laminaset; therefore, the +X direction 

perpendicular to the planar surfaces could be assumed as the sedimentary direction.  The 

analysis of the internal geometry also verified that each curved laminaset has a similarly 

up-curved geometry, elongated in the paleocurrent direction, of about half a wavelength 

within the sample size of L1.  This suggests that lamina geometrical features within the 

laminasets could potentially be similar, but further quantitative verification, for example, 

by lamina thickness, is required.  Considering the thickness of a laminaset measured is 

typically less than 2cm, one thin section sub-sample perpendicular to the paleocurrent 

direction would include a representative number of up-curved cross-sections of the 

laminasets involved in L1.  The REV and resolution could be determined based on 

extended Table 3.3.  The identification of inter-LBS with uncertainty low in their exact 

positions but high in their individual thickness, continuity and their connectivity suggests 

further compositional analysis should be performed on subsamples which have a higher 

resolution.  Thus, the potential challenge in segmenting thin bounding surfaces implied 

in this section should be further verified after compositional analysis on subsamples. 



Chapter 3: Developments of recursive sub-sampling procedure  

73 

 

3.2.2 Sampling on T2 

One piece of chip, referred to as T2, has been cut off from one of the six surfaces of the 

cube L1, which is perpendicular to the paleocurrent direction, as the xy surface contains 

up-curved bounding surfaces, as illustrated in Figure 3.12(A) and also in the original 

sample in Figure 3.1, to illustrate its relative location. This was done because: 1) the top-

down sampling principle requires taking shared parts of the structure between T2 and L1, 

which could be confirmed from the segmented MXRT of L1; and 2) both L1’s MXRT 

and Tp analysis suggested further investigation is required perpendicular to the 

paleocurrent direction, to capture the different geometries of representative hierarchical 

structures from the laminaset down to grain-pore grading.  A 60x30x10 mm3 chip was 

collected perpendicular to the paleocurrent direction from the xy surface, where bounding 

surfaces were observed from both the L1 surface and MXRT images.  A standard, blue-

stained epoxy resin impregnated thin section of size 2x4cm2 and 30um thick was prepared 

as T2 (Figure 3.12(B)), which included REV of laminasets and laminae, according to the 

geometric scales updated after L1 MXRT analysis, as summarised in Table 3.3.   

High-resolution compositional analysis was performed first, because: 1) both low-

resolution EDS on Tp and MXRT on L1 observed inter-LBS to be sensitive to the heavier 

iron ions cementation, but the fundamental grain-pore scale nature is hard to reveal 

accurately, because the resolution is too low; 2) the intra-laminaset thin bounding surface 

is even harder to observe by both MXRT of L1 and BSEM of Tp.  High-resolution 

compositional analysis of the bounding surface was performed by 1) an optical 

microscope using fluorescence and polarized lights, using a Zeiss AxioCam MRc5, at 

four selected FoVs, to contain inter-LBSs as labelled P1-P4 in Figure 3.12(B), with 

different magnifications; and 2) a high-resolution EDS image at 1.1x1.1 μm2/pixel, with 

a dimension of 19845x38074 pixels square on T2, shown in Figure 3.12(C) (using Quanta 

FEG 650 SEM at Institute of Petroleum Engineering, Heriot-Watt University, in the same 

way as constructing the single BSEM image of Tp, as shown in Figure 3.4).  After 

compositional analysis, BSEM (Figure 3.12(D)) was then performed at identical 

resolution and dimension on the same equipment with EDS, to investigate the geometries 

of hierarchical structures from laminar to grain-pore, as an implementation of Tp 

measurements but perpendicular to the paleocurrent direction. 
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Figure 3.12 (A) Thin chip cut from L1 for T2; (B) Thin section T2 cropped at green dashed line box 

highlighted as FoV in A, with four FoVs labelled in white boxes for optical microscope analysis;(C) EDS 

scanned at black dashed line as boxed FoV highlighted in B, with resolution of 1.1x1.1 μm2 /pixel with 

dimensions of 19845x38074 pixels2; (D) BSEM scanned at identical FoV and resolution as for EDS; 

To have a consistent understanding of how each dominant composition presents across 

the applied imaging techniques, one optical microscope image using polarized light and 

one using fluorescence light, one EDS image and one BSEM image are taken at the same 

FoV, P2, and manually registered to be compared in Figure 3.13.  The dominant minerals 

are labelled in different colours in each image.  Potential transitional bands of inter-LBS 

are highlighted between yellow dashes, based on manual observation, by identifying a 

fine grain layer with heavy mineral concentration and taking the natural light thin section 

photo at P2 in Figure 3.12(B) as a reference.  The main observations include: 1) on the 

polarized light image (Figure 3.13(A)), darker coloured minerals proved to be haematite 

and dolomite-rich, based on the registered EDS, and are clearly cemented at inter-LBS.  

In contrast, the fluorescence light image (Figure 3.13(B)) enhanced the contrast of quartz 

and K-rich feldspars, that present in bright colours, but their distribution does not relate 

to specific structures of cross-lamination; 2) high-resolution EDS provides a robust 

approach to study the spatial distribution of minerals, therefore, the geometry of the 

bounding surfaces could be studied by looking at haematite and dolomite which proved 

to be preferentially cemented at bounding surfaces; 3) BSEM is less useful in 

compositional study but gives smooth presentation of grain particles (because it is less 

sensitive to elements within the grains) and shows a clearer edge in between; it is therefore 

good for grain-pore geometry analysis; 4) the optical polarized light image appears 

superior to others for identifying bounding surfaces because it reveals more 

concentrations of heavy minerals.  This is because the optical polarized light image is a 

projected image of light transition through the thin-section rather than a reflection on the 

surface, as used by other methods, and therefore, would have a similar advantage in 
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identifying bounding surface as that obtained by radiographs (with 2D projection effect) 

as in the previously discussed example by Damcı and Çağatay (2016) in Chapter 2.  

Although fluorescent light is claimed to have an advantage in identifying pores, according 

to the literature reviewed in Chapter 2, it is, however, not the primary interest in this work.  

Therefore, in the next stages optical polarized light images are used to analyse the 

compositional and geometric characteristics of bounding surfaces, with EDS used to 

provide a more quantitative analysis of the overall geometry of bounding surfaces, by 

highlighting the presence of haematite and dolomite, and BSEM is used at the end to 

implement the grain-pore geometry quantitative measurements.   

 

Figure 3.13 Comparison of four images taken at the same location: dominant minerals labelled in 

different colours; manually identified fine bounding surface layer, based on natural light photo as 

reference, is highlighted between yellow dashed lines.  :(A) P2 under polarized light at 10X 

magnification; (B) P2 under fluorescent light at 10X magnification; (C) P2 with EDS at resolution of 

1.1x1.1 μm2 /pixel with dimensions 1266x1047 pixel2; (D) P2 with BSEM at resolution of 1.1x1.1 μm2/ 

pixel, with dimensions 1266x1047 pixel2; 

3.2.2.1 Optical microscope analysis for compositional study 

Optical analysis using polarized light was performed at each of the four locations labelled 

as P1-P4 in Figure 3.12(B), at three magnifications. The full results and discussion are 

given in Appendix B.4  and the main conclusions are summarised here. 1) The bounding 

surface layer could be as thin as ~2-3 grains thick for the horizontal part; 2) The bounding 

surface appears to be a transitional band, where a distinctive boundary is still hard to 

identify; 3) Layered coarsening up (with average grain size increasing layer by layer as 
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stacking occurs over the bounding surface layer, with each layer having same thickness 

as the bounding surface layer), and thus inverse grading, is observed in the vertical (+X) 

direction, which is consistent with and confirms the previous assumption of a sedimentary 

direction; 4) For both horizontal and curved laminasets, the layered inverse grading is 

parallel to the manually defined bounding surfaces; 5) The intra-LBS is still hard to 

identify.  The estimations are included in Table 3.3. 

3.2.2.2 EDS analysis 

High-resolution EDS imaging was performed over T2 to study the geometry of bounding 

surfaces at REV, highlighted by preferentially cemented haematite and dolomite.  The 

1x1 μm2/pixel resolution of the EDS image covered average grain and pore long axes 

measured in Tp (Table 3.1).  The top row of Figure 3.14(A) illustrates two zoomed-in 

views of haematite clustered with dolomite and cemented between quartz.  The star shape 

is consistent with the geological claim that authigenic dolomite occurs surrounded by 

haematite, which is preferentially cemented between fine quartz grains.  The cohesion of 

dolomite and haematite is also consistent with the geological claim that the Mg ions of 

dolomite (CaMg (CO3)2) is typically replaced by iron ions as a result of diagenesis.  

Dominant minerals are segmented by colour thresholds (see Figure 3.14(A): the bottom 

row shows an example of a zoomed-in view of dolomite segmented from an EDS image).  

The dominant minerals are segmented separately, with dolomite and haematite presented 

together as Figure 3.14(B), to highlight the bounding surface. Both K-rich and Na-rich 

feldspar are presented together in Figure 3.14(C) as feldspar, which is the second most 

important mineral in typical Aeolian sandstone, but also a potential distraction to 

identifying the bounding surface because of its high density, as noted in the review in 

Chapter 2. Figure 3.14(D) also shows the distribution of calcite, as indicator of 

bioturbation.  Quartz is not discussed, as it is typically known as the main constituent of 

sandstone, and is expected to be distributed evenly over the sample. 
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Figure 3.14; (A) Zoomed-in EDS image (same colour map with Figure 3.13(C) applied): top row shows 

two zoomed-in views of iron ions clustered with dolomite cemented between quartz and bottom row 

shows an example of dolomite segmented by colour threshold; (B-C) segmented binary element map 

shown with selected combinations: (B) Dolomite and haematite distribution maps on T2, both shown in 

black; (C) Feldspar (Black) distribution map on T2 and (D) Calcite (Black) distribution map on T2, 

indicating bioturbation. 

From Figure 3.14(B), the dolomite and haematite distribution appear scattered but the 

general pattern is related closely to the inter-LBS that was observed from the thin section 

under natural light (Figure 3.12(B)), while intra-LBSs are still not observed clearly.  

However the dolomite and haematite related inter-LBS appears not to yield a continuous 

surface, because 1) haematite and dolomites have a scattered distributed on the bounding 

surface, as a result of cementation between quartz  particles and naturally create small 

diameter “fake holes”; 2) the continuity of the bounding surface would also be interrupted 

by erosion, which creates “real holes” with a larger diameter than “fake holes” (see 

highlighted example in Figure 3.12(B)); 3) The occurrence of bioturbation would also 

create interruptions on the bounding surface, with even larger radius “real holes”(see 

highlighted example in Figure 3.12(B), corresponding to segmented calcite, indicating 

bioturbation, in Figure 3.14(D)).  Bioturbation in Figure 3.14(D) presents as several 

randomly occurring clusters and the largest one is highlighted in the yellow box which 

appears close to the boundary between the curved and horizontal laminaset.  The spatial 

location of the identified bioturbation is consistent with Tp, according to their spatial 

location.  The relative locations of T2 and Tp are illustrated in Figure 3.15, the yellow 

box highlights that bioturbation in both T2 and Tp is spatially correlated; 4) Apart from 

“fake holes” and “real holes”, however, the scattered distribution of feldspar potentially 

distracts the identification of bounding surface highlighted by haematite and dolomite as 

a result of the local hardening effect.  The reason for the distraction is feldspar having a 

similar density (2.56 gm/cc) to dolomite (2.87 gm/cc).  The distribution of feldspar (as 
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the second major constituent) in Figure 3.14(C) is very scattered over the map, apart from 

two wide bands in the middle, which might be correlated with the occurrence of a 

different lamina or laminaset.  Therefore, its close similarity in density with dolomite may 

decrease the contrast and distract the identification of bounding surfaces, when occurring 

in a neighbouring location, of bounding surfaces presented in low-resolution density-

sensitive MXRT images.   

 

Figure 3.15 Comparison of bioturbation, highlighted by calcite distribution map in EDS of T2 and Ca 

ions distribution map in Tp, shown in the spatial location relative to L1.   

As identification of bounding surfaces is critical to this work (to be taken as the cross-

scale reference between multi-scale images) the four potential issues that could 

disconnect the true continuous bounding surface have been discussed above.  To estimate 

the potential scale of the length of each type of discontinuity in the bounding surface, 

subjective measurements were performed, with details given in Appendix B.4 , and the 

results summarised in Table 3.2.  In short, the “fake holes” were identified from the 

dolomite and haematite map by looking for regularly occurring small gaps with stable 

diameters following the trend of the bounding surface.  On the dolomite and haematite 

map, erosion caused by “true holes” was also estimated by searching for abnormal and 

randomly occurred gaps with larger diameters.  The size of the “true hole” caused by 

bioturbation could be estimated by measuring the diameter of the cluster in the calcite 

map.  The distraction due to feldspar should be estimated with a slightly different logic, 

by searching for the average distance between small clusters of feldspar, because the 

distraction on identification of bounding surface is caused by the local hardening effect 
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and would be more significant when it is closer to a bounding surface.  Therefore, the 

average distance between the scattered feldspar clusters needs to be known, so as to obtain 

an idea about the size of the neighbouring area within which the identification of 

bounding surface may be distracted by feldspar.  The challenges of identifying a bounding 

surface, as discussed in chapter 2 are verified here, the length scales of dis-connectivity 

summarised here are important to instruct the development of a connectivity enhancing 

method in chapter 4.   

Table 3-2 Discontinuity of bounding surface 

Discontinuity 
reason  

“fake hole” of scattered 
haematite and dolomite 
cementation 

Distraction 
by feldspar 

“true hole” 
of erosion 

“true hole” of 
bioturbation 

Length scale  < 2mm ~2.4 mm > 5mm > 6mm 

 

Based on the EDS dolomite and haematite distribution map, the horizontal laminaset 

thickness could be updated with more accurate measurements, because the high-

resolution EDS captured the fine ~1-2 haematite and dolomite grain cemented inter-LBS 

layer.  The thickness of the horizontal part is clearly identifiable, however, where the 

thinnest part is observed to be < 1mm, and a thickness range of 0-3mm is estimated, as 

shown in Table 3.3.  The thickness of the curved laminaset is, however, not clear, because 

of the limited FoV, and only two curved inter-laminaset bounding surfaces are observed 

to intersect with each other. 

3.2.2.3 BSEM quantitative measurement 

The zoomed-in view of Figure 3.14(A) demonstrates that high-resolution EDS is good at 

providing an accurate elementary distribution map, but each grain particle would be full 

of the noise of different colours, as a result of the mixture of different elements.  

Therefore, the BSEM of T2 was segmented, following the same method as in Tp, as 

illustrated in Figure 3.6 (with details in Appendix B.5 ), and overall quantitative statistics 

of grain-pore geometries were measured, as summarised in extended Table 3.3.   

A comparison of grain and pore measurements of Tp and T2 is summarised in Table 3.3.  

The overall number of grains and pores (count) measured in T2 is larger than in Tp, which 

could be a result of the larger sample size of T2 (4x2 cm2) than that of Tp (3x2 cm2).  The 

average grain and pore size in terms of their surface areas, and long and short axes are 

roughly in agreement between Tp and T2 (note that the slight difference may be also 

caused by the number of decimal places set).  However, the circularity of grains in T2 is 
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higher than in Tp, in which the cross-sections of elongated grains would present more 

elliptical shapes from cross-section parallel to paleocurrent direction, Tp, and present 

more circular shapes from cross-section perpendicular to paleocurrent direction, T2.  The 

different circularity observed for grains from cross-section at two perpendicular direction 

provided indirect evidence of preferred orientation.  The average angle (orientation) of 

grains measured in Tp is about 3ºdeviation from the values obtained in T2.  The 3º 

deviation in T2 is considered significant, as the second piece of evidence of orientation 

inclined parallel to the paleocurrent direction.  The 3º deviation is significant because the 

larger numbers of grains that were counted with arbitrary orientation would average the 

relatively small number of grains with the preferred orientation. 

Table 3-3 Summary of Updated Measurements  

 

This section has described how thin sections of T2 were measured by the optical 

microscope, EDS and BSEM. Based on these measurements, the main conclusions and 

suggestions are: 1) heavy haematite and dolomite are confirmed as the signature of the 

bounding surface and responsible for the brighter presentation of bounding surface in 

MXRT because of their higher density.  The thin, fine grain layer in the bounding surface 

could be as thin as ~1-2 grains thick;  therefore, the need for more accurate segmentation 

than simple segmentation on L1 is suggested; 2) intra-LBSs are still hard to observe, even 
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with high-resolution EDS images;  so the laminae and layers within them still require 

investigation; 3) preferred orientation and grading are measured with limited confidence 

because a continuous bounding surface and 3D orientation could not be accurately 

identified from either 2D Tp or T2 images.  Therefore, further investigation is suggested 

to be performed in 3D μ-XRT, where the bounding surface is expected to be better 

identified by a 3D projection view (similar to radiographs, as previously discussed in 

Chapter 2) and 3D orientation could also be studied; 4) the different circularity between 

T2 and Tp perpendicular to and parallel to the paleocurrent directions verified the 3D 

complex geometry of grains and pores, apart from the preferred orientation.  Therefore, 

3D μ-XRT is suggested to further characterise grains and pores.   

3.2.3 Sampling on selected plugs 

3D imaging on small plugs was performed in this stage of the research, to investigate the 

geometry of laminae, layers and the grain-pore space within them.  The investigation of 

lamina features of grading and preferred orientation is limited in 2D images, because 

continuous bounding surfaces are hard to identify.  Further investigation is expected to 

be possible by use of 3D μ-XRT images, which are potentially capable of providing clear 

identification of bounding surfaces by looking at a projected view of a stack of xy slices 

in 3D, where the scattered distribution of heavy minerals on a yz planar or curved surface 

is concentrated into a straight or curved line.   

Apart from including 3D small-scale laminar structures for investigation, the sampling of 

small plugs needs to include parts shared between L1 and T2, to correlate the finer scale 

images for reconstruction purposes.  Correlating plug images with L1 MXRT could be a 

challenge with large scale difference, but the 2D images of T2 intentionally covered a 

large area on one L1 surface at the pore-grain resolvable resolution, to serve as 

intermediate for correlation.  Therefore, the next sub-sample was chosen to target 

selective small volumes of core plugs, each of which penetrates through one laminaset, 

and at the closest practical location to T2, to acquire 3D μXRT image of them at a 

resolution equivalent to that of the T2 2D images.  Based on previous discussion, it 

appears that horizontal planar and curved laminasets have different geometries of laminae 

and grading layers; therefore, at least one plug needed to be prepared to investigate each 

type of laminaset.   
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Seven small cylindrical plugs of 3-5 mm in diameter and 4mm long were taken from the 

remaining volume of L1 (all are from a selected location containing part of the bounding 

surface), as shown in Figure 3.16.  Of these, four were located in the curved laminaset 

region, while the remaining three were in the horizontal planar region.  Figure 3.16(B) 

shows the locations of the plugs, named as S1 to S7, and Figure 3.16(C) shows plugs 

drilled at the closest practical distance (< 3mm) to the surface to avoid collapsing.  The 

first set of μ-XRT images was acquired for 3 plugs S1, S3 and S4, (using XRadia/Zeiss 

VersaXRM 410 at the School of Engineering & Computing Sciences, University of 

Durham to achieve high resolution (< 5x5x5 μm3/voxel) to capture the grain-pore 

structures).  Among them S1 and S4 were selected to be analysed. This was because 1) 

the scanned μ-XRT contained relative clear patterns of bounding surfaces; 2) S4 and S1 

fall within the horizontal planar and curved laminasets, respectively, and 3) they are 

located behind T2 and could relate to T2 through shared bounding surfaces.  The analysis 

of these images (see below) indicated that taking additional μ-XRT images besides those 

of S4 and S1 would be unlikely to obtain further information.  The grain and pore 

geometry of S1 and S4 were firstly quantitatively measured to extend the information in 

Table 3.3.  The bounding surface was then further investigated on both images, followed 

by a quantitative study on the preferred orientation and layered grading.   

 

Figure 3.16 (A) Illustration of the rest of L1 after T2 had been cut off from surface (image put upside 

down to display curved laminaset in upper sample, to be consistent with previous images); (B) xy surface 

locations of 7 plugs with example inter-LBS labelled; (C) Illustration of 3-5mm diameter cylinder plugs 

drilled close to the surface after T2 had been taken off.   

3.2.3.1 Overall geometry and quantitative measurements 

Both S4 and S1 were scanned using μXRT at two voxel resolutions, 1 μm3/voxel and 

3.1x3.1x3.1 um3/voxel for S4, and 1x1x1 um3/voxel and 4.3x4.3x4.3 um3/voxel for S1.  

At the higher resolution, only the centre part of S4 and S1 was imaged instead of the 

whole.  Figure 3.17(A) and Figure 3.18(A) show the renderings of 3D images of S1 and 

S4 respectively, with half volume of a low-resolution image and full volume of a high-
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resolution image registered manually in the centre.  Figure 3.17(B) and Figure 3.18(B) 

show the green box highlighting a middle slice of the xy cross-section stack, also with a 

high-resolution image registered manually in the middle.  It can be observed that the 

bounding surfaces of no more than 5 grains thick on both samples can be traced safely 

following the high-intensity bright voxels in both high- and low-resolution μ-XRT images 

(note the bounding surface observed in μ-XRT is considered as an inter-LBS reference to 

the sample photo taken under natural light in Figure 3.16); the bright voxels are known 

to be associated with grains composed of a high proportion of heavy metal components, 

as identified from the SEM images and optical microscopy images in the previous section.  

Given that the purpose of the sampling is to estimate lamina thickness and grading 

character, a larger FoV is preferred to achieve more representative measurement.  A 

decision was made to use low-resolution images only in the following discussion.   

 

Figure 3.17 (A) Renders of S1 imaged at resolution of 4.3x4.3x4.3 μm3/voxel (the outer larger cylinder 

volume) and resolution of 1x1x1 μm3/voxel FoV in the centre (the inner smaller cylinder volume); blue 

boxed volumes of image with resolution of 1x1x1 μm3/voxel are cropped for full quantification 

measurements; (B) Green boxed xy cross-section of A. 
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Figure 3.18 (A): renders of S4 imaged at resolution of 3.1x3.1x3.1 μm3/voxel (the outer larger cylinder 

volume) and resolution of 1x1x1 μm3/voxel FoV in the centre (the inner smaller cylinder volume), blue 

boxed volumes of image with resolution of 1x1x1 μm3/voxel are cropped for full quantification 

measurements; (B) Green boxed xy cross-section of A. 

As discussed in section 2.2.2.3, because of the different strengths of different 

segmentation methods, typical watershed-based segmentation approaches were applied 

for grain segmentation, while the Otsu thresholding approach was applied for pore 

segmentation (the same as with 2D BSEM segmentation).  The overall grain-pore 

character was again measured (see Appendix B.6 for details of segmentation and 

measurements on μ-XRT) to implement quantitative measurements of grain-pore 

geometries in 3D.  The measurements were performed for the volumes highlighted in the 

centre blue box, as in Figure 3.17(A) and Figure 3.18(A), to exclude edge artefacts.  The 

results were incorporated into the quantitative measurements in Table 3.4.  The 

percentages of grain and pore volumes from S1 and S4 agreed with both Tp and T2 

measurements.  The long axes and short axes measured in the 3D images of S1 and S4 

are clearly larger than in the 2D measurements, because in 3D each grain and pore are 

fully imaged rather than one cross-section.  The differences in the measured long and 

short axes between 3D and 2D proved that it was necessary to use the 3D image to capture 

the 3D complex geometry of grains and pores.  The 3D shape factor measured for both 

S1 and S4 deviated from “1” (standing for a perfect sphere), which is further evidence of 

the 3D complex geometry of grain particles.  The long axes and short axes measured in 

3D S1 were larger than those in S4, suggesting larger grain size from the curved part than 

from the planar part.  Therefore, grain-pore reconstruction between curved and planar 

parts needs to be treated differently.  Grain orientation is measured by calculating the 
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polar angle formed with the –X axis in spherical coordinates (see section 2.2.2.3) and 

varies in the range [0, 90] degrees.  The average overall grain orientation of S1 was found 

to be similar to that in S4.   
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Table 3-4 Summary of Quantification Measurements after update of S1 and S4 

 

3.2.3.2 Preferred orientation of heavy mineral highlighted bounding surface 

To further quantify preferred orientation, the previously confirmed heavier iron minerals 

as markers of the bounding surface were segmented by setting a threshold for the brighter 

intensity particles (see Appendix B.6  for details of segmentation) which are masked in 

blue colour in Figure 3.19 (A) and Figure 3.20 (A) for S4 and S1 respectively.  Segmented 

heavy minerals from both S4 and S1 were viewed from xy projection (in the perpendicular 

paleocurrent direction) as in Figure 3.19(B) and Figure 3.20(B).  The heavy grain particles 

are concentrated and presented as two horizontal planar bounding surfaces for S4 and one 

horizontal and two inclined bounding surfaces about to intersect with each other for S1.  

The geometry of the heavy bounding surfaces is consistent with the sampling location 

illustrated in Figure 3.16(B), which were identified as inter-LBSs.   

Quantitative grain orientation measurements were performed on segmented heavy 

particles and are summarised in Table 3.4.  Heavy particles appear to have a larger size 

(in terms of volume, long and short axes) than the overall average.  The 3D circularity of 
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heavy particles is closer to “1”, suggesting a more circular shape as a result of formation 

by diagenesis cementation.  S1 has an orientation of heavy minerals which deviates more 

from the overall average than S4, implying that S1 may have a more significant preferred 

orientation.  The histogram distributions of grain orientation for S4 and S1 were also 

plotted in circular format, often referred to as polar histogram or rose map, to characterise 

directions (Baas, 2000), as shown in Figure 3.19(D) and Figure 3.20(D) respectively.  The 

rose map plots the anticlockwise bin data (histogram of orientation between 0-90°, here) 

with their abundance values proportional to the radius of the rose map.  For better 

visualisation, the rose map also implements the remaining quadrants (180-360°) by 

copying and adding 180° over the original data.  The rose map of the heavy minerals is 

compared with overall particle distribution for S4 and S1 in Figure 3.19(C) and Figure 

3.20(C) respectively.  The rose maps for S4 overall and S4’s heavy minerals are very 

similar, suggesting the horizontal planar surface did not introduce a distinctively different 

orientation to the overall average.  The rose map for S1 heavy particles deviates from S1 

overall and is more inclined along the horizontal direction (like the upper locally 

horizontal bounding surface in S1) thus implying a stronger preferred orientation.  The 

S1 overall rose map is also similar to those of S4, because overall distribution has been 

averaged by particles away from the bounding surface without preferred orientations.   

 

Figure 3.19 (A) xy cross-section of S4, illustrating brighter heavier particles (iron) segmented in blue 

mask; (B) segmented heavier mineral viewed from xy projection demonstrating clear concentration at 

horizontal planar bounding surface; (C) grain orientation distribution in rose map for overall S4 
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measurements (performed on centre boxed volume as in Figure 3.17(A)); (D) grain orientation 

distribution rose map for segmented heavier particles in B. 

 

Figure 3.20 (A) xy cross-section of S1, illustrating brighter heavier particles (iron) segmented in blue 

mask; (B) segmented heavier mineral viewed from xy projection demonstrating clear concentration at 

inclined bounding surface; (C) grain orientation distribution in rose map for overall S1 measurements 

(performed on centre boxed volume as in Figure 3.17(A)); (D) grain orientation distribution rose map for 

segmented heavier particles in B. 

This section has identified inter-LBSs by a heavy mineral projection view in 3D μ-XRT 

and confirmed strong preferred orientation along the inclined bounding surface from a 

curved laminaset.  The thickness between identified inter-LBSs is estimated as 0.6mm 

and 0.5mm for S1 and S4 respectively, to represent laminaset thickness.  Further grading 

measurements could be performed on the identified bounding surfaces. 

3.2.3.3 Grading measurement 

Inverse grading has been observed manually on 2D images of Tp and T2; however, it has 

not been quantitatively measured because the layered grading within laminae or 

laminasets could not be measured without identifying the continuous bounding surface.  

The viewing of concentrated heavy minerals at the bounding surface (inter-LBS) in 3D 

μ-XRT provided an opportunity to measure grading.  In this section, it is explained how 

the sampling window was designed by subjectively tracing a 3D bounding surface 

visually identified by heavy minerals.  Average grain volume was measured within the 

sampling window and by moving the window in a vertical direction, which is assumed as 

the sedimentary direction, based on previous laminaset geometry characterisation in 
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sections 3.1.1 and 3.2.1, and a log plot of the measured grain volume along the 

sedimentary direction would be expected to reflect potential grading. 

For plug S4 that was taken from the horizontal part, the sampling window was designed 

as a planar box parallel to the visually identified horizontal planar bounding surface of 

the yz plane, as shown in Figure 3.21(A).  The box had Y and Z dimensions reach the 

maximum of the sample (480 voxels).  A thickness of 50 voxels (200 μm) was selected 

to be: 1) thin enough to represent a thin layer of 200 μm thick that potentially includes 2-

4 grains, consistent with previous measurements (see Table 3.4) and 2) thick enough to 

include a representative volume (REV determined by the Coefficient of Variation (CV) 

plot, with same procedure as discussed for T2 in Appendix B.6 ).  The sampling box 

moves from the bottom (X minimum end) up, with a 50-voxel moving interval each time 

(same to the thickness of sampling box so sampling does not overlap).  19 measurements 

were calculated for a distance of 2.9 mm up, from the bottom through the sample (the 

measurements are discussed and summarised in Appendix B.6 ).  The log plot was masked 

onto one xy slice in Figure 3.21(C), to correlate with the visually observed brighter 

bounding surface and two inverse grading circles were observed, starting from the 

labelled yellow square and ending at the labelled yellow triangle. The main observations 

include: 1) finer grain size at two inter-laminaset bounding surfaces, as clearly identified 

in Figure 3.19(B); 2) the distance between the two inter-LBS appears very thin (about 

600um); 3) the log grain sizes have two main rise trends with small turbulence between 

the labelled square and triangle icon, which are identified as inverse grading.  The sudden 

decrease at the bottom of the visually identified inter-LBSs are treated as a disturbance, 

because the grain size rises again quickly after passing this point. 
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Figure 3.21 Illustration of grading measurement on plug S4 (3.07x3.07x3.07 um3/voxel) from horizontal 

part (cropped volume illustrated in Figure 3.17(A) and shown as orange coloured bounding box), one xy 

slice is illustrated in the middle for reference: (A) A 480x480x50 sampling box at 500 voxels depth from 

bottom; (B) Segmented grains fall into the sampling box in A, labelled in different colours for 

measurements; (C) Measured grain volume in voxels versus depth plot and masked on one xy slice of 

cropped S4. 

For plug S1 taken from the curved laminaset, Figure 3.22(A) illustrates one horizontal 

surface (referred to as H6) and one inclined surface (referred to as Sur1), which are traced 

from bounding surfaces identified by heavy minerals (Figure 3.20(B)).  Sampling 

windows were defined by inclined and horizontal boxes marked by Y and Z dimensions 

reaching the maximum (480 voxels) and a thickness of 50 voxels (for the same reason 

given for S4) were designed (see Figure 3.22(B) and Figure 3.22(C) for grains measured 

in an inclined and horizontal sampling box).  The same 50-voxel moving interval as for 

S4 were applied.  Three measurements were made, starting from Sur1, and nine 

measurements were made starting from H0 in the vertical +X direction (the measurements 

are discussed and summarised in Appendix B.6 ).  The log plot is masked in Figure 3.22(C) 

and the main observations include: 1) two inverse grading circles starting from the 

labelled yellow square and ending at the labelled yellow triangle are observed; 2) the fine 

grain volume layer appears at Sur1 (lower yellow square in Figure 3.22(C)); 3) strong 

inverse grading was observed from inclined Sur1 upwards; 4) a fine grain layer followed 

by inverse grading of 860um thickness occurred, starting at 645um above (3 moves) the 

traced horizontal bounding surface H6, which appears as a valley (upper labelled yellow 

square) in the log plot. The small delay of the valley point after tracing the bounding 

surface on log plot could potentially be caused by a set of reasons, for instance, an 

unidentified intra-LBS, assuming the vertical moving direction did not match the true 

sedimentary direction or was caused by disturbance by an artefact. 
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Figure 3.22 Illustration of grading measurement on plug S1 (4.3x4.3x4.3 um3/voxel) from curved part 

(cropped volume illustrated in Figure 3.18(A) and shown as an orange bounding box), one xy slice is 

illustrated in the middle for reference: (A) One horizontal and one inclined surface traced with semi-

automated method (see Appendix B.6 for detail); (B) segmented grains fall into a sampling box, Sur1 

created for inclined surface in A, and are labelled in different colours for measurements; (C) segmented 

grains fall into a sampling box, H0, created for horizontal surface in A and  are labelled in different 

colours for measurement; measured grain volume in voxels versus depth plot and masked on one xy slice 

of cropped S1. 

It has been discussed that the heterogeneity of grain-pore textures in lamination could be 

seen as layers stacking over each other, with stationary (homogeneous) grain-pore 

textures within each layer but varying grain-pore textures across layers (coarsening-up of 

grain size in this work), and thus, non-stationarity.  To reconstruct the coarsening-up 

inverse grading character as measured, an index (l) is required for each layer, indicating 

the variation of the mean of grain-pore textures (grain size (GS) and orientation).  With 

index l corresponding to each layer to form an index map, MPS as reviewed in section 

2.2.3, could be applied to stochastically reconstruct grain-pore spaces in each layer with 

grain-pore shape respecting the given training image and with the transformation 

corresponding to each index respecting the measured grain-pore texture variation.  

Therefore, the crucial step is to identify the correlation between the transformation and 

each index. For the grading of grain size discussed in this section, the correlation is about 

finding the function 𝑓(∙) that 𝐺𝑆𝑙 = 𝑓(𝑙), where 𝐺𝑆𝑙 is the average grain size of layer l 

 within a lamina containing N layers (𝑙 ∈ [1, 𝑁]).  For the grading system discussed in 

this work, the average grain size of layer l can be seen as a proportion of average grain 

size of the base bounding surface layer (l=1).  Thus 𝑓(∙) could be expressed as 𝑓(𝑙) =

𝑆𝐹𝑙 × 𝐺𝑆1 , in which 𝐺𝑆1  is the average GS of the base bounding surface layer l=1 

(training image for MPS) and 𝑆𝐹𝑙 is a scaling factor (𝑆𝐹𝑙) defined for each layer l in a 

lamina.  A function 𝑓𝑆𝐹(∙) , where 𝑆𝐹𝑙 = 𝑓𝑆𝐹(𝑙) , should ideally be represented by a 
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probability map reflecting the variation of grain size over the layers, taking into account 

all kinds of uncertainties.  However considering that 1) this work is focused on developing 

the overall subsampling and reconstruction workflow and 2) the sample has a rather 

homogeneous grain-pore texture and stable geometry of the lamination structure within 

curved or horizontal laminaset, this work simplifies the function 𝑓𝑆𝐹(∙) by assuming a 

linear relationship between the average grain size of each layer l over the base bounding 

surface layer l=1, thus 𝑆𝐹𝑙 =  𝑆𝐹𝑟𝑎𝑡𝑒 × 𝑙 + 𝐵, in which 𝑆𝐹𝑟𝑎𝑡𝑒 is a constant representing 

the slope (gradient) of the increasing grain size, and B is constant 1 representing the 

scaling relative to the base layer (𝑙 = 1).  

Based on the above definition, for an inversely graded lamina containing N layers, 𝑆𝐹𝑟𝑎𝑡𝑒 

could be estimated by equation (3.1) for each lamina identified in the log plot.  The 𝑆𝐹𝑙 

for the layer l in an inversely graded lamina could then be calculated using equation (3.2).  

The 𝑆𝐹𝑟𝑎𝑡𝑒 estimated in equation (3.1) is based on grain size measured in 3D volume, and 

therefore is a 3D volume gradient. The reconstruction to be introduced in the later section, 

however, needs a gradient in 1D in each of the three dimension.  A simple estimation to 

calculate a 1D gradient from the 3D 𝑆𝐹𝑟𝑎𝑡𝑒  by assuming cubic volume is given in 

equation (3.3) and the corresponding 𝑆𝐹𝑙 1𝐷  is estimated by equation (3.4). 

𝑆𝐹𝑟𝑎𝑡𝑒 =

𝐺𝑆𝑁

𝐺𝑆1
− 1

𝑁
 (3.1) 

𝑆𝐹𝑙 = 1 + 𝑆𝐹𝑟𝑎𝑡𝑒 ∗ 𝑙 (3.2) 

𝑆𝐹𝑟𝑎𝑡𝑒 1𝐷 = √1 + 𝑆𝐹𝑟𝑎𝑡𝑒
3 − 1 (3.3) 

𝑆𝐹𝑙 1𝐷 = 1 + 𝑆𝐹𝑟𝑎𝑡𝑒 1𝐷 ∗ 𝑙 (3.4) 

The 𝑆𝐹𝑟𝑎𝑡𝑒𝑠 are measured for 2 laminae with monotonically increasing grain size for 

either S4 or S1.  In Figure 3.21(C) and Figure 3.22(C) the starting bounding surface layer 

of each lamina is highlighted by a yellow square and ends at the following yellow triangle.  

The average 𝑆𝐹𝑟𝑎𝑡𝑒 for the two laminae in S4 and S1 are added into Table 3.4, with an 

average 𝑆𝐹𝑟𝑎𝑡𝑒 of 0.078 and 0.0648 in the 3D volume and 𝑆𝐹𝑟𝑎𝑡𝑒1𝐷 of 0.025 and 0.021 in 

the 1D axes for S4 and S1 respectively.  Note that gradients are calculated per layer 

thickness of 200 μm.  Lamina thickness can also be estimated by calculating the distance 

between the highlighted starting and end point of grading.  An average thickness of 
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0.76mm and 0.75mm has been measured for the two laminae highlighted, for both S4 and 

S1.   

This section has established that 3D μ-XRT projection has advantages in helping to 

identify the bounding surface; therefore, quantified measurements could be designed and 

bounding surface related preferred orientation and grading could be measured.  The main 

conclusions and suggestions include: 1) based on the verified advantage that a 3D image 

may better represent a bounding surface, the bounding surface would be expected to be 

segmented from L1 more accurately if a method could be developed to address the 

previously discussed connectivity issues; 2) the brighter iron particles segmented along 

the bounding surface have orientations deviating further away from the overall average 

in S1 than in S4, thus implying a  stronger preferred orientation for S1 along the 

orientation of the curved bounding surface; 3) log measurements proved capable of 

identifying layered grading and the measured gradient could be applied in pore-space 

reconstruction; 4) thickness of laminae could also be measured from log but μXRT only 

measured 2 laminae for either a horizontal planar or curved laminaset; therefore, further 

measurements are suggested to be performed on a larger FoV, to be representative; 5) 

from the thickness identified up to now, it appears horizontal laminae and laminasets have 

similar thicknesses and this suggests the two may not be distinguishable; 6) S1 and S4 

are expected to register with L1 according to the identified bounding surface; therefore, 

the measurements could be implemented into 3D reconstruction. 

3.3 Discussions on key observations and inferences about the structure hierarchy     

The application of the recursive sub-sampling procedure above yielded three datasets, 

MXRT, SEM and μXRT.  Analysis of those datasets has revealed that the laminar 

structures at the top of the hierarchy, i.e. laminasets, can be observed and measured 

directly from MXRT, whereas the positions of laminae and their geometry within each 

laminaset can only be inferred from auxiliary information extracted from the datasets by 

applying geological knowledge.  Intra-lamina structures are thus inferred to exist based 

on grain grading (grain size variation in the log plot) obtained by μXRT. Although it is 

possible to measure the thickness of laminae from log plot, the geometry of individual 

laminae could only be inferred by manual observation in SEM and μXRT because intra-

LBS could not be segmented from the image directly.  In the following stage, direct 

observations from the datasets and inferences that have been made, based on evidence 
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obtained from the datasets about the structure hierarchy are discussed.  This leads to a 

conceptual model of the structure hierarchy to be used in the reconstruction.   

3.3.1 Summary of information obtained 

Figure 3.23(A-H) summarises the data obtained through the developed top-down 

recursive sampling and characterisation, and illustrates how they contribute a full 3D pore 

space model, shown in the centre.  Among them, apart from the MXRT of L1 which 

provided observation of the laminaset structure in Figure 3.23(A) and the μ-XRT of grain-

pore in Figure 3.23(G-H) which would directly apply to the final model, the rest provide 

information at different levels of certainty to provide inferences on the structure of 

laminae and grading.  Table 3.5 summarises the information regarding the hierarchical 

structures and corresponding certainty. Accurate identification of spatial distribution of 

inter-LBS and structural information of lamina and grading is a key issue to be addressed 

in next chapter. The contribution of key issues in constructing a full 3D pore space model 

are also illustrated in Figure 3.23 and highlighted with red background.   The remainder 

of this chapter summarises and discusses how each observation and inference contributes 

to the final model, together with the nature of the remaining challenges. 
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Table 3-5 Summary of known and unknown geometric characters of hierarchical structures by 

Observation-OB or inference- IF after top-down recursive sampling and characterisation 

Hierarchical 

Structures 
Known (OB- Observation/ IF- 

inference) 
OB/IF Certainty 

Unknown 

(Anticipated 

measure) 

Laminaset 

•Group of curved laminasets over a 

group of horizontal laminasets from 

MXRT. 

•Curved crest tough cross-lamina 

geometry 

OB •Low 

•Thin 3D planar 

inter-LBS 

represents ~1-2 

grains thick layer. 

Lamina 
•Parallel or intersecting geometry 

•Intersect angle 
IF •Low 

•Intra-laminaset 

bounding surface 

•Representative 

measure of 

thickness of lamina 

Layered 

grading 

within 

lamina 

•Parallel to inter- or intra-laminaset 

for curved bounding surface, or 

intersection of both  

•Inverse grading feature 

•Preferred orientation 

IF •Low 

•Representative 

measure of grading 

gradient 

Grain and 

Pore 

•Anisotropy geometry 

•μm scale 
OB •High •N/A 
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Figure 3.23 Information obtained by developed workflow of top-down recursive sampling and imaging, 

multiscale characterisation and proposed conceptual model of integration with registration and 3D pore-

space reconstruction 

3.3.2 Discussion of hierarchical structures and proposed conceptual model 

In the following sections the obtained data are discussed to describe the generic nature of 

the hierarchical structures of the studied Aeolian fine cross-laminated sandstone sample.  

Based on observation, a conceptual model is proposed for each hierarchical structure, 

which by integration should yield a full hierarchical structure domain and sub-domains, 

and within which the grain-pore could be populated based on measurements. 

1) Laminaset:  

The surface geometries of two groups (horizontal and curved) of laminasets were 

preliminarily studied from the sample surface (Figure 3.23(A and C)) and its 3D 

geometries were further investigated by segmented inter-LBS from MXRT of L1 (Figure 

3.23(B)). The geometric scales of the laminaset are summarised in Table 3.4, with a 
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thickness of mm to 2 cm; therefore, the 6x6x6 cm3 L1 contained a representative number 

of stacked laminaset structures.  Relatively stable laminaset structures were observed 

within each group, considering the similar geometry of horizontal planar laminasets and 

curved laminasets (because within the sample size of half a wavelength, most curved 

laminasets are following the same direction).  Inter-LBS was expected to be segmented 

more accurately (it is thinner and has better connectivity) and to be treated as the base of 

the spatial domain constraint of the hierarchies’ structures, as well as grain-pore variation 

(as shown in the middle of Figure 3.23).   

2) Lamina:  

At cross-section perpendicular to the paleocurrent direction, T2 intra-LBSs were hard to 

distinguish from inter-LBSs but were proved to exist by inverse grading and manually 

identified between and parallel bounding surfaces.  Laminae were hard to identify by 

composition from MXRT in the 3D space directly, but assuming that the laminaset 

structures do not vary much within the selected sample, which is smaller than half the 

wavelength in each direction, one simple conceptual model of the lamina could be applied 

when explicit segmentation of the intra-LBS is not available. Intra-LBS separate laminae 

could be conceptually defined with single geometry properties as a sub-domain to extend 

the segmented inter-LBS from MXRT.  Lamina geometries were investigated by fine 

resolution thin section images from two perpendicular surfaces (Figure 3.23(D-F)). 

Laminae appeared more likely to be parallel to the horizontal planar inter-LBS, whilst for 

the curved part, laminae appeared to be parallel to the inter-LBS at cross-section 

perpendicular to the paleocurrent direction and intersecting in a narrow range of acute 

angle with inter-LBS parallel to the paleocurrent direction.  The separation of horizontal 

planar and curved laminaset could, however, be non-distinctive because transitional zone 

between two laminasets was observed in Tp. A transitional zone was identified because 

it was observed that inclined laminae could potentially exist in the horizontal laminaset 

when close to the boundary with the curved laminaset.  However, the certainty of the 

exact location of the transitional zone was low because it was inferred from manually 

observed laminae.  The intersection angle of the lamina was measured from the L1 surface 

and Tp in the range of 20-30º, while the thickness of laminae was hard to identify because 

intra-LBS could not be accurately identified through images from different techniques.  

The thickness of a lamina measured from finer scale SEM by manual observation and 

small FoV plugs μ-XRT based on the circulation of grading gave an estimation of less 
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than 1mm for both the curved and horizontal part, which slightly deviates from the 1-

4mm estimated from the L1 surface. Therefore, relatively higher uncertainty exists for 

lamina thickness and suggests that more representative measurement of circulation is 

needed from a larger FoV SEM image of T2 (Figure 3.23(F)). T2 was selected because 

from surface perpendicular to paleocurrent direction lamina and grading appear parallel 

to the inter-LBS, thus moving the sampling window measurements is easier.   

3) Grading 

Within laminae, inverse grading was observed parallel to the inter-LBS for the horizontal 

part or the intersection of intra- and inter-LBS for the curved part, based on manual 

estimation from 2D thin section images of Tp and T2 in two perpendicular directions.  

The preferred orientation was observed close to an inclined intra-LBS from Tp.  Grain 

size with an increasing gradient of inverse grading was measured quantitatively through 

3D μ-XRT measurements, based on conceptual layered grading assumed in a vertical 

direction.  Therefore, conceptual inverse grading layers could be defined as an extension 

over inter- and intra-LBSs to construct a full set of sub-domain constraints. Non-

stationary values of size and orientation property could be assigned within each sub-

domain to reflect measured grain-pore variation over the inverse grading laminaset.  

Given that stable laminar features are assumed within the curved or horizontal part, S1 

and S4 are potentially representative examples for reconstructing the pore-grain system 

for each type of laminaset (Figure 3.23(G-H)). Nevertheless, representativeness of grain-

pore features in S1 and S4 could be further confirmed with larger FoV measurements on 

grading.   

4) Conceptual model of laminae 

A conceptual geological representation of hierarchical structures, referred to as a 

conceptual model, is proposed to classify the laminated sandstone into different regional 

sub-domains, to assign the associated grain-pore character variations representing 

hierarchical structures.  The model treats horizontal planar and curved laminasets 

differently according to their different anisotropic geometry characters.  Given the 

isotropic character of horizontal planar laminasets, this model gives the same geometry 

of horizontal planar structures on both cross-sections parallel to and perpendicular to the 

paleocurrent directions.  As illustrated in Figure 3.24, horizontal planar laminasets are 

separated by black horizontal planar inter-LBSs.  In this model intra-LBSs are not 
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specially distinguished from inter-LBSs for the horizontal part, because: 1) an intra-LBS 

has not been clearly identified for the horizontal part; 2) the thickness of the laminaset 

measured at the horizontal part appears similar to the lamina thickness inferred from 

grading; therefore, it could be meaningless to distinguish these. Thus layers reflecting 

grading are proposed as sediment on the inter-LBS, directly along the sedimentary 

direction, with same parallel planar geometry, as illustrated in the decreasing grey layers 

in Figure 3.24.   

  

Figure 3.24 Illustration of horizontal planar geometry structure at cross-section in perpendicular or 

parallel direction 

The model of a curved laminaset has different geometry at cross-section parallel and 

perpendicular to the paleocurrent directions, as illustrated in Figure 3.25.  At cross-section 

parallel to the paleocurrent direction, as shown in Figure 3.25(B), inter-LBS (in black) 

separating laminasets are presented as a horizontal or an inclined straight line, as a result 

of a cross-section being taken of the elongated surface along the paleocurrent direction.  

Intra-LBSs (in red) within a laminaset separate a set of parallel laminae and intersect at 

an angle with inter-LBSs.  The half wavelength between two intra-LBSs along the 

paleocurrent direction, together with the intersect angle determine the thickness of lamina 

that could be inferred by measuring grading at a cross-section perpendicular to 

paleocurrent direction.  Based on the inverse grading observed parallel to both the lee side 

(intra-LBS) and stoss side (inter-LBS) from Tp by manual observation (low certainty) it 

is concluded that no segmentation of the intra-LBS (supposed to have higher certainty) 

would be available to provide more accurate information about the geometry of intra-

LBS.  The conceptual model in this work has been designed based on the observation in 

Tp to provide the information about the geometry of intra-LBS.  A conceptual model has 

been developed in which grading could be seen as conceptual layers stacked upon the 

surface created by the intersection of (black) inter- and (red) intra-LBSs with same 

geometry in the sedimentary direction, as labelled in green and blue in Figure 3.25(B).  
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The geometries of hierarchical structures at cross-section perpendicular to the 

paleocurrent direction, as shown in Figure 3.25(A) are a result of Figure 3.25(B).  In 

Figure 3.25(A) intra-LBS are parallel to black inter-LBS, and the conceptual layers are a 

stack over inter- or intra-LBS with the same geometry, in parallel. 

 

Figure 3.25 Illustration of curved laminaset geometry structure at a cross-section (A) perpendicular or (B) 

parallel to the paleocurrent direction, with inter-LBS plotted in black, intra-laminaset in red and layers 

within laminae in green and blue. 

5) Discussion of uncertainty 

To reconstruct the proposed model, apart from measurements summarised in Table 3.3, 

the missing information includes 1) accurate extraction of the thin, 3D inter-laminaset 

bounding surface from the MXRT image of L1, because the simple segmentation appears 

too thick for a bounding surface that could be as thin as ~1-2 grains thick.  Moreover, 

simple segmentation also appears to struggle to retain 3D surface connectivity; 2) the 

thickness of the laminae needs to be identified at a more representative volume/area, 

based on the statistics for circulation of grain size between intra-LBSs as a result of 

grading; 3) the representativeness of the grain-size inverse grading gradient needs to be 

verified from a more representative image, because the μ-XRT image appears to be too 

small compared to the whole volume of L1.  The uncertainty resulting from identifying 

the lamination structure by LBS and grain-pore variation would significantly alter the 

simulated flow path, as a result of the combination of the heterogeneity of the lamination 

structure and pore space topology and distribution (McDougall and Sorbie, 1993).  In the 

next chapter it is therefore necessary to develop techniques and methods of investigation 

to address those uncertainties. 

3.3.3 Remaining challenges 

Three challenges are faced in identifying the unknown geometry; the first two would be 

based on the same principle: revealing bounding surfaces from MXRT and BSEM 
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respectively.  Therefore, before discussing the challenge, the nature of bounding surfaces 

is summarised. 

The nature of a bounding surface can be illustrated by Figure 3.26(A): a thin finer 

bounding surface scattering cemented by haematite and dolomite (~1-2 grains thick) 

causes smaller “fake holes” on a continuous bounding surface, which are also interrupted 

by larger “true holes” caused by erosion and bioturbation.  This caused the challenges 

experienced with MXRT and BSEM.  In MXRT, as shown in Figure 3.26(C), heavier 

haematite and dolomite together with the hardening effect, would present as brighter and 

highlight the bounding surface as a thin, brighter, linear (2D)/ planar (3D) pattern, but 

identifying them would involve the  following challenges: 1) “fake holes” create small 

unconnected gaps that need to be bridged; 2) larger “true holes” create large unconnected 

gaps that should not be bridged; 3) the hardening effect of feldspar distract the 

identification of true linear bounding surface highlighted by haematite and dolomite, this 

verifies the prediction given in Figure 2.8 of Chapter 2.  In high-resolution BSEM as 

shown in Figure 3.26(B), the bounding surface is much less obvious than in MXRT, 

because of both 1) the large scale of the difference without averaging and the local 

hardening effect on BSEM that improved contrast of the heavier mineral signature and 2) 

different imaging principles between BSEM and MXRT lead to different correlations 

between pixel intensity with the material.  This observation verifies the predicted 

challenge proposed in Chapter 2, in Figure 2.8.   

 

Figure 3.26 Manually registered EDS, BSEM and MXRT to highlight the nature of the bounding surface 

and its presentation in BSEM and MXRT, which implies a potential challenge in identifying shared 

bounding surfaces for registration: (A) EDS as in Figure 3.14(A) at 1x1 μm2/pixel resolution, with each 
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main mineral labelled; potential bounding surface layers are also highlighted; (B) registered BSEM at the 

same location and resolution as EDS in (A); (C) registered MXRT at resolution of 100x100 μm2/pixel. 

Therefore, the three main challenges anticipated to be addressed in the remainder of this 

work can be summarised as:   

1) Accurate identification of the inter-LBS from the MXRT of L1 respecting identified 

“fake holes”, “true holes” and distractions.   

2) Identifying inter-LBSs from the BSEM of T2, so as to design a sampling window as I 

did for S1 and S4 to measure grading. Apart from challenges of the different natures of 

imaging, identifying a continuous bounding surface from BSEM could still be 

challenging because of high grain lithology variation.  Given that the inter-LBS are easier 

to identify from the MXRT of L1 and have shared parts with T2, registering BSEM onto 

the MXRT of L1 would provide the missing surface information to enable the statistical 

investigation of lamina thickness.   

The registration is expected to help determining the geometry of the grading layer and 

determining the direction of grading by the registered bounding surface.  An accurate 

registration is, however, less important, because the direction of grading is assumed 

beforehand, rather than being perpendicular to the accurately registered bounding surface; 

therefore, the determining grading direction benefits of registration has been lost and thus 

rendered accurate registration less important.  However, the pre-determined vertical 

grading direction also brings uncertainty, both in measurement and reconstruction, which 

will be further analysed in later chapters. 

3) Ideally, an index map to assist reconstruction requires the intra-LBS and grain sorting 

to be accurately identified to correlate the local grain texture transformation to the spatial 

hierarchical structure of lamination.  However, as discussed these are hard to  segment 

and measure with high certainty, and therefore, the uncertainty needs ideally to be 

considered as a soft probability map to represent the correlation between the spatial index 

and local transformation during reconstruction.  In this work, however, taking into 

account the representativeness of the sample and relatively stable laminaset and lamina 

structures within two types of the laminaset, the decision has been made to define intra-

LBSs and laminae deterministically, with conceptually layered sub-domains with one set 

of parameters, as measured.  The non-stationary setting (grading gradient) of the grain 

sorting across sub-domains for reconstruction to be performed in Chapter 5 could be 

confirmed after grading measurements on a larger FoV in Chapter 4.  The random 
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occurrence of bioturbation may lead to disturbing the hierarchical grading, and therefore 

needs to be considered as potential uncertainty in Chapter 5.  This could be further 

discussed with the segmented bounding surface in Chapter 4 by analysis of surface 

geometries to identify the potential occurrence of bioturbation. 

The first two challenges are to be addressed in Chapters 4, as highlighted in the red box 

in Figure 3.23.  An integration of the obtained information as the task of Chapter 5, to 

address the third challenge, is conceptually illustrated in the centre of Figure 3.23. The 

integration implements the missing hierarchical structure as a set of sub-domain 

constraints to assign measured parameters for full 3D grain-pore space reconstruction. 

3.4 Conclusions 

This chapter reports the development of a top-down subsampling scheme for the tight 

Aeolian cross-laminated sandstone sample of the volume of 6x6x6cm3. A preliminary 

exploratory analysis has been reported, first on the structural and compositional aspects 

of the sample, using a sub-dataset, Tp and a set of standard techniques for petrographic 

analysis.  A recursive sub-sampling and characterisation procedure was then developed 

for the sample used in this work, to investigate the hierarchical nature of the sample 

structures and chemical composition.  The combination of exploratory and quantitative 

analysis leads to a recursive sub-sampling and yielded three sets of image datasets: the 

3D MXRT image on L1, 2D SEM BSEM and EDS images on Tp and T2 and 3D μXRT 

images on small plugs.  From these, the hierarchical structures of the sample were 

observed and inferred at three length-scales, as follows:  

1) Two groups of laminasets stacked one on top of another have been distinguished, 

in which the upper group contains a set of interwoven curved laminasets at half 

wavelength, with elongated axes following the same direction, while the lower is 

a vertical stacking of horizontal planar laminasets parallel to each other.  Within 

each group, structures of inter-laminasets were constant across the domain and 

laminasets are demarcated by the inter-LBS, each of which could be characterised 

by a thin layer of grains with a higher concentration of haematite and dolomite 

compounds. Inter-LBS proved could be captured in MXRT with high certainty 

regarding their exact positions but lower certainty in their individual thickness, 

continuity and their connectivity, and are the best candidates as shared features 

for registration.  However, the analysis conducted on SEM/EDS images showed 
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that even inter-LBSs are severely obscured in BSEM images and hard to segment 

directly, due to high grain lithology variation. 

2) In each laminaset of either group, the intra-LBSs, which are supposed to exist in 

theory, to separate laminae from other adjacent ones, are suggested to be more 

likely to be distinguishable in the curved part than in the horizontal part, based on 

the inclined geometry.  Intra-LBSs cannot be segmented as layers from grain 

compositions directly, but may be inferred from grain grading (see the next point). 

3) Directional grain variation has been observed and shows a cyclic nature of 

grading, which can be explained by stacking laminae.  The discrepancy in grain-

size variation has been observed to appear at an isolated location only, which is 

attributed to localized bioturbations.  µXRT argued SEM/EDS with 3D pore-grain 

distributions within and across laminae. 
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 DATASET REGISTRATION  

In Chapter 3, it was described how a fully-developed recursive sub-sampling and 

characterisation procedure yielded three image datasets: MXRT, SEM, and μ-XRT (see 

Figure 3-30) from which key structures of several hierarchical levels have been identified 

and analysed in the respective datasets.  To reconstruct the sample, it is necessary to 

register all the datasets via one or more shared inter-LBS.  However, as discussed, none 

of the simple characterisation techniques applied so far are capable of identifying features 

from BSEM and MXRT, respectively, which can be considered to correspond to the same 

bounding surface with any degree of certainty within the resolution required to position 

laminae.  In fact, the scattered distribution of heavier mineral grains along each inter-LBS 

is attributed as the ultimate cause of this situation.  The manifestations of that scattering 

in the two datasets acquired using different imaging techniques on different FoVs at 

different resolutions take very different forms.  As discussed in the previous chapter, in 

MXRT, thin bounding surfaces are defined, presenting higher intensity, brighter voxels 

interrupted by holes of various size and create discontinuity, with the larger holes 

considered as the ‘true holes’ of bioturbation and erosion, while the smaller ones are 

considered as ‘fake holes,’ due to unconnected cementation of heavier minerals.  The 

higher density and scatter distributed feldspar also cause distractions when they are close 

enough to a bounding surface.  The challenge is to pick out those bounding surfaces from 

small local neighbours, to leave aside the distractions and at the same time to fill the ‘fake 

holes’ but to retain the ‘true holes’.  In SEM, heavier mineral grains appear as 

discontinuous brighter grain particles and they do not accurately re-assemble the 

topography of the bounding surfaces when they are simply connected at the high 

resolution of the dataset.  The challenge is to pick one or more bounding surfaces that fit 

those dots in space.  These challenges have been summarised from the literature review 

in Chapter 2, without any previous work being found that pointed to their fundamental 

nature, and verified through the three datasets obtained in the work reported in Chapter 

3.  So far no reported work exists which has considered the nature of this situation, let 

alone developing techniques to address it.   

This chapter elaborates the nature of the hidden features in MXRT and SEM and the 

limitations of existing techniques and presents two new solutions that have been 

developed in this thesis to address specific challenges associated with each of the 

respective datasets.   
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4.1 Hidden features in MXRT  

The bounding surfaces hidden in MXRT have been discussed, stemming from the nature 

of the distribution of minerals with various densities, associated or not associated with 

the physical bounding surfaces.  The presentation of those distribution signatures and the 

disturbance of the bounding surface in MXRT are first discussed here, to reflect on how 

they fundamentally affect the task of identifying the bounding surface from the MXRT 

image. 

1) Bounding surfaces are presented as thin brighter planar surfaces with 3D or linear 

structure in the 2D cross-section in the MXRT image, as shown in Figure 4.1(A), 

in which the brighter pixel intensity is a result of heavier iron and dolomite 

minerals that proved to be preferentially cemented in bounding surfaces.  The 

bounding surface could be as thin as ~1-2 grains and presented as ~1-2 pixels 

thick, according to the zoomed-in view in Figure 4.1Figure 4.1(B), and the 

corresponding registered EDS is shown in Figure 4.1(C).  The heavy mineral 

grains that are highlighting the bounding surfaces in MXRT, however, do not form 

a closely-spaced, dense layer, but their distribution is rather discrete.  This is 

because the iron and dolomite are the results of diagenesis and appear to “insert” 

them between the original deposited fine layers of grains as evenly distributed, as 

shown in Figure 4.1(C).  As a result, the bounding surface is presented in the 

MXRT image as higher intensity brighter pixels, interrupted by small “fake holes” 

and creating a discontinuity of less than 2mm in diameter, according to the 

measurement in Chapter 3. 

2) Erosion also creates relatively larger middle-sized holes (diameter>5mm) by 

disrupting the originally formed bounding surface and leaving unconnected darker 

“true holes” on the bounding surface and causing a larger disconnected gap, as 

highlighted in Figure 4.1(A).  “True holes” could also be a result of bioturbation, 

which was found to create the largest sized (diameter >6mm) disconnectivity in 

this study.  Bioturbation has been confirmed in Chapter 3, and it was found that 

the calcium left in the penetrated large hole would present a large, brighter cluster 

in the MXRT image as a result of the relatively high density of calcium, as 

highlighted in Figure 4.1(A). 

3) Feldspar creates a distraction by also having a higher density and a local hardening 

effect, as discussed in Chapter 3.  In the work reported in Chapter 3, feldspar 
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particles were found to be scattered and distributed over the sample.  When 

feldspar particles present close to a bounding surface, they will create brighter 

spots and distract the identification of the true bounding surface as Figure 4.1(B).  

The average distance between feldspar particles of about 2.4 mm, which was 

measured to help the development of the method in the present chapter. 

  

Figure 4.1 (A) 1st of 525 slices of the pre-processed MXRT image of L1 at xy face (550x562 pixels2 at 

100x100 μm2/pixel resolution); (B) Zoomed-in view of part of the curved bounding surface, whose 

overall thickness is about 4 pixels wide but the thinnest part could be as thin as 1-2 pixels thick; (C) 

Manually registered EDS of B at 1x1 μm2/pixel resolution. 

It is, thus, challenging to segment the thin, piece-wise, unconnected and distracted 

bounding surface from low-quality MXRT images.  This is consistent with what has been 

pointed out by Bultreys et al. (2016), that the low quantity of iron in the cement of 

laminated sandstone failed to provide enough contrast in the XRT image to segment the 

layer using the threshold method; however, they did not discuss the fundamental reason 

for this.  A typical global thresholding approach, like that carried out by Otsu (1975), 

segments the image by an overall pixel intensity histograms and looking for intensity 

bands with a distinctive frequency distribution.  There is, however, no universal standard 

threshold for a heterogeneous sample, because the indistinguishable physical bounding 

surface may present as different local average intensities, as a result of complex mineral 
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distribution and the hardening effect.  A local thresholding method like the watershed 

approach, looking for pixels with distinctive intensity above the local average, has been 

claimed by Beucher and Meyer (1992) to be superior to a global approach in dealing with 

local intensity variations.  However, this approach may still not work, because it does not 

look at the spatial relationship between pixels and would be unable to capture the 

continuous pattern of bounding surfaces hidden behind disconnected bright spots and 

distractions with similar intensity.   

Figure 4.2 further demonstrates the challenge on one slice out of 525-slice stacked MXRT 

image, as shown in Figure 4.2(A).  The greyscale image has its pixel intensity histogram 

normalized by stretching “minimum to maximum” to “0-255”.  Two-line Regions of 

Interest (ROIs) (two yellow dashed lines labelled as “1” and “2”) in the zoomed-in grey 

image shown in Figure 4.2(B) are selected.  Both ROIs are actually crossing inter-LBSs, 

as shown in Figure 4.2(B), but have different local intensity distribution.  The pixel 

intensity plots along both ROIs, as given above and below the grey image in Figure 

4.2(B), containing bounding surfaces as central intensity peaks, labelled in both intensity 

plots.  The dashed line “1” includes pixels with similar intensity to the central peak 

bounding surface intensity (labelled as distractions), which are considered as noise.  

According to both intensity plots in Figure 4.2(B), the dashed line “1” includes much 

more noise than “2”.  When Otsu’s well known-global  thresholding method (Otsu, 1975) 

is applied, a threshold of the intensity value, 169, is determined, highlighted as a red 

dashed line in the overall image intensity histogram in Figure 4.2(C).  The threshold 

segments pixels with intensity greater than 169 into the bounding surface from those 

below segment into matrix, thus segmenting the grey image in Figure 4.2(A) into black 

and white binary images respectively, as shown in Figure 4.2(C).  The threshold of 169 

is also labelled as red dashed line in the intensity plots of the two dashed line ROIs in 

Figure 4.2(B), to explain the result, which demonstrates that the global threshold segment 

works perfectly for the region of interest (ROI) “1”, in which pixel intensities above 169 

are segmented as the bounding surface.  For  ROI “2”, using the same threshold of 169, 

noise distractions that have similar intensity to that of the bounding surface are segmented 

into the same white class in the binary image.  Therefore, it can be seen that the 

segmentation of the bounding surface in Figure 4.2(C) is significantly distracted by local 

brighter patches (due to either bioturbation or feldspar).  Moreover, even when the local 

intensity is taken into account, local distractions are hard to avoid, because the intensity 
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of the local distractions are very close to that of the bounding surface.  Together with the 

issue of the unconnected gaps caused by scattered cementation, erosion and the thin 

nature of the bounding surface, all these conditions together lead to the low level of 

identification on the continuous pattern of bounding surfaces.  Therefore, a local 

thresholding by the watershed method of segmentation, as shown in Figure 4.2(D), was 

still full of noise and failed to segment the connected bounding surfaces. 

 

Figure 4.2 Illustration of the challenges in segmenting lamina bounding surface from XRT images; (A) a 

processed 2D slice (1/525) of a 3D MXRT rock image of cross-lamina core where brighter colour 

represents lamina bounding surface pixels and/or noises, excluding the marker line; (B) histograms of 

pixel intensity along dashed lines in the zoomed-in parts highlighted in yellow box of (A); (C) a 

segmented black and white image, white for lamina and noises, of the slice in (A) by the global 

thresholding method of Otsu (1975), at a threshold of 169/255.  (D) a watershed-based segmented binary 

image of the slice in (A), white for lamina and noises. 

For bounding surfaces that appear to be discontinuous in MXRT due to ‘noises’, as 

illustrated in Figure 4.2(A), most of them can still be easily picked out visually by a 

human observer.  Human recognition makes use of not only intensity similarity, but also 

the spatial relationships of hidden patterns, based on experience.  This suggests the need 

for a method that takes both intensity and local patterns into account and provides 

empirical examples of the patterns of interest.  Given the challenge of natural 

discontinuity, a method needs to be developed with the following features: 1) identify 

local linear pattern; 2) bridge small “fake holes” of diameter less than a certain value; 3) 

avoid distraction by feldspar within a certain distance (because it does not have 

distinguishable intensity); 4) leave larger “true holes” of bioturbation with a size over a 

certain diameter.  The combination of human recognition principle and the natural 

challenges of discontinuity, therefore, defines a method which is based on using given 

examples, and not only learning to recognize local linear patterns but also robustly 

bridging gaps, based on length, and excluding distractions, based on distance.   
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4.2 Extracting hidden features from MXRT – Connectivity-enhanced bounding 

surface segmentation        

A technique for segmenting bounding surfaces from MXRT has been developed in this 

research to overcome the issues discussed above.  This technique is developed to work 

on any 2D image and can robustly recognise local linear patterns “hidden” behind 

potential distractions, and override small “fake” gaps but retain large “true” gaps.  The 

literature review in Chapter 2 suggested the promising method of a filter-based supervised 

segmentation, which captures the patterns and discontinuities of objects to be segmented 

in example images, referred to as training images, and to train and construct an classifier, 

using existing advanced machine-learning algorithms (see a review in Mohri et al. 

(2012)).  In what follows, a brief summary of the development of this technique is 

presented, followed by key aspects of applying it to MXRT segmentation, which bridges 

the gap from noisy images, as described previously.   

4.2.1 Summary of development of the technique  

The suggestion discussed above led to a class of methods, as introduced previously in 

section 2.3.2.3 and named filter-bank based supervised segmentation, in this work.  Given 

an image I(x), x ϵ Rd and d = 2 or 3, the filter-bank based supervised segmentation for 

piece-wise linear structures can be considered as performing the following generic tasks:  

1) The method starts by using an image filter at certain size, for example, a square 

window of 3×3 pixels, as illustrated in Figure 4.3(A), and with a mathematical 

operation to describe the local pattern (piece-wise linear structures in this study) 

around a pixel;  

2) A set of suitable filters is found with different mathematical operations combined 

together to describe different aspects, referred to as features, of the local pattern.  The 

set of filters is often referred to as a filter bank, and includes n filters.  Each filter in 

the filter bank is applied to each pixel of the image to encapsulate image I(x) in a 

vector of filtered images 𝒇𝑛(𝑥, 𝐼).  Figure 4.3(B) illustrates an example of filtered 

images with n=2.   

3) Each pixel after filtering can be considered as a data point distributed within the n-

dimensional feature field, referred to as a feature vector, as illustrated in Figure 4.3(C) 

with n=2; 
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4) A suitable and representative training dataset t (a subset of I(x) or a separate image) 

is constructed, and for each pixel of t it is labelled as yes or no, as for example the 

green and blue coloured pixels shown in Figure 4.3(D), as binary ground truths 

𝑔(𝑥, 𝐼𝒕); 

5) A classifier is learned from the labelled training dataset, denoted by r () by a machine 

learning algorithm from the training dataset in the n-dimensional feature field, so that 

𝑔(𝑥, 𝐼𝒕) = 𝑟(𝒇𝑛(𝑥, 𝐼𝒕)), as shown in Figure 4.3(E).   

6) The learnt classifier r() is then applied to the rest of the un-labelled data, often referred 

to as the testing dataset s (black dots in Figure 4.3(E)), to predict whether or not a 

pixel belongs to a structure of interest (in this work a piece-wise linear structure) by 

𝑟(𝒇𝒏(𝑥, 𝐼𝒔), shown as black dots in Figure 4.3(E) and labelled in green or blue in 

Figure 4.3(F);  

7) The predicted results are assigned to each corresponding pixel location so as to 

presented a segmented image, as shown in Figure 4.3(G). 

 

 

Figure 4.3 Illustration of typical process of filter-bank based supervised segmentation: (A) input image 

I(x) with darker single-pixel wide linear pattern in the middle; (B) illustration of (A) which has been 

filtered by two filters; (C) each pixel on the image can be seen as a data point (black dots) in a two-

dimensional feature field; (D) a subset of image pixels have been labelled into two classes (green and blue 

colour dots) as ground truths and are treated as training data in the two dimensional feature field; (E) 

learning an classifier, denoted by r(), based on training data (feature vectors) in the multidimensional 

feature field by machine learning algorithm; (F) applying learnt classifier r() to the remaining unlabelled 

data points (black dots); (G) the segmented image. 

The benefits of such an approach on segmenting a linear pattern from a noisy image are: 

1) a set of filters could be applied to describe different aspects of linear patterns, so as to 

take into account complex local pattern information; 2) the vector of the filtered image 
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that describes the local pattern in a high-dimensional feature field could potentially more 

sufficiently describe the complex classifier; 3) by subjectively labelling the pixel ground 

truth, human expertise and knowledge could be incorporated; 4) a machine learning 

algorithm is typically good at learning complex non-linear classifiers, according to Mohri 

et al. (2012).   

To override the unconnected gaps and distractions of the bounding surface in an MXRT 

image, as discussed above, the method should be developed with the following 

considerations: 1) How to configure the set of filters to maximise the characteristic 

differences, in a multidimensional feature field, between pixels which fall onto the linear 

bounding surface and “fake hole” gaps from pixels which fall onto “true hole” gaps and 

distractions?  2) How to configure training images/datasets and label them to reinforce 

expertise and knowledge to connect small gaps but retain large gaps?  3) How to select 

appropriate machine learning algorithms to learn the classifier effectively? 

Factors have been proposed from both configuring the filter bank and the training image 

point of view to discuss their impact on connectivity enhanced segmentation of 

linear/planar structures in general.  In the following subsections, key factors related to the 

specific challenges of bridging gaps and excluding noise on the segmented linear 

bounding surface are discussed as follows: section 4.2.2 summarises previous studies 

regarding the three aspects of configuration (filter bank, training image and machine 

learning algorithms) and key factors related to the specific challenge of a segmenting 

bounding surface, and their configuration to achieve best gap bridging and noise 

reduction are discussed in 4.2.3. 

4.2.2 Previous studies on supervised classification 

Filter banks for detecting features of piece-wise linear structures 

A filter bank, according to Randen and Husoy (1999), can be regarded as a set of filters 

that characterizes one or more aspects of the local patterns and structures around a pixel 

in a multidimensional feature field, which collectively maximize characteristic 

differences of the structure of interest and the matrix, so that the classifier can be easily 

identified from the ground truth training dataset.  The set of filters applied above is 

typically in the form of a mathematical operation matrix.  The different mathematical 

operations designed within a filter determine the different features of the pattern to be 

characterised and can generally be classified as a direct or indirect mathematical approach 
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in this work.  An example of directly mathematical approaches related to the interests of 

linear/planar pattern recognition is the Hessian filtering (Sato et al., 1997, Frangi et al., 

1998, Voorn et al., 2013) and the use of eigenvalues or eigenvectors (Burgeth et al., 2009, 

Obara et al., 2012) that characterizes geometric aspects of thin planar structures in 3D, or 

linear structures in 2D, by the second-order partial derivatives matrix of the voxel/pixel 

intensity.  It is one of the most popular approaches because it considers and makes use of 

linear geometric information (Lesage et al., 2009).  The indirect mathematical operations 

describe the local pattern around a pixel by calculating convolutional similarity to the 

designed filters that contain different patterns.  The convolutional similarity calculates 

the sum pixel product of the neighbouring patch around a central pixel to the designed 

filter of the same size and returns the sum to the central pixel, so a matched pattern would 

get the highest sum.  One dedicated example is the LM filter bank designed by Leung and 

Malik (2001) that is composed of 48 filters, including a mix of filters containing edge bar 

patterns derived from a Gaussian derivative describing linear patterns and spot patterns 

derived by Laplacian of Gaussian and a Gaussian  filter to describe cluster patterns with 

low or high intensity in the centre.  The LM filters are also designed at multiple scales 

and orientations, to capture patterns at different orientation (for linear patterns) and sizes.  

By calculating convolutional similarity with each filter of the LM filter banks, local 

patterns of linear and spot features can be described. 

The set of convolutional filters in a filter bank is designed, as explained above, or learned 

from example images with representative patterns of interest.  It has been confirmed by 

Rigamonti et al. (2011a) that a learned filter bank is superior to a designed filter bank by 

having filters that more completely capture various features of patterns from example 

images.  The learned filter bank approach was initialized by Olshausen and Field (1996), 

who proposed the Olshausen and Field’s algorithm (OLS), to build a representation of 

images by iteratively optimising a set of filters containing various patterns with given 

filter size and set length to reconstruct the example image.  The set of filters is initialized 

by randomly extracting a set of small image patches.  The weighted sum of the set is 

compared with a randomly selected patch of the same size from the image by calculating 

the mean square difference of each pixel.  The optimisation minimises the calculated 

mean square difference by iteratively optimising weighting factor.  The approach has been 

extensively used for object recognition purposes and was proved to converge well on 

natural images, by Wright et al. (2010).  However, it has also been pointed out that the 
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typical OLS filter bank learning approach is computationally expensive (Lee et al., 2009).  

Rigamonti et al. (2011b) modified the method of comparison from calculating the mean 

square difference to convolutional similarity and found improved efficiency in 

representing linear patterns.   

Therefore, in this work, a learned convolutional filter bank is of interest and the applied 

approach is based on that of Rigamonti et al. (2011b).  As discussed above, filter size and 

numbers of filters need to be configured before constructing a learning filter bank.  The 

configuration is believed to impact on the classification result as follows: firstly, filter 

size is important because it controls the size of neighbouring features to be characterised.  

The filter size is therefore important in this study in determining the scope of the local 

gap length, and noises would be included in a local filter-based descriptor.  It is also 

claimed by Hughes (1968) that the prediction power is closely related to the dimensions 

of the feature field (thus the number of filters in a filter bank).  Therefore the number of 

filters applied needs to be discussed.   

To simplify the classification procedure, this work assumes it is not necessary to learn a 

filter bank from the lamination MXRT image containing the bounding surface, but a 

learned filter bank from the general image containing a linear structure is enough.  The 

assumption is based on Lee et al. (2009), who claimed the learned filter banks from 

different image datasets but containing a similar piece-wise linear structure would be 

similar.  Therefore in this work, the configuration is based on existing filter banks learned 

from natural images that contain piece-wise linear structures (in the form of object edges). 

Construction of training image datasets for supervised classification/segmentation 

Practically, to classify a stack of image slices, the training image dataset typically contains 

one or more exemplary images that have similar patterns to the stack images to be 

classified, and on which a set of ground truths must be labelled, so as to learn classifier 

by the machine learning algorithm.  Image artefacts like noise commonly affect the image 

signal-to-noise ratio, according to Huang and Aizawa (1993), thus making it challenging 

to trace ground truth from the image automatically.  The trace is difficult, even with the 

best of practices among previously introduced pre-filtering approaches that combined 

Hessian filtering and mathematical morphology operations (Tankyevych et al., 2009, 

Dufour et al., 2013), as introduced in Chapter 2.  For subjects requiring segmented piece-

wise linear structures, manually tracing the binary (yes or no) ground truth of a linear 

structure with expert knowledge to overriding image artefacts on connectivity has proved 
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to overcome this challenge. For example, in medical image segmentation, the ground 

truth could be traced with expert knowledge of organs like blood vessels (Pujol et al., 

2003), neurons (González et al., 2009) and tissue (Ughi et al., 2013)) and for satellite 

image segmentation, where roads could be traced by manual annotations (González et al., 

2009).  In this work, a similar approach is proposed to trace bounding surfaces, respecting 

the unconnected nature of bounding surfaces.   

Many studies that address linear structure segmentation with supervised classification do 

not discuss the impact of training images, because the set of training images is usually 

selected and traced from the same dataset, which is assumed to be representative (Pujol 

et al., 2003, Rigamonti et al., 2011b, Becker et al., 2013, Ughi et al., 2013).  This work 

chooses training images based on the same assumption, but three factors that potentially 

cause uncertainty to classification will be discussed comprehensively.  When a subset of 

training images have a structure that is less representative, the three factors are the gap 

length, background intensity and orientation of the linear structure.  These three factors 

matter for the segmented connectivity for following reasons: 1) It has been explained that 

this work aims to use supervised classification to bridge gaps selectively, based on expert 

knowledge on gap length.  It is therefore important to discuss how efficiently gaps are 

bridged in the segmented image, with certain length gaps overridden in training images, 

and how much uncertainty would be caused when a given gap length from the training 

image did not cover the gap length expected to be bridged in the testing image; 2) The 

other factor is the background intensity, as summarised by Fraz et al. (2012), which is 

considered by most of the previous studies as the impact of artefacts during collecting 

images.  Although this work does not expect a large impact from background intensity, 

because the training image would be taken from the same stack of images whose imaging 

condition is similar, nevertheless, the potential uncertainties introduced by varying 

backgrounds are discussed; 3) Lastly, the orientation of the linear structure given in the 

training image to specify the scope of the angle of the linear pattern should be recognized 

in the testing image.  Therefore, the impact of orientation needs to be discussed.  The 

importance of orientation is confirmed indirectly by Truc et al. (2009), who proved it was 

possible to avoid the impact of the orientation of linear structures by applying a set of 

directional filters to make the patterns’ orientation invariant, prior to classification.  In 

this work, orientation is based on linear structure traced from a training image.  Similarly 
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to gap length, the uncertainty of the traced orientation in the training image, if not covered 

the expected orientation in the testing image, needs to be discussed. 

Given that the thin, piece-wise bounding surface is challenging to segment, but requires 

to be accurately identified in this work, a distance transformation can be applied on the 

traced ground truth in the training image, to train the classifier to recognize the centreline 

of linear structure.  This could be achieved based on the work of Sironi et al. (2014), who 

were the first to shrink given linear ground truth into single pixel-wide skeleton to 

represent the centreline,  and secondly, applying a distance transform function so that the 

pixel had the highest values on the centreline, and those away from it decreasing 

monotonically, like a ridge.  Note this approach was only applied on a fully traced training 

image, rather than a subset, as illustrated in Figure 4.3.  Thus with the ground truth image 

𝑔(𝑥, 𝐼𝒕), a distance map 𝑑(𝑥, 𝑔(𝑥, 𝐼𝒕)) is obtained and normalized to [0,1] for the training 

image t.  For each pixel in the training image t it now has its feature vector 𝒇(𝑥, 𝐼𝑡) and 

distance map 𝑑(𝑥, 𝑔(𝑥, 𝐼𝑡)).  A classifier r() of continuous value between 0 to 1 can then 

be trained so that  𝑑(𝑥, 𝑔(𝑥, 𝐼𝑡)) = 𝑟(𝒇(𝑥, 𝐼𝑡)) .  For the testing image 𝐼𝑠(𝑥) , the 

corresponding feature vector 𝒇(𝑥, 𝐼𝑠) can be calculated.  By applying the learned r(), the 

distance map 𝑑(𝑥, 𝑔(𝑥, 𝐼𝑠)) = 𝑟(𝒇(𝑥, 𝐼𝑠)) for image s can be estimated (see the work of 

Sironi et al. (2014) for full details).  To get the final binary centreline of the linear 

structure, Sironi et al. (2015) proposed applying a non-maximum suppression, where only 

pixels closest to the centreline of the estimated distance map are kept.   

Machine learning algorithm 

Supervised classification trains the classifier from the labelled training data and makes 

predictions on the remaining unlabelled testing data.  The benefit of such an approach is 

to deal with the situation where data are classified under an unseen (nonlinear) manner 

(Buhmann et al., 1999, Mohri et al., 2012),.  The set of filters in a filter bank not only 

improves the discrimination between classes but also increases the dimensionality of the 

feature field, thus increasing the difficulty of classification.  This could be solved by either 

optimising the filter bank to increase the separation of data points of different classes in 

the multidimensional feature field or involving a machine learning algorithm which has 

proven strength in searching for a non-linear distributed “boundary” in the 

multidimensional feature field between classes (Randen and Husoy, 1999). 
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There are some successful machine learning algorithms for segmenting piece-wise linear 

structures by supervised classification, including those by Random forest (Ughi et al., 

2013), AdaBoost (Pujol et al., 2003, Caballero et al., 2007, Rigamonti and Lepetit, 2012, 

Becker et al., 2013), SVM (González et al., 2009) or Bayesian (Xu et al., 2006).  This 

research, however, is not interested in optimising the selection of machine learning 

algorithms but would prefer to focus on configuring previously proposed factors to reflect 

the nature of the challenge of segmenting a piece-wise bounding surface.  Thus in this 

research only the most commonly used algorithm (AdaBoost) for segmenting linear 

structures (Pujol et al., 2003, Caballero et al., 2007, Rigamonti and Lepetit, 2012, Becker 

et al., 2013)) has been selected, for simplicity.   

Summary of process 

The application of the discussed supervised classification process for bridging gaps in 

segmenting a piece-wise linear structure is illustrated in Figure 4.4, in a top-down 

sequence.  A synthetic grey-scale dashed line image with increasing gap length has been 

created to represent an unconnected thin linear structure with various discontinuities.  A 

filter bank containing 8 convolutional filters of the same size but with different patterns 

has been applied for the purpose of illustration, to create a vector of filtered images in an 

8-dimension feature field.  The 8 convolutional filters yield different filtered intensities 

(by convolutional similarity) for a pixel, and therefore describe different types of 

neighbouring patterns.  The ground truth has been traced with gaps overridden, and a 

skeletonized centreline has been obtained by shrinking ground truth, and distance 

transform is applied, as shown in the second row of Figure 4.4.  Each pixel in the 8-

dimensional feature field then corresponds to a distance value between 0-1, as given from 

the distance map for an AdaBoost algorithm, to learn the continuous classifier.  A testing 

image has been created by rotating the training image by 180 º  to illustrate the 

performance when training and testing images have different but similar structures.  With 

same filter bank applied, 8 filtered images can be obtained.  By applying the learned 

continuous classifier, the distance value of each pixel to the anticipated centreline in the 

testing image can be predicted.  By applying non-maximum suppression, the centreline 

of the predicted result can be obtained.  As shown in the last image of Figure 4.4, the 

single-pixel wide segmented centreline of the unconnected dashed line in the testing 

image is well connected.  In this work, the segmentation bounding surface problem is 
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considered to be performed in a stack of 2D slices, following this procedure, which 

together would yield a segmented bounding surface in 3D. 

 

Figure 4.4 Illustration of supervised classification applied to segment a synthetic unconnected dashed line 

(13 pixels wide in, darker colour) presented on grey background: all images are the same size of 500x500 

pixels2: 1st row, a training image (TR) of 500x500 pixels2 containing a13-pixel wide dashed line, with 

increasing gap from left to right (gap length ranging from 5-45 pixels) and filtered by 8 convolutional 

filters (43x43 pixel square) (Maximum Response 8 (MR8) filter bank based on Varma and Zisserman 

(2005)) to create an 8 feature map of TR; 2nd row: a ground truth (GT) 5-pixel wide straight line manually 

traced on TR with unconnected gaps bridged, followed by shrinking to centreline and calculating distance 

transform: the intensity values of a 7-pixel segment across centreline of each plot have been given on the 

side, from which can be seen 5-pixel wide ground truth with pixel value of “1”, 1 pixel wide centreline 

with pixel value of “1” and a distance map whose intensity value decreases monotonically away from 

centreline, with pixel value decreasing from “1” to “0”; 3rd row, a synthetic testing image (TI) is created 

by rotating TR 180º, along with the 8-feature map of TR by an 8-filter filter bank; 4th row: predicted 

distance map of TI and centreline after apply non-maximum suppression. 

4.2.3 Configuration and discussion of supervised classification by five factors 

Following the discussion in 4.2.2, five factors from both the filter bank and training image 

point of view (summarised in Table 4.1) have been proposed that are closely related to 

the nature of the challenges of a segmenting bounding surface.  Each of the five proposed 

factors implies different aspects of the challenges, as discussed.  Therefore, the 

understanding of the impact of these factors is essential in optimising configuring and 

evaluating the uncertainties for supervised classification of a bounding surface.  The 

nature of the impacts of each of the five factors on enhanced-connectivity segmentation 
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of generic linear structures have been discussed in a separate work (draft paper).  The 

discussion in the draft paper is based on same procedure as given in Figure 4.4, but with 

a set of different configurations to test each factor.  In the following list, the key 

conclusions from the draft paper regarding the five factors are summarised and linked to 

the challenge of segmenting the bounding surface, from both the optimum configuration 

and uncertainty evaluation point of view.  Based on the discussion, suggestions are given 

on configuring each of the five factors on the segmentation of the bounding surface from 

MXRT. 

1) The filter window size determining the area of the neighbouring feature has been 

characterised.  Taking the grey-scale dashed line image in Figure 4.4 for example, 

compare a pixel that falls into an unconnected gap and a pixel falls in the grey matrix, 

both in the grey colour, a small filter window that only includes pure grey tiles cannot 

differentiate both pixels.  However, a relatively larger filter window for a pixel which 

falls into the grey gap would not only include the grey tile in the gap but also part of the 

darker linear pattern, and thus would be characterised differently from the pixel from the 

grey matrix.  Taking the filtered image R6 of the dashed line in the first row of Figure 4.4 

as an example, the filtered pixels falling into a small gap on the left has similar feature to 

pixels falling on the darker dashed line segment, whilst the pixels which fall into the large 

gap on the right has similar feature to pixels that fall into the matrix.  This is because the 

filter size is just below the length of the largest gap on the right (a 43-pixel wide filter 

window compared to a 45-pixel wide gap) but is larger than most of the smaller gaps on 

the left.  In Figure 4.4, however, the largest gap has still been bridged in the segmented 

image; this is because the filter width is just 2 pixels smaller than the largest gap length, 

thus creating a minor different feature between the pixels in the large gap and the matrix.  

However, in the separate work (draft paper) it has been shown that the larger the gap size 

compared to the filter window size, the worse the connectivity.   

Therefore, the configuration of filter window size is suggested to cover the gap length 

anticipated for the bounding surface to be segmented.  According to the measurements of 

the gap length caused by various holes, given in Table 3.2 of section 3.2.2.2, the filter 

size is expected to be larger than 2mm (20 pixels in MXRT) to bridge “fake holes” and 

smaller than 5mm (50 pixels in MXRT) to keep the “true holes”.  Bridging the gap 

requires a large filter size to cover gap length, whilst excluding noise requires small filter 

size to reduce distraction, based on the same characterised neighbouring area principle.  
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Therefore, filter size is expected to be smaller than the average distance in which 

distraction would potentially occur, which can be estimated by the average distance 

between feldspar particles of 2.4 mm (24 pixels in MXRT) measured in Chapter 3.  As a 

result, a filter size between 20-24 pixels in each dimension would theoretically bridge the 

small gaps of “fake holes”, exclude the distractions of feldspar and keep the large gaps of 

“true holes”.   

Practically, the “fake holes’” gap length could be larger than the measured length, because 

the measurements are performed on a limited sub-dataset and uncertainty could be caused 

by subjective measurements.  To implement the potential larger gap length features of the 

“fake holes”, a second filter, with a larger size than the first small one (20-24 pixels), 

could be applied simultaneously.  Although the second, larger, size may introduce 

distraction (because it exceeded average distraction distance), the simultaneous 

application of both filter sizes it kept the noise reduced linear pattern features captured 

by the small filter size.  The second, larger, filter size should still be smaller than 50 pixels 

to keep “true holes”.   

As previously stated, in this work the configuration of the learnt filter bank is based on 

filter banks learnt from the general Berkeley BSDS500 benchmarked dataset, consisting 

of 200 natural images at a size of 481x321 (Arbelaez et al., 2011) which is similar to the 

MXRT image size of 562x550 in this work.  Two learnt convolutional filter banks were 

selected, meeting the discussed filter size requirements, as in Figure 4.5, namely, 

Learnt89 and Learnt121, with 89 filters 21x21 pixels square in size and 121 43x43-pixel 

square filters respectively.  Both filters include a set of linear as well as cluster patterns 

and are claimed by Rigamonti et al. (2011b) to well-represent linear edge structures in 

the training image.  In the separate work, both filter banks proved successful in describing 

unconnected linear structures, and therefore are applied in this work on bounding surface 

segmentation. 
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Figure 4.5 Filter banks: (A) Learnt filter bank Learnt121 with 121 filters each size of 21x21 pixels square 

Rigamonti et al. (2011b); (B) Learnt filter bank Learnt89 with 89 filters each with a size of 43x43 pixels 

square: Rigamonti et al. (2011b). 

2) The numbers of filters indicate the diversity of features described; therefore, a greater 

number of filters implies a more subtle difference matrix could be detected between a 

linear pattern and the matrix.  In the separate draft paper, filter banks yielding 8, 38 and 

210 features are compared, and it was proved that for unconnected linear/planar structure 

segmentation the largest tested number of features improved segmented connectivity best.  

In this work, to ensure the bounding surface could be characterised under heavy noise, 

two sets of filter banks containing 89 and 121 filters are applied together to yield a 210-

dimensional feature field for characterisation.  The discussed configuration of filter banks 

is summarised in Table 4.1. 

3) The general idea of configuring training image factors could be expressed as making 

sure given training information is as consistent as possible with a testing image.  

Therefore, in this work, one slice out of the 525-slice image stack was selected as a 

training image.  However, the uncertainty exists that the selected slice has been less 

representative in covering anticipated patterns.  In the separate work, the impact of lack 

representation on the segment connected piece-wise linear structure is discussed.  Test 

cases were designed with the same procedure (with the same two learnt filter bank 

configurations, as discussed above) shown in Figure 4.4, but including different gap 

length, orientation and background intensity configuration on training and testing images.  

In the following paragraphs, the conclusions from the separate work are summarised, and 

the impact of proposed training image factors on segmenting bounding surfaces are 

discussed. 
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Gap length is the range of the disconnected gap length to be overridden in the traced 

ground truth of the linear structure in the given training example image.  Gap length thus 

implies the range of gaps that should be picked up by the machine, following the 

“instruction” given by the training image and traced ground truth.  Uncertainty would 

occur when a given gap length in the training image did not cover all the potential gap 

lengths in the testing.  This could be tested on synthetic images, as shown in Figure 4.6, 

where only half of the gap lengths (in the range of 5-30 pixels) are provided and are 

overridden in the training image, to train the classifier, but applied on testing with the full 

range gap lengths (in the range of 5-45 pixels).  The result showed that when the gap 

length is larger than what been provided in the training image, the predicted connectivity 

decreased (see Figure 4.6 for illustration, but the fully quantified discussion is available 

in the separate draft paper).  However, one may also note that the relatively small gaps 

among the gaps in the right half of the testing without given training, for example, gap 

length 35, is also bridged in the predicted image.  This implies that even though one 

training image from the full stack may provide a limited gap length example, the method 

would still pick up connectivity for gap lengths a bit larger than the given training, thus 

covering the uncertainty of lack of a representative training image.  The full quantified 

discussion is available in the separate draft paper, where it is concluded that a gap 16% 

longer than given gap length would be bridged by 90% of its length, while a 50% longer 

gap will be bridged by 39.4% in length.  Another uncertainty of concern is that a “true 

hole” been over-bridged by the above-discussed mechanism.  In this work, the training 

image will be overridden based on measured knowledge of holes.  Therefore “fake hole” 

gaps smaller than 2mm will be bridged.  Given that “true holes” are measured as larger 

than 5mm, thus 250% longer than the bridged example gap in the training image, in this 

work it is considered that over-bridging of “true holes” can be ignored.   
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Figure 4.6 Gap length test: (1) training image with gap lengths of 5,10,15,20,25,30 pixels from left to 

right, along with gap bridged ground truth of 5 pixels wide; (2) training images are filtered by both learnt 

89 and learnt 121 filter banks and together with ground truth image to pop into the machine to learn the 

classifier to follow same procedure as (Figure 4.4); (3) testing image with gap lengths 

5,10,15,20,25,30,35,40,45 pixels; (4) predicted distance map of (3) (centreline is not presented, as it is too 

thin to illustrate); 

4) Orientation describes the direction range of examples of connected/unconnected linear 

bounding surface patterns provided in the training image.  The orientation enhances the 

distinguishability between pixels falling into the gap along the linear pattern direction and 

the noise pixels around the linear pattern.  Orientation thus excludes the noise pixels with 

similar intensity and gap length to the thin bounding surface pixels but not following the 

direction of bounding surface.  In this work again local orientations are believed to be 

represented by one 2D training slice, but the uncertainty regarding lack representation 

may exist.  In the separate work, this has been examined by designing a synthetic testing 

dashed line with increasing orientation difference from the one given in training, as shown 

in Figure 4.7.  The results showed that even for the largest tested orientation difference 

(16° deviation from given training image) the predicted distance map still enhanced the 

connectivity of 13.8% of the gaps in length (the fully quantified discussion is available in 

separate draft paper).  In this study, inter-LBS has been believed to have similar geometry 

on the slices perpendicular to the paleocurrent direction, thus implying less orientation 

variation.  Therefore, one training slice from a perpendicular cross-section is considered 

as representative. 

 

Figure 4.7 One horizontal dashed line and corresponding gap overriding ground truth as a training set to 

train the classifier and applied to a set rotated dashed line (2° incremental 8 times between 0°-16°) with 

corresponding predicted distance maps shown below (centreline is not presented as it is too thin to 

illustrate). 
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5) The background intensity of the training image determines the local background 

variations that could be picked up.  Therefore, background intensity implies variations of 

background caused by local hardening and complex mineral distributions should be 

introduced in the example training image.  One slice is also considered to include 

representative local intensity background variations, but the uncertainties regarding lack 

representation are discussed here.  The impact of varying background intensity has been 

examined in the draft paper by designing testing cases, as shown Figure 4.8, in which 

classifiers trained from one image are applied to images containing the same dashed line 

but various background intensities.  The results indicated that the largest background 

intensity difference (125%: 180 over 80) still bridged about 50% of the length of gaps 

(fully quantified discussions are available in the separate draft paper).  Therefore, 

background, in this work, is believed not to have much impact, because slices from one 

MXRT stack are not expected to have large background variation.  It should also be noted 

that it is not necessary to pre-process the MXRT image to remove hardening from the 

background, as mentioned in Chapter 2, because supervised classification recognizes 

patterns as long as the training and testing images are consistent.  The discussed 

configuration of the training image is summarised in Table 4.1. 

 

Figure 4.8 Testing of impact by varying background: training image with dashed line of same gap length 

over background intensity of 80, together with gap fully bridged ground truth to train the classifier and 

applied on the testing image, varying the background by adding a pixel value of 20 each time. 
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Table 4-1 Discussed factors impacting supervised classification on segmenting bounding surface 

 Filter Bank  Training Image 

Factors 

Filter 

window 

size 

Number 

of Filters 
Factors 

Gap 

Length 
Orientation 

Background 

Intensity 

Optimising 

configuration 

Size 

Range 

Covered 

Diversity 

of 

features 

covered 

Tolerance/ 

uncertainty of 

largest 

measured 

deviation 

50% 

longer 

gap 

bridged 

39.4% 

16° 
deviated 

orientation 

bridged 

13.8% 

125% 

background 

intensity 

difference 

bridged 

50% gap 

Configuration 

applied in this 

work 

21x21 

and 

43x43 

pixels2 

89 and 

121 
Configuration 

Gap 

bridged 

< 2mm 

Traced on 

one slice of 

stack 

Traced on 

one slice of 

stack 

4.2.4 Bounding surface extraction 

The key procedure for applying supervised classification to segment bounding surfaces 

from MXRT with the discussed configuration is outlined as follows (illustrated in Figure 

4.9): 

1) Taking the claim made in the previous chapter that the sample has relatively 

similar inter-laminaset bonding surface geometry perpendicular to the paleoflow 

direction, one randomly selected slice (508/525) is taken as the training image 

(Figure 4.9(A)).  Unconnected bounding surfaces on the training image are traced 

with additional connectivity knowledge to bridge the missing connectivity by 

overriding gaps and distractions (Figure 4.9(C)).  The gaps are connected based 

on a measured range (< 2mm) to bridge “fake holes” and leave “true holes” over 

5mm. 

2) Both learnt89 and learnt121 filter banks are convolved to each pixel of the training 

image and yield a vector of filtered images (Figure 4.9(B)).  The vector of filtered 

images together with the traced ground-truths (Figure 4.9(C)), with a distance 

transform, is put into an AdaBoost algorithm to learn a classifier to take into 

account the gap bridging.   

3) The classifier is then applied to the remaining slices of the MXRT stack (with 

same filter bank applied) to predict the distance map.  Figure 4.9(D) illustrates an 

example of the first of the 525 images in the stack, which returned the distance 

map shown in Figure 4.9(E).   
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4) Non-maximum suppression is performed on the distance map to keep only pixel 

values closest to the centreline on the distance map, and typical Otsu’s 

segmentation can then be applied to segment the centreline of the bounding 

surface (Figure 4.9(E)). 

 

Figure 4.9 Process of enhancing connection with supervised classification over the unconnected bounding 

surface image (images did not apply background removal but colour balance is applied for better 

illustration): (A) slice 508/525 of the MXRT stack at perpendicular to paleoflow direction, with size 

562x550 at 100um^2/pixel as training image, in which the bounding surface is presented as a brighter 

linear structure.  Note the image has intensity normalized to 0-255; (B) The vector of the filtered image; 

(C) Connectivity-enforced ground truth image of A (white is bounding surface) together with distance 

transform example by intensity plots of one 25-pixel long segment across one traced bounding surface, 

shown as a “ridge”; (D) one example testing image slice 1/525; (E) predicted centreline distance map of 

bounding surface of D; (F) segmented centreline of bounding surface of E. 

The segmentation is performed slice by slice over 525 slices of the MXRT image stack 

of L1, each of size 562x550 at 100um^2/pixel.  As a result, the 3-dimensional bounding 

surface is segmented from the greyscale MXRT image stack, as illustrated in Figure 

4.10(A-B).  The procedure applied to each 2D cross section from one direction (e.g.  xy 

cross section of Figure 4.10(A)) appears as lack of connectivity in another perpendicular 

direction (e.g.  xz cross section of Figure 4.10(A)).  Assuming that the 3D planar bounding 

surfaces are anticipated to present a linear structure in both perpendicular to and parallel 

to paleoflow 2D cross sections, the procedure is performed twice on each xy slice and xz 

slice to enhance the connectivity of the bounding surface in 3D.  Lastly, post processing, 

which removes small spots (black in Figure 4.10(B-D)) less than 100 voxels in 3D, is 

performed to avoid small noises and artefacts.  The results are verified by two methods.  

Firstly, a visual comparison to the same cross-sections with simple segmentation as 

applied in Chapter 3 is performed.  Secondly, the results are compared with the watershed 

approach introduced in 4.1, by labelling each spatially separate but internally connected 
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surface in both results to examine connectivity enhancement and noise reduction.  The 

results confirmed that the developed supervised classification approach segmented the 

thin 1-2-pixel wide centreline of the bounding surface with gaps bridged in the anticipated 

magnitude and reduced noise significantly.   

 

Figure 4.10 (A) 3D view of MXRT of L1 with size 562x550x525 at 100um^3/voxel (image intensity 

range normalized to 0-255 with bounding surface in brighter colour); (B) 3D view of supervised 

classification segmented bounding surface (in black colour); (C) xy slice 263/525 of segmented bounding 

surface (black); (D) xz slice 275/550 of segmented bounding surface (black). 

Figure 4.10(C-D) gives the same two perpendicular cross-sections of the segmented 

bounding surface compared with the simple semi-automated segmentation in Figure 3.11 

of section 3.2.1.  The main advantages of supervised classification include: 1) Supervised 

classification identified the 100-200um thick finest bounding surface layer rather than the 

1-2 mm transitional zone identified by the simple segmentation method; 2) The 

connectivity in the xz direction is clearly better than that obtained in the simple 

segmentation method based on visual observation; 3) much less labour and subjectivity 
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is introduced by supervised classification (trace one slice) than simple segmentation 

(trace 10 slices, evenly distributed over the 525 stack).   

The result of the supervised classification segmentation of the bounding surface is also 

compared with watershed segmentation.  Comparing Figure 4.2(D) with Figure 4.9(F) 

(both performed on the same slice), it can be seen that the supervised classification not 

only effectively avoided noises but also kept the connectivity based on manual 

identification.  To better quantify the efficiency of noise removal and keep the 

connectivity, the 3D results of supervised classification in Figure 4.10 are compared with 

watershed segmentation (with the same setting as Figure 4.2(D) but performed on all 3D 

slices rather than on a single slice).  Removal of small spots less than 100 voxels in 3D is 

also performed on the segmented watershed image, to be consistent with the supervised 

classification approach.  Independent connected bodies are labelled in 3D by looking at 

connectivity in 26-neighbour voxels for both segmented results.  Figure 4.11(A) shows 

that the supervised classification segmented bounding surface are labelled into 73 

independent connected bodies in different colours.  Figure 4.11(B) shows the watershed 

segmentation result labelled into 31 connected bodies and Figure 4.11(C) shows the 2nd-

30th of the 31 independent connected bodies of watershed segmentation, by excluding the 

1st connected body.  The main observations from comparing two approaches are: 1) the 

supervised classification segmented bounding surfaces have a geometry consistent with 

previous observations and well connected in the 3D domain.  73 connected bodies are 

reasonably consistent with the previous estimation in the preliminary study of Chapter 3.  

Small noises appear to have been removed in comparison to the watershed result, by 

visual observation.  Bounding surfaces from the curved laminaset are intersecting with 

each other, therefore a limited number of independent connected bodies are identified; 2) 

the watershed segmentation also did not show a very large number of connected bodies 

because isolated small artefacts have been efficiently removed by removing the small 

spots.  However, the first connected body appears to have all the bounding surfaces 

connected by the remaining artefacts and noises into one large connected body.  Figure 

4.11(B) suggests that there is still a significant amount of noise remaining.  After 

removing the first connected body, only a few small connected bodies without the typical 

geometry of bounding surfaces are observed; 3) the connectivity of bounding surfaces by 

watershed segmentation is unidentifiable, because they could not be separated.  However, 
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based on visual inspection the connectivity is still poor, considering the significant 

number of gaps observed at bounding surfaces.   

 

Figure 4.11 Labelling of independent connected bodies from: (A) supervised classification segmented 

bounding surface: 1-73 connected bounding surfaces are labelled based on the colour map given below; 

(B) watershed segmented (with small spots <100 voxels in 3D removed): 1-31 connected bodies are 

labelled, based on the colour map given below; (C) 2-31 connected bodies of B are labelled, based on the 

colour map given below. 

To further illustrate the connectivity of supervised classification segmented bounding 

surface, the labelled surfaces in Figure 4.11(A) are visually analysed, one by one, and 

selected connected surfaces are illustrated in Figure 4.12.  Horizontal planar bounding 

surfaces are mostly well connected, with no small unconnected holes, proving that small 

“fake holes” are fully bridged, Figure 4.12(A-B) illustrates two such examples.  Only one 

horizontal bounding surface showed a large “true hole”, as shown in Figure 4.12(C), 

which is considered to be a result of erosion or bioturbation, because the scale is over 

several centimetres long and about 1 cm wide.  Curved LBSs appear as large connected 

bodies, as a result of the intersection.  The two largest connected curved bounding surface 

bodies (labelled “1” and “5” in the 73 independent connected bodies) are shown in Figure 

4.12(D and G), with top-down and bottom up views in Figure 4.12(E-F) and Figure 

4.12(H-I) respectively.  Both “1” and “5” appear well connected with no small “fake holes” 

and several large “true holes” with diameter from 1cm to 3cm.  One zoomed-in view of 

Figure 4.12(G) is given in Figure 4.12(J), where several large “true holes” appear at 

similar locations that were potentially caused by bioturbation penetrating across several 

neighbouring bounding surfaces.  Figure 4.12(K) traces the edge of holes and potential 

tracks across neighbouring bounding surface surfaces, which provides strong evidence of 

bioturbation activity that created holes of about 1.5-2 cm diameter and penetrated a set of 

neighbouring bounding surfaces.  The traced bioturbation also has a location consistent 

with previously gained evidence from the EDS map of T2 and Tp.  Figure 4.13 positions 
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the EDS of Tp and T2 at their roughly spatial collection locations relative to L1, with 

bioturbation traced on the labelled bounding surface in Figure 4.12(G).  The calcite 

concentrated parts, as an indicator of bioturbation in the EDS image, are highlighted in 

Tp in the yellow square box and for T2 calcite is segmented out directly, with the 

concentrated part highlighted in the yellow square box.  The relative locations of 

highlighted potential bioturbation in both EDSs of Tp and T2, together with the trend 

traced from the labelled surface, yield a consistent 3D spatial path of bioturbation.   

 

Figure 4.12 Illustration of segmentation for connectivity analysis and observation of bioturbation: (A-C): 

Three selected horizontal planar surfaces, numbered as 14, 16 and 21 respectively: A-B are well 

connected, and C presents one large “true hole”; (D): Top connected surface of curved laminaset 

numbered as 1; (E) top-down view of D and (F) bottom-up view of D: both top and bottom view present a 

few large holes, as a result of bioturbation, while the rest of the surface is well connected with no small 

holes appearing as artefacts; (G-I) shows a similar observation to D-F, but for another large intersecting 

connected curved LBS, numbered as 5, large holes appear at several locations but the rest of the surface is 

connected well, with no small holes appearing as artefacts; (J) shows a zoomed-in view of one potential 

bioturbation penetrating several curved bounding surfaces and (K) yellow dashed line traces the edge of a 

hole penetrating each bounding surface and the solid line tracing the track of the highlighted edge across 

the set of surfaces been penetrated, which clearly indicates bioturbation. 
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Figure 4.13 Illustration tracing bioturbation on segmented and labelled connected bounding surface body, 

together with EDS of Tp and calcite segmentation of EDS of T2, both roughly positioned at their spatial 

location of collection. 

In this section, a filter-bank based supervised classification method has been developed 

to address the poor connectivity of the segmented bounding surface.  Five factors have 

been proposed to impact the segmented connectivity respecting the challenges of 

identifying a bounding surface and bridging small “fake holes” but leaving large “true 

holes” as they are and excluding distractions.  Among the five factors, filter size and 

traced gap length in the training image appear to have the most significant impact on 

bridging the gap, and the configuration of filter size and traced gap length in training 

image should be designed according to measured gap length and the distribution of 

distractions.  The single training slice procedure applied in this work reduces labour and 

subjectivity, but may lead to uncertainties.  The uncertainties are discussed from the point 

of view of three training image factors (gap length, orientation and background intensity), 

and the main conclusions are: 1) when the training image is less representative, an 

unconnected linear structure which has not been given in the training image could still be 

bridged to various degrees, according to different factors; 2) the bridging of an un-given 

unconnected linear structure would not lead to over-bridging “true hole” gaps.  The 

predicted distance map may have the same maximum value at two discreet pixels closest 

to the centreline of the bounding surface.  Therefore, the segmented bounding surface has 

a width of 1-2 pixels representing a thickness of 100-200 um.  This thickness satisfies the 
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measurement from Chapter 3 to safely include the ~1-2 grains thick (average size between 

100-200 μm) finest bounding layer.  This work applies 2D classification twice, in two 

perpendicular directions, which appears to efficiently enhance connectivity of a 

segmented planar bounding surface in 3D.  With supervised classification, inter-LBSs are 

clearly segmented, but the intra-laminaset surface is still unidentifiable.  The extracted 

bounding surface image enables the 3D internal structure information of the bounding 

surface and will be used as a reference for multiscale registration and the characterisation 

in the following sections.  The extracted bounding surface is also used to create the sub-

domain constraints of the multiscale reconstruction in Chapter 5.  The segmented 

bounding surface also provided strong evidence of bioturbation.  Therefore, the 

disturbance of bioturbation on grading should be addressed during reconstruction. 

4.3 Hidden features in SEM  

This section discusses how hidden bounding surfaces can be revealed in SEM, in which 

they are presented less obviously than in MXRT, and thus present an obstacle to 

registration between SEM and MXRT.  The nature of the challenge has been raised by 

the analysis of the literature in Chapter 2, and evidenced in Chapter 3 on a cross-laminated 

sandstone sample, that to register an XRT and SEM BSEM images, they must have 

similar resolution and retain the shared physical feature of inter-LBS similarly because: 

1) the heavy minerals that highlight the bounding surface in MXRT are only represented 

as separate, brighter particles in a high resolution BSEM and it is hard to reassemble the 

topology of the bounding surface by simply connecting them; 2) As to be illustrated later 

in the following sections, the classical rescaling techniques by either linear or nonlinear 

(cubic) scaling on a BSEM image still fails to retain any information on a shared inter-

LBS similar to MXRT. The different imaging principles between BSEM and MXRT will 

be discussed and proved responsible for the “missing” bounding surface feature in BSEM.  

This section begins by discussing the fundamental reasons of both these challenges and 

their impact on retaining of a bounding surface on a BSEM image.  The discussion 

inspired the following development of a method to retain the bounding surface from a 

BSEM image, after upscaling, by taking composition into account with assistant of EDS 

image, to emphasis the role of heavy mineral in the similar way to that in a MXRT image.  

The method improves the presentation of the bounding surface on the BSEM image so as 

to assist in registration with MXRT.  The registration will help further characterisation of 
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lamina thickness, which appeared to be hard to identify in the previous top-down 

characterisation performed in Chapter 3. 

The nature of hidden bounding surfaces in BSEM beyond MXRT are:  

1) The high-resolution BSEM image at 1x1 μm2/pixel resolution image appears very 

different to the MXRT image at 100x100 μm2/pixel, because of the large resolution 

difference (100 times).  The latter has averaged the density of heavy particles 

presented in the former, together with the local hardening effect, to better reassemble 

the topology of heavy minerals concentrated on the bounding surface.  Figure 4.14 

gives an example of a partial view of both BSEM and MXRT images at a similar 

location containing three horizontal planar bounding surfaces to emphasise this 

challenge.  The BSEM image shown in Figure 4.14(A) contains no obvious topology 

of the bounding surface, which is more observable in MXRT as brighter linear 

patterns.  The heavier irons and dolomites expected to highlight the bounding surface 

are presented as separate, brighter particles with clear grain geometries, cemented in 

the fine bounding surface layer in BSEM as shown in Figure 4.14(A), which are hard 

to reassemble to represent the topology of the bounding surface.   However, in the 

MXRT image shown in Figure 4.14(B), grain densities are averaged over the coarser 

pixels, without detailed grain geometries.  The heavy mineral concentration on the 

bounding surface is therefore presented with the clear, brighter, linear pattern. 
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Figure 4.14 (A) Small FOV (2928x3294 pixels2) of BSEM at 1x1 μm2/pixel resolution compared with (B) 

MXRT at 100x100 μm2/pixel at manually addressed similar FOV (45x51.) 

2) The other reason bounding surface patterns are less obvious in BSEM is the different 

imaging principle.  The image intensity I of BSEM (𝐼𝐵𝑆𝐸)  is expressed in equation 

(4.1), according to Müller (1954), and the intensity for MXRT (𝐼𝐶𝑇), is expressed in 

(4.2), according to Herman (2009).  Apart from constants, 𝐼𝐵𝑆𝐸 is determined by the 

BSE coefficient, η, and 𝐼𝐶𝑇 is determined by the attenuation coefficient, μ.  Both BSE 

and the attenuation coefficients have a positive correlation with the atomic number of 

the element (e), but with different gradients as shown in Figure 4.15.  The CT 

attenuation coefficient has a larger positive correlation gradient with increasing 

atomic number (thus density) and would result in a larger contrast between bounding 

surface and the matrix on the MXRT image than on the BSEM image.   

Figure 4.16 provides evidence of the impact of different imaging principles by 

comparing a low-resolution BSEM of T2 with an MXRT of L1, to exclude the 

resolution impact.  Two low-resolution BSEM images are generated by either 

upscaling the high-resolution BSEM to the low resolution of 100x100 μm2/pixel or 

directly imaging at low resolution (53x53 μm2/pixel), similar to that of MXRT 

(100x100 μm2/pixel), as shown in Figure 4.16 (A and B).  The upscaling approach 

calculates the arithmetic average pixel intensity of every 100x100 fine pixel (1x1 

μm2/pixel) in a BSEM of T2 to one coarse pixel, thus yielding 100x100 μm2/pixel 

resolution.  Neither upscaled nor directly imaged low-resolution BSEM of T2 
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revealed obvious brighter bounding surface patterns similar to those in the MXRT 

image in Figure 4.16 (C).   

𝐼𝐵𝑆𝐸 = C B   

 

(4.1)  

 

where  𝐼𝐵𝑆𝐸 is determined by BSE coefficient, η, and constant value B, C. 

 

𝐼𝐶𝑇 = 1000 ×
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟
 (4.2)  

where  𝐼𝐶𝑇  is determined by the attenuation coefficient, μ, and normalized by the 

attenuation coefficient of water (μwater) and air (μair). 

 

Figure 4.15 Relationship of normalized attenuation coefficient (CT coefficient) and BSE coefficient, with 

atomic number of element e ranging between 5-26, covering the major elements making up 98.5% of the 

crust.  CT coefficients at 0.1MeV are given by Hubbell and Seltzer (1995) and BSE coefficients are 

calculated by atomic related function given by Müller (1954). 
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Figure 4.16 Comparison of low-resolution BSEM and MXRT images at similar location: (A) T2 BSEM 

image rescaled by arithmetic average to have resolution of 100x100 μm2/pixel; (B) T2 imaged under low-

resolution BSEM at 53x53 μm2/pixel and (C) MXRT imaged at 100x100 μm2/pixel at same area of T2 

This section now develops a method to reveal a brighter bounding surface, as observed 

in MXRT, from high-resolution BSEM, by upscaling and simulating the MXRT imaging 

principle.   

4.3.1 Extracting hidden features from BSEM- an upscaling using compositions  

To address the two discussed inherent reasons “hiding” the bounding surface on BSEM 

images, a mechanism needs to be developed to retain key minerals identified previously 

that highlighting bounding surface, based on EDS map and simulate the MXRT imaging 

principle at the appropriate resolution.  The analysis of the MXRT image in Chapter 3 

concludes that heavy metal and high X-ray attenuation components along bounding 

surfaces are responsible for the observed high intensity in XMRT.  Since the intensity of 

each voxel reflects the overall X-ray attenuation of all chemical elements within the 

volume of that voxel, one could mimic this on the EDS image that provides the element 

distribution map at the identical area of the BSEM images, to explore hidden bounding 

surface features.   

Proposed method 

The method can be summarised as follows: given a fine-scale EDS image of a thin section, 

a coarse-scale image overlapping the EDS image can be generated, following the scheme 

in Figure 4.17.  On each coarse pixel, a weighting factor is firstly calculated, as in equation 
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(4.3), then an average of mass X-ray attenuation, as in equation (4.4), and, finally, the 

new image intensity, as in equation (4.5).  For each chemical element, a weighting factor 

is determined from atomic mass values from EDS values on all corresponding fine pixels 

in each coarse cell.  For each coarse cell, its mass X-ray attenuation is computed as the 

average of all the mass X-ray attenuations of all elements in the EDS, using the weighting 

factors. 

 

Figure 4.17 Coarsening scheme, illustrated by nϵ[1,4] fine pixels with coordination labelled with i, j 

upscaled into one coarse pixel with coordination I,J; 
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where the weighting factor is calculated the by mass (m) fraction of each element e in the 

compound.   
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(4.5) 

where the MXRT image intensity I(CT) is calculated by normalizing the calculated 

attenuation coefficient of the compound   in (4.4) with attenuation coefficients of water 

water  and air air . 
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Factors impacting on the proposed method 

The reason different minerals (compounds) present different intensities in MXRT is that 

their constitutional elements have different mass attenuation coefficients.  The mass 

attenuation coefficients, apart from varying across elements, also vary with energy, as 

shown in Figure 4.18.  According to Figure 4.18, the applied imaging energy determines 

the contrast of heavy minerals concentrated on the bounding surfaces with the matrix in 

an MXRT image.  In this work, however, the same energy as that in the real MXRT 

imaging of L1 has been applied in the simulation, given the purpose is to simulate a 

similar MXRT image for registration.  The energy for acquiring the MXRT image is with 

a peak energy of 0.2Mev has been taken.  According to Ketcham and Carlson (2001) “The 

energy spectrum generated is usually described in terms of the peak X-ray energy (keV 

or MeV) but actually consists of a continuum, in which the level of maximum intensity 

is typically less than half of the peak”.  Therefore, in this work, for the purpose of 

estimating the attenuation coefficient the decision has been made to use half the peak 

energy, i.e. 0.1 MeV (as highlighted in Figure 4.18) for calculation.   

To evaluate and explain the energy configuration used for imaging the MXRT of L1, 

Figure 4.18 highlights the energy range that has a larger difference of attenuation 

coefficient across elements in the red dashed box.  The half peak energy of 0.1Mev does 

not provide the largest contrast in the highlighted rectangular area, because the imaging 

of MXRT was compromised to apply higher energy to penetrate the large 6cm cubic L1.  

During MXRT imaging, the energy is designed to be high enough to penetrate the sample; 

however, according to Figure 4.18, the larger the energy the lesser the contrast of 

attenuation between different elements.  For a smaller sample, lower energy could be 

applied to achieve higher contrast.  However, according to the zoomed-in view of the 

attenuation coefficient band close to 0.1 MeV, as seen in Figure 4.18, Fe still stands out 

from the rest of the elements; this explains why iron highlights the bounding surface.  The 

following three heavy minerals (Ti, Ca and K) can be classified as a second group with 

high attenuation coefficient.  This explains why dolomite (ideally CaMg(CO3)2) is 

coherent with the iron-enhanced bounding surface.  In addition, Ca, as an indicator of 

bioturbation, and K, as a potential indicator of K-feldspar, also create high-intensity 
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pixels, therefore leaving large gaps and distractions on the presented bounding surface in 

the MXRT image.   

 

Figure 4.18 The 10 main elements’ Mass Attenuation Coefficient at different energies 

Apart from energy, the impact of coarser image resolution is also discussed, in the sense 

of the ratio between resolutions and average grain size.  The reason behind this is that a 

resolution too low would average the thin ~1-2 grains layer of heavy minerals 

concentrated at the bounding surface with neighbouring lower density grains and reduce 

contrast.  However, a high resolution will give too many details on the grain geometry 

and weaken the contrast between the heavy mineral highlighted bounding surface and the 

rest matrix.  In this work, again, a decision has been made to simulate the coarser MXRT 

image with a resolution of 100x100 μm2/pixel.  The 100x100 μm2/pixel resolution is 

slightly below the average grain size (measured between 100-200um in long axes 

diameter); thus, it reveals the thinnest bounding surface of 1 grain thick but avoids too 

much averaging with neighbouring grains.  Each coarse pixel is therefore 100 times scaled 

up from the fine 1x1 μm2/pixel, to exclude the geometry details of grains.  The 100x100 

μm2/pixel is also the same resolution as the MXRT image taken on L1, and therefore 

appropriate for registration purposes.   

Performing the proposed method on T2 

The proposed method upscale BSEM by averaging X-ray attenuation coefficient of key 

elements that highlight bounding surface to retain its feature similarly with MXRT.  
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Therefore, the method has advantage of retain features related to the selected key 

elements.  In this work, bounding surfaces are identified highlighted mainly by Fe 

element, and the 0.1MeV energy is discussed distinguish Fe to the rest elements.  

Therefore, in this work no specific elements selecting is required, and eight main 

constitutional element maps yielded by the EDS of T2 are used for calculating the MXRT 

image.  Figure 4.19 illustrates the simulation procedure from eight fine-scale element 

maps imaged from T2 of 19845x38074 pixels2 at a resolution of 1 μm^2/pixel.  The 

element maps are applied to estimate atomic mass and calculate the weighting factor and 

with corresponding attenuation coefficient to the simulated MXRT value in a coarsened 

image.  The procedure yields a simulated MXRT of 198x380 pixels2 at 100 μm^2/pixel.   

 

Figure 4.19 Illustration of proposed method simulating an MXRT image from EDS image of T2 

A typical arithmetic average BSEM, low-resolution BSEM scanning and the crop of a 

slice of MXRT of L1 as shown in Figure 4.16 are put together with the simulated MXRT 

as the top row of Figure 4.20, to evaluate the effectiveness of the proposed method.  To 

avoid the effect of different image intensity ranges, each image has been normalized by 

simply rescaling the original intensity range to 0-255 to normalize it, as shown in the 

bottom row of Figure 4.20.  By visual observation, the simulated MXRT presents the 

most similar bounding surface pattern to the MXRT image, indicating that the proposed 
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method is superior to the other two in preserving the bounding surface.  The remaining 

differences includes the following observations: 1) The simulated MXRT appears to have 

a thinner bounding surface than the real MXRT; this is because proposed method only 

simulates averaging the density by the MXRT principle, but not the hardening effect 

explicitly.  The hardening effect is expected to increase thevpixel intensity value of 

neighbouring pixels around heavier minerals concentrated at the bounding surface thus 

make the bounding surface appear thicker; 2) The brighter patch area in the middle of the 

simulated MXRT is not observed in the real MXRT image.  The potential reason is that 

the real MXRT imaging is reflecting a full range of element distribution, whilst in 

simulated MXRT only 8 main constituent elements are applied, therefore misleadingly 

emphasising different patterns.  However, in this work as the purpose is to reveal the 

bounding surface to help registration, the simulated MXRT is believed sufficient for this 

purpose.   

 

Figure 4.20 Top row before and bottom row after normalizing images of: (A) arithmetic average of SEM 

BSE of 198x380 at 100 μm^2/pixel; (B) SEM BSE image taken of 374x718 at 53 μm^2/pixel; (C) 

Simulated MXRT image of 198x380 at 100 μm^2/pixel, using the method developed in this work; (D) 2D 

MXRT image of 198x380 at 100 μm^2/pixel. 
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Quantitative evaluation 

To objectively and quantitatively evaluate the four images in Figure 4.20, a convolutional 

filter bank approach is performed which has been proved to successfully characterize the 

linear features of bounding surfaces.  Patterns around each pixel in an image are 

characterised by convolving the neighbouring area with each filter from one of the filter 

banks (learnt 121, in Figure 4.5(A), applied for segmenting the bounding surface from 

MXRT of L1).  The frequency with which one pattern (described by a filter) occurs in 

one image can be estimated by calculating the average convolutional value of the filter 

over every pixel of the image.  One image could, therefore, be characterised by the 

histogram of patterns described by filters in the bank.  Taking the histogram of MXRT of 

L1 as a reference, the average differences of the histogram of the arithmetic averages of 

BSEM, low-resolution BSEM scanning and simulated MXRT to MXRT of L1 are 3.81, 

3.64 and 1.02 respectively (where 1 stands for a 100% identical histogram with MXRT 

of L1: a detailed discussion is given in Appendix C.1 ).  The simulated MXRT is therefore 

robust in revealing the bounding surface features presented in the real MXRT image. 

4.3.2 Characterisation with registration 

It has been explained that the missing information of hierarchical characterisation is intra-

LBS, which is not directly observable from the obtained images.  An alternative approach 

is to 1) statistically measure grading on a pore-scale subsample and indirectly estimate 

lamina thickness to reflect the distance between intra-LBSs; 2) register the subsample to 

the full domain to infer the spatial distribution of intra-LBSs.  The grading measurement 

was performed on the μ-XRT image in the work reported in Chapter 3, but was less 

representative because of small FoVs.  In this section, the similar grading measurements 

are performed on the BSEM image.  The grading measurements require a dedicated 

designed sampling window based on the bounding surface to achieve two advantages: 1) 

the sampling window has the same geometry as the bounding surface, which represents 

the geometry of the conceptual grading layer within the lamina; 2) identifying the grading 

direction, which is expected to be perpendicular to the bounding surface plane direction.  

In this section, the BSEM image is registered to the MXRT image, referring to shared 

bounding surface features revealed in the simulated MXRT image.  Therefore, the 

segmented connectivity which is preserved on the bounding surface from the MXRT 

image of L1 in 4.2 could be masked on registering BSEM image to design sampling 
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window.  A set characterisation of lamina grading could be performed on the BSEM 

image with a known spatial location in the domain of L1, to assist in inferring missing 

intra-LBSs.   

4.3.2.1 Registering MXRT and BSEM 

In this work, a dedicated registration method proposed by De Boever et al. (2015), as 

reviewed in section 2.7.4, is not required.  The reason is that one of the two advantages 

of a dedicated, designed sampling window that suggesting grading direction, has been 

rendered less important by the assumption of a vertical grading direction in Chapter 3.  

Therefore, the benefit of registration is only to provide the geometry of the bounding 

surface at a relatively correct location, while the grading direction has been previously 

determined.  In this work, with prior knowledge of the sampling location of T2, T2 is 

registered with the MXRT image, based on the two intersecting curved bounding surfaces 

occurring in both simulated MXRT images (Figure 4.20 (C)) and the MXRT image of L1 

(Figure 4.20 (D)) as the reference.  By rotating and scaling the simulated MXRT image, 

the shared bounding surfaces are matched with those observed in the MXRT image of L1 

and can be overlapped, as in Figure 4.21 (A).  Figure 4.21 (B) also illustrates the BSEM 

image which has replaced the simulated MXRT image at the registered location on the 

MXRT image of L1.  As a result, the segmented bounding surface of the MXRT image 

of L1 could be masked on the BSEM image, to design the sampling window according to 

both horizontal and curved bounding surfaces.   

 

Figure 4.21 Registering simulated MXRT image to 1/525 slice of MXRT image of L1 (with hardening 

background removed): (A) registered simulated MXRT masked onto MXRT of L1 with the enhanced 

intersection of curved bounding surface as the reference; (B) Swamp 1x1 μm2/pixel BSEM with 

registered simulated MXRT (scaled to the same resolution as BSEM).  
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4.3.2.2 Sampling window based characterisation 

Designing the sampling window 

To design sampling windows that have the same geometry as the bounding surface, the 

MXRT image is replaced by the segmented inter-LBS image, with the registered T2 area 

masked, as shown in Figure 4.22 (A).  Sampling windows can be designed by tracing the 

segmented bounding surface and masking it onto the BSEM to measure grading.  One 

horizontal rectangular sampling window has been designed as a red box, shown at the 

bottom of Figure 4.22 (B).  The horizontal sampling window is parallel to all the bounding 

surfaces of the horizontal planar laminaset.  Two curved sampling windows, referred to 

as cross1 and cross2, are traced in the upper curved laminaset region, following the two 

most distinct curved bounding surfaces, as labelled in Figure 4.22 (B).   

 

Figure 4.22 (A) Registered T2 area is masked onto the 1/525 slice of segmented bounding surface from 

MXRT of L1; (B) crop of the registered T2 area from (A) and three sampling windows are designed and 

labelled in a red box, based on segmentation of inter-LBS. 

Sampling window and log measurement parameters 

For a log type grading measurement as done for the μ-XRT image, the sampling window 

size, direction of movement, interval and distance need to be identified to reflect the 

nature of the layered grading.  1) Sampling window size: With the geometries of the 

sampling windows traced, the cross1 and cross2 sampling windows have been designed 

with a thickness of 200um and horizontal sampling windows with a thickness of 300um.  

The thickness is thicker than average grain size (<200um based on the measured long 

axes, presented in Table 3.4) but also thin enough to capture the variation over thin ~1-2 
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grains thick conceptual layers within the lamina.  The sampling window also included the 

representative grains and pores, whose total quantity appears stable within the window of 

designed size at the randomly selected location.  A detailed quantitative discussion based 

on Coefficient of Variation (CV) plot is given in Appendix C.2 .  The sampling windows 

are then masked on the BSEM image to measure the variation of grain characters, as done 

for μ-XRT.  Figure 4.23 shows the sampling window masked onto the BSEM (rotated 90

º right for better presenting the later log measurement).  2) Direction of movement: Each 

of the three sampling windows is moved along the +X (vertical direction on L1 that is 

assumed equal to sedimentation direction), as shown in Figure 4.23.  Measurements can 

be performed within each moved sampling window to capture circulating grain pore 

variation by grading over a sedimentary layer parallel to the bounding surfaces and 

characterised by log plots.  3) Interval of movement: all three cases are non-overlapping 

sampling, whose interval of movement equals their corresponding thickness of window.  

For cross1 and cross2 the moving interval is 200um per move, and for the horizontal 

direction it is 300 μm per move.  This thickness and sampling interval also ensure that 

even a single grain thin layer variation can be detected.  4) Distance moved: the total 

distance of movement needs to be larger than the maximum thickness estimated 

previously in Chapter 3 for laminae, thus covering the thickness of grading.  For curved 

sampling windows cross1 and cross 2, 5mm have been moved by 25 moves that are 

greater than the estimated lamina thickness of 1-4mm, as in Table 3.4.  The first and last 

moved sampling window are highlighted in yellow boxes in Figure 4.23.  For the 

horizontal sampling window, as laminae and laminasets are all parallel to each other, the 

window has been moved from the bottom 38074 μm on the labelled depth axis up to 

20000um on the labelled depth axis in Figure 4.23.  The horizontal moving distance is 

designed to safely cover all observed horizontal bounding surfaces in Figure 4.22 (B), in 

which the last horizontal bounding surface before the curved laminaset is about 13000um 

from the bottom.  Again, the first and last moved sampling window is highlighted in the 

yellow boxes in Figure 4.23.   

Quantitative measurement of circulation of grain size 

Quantitative measurements of average grain size are performed for each moved sampling 

window.  Three log plots are masked in Figure 4.23, corresponding to each sampling 

window location and the presented circulated variation potentially represents grading.  

Based on the inverse grading system discussed in relation to the μ-XRT measurements in 

https://en.wikipedia.org/wiki/Coefficient_of_variation
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Chapter 3, the starting layer of grading in one lamina could be potentially identified by 

valley points in grain size log plots.  The starting layers representing potential intra-LBSs 

are labelled in the square in the log plots.  The grading gradient within one lamina could, 

therefore, be measured between the square labelled starting layer and the following peak 

grain size on the log plots, as labelled in the triangle.  Note that the labelled lamina 

between 24000um to 20000um in the horizontal log included multiple peaks but is still 

identified as one lamina because it follows a fluctuating rise trend and the small decreases 

in the middle are considered as disturbances.  This lamina is classified as the curve1 

lamina of curved the laminaset according to its performance distinguished on the log plot.   

 

 

Figure 4.23 measured log plots of average grain size in the pixel area by three sampling windows and 

masked onto a BSEM of T2 (rotated 90 right from Figure 4.22 (B), for better illustration of log plots), x-

axis of BSEM image is labelled from top of T2 (right) down to bottom (left) in μm units; horizontal log 

plot is given in red colour and masked between 39845 to 20000 μm on x-axis; the potential starting layer 

of laminae is labelled in yellow square and ending layer in yellow triangle on log plots; Cross1 are plotted 

in blue and Cross2 in orange; the potential starting layers are labelled in red square and ending layers in 

red triangle. 

Numbers of measured laminae and lamina thickness are measured based on identified 

starting and ending points on log plots.  The average grain size grading gradient 𝑆𝐹𝑟𝑎𝑡𝑒 is 

calculated by same method as μ-XRT, for each lamina.  The results are summarised in 

Table 4.2 (detailed calculation and measurement table are given in Appendix C.3 ) and 

the main observations includes: 1) 10 horizontal laminae and 13 curved laminae are 

measured, which are more representative than the 2 laminae measured for either S1 or S4; 

2) the lamina thickness, typically between several hundred micrometres, agree with 



Chapter 4: Dataset registration  

147 

 

previous measurements in Chapter 3.  The histogram of lamina thickness of the horizontal 

part is plotted in Figure 4-17 (A), in which lamina thicknesses are typically 600-900um.  

Consider the 600-900um lamina thicknesses overlapped with the range of laminaset 

thicknesses measured in Chapter 3 (between 0-3mm for the horizontal part), it is 

suggested that it is not necessary to distinguish laminae and laminasets for the horizontal 

part, because both have shared thickness and geometry.  Curved laminasets have 

thicknesses more distributed between 200-600 μm, as in Figure 4-17 (B).  Thus, 

considering the identified curve1 lamina has an apparently large thickness of 3.9mm, it is 

suggested to define laminae with thickness covering the largest measured thickness.  To 

keep the initial model simple, a single large thickness (>4mm) is suggested to be applied; 

3) the grading gradient of both horizontal laminasets appears smaller than the 3D 

measurements (𝑆𝐹𝑟𝑎𝑡𝑒1𝐷 per 200um thickness of 0.023 for S4) but curved cross 1 and 2 

appear larger than the 3D measurements (𝑆𝐹𝑟𝑎𝑡𝑒1𝐷 per 200um thickness of 0.021 for S1).  

In this work the 2D measurements are considered not representative to characterize 3D 

grain particles, because the 2D image only captures one cross-section of the grains.   

Table 4-2 Summary of laminae measured by log plots 

Location 
Number of laminae 

measured 
Circulation length 

𝑆𝐹𝑟𝑎𝑡𝑒 per 

200um thick 

layer 

𝑆𝐹𝑟𝑎𝑡𝑒1𝐷 per 

200um thick layer 

Horizontal Planar 10 682 μm 0.029 0.014 

Curve1 1 3900 μm 0.013 0.006 

Cross 1 8 325 μm 0.076 0.038 

Cross 2 4 550 μm 0.063 0.031 

 

 

Figure 4.24 (A) Horizontal planar lamina/ laminaset thickness distribution; (B) Curved lamina thickness 

distribution. 
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Discussion of grain size at bounding surface 

From the reconstruction point of view, it is useful to know the degree of variation of grain 

size occurring at different bounding surfaces.  If grain size did not vary much over 

different bounding surfaces, the modelling could be simplified by using the same grain 

example across different bounding surfaces of different laminae and laminasets and 

applying the measured grading gradient to each grading layer.  Investigation of grain size 

occurring at inter- and intra-LBS are performed by collecting grain sizes measured in the 

labelled valley layers representing bounding surfaces.  The average measured grain size 

for 10 horizontal, 8 cross1 and 4 cross2 bounding surfaces are plotted in Figure 4.25, with 

the 95% confidence intervals plotted together (with standard score Z=1.96).  The main 

observations are: 1) Firstly, the horizontal part has clearly larger bounding surface grain 

size than the curved part, where cross 1 and 2 have similar grain size; 2) Secondly, the 

95% confidence interval of the horizontal part appears within a relatively narrow range 

of 60 pixels2; thus about 8 μm at each axis.  The narrow range of grain size in the 

horizontal part supports the previous claim by implying that inter- and intra-LBSs are not 

distinguishable in terms of their grain size; 3) Thirdly, for the curved part, the inter-LBS 

is directly identifiable.  Therefore grain sizes from inter- and intra-LBSs could be 

compared.  In Figure 4.25 grain sizes measured at identified in an inter-laminaset curved 

bounding surface (cross1, cross2 and curve1) are plotted.  Cross1 has grain sizes out of 

the range of the 95% confidence interval of bounding surface average grain sizes 

measured at identified bounding surfaces of the cross1 log, but still falling in the range 

for cross2, while cross2 and curve1 have grain size falling into the 95% confidence 

intervals measured in both cross1 and cross2 logs.  Therefore, in this work the decision 

have been made that grain size is non-distinguishable between inter- and intra-LBSs, 

within either the curved or horizontal parts. 
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Figure 4.25 95% confidence interval of average grain size measured from 10, 8 and 4 labelled valley 

bounding surfaces (inter- and intra-laminasets for horizontal, cross1 and cross2, respectively).  Grain 

sizes at identified inter-LBS cross 1, cross2 and curve1 layers are also labelled. 

Discussion of results correlated with L1 

Figure 4-15 masks the log plot over BSEM onto the segment of the bounding surface of 

L1 to correlate measured grain grading with the spatial distribution of inter-LBSs.  The 

main conclusions are: 1) The labelled curve1 lamina from the horizontal log is confirmed 

to have entered into the curved laminaset region; 2) the labelled valleys on the grain size 

log plot of the horizontal part (as candidates of intra- or inter- LBS) are mostly spatially 

consistent with segmented inter-LBSs, which again suggests it is not necessary to 

distinguish inter- and intra-LBSs for the horizontal part.  However, for the curved part, 

the labelled valley points are within the laminaset between segmented inter-LBSs.  It is 

therefore suggested to consider hidden laminae exist within curved laminasets; 3) the 

average grain sizes at inter-LBS are not distinctively different to those from the potential 

intra-LBSs within either the horizontal or curved laminasets.  Therefore this work 

suggests that during the reconstruction in Chapter 5 it is not necessary to distinguish the 

grain size at inter- and intra-LBS layers. 
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Figure 4.26 Figure 4.23 masked onto segmented bounding surface of MXRT of L1 at registered area 

Discussion of uncertainty 

The procedure discussed for measuring grading has uncertainty arising mainly from the 

following aspects: 1) Although cross2 is dedicatedly designed based on a segmented 

bounding surface, the moved measurements intersect with cross1 after several moves.  

From a sedimentation point of view, sedimentary layers above cross1 are “newer”, which 

are parallel to cross1 and erode “old” sedimented layers parallel to cross2.  Therefore the 

cross2 log measurements may not represent the true grading layer corresponding to the 

curved laminaset starting from cross2, but a mix with cross1.  2) The assumed vertical 

grading direction in the +X direction is not in the same direction as anticipated for the 

laminaset starting from cross2 (perpendicular to cross2).  Both these two uncertainties 

suggest the log measurements starting with cross2 are not accurate.  Additional 

measurements have been performed, to move the lower half of the sampling window of 

cross2 upward, perpendicular to the cross2, until it reaches cross1, referred to as 

cross2_half.  With same thickness and moving interval to cross2 (200um), 6 moves of 

cross2_half have been made before reaching cross1.  The 1st and 6th move are highlighted 

in Figure 4.27(A) and the measured average grain size log is plotted in Figure 4.27 (B), 

in which cross2 log measurements are also plotted for comparison.  According to the log 

measurements, apart from the 1st measure of cross2_half, the remaining 5 measurements 
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give a “perfect” inverse grading lamina that has monotonically increased average grain 

size within each sampling window and with no fluctuation.  Grading gradients are also 

measured for laminae identified between the square highlighted valley and triangle 

highlighted peak of cross2_half log plot and are summarised in Table 4.3 which gives 

𝑆𝐹𝑟𝑎𝑡𝑒1𝐷  of 0.022.  The 𝑆𝐹𝑟𝑎𝑡𝑒1𝐷  obtained for cross2_half is closer to the 3D 

measurements from μ-XRT S1 and S4, which are 0.021 and 0.023 respectively.   

Therefore, it can be concluded that 3D measurements from μ-XRT are more accurate in 

grading gradient measurements.  In this work, the two uncertainties for BSEM cross2 

discussed above are considered not important in 3D μ-XRT measurements, for the 

following reasons.  Firstly, S4 does not have either type of uncertainty, because the 

laminae are horizontal parallel to each other; thus there is no intersection and the 

sedimentary direction is in the vertical direction.  For S1, firstly the sampling windows 

did not cross over each other after movement.  Therefore, the first type of uncertainty of 

intersection could be excluded.  The uncertainty caused by a vertical grading direction 

assumption for μ-XRT measurements can be neglected in this work, because a sampling 

window moving perpendicular to the bounding surface direction does not make a 

difference in the vertical direction.  The reasons behind this can be illustrated by the 

labelled S1 location in Figure 4.27 (B) and summarised as: 1) the measured curved 

bounding surface typically has an inclined angle smaller than 30° to the horizontal 

direction; 2) μ-XRT sample is small and 3) the sampling window is naturally limited by 

the discrete square shape of a pixel. 

Considering the consistency between cross2_half measurement and μ-XRT 3D, in this 

work the decision has been made to use the grading gradient 𝑆𝐹𝑟𝑎𝑡𝑒1𝐷 of 3D 

measurements on S1 and S4 for further grain-pore space reconstruction.  However, given 

the thickness of laminae measured in 2D are more representative in terms of sampling 

area and obtained significantly larger maximum thickness for curved laminae, it was 

decided to base the lamina thickness information on 2D BSEM measurements. 
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Figure 4.27 Uncertainty measurement of cross2_half, which is half of cross2 sampling window and 

moving perpendicular to the cross2 direction: (A) previously applied sampling window on the same 

BSEM  as in Figure 4.23 but without rotating the BSEM, as a  reference to display the location of 

cross2_half; (B) illustration of cross2_half-1 as lower half of cross2 and moved 5 times until cross2_half-

6 is perpendicular to the cross2 direction; (C) measured grain size log of 6 moves of cross2_half sampling 

windows in comparison with cross2 log. 

Table 4-3 Summary of laminae measured by log plots of cross2_hal between labelled square valley and 

triangle peak 

Location 
Numbers of 

laminae measured 
Circulation length 

𝑆𝐹𝑟𝑎𝑡𝑒 per 

200um thick 

layer 

𝑆𝐹𝑟𝑎𝑡𝑒1𝐷 per 

200um thick layer 

Cross2_half 4 800 μm 0.045 0.022 

 

Conclusion 

This section described how the thickness of laminae from both horizontal and curved 

laminasets were measured by log measurements.  The thickness of the horizontal part 

confirmed it was not distinguishable from laminaset thickness.  Therefore, no intra-LBSs 

and laminae are required to be defined in addition to the segmented bounding surfaces.  

The thickness of curved laminae ranged from 200um to about 4mm.  The range covered 

previous measurements in Chapter 3 and is thinner than the measured laminaset thickness 

of 1-2 cm.  Therefore, intra-LBS separate laminae are suggested to be defined within 

segmented inter-LBSs from curved laminasets.  It is suggested to define the distance 

between the intra-LBSs at 5 mm perpendicular to the paleoflow direction, because: 1) to 

simplify the initial model, the single thickness is suggested; 2) the measurements from 

single BSEM of T2 may lack representation; thus to cover the potential thickest lamina, 

a thickness greater than the largest measured lamina, 3.9 mm is required.  However, one 

needs to bear in mind that the single 5mm thickness may differ from reality, because the 

measured distribution given in Figure 4.24(B) shows that thickness is typically less than 

1mm, although the uncertainty of inaccurate measurement exists.  Apart from thickness, 

inter- and intra-LBSs do not have distinctive different grain sizes, according to the 
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measurements.  Therefore the same grain-pore configuration could be applied to 

bounding surface layers within either inter- and intra-laminasets. 
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4.4 Conclusions  

This chapter has illustrated that the fundamental challenge in segmenting bounding 

surface from MXRT is to recognise and correct distractions to the geometry and 

connectivity of a thin piece-wise planar bounding surface.  A filter bank based supervised 

classification approach has been developed and proved superior to others by: 1) a set of 

filters applied to the image to capture a set of characters in a multi-dimensional feature 

field reflecting different aspects of piece-wise planar structure and connectivity; 2) using 

a manually traced training image to clarify the classification of unresolved connectivity 

and unconnected parts, according to expertise and knowledge; 3) employing robust 

machine learning to learn the complex nonlinear classifier in a high-dimensional feature 

field.  With a supervised classification segmentation method developed, thin piece-wise 

planar bounding surfaces were segmented from grey-scale MXRT images with 

appropriate preservation of connectivity.  The segmentation highlighted the thin ~1-2 

grains thick finest inter-LBS layer and could be applied as an index map to control grain-

pore reconstruction.  It could also be used as a basic index map for missing intra-LBSs 

and laminae to be defined on, to extend the index map.  The segmented bounding surfaces 

also provided strong evidence of bioturbation which has a spatial track consistent with 

the EDS analysis observation on Tp and T2.  The occurrence of bioturbation penetrates 

the bounding surface, and disturbs grading and, therefore, should be considered specially 

during reconstruction.   

The missing thickness parameters to define the not directly observable intra-LBSs and 

laminae are measured by identitying the circulation of grain size on the log plot from 

BSEM of T2.  The successful measure of log plot is based on the sampling window 

designed based on the bounding surface, which is not apparent on the BSEM image, but 

readily available from the segmented MXRT, and therefore calls for registration.  The 

successfulness of registration is based on same physical structure presented in both image 

as a reference, but appears to be a challenge because of the large difference of imaging 

conditions and principles between BSEM and MXRT images.  A method has been 

developed and reported in this chapter to reveal “missing” bounding surface features on 

BSEM, after upscaling and based on key elements provided by EDS images, and 

simulating X-ray attenuation of MXRT.  The method revealed the heavy minerals 

highlighted bounding surface at the comparable condition to those presented in the 

MXRT of L1.  The shared bounding surface could be taken as a reference for registration.  
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With the BSEM and MXRT of L1 registered, a sampling window could be designed based 

on segmented bounding surfaces, and log measurements could be performed on the 

BSEM.  The log measurements established that, for the horizontal part laminasets and 

laminae have the same range of thickness.  Therefore, the decision has been made not to 

define additional intra-LBSs for the horizontal part.  For the curved part, intra-LBSs could 

be defined with a thickness of 5mm to cover the largest measured thickness.  For grain-

pore reconstruction purposes, the range of grain size occurring at inter- and intra-LBS 

was also compared with log measurements and were concluded to have similar grain size.  

Therefore, the decision was made not to distinguish grain size in inter- and intra-LBS 

during reconstruction.   

The main uncertainties identified in this chapter include: 1) supervised classification 

enforcedly bridges “fake hole” gaps, but may also over-bridge “true hole” gaps.  

However, according to the measurements and discussion in this chapter, this effect can 

be ignored; 2) the assumed vertical direction gradings have been confirmed to introduce 

uncertainty during 2D BSEM measurement but it was decided they could be ignored for 

small μ-XRT measurement.  Therefore, the decision was made that the grain gradient 

information from 3D μ-XRT measurement is considered as accurate.  However, given 

that 2D measurement has more representative sampling size and, apparently, larger 

lamina thickness, the thickness information for reconstruction is decided to be based on 

2D measurement.   

The information obtained above would implement the reconstruction workflow proposed 

in Figure 3.23 of section 3.3.1.  Apart from the segmented inter-LBS as an index map, 

the remaining uncertainties of unseen intra-LBSs and spatial distribution of grading will 

be addressed in Chapter 5, based on the obtained information.  Based on the previous 

discussion, it was established that the samples of the study have relative constant 

laminaset and lamina geometries within each bedform and a narrow range of grading 

properties.  Therefore, the decision has been made to deterministically define the 

hierarchical lamination structures and the grain-pore spaces within them with one set of 

parameters, based on measurements, as one realisation of among many possibilities.  

More specifically, with segmented inter-LBSs from MXRT in this chapter as the basic 

index map, missing intra-LBSs and laminae with conceptual layered index maps can be 

defined with the measured intersecting angle from Chapter 3 and thickness from BSEM 

in this chapter.  With the full set of index maps representing the hierarchical structure of 
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the laminated sample, grain-pore geometries from μ-XRT could be taken as training 

exemplary images to stochastically reconstruct pore space, along with measured grading 

characteristics from μ-XRT, as non-stationary parameter controls, to reconstruct the non-

stationary grain-pore structure.  In addition, bioturbation needs to be addressed, especially 

during reconstruction, to represent the disturbance of grading, based on the quantitative 

observation provided in Chapter 3. 



 

157 

 3D FULL PORE-SPACE RECONSTRUCTION 

5.1 Introduction:  

The previous chapters have demonstrated that gradual and transitional non-stationary 

grain-pore variation across multiple-length scales in a sample must be identified by 

recursive top-down sampling and characterisation.  To use the obtained hierarchical 

information to reconstruct multiscale structures at pore scale, a multiscale integration and 

reconstruction procedure is needed.  This chapter reports the development and 

verification of a stochastic procedure for reconstructing a cross-laminated sample at grain 

and pore scales, based on a non-stationary index map developed and evaluates the 

procedure using the hierarchical information obtained on the same cross-laminated 

sample that has been described, analysed and characterised in Chapters 3 and 4.   

Based on the procedures discussed in Chapters 3 and 4, the following hierarchical 

information on the sample has been obtained (also summarised in Table 5.1): 1) the inter-

LBSs that separate adjacent laminasets from horizontal planar and curved laminasets, and 

also their geometries and distribution, from the MXRT image; 2) 2D geometrical 

distributions of pores and grains on the selected sample surface, from SEM images, 

including grain sorting, from which lamina distributions can be inferred; 3) from the μ-

XRT image, 3D geometrical distribution of pores and grains on small volumes at 

specifically selected locations.  Note that information becomes increasingly uncertain 

toward lower hierarchies; therefore, the defined hierarchical structures for the index map 

in the following sections represent just one realisation of many possibilities to simplify 

the illustration of developed process.   
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Table 5-1 Hierarchical information obtained on the sample by previous chapters 

Image 

datasets 

Sample/ 

Sub-

sample 
Structural features 

Method of 

Identification 

Scope of interest in 

hierarchical model 

MXRT 

(3D) 
L1 

(Chapter 4) 
Inter-LBS Segmentation 

Laminasets (spatial 

distribution) 

SEM 

(2D) 

Tp 
(Chapter 3) 

Intra-LBS, intra-

lamina grain-pore 2D 
Visual 

interpretation 

Laminae 

(orientation), 

grading direction 

T2 
(Chapter 4) 

Intra-LBS, intra-

lamina grain-pore 2D 

Indirectly 

estimated by 

measuring 

grading 

Laminae (thickness) 

μ-XRT 

(3D) 
S1 and S4 

(Chapter 3) 
Grains and Pores 3D 

texture 
Segmentation Grading Gradient 

 

Based on the obtained information summarised in Table 5.1, this chapter reports the 

development of a stochastic reconstruction procedure to generate pore and grain models 

for the centimetre-scale laminated sample, and an application of this procedure to the 

sample analysed in previous chapters.  Note that the procedure is generic and could be 

applied to any cross-laminated sandstone sample from which the same classes of 

information have been obtained.   

The procedure includes the following steps: 

Step 1: defining a non-stationary index map of grain-pore variation associated with the 

structure hierarchy on the whole domain for reconstruction, based on the obtained 

information for the sample.  The map can be thought to define spatial distribution of the 

‘mean sizes’ of spatial-varying pores and grains at each hierarchical level and across two 

adjacent levels of the hierarchy; 

Step 2: decompose the domain and the map onto subdomains to perform stochastic 

reconstruction in parallel in an ordering scheme, to minimise the latency of 

synchronisation;  

Step 3: perform stochastic reconstruction on each subdomain, and integrate them back 

into a single model using one or more selected stochastic modelling techniques. 

In what follows, tasks at each step are discussed in detail for the sample.   
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5.2 Step 1: Define an index map of the structure hierarchy 

The procedure starts with integrating the obtained information in Chapter 3 and 4 for 

multiscale pore-structure reconstruction, as shown in Figure 5.1 where the three datasets 

above are registered in the same domain in the centre and useful measurements performed 

in previous chapters contribute to the reconstruction, highlighted by boxed images 

around:  

1) Segmented inter-LBSs from MXRT, considering its relatively high certainty, are taken 

as a realisation of the fixed 1st part (big feature) of the index map in order to provide a 

regional constraint of pore structure reconstruction, as shown in the middle of Figure 5.1.   

2) Intra-LBSs within each laminaset that separate the adjacent laminae cannot be 

identified with any certainty from M/μ-XRT images, and therefore need to be defined as 

the 2nd part of the hierarchical structure, in addition to the segmented inter-LBSs based 

on estimated lamina features (i.e. intersection angle and lamina thickness).  The definition 

should follow the generic concept of the lamina model summarised in section 3.3.2 of 

Chapter 3.  The inter-LBSs of horizontal laminasets are assumed to represent intra-LBS, 

because both have the same parallel planar structure observed from MXRT, as shown in 

Figure 5.1(B), and non-distinguishable thickness of horizontal planar laminae and 

laminasets, observed through all previous measurements (Figure 5.1(B-G)).  Therefore, 

no additional intra-LBS is required to be defined for the horizontal part.  However, in 

curved laminasets intra-LBSs appear to intersect with the inter-LBSs, based on manual 

observations from Tp (Figure 5.1(D-E)).  Therefore, intra-LBSs in curved laminasets can 

be modelled at best as conceptual proxies, by generating the 2nd part of the hierarchical 

structure that demarcates intra-laminaset lithology variations between laminae.  As the 

sample can be taken to be representative, and as the geometry of laminae within a curved 

laminaset appears similar, the assumption has been made that intra-LBSs in curved 

laminasets have a single orientation and thickness.  The reasons are that 1) curved 

laminasets have wavelengths measured as over twice the sample size, as seen in Figure 

5.1(A).  Thus, within the same laminaset, laminae are expected to have the same features 

and 2) examining the internal structure of MXRT found all curved laminasets following 

the same paleocurrent direction (Figure 5.1(B)); therefore all laminae are assumed to have 

same features down to grain-pore scale. The angle is decided based on measurements 

from the sample surface (Figure 5.1(C)) and Tp parallel to the paleocurrent face, as 

observed in Figure 5.1(D) by manual observation.  The thickness perpendicular to the 
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paleocurrent cross-section between intra-LBSs is decided to be consistent with maximum 

log type grading measurements from T2 (Figure 5.1(F)).  The intra-LBSs are defined with 

relatively lower certainty than inter-LBSs, because, because they contain a set of 

assumption and decisions, as discussed previously. 

3) Based on the inverse grading geometry observed from Tp and T2, the 3rd part of the 

index map requires to be generated as conceptual layers stacking on inter- and intra-LBSs 

(segmented in the1st part of the hierarchical structure and defined in the 2nd respectively) 

according to the generic conceptual lamina model summarised in section 3.3.2 of Chapter 

3.  The stacking is assumed in the vertical direction (X direction in Figure 5.1) which is 

assumed as the sedimentary direction, based on the geometry of the laminaset and 

paleocurrent direction obtained from the preliminary study (Figure 5.1(A-C)).  As 

decided based on the previous discussion, the conceptual layers have the same thickness 

as used during measurements in SEM and μ-XRT (to cover at least one-grain size 

represent the finest bounding surface layer of ~1-~2 grains thick but less than the thinnest 

lamina of 1mm, to capture the variation of grading) across Figure 5.1(E-H).  The layers 

are defined as stacking over a thickness twice that of the measured maximum lamina 

thickness, to cover the uncertainty introduced by limited measurement and ensure that 

most spaces between previously created bounding surfaces are filled.  The rest would be 

especially defined to represent “true holes” caused by erosion and bioturbation.  Together, 

they construct the full hierarchical structure, within which grain-pores are reconstructed 

in respect to an index map by populating grain-pore variation based on measured 

properties corresponding to each hierarchical structure.  The decision needs to be made 

to separate horizontal and curved laminasets by defining the thickness of the horizontal 

laminasets.  The separation could be based on geometry, identifying separation by 

segmented inter-LBSs (Figure 5.1 middle) in combination with Tp (Figure 5.1(E)) and 

T2 measurements (Figure 5.1(F)), where there is a transitional zone where the 

characteristics of both bedforms are observed.   

4) It has been decided to use a small sub-volume of the horizontal bounding surface of S1 

and S4, but with a representative quantitiy of grains, as a representative training image of 

local stationary grain-pore distribution, for the curved and horizontal part respectively 

(Figure 5.1.G-H).  The stationarity is assumed because the sub-volumes have very thin 

physical thickness (~1-2 grains thick).  This decision is based on the representativeness 

of the sample, and relatively narrow range of grain size occurring at bounding surfaces 
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measured from T2 (Figure 5.1(F)).  The training image provides basic geometries of finest 

grain-pore without preferred orientation, and thus could be stochastically repeated with 

transformation of scaling and rotation according to the full index maps, defined by 

populating measured properties into the defined hierarchical structure.  Such properties 

include the inverse grading gradient, 𝑆𝐹𝑟𝑎𝑡𝑒1𝐷,  from μ-XRT (Figure 5.1.G-H) and the 

identified preferred orientation on the curved part intra-LBSs, as observed from Tp 

(Figure 5.1(D)).  Within each defined conceptual layer, and those with the same index, 

for grain-pore properties (including porosity, average grain size and orientation) are 

assumed to be stationary, because of the thin ~1-2 grains thickness of conceptual layer 

based on previous discussion.  The model therefore has non-stationarity, first by spatial 

distribution of the index maps with respect to the geological structure of lamination, and 

secondly by grain size and orientation variation within index maps, to fully respect the 

non-stationarity of grain-pore distribution within a cross-laminated sandstone sample.   

 

Figure 5.1 Integration of previously measured information for bottom up 3D pore space reconstruction of 

cross-lamination 
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The next part of this section defines the conceptual proxies, generically, to represent 

missing intra-LBS within each of the respective horizontal planar and curved laminasets 

and intra-lamina variation by conceptual layered grading between a pair of the intra-

LBSs.  Algorithm implementation of the proposed procedure is given.   

5.2.1 Defining inter- and intra-laminaset variations  

Defining inter- and intra-laminaset variations needs to be done separately in the upper 

region of curved laminasets and the lower region of horizontal planar laminasets, because 

of the hierarchical structure characteristics distinguished in Chapter 3.  For a horizontal 

planar laminaset, laminae and conceptual grading layers are defined in the form of a 

horizontal planar plane and stacking parallel to the segmented inter-LBSs.  For a curved 

laminaset, a set of parallel laminae are assumed, intersecting at an acute angle with inter-

LBSs and separated by intra-LBSs.  Conceptual grading layers within laminae are stacked 

parallel to the intersection of intra- and inter-LBSs in the assumed sedimentary direction 

(vertical direction) (Figure 5.1 middle).   With intra-LBS and conceptual layers defined, 

the observed grading variations can be used to define the index for each individual 

conceptual layer.   

5.2.2 Conceptual illustration for each horizontal planar laminaset 

Defining the locations of the intra-LBS in each horizontal planar laminaset is difficult, 

because the laminaset is already very thin and the cyclic grading variation (see Figure 4-

17 and Figure 5.1(F)) does not suggest the need to distinguish the intra-LBS.  Therefore, 

the decision has been made to define the conceptual grading layers of the lamina stack 

directly on the segmented inter-laminaset horizontal planar bounding surface, without 

defining additional intra-LBSs.   

The conceptual parallel layered regions within laminae can be defined with three 

parameters identified: the thickness of each layer, the thickness of the laminae and 

grading layer stack thickness.  1) Layer thickness can be determined to cover largest 

observed grain size to represent a layer of grain safely, but to be also thinner than the 

thinnest lamina thickness measured in BSEM characterisation in section 4.3.2, thus giving 

a layered region fine enough to reflect the grain-pore variation associated with grading.  

2) The thickness of laminae for the horizontal part is pre-determined by segmented inter-

LBSs, based on the decision that the laminaset and laminae are not distinguishable.  3) 
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The grading layer stack thickness is a conceptual thickness to be defined as larger than 

the thickness of the laminae, to ensure the defined grading layer fills over the laminae.   

Based on the 2D-slice conceptual model given in Figure 5.2, starting with segmented 

inter-LBS from MXRT as black layers, horizontal planar layered regions are defined 

parallel to the extracted inter-LBS as grey coloured layers.  The process defines one 

layered region on top of another along the sedimentary direction until reaching another 

segmented inter-LBS.  To ensure the defined layers fill all empty regions between 

segmented inter-LBSs within a horizontal planar laminaset, a maximum layer stack 

thickness twice the measured maximum thickness of the horizontal lamina/laminaset will 

be defined and the stacking will stop when it reaches the next inter-LBS.  Defined layered 

regions are assigned with a sequentially increasing indices (Ln), starting from the 

bounding surface labelled with pixel value “1” to “Ln_h_max” (Ln_h_max *layer 

thickness equal to the defined maximum layer stack thickness), which are later used for 

pore-space reconstruction to assign measured scaling factors to reflect grading.   

  

Figure 5.2 Illustrating defined layered regions parallel to segmented inter-LBS for horizontal planar 

laminaset. 

5.2.3 Conceptual illustration for curved lamination 

For a curved laminaset, intra-LBS needs to be defined first, followed by defining 

conceptual grading layers.  For the three parameters: 1) conceptual layer thickness is 

based on the same principle as with the horizontal part; 2) lamina thickness is defined as 

the distance between curved intra-LBSs on the cross-section perpendicular to the 

paleocurrent direction; therefore, it is based on the maximum lamina thickness measured 

in T2 (by log plot) in Chapter 4, 4.3). The grading layer stack thickness is again designed 

to be larger than the thickness of the lamina, for the same principle as for the horizontal 

part. 
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Two perpendicular 2D slices are used to illustrate the 3D reconstruction of layered regions 

for the curved laminaset in Figure 5.3, because the intra-LBS is expected to be parallel to 

and intersect with the segmented inter-LBS perpendicular to and parallel to the 

paleocurrent direction, respectively.  Starting with the segmented inter-LBS as black 

layers, shown in Figure 5.3, missing intra-LBSs are first defined as red layers with index 

(Ln), starting with “Ln_h_max+1” to distinguish them from inter-LBS.  Intra-LBSs are 

defined as intersecting with extracted inter-LBS at an angle as measured in Tp on the 

downwind side of paleocurrent direction (Figure 5.3(B)).  A set of parallel intra-LBSs is 

plotted with the distance along horizontal (paleocurrent) direction of half a wavelength, 

where half wavelength*tan (intersect angle) =lamina thickness measured in T2.  

Conceptual layers parallel to the intersection of black inter- and red intra-LBSs can be 

defined by the same method as for the horizontal planar laminaset (green and blue 

coloured layers stacking in the vertical direction, for illustration, in Figure 5.3).  A 

different set of the index (Ln) for layers of the curved laminaset are applied to distinguish 

it from the horizontal laminaset.  The index of the curved part starts from “Ln_h_max+1” 

and up to “Ln_c_max” where Ln_c_max *layer thickness is equal to a defined maximum 

layer stack thickness, which is again defined as twice the thickness of the curved lamina, 

to cover uncertainty caused by limited measurement and ensure most spaces between 

bounding surfaces are filled.   

 

Figure 5.3 Illustration of defining layered grading on a white canvas and assigning it with the index for 

curved laminaset geometry structure at a cross-section (A) perpendicular or (B) parallel to the 

paleocurrent direction.  Inter-LBS is plotted in black, intra-laminaset in red and layers within lamina are 

in green and blue. 

5.2.4 Algorithm implementation 

The definition of the layered region starts with the segmented binary inter-LBS image 

and follows the conceptual model proposed above to define layered regions labelled with 

a sequentially increasing index (Ln) to indicate different layers.  The defining process for 

a horizontal planar laminaset is illustrated in Figure 5.4.  Figure 5.4(A) represents discrete 
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pixel grids of one 2D xy slice of the segmented binary (pixel values “1” and “255”) inter-

LBS, which is shown as horizontal black layers (“1”) and the matrix is shown as white 

(“255”).  Assuming one pixel has a thickness the same as a defined conceptual layer of 

grading, as shown in Figure 5.4(B), Figure 5.4(A) is copied by moving the entire slice 

one pixel along the vertical X+ direction and adding “1” to the original pixel values (index 

(Ln)) to define a new layer parallel to the original bounding surface.  This process would 

be repeated to create set of copied images (Figure 5.4(A-C)).  The set of images are 

superimposed but keeping only the smallest value for each pixel.  In this way, layers are 

defined as single-pixel-thick layered regions with an increasing index (Ln), starting from 

original bounding surface.  The defined regions representing the grading of the horizontal 

laminaset, as illustrated in Figure 5.2.  The decision needs to be made to repeat the process 

Ln_h_max times (thus Ln ϵ [1, Ln_h_max] for a horizontal laminaset) to create a stack 

thickness larger than largest distance between the segmented inter-LBSs 

(lamina/laminaset thickness), to ensure the graded layers reach the neighbouring 

bounding surface.  The grading will end at the next extracted bounding surface, if the 

distance between two original bounding surfaces is less than the defined stack thickness.  

For the horizontal part, the procedure is performed on whole 3D volume, in which the xy 

and xz slices would have the same result as illustrated, because a horizontal planar feature 

has same geometry in both directions. 

 

Figure 5.4 Illustration of defining layered regions for horizontal planar laminaset based on binary 

extracted inter-LBS: each grid represents one pixel of an MXRT image with size equal to a layer 

thickness: A) one 2D slice of the segmented binary inter-LBS.  Bounding surface are assigned with pixel 

value “1” of black colour and “255” of white colour for matrix; B) Copy and move A upward one pixel 

and add pixel value 1 for all pixels (255 is maximum therefore do not change); C) repeat copy-move-add 

procedure on B; D) superposition of A-C and keep minimum value for each pixel. 
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For a curved laminaset, considering its different geometry in the directions perpendicular 

and parallel to the paleocurrent, the definition of grading could be illustrated by one xz 

slice (parallel to the paleocurrent direction), as in Figure 5.5(A).  The procedure first 

defines the inclined intra-LBS inverse to the paleocurrent direction with toe side on the 

higher end of the Z axes.  Starting from the xy slice (one column on the xz slice) with 

slice number ZS at end of Z axis (ZS =Z_max); each xy slice Nz away from ZS with slice 

number ZS-Nz is copied to perform this procedure: 1) add pixel value “Ln_h_max” to 

existing bounding surface index (Ln) value to define intra-LBS (to differ from the 

horizontal part index with Ln ϵ [1, Ln_h_max]) and 2) move the xy slice Nx pixels along 

the vertical X+ direction, to plot an intra-LBS inclined to the inter-LBS.  Nx is a function 

of Nz.  In this case Nx = tan (angle)*Nz, which requires a reduction to a lower integer.  

So taking angle=26.6° as an example, each xy slice is copied with an added index value 

and moved one more pixel in the X+ direction every two slices on the Z- direction.  Thus 

an intra-LBS intersecting at 26.6° with a segmented inter-LBS can be plotted.  By 

performing the intra-LBS plotting process for Nd slices, intra-LBSs will have a distance 

in between them along the z-axis of Nd *resolution, and thickness at x-axis of 

Nd*resolution*tan (angle), which is equal to the defined lamina thickness (measured 

maximum curved lamina thickness from T2).  The intra-LBS defining procedure is 

therefore performed repeatedly for each Nd number of slices (thus Nz ϵ [1, Nd]) starting 

with xy slices, with slice number ZS=Z_max-n* Nd (n ϵ [0, Z_max/ Nd]).  All copy-added 

value-moved xy slices are superposed with the minimum kept, thus a set of parallel intra-

LBS can be plotted.  Number “Ln_h_max+1” is therefore defined as the index (Ln) of 

intra-LBS, as shown in Figure 5.5(B).  The same layer stacking procedure is applied in 

the vertical direction as that for the horizontal planar part to define conceptual layers 

parallel to the intersection of the intra-LBS (voxel value = “Ln_h_max+1”) with the inter-

LBS (voxel value = “1” but treated as “Ln_h_max+1” during calculation).  For the curved 

laminaset layered regions, the index (Ln) starts from “Ln_h_max+2” and repeats 

Ln_c_max=2*Nd*tan(angle) to create a stack layer thickness twice that of the curved 

lamina to ensure covering the space between defined intra-LBS.  Therefore, the curved 

laminaset has an index Ln ϵ [Ln_h_max+1, Ln_h_max+ Ln_c_max] to differentiate it from 

the horizontal planar laminaset.  Figure 5.5(A-C) illustrates an example of the proposed 

procedure with angle= 26.6°, Ln_h_max=30 and Ln_c_max=50.   
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Figure 5.5 Illustration defining layered regions for a curved laminaset based on binary extracted 

inter-LBSs: each grid represents one pixel of MXRT image with size equal to a layer thickness: 

(A) one 2D slice of the segmented binary inter-LBS at xz parallel to paleocurrent direction.  

Bounding surfaces are assigned with pixel value “1” of black colour and “255” of white colour 

for matrix; (B) Copy each ZS - Nz slice (ZS=Z_max) (xy slice thus one column of A), add 

index Ln_h_max=30, Move Nx on X+ direction, Nx= Nz/2, reduction to lower integer and 

superposition with minimum value kept for each pixel; (C) repeat horizontal layer generation 

procedure in Figure 5.4 on (B). 

Note that, for a curved lamina, circumstances would occur when the laminaset thickness 

between a segmented inter-LBS is larger than the defined stack thickness; a set of stacked 

grading layers over the intersected intra-LBS and intra-LBS would still not reach the next 

segmented inter-LBS, and therefore leave blank areas/ volumes.  An abnormally large 

distance between inter-LBSs is potentially a result of bioturbation which has penetrated 

the bounding surface and disturbed grading.  The remaining pixels that have not been 

assigned an index (Ln) would, therefore, be assigned to a specific index (Ln_bio) to be 

treated specially during grain-pore reconstruction to reproduce the bioturbation character 

as measured.  Table 5.2 summarises key parameters to be determined in the 

implementation of the proposed algorithm, along with their physical implications for the 

hierarchical structure.  Figure 5.6 illustrates an example to perform the proposed 

procedure on a segmented bounding surface from MXRT of L1 by assuming pixel size 

equal to layer thickness, with angle= 26.6°, Ln_h_max=30, Nd=50, Ln_c_max=50 and 

Ln_bio=100.  A set of macro scripts has been written based on FIJI (www.Fiji.sc 

(Schindelin et al., 2012)) to automatically manipulate the segmented inter-LBS image to 

achieve the discussed definition of the layered region.  The defined regions could then be 

http://www.fiji.sc/
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taken as regional index map constraints to insert into various pore-space structures 

according to the measured grading character. 

Table 5-2 Summary of key parameters to be determined in implementing the algorithm and their physical 

implication of hierarchical structures 

Key 

Parameters 

Ln_h_max Angle Nd Ln_c_max Ln_bio 

Physical 

implication 

of 

hierarchical 

structures 

Ln_h_max 

*resolution 

equal 

horizontal 

grading 

layer stack 

thickness 

Intersection 

angle of 

intra- to 

inter-LBS 

Nd*resolution 

equal lamina 

thickness 

perpendicular 

to 

paleocurrent 

direction 

Ln_c_max 

*resolution 

equal 

curved 

grading 

layer stack 

thickness 

Specific 

index 

assigned 

representing 

occurrence 

of 

bioturbation 

 

 

Figure 5.6 3D illustration of reconstructed layered regions respecting grading of L1, assuming voxel size 

has a thickness equal to the layer thickness: a colour map from white to black for Ln ϵ [1,100]. 

5.3 Step 2: Decomposing the domain for parallel simulations  

It is estimated that reconstructing a full 3D pore-scale model, with the defined index map 

as a regional constraint, for a sample of over a 5x5x5 cm3 cube would take more than 

50000 hours of CPU time on a PC with a Xeon(R) CPU-E5-1603 at 2.8GHz.  To make 

the simulation faster, a domain decomposition in an ordering scheme was applied to 

partition the defined index map domain into subdomains falling into four categories (see 

the next section), and then MPS simulations were carried out on the subdomains 

independently, in parallel.  In this work, 80 subdomains were simulated in parallel on 40 
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stand-alone computers, each processing 2 simulations a time,  which reduces the 

reconstruction time down to about 20 days.   

To enable parallel simulation for decomposed subdomains, the key idea is that the 

subdomains are not connected with each other so they can be simulated independently 

(thus in parallel).  The reason behind this is that connected subdomains need to be 

simulated in sequence to allow the boundary of the simulated volume to be considered as 

hard data of the next neighbouring subdomain (by extending the simulation domain) to 

keep connectivity.  Such separated subdomains can be achieved by decomposing the full 

domain into four categories of, where the subdomains of each category are not spatially 

connected but the four categories' subdomains together would connect full domain.  

Figure 5.7(A-B) illustrates part of the domain partitioned into A, B, C, and D, four 

ordering categories of subdomains with representative volumes of grain-pore textures, 

which are not connected with each other within the same category but connected by 

combining different categories.  Unconnected subdomains from first order category (e.g.  

eight cuboids A category subdomains) could be simulated independently, and thus in 

parallel.  Connected neighbouring sub-grids from the second order category are simulated 

by extending the domain to take the pre-simulated neighbouring subdomains as hard data 

(e.g.  16 cuboid B category sub-grids could be simulated with the extended domain to 

take neighbouring pre-simulated A subdomains into account as hard data).  In this way, 

each ordering category of subdomains is simulated sequentially, depending on each other, 

i.e. D depending on C which depends on B which depends on A, so that connectivity 

between subdomains is preserved.  One may note the thinking behind four categories 

rather than two is to ensure neighbouring categories sub-domains at each edge including 

the corner of the A category are conditioned.  The design of the dimension of these 

subdomains is based on simulation time.  Each sub-grid should be large enough to include 

as much representative volume as possible but be small enough to make sure the 

simulation time is sensible.  Within each subdomain, a set of previously defined layered 

regional index maps will be included, as shown in Figure 5.7(C).  3D stochastic stationary 

reconstruction will be applied to each layered region based on a given training image, but 

will include non-stationary variation according to the index (Ln) across layers to reflect 

grading character (Figure 5.7(C-D)).   
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Figure 5.7 Domain partitioning in an ordering scheme for multiscale pore-space reconstruction: A) Full 

domain with layered region index map defined as regional index map constraint; B) illustration of an 

ordering partition into four ordering categories, A-B-C-D, here gives an example of space including eight 

cuboids A level, with 16 cuboid B level, six cuboids C level and one cuboid D level subdomains; C) 

illustration of one subdomain of each level containing layered region; D) illustration of stochastic 

regional reconstruction of pore-space into each region. 

5.4 Step 3: Full 3D stochastic pore-space reconstruction 

Assuming that grading can be represented by gradual variation of grain-pore size and 

orientation across layered regional index maps, pore-space reconstruction needs to 

respect the defined layered regional index maps as a constraint and include non-stationary 

variation based on stationary μ-XRT data as training.  Based on the basic mechanism of 

MPS introduced in Chapter 2 and with emphasis on those requirements, the key features 

to reconstruct a layered grading system are identifying the training image, assigning 

scaling and rotation factors based on the index map and with the appropriate configuration 

on the template size.  The configuration is summarised as three steps in Figure 5.8 and is 

explained as follows:  

1) Selection of training image: It has been suggested previously that only one partial 

subvolume of each of the S1 and S4 grain-pore images is applied as a training image for 

all defined regional index maps, for curved and horizontal planar laminasets respectively.  

To have a representative stationary grain-pore space training example as the basis of 

grading, the finest layer of grain-pore space, which is expected to have no preferred 

orientation, is preferred.  Figure 5.8(A) illustrates a sub-volume cropped from S1 and S4 

close to one measured “valley” layer from log measurements to represent the finest 

bounding surface layer, which is assumed to have stationary homogeneous grain-pore 

structure. The representativeness of the selected sub-volume needs to be quantitatively 

verified.  To avoid inclined grains, the sub-volume from S1 is taken from one horizontal 

bounding surface layer rather than an inclined curved.  Both sub-volumes only crop the 
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centre volume of the identified horizontal layer, to minimise the potential intersection 

with another bounding surface potentially close to the edge area, based on geometrical 

observation from the segmented heavy mineral image (Figure 3.19 and Figure 3.20) that 

highlights the bounding surface.  A training template size could be designed to cover 

grain and pore size as measured. 

2) Configuring the  regional non-stationary parameter: With the training image, the 

scaling and rotation factor within each regional index map reflecting the measured 

grading character need to be configured for MPS reconstruction.  The configuration is 

correlated to the defined region index, Ln, directly and derived differently for horizontal 

laminasets (1<Ln<= Ln_h_max), curved laminasets (Ln_h_max <Ln<= Ln_h_max+ 

Ln_c_max) and bioturbation (Ln = Ln_bio).  Scaling is achieved by the affinity function 

in MPS simulation, which is determined by a scaling factor on each axis.  The scaling 

factor for each layered region, 𝑆𝐹𝐿𝑛 1𝐷, can be estimated as the equation given in the 

centre red box of Figure 5.8(B).  The calculation is based on the previously measured 

grading gradient, 𝑆𝐹𝑟𝑎𝑡𝑒 1𝐷, (reflecting the rate of increasing of grain size over the finest 

base bounding surface layer) and grain orientation from μ-XRT, measured as summarised 

in Table 3.4.  In the equation given in Figure 5.8(B), l is related differently to Ln to 

distinguish the horizontal and curved laminaset.  Regions with Ln=Ln_bio are treated 

specially according to measurements in terms of grain size and orientation representing 

bioturbation.   

3) The discussed reconstruction process is performed for each defined layered regional 

index map sequentially, following the sequence of increasing index Ln.  The 

reconstruction also extends each index-mapped region in each direction, equal to half of 

the template diameter, to take grain-pore structures reconstructed within the neighbouring 

index-mapped region as hard data.  As a result, the grain-pore space is transitioned 

naturally at the boundary between index-mapped regions; therefore, connectivity is 

preserved. 
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Figure 5.8 MPS setting and inputs for defined index maps of L1 

A set of python scripts has been written to perform domain partition and MPS 

reconstruction automatically. 

5.5 Applying three-step procedure on L1 

This section summarises the configuration parameters and demonstrates the process based 

on the decisions made which are specific to the sample of study, for each of three 

proposed steps. 

5.5.1 Defining inter- and intra-laminaset index maps on L1 

Configuration parameters which are determined to define the hierarchical inter- and intra-

laminaset structures are summarised in Table 5.3.  The angle is decided as 26.6° to define 

a curved intra-LBS on a discrete pixel image that falls in the measured range between 20-

30º from the surface, as shown in Figure 5.1(C) and Tp on the face parallel to the 

paleocurrent as Figure 5.1(D).  A conceptual layer thickness of 200um (the same as that 

used during measurements in SEM and μ-XRT across Figure 5.1(E-H) is applied because 

1) each layer represents the grain stack over the previous layer.  The thickness of the 

layer, therefore, needs to contain the largest observed grain size (100-200 μm in diameter 

as measured across μ-XRT and BSEM) to represent a layer of grain safely and 2) 200um 

is well below the thinnest lamina thickness of 1mm, as measured in BSEM 

characterisation in section 4.3.2, so gives a layered region fine enough to reflect grading. 

No additional intra-LBS has been defined for the horizontal laminaset.  Therefore, the 

layered grading stack thickness is defined to cover a distance twice that of the measured 

maximum laminaset thickness (thus, 6mm over 0.5-3mm measured for the horizontal 

part).  For the curved laminaset, a set of parallel intra-LBSs are plotted 10mm apart along 
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the paleocurrent direction and thus 5mm (tan (26.6°)*10mm) lamina thickness 

perpendicular to the paleocurrent direction to cover what been measured in T2 in section 

3.2.2.  Based on the segmented inter- and defined intra- LBS, the maximum grading 

thickness of 10mm in the vertical direction has been defined as twice the 5mm measured 

curved lamina thickness perpendicular to the paleocurrent direction, to ensure spaces 

between bounding surfaces are filled. 

To simplify the algorithm’s implementation, the decision has been made to coarsen the 

original segmented MXRT with volume of 562x550x525 at 100x100x100 um3/pixel3 

resolution to volume of 293x287x274 at 200x200x200 um3/pixel3 resolution.  Thus one 

pixel thick has the physical size of 200um, which is consistent with the anticipated 

thickness of the conceptual layer.  Based on the coarsened resolution, the corresponding 

algorithm index (Ln) range for horizontal and curved laminasets related to each physical 

hierarchical structure are summarised in the last two columns in Table 5.3.  The proposed 

procedure is performed on the central 281x275x262 volume cropped from the discussed 

coarsened 293x287x274 volume at 200x200x200 um3/pixel3.  The decision has been 

made that the separation between applications of the horizontal and curved method is 1.9 

cm on the planar yz surface from the bottom of the X axis, rather than the first continuous 

curved surface.  This is because previous observation (from Tp) found the changes from 

horizontal to curved laminasets are transitional, as potentially inclined intra-laminaset 

surfaces are observed between some horizontal laminasets close to curved laminasets.  

Figure 5.9 and Figure 5.10 show two 2D cross-section views of the sample volume 

containing segmented inter-LBS images from the MXRT in section 4.2 and the same slice 

after the index maps defined are shown on the right.  Figure 5.9 shows a cross-section 

perpendicular to the paleocurrent direction and Figure 5.10 a cross-section parallel to 

paleocurrent direction.  The defined layered regions are labelled in grey, where the colour 

varies from dark to bright as the region’s index (Ln) number increases.  Therefore, the 

segmented inter-LBS with index number “1” has the darkest colour (black), while  the 

defined intra-LBS with index number “31” has a dark grey colour.  Defined layers further 

away from the corresponding starting bounding surface have a brighter colour.  Empty 

regions are considered as bioturbation or erosion and are assigned as “100” and presented 

in white. 
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Table 5-3 Summary of decisions on hierarchical structure and corresponding symbol in algorithm 

implementation 

Hierarchical Structure of lamina 

and grading 
Physical scale 

Symbol in 

algorithm 

Index 

Number 

Angle 26.6° (defined) 

N/A 
Layer thickness 200um (defined) 

Horizontal lamina thickness between 

inter- or intra-LBS 

0.5-3mm 

(observed) 

Horizontal grading layer stack 

thickness 
6mm (defined) Ln_h_max 30 

Curved lamina thickness between 

intra-LBS 
5mm (defined) Nd 25 

Curved grading layer stack thickness 10mm (defined) Ln_c_max 50 

Bioturbation and erosion “True hole” N/A Ln_bio 100 

 

To analyse the geometry of the defined index map for hierarchical structures, Figure 

5.9(A) gives one 2D slice of binary MXRT perpendicular to the paleocurrent direction.  

Figure 5.9(B-C) gives a zoomed-in view of Figure 5.9(A) at curved and horizontal planar 

laminasets respectively.  The defined layered region index map is presented in Figure 

5.9(D-F) correspondingly, for comparison.  It can be seen from Figure 5.9(D) that intra-

LBSs are defined parallel to inter-LBSs perpendicular to the paleocurrent xy surfaces.  

Defined layers with increasing index (Ln) (thus increasing brightness) are parallel to the 

bounding surfaces for both curved and horizontal planar laminasets, as shown in Figure 

5.9(D-E) at the xy surface.  One may note that the remaining unconnected gap in Figure 

5.9(D) has created a “hole” and created a non-continuous distribution of region index 

numbers.  It may create a channel having different fluid flow performance and reflect the 

randomly occurring bioturbation observed in the previous analysis.   
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Figure 5.9 Illustrating defined layered regions (200um thick) perpendicular to the paleocurrent direction 

based on: A) one 2D slice (275x281 pixels^2 at 200um/pixel^2 for A and F) binary extracted  inter-LBS 

which is assigned with pixel value “1” of black colour and “0” of white colour for matrix; B) zoomed-in 

view (58x42 pixels^2 at 200um/pixel^2 for B-E) of bounding surface in curved laminaset; C) zoomed-in 

view of bounding surface at horizontal planar laminaset; D) zoomed-in view of defined layered index 

map of B, colour map adjusted to the range of overall assigned regions’ indexes (1-80); E) zoomed-in 

view of defined layered regions of C; colour map adjusted to the range of horizontal planar laminasets’ 

assigned regions’ indexes (1-30),  for better contrast to illustrate the layered index map ; F) defined 

layered index map of  A. 

Figure 5.10(A) gives one 2D slice of binary MXRT parallel to the paleocurrent direction 

xz face.  As in Figure 5.9, two zoomed-in views for the curved and horizontal planar 

laminaset respectively are given in Figure 5.10(B-C), together with their corresponding 

defined layer index map, given in Figure 5.10(D-F).  Figure 5.10(D) shows intra-LBS, as 

dark grey colour, has been plotted with the intersecting angle and lamina thickness agreed 

with the designed configuration.  Layers with increasing brightness parallel to the inter- 

and intra-LBS are defined for both the curved and horizontal planar laminaset.  Figure 

5.10(E) is similar to Figure 5.9(E) because the horizontal planar layers have the same 

features in both directions.  With maximum 50 layer stacks (10mm) defined on top of the 

curved bounding surface, circumstances could occur where the added layers still do not 

reach the next bounding surface, like the empty white regions in the bottom-left corner of 

Figure 5.10(D) and Figure 5.10(F), as a reflection of bioturbation.   
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Figure 5.10 Illustrating defined layered regions (200um thick) parallel tp the paleocurrent direction based 

on: A) one 2D slice (262x281 pixels^2 at 200um/pixel^2 for A and F) a slice of a binary extracted inter-

LBS which is assigned with pixel value “1” of black colour and “0” of white colour for matrix; B) 

zoomed-in view (70x53 pixels^2 at 200um/pixel^2 for B-E) of bounding surface at curved laminaset; C) 

zoomed-in view of bounding surface at horizontal planar laminaset; D) zoomed-in view of defined 

layered regions of B; colour map adjusted to the range of overall assigned regions’ numbers (1-80); E) 

zoomed-in view of defined layered regions of C; colour map adjusted to the range of horizontal planar 

laminaset’s assigned region numbers (1-30),  for better contrast to illustrate layered regions; F) defined 

layered regions of  A. 

 

Figure 5.11 3D views of defined intra-LBS (with index “31” rendered in red) over segmented inter-LBS 

(with index “1” rendered in green). 
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Figure 5.11 plots a 3D view of intra-LBS (with index “31” rendered in red) defined over 

a segmented inter-LBS (with index “1” rendered in green) from four different directions.  

The 3D internal structure of the defined intra-LBS follows the curved surface of the 

segmented inter-LBS with the defined intersecting angle and distance in between them.  

Figure 5.12(A-D) plots a 3D view of the defined full index map of the bounding surface 

and conceptual layers, with the colour map given in Figure 5.12(F), which provide a 

clearer illustration of the sets of layers defined parallel to three orders of bounding 

surfaces.  In Figure 5.12(B) the top view illustrates the nature of the lunar shaped cross-

section of lamina grading in a parallel sedimentary cross-section which is consistent with 

curved crest trough cross-lamina geometry given from the literature in Chapter 2.  Apart 

from the successfully defined grading index maps agreeing with both the discussed and 

observed nature of the features, Figure 5.12(C) highlights two significant abnormal 

observations: 1) an unconnected surface which was supposed to be solved by the 

supervised classification method developed in Chapter 4 and 2) a large empty volume 

assigned with index (Ln) “100” and displayed in black.  The two are explained in Figure 

5.12(E) by illustrating the same location of the previously analysed labelled connected 

bounding surface.  Figure 5.12(E) highlights the zig-zag edge of the connected bounding 

surface in 3D which is responsible for the 2D presentation of the connected bounding 

surface.  Figure 5.12(E) shows that although the dis-connectivity has been solved by 

supervised classification, it may leave some imperfect artefact at the edge of the 3D 

surface and leads to the unconnected presentation in 2D.   However, such a circumstance 

is only expected to occur in 2D slices at the sample surface but not in the internal cross-

sections in 3D.  Figure 5.12(E) also highlights bioturbation, as previously analysed, which 

is consistent with the location where special index (Ln) “100” was assigned, that 

anticipated special treatment for the presence of bioturbation. 
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Figure 5.12 (A-D) 3D illustration of defined full index maps representing three orders of bounding 

surface and conceptual layers within laminae by a colour map, as in (F); (E) illustrating previously 

labelled connected bounding surface image of  red box highlighted volume of C, with identified 

bioturbation highlighted in yellow and zig-zag edge on one bounding surface highlighted in green. 

Figure 5.13 gives the final plots in the grey-scale colour map of the defined layered 

regions’ index map, reflecting the grading of L1, including both the curved and horizontal 

planar system.  The colour map is inverse, as discussed in the methodology with white 

for “1” and black for “100”, for the purpose of better illustration.  Based on Figure 5.13, 

the definition successfully: 1) defined missing intra-LBS with inclined character which 

were the same as measured in SEM and preliminary L1 observation; 2) defined 

conceptual layers within laminae with layer thickness that respected measured grain size; 

3) the lamina thickness based on the log plot measurement of SEM and grading stack 

thickness covered most lamina thicknesses.  A different range of index (Ln) numbers were 

assigned to horizontal planar (1-30) and curved (31-80) laminasets; therefore, different 

pore-space characters could be assigned respecting the different nature in either bedform.  

Table 5.4 summarised key parameters used for layered region definition to be referred for 

later pore-space reconstruction.  For grain-pore reconstruction in the next step, L1 needs 

to have the same resolution as the grain-pore space to be reconstructed.  4x4x4 um3/voxel 

is decided and the solid black line boxed 238x238x238 volume at 200 4x4x4 um3/voxel 

of Figure 5.13 are scaled up 50 times to 11900x11900x11900 at 4 μm3/ voxel. 
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Figure 5.13 3D illustrations of defined layered regions respecting grading of L1, with dimension 

281x275x262 at 200x200x200 um3/voxel resolution; a colour map from white to black for region 

numbers between 1-100.  Black solid line boxed 238x238x238 volume at 200 4x4x4 um3/voxel is scaled 

up 50 times to 11900x11900x11900 at 4x4x4 um3/ Voxel for grain-pore reconstruction. 

Table 5-4 Key parameters of defined layered region model 

 
Layer 
thickness 

Lamina thickness 
Intersect 
angle 

Layered 
region 
number 

Horizontal 
Planar 

200 μm 1-3 mm (max 6mm) 0° 1-30 

Curved 200 μm 

5 mm (perpendicular to 
paleocurrent direction) between 
3rd surface but 10mm if not 
reaching neighbour surface 

26.6° 
31-80 (100 
for 
bioturbation) 

5.5.2 Decomposing the domain for parallel simulations on L1 

The dimension and resolution for ordering the partition and multiscale reconstruction 

applied for decomposition are labelled in Figure 5.14.  The specific dimension and 

numbers of sub-grids for each ordering category’s subdomains are summarised in Table 

5.5.  A 500x500x500 (4 μm resolution) cubic sub-grid takes an average of 2.5 CPU hrs 

for MPS regional reconstruction and is determined to be suitable for A category 

subdomains.  The neighbouring volumes between A subdomains are designed to have 

thickness of 100 pixels, thus giving B of dimension of 500x500x100 (or 500x100x500 or 

100x500x500), C of 100x100x500 (or 100x500x100 or 500x100x100) and D of 

100x100x100 voxels3 (details see Table 5.5).  The physical thickness of each category 

subdomain is thicker than 400 μm, thus containing at least two previously defined layers, 

and therefore containing a representative volume of grain-pore textures. Therefore, the 

11900x11900x11900 at 4 μm3/ voxel layered region L1 could be partitioned by the 
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20x20x20 A category of grids, with corresponding B, C and D neighbours (for details see 

Table 5.5).  The full 3D pore-space model of size 11900x11900x11900 voxels3 has been 

reconstructed in parallel processing, with 80 simulations performed at a time on 40 stand-

alone computers, by a 20-day simulation. 

 

Figure 5.14 Ordering domain partitioning strategy, together with MPS reconstruction: A) yellow box 

highlighted 238x238x238 at 200 μm3/ voxel of layered region index map defined for L1, scaled 50 times 

down to 11900x11900x11900 at 4 μm3/ voxel to meet pore-space resolution to be reconstructed; B) 

illustration of a 1100x1100x1100 voxel of A partitioned into four ordered categories, A-B-C-D: here 

gives an example of space including 8 cuboids A level, with 16-cuboid B level, 6-cuboid C level and 1 

cuboid D level subdomains; C) illustrating one subdomain of each level containing layered regions, each 

at 50 voxel thick (200um); D) illustrating MPS regional reconstruction of pore-space into each region. 

Table 5-5 Details of four ordered grids for final simulation 

Ordered 

categories 
A B C D 

Dimension 500x500x500 

500x500x100/ 

500x100x500/ 

100x500x500 

100x100x500/ 

100x500x100/ 

500x100x100 

100x100x100 

Number of 

grids 
20x20x20 3x(19x20x20) 3x(19x19x20) 19x19x19 

Resolution 4um 

5.5.3 Full 3D stochastic pore-space reconstruction on L1 

The configuration of stochastic pore-space reconstruction is summarised in Figure 5.15 

and explained as follows:  

1) S1 and S4 are scaled into the same resolution of 4x4x4 um3/voxel for reconstruction 

of a grain-pore space model with the same resolution.  Figure 5.15(A) illustrates a sub-

volume of 150x150x70 voxels cropped from S1 and S4 in the central part close to one 

measured “valley” layer from log measurements, representing the finest bounding surface 

layer.  The cropped volume is representative by including more than 200 grains, as 

measured after excluding small distraction particles with the same method as used in 
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previous μ-XRT grain-pore measurements (see Table 5.6).  The measurements in Table 

5.6 also confirmed quantitatively that the cropped volume represented a fine layer by 

having similar average size and porosities to those measured for the full sample in Table 

3.4 of Chapter 3.  The orientation measured for cropped volume is close to full volume 

measurements, proving there is no preferred orientation.  A training template size of 30 

voxels in each direction has been designed with a volume of 120x120x120 um3 to cover 

grain and pore size, as measured. 

Table 5-6 Grain-pore measurements performed on cropped training image (150x150x70) from S1 and S4 

Sample 
Measur

ement 
Count 

Average 

Size in 

volume 

(mm3) 

%Are

a 

Long 

axis 

(3D) 

μm 

Short 

axis 

(3D) 

μm 

Angle 

Shape_

VA3d 

(3D) 

S1 

(4.30μ

m 3) 

Grain 207 4.50E-04 74.4 145.2 71.4 67.5 4.8 

Pore 402 4.52E-05 14.5 58.8 28.2 N/A N/A 

S4 

(3.07μ

m 3) 

Grain 216 1.62E-04 77.0 99.6 49.3 64.9 4.2 

Pore 872 7.41E-06 14.2 22.7 12.1 N/A N/A 

 

2) With the training image, the scaling and rotation factor within each regional index map, 

reflecting the measured grading character, need to be configured.  The configuration is 

correlated to the defined region number, Ln, directly and derived differently for horizontal 

laminasets (1<Ln<=30), curved laminasets (30<Ln<=80) and bioturbation (Ln = 100).  

For the horizontal part, with the cropped part from S4 taken as the training image, 

𝑆𝐹𝑟𝑎𝑡𝑒 1𝐷 = 0.02  is decided, which is within the range of smaller measurements of 0.014 

from T2 to 0.023 as measured from the full volume of S4.  Based on the given equation, 

the inter-LBS layer would have no scaling with 𝑆𝐹1 1𝐷 = 1 and the following layers have 

scaling factors which increase by 0.02 over the previous layer each time.  No rotation is 

applied for layers from the horizontal laminaset.  For the curved part, with the cropped 

part from S1 taken as the training image, 𝑆𝐹𝑟𝑎𝑡𝑒 1𝐷 = 0.021  is applied, which is the same 

as that measured from the full volume of S1, because the average of the measured curved 

grading gradient (of curve1, cross1 and cross2) from BSEM of T2 is 0.025, thus roughly 

agreeing with the S1 measurement.  With the given equation, the layer (Ln=31) as defined 

for intra-LBS has been treated same as the segmented inter-LBS (Ln=1), in that no scaling 

is performed.  The following layers start from Ln=32: each layer has a scaling factor 

increase of 0.021 over the previous layer.  Rotation of 30º is applied around y-axis for 
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layers with Ln between 31-80, to represent the measured preferred orientation.  The 

rotated angle, 30º, is slightly larger but reasonably close to the inclined angle of 26.6º.  

The explicit scaling factors assigned for each region can be referred to in Appendix D.1 . 

Regions with Ln=100 are treated specially, to represent bioturbation.  Taking into account 

that bioturbations are quantitatively measured to have smaller grain-pore size on the Tp 

SEM image than in the neighbouring area, a scaling factor the same as for Ln=30 is 

applied to represent a smaller grain size.  Although Ln=30 did not represent smallest grain 

size in defined index map, they are still smaller than the neighbouring index maps, 

because the bioturbation regions defined in the index map only occur after Ln=80.  Given 

that bioturbation under such definition only occurs in curved laminasets, a rotation of 30

º is also applied.  The edging areas of bioturbation index maps are also treated specially 

to take into account the transitional variation: if a bioturbation index map has 

neighbouring index maps with Ln≠100 within each defined 500 voxels3 decomposed 

subdomain, its scaling factor would be the average of the other index maps within the 500 

voxels3 window. 

 

Figure 5.15 MPS setting and inputs for defined index maps of L1 

 

5.6 Verification of results    

The reconstructed pore-space model (11900x11900x11900 voxels3) is hard to visualise 

fully in 3D.  To examine the effectiveness of the proposed regional index map based MPS 

and ordering of the domain partition scheme, this section applies a set of visual 

verifications, including 1) a partial illustration of the result, to visually examine the 

technical efficiency of the reconstructed connectivity between the regional index map and 
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partitioned subdomains; 2) producing a 2D surface illustration of the reconstructed grain-

pore space and correlating it with the defined regional index map on L1 and comparing it 

with the registered T2, to visually examine its effectiveness in revealing grading features 

associated with laminae and laminasets; 3) to further enhance visualization of (2), a 

synthesised set of grading factors with larger grain size and increasing gradient are 

applied to a small sub-set of sub-grids (the sub-grids are from the surface of L1, with 500 

voxels thickness in the Z direction, including a set of A, B and C category partitioned 

subdomains) to generate larger grain-pore contrast to correlate with lamina and laminaset 

structures; 4) one partial block (500x500x500 voxel3) containing a cross of two curved 

bounding surfaces is selected to illustrated its correlation with reconstructed grain-pore 

space variation, also based on a synthetic larger grading gradient; 5) with the 3D pore-

space model fully reconstructed over the 5x5x5 cm3 space (with the true measured 

grading gradient) the model size is over 10000 voxels in each of the three dimensions and 

hard to verified in full directly. A method is proposed to decompose the full model into 

57x57x57 of 2003 sub-models, and apply network approximation to characterise average 

grain and pore properties within each sub-model (yield in total 1.27E+09 pore elements 

and 2.03E+09 throat elements, as summarised in Table 5-7).  The 3D spatial distribution 

of measured average properties would be plotted in space and correlate to the 

characterised grain-pore distribution associated with hierarchical structures, to verify the 

correctness of the model. 

Table 5-7 Summary of the numbers of pores and throats in reconstructed pore space model 

(11900x11900x11900 voxels3) 

Numbers of pores Numbers of throats 

1.27E+09 2.03E+09 

 

5.6.1 Technical verification 

Figure 5.16 gives technique for verification of the reconstructed connectivity between 

subdomains by the four-category partition scheme in Figure 5.16(A), the same as that 

given in Figure 5.14(B).  Four A, four B and one C category partitioned subdomains, as 

highlighted in the red box in Figure 5.16(A), are shown in Figure 5.16(B).  The 

subdomains are parts of a horizontal planar laminaset with defined regional index maps 

reflecting layered grading.  Figure 5.16(C) illustrates the reconstructed grain-pore 

distribution in 3D, in which grains are black, and pores are white.  To better visualise 

grain-pore distribution, Figure 5.16(D) gives the 2D xy surface view, in which grains and 
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pores appear to be well connected across the index mapped regions in Figure 5.16(B).  

Apart from connectivity, reconstructed pores appear larger on the upper regions, which 

is consistent with the index map, in which larger grain size is expected in regions with 

larger indexes (darker colour in Figure 5.16(B)).   

 

Figure 5.16- Illustration of partitioned subdomain reconstruction :(A) The four-category partition scheme, 

with highlighted part shown in B; (B) four A, four B and one C category partitioned subdomains from 

horizontal planar laminaset with defined regional index maps reflecting layered grading displayed 

(defined regional indexes between 1-30 are coloured from grey to black); (C) 3D view of 1st slice of 

reconstructed grain (black) and pore (white) spaces; (D) 2D xy view of reconstructed grain pore space. 

5.6.2 2D surface verification 

Figure 5.17(C) illustrates the partial 2D xy slice of reconstructed grain-pore (white-black) 

space which has shared the area with T2, whose segmented grain-pore space is given in 

Figure 5.17(D) for comparison.  To correlate with the lamina and laminaset structure, 

Figure 5.17(A-B) also gives a defined region map in which the corresponding areas of 
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the reconstructed 2D image and T2 are highlighted.  The reconstructed image of Figure 

5.17(C) has visually similar grain-pore size to Figure 5.17(D); however, they are too small 

to display on a centimetre scale section for the human eye to recognise different patterns 

and distributions, because of the large 1 to 2 orders of scale difference between the 

millimetre to centimetre scale lamina structure compared with grains and pores with a 

diameter less than 100 micrometres.  Therefore, two zoomed-in FOVs of the highlighted 

black box shown in Figure 5.17(C), and Figure 5.17(D) are displayed in Figure 5.18(A 

and B respectively).  A relatively coarse grain-pore band is observed in the middle of both 

Figure 5.18(A and B).  Besides the visual consistency, Figure 5.18(A) also has a relatively 

distinctive finer grain-pore space in the upper right corner above the coarse grain-pore 

band.  By looking back at the defined index map in Figure 5.17(A-B), it can be seen that 

this is a reflection of the black square area which is a result of bioturbation, based on the 

previous analysis.  The finer grain-pore space reconstructed in this area proves the 

effectiveness of the special setting dealing with bioturbation. 

 

Figure 5.17- One 2D surface of reconstructed grain (white)-pore(black) space of 5400x11400 at 

4um2/pixel resolution, illustrated in (C) and correlated with defined regional distribution of L1 in (A); the 

2D defined region of (C) is given in (B),which is highlighted in yellow in (A); as a comparison, the 

segmented pore space of registered T2 of 19845x38074 at 1um2/pixel that has a shared area with (C) is 

given in (D), whose corresponding location in the defined regional map is highlighted in the red box in 

(A) and (B). 
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Figure 5.18 the zoomed-in view of black box highlighted FOV in Figure 5.17(C) and Figure 5.17(D) 

5.6.3 Synthesis grading factor verification 

The main limitation of the previous reconstructed result is the small contrast of grain-pore 

variation, which could not be visually observed on a centimetre-scale image by the human 

eye.  The purpose of verification is mainly to 1) verify that reconstructed grain-pore size 

variation has same spatial distribution as the layered index map and 2) the simulated 

results in neighbouring regions are connected.  The main obstacle for such a verification 

is that the contrasts of grain-pore size between index map defined regions are too minor 

to be observed with the same FoV that the 1-2 orders larger lamina structure needs in 

order to be observed.  Therefore, a synthetic set of parameters for reconstruction has been 

developed to have larger grading gradient and, therefore, create a larger contrast in grain-

pore size.  The scaling factors setting to defined regions (with index Ln) are given in 

Figure 5.19, in which the red line is a result of synthetic parameters with larger gradient, 

referred to as large contrast, with scaling factor 𝑆𝐹𝑟𝑎𝑡𝑒=0.2, and thus 10 times that of the 

actual measurement of 0.02, which is shown in blue and referred to as normal contrast 

(the specific calculated scaling factors are given in Appendix D.1 ). 



Chapter 5: 3D full pore-space reconstruction  

187 

 

 

Figure 5.19 Synthetic scaling factors (SFLn 1D) with large contrast, arranged for each regional region 

with index Ln compared with normal contrast setting 

With large contrast, the visual verification of part of the surface xz slice is compared with 

the index map, in Figure 5.20.  Coarser pores are distributed at regions with larger scaling 

factor (larger index numbers corresponding to darker coloured regions).  For a better 

illustration of more detailed pore variation along inverse grading regions, Figure 5.20 also 

gives two zoomed-in regions.  The square bounded by the red line gives a zoomed-in 

simulated pore image of regions where two curved laminae are crossing.  The square 

bounded by the yellow line gives zoomed-in pore structure over several parallel 

horizontal planar laminae.  The zoomed-in views of Figure 5.20 verified that: 1) pore size 

is increasing gradually with the proposed inverse grading MPS simulation strategy, 
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according to the given layered index map; 2) the connectivity between regions is well 

kept.   

 

Figure 5.20 Surface slice 2D area bounded with yellow line simulates result verification; 2D view of the 

layered region and corresponding reconstructed pore-space are compared (black are pores and white are 

grains).  Two regions are zoomed in for a better illustration: a red bounding square of two curved laminae 

with inverse grading and the yellow bounding square of several horizontal planar laminae with inverse 

grading.  Round circled areas mark two areas with abrupt variation 

Besides assigned grading and connectivity, a small amount of abrupt variation has been 

observed caused by holes/gaps from the region plot, as marked with circles 1 and 2 in 

Figure 5.20.  Among them, position 1 corresponds to bioturbation (black regions in 

defined regions) and looks abrupt because of the unrealistic scaling factor (10 times that 

measured) applied, which leads to apparent smaller grain-pore size within bioturbation 

regions, which is consistent with the trend being measured in Chapter 3.  Position 2 has 

dis-connectivity, which has been explained previously in Figure 5.12(E) as a result of 

edge artefacts, and in this work it is considered that such abrupt variations would not 

affect the final result because: 1) such artefacts only occur at limited edging places; 2) in 

the real model, the parameters for those areas are close to the mean value, e.g.  scaling 

factor ranging between 1-2.13 for the whole model, and those in the holes/gaps are around 

1.5, so would not actually introduce abrupt variations, thus not affecting the real simulated 

result significantly. 

5.6.4 Partial block verification with synthetic grading parameter    

A 500x500x500 partial block containing an intersection of two curved lamina bounding 

surfaces has been cropped for 3D verification.  Figure 5.21 illustrates the location in both 

regional index map (Figure 5.21(A-B)) and the segmented inter-LBS structure of the 

intersection (Figure 5.21(C-D)).  Figure 5.21(B) gives the rainbow coloured mapped 

layered regions of the cropped block to enhance visualisation of defined layered regions, 
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where colder colours represent the finer layer with smaller region index and warmer 

colours the reverse.  The block contains a cross of two curved laminae, with bounding 

surfaces (one triangular above one planar) intersecting in the middle of the cropped block 

Figure 5.21(C-D).   

 

Figure 5.21 Illustrations of location and lamina structure of 3D partial 500x500x500 block of layered 

region for 3D verification: A) 11900x11900x11900 layered region (black to white for region number 1-

100); B) Zoomed-in view of layered region where the partial cubic sample (highlighted in A) was taken, 

in rainbow colour map for regional index between 1-51; C) overall labelled bounding surface of L1; D) 

zoomed-in view of bounding surface structure at cropped partial location. 

Regional MPS reconstruction is performed using a large contrast grading gradient 

configuration to enhance contrast.  For the purpose of better illustration the pore-spaces 

of the large-contrast model are coloured by their radius in 3D, as in Figure 5.22 (based 

on Avizo’s skeletonlisation function www.Avizo.com), where the green colour stands for 

smaller radius and the red colour the reverse.  It is clear that the regions at and beside 

bounding surfaces (blue regions in index map given in left plot of Figure 5.22) reflected 

http://www.avizo.com/
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significantly smaller pore size (in volume).  The fine pore-space region is also consistent 

with the spatial distribution of the layered region.   

 

 

Figure 5.22 3D views of 500x500x500 layered region (left) and reconstructed pore-space of large contrast 

model (right) with colour map labelled by the normalised radius of pore elements, the cold colour is for 

smaller radius and warm colours the reverse. 

For better understanding of the reconstructed pore-space associated with the internal 

structure of the intersected lamina, three cross-sections along the Z direction are 

illustrated in Figure 5.23.  To present the 3D structure, 50 xy slices are shown each time 

along different parts of the Z axes.  The intersection is revealed differently at different 

parts, because, as previously described in Figure 5.21, the bounding surface consists of 

one triangular bounding plane with one corner obliquely insert into the horizontal one.  

The complex intersecting structure implies the 3D structure of lamination needs to be 
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considered, as 2D will not cover the full anisotropy of fluid flow caused by the complex 

structure.  

 

Figure 5.23 Thick section view for different cross-sections along Y direction 

5.6.5 Quantitative verification by decomposition 

The visual verification only provides qualitative analysis.  Further quantitative 

verification on grain-pore distribution is required to be performed on the full model to 

verify the reconstructed grain-pore distribution, based on normal grading gradient 

contrast as measured, over the whole domain of hierarchical lamination.  A 

decomposition and network characterisation approach is proposed in this section, and in 

the following sections the basic background of network approximation is firstly 

introduced, followed by quantitative characterisation on the reconstructed model. 

5.6.5.1 Network approximation 

The key of a network-based approach represents the binary (reconstructed) pore space by 

networks constituting the skeleton of pore space with simplified nodes and bonds with 

regular shapes, to represent pores and throats along the skeleton respectively.  A set of 

effective properties like volume, inscribed radius and shape factors can be calculated and 

assigned to each of the bond and node elements.  The spatial location and connectivity of 

the elements with each other are also recorded, to represent the full pore-space.   

Various approaches have been proposed to derive the network structure from analysis of 

3-D pore geometries.  For example Lindquist and Venkatarangan (1999) found the 

skeleton of pore space by erosion-dilation and then defined the topologies.  However, 

according to Blunt et al. (2013) “this method suffers from ambiguities given images of 

finite resolution and has difficulty uniquely identifying pores and their connections”.  
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Another method by Dong (2007) identified pore elements by filling balls maximizing 

occupation of the pore spaces; however, according to Jiang et al. (2007), it may 

oversimplify the topology.  Jiang et al. (2007) proposed a middle axis based network 

extraction approach to extract a simplified network model which represents the 

corresponding complicated pore space model as well as respecting the geometric and 

topological information.  These simplified models are constructed by nodes (representing 

pores) and bonds (representing throats), by identifying the media axis of pore space first, 

followed by partition of the pore space into nodes and bonds, and describing the effect of 

the shape of pores and throats by a set dedicated descriptions based on shape factors (Jiang 

et al., 2007).  Although other methods like the watershed transform method, which merges 

regions to identify the skeleton were developed later by Sheppard et al. (2006), Ngom et 

al. (2011) compared different approaches and concluded there were relatively 

insignificant differences compared to the media axis approach.  In this work, the media 

axis approach is employed for illustration and verification purposes. 

5.6.5.2 Network based characterisation by decomposition 

Full pore-space models of 11900x11900x11900 voxels at resolution of 4x4x4 um3 are 

reconstructed as shown in Figure 5.24(A).  The model is ideally quantified and simulated 

as whole to verify the model and study the combinational impact of micro-scale pore-

space associated with centimetre scale.  However, none of the currently available pore-

space characterisation tools and fluid flow simulators are capable of performing 

simulation on a model of such size directly.  A compromised decomposition approach 

has been applied in this work, to allow some preliminary study and verification. The full 

reconstructed model is partitioned into 57x57x57 numbers 200x200x200 sub-models (a 

set of scripts has been written in Python for automatic partition, converting format and 

compression to save output data).  For each sub-model, network extraction is performed 

to obtain statistical characterisations of pore-space within each sub-model in around 5 

mins.  In this work, a media axis based network extraction approach based on Jiang et al. 

(2007) is applied, which claims to be more accurate and retain low computation cost (see 

configuration in Appendix D.2 ).   

A parallel simulation could then be performed for the model to be simulated within a 

practical length of time.  A set of scripts have been written to perform this task 

automatically and parallel with Windows batch.  With 57x57x57 sub-models simulated, 

a set of parameters for each model could be collected and plotted in Cartesian grids for 
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the whole volume, to visualize the distribution and evaluate the impact of laminae 

(performed automatically by a set of Matlab scripts written in this work).  Figure 5.24(B-

C) gives an example of numbers of pore elements and throats within each of the 

200x200x200 sub-models respectively.  The distribution of sub-models with larger 

numbers of pore/throat elements, shown in yellow, reflects the geometry of the defined 

inter- and intra-LBS.  This is because there is smaller grain pore space within those sub-

grids at bounding surfaces and this results in a larger number of pores and throats.  The 

gradually decreasing numbers of pores along the sedimentary direction (vertical +X 

direction) from inter- and intra- LBS also reflected the anticipated inverse grading.   

 

Figure 5.24 Results verification by decomposition and quantitative verification by network extraction: (A) 

reconstructed full 3D pore space model; (B) network extracted number of pores within each decomposed 

57x57x57 sub-grid; (C) network extracted number of throats within each decomposed 57x57x57 sub-grid. 

5.7 Discussion 

In this work, hierarchical structures have been defined as a set of index maps based on 

either direct observation or inference.  The model has a general representation of cross-

lamination while only reflecting one realisation, with a set of deterministic decisions on 

parameters. The decisions introduce a different level of uncertainty, as summarised in 

Table 5.7.  In the model, those structures with high certainty are the inter-LBSs segmented 

from the MXRT image and those hierarchical structures for the horizontal bedform, 

whose geometry is simple.  For the more complicated, curved part, more uncertainty is 

introduced by a strong deterministic assumption on the vertical grading direction and 

single lamina character, mainly because of: 1) the limited subsample available: the single 

assumed intersection angle at the toe side of the lamina and lamina thickness may have 

underestimated the heterogeneity of the lamina properties; 2) the limited method of 

measurement: although this work tried hard to improve the accuracy of measurement for 

the more complicated curved lamina by identifying intra-LBSs from a different dataset, 

the measure could still be uncertain because the measurements potentially deviated from 
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the true grading direction with assumed vertical sedimentary direction.  Grain pore 

geometry and grading were measured from 3D sub-sample directly, but the deterministic 

decision to apply one sample as representative and stationary for each bedform limited 

the certainty. 

Table 5-8 Summary of decision on key characters of hierarchical structure model and evaluation of 

uncertainty 

Hierarchical 

Structures 
Bedform Key Character Certainty Reason 

Laminaset 

Both 

curved and 

horizontal 

Thin horizontal 

planar or curved 

inter-LBS 

High 
Robust supervised 

segmentation 

Laminae 

Horizontal 

planar 

Laminae parallel to 

inter-LBS 
High 

Observation and 

quantitative 

measurement 

Lamina thickness 

non-distinguishable 

with laminaset 

High 
Observation and 

quantitative measure 

Curved 

Lamina intersect to 

inter-LBS at 26.6° 
Medium 

Deterministic mean 

based on limited 

measures 

Lamina thickness 

between intra-LBS 

of 5mm 

Medium 

Deterministic mean 

based on limited 

measures 

Grading 

Horizontal 

planar 

Conceptual layered 

grading parallel to 

intra-LBS 

High 

Quantitatively observed 

and quantitatively 

verified grading  

Grading distance 

covered segmented 

bounding surface 

distance 

High 

Ultimately determined 

by directly segmented 

bounding surfaces 

Curved 

Conceptual layered 

grading parallel to 

intersection of 

inter- and intra-

LBS at vertical 

direction 

Low 

Visually observed with 

strong assumption: 

quantitative 

measurement only 

partially agreed. 

Grading distance 

twice of measured 

maximum 

Medium 

Deterministic mean 

based on limited 

measures 

Grain and 

pore 
Both 

Geometry directly 

trained from image 
Medium 

A limited number of 

samples (one for each 

bedform) 

Gradient measured 

from image 
Medium 

Deterministic mean 

based on limited 

measures 
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5.8 Conclusion 

This chapter has integrated the obtained multiscale information regarding the hierarchical 

structures of lamination.  Based on this integration, a three-step generic reconstruction 

procedure has been proposed to reconstruct the full 3D pore-space of the pore-space in a 

hierarchical lamination structure.  The three steps include: 1) defining the full hierarchical 

structure according to the integrated information as spatial constraints of pore-space 

reconstruction and populating them with the measured non-stationary grain-pore 

variation of grading to yield an index map; 2) decomposing the hierarchical structure 

domain in an ordering scheme to ease the computational cost; 3) multiscale reconstruction 

respecting both the defined regional index maps and decomposed subdomains 

simultaneously.  In this work, a set of parameters have been determined deterministically 

on the sample under study to yield one realisation of hierarchical lamination, according 

to the measurements, for the purpose of illustrating the workflow.  Both visual and 

quantitative verification proved the robustness of the proposed workflow in revealing 

grain-pore variation associated with the hierarchical structure of lamination.   
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 CONCLUSION 

6.1 Summary of contribution 

This work developed a multiscale characterisation and reconstruction workflow to 

address the recent critical shortfall of multiscale DCA on the characterisation of a 

representative sample of sedimentary rock which has non-stationary grain-pore variation 

associated with spatially non-separable hierarchical structures.   

Because the spatial relationship of non-separable structures is hard to identify, the key to 

develop a characterisation procedure is a highly correlated understanding between their 

geological nature and the nature of imaging.  Such an understanding should be built on a 

generic understanding from literature as well as a combination of exploratory analysis 

and quantitative analysis, so that features of interests can be mapped with appropriate 

imaging and characterisation techniques. 

As the non-separable geological structures are formed in a hierarchy, it is essential to 

investigate a sample in a top-down sequence, because a larger structural feature at a higher 

level in the hierarchy controls smaller structural features in the lower level in the 

hierarchy.  Such a top-down characterisation will construct a correlative understanding 

of the nature of hierarchical geological structures. 

To enable an accurate reconstruction at grain-pore scale, top-down sampled datasets need 

to be spatially registered.  The registration is challenging when there is a lack of separable 

shared features as references across datasets obtained by different means (i.e. imaging 

technique and conditions).  Therefore, methods for improving the ability to identify 

shared features have been developed, respecting the geological and imaging natures of 

different types of datasets.   

A typical reconstruction approach assumes stationary grain-pore variation, which is, 

however, in conflict with the geological nature, which means that the smallest stationary 

unit could be only several grains thick and vary gradually across hierarchical structures 

from mm to cm scales.  In this work an index map has been developed which respects the 

characterised geological nature of hierarchical structures, to instruct non-stationary 

transformation of grain-pore properties during reconstruction. 

This work takes a piece of aeolian sandstone sample which includes hierarchical cross-

lamination structures as an example to emphasise the above-mentioned challenges. The 
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contributions of each chapter and conclusions drawn are summarised in the following 

subsections. 

6.1.1 The contributions of Chapter 2 

The key to multiscale characterisation and reconstruction is a data-driven statistical 

parameter collection process to estimate the stationary and non-stationary grain-pore 

texture distribution associated with hierarchical structures and to yield a non-stationary 

index map to stochastically instruct grain-pore reconstruction.  Chapter 2 presented a 

literature review into the background to address key issues by developing a highly 

correlated understanding between the geological nature, the imaging principles, and 

characterisation and reconstruction methods to instruct multiscale characterisation as 

follows: 

 The review established that an aeolian cross-laminated sandstone is an appropriate 

example to emphasise the challenges arising from generic non-separable structures 

and multiscale non-stationary texture variations in performing multiscale DCA. It 

contains a set of hierarchical structures from laminasets on a scale of tens of 

centimetres to centimetre-scale laminae, but these may hard to distinguish from one 

to another because they are formed by stacking grains with gradual textural and 

compositional variation;  

 Inter- and intra-LBSs with sudden grain-pore texture variation are identified as the 

mark of hierarchical structures and the best candidates of reference for registration.  

Among them, intra-LBSs appear less identifiable than inter-LBSs, which are 

subject to more significant compositional change, due to the preferred cementation 

of heavy haematite and dolomite minerals. Moreover, potential challenges to 

identification highlighted include unconnected cementation of heavy minerals, 

distractions arising from complex composition and randomly located erosion and 

bioturbation creating “holes” of different sizes;   

 A set of digital imaging methods was reviewed and proved capable of 

characterising a set geological features to describe hierarchical structures at 

different scales. The characterisation included direct estimation and inferring, 

which correspond to higher or lower certainty, respectively.  However, it was also 

established that none of the available DCA techniques is capable of simultaneously 



Chapter 6: Conclusion  

198 

 

capturing grain-pore scale features as well as a laminaset structure with a scale of 

tens of centimetre and this, therefore, calls for multiscale DCA;   

 However, based on the review of the nature of imaging and characterisation 

techniques, it was established that a typical multiscale DCA process is limited in 

the following aspects: 1) Designing a multi-scale spatial sampling and 

characterisation scheme appears to be a challenge because the spatial relationship is 

hard to define for non-separable structures; 2) Identifying shared features to register 

individual datasets is challenging because LBSs are presented differently as a result 

of different imaging principles; 3) Developing a stochastic reconstruction procedure 

that honours spatial non-stationary grain-pore variation appears challenging 

because the typical reconstruction methods reviewed only work under a stationary 

assumption.  

6.1.2 The contributions of Chapter 3 

Based on the review, a recursive top-down a sampling and characterisation procedure 

based on the “geo-pseudo” concept was proposed and verified in Chapter 3. It started with 

an exploratory study to confirm the anticipated hierarchical structures of interest and 

representativeness of a sample, and proved able to estimate a large number of valuable 

features at low cost and suggested further top-down subsampling.  The preliminary 

compositional analysis also confirmed cross-scale linkage (in this case inter-LBSs) which 

should be involved in all scales of subsampling as cross-scale references.  The top-down 

procedure was then designed and confirmed the efficiency of a recursive top-down 

sampling approach in improving the spatial correlation. The efficiency of the reviewed 

DCA imaging and characterisation techniques in estimating or inferring the non-separable 

hierarchical structures of lamination can be summarised as follows. 

 MXRT has been proved efficient in capturing internal structures with its density-

sensitive nature.  The heavy minerals preferentially cemented in inter-LBSs are 

therefore identifiable in MXRT and act as markers of laminaset structures; 

 Thin section images have been proven effective in providing large FoVs in 2D, 

capturing a set of textural and compositional features from centimetre scale 

laminasets to micrometre scale grain-pore geometry, as well as mineral distribution. 

These are therefore suggested as an ideal cross-scale link between MXRT and μ-

XRT; 
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 µ-XRT has been proved essential in revealing a 3D complex structure, but only for 

features under a millimetre in scale, because of the small FoV. 

With top-down sampling, a conceptual model describing the hierarchical structure can be 

summarised based on characterisation and calls for techniques to be developed to estimate 

missing features.  The potential challenges of identifying shared features and obstacles to 

multiscale registration were verified.  The challenges identified as specific to the aeolian 

cross-lamination sandstone sample were as follows: 

 It was confirmed that most intra-LBSs cannot be identified with great confidence, 

although they may be inferred from measurable parameters, including thickness and 

intersection angle.  

 Segmenting a continuous bounding surface from MXRT was confirmed as a 

challenge because a set of discontinuities and distractions exist in the MXRT 

including:  

o Scattered distributed haematite and dolomite minerals only highlight the 

unconnected part of a continuous inter-LBS and leave gaps at the smallest 

length scale;  

o The thin 1-2-grains thick bounding surface present as a 1-2 pixel-thin 

linear/planar structure in MXRT are easily obscured by another heavy 

mineral like feldspar, which masks out connectivity by presenting as clusters 

with relatively large size and brighter intensities similar to bounding surface; 

o Erosion and bioturbation occasionally occur at random locations on the 

surface, creating holes and leaving large gaps. 

 Bounding surfaces appear as “hidden” features in SEM, in contrast to MXRT, due to 

the different imaging conditions and principle: 

o A BSEM image has resolution much finer than grain size, and emphasises 

the high grain lithology variation rather than the overall trend of inter-LBSs; 

o The imaged pixel intensity value of BSEM has a more gradual positive 

correlation with density than in MXRT. 
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6.1.3 The contributions of Chapter 4 

The accurate segmentation of continuous thin planar inter-LBSs from MXRT and SEM 

is essential as cross-scale shared references for registration.  For an MXRT image, an 

advanced supervised segmentation method that characterises linear LBS features by a set 

of image filters and encapsulates connectivity knowledge into an exemplary training 

image was found to be capable of improving segmented connectivity.  The method was 

further developed to bridge smaller “fake” gaps caused by scatter distribution of 

haematite/dolomite and the distraction from feldspar but leave larger “real” gaps caused 

by erosion and bioturbation. This is achieved by: 

 Describing a variety of linear patterns from a highly noisy image by means of a 

large number of convolutional image filters to construct a multidimensional feature 

field; 

 Utilising small filters to avoid distractions outside of the small local neighbouring 

area; 

 Utilising training examples with gaps overlaid to bridge those small “fake gaps”; 

 Keeping those larger “true gaps” caused by erosion and bioturbation by designing a 

corresponding upper limit of filter size; 

 Using training examples to constrain orientation and background intensity, which, 

however, also proved to have good tolerance when the uncertainty of the training 

image is less representative. 

For an SEM image, a method to upscale the image to similar resolution of MXRT and 

retain feature of interests similar to MXRT is required to assist registration.  In the BSEM 

image, the finer pixel, without weighted average density and without the hardening effect, 

makes the bounding surface pattern unobservable.  The study found the typical arithmetic 

average would not reveal the pattern as well, because it ignores density.  A low-resolution 

BSEM averaged density thus enhanced a little the contrast of the bounding surface but 

still not obviously as MXRT, as a result of the different imaging principle.  A low-

resolution MXRT simulator was therefore developed, based on composition map 

provided by EDS, and demonstrated that it could retain some inter-LBSs at the same 

resolution as MXRT by: 
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 Treating an EDS image as a sample, where each pixel possesses the mass of 

elements; 

 For each coarse pixel, calculating a weighting factor for each element from the sum 

of its atomic mass overall, the underlying fine pixels weighting factors are 

normalised by summing them over all elements; 

 Calculate an effective mass attenuation coefficient for each coarse grid pixel using a 

weighted average of elemental X-ray mass attenuation coefficients and therefore 

estimate the MXRT image intensity for the coarse pixel. 

Considering intra-LBSs are potentially not directly observable, a more representative 

indirect measure of lamina thickness and grading gradient by circulation of grain size is 

anticipated from SEM.  The measurement is based on a sampling window that has 

geometry and moving direction designed based on an inter-LBS, which is not directly 

available on BSEM.  With BSEM registered with MXRT, based on the partially revealed 

inter-LBS after upscaling, the segmented inter-LBS from MXRT could be masked to 

design the sampling window.  The measurements showed, together with BSEM 

measurements in previous top-down characterisation, that lamina and grain-pore features 

are similar within each bedform, but different across the bedforms.  

6.1.4 The contributions of Chapter 5 

Multiscale imaging only provides characterisation for a limited domain. Combining the 

summarised conceptual model, using both the directly obtained and indirectly inferred 

structure features obtained through Chapters 3 and 4, a generic index map of hierarchical 

structures on cross-laminated sandstone has been proposed, as follows, to instruct non-

stationary grain-pore reconstruction.   

 Take a realisation of inter-LBSs segmented from MXRT to define the inter-

laminasets;  

 Distribute intra-LBSs with respect to inter-LBSs, according to estimated parameters, 

to define the laminae in each laminaset;  

 Define conceptual grading layers within laminae and populate the grain grading 

gradient and orientation for each and every conceptual layer within a lamina, as a 

non-stationary index.  



Chapter 6: Conclusion  

202 

 

To improve computational efficiency, a strategy has been developed to decompose the 

domain of the index map into sub-domains in an ordering scheme to perform stochastic 

reconstruction in parallel.  The concept is generally applicable and could be summarised 

as follows: 

 The domain is decomposed into subdomains of ordered categories, such that sub-

domains of each category do not spatially connect to each other; therefore, the 

internal part can be reconstructed independently, and thus in parallel; 

 Sub-domains are spatially connected when combining different ordered categories, 

and therefore, each sub-domain can be reconstructed in an ordering scheme to 

include neighbouring pre-simulated results as conditional hard data, and therefore 

retain connectivity of the reconstructed pore-space at the boundaries of sub-

domains. 

A stochastic reconstruction strategy has been developed to perform the simulation for 

each sub-domain, and a sample of the study was reconstructed based on selected MPS 

modelling techniques as follows:   

 A representative sub-volume of µXRT was chosen to serve as a training dataset of 

the local stationary grain-pore distribution for each bedform; 

 The defined index map of structures was applied as a regional sub-domain of MPS 

to constrain simulation; 

 Indices representing the grading gradient and preferred orientation were converted 

into affinity and rotation in MPS, to include non-stationary regional parameters; 

 Regions were reconstructed in sequential order, with each region conditioned to 

pre-simulated data in the neighbouring regions as hard data to keep connectivity. 

The procedure was applied on the cross-laminated sandstone sample studied in this work 

and validated that the reconstructed grain-pore space had variation associated with the 

hierarchical structure, as anticipated.   

6.2 Summary of uncertainty and limitation 

This work proposed the top-down characterisation approach to define spatially non-

separable hierarchical structures across multiple scales of a cross-laminated sample.   
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 As fully discussed in Chapter 5, the main limitation is the different levels of 

uncertainty in estimating or inferring structural features, as a result of the limited 

number of subsamples; 

 Besides, although the work tried hard to improve measurement accuracy, 

uncertainty still exists because some small-scale structures are hard to define as a 

result of gradual grain-pore variation without distinctive signature like 

compositional variation;   

 Fluid flow simulation is anticipated on the result of this work but is limited by 

current simulation technique and computation power.   

6.3 Summary of future work 

 This work developed the workflow to study the hierarchal structures of lamination 

from centimetre scale down to micrometre scale. One of the keys to designing such 

a workflow is to identify the most appropriate imaging technique corresponding to 

each geological feature of interest, based on the nature of the imaging principle and 

the geology.  Generally, imaging is a process of collecting and plotting signals 

corresponding to each spatial physical point. The relationship between a signal and 

the physical property at a point depends on different imaging techniques  and 

deciding what physical feature can be captured.  Therefore, if the physical property 

of one geological feature “matches” one imaging principle, that imaging technique 

would be the best candidate.  For example, in this work density-sensitive XRT images 

captured the heavier minerals concentrated at a bounding surface.  In this work, the 

imaging techniques discussed are mainly sensitive to density or composition, and 

would be applicable to identify geological features with such variations.   However, 

for those geological features not having specific physical property variations that 

“match” an imaging technique, user intervention is required.  For example, a gradual 

geometrical variation of grain-pore space could be hard to directly identify from the 

image; thus, a more sophisticated method is required to extract such less obvious 

characteristics from the image in order to help geological feature identification.     

 A crucial function of the developed workflow in this thesis is measuring and 

identifying the features of lamination, bounding surface and grading. The bounding 

surface determines the spatial heterogeneity of the lamination structure and grading 

determines the local heterogeneity of grain-pore texture. Through the developed 
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workflow, the bounding surface and grading are spatially correlated, thus 

determining the spatial distribution of the grain-pore texture. In other words, this 

distribution determines the heterogeneity of the physical property in a sample, which 

is of critical scientific interests in terms of studying and predicting a set of physical 

and chemical behaviours (e.g. fracturing, wave transforming and fluid flow 

transport), which are worth exploring in future work.  

 The current reconstructed model could not be simulated to predict or study fluid flow 

behaviour with the current techniques and computational powers.  However, 

computational power is increasing at an extraordinarily fast rate, with speed double 

every two years, according to Moore's law (Moore, 1998).  Therefore, it is expected 

that the model could be useful for studying fluid flow and other physical-chemical 

behaviours in the near future.     

 Because heterogeneity exists at every scale, from  molecules to the universe, it is 

always of scientific interest to study the combination of the smaller scale property 

variations associated with larger scale structures.  Although imaging techniques are 

advancing, the natural trade-off between imaging resolution and field of view will 

always exist, and therefore always be the critical challenge for the multiscale study 

of the natural world.   Therefore, the developed workflow which is capable of 

performing a multiscale study of heterogeneity under large scale range is also 

important in more general scientific research areas such as geoscience and materials 

science. 

 In the oil industry, the exploration is usually studied at kilometre scale (field scale).  

The centimetre scale sample studied in this work, even if successfully simulated with 

petro-physical fluid flow properties, could still not be used directly to help to make 

predictions at field scale.  Upscaling is required to populate the obtained properties 

into the field scale model.  Such upscaling is more likely not to be straightforward, 

and would require repeating several times at different scale lengths in a hierarchy to 

respect the nature of multiscale heterogeneity.  The model built in this work that 

introduces grain-pore scale heterogeneity into a centimetre scale model would, 

however, potentially provide an avenue, to studying and verifying methods of 

performing upscaling, thus contributing indirectly to field scale exploration.  

 Specific to this work, to improve accuracy, more subsampling could be carried out, 

which would improve not only the representativeness of measures but also provide 
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hard data for reconstruction.  The key idea of reconstruction is based on developing 

an index map and would address the issues of non-stationary reconstruction that 

typical approaches cannot resolve.  It is currently embedded into an MPS-based 

algorithm, while the generic concept is expected to be compatible with other 

stochastic methods.  The developed approach proved to robustly characterise and 

reconstruct the non-stationary grain-pore structures of lamination, which is purposely 

selected as a special challenge case considering its non-separable hierarchical 

structures.  Therefore, the developed approach is expected to work robustly on most 

heterogeneous samples with more distinctive hierarchical structures. 
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APPENDIX A -Chapter2 

A.1 Compare Multiple Point Statistics (MPS) with Markov Chain Monte-Carlo  

(MCMC) 

In this section MPS (SNESIM, by Strebelle (2002)) is compared with MCMC ((Wu et 

al., 2004)), which both use templates to scan a training image to collect soft pattern and 

reconstruct based on hard neighbouring data. Major differences of typical MCMC over 

MPS including: 1) template size are typically small limited by computation power and do 

not apply multigrid method to increasing template scanned area; 2) during reconstruction 

MCMC visit pixels sequentialy by row and column rather than randomly as MPS; 3) 

MCMC typically applied without regional reconstruction feature to personalize scaling 

and rotation.  

The test in this section compares the reconstructed 2D pore-space of a heterogeneous 

breccia sandstone sample. A 2D optical microscope image with size 456x342 pixels2 is 

provided as training in which pores are impregnated with blue-stained epoxy resin as in 

Figure A.1. Large pores upto 100 pixels in diameter are observed on the left between 

breccia sands parked whiles around 10 pixels thin and up to 150 pixels long ranged pores 

observed on the right. The thin section image is first segmented by simple colour 

threshold method to construct training image. A first approach applies the MPS (SNESIM 

as function of SGeMS (Remy et al., 2009) software package) specific regions for training 

image and reconstruction to address two types of distinctive pore system. 176x176 pixels2 

template searching area have been set to capture large and long range pore patterns. The 

reconstruction also set rotation at both regions to illustrate the rubustness on controlling 

orientation required for layered gradiing reconstruction. The second approach apply 

MCMC without specify regions for training and reconstruction in which whole 

segmented image are trained to reconstruct a pore-space image. The last approach apply 

MCMC with separate training image subsampled from two distinctive pore system and 

reconstructed into two neighboured region but without taken results of each other as hard 

data at boundary. The configuration with more detailed parameter for three approaches 

are given in Figure A.1.  

The reconstructed result in Figure A.1 shown 1) large template size of MPS is essential 

on capturing large pore-grain pattern who reconstructed large and long ranged pore with 

size consistent with training whiles other two only have scattered homogeneous pores 

with diameter no more than 50; 2) pre-reconstructed pattern at neighbouring region 
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boundary as hard data in MPS is essential on preserving connectivity between regions 

comparing with MCMC regional whose pore-space at region boundary are not naturally 

connected; 3) regional manipulation of MPS are again verified by 90º rotation without 

defect on boundary connectivity.  

This section proved the key advantage of MPS comes from its searching template nature 

to collect soft pattern possibility and reconstruct based on hard data. Although MCMC 

shared similar feature, however typical MCMC did not apply multigrid to increase 

template searching area thus limited the reconstruction of large heterogeneous pattern. 

Besides typical MCMC also do not apply regional reconstruction with respecting 

neighbouring region as hard data. The regional reconstruction advantage of MPS on the 

other hand makes it naturally fit layered grading whose grain-pore size and orientation 

vary gradually across layered regions. In this work MPS are recruited for full 3D pore-

space reconstruction. The key factors concluded here limit MCMC are also suggested to 

be addressed to improve its performance.  

 

Figure A.1  Reconstruction of optical microscope image (456x342 pixels2) of breccia rock sample, blue 

are pores grey and black for grain matrix; First row illustrates two types of binary pore space images 

(black is pore) which are given as training image to reconstruct pore space for purple and red regions 

separately with MPS  
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Table A.1 Key feature configuration for MPS and MCMC 

Feature Template size scan through 

training image 

Hard data honoured 

reconstruction 

Regional 

scaling 

Regional 

rotation 

MPS 176x176 pixels2 scanning area 

by multigrid and store 121 

pixels to describe pattern 

Neighbouring 

reconstructed result 

as hard data 

1 90° 

(clockwise) 

MCMC 4x4 pixels2 No region boundary 

constraint 

N/A N/A 

MCMC 

Regional 

4x4 pixels2 No region boundary 

constraint 

1 N/A 

A.2 Multiple Point Statistics (MPS): detailed mechanism 

The MPS reconstruction process could be illustrated as Figure A.2 which a binary sand 

channel image is reconstructed as Figure A.2(E) from the training image of Figure 

A.2(A).  Figure A.2(A) illustrates a 3x3 pixel2 template scan through each pixel over a 

training image to collect potential patterns as Figure A.2(B).  The 3x3 pixel2 template is 

large enough to capture the potential pattern of interests which is a 1-2 pixel wide in 

Figure A.2.  The probability of central pixel as black or white for one pattern is calculated 

as Figure A.2(C) and the central pixel probability for all potential patterns are stored as a 

probability histogram in Figure A.2(D).  On a new canvas, stochastic reconstruction 

search probability at each randomly localtioned pixel and assign pixel value by match 

existing neighbouring pattern to probability histogram.  The existing neighbouring pattern 

could either from existing or previously simulated hard data.  Figure A.2(E) illustrated a 

reconstructed image with similar patterns to training image Figure A.2(A).  (Guardiano 

and Srivastava, 1993) initialised the idea of MPS, but it was limited by requiring the 

training image to be scanned at each un-sampled data point, thus resulting in low 

efficiency. (Strebelle, 2002) extended the traditional MPS by building a search tree, thus 

the training image only needed to be scanned once, which improved efficiency 

significantly.  A multiple grid simulation feature (Gomez-Hernandez, 1992) is also 

typically applied on MPS to increase template searched area without increasing numbers 

of pixels of the template to be stored.  It collects pattern with size increased template but 

only pixels separated at fixed interval are saved.  
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Figure A.2 Mechanism illustration of MPS: A) pattern collection from training image by 3x3 pixels2 

template (sand channel as black coloured and the rest white coloured); B) Collected pattern illustration 

with 3x3 pixels2 template; C) probability of centre pixel to be “1” or “0” for one pattern; D) histogram of 

collected patterns contain probability of centre pixel to be “1” or “0” for each pattern; E) reconstructed 

image with similar pattern with A.  Figure modify and extended based on Strebelle (2002). 
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APPENDIX B -Chapter3 

B.1  Geological background 

Sedimentation  

Sedimentation creates sedimentary structures by processes including transportation and 

deposition. The transportation could be done by either fluid flow or gravity flow. With 

the former particles picked up (eroded) and transport by moving fluids such as: air (wind), 

water (river currents, waves and oceanic currents), and ice (glaciers). Whiles the later 

particles transported down a slope by gravity action. Deposition occur after either fluid 

or gravity flow, when force moving grains become less than force of gravity and leading 

grains to settle.  

Fluid flow sedimentation is commonly a successive process, because there are always 

grains deposit and others lifted into the current. The successive deposition as a result 

produce a stack of successive sediments. Such successive sediments are called beddings. 

Geological History of sample 

Geological background has been researched by the author from related literature aiming 

to explain the occurrence of red/brown lamination and corresponding mineral distribution 

character of our sample. The precise position of the sample is yet not available in this 

case, however the overall geological information around the corresponding area are: 

North-West England or South West Scotland, Permian- Triassic geological sequence, red 

bed sandstone from sand dunes in hot, arid desert environment (Shotton, 1956, Walker, 

1967, Thompson, 1969, Waugh, 1970).  

Depending on (Shotton, 1956, Walker, 1967, Thompson, 1969, Waugh, 1970), the red 

bed sandstone from sand dunes in hot, arid desert environment is caused by red coloured 

haematite. The occurrence of red/ brown coloured iron also consistent with what been 

observed by Huang et al. (1995) whose sample been taken at similar location and claimed 

from Permian period too. From the literatures the occurrence of this behaviour could be 

categorized as two: 1)  pure Aeolian system with ground water level change effect on 

diagenesis (McKee, 1966, Walker, 1967, Stokes, 1968, Waugh, 1970, Walker, 1976, 

Waugh, 1978) or 2) Aeolian system with alluvial fan/ wadi-fan breccias inclination 

(Wills, 1951, Waugh, 1970). Yet as there is no clear source of water around at the period 

of sedimentation and the sample is quite clean (mainly quartz and rarely clay from 
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lithology lab study) so The author would take the ground water theory as the most possible 

case to discuss. 

A low permeability bounding surface would first form in the dried desert system. Due to 

dehydration or "aging" process and Gibbs Free Energy theory, detrital ferric hydroxides 

including goethite and ferrihydrite will spontaneously transform into red coloured 

haematite pigment with time (Van Houten, 1961, Berner, 1969). Further diagenetic came 

along with the changing of ground water table, the processes of weathering, which had 

been largely inhibited in the arid environment of the desert surface, took place in the 

humid environment below the water table, thereby releasing a variety of ions for 

incorporation into new minerals. (Walker, 1967, Walker and Waugh, 1973, Walker, 

1976) claimed the key to this mechanism is the intrastratal alteration of ferromagnesian 

silicates by oxygenated ground waters during burial. As a result, a hardening layer 

composed of finer detrital with haematite coated or cemented has been built. 

During the process of ground water level change, Glennie and Evans (1976) analogized 

with modern deserts, pointed out that because of the high Mg++/Ca++ ratio of the 

interstitial waters caused by gypsum precipitation, any early calcite cement in this facies 

was rapidly dolomitized, and based on Glennie et al. (1978) those authigenic dolomites 

are preferentially cemented in the finely laminated layer. 

A bound surface concentrated could occur in either cases as a result of capillarity; 

solutions enriched with dissolved silica drawn towards the desert surface, by evaporation 

precipitated the silica. Result the dune a silicified first producing a crustal hardening layer 

(Waugh, 1970). It is also pointed out that Bounding surfaces of differing magnitude have 

been described from both recent and ancient Aeolian deposits and often attributed to 

changes in wind character, deflation, dune migration and changes in groundwater level 

(McKee, 1966, Stokes, 1968). As a result, a small scale (cm scale) linear lamination 

system separated by those bounding surface are expected in the corresponding area. 

As a conclusion of geological background study: 1) Lithological features as an important 

product of laminae which potentially impact fluid flow need to be captured during 

analysis to assist future modelling; 2) The characterisation of inter-laminaset could be 

based on bounding surface identified with cementation of antigenic dolomite along with 

iron and fine fabrics and registered through images at different scales; 3) One might also 

expect preferred orientation been observed along inter-laminaset bounding surface and 
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intra-laminaset foresets. Those conclusions would instruct our analysis in the following 

sectors.  

B.2  BSEM measurement on Tp 

BSEM image have been taken over the whole sample at highest resolution available for 

the author at about 0.6x0.6 μm2/ pixel with dimension 33098x49119 pixels^2 (Figure 

B.1(B)) for prior analysis which is capable retain grain-pore size down to 6 um2 (it is 

typically believed 10 pixels long structure could be well observed). The resolution 

therefore well covered the average grain size with diameter of 100um from electrical 

microscope study. Taking high resolution scanning are time consuming, for prior analysis 

low resolution EDS image are firstly taken with resolution of 124x124 μm2/ pixel over 

the whole sample yield 154x277 pixels^2 image (Figure B.1(C)). Partial of it have been 

scanned with higher resolution 0.6x0.6 μm2/ pixel for 4090x14392 pixels^2 (Figure 

B.1(D)).  

 

Figure B.1 Thin section for prior analysis introduced in chapter 1; (C) Coarse EDS overall scanning with 

resolution ~ 124x124 μm2/ pixel for 154x277 pixels^2; (D) Fine EDS scanning at selected field of view in 

C, with resolution of 1.1x1.1 μm2/ pixel for 4090x14392 pixels^2. (images are photted upside down) 

Pre-processing and Segmentation 

For grains separation purpose, the segmentation would base on the Reference 

segmentation (VSG) to keep boundary between grains. But additionally to solve the 

afore-mentioned problem in literature review, the author used four markers instead of 

typically two, to determine four phases separately: pore (black), feldspar (light grey), 

quartz mainly minerals (darker grey) and iron or titanium rich particles (white) as in 

Figure B.2  -left, based on different grey scale intensity identified respecting correspond 
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EDS image as in Figure B.2  -right. Four phases will be marked Figure B.3 (C) and will 

be segment out by applying corresponding thresholds. 

On our sample, the following four phases marked in Figure B.3  (C), are each segmented 

out. In this article, the author used a procedure based on the first approach, cycles of 

erosion and dilations operations would first be applied, then the watershed lines of a 

binary image will be computed. But it is further implemented a high-level combination 

of watershed, distance transform and numerical reconstruction algorithms. A contrast 

level which is used to adjust the number of seeds for the watershed is user-determined. 

At last, interior holes of the objects are removed to reduce inaccuracy of measurements 

on small objects, for details please refer Avizo object separation build-in and (Russ, 

1990). Cycles of erosion and dilations operations would be applied for “minority” phase 

(feldspar and iron or titanium rich particles) then images of all four phases are stacked 

Figure B.3  (D). As The author can see contacted grains of different phase are now 

separated. To separate grains under the same phase, aforementioned procedure would be 

applied and finally interior holes are filled Figure B.3  (E). Although there are probably 

still un-separated grains, the author considers the amount is minor and could be ignored. 

The pore segmentation is illustrated by Figure B.3  (F). By comparing Figure B.3  (A, D 

and F) The author could see the Stanford approach without grain separation is more 

accurate for pores segmentation. 

 

Figure B.2  Comparison between BSEM (left) and EDS(right) image on same region. Red = quartz 

porosity (dark grey in BSEM), greenish blue = feldspar (light grey in BSEM), Yellow = calcite porosity 

(dark grey in BSEM), Pinkish = iron or titanium rich particles (white in BSEM), Black = pores porosity 

(black in SEM) 
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Figure B.3 (A)Zooming in on a grey scale BSEM image (b)Anisotropic diffusion and un-sharp mask filter 

applied (c)Four phases marked by marked-based watershed algorithm (d) four phases segmented post 

processing applied (e) segmented grains separated by (f) the Stanford approach based on Otsu (1979) 

Quantitative measurement 

A first quantitative measurement is performed to investigate the spatial distribution of 

grain size in relation with lamina structure to verify visually plotted bounding surfaces.  

26 sub-regions representing lamina has been manually plotted in Figure B.4  (A) 

separated by the manually determined bounding surfaces in Figure 3.4(B).  Average grain 

sizes are measured simply in the area rather than more complex long and short axes 

because the purpose is to investigate the relative variation across laminae.  Average grain 

size of each region is plotted in Figure B.4  (B).  According to Figure B.4  (B), average 

grain size in the area vary from 2500 to 3300 um2.  Generally, regions from horizontal 

planar part have smaller grain size than the curved part.  Grain size across manually 

labelled regions appears similar within curved and horizontal laminaset suggested either 

lamina feature is homogeneous within each type of laminaset or inaccuracy of manually 

labelled regions.  Four laminae (R17-R20) belong to one same laminaset have a relatively 

large variation of grain size.  The potential reasons include the existence of intra-

laminaset lamina separated by intra-laminaset bounding surfaces or bioturbation, but not 

certain which is true. 



Appendix B: Chapter 3  

215 

 

 

Figure B.4  （A) manually plotted 26 regions named as R1-25 according to manually determined 

bounding surfaces; B) Average grain size measured for each region. 

A second quantitative grain orientation measurement is performed to investigate potential 

preferred alignment of grains along lamina bounding surface.  Grain orientations are 

measured within lamina regions separated by visually identified bounding surface at 

small FoVs (three selected FoVs illustrated in Figure 3.4(B)).  The reason not applying 

quantitative measurements to the large FoVs is to avoid potential distraction by 

unidentified laminae.  The measurement on large FoVs containing two or more 

unidentified laminae would potentially mix grains aligned at different orientations.  

Because the orientation could vary more abruptly by aligning to and only close to 

bounding surface, therefore, the average over different laminae would obstacle the true 

preferred orientation more significantly than grain size who vary relatively gradually over 

laminae.  The regions defined in smaller FoV is less likely introduce unseen lamina, at 

least manually, therefore is safer to perform quantitative grain orientation measurement.   

The three selected FoVs illustrated in Figure 3.4(B) and analysed in Figure 3.5 are 

employed here again and divided into regions separated by bounding surface as in the 

first column of Figure B.5 .  With grain long axes orientation calculated, for each region, 

the grains are filtered by orientations of the selected range, and area fraction of filtered 
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grains occupying each corresponding region are calculated and labelled as in 2-4 columns 

of Figure B.5 .  By comparing the grain area fraction for each orientation range over 

different lamina regions the existence of preferred orientation could be verified.   

For view-1 grains with orientation between 0°-30° are preferred occupied about 22% for 

the regions close to the nearly horizontal inter-laminaset bounding surface whiles 17% 

for the region above inclined intra-laminaset bounding surface.  In contrast grains with 

orientation between 30°-60° are preferred occupied by 15% for the regions above inclined 

intra-laminaset bounding surface in comparison to around 10% for the regions close to 

the nearly horizontal surface.  Similarly, grains with orientation between 60°-90° 

preferred occupied 13% for regions above inclined intra-laminaset bounding surface in 

comparison to less than 10% for regions close to the nearly horizontal surface.  In View-

2 and View-3, no strong preferred occupations in line with the inclination of bounding 

surface are observed for orientation between 0°-30°.  For orientation between 30°-60° 

minor preferred occupations (about 1-2% higher area fraction) are observed for regions 

above inclined bounding surface than those close to the horizontal surface in both View-

2 and View-3.  For orientation between 60°-90° View-2 have no clear preferred 

occupation in line with bounding surface inclination whiles View-3 minor preferred 

orientation (0.5-1% higher area fraction) are observed for regions above inclined 

bounding surface than those above and below the horizontal surface.   

The preferred occupation in line with bounding surface inclination provided evidence on 

the existence of preferred orientation.  It suggested manually plotted regions, for View-1 

from curved laminaset, reflected intra-laminaset lamina region with relatively high 

certainty because strong preferred orientation occurred close to the inclined bounding 

surface.  The unclear preferred orientation in View-2 and View-3 suggested the manually 

labelled regions may not reflect the true intra-laminaset geometries for horizontal 

laminaset.   
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Figure B.5 Quantitative measurement of grain orientation for selected FoVs illustrated in Figure 3.5 (A) 

are illustrated in the first column, each FoV has been separated into regions by manually plotted bounding 

surfaces.  Segmented and separated grains are labelled as regions in different colours.  Grain long axes 

orientation are calculated in the range of -90° to 90°, from +Z direction to +X direction, for segmented 

and separated grains for three FoV.  Taking identified bounding surfaces in selected FoVs are mainly 

between 0°-90°, grains with orientation fall into 0°-90° are investigated with a special focus.  Column 2-4 

plotted grains with orientation fall into three average split orientation range between 0°-90°.  For each 

column, the area fraction (AF) of plotted grains within each region are measured and labelled.   

Overall Characterisation 

The main purpose of prior characterisation is grain and pore size, by which a reasonable 

lower resolution to enable simultaneous scan of BSEM and EDS image need to be figured 

out. This resolution should be as high to capture the smallest pores and grains need to be 

observed in this sample, but also low enough to enable simultaneous scanning. To this 

end, a pre-analysis on high resolution BSEM of T1 need to be carried out. 

General information of grains and pores counted statistically on the BSEM image of T1 

has been concluded in Table B.1 . Large numbers of samples ensured the representative 

of the result. The average size is the area of grains and pores in pixels, each pixel has an 

area of 0.62=0.36 um2. The average grain size would be then 3102 um2 and average pore 

size would be 71.8 um2. With assumption of square shape, the diameter of 55um for grain 

and 8um for pore are estimated. One may notice that the sum of the percentage of area do 

not equal 100%, that is caused by two images are segmented by different procedure 

separately. And the grain separation would decrease the percentage area of grains to some 

extent. 

As illustrated in Figure B.6 , histograms of the log of grains area and pores area have been 

plotted. To exclude noise generated by image, particles with area less than 10 pixels have 
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been excluded. Particles contacted with edge have also been excluded to avoid effect of 

uncompleted particles on edge. 

To determine the appropriate resolution, the author treat the inversion point of 956 pixels 

(red point in Figure B.6  (b) as an important point because The author believes that: before 

this inversion point, particles with area below this point are secondary generated grains 

(compression, fracture, diagenesis etc.); after this inversion point, particles with area 

above this point are sediment grains originally deposited without other effects. Grains 

larger than this size would be more meaningful for studying the depositional environment. 

 

(a)     (b)       (c) 

Figure B.6 Histograms of the log of the grains area and pores area: (a) full range of grain area (10-

infinity), red spot points out the maximum value (b) part range of grain area (10-50000), red spot points 

out the inversion point (c) full range of pore area (10-infinity) 

To estimate the resolution, for grain analysis, 956 pixels2 in area have been chosen to be 

treated as the smallest grains the author needs to observe. By assuming a square shape 

and by resolution of 0.6um/ pixel, the smallest grain with diameter of 18.5um needed to 

be observed; by knowing that at least 10 pixels are needed to observe this smallest grain, 

a resolution of 1.85um is needed. For pore analysis, as there is not an inversion point, the 

mean value is needed to estimate the resolution needed, which was 199 pixels2 in area; 

by same assumption, a resolution of 0.8um is needed. 

Table B.1 Grains and Pores analysis result on BSEM (MASON and MORROW, 1991) 

Count Total Area 
Average 

Size 

%Are

a 
Major 

Mino

r 
Angle Circ. 

Solidit

y 

13597

5 

117178834

5 
8617.675 72.077 

128.12

1 
77.26 

92.79

5 

0.24

6 
0.762 

 

B.3  X-ray L1 Processing 

Hardening Effect 
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According to the literature, this effect could be effectively removed based on the concept 

of the ‘rolling ball’ algorithm described by Sternberg (1983). A ball of given radius is 

rolled over the bottom side of this surface; the hull of the volume reachable by the ball is 

the background to be subtracted. The radius of the ball should be at least as large as the 

radius of the largest object in the image that is not part of the background (Figure B.7(A). 

Assuming the bounding surfaces are typically 1-2 pixel thick as previously discussed, a 

ball with radius of 50 pixels would be definitely enough. After this correction, one could 

see the background been removed (Figure B.7(B, C)). Note in Figure 3.8-b the colour 

maps are also normalized to 0-255 for better human visual observation. 

 

Figure B.7 2D images slices of (A) one raw CT slice image obtained by industrial CT; (b) hardening 

effect background removed image and (c) removed hardening effect background. Below each image are 

pixel intensities plots along the selected line as highlighted by yellow 1 pixel wide rectangular. The x-axis 

represents distance along the rectangular long axes and the y-axis is the pixel intensity. The red circle in 

intensity plot of A represents the ball with diameter of 50 pixels applied to remove background. 

Simple Segmentation 

A simple imaging analysis method (“segmentation editor” plugin in imageJ, see 

http://imagej.net/Segmentation_Editor) was applied to visually explore internal inter-

laminaset structures. The method segment 3D bounding surface start with subjective 

traced bounding surface on 10 xy slices evenly distributed along Z axes and automatically 

connect missing bounding surface by propagation based on local intensity similarity. 

Figure B.8 illustrated three planar LBS been traced from one xy slice and labelled into 

different colours.   
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Figure B.8 illustration of simple segmentation by segmentation editor 

Measurements 

With segmented inter-LBS, thickness of laminasets between segmented inter-LBS could 

be quantitatively estimated at subjectively selected locations as Figure B.9.  As an initial 

estimation, the measurements are selected at random locations in random slices. In Figure 

B.9, the locations of measurements are projected onto one slice for illustration. For the 

curved part, laminasets are measured on both a set randomly selected xy and xz slices. 

 

Figure B.9 subjective measure laminaset thickness between segmented inter-LBS at subjectively and 

randomly selected locations. Left shows planar laminaset thickness measurements at randomly selected 

locations; Middle shows curved laminaset thickness measurements at randomly selected locations in xy 

slices, and projected on one xy slice; Right shows curved laminaset thickness measurements at randomly 

selected locations in xz slices, and projected on one xz slice; 

B.4  Intra-laminaset characterisation (T2) 

Optical microscope analysis for compositional study 

Among the four FoVs on T2, labelled as P1-P4 in Figure 3.12(B), P1 and P2 are located 

on the bounding surface of curved laminasets, while P3 and P4 on different bounding 
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surface in planar laminasets.  Optical analysis using polarized light was performed at each 

of the four locations at three magnifications as in Figure B.10 .  According to Figure 3.13, 

quartz and feldspar appear in light brown colour, while the dark brown indicates mainly 

heavy metal –iron and dolomite along with some calcium rich clay.  Note that since the 

thin section has been impregnated with blue-stained epoxy resin before being polished, 

the pores appear in blue in the images.   

Potential bounding surfaces are labelled manually, based on finer grain-pore and 

concentration of darker heavy minerals.  According to 10X magnification images at four 

FoVs the bounding surface layer could be as thin as 2-3 grains thick for horizontal part.  

For curved laminaset, the bounding surface appears less concentrated and thicker up to 

4-5 grains thick.  Still the bounding surface appears to be a transitional band where a 

distinctive boundary is hard to be identified.  Layered coarsening up, thus inverse grading, 

has been observed in 5X and 10X magnification images for four FoVs at vertical (+X) 

direction which is assumed to be the sedimentary direction based on previous laminaset 

geometry analysis.  For both horizontal and curved laminasets, the layered inverse 

grading is parallel to manually-defined bounding surfaces.  However, the intra-laminaset 

bounding surface is still hard to identify: the only one possibility is observed in P2 and 

yields a lamina about 6 grains thick.  The estimations are implemented in Table 3.3. 

 

Figure B.10 Optical microscope images of 4 positions over three scales by polarized light. 

 



Appendix B: Chapter 3  

222 

 

EDS analysis 

The “fake hole” and “true hole” analyses are performed on segmented EDS images of 

dolomite together with iron and calcite, in binary format, and scaled with arithmetic 

average to have similar average effect (without the Harding effect, though) to the same 

resolution to MXRT (100 micro square). The measurements are subjective and illustrated 

in Figure B.11 , where “fake holes” are identified by looking for regularly occurring small 

gaps with stable distances, following the trend of the bounding surface from Figure B.11 

(A) and measured between 0.5-2mm, while “true holes” of erosion are also estimated on 

the same map, by searching for abnormal and randomly occurring gaps with larger 

distances and measured between 1.5-3mm. Gap length of the “true hole” of bioturbation 

could be estimated by measuring the diameter of clusters in the calcite map in Figure B.11 

(B), where gap lengths are measured between 1-6mm. Considering those measurements 

are performed on a 2D cross-section, the measured gap length may not represent the 

longest axis of a hole in 3D. Only the largest measurements are used to be summarised in 

Table 3.2. 

 

Figure B.11 segmented EDS images of dolomite together with iron (A) and Calcite(B), both scaled to 

100-pixel micro resolution with dimension of 198x384. 
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Table B.2 Discontinuity of bounding surface 

Discontinuity 

reason  

“fake hole” of scattered 

iron and dolomite 

cementation 

Distraction 

by feldspar 

“true hole” 

of erosion 

“true hole” of 

bioturbation 

Length scale  < 2mm  <4mm > 5mm > 6mm 

 

The measurement of distraction by feldspar is performed differently. It follows the logic 

by searching the average distance between small clusters of feldspar, because the 

distraction is caused by the Harding effect and would be more significant when it is closer 

to the bounding surface. Therefore, we want to know the average distance between the 

scatter distributed feldspar so as to have an idea within what size of neighbouring area of 

a bounding surface feldspar would be likely to occur thus  as a distraction. Given the need 

to estimate grain-pore scale features, the measurements are performed on high resolution 

segmented EDS map of feldspar as Figure B.12 (A). Only the upper 19845x5000 part is 

measured, limited by computation power. The matrix between feldspars is separated 

loosely (by subjective judgement) as Figure B.12 (B-C) and labelled for measuring, as 

shown in Figure B.12 (D) (small particles are excluded by “4489” in pixel size, according 

to same inflection point method, but for long axes of grain measurements for T2. as shown 

in Figure B.12 (E). After excluding small distraction particles, an average long axis of 2.4 

mm is calculated. 

 

Figure B.12 (A) segmented feldspar with 1 micro pixel resolution and dimension of 19845x38074 

pixels^2 (feldspar in black and the rest matrix in white); (B) zoomed in segmented area of 800x1500 for 

illustration of measurement (feldspar in black and rest matrix in blue); (C) separated rest matrix by 

separation object function in Avizo (with separation coefficient of 8); (D) labelled separated matrix; (E) 

distribution of long axes of segmented matrix..  
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B.5  Whole sample T2 measurement 

An area distribution of grains and pores has been shown in Figure B.13,  to give an 

overview of the T2 grain and pore distribution. As mentioned before, to avoid noise, 

particles below 10 pixels for grain and 4 pixels for pores are excluded. The inversion 

point for grains on T2 is 221 pixels; grains bigger than this value would be measured for 

parameters mentioned above. 

 

Figure B.13 Histograms of the log of the Left: full range of grain area (10-infinity), red spot points out the 

inversion point; Right: full range of pore area (4-infinity) 

The summarise of measurements of grains in the range of 10-infinity and 221-infinity 

pixels in area are given in Table B.3  and Table B.4 , pores measurements in the range of 

4-infinity are given in Table B.5 , the histograms of grains in the range of 221-infinity 

pixels in area of the measurements are given in Figure B.14 . Comparing Table B.3  and 

Table B.4   The author can see after The author remove small particles before the 

inversion point, total number of particles decreased about 1/3 and average size about 

doubled. However, the percentage of area only decreased 0.8%. So it is again proved that 

by remove particles smaller than the inversion point, it will effectively threshold out the 

interfere brought by small particles.  

Table B.3 Summarize of measurements of grains in the range of 10-infinity pixels in area 

Measurements Count Total Area 
Average 

Size 
%Area Perim. Circ. Solidity 

Sum/ Mean 359481 569355836 1583.827 75.354 189.572 0.48 0.771 

Table B.4 Summarize of measurements of grains in the range of 221-infinity pixels in area 

Measureme

nts 
Count 

Average 
Size 

%Area Major Minor Angle Circ. Solidity 

Sum/ Mean 198760 
2803.69
8 

73.753 
70.20
4 

43.77
6 

89.82
5 

0.34
7 

0.771 
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Table B.5 Summarize of measurements of pores in the range of 4-infinity pixels in area 

Measurement
s 

Count 
Average 
Size 

%Area 
Majo
r 

Mino
r 

Angle Circ. 
Solidit
y 

Sum/ Mean 134763
5 

91.794 
16.37
2 

8.472 3.841 
79.84
2 

0.63
3 

0.715 

 

Comparing Table B.3 -5 with Table B.1 , after converting the pixel size into physical size 

depending on different resolution, the average pore size is about same for both samples, 

the grains for the high resolution BSEM (0.6μm) is smaller than T2. This is because with 

T2 used lower resolution which excluded tiny fragments whose size below 1x1 μm2, just 

as previously mentioned, small particles are removed during grain measurements. The 

porosity of both samples is also believed consistent considering the difference of 

resolution and position. 

From Figure B.14  The author can see that by removing small particles, the distribution 

of area and perimeter changed from bimodal curves to unimodal curves. The overall 

circularity is inclined to 0 which stands for elongated shape. The aspect ratio, roundness 

and solidity distribution shown the overall grains have been relatively well rounded.  

Figure B.15  gives the rose diagrams for grain in the range of 221-infinity pixels in area. 

The overall mean orientation is 179.28, which means the majority are horizontal. 
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Figure B.14 Histograms of the overall measurements of grains in the range of 221-infinity pixels in area 

 

Figure B.15 Overall rose diagrams for grains in the range of 221-infinity pixels in area 

B.6  S1 and S4 measurement 

The measurements are performed on centre block of S1 and S4 low resolution images, 

with dimension of 480x480x954 voxels^3 as illustrated in Figure B.17 . Similarly, with 
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thin section BSEM images, anisotropic diffusion is applied to smooth and remove noise 

before segmentation.  

 

Figure B.16 (A) renders of S1 imaged at 4.3um and 1um FOV in the centre, blue boxed 480x480x954 

voxels^3 volume are cropped for full quantification measurements; (B) renders of S4 imaged at 3.1 μm 

and 1um FOV in the centre, blue boxed 480x480x954 voxels^3 volume are cropped for full quantification 

measurements. 

Segmentation 

Same with 2D image, watershed based approach are applied for grain segmentation 

whiles Otsu thresholding approach applied for pore segmentation. Grain segmentation 

are performed on Avizo, gradient (55 for S1 and 45 for S4) are calculated to preserve 

edge and four phase are identified with intensity range of S1 (1:235-252, 2:207-235, 

3:173-207, 4:0-173) and S4 (4, 45, 1:235-255, 2:158-235, 3:90-158, 4:0-90) for 

watershed segmentation. Erosion are applied on two “minority phases” on 1-bright and 

2-light grey to separate particles. Finally, “separate object (1)” and “fill holes” are 

applied. Pore segmentation are performed on ImageJ, global intensity thresholding Otus 

approach applied. 

Grain overall measurements 

As discussed in section 2.2.2 small grain particles need to be excluded and an inflection 

point is decided as the threshold. Figure B.17 (A) and Figure B.17 (C) plotted grain 

histogram in the range of voxel volume between 0-3000 voxels^3 of S1 and S4 

respectively. Inflection point are highlighted in yellow line therefore grains with volume 

less than 101 voxels^3 and 62 voxels^3 are removed during the grain measurements of 
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S1 and S4 respectively. Despite overall measurements summarised in Ch3. Table 3-3, 

overall grain orientations for S1 and S4 in rose map are given in Figure B.17 (B) and 

Figure B.17 (D). Note the grain orientation are measured as angle formed with the Z-axis 

in spherical coordinates as introduced in section 2.2.2. The coordinates are illustrated in 

Figure B.18 whiles the axes will not be shown in chapter 3 instead a consistent 

coordination through all subsamples are labelled.  

 

Figure B.17 Determination of inflection point on grain histogram (in the range of voxel volume between 

0-3000 voxels^3) of S1 (A) and S4 (C); B and D gives grain orientation rose map plotted for S1 and S4 

respectively after small grains removed. 
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Figure B.18 Illustration of grain orientation measurement in labelled coordination 

Brighter bounding surface segmentation and measurements 

The segmentation of brighter heavy minerals is based on subjective thresholding as 

illustrated in A-B of Figure B.19  and Figure B.20  for S1 and S4 respectively. Segmented 

particles are labelled into different colours as in Figure B.19 (C) and Figure B.20 (C) for 

further character measurements. 

 

Figure B.19 Subjective thresholding of brighter heavy minerals of S1 in (A) and masked by blue in with 

thresholding setting of 9867/65535; (C) illustrated labelling of segmented heavy mineral particles in 

different colour to be measured. 
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Figure B.20 Subjective thresholding of brighter heavy minerals of S4 in (A) and masked by blue in with 

thresholding setting of 12040/65535; (C) illustrated labelling of segmented heavy mineral particles in 

different colour to be measured. 

Grading measurements 

Horizontal planar S4 

The measurement over horizontal planar sample S4 is rather straightforward because the 

bounding surfaces are horizontal (parallel with yz plane). As a result, the sampling box is 

parallel with bounding surface (Figure B.21 (A)) whose long axes along yz plane and 

short axes along sedimentation direction X are designed for S4 as illustrated in Figure 

B.21 (B). The thickness and sampling interval are designed with same principle as in 2D 

measurement. The thickness (short axes) along Z direction are kept same with the 

thickness discussed and designed in 2D measurement – 200um to include representative 

measurement and still as thin as possible to include even minor single layer (< 5 grains) 

variation. According to the resolution of 3D micro XRT image of 3.07x3.07x3.07 

um3/voxel, 50-pixel thickness has been designed (shown as blue endpoint box in Figure 

B.21 (A) and Figure B.21 (B)). Figure B.21 (C) illustrated grains measured within one 

sampling box labelled into different colours. 

 

Figure B.21 Illustration of grading measurement on plug S4(3.07x3.07x3.07 um3/voxel) from horizontal 

part (cropped volume illustrated in Figure B.16 (A) and shown as orange colour bounding box): (A) 

illustrated segmented bright heavy mineral highlighted bounding surface and a designed 480x480x50 

sampling box at 500 voxels depth parallel to the bounding surface with thickness about equal to one 

heavy mineral concentrated surface layer; (B) illustrated the sampling box on one xy slice are shown in 



Appendix B: Chapter 3  

231 

 

the middle for reference; (C) illustrated segmented grains fall into sampling box in B labelled in different 

colours for measurements; (D) measured grain volume in voxels versus depth plot and masked on one xy 

slice of cropped S4. 

With sampling window designed, the measurements have been made by moving 50 

voxels each time (with the same thickness) so there is no overlap between each other. The 

movement is along X direction, which is perpendicular to the paleocurrent direction 

(along yz plane) so the variation along the sedimentation direction can be captured. The 

measurement of each moved sampling window would represent one grading layer l. The 

measurement started from the bottom (S4_H15 in Table B.6 ) up to the top (S4_H-3) of 

S4 (Figure B.21 (A)). 19 movements (2.9mm thick) measurements were gained by 

moving at X+ direction as shown in  

Table B.6 . The average grain volume is measured for each sampling box and plotted over 

depth and masked over on xy slice in the middle as reference in Figure B.21 (D). 

For quantitative measurement, the average grain size increase rates are represented by a 

scaling factor (𝑆𝐹𝑙) and calculated for 2 monotonically grain size increasing interval for 

S4. The measured interval starting layer are highlighted in yellow square and end layer 

highlighted in yellow triangle in the log plot in Figure B.21 (D) and each interval is 

highlighted in yellow in  

Table B.6 . The scaling factor’s increasing gradient, defined as 𝑆𝐹𝑟𝑎𝑡𝑒, can be calculated 

as Equation B.1  to Equation B.2 and an arithmetic average of 3D volume scaling factor 

increasing gradient of 0.078 can be calculated. A 1D scaling factor of 0.025 at each axis 

can also be calculated based on Equation B.3. The two inverse grading intervals have an 

average thickness of 5 moves thus 767.5 μm. 

𝑆𝐹𝑟𝑎𝑡𝑒 (𝐻2−6) =
12665

9604.4
−1

4
 = 0.079 

Equation B.1  

 

𝑆𝐹𝑟𝑎𝑡𝑒 (𝐻6−8) =

14341
9766.8 − 1

6
= 0.078 Equation B.2 

𝑆𝐹𝑟𝑎𝑡𝑒 1𝐷 = √1 + 0.078
3

− 1 = 0.025 Equation B.3 
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Table B.6 Rectangular sampling box measurements with short axes and moving direction perpendicular 

to paleocurrent direction (so along sedimentation direction) 
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7 
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Curved laminaset S1 

Measurement over curved sample S1 is not as straightforward as for horizontal planar 

sample S4. The first thing to do before measurement is define the bounding surface so 

that the measurement sampling box could be designed representing the thin grading layer 

and moving along with sediment direction. Similarly to what was done on the industrial 

XRT image, the bounding surface was highlighted by the more brightly presented heavy 

mineral which needed to be extracted. Taking the μ-XRT image provided high resolution 

on identifying heavy minerals in this section the simple semi-automatic approach is 

applied to extract the bounding surface from μ-XRT image of S1. The approach is referred 

to as segmentation editor tool box in FIJI (Schindelin et al., 2012). The basic principle is 

to manually label the structure of interest from one slice over several slices from an image 

stack; the machine would then propagate voxels with similar intensity on those un-

labelled slices in 3D. For this sample, 10 slices spread over a 480 slice-thick image stack 

of S1 are labelled to extract the rest of the 3D bounding surface. The extracted bounding 

surface as shown in Figure B.22 (A) captured the 3D surface structure but appeared to 

lack continuity in Z direction. An inclined sampling box and a horizontal sampling box 

are therefore traced with unconnected regions overlaid on the extracted slices (Figure 

B.22 (B-C)). \the same thickness (50 pixels thick) and moving distance (50 pixels) have 

been used. Figure B.22 (B-C) also illustrates grain particles falling into each sampling 

box, which have been labelled into different colours. For an inclined curved laminaset, 

measurement started with Sur1 in Table B.7  and three moves have been made (Sur1-1 to 
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Sur 1-3) along X+ direction. Horizontal planar measurement starts from H0 with the same 

sampling box with S4 and 6 movement has been made along X+ direction.  

 

Figure B.22 Illustration of grading measurement on plug S1 (4.3x4.3x4.3 um3/voxel) from curved part 

(cropped volume illustrated in Figure 3-19(A) and shown as orange colour bounding box), one xy slice 

are illustrated in the middle for reference: (A) illustrated one horizontal and one inclined surface traced 

with semi-automated method; (B) illustrated segmented grains fall into a sampling box Sur1 created for 

inclined surface in A are labelled in different colours for measurements; (C) illustrated segmented grains 

fall into a sampling box H0 created for horizontal surface in A are labelled in different colours for 

measurement, measured grain volume in voxels versus depth plot and masked on one xy slice of cropped 

S1. 

Similar with S4, 𝑆𝐹𝑟𝑎𝑡𝑒  are calculated for one monotonically grain size increasing 

interval in horizontal planar part and one for inclined part are calculated separately. The 

measured interval starting layer are highlighted in yellow box in log plot in Figure B.22 

(C) and each interval are highlighted in yellow in Table B.7 . The scaling factor increasing 

gradient defined as 𝑆𝐹𝑟𝑎𝑡𝑒 could be calculated as Equation B.4 and Equation B.5 and an 

arithmetic average of 3D volume scaling factor increasing gradient of 0.065 could be 

calculated. A 2D scaling factor of 0.021 at each axes could also be calculated based on 

Equation B.6. The two inverse grading interval has an average thickness of 3.5 moves 

thus 752.5 μm. 

𝑆𝐹𝑟𝑎𝑡𝑒 (𝐻0−1−6) =
11533.7

9152.96
−1

4
 = 0.065 

Equation B.4 

 

𝑆𝐹𝑟𝑎𝑡𝑒 (𝑆0−3) =

12003.79
10056.57

− 1

3
= 0.065 Equation B.5 

𝑆𝐹𝑟𝑎𝑡𝑒 2𝐷 = √1 + 0.065
3

− 1 = 0.021 Equation B.6 
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Table B.7 Sampling box measurements of inclined sample S1 with moving along sedimentation direction 

Depth 
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H
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57 
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3.7 

11

34

2.6 
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03.

79 

112
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86 
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17.

92 

100

56.

57 
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C.1  Verification of simulated MXRT 

Taking there is no binary ground truth of image, the verification here are compare 

arithmetic average BSEM, low resolution BSEM and simulated MXRT with real MXRT 

image at similar location. It is however challenge to compare those images because: 1) 

all those images are not exactly registered; 2) even registered, compare intensity values 

across those images are meaningless because different imaging principle would yield 

different contrast between structures of interests, referred to bounding surface in this 

work, over matrix even after normalization. Taking the work here is focus on verifying 

whether or not linear bounding surface structures are revealed, a convolutional filter based 

method is proposed to characterize frequency of patterns occurred within each image with 

same standard of measurement. It is achieved as follows: 1) define one filter bank (a set 

of filters) represent the linear structures occurred in target image to be characterized; 2) 

calculate convolutional similarity around each pixel with one image to each filters in the 

filter bank; 3) plot a histogram, for one image, the average response of each filter over 

each pixels in the image versus every filter in the filter bank; 4) assume average response 

represent the frequency a pattern described by one filter occurred in the image, thus the 

histogram gives a description the possibility of occur on interested patterns from given 

filter bank; 5) by apply such process to each image to be evaluated, images could be 

compared, in terms of pattern given by the filter bank.  

 

(A)              (B) 

Figure C.1 (A) one example of 21x21 filter and (B) learnt 121 filter bank contain 121 filters of size 21x21 

pixels square which learnt from generic benchmark image (Rigamonti et al., 2011b) 
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In this work the filter bank of learnt 121 that has been used to segment the bounding 

surface from MXRT is used, given its variability on capturing bounding surface structure 

and size has been discussed. Learnt 121 are convolved to each pixel of arithmetic average 

BSEM, low resolution BSEM and simulated MXRT with real MXRT image, and the 

convolutional response of each 121 filters are plotted in histogram as described in Figure 

C.2 . Visually the histogram curves of simulated MXRT with real MXRT image matched 

well but clearly different with arithmetic average BSEM, low resolution BSEM (who are 

similar to each other). To better quantify the difference, the difference between average 

response of each filter in the histogram of each arithmetic average BSEM, low resolution 

BSEM and simulated MXRT are compared to real MXRT image, and the average 

difference over 121 filters are calculated in Table C.1 . Take the histogram of MXRT of 

L1 as reference, the relative difference of histogram of arithmetic average BSEM, low 

resolution BSEM scanning and simulated MXRT are 3.81, 3.64 and 1.02 respectively 

(where 1 stands for 100% same histogram with MXRT of L1). 

 

Figure C.2 convolutional response of each 121 filters are plotted in histogram for arithmetic average 

BSEM (orange), low resolution BSEM (grey) and simulated MXRT (yellow) with real MXRT image 

(blue) with full histogram given in upper left of zoomed in view. 

Table C.1 Average Difference over MXRT by 121 filters feature vector/ average of 121 filters feature 

vector (in convolution value) 

 Average Difference over MXRT 

AverageDownscale_BSEM_f_ver 3.81 

BSE_20_kV_cropped 3.64 

out_C_O_Na_Mg_Al_Si_K_Ca_Fe 1.02 
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C.2  Sampling window configuration 

Size of sampling window 

The REV of a rectangular windows is evaluated on segmented grains and pores images. 

The evaluations are based on the measurements of average grain size, average pore size 

and percentage of area of grains and pores correspondingly.  For a rectangular sampling 

window, it starts with a rectangular window with its width equal to the width of the entire 

BSEM image, which equals to 19845 pixels. The height of it starts with 100 pixels then 

each incensement of 50 until it gets to 1000 pixels in height. The author randomly 

sampling 50 times in different height to make sure got enough and representative 

information.  After sampling, the mean values of each sampling size by 50 times measure 

of abovementioned measurements have been gained. The corresponding standard 

deviation for each sampling size could also been calculated. The coefficient of variation 

(CV), defined as the ratio of the standard deviation to the mean, could then be calculated 

and plotted Figure C.3. 

The plot of Coefficient of variation (CV) for all grains and pores measurements versus 

Rectangular sampling size in Figure C.3 did not shown converged well.  This indirectly 

proved that heterogeneity exit between laminations. The reason is the shape of rectangular 

sampling window is more similar with the shape of the laminations, and the long axis of 

the rectangular window is parallel to the horizontal laminations.  Percentage of pore area 

kept low CV who did not changed much whiles percentage of grains area converged 

quickly at the height around 200 pixels.  

The measurement of average size, comparing with percentage area, showed a higher 

sensitivity. In this work the REV are decided depending on the convergence of percentage 

area curves only.  It as a result gives a REV of 19845x200-19845x300 pixels2 for 

rectangular window. This would also satisfy the previously mentioned principle, the 

height of sampling window is smaller than the thickness of the thinnest lamination, which 

is about 1 mm (1000 pixels).  This section illustrates calculation REV of sampling 

window for two shape of sampling windows, rectangular and square, in 2D.   
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Figure C.3 Coefficient of variation (CV) versus Rectangular sampling size 

C.3  Registered T2 characterisation 

 

Figure C.4 measured log plots of measured average grain size in pixel area by three sampling window and 

masked onto BSEM of T2 (rotated 90 right from Figure 4-14(B) for better illustration of log plots), X 

axes are labelled from top of T2 (right) down to bottom (left) in μm units; horizontal log plot are given in 

red colour and masked between 39845 to 20000 μm on X axe, laminae start are labelled in yellow square 

and end in yellow triangle; Cross 1 are plotted in blue and Cross 2 in orange, laminae start are labelled in 

red square and end in red triangle. 

Measurements of log plots are given in Table C.2 for horizontal planar, Table C.3  for 

curve 1 and Table C.4  for cross-1 and cross-2. The measurements of gradient following 

same equation as S1 and S4. Measured intervals are labelled in different colours. 

Measured length represent lamina thickness are count in number of moves, each move 

has an interval of 300um for horizontal part and 200 for cross 1 and 2.  



Appendix C: Chapter 4  

239 

 

Table C.2 Sampling window log measurements of horizontal planar laminaset 

Horizontal Planar 

Y_coordination(pixels) 

Grain 

Average 

Size 

Circulation 

length 

2D 

gradient 

1D per 

200um 

thick 

average   2.273 0.029 0.014 

37900 811.061       

37600 1035.526       

37300 1042.754       

37000 1080.16       

36700 1117.698       

36400 1037.648 3 0.016916   

36100 1075.501       

35800 1074.334       

35500 1090.307       

35200 1031.346       

34900 1005.212 3 0.018378   

34600 1008.81       

34300 1029.566       

34000 1060.632       

33700 989.646       

33400 973.032 2 0.066761   

33100 1058.954       

32800 1102.954       

32500 1066.107       

32200 983.151       

31900 922.146 2 0.065039   

31600 1028.825       

31300 1042.096       

31000 946.437 1 0.105487   

30700 1046.274       

30400 920.561 3 0.06643   

30100 985.668       

29800 1025.731       

29500 1104.019       

29200 971.167 3 0.017118   

28900 1026.985       

28600 1018.703       

28300 1021.039       

28000 1005.413       

27700 988.576 2 0.02982   

27400 1043.002       

27100 1047.535       

26800 1007.045       

26500 970.469 2 0.01738   

26200 999.579       
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25900 1004.203       

25600 976.556 2 0.028263   

25300 991.86       

25000 1031.756       

24700 952.059 2 0.049381   

24400 1020.994       

24100 1046.087       

 

Table C.3 sampling window log measurements of curve 1  

Curve1 

Y_coordination(pixels) 

Grain 

Average 

Size 

Circulation 

length 

2D 

gradient 

1D per 

200um 

thick 

average   13.000 0.013 0.006 

23800 877.537 13 0.019056 0.009 

23500 985.643       

23200 975.066       

22900 1035.145       

22600 1030.936       

22300 1069.832       

22000 1045.195       

21700 1003.668       

21400 1010.554       

21100 1000.459       

20800 1162.065       

20500 1059.752       

20200 1178.253       

19900 1203.628       

 

Table C.4 sampling window log measurements of curved laminaset 

Cross 1 and 2 

Slice 
Grain Average Size 4-

infinity 

Circulation 

length 

2D 

gradient 

1D per 

200um 

thick 

    2.000 0.072 0.035 

Cross1-0 822.94       

Cross1-1 824.57 2 0.094457   

Cross1-2 850.724       

Cross1-3 980.342       

Cross1-4 894.813 1 0.090582   

Cross1-5 975.867       

Cross1-6 943.337       

Cross1-7 824.796 1 0.189345   

Cross1-8 980.967       
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Cross1-9 914.815 3 0.025887   

Cross1-10 916.139       

Cross1-11 933.697       

Cross1-12 985.86       

Cross1-13 879.148       

Cross1-14 872.287 1 0.031748   

Cross1-15 899.98       

Cross1-16 869.345 1 0.12208   

Cross1-17 975.475       

Cross1-18 926.547 2 0.026746   

Cross1-19 930.953       

Cross1-20 976.109       

Cross1-21 917.856 2 0.030415   

Cross1-22 971.345       

Cross1-23 973.689       

Cross1-24 931.633       

Cross1-25 984.405       

Cross2-0 874.423       

Cross2-1 895.344       

Cross2-2 889.876       

Cross2-3 876.662 1 0.100895   

Cross2-4 965.113       

Cross2-5 889.175       

Cross2-6 883.645 3 0.044163   

Cross2-7 916.799       

Cross2-8 941.475       

Cross2-9 1000.718       

Cross2-10 882.354       

Cross2-11 859.834       

Cross2-12 848.254 4 0.016211   

Cross2-13 866.35       

Cross2-14 887.877       

Cross2-15 903.76       

Cross2-16 903.257       

Cross2-17 884.626       

Cross2-18 811.312 3 0.090867   

Cross2-19 894.111       

Cross2-20 888.909       

Cross2-21 1032.477       

Cross2-22 988.717       

Cross2-23 911.008       

Cross2-24 913.374       

Cross2-25 950.351       
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D.1  MPS configuration 

Detailed MPS parameters setting for regions based on measurements 

Table D.1 Detailed parameter arrangement calculated for regions between 1-80 based on measurement 

result 

 

Detailed large contrast MPS parameters setting for regions 
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Table D.2 Detailed parameter arrangement calculated for regions between 1-80 based on large contrast 

assumption 

 

 

D.2  Network Extraction Configuration 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&& 

/* &&&&&&&&&          12 June 2015            &&&&&&&&& 

/* 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&& 
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/* 

/*#Specify fullpath file name of 3D rock image (*.raw) 

/* 

/* &&& Only raw format with data type of UNSIGNED Byte !!! 

/* 

/*============================================= 

C:\extract\1-1-1\1-1-1.raw 

/*============================================= 

/* (1) Specify x-dimension in voxels 

/* (2) Specify y-dimension in voxels 

/* (3) Specify z-dimension in voxels 

/* (4) Specify voxel size of the image (micrometer) 

/*============================================= 

200, 200, 200, 4.29 

/*============================================= 

/* Specify the value range for pore voxels between 0 to 255 

/* (1) bottom limit value (>=0),  

/* (2) top limit value (<= 255) 

/*============================================= 

255, 255 

/*============================================= 

/* Remove pores of volume within the following specified range [SN, LN) 

/* (1) SN: Smallest number of voxels (e.g. 1),  

/* (2) LN: Largest number of voxels (e.g. 10)  

/* (3) Using HYDRAULIC radius for HW code? otherwise this must be false! 

/*============================================= 

1, 1, false 

/*============================================= 

/*  MS: Medial surface for modelling fracture/plate pores 

/*  MA: Medial axis for modelling normal pore system 

/* (1) Using MA (true) or MS (false)? 

/*  ############################################################## 

/*  ### The following arguments (2 - 4) for previous algorithm ### 

/*  ############################################################## 

/* (2) Medial surface (MS) coefficient (0 ~ 1.0) 

/* (3) MS valid value (VV = 0, 1, 2,...17),  

/*     i.e. surface points will be removed  

/*     if number of its 3x3x3 neighbours > 9+VV  

/* (4) Create virtual nodes or not if necessary?  

/*  ############################################################## 

/*  ### The following arguments (5 - 7) for current algorithm  ### 

/*  ############################################################## 

/* (5) Surface coefficient (>= 2.0, OTHERWISE using previous algorithm) 

/* (6) Density coefficient (>=1.0) for virtual network 

/* (7) Using Euclidean distance map (true) or Boundary distance map (false) 

/* (8) Is the pore structure complicated (not a simple model)? 

/* (9) Parameter for determine dead-end node (1 ~ 99) 

/*============================================= 

true,0.5,0, false,2.0,1.0, false,70 

/*============================================= 

/* (1) Directional networks (1-X, 2-Y, 3-Z, 0 for all) 

/* (2) Directly compute permeability (true or false) 

/*============================================= 

0, true 
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