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“Two Beasts” (2017) 

Artist: Ben Day Todd. Acrylic, gouache on canvas 

“Two Beasts” is an exploration of form and colour. By adding and subtracting paint, pushing and pulling colour, 

new information is found and previously unknown dialogues are recorded 

 

Abstract  

Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, 

Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is 

no denying that mathematics continues to play an increasingly prominent role in cancer 

research. Mathematical Oncology—defined here simply as the use of mathematics in cancer 

research—complements and overlaps with a number of other fields that rely on mathematics 

as a core methodology. As a result, Mathematical Oncology has a broad scope, ranging 

from theoretical studies to clinical trials designed with mathematical models. This Roadmap 

differentiates Mathematical Oncology from related fields and demonstrates specific areas of 

focus within this unique field of research. The dominant theme of this Roadmap is the 

personalization of medicine through mathematics, modelling, and simulation. This is 

achieved through the use of patient-specific clinical data to: develop individualized screening 

strategies to detect cancer earlier; make predictions of response to therapy; design adaptive, 

patient-specific treatment plans to overcome therapy resistance; and establish domain-

specific standards to share model predictions and to make models and simulations 

reproducible. The cover art for this Roadmap was chosen as an apt metaphor for the 

beautiful, strange, and evolving relationship between mathematics and cancer. 
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Introduction to the 2019 
Mathematical Oncology Roadmap 
Russell C. Rockne1 

1 Department of Computational and 

Quantitative Medicine, Division of 

Mathematical Oncology, City of Hope National 

Medical Center, Duarte, CA 91010, USA 

 

Mathematical Oncology—defined 
here simply as the use of mathematics in 
cancer research—has gained momentum in 
recent years with the rapid accumulation of 
data and applications of mathematical 
methodologies. The purpose of this 2019 
Mathematical Oncology Roadmap is to 
provide a forward-looking view of the field 
and to demonstrate specific areas of focus 
within this unique field of research. The topics 
presented here are not intended to be 
exhaustive, but rather to feature emerging, 
high-impact areas that have the potential to 
shape the direction of Mathematical Oncology 
in the next 5–10 years. The selected topics 
cover both theoretical and practical issues. 
 The dominant theme of this Roadmap 
is the personalization of medicine through 
mathematics, modelling, and simulation. This 
is achieved primarily through the use of 
patient-specific clinical data. In this Roadmap, 
mathematical approaches are used to: make 
individualized predictions of response to 
therapy; present data and simulation 
standards with the goal of creating 
reproducible models; and improve cancer 
screening to detect cancer earlier. These 
approaches are also used to predict and steer 
cancer evolution to guide the design of 
adaptive, patient-specific treatment plans 
that overcome therapy resistance, with the 
goal of turning incurable cancers into chronic, 
manageable conditions rather than fatal 
diseases. Each contribution is summarized in 
the order it appears: 
 
Personalizing medicine by merging 
mechanistic and machine learning models 
The role of Mathematical Oncology in the 
future of precision or personalized medicine is 
demonstrated through patient-specific 
mathematical modelling, analysis of patient-
specific clinical data, and patient-specific 

adaptive therapies. Hawkins-Daarud and 
Swanson demonstrate these principles by 
looking towards a future merging of 
mathematical modelling and machine 
learning, in which knowledge-based 
mechanistic modelling is used to guide and 
inform machine learning when data is sparse. 
Hawkins-Daarud and Swanson highlight the 
potential and the challenges of merging these 
fields of mathematical modelling and machine 
learning, with an application to primary brain 
cancers and clinical imaging data such as MRI. 
 
Setting data and model standards 
However successful a modelling or simulation 
method may be, if it cannot be deployed or 
used by other groups, it is of limited value. For 
Mathematical Oncology to achieve its highest 
impact, Sluka et al. argue that standards are 
needed for both data and mathematical 
models, to ensure interoperability, to leverage 
and build upon prior work, and ultimately to 
develop useful tools that can be used to study 
and treat cancer. Of course the use of 
standards in science is not new; however, 
data and model standardization in this 
domain face unique challenges, particularly 
with respect to spatial models. Sluka et al. 
identify the central challenges and potential 
advances afforded by the establishment of 
“FAIR” (Findable, Accessible, Interpretable, 
and Reusable) models in Mathematical 
Oncology.  
 
Turning tumour forecasting into a rigorous 
predictive science 
In addition to the challenges of developing 
and standardizing mathematical models of 
cancer growth and response to therapy, lies 
the “grand challenge of Mathematical 
Oncology”: to faithfully reproduce—and 
predict—the spatiotemporal dynamics of 
tumour growth. Similar to weather models 
that predict the path of a hurricane, Hormuth 
et al. call for the use of families of models in 
which the optimal model (or models) is 
selected with Bayesian methodologies and 
used to update patient-specific predictions 
over time. The goal of this approach is to 
establish a foundation for tumour forecasting 
as a rigorous predictive science through 
careful model selection and validation. 
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Modelling cancer screening and early 
detection 
Benjamin Franklin famously stated that “An 
ounce of prevention is worth a pound of 
cure.” Nowhere could this be truer than in 
cancer; however, nowhere else could this 
sentiment be more challenging to implement. 
Many serious issues face the field of early 
detection of cancer, including the risk of false 
negatives, false positives, and the possibility 
of transient early-stage cancers that are 
successfully defeated by the body’s immune 
system. However, Curtius and Al Bakir 
propose that mathematical models of 
carcinogenesis can be used to evaluate and 
predict the efficacy of screening strategies 
using multiscale approaches, with the 
ultimate goal of producing clinically actionable 
personalized cancer screening 
recommendations.  
 
Analysing cancer dynamics and the evolution 
of resistance 
As cancer cells grow into a malignant lesion or 
tumour, the cells evolve and accumulate 
mutations in their DNA. The analysis of 
evolutionary dynamics using mathematical 
models is a rich field that has many 
applications to cancer. Wodarz et al. identify 
the spatial structure of the tumour cell 
population as a critical challenge in modelling 
tumour evolution. In particular, they suggest 
that novel computational methodologies are 
required to simulate and predict tumour 
evolution at realistically large population sizes 
with realistically small rates of mutation. 
Here, Wodarz et al. use mathematical 
modelling to predict the evolution of resistant 
cells within the evolving cancer as a whole. 
 
Applying a single-cell view to cancer 
heterogeneity and evolution 
In contrast to the view taken by Wodarz et al., 
Aparicio et al. consider tumour evolution at 
single-cell resolution. Using single-cell 
genome sequencing data, Aparicio et al. 
present mathematical and computational 
methods to analyse single-cell data from a 
topological perspective. Low-dimensional 
projections, or visualisations, that are used to 
study high-dimensional single-cell sequencing 
data may give a misleading representation of 

the relationships between individual cells. 
Aparicio et al. use machine learning and 
algebraic topology to construct simplified 
skeleton graphs as approximations for the 
geometry of high-dimensional data. These 
sophisticated methodologies enable the 
examination of the heterogeneity of individual 
cells in a continuum of states, from 
normal/healthy to cancerous. The 
mathematics of topological data analysis 
combined with single-cell sequencing 
technologies provide a powerful tool to study 
fundamental aspects of cancer biology at an 
unprecedented resolution. 
 
Accurately representing metabolism in 
cancer progression 
Altered metabolism and metabolic 
reprogramming are hallmarks of cancer and 
are associated with cancer progression and 
therapeutic resistance. Due to the many 
interconnected metabolites, enzymes, 
regulatory mechanisms, and pathways, 
systems biology approaches have been used 
to study cell metabolism. Often, mathematical 
representations of cell metabolism use a 
constraint-based formalism that does not 
explicitly account for spatial-temporal 
variations. Finley proposes a multiscale 
approach to modelling kinetics and time-
varying heterogeneities that may arise in 
aberrant cell metabolism in cancer due to 
environmental fluctuations. She also proposes 
the use of patient-specific data and open 
source computational platforms that support 
data and model standards, with the ultimate 
goal of using these models to generate novel 
drug combinations and treatment strategies. 
 
Modelling and predicting patient-specific 
responses to radiation therapy 
Long before the rise of immunotherapy, the 
three pillars of cancer treatment were 
surgery, chemotherapy, and radiation 
therapy. Radiation remains a definitive and 
curative treatment for many cancers and is 
highly personalized, with radiation fields and 
doses sculpted to an individual patient’s 
anatomy and cancer. However, Enderling et 
al. show that radiation therapy outcomes may 
be predicted and improved using simple 
mathematical models that account for the 
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growth rate of the cancer and introduce the 
“proliferation-saturation index (PSI)”. The 
authors discuss challenges for the clinical 
adoption of this mathematically-defined, 
patient-specific, predictive response index, 
and consider the road ahead, which includes 
prospective randomized clinical trials.  
 
Pioneering evolutionary therapy 
In contrast to the optimization of radiation 
therapy, Anderson and Gatenby propose an 
entirely new pillar of cancer treatment: 
evolutionary therapy. In this paradigm, 
treatment schedule and dose are 
mathematically designed to reduce the 
possibility of treatment resistance. Instead of 
using the maximum tolerated dose, 
evolutionary therapy aims to give the 
minimum effective dose through repeated 
treatment cycles to maintain tumour control 
over extended periods of time. Early results 
from an evolutionary therapy clinical trial in 
prostate cancer, designed by the authors to 
include in silico “phase i” trials, suggest that 
the length of treatment cycles is highly 
patient-specific and may be predicted with 
mathematical modelling.  
 
Exploring fitness landscapes and 
evolutionary game theory 
The principles of evolutionary therapy and 
therapeutic resistance can be modelled 
mathematically using evolutionary game 
theory (EGT), in which evolution is 
determined by a selection or optimisation of 
“fitness”. A fitness landscape is a conceptual 
and mathematical abstraction that enables 
predictions and interpretations of the 
temporal process of evolution. However, 
significant practical and theoretical challenges 
prevent the measurement or inference of the 
exact geometry of the fitness landscape. 
Kaznatcheev et al. propose that we reconsider 
the very concept of abstraction itself in order 
to better understand and use the EGT 
framework to guide evolutionary therapy, 
using algorithmic computer science as a 
practical example.  
 
In contrast, Krishnan et al. demonstrate a 
practical method to experimentally estimate 
the parameters of an EGT model, with the 

goal of designing combination therapies that 
not only avoid therapeutic resistance but are 
even able to steer cancer evolution on a 
patient-specific basis. The authors 
hypothesize—and demonstrate—how EGT-
driven therapies can be practically 
implemented in the clinic to overcome 
therapeutic resistance in cancer treatment.  
 
Summary 
In summary, this 2019 Mathematical 
Oncology Roadmap identifies three critical 
milestones along the path to mathematically 
designed cancer treatment: 1) obtaining 
accurate, rigorous, and reproducible 
predictions of the spatial-temporal 
progression of cancer; 2) avoiding and 
mitigating therapeutic resistance; and 3) 
merging mechanistic knowledge-based 
mathematical models with machine learning. 
Surprisingly, despite the advent of the era of 
“big data”, we are learning that we still lack 
the right kind of data. Big data in cancer is 
often taken from a single point in time and 
space, from only one biological scale, or 
without an appropriate micro-environmental 
context. The road ahead includes continued 
development of knowledge-based 
mathematical models and methods to bridge 
big data to the ideal of personalized, 
predictive, adaptive therapy. 
 
As we look towards the next 5–10 years in 

Mathematical Oncology, we note that 

government agencies such as the Federal 

Drug Administration (FDA) in the United 

States have begun to officially recognize 

modelling and simulation as forms of valid 

scientific evidence in the review and approval 

process. From our perspective, with the 

support and adoption of government 

regulatory agencies that recognize these 

methodologies, tumour forecasting, patient-

specific adaptive therapies with the use of in 

silico treatment scenarios, virtual clinical 

trials, and mathematical modelling and 

simulation have the potential to accelerate 

our scientific progress in cancer research, and 

also have the potential to transform the way 

we detect and treat cancer in the clinic. 
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The Future of Personalization in 
Mathematical Oncology: A 
Mathematical Merger of 
Mechanistic and Machine Learning 
Models 

Andrea Hawkins-Daarud1, Kristin R. 
Swanson1,2 
1 Mayo Clinic, Phoenix, Arizona 
2 Arizona State University, Tempe, Arizona 

Status 
Cancer patient care is intrinsically 
multidisciplinary. Tumor board is the clinical 
environment used to bring together those 
different disciplines to make treatment 
decisions, but, unfortunately, it is an agonizing 
environment of doubt – Is the tumor 
progressing? Is the optimal treatment A or B? 
All it takes is a brief experience in a tumor 
board to feel the injustice of a cancer 
diagnosis and the frustration of not knowing 
the truly optimal treatment. Every patient is 
unique and every patient will respond 
differently to the same treatment protocol. 
Thus, the central tumor board challenge is - 
how do we best integrate the unwieldy 
multitude of dispersed data (imaging, tissue, 
blood, molecular) to generate optimal clinical 
decisions for each patient? The current 
strategy for grappling with this complexity is 
to average over cohorts of seemingly similar 
patients with similar diagnoses to select an 
average treatment applied to an average 
patient with average outcomes. Yet, it is 
empirically evident that cancer is a complex 
evolving system that does follow some rules 
that are known and can be modeled and 
predicted mathematically in each patient. For 
instance, we know that cancer is a 
proliferative process that outcompetes the 
otherwise normal tissue to grow. Cancer cells 
have the ability to engage and co-opt their 
local environment to their benefit for growth 
and invasion. While these cancer cells hack 
normal rules of biology to their advantage, 
other known or identifiable biological and 
physical rules drive and/or constrain 
phenotypes. Based on these processes, the 
seemingly unwieldy cancer process can be 
formalized as mathematical equations which 
can be parametrized for each patient’s data 

(e.g. imaging, molecular, tissue). Every cancer 
patient deserves their own individualized 
equation (TEDx: http://bit.ly/1p1pl8A), a 
personalized parameterization of their disease 
evolution that can be exploited to guide and 
optimize his or her care. 
 
Current and Future Challenges 

The potential machine learning (ML) or 
artificial intelligence (AI) applications to 
healthcare have recently received particular 
notice in the media with IBM’s Watson, 
applications to radiology and diagnoses aided 
by wearable technology amongst many 
others. Each of these examples are exciting, 
but the full promise of personalized medicine 
remains unrealized. While the amount and 
types of clinical data being generated for each 
cancer patient is increasing dramatically, 
there are no holistic approaches or algorithms 
available that can incorporate all this data to 
identify the best treatment for each individual 
patient. There are, obviously, many reasons 
for this, but a critical challenge is that cancer 
is a spatially complex, adaptive process and 
the data being collected, while vast, is quite 
limited in that it is showing, at best, 
infrequent snapshots of extremely small 
regions of the tumor. Ultimately, this means 
AI and ML models will not be able to be 
trained on the right data to make reliable 
predictions.  

Mechanistic models can help. Cancer is 
fundamentally a physical process subject to 
the same predictable laws of nature studied in 
physics and chemistry. Of course, it is also a 
biological, multicellular evolving ecosystem 
with critical events happening on an 
enormous range of spatial and temporal 
scales from improper DNA methylation to the 
alteration of an organ’s function. These 
complex interacting components complicate 
the interpretation of data and experimental 
planning. While there are many fields of 
cancer research, mathematical oncology, a 
field dominated by mechanistic models, is 
arguably the best equipped to abstract 
overarching principles and develop a deeper 
understanding of how the mechanisms driving 
cancer can be exploited and shut down. To 
date, however, there are few models that 
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have bridged the scales necessary to fully 
utilize all the data generated. Thus, these 
models provide insight, but are not 
necessarily adapted to assimilate the breadth 
and depth of the data.  

Advances in Mathematics, Technology, or 

Data to Meet Challenges 

These two approaches, insightful mechanistic 
models and the powerful black box of 
machine learning, are highly complementary. 
A grand challenge of our day is to develop 
methods leveraging both their strengths to 
create a symbiotic modeling paradigm such 
that its whole is greater than the sum of its 
parts - one that can both leverage the vast 
data at our fingertips (machine learning) but 
also the knowledge we already have gained 
from that data (mechanistic models). We 
envision such mergers can and will take many 
forms. 

1. Mechanistic Model Calibration via 
Machine Learning A current challenge for 
mechanistic models is the incorporation of the 
vast amount of “omic” data into parameters. 
ML approaches could be used to identify gene 
or expression signatures that best correspond 
with given mechanistic model parameters 
utilizing cell cultures and preclinical models. 
Once initial signatures are found, correlations 
could be validated with in vivo human data. 
2. Mechanistic Model Outputs as Inputs 
to Artificial Intelligence Models A critical 
limitation for AI models is the relatively 
limited amount (both spatially and 
temporally) of data available for training. 
Mechanistic models can be used to create 
personalized extrapolations of the provided 
data for utilization in the AI models. This 
synthetic data could be used as a regularizer 
or as fully weighted training data and could 
enhance the model stability when working 
with smaller sets of data. 
3. Actionize Machine Learning 
Predictions with Mechanistic Models Static 
outputs from ML models could be leveraged 
as initial conditions in dynamic mechanistic 
models to move the ML prediction forward in 
time. If, for instance, a ML model could take 
information from the transcriptome to predict 
local concentrations of cellular constituents, 

this information could provide an initial 
condition for models of cellular interaction 
allowing the mechanistic model to better 
incorporate data from many different scales. 
4. Data Assimilation for Mechanistic 
Models utilizing Machine Learning Outputs 
Building on the previous method, if the 
appropriate data for the ML model is 
anticipated to be available for a series of 
discrete time points, such as MRIs, the ML 
model output can be used within a data 
assimilation framework to continuously 
correct predictions from mechanistic models. 

 

 
Concluding Remarks 

Science and data have always had a strong 
relationship, but in the last decade or so, the 
term data science has started taking on a 
specific meaning related to machine learning 
and artificial intelligence which ironically 
leaves behind the notion of the scientific 
method and hypothesis testing. While there is 
no doubt that the recent explosion of data 
cannot be fully exploited without such AI 
methods, mechanistic models offer a strong 
complementary, hypothesis driven, approach 
to synthesizing meaning and strengthening 
predictions that should not be ignored. This is 
particularly true in the field of mathematical 
oncology, where the data is often vast and 
deep but not representative spatially or 
temporally. Creating fundamental mergers 
between these two approaches is a critical 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – We allow at most two 

Figure 1. Illustrating the types of advances one might 
expect to see in the integration of mechanistic modeling 
into machine learning methods (and vice versa) applied to 
the case of brain cancer. Mechanistic models, e.g. 1–5, and 
machine learning, e.g. 6,7, can interact in multiple ways. 1) 
ML models can help mechanistic models make sense of 
multi-scale data to calibrate parameters, e.g. 8,9. 2) 
Mechanistic model predictions can be used as input into 
ML models to augment spatially or temporally sparse 
data, e.g. 10 3) Static outputs from ML models can be used 
as initial conditions for mechanistic models and 4) ML 
models and mechanistic models can work together via 
data assimilation to create spatially and temporally 
resolved predictions over long periods of time. 
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step to fully realizing the vision of targeted 
personalized therapy.  
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Status 

Cancer presents a complex series of systems 

problems involving intracellular dynamics, 

intercellular interactions, and extracellular 

biochemical and biophysical processes, 

embedded in a complex and continually 

changing spatial context. Although single 

laboratories can contribute important 

advances, they cannot individually solve the 

large-scale problems of cancer biology. As a 

result, consortia of experimental labs, clinical 

centers, and computational groups are 

increasingly pooling their specialized expertise 

to gain new insights into the complexity of 

cancer [11]. This pooling requires integration 

not only of heterogeneous data collected by 

different groups, but also of scientific 

hypotheses and deductive observations 

(knowledge capture), and conceptual, 

mathematical and computational models. 

Such integration is much more efficient when 

data and knowledge representations are 

standardized.  

Difficulty in finding, accessing, 

interpreting, and reusing data, knowledge, 

and models hinders collaborative cancer 

research. A lack of standardized data and 

knowledge representations, inconsistent 

metadata (e.g., to describe experimental 

protocols), technical and financial obstacles, 

and systemic cultural barriers all discourage 

sharing [12]. Modern genomics and 

proteomics demonstrate that widespread 

adoption of data standards enables faster and 

more efficient scientific progress. 

Many biological research 

communities are developing standards to 

annotate and share concepts and data. For 

example, the microarray and microscopy 

research communities are developing 

standards for sharing annotated data such as 

MGED [13] for microarrays, OMERO [14] for 

microscopy, and the National Cancer 

Institute’s “Common Data Elements for 

Cancer Research” [15].  

Currently a lack of standards impedes 

sharing of many types of mathematical 

models and computer simulations of cancer. 

While mathematical models can elegantly 

express data-driven hypotheses, their reuse 

and combination into larger-scale models 

requires (currently lacking) standardized 

representations of equations, model 

assumptions, and the rationale for parameter 

estimates. The same problems apply to 

computer simulations. 

The Systems Biology Markup 

Language (SBML) community has successfully 

developed standards to describe dynamic 

biological network models and to enable their 

translation into executable computer 

simulations [16]. The SBML standard not only 

defines mathematical concepts and syntax, 

but also allows annotation of model 

components with biological terms (e.g., 

naming genes and biological processes). Well-

constructed SBML models retain their 

underlying biological descriptions and 

associated scientific knowledge. Similar 

standards for representing multicellular data, 

knowledge and models are critical for cancer 
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research, but they are presently less 

developed. The Cell Behavior Ontology [17] 

and MultiCellDS [18] are steps in this 

direction. Standards for general knowledge 

and hypothesis representation are even less 

developed.  

Current and Future Challenges 

To maximize the value of mathematical 

models and computer simulations of cancer to 

the research community, funding agencies, 

and society, data, knowledge, models, and 

simulations should be FAIR: Findable, 

Accessible, Interpretable and Reusable [19]. 

Describing models and data using accepted 

biological nomenclature and maintaining their 

links with their underlying biological 

hypotheses would greatly facilitate finding, 

accessing and interpreting their domain and 

biological content, maximizing their value by 

capturing their embedded scientific 

knowledge for reuse. 

To enable sharing and reuse in future 

research, we must record experimental, 

clinical, and simulation data using community-

driven standards, drawing upon ontologies 

that precisely define biological terms and 

relationships. These data must include 

metadata such as descriptions of 

experimental and computational protocols 

that contextualize data and allow replication 

[12, 19].  

Beyond expressing raw data and 

models, the community must also develop 

annotations of biological hypotheses, 

observations and insights (knowledge). 

Researchers often communicate this 

information using qualitative conceptual 

“mental models” or “verbal models” that 

represent decades of expert learning. 

Machine-readable, searchable 

representations of conceptual biological 

knowledge would greatly facilitate sharing 

[12]. 

Because sharing computational 

models is largely limited to sharing source 

code with little documentation and no 

biological annotations (or worse, executables 

with no source code), simulations are often 

unreproducible [19]. Future computational 

models (and their parameter sets) must be 

biologically annotated to facilitate their reuse 

in more comprehensive multiscale 

simulations. Biological annotations would also 

make computational models more accessible 

via search engines, reducing the need for 

formal repositories and driving further reuse. 

Advances in Mathematics, Technology, or 

Data to Meet Challenges 

Enabling FAIR research requires robust 

annotation schemes for biological, clinical, 

mathematical, and computational data, 

including context, biological assumptions, and 

knowledge gained. Relationships and 

interactions between biological entities and 

processes resemble graph structures in SBML 

network models. However, “translating” 

imaging data into biological annotations will 

require machine learning approaches that 

extend beyond present-day image processing 

and feature extraction tools [12]. More 

broadly, tools and utilities must develop 

alongside standards to make standards-

compliant science simple and user-friendly, 

and to integrate it into existing experimental, 

mathematical, and computational workflows. 

We can learn from the SBML 

community's experience to develop similarly 

robust and FAIR descriptions of mathematical 

and computational models beyond SBML's 

interaction-network concepts. Representing 

spatial effects is particularly challenging. 

Projects like CellML [20] and MultiCellDS [18] 

require continued effort to grow from white 

papers to widely-adopted standards. 

Synergies are clearly possible. For example, 

descriptions of microscopy imaging data and 

multicellular simulation outputs have 

significant overlap and should admit a 

common description language. 

We also need to harmonize the 
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numerous data and model standardization 

efforts across biotech and biological 

communities. These efforts need to 

coordinate to ensure that emerging standards 

are consistent, particularly in the biological 

description of data, experiments, models, and 

knowledge. Ideally, harmonized standards 

should apply to many types of experimental 

observation (e.g., high throughput 

microscopy), and generalize from cancer to 

normal physiology and other diseases.  

Standards should be designed so that 

they support, rather than inhibit, creativity. 

Tools that make annotation and standards 

compliance easy are critical to voluntary 

adoption. Properly implemented and 

extensible standards serve as a conduit to 

communicate new ideas and allow better 

connectivity between models, tools, and data. 

Well-implemented standards provide 

value to individuals in the form of increased 

access to data, models, and tools, and greater 

impact via reuse. We must also ensure that 

standards are straightforward to implement 

across computing languages and platforms, 

particularly for scientists who focus on 

developing conceptual and mathematical 

models.  

 

Concluding Remarks 

Sharing cancer data, models, and 

knowledge using standardized formats and 

FAIR principles offers substantial benefits. 

Stable standards will encourage development 

of shared software that can import annotated 

data, design models, execute them as 

simulations, and analyze their outputs. As 

technologies such as bioprinting advance, the 

same tools could enable the direct translation 

of captured knowledge into living 

experiments. 

Technologies for sharing will help us 

create automated tools that systematically 

mine biological literature, databases, and 

knowledge repositories. Sharing technologies 

and standardized data are essential if machine 

vision and other learning approaches are to 

automate the extraction of observational 

insights from experimental, clinical, and 

simulation data [12].   

Widespread adoption of standards 

and adherence to FAIR principles will 

transform cancer research into an ecosystem 

of mutually compatible concepts, data, 

models, and tools. Such standardization will 

enable community science that exceeds the 

sum of its parts and accelerates progress in 

treating cancer. 

Acknowledgements 

PM was funded by the Jayne Koskinas Ted 

Giovanis Foundation for Health and Policy, the 

Breast Cancer Research Foundation, the 

National Institutes of Health (NCI U01 

CA232137-01, NIH OT2 OD026671-01), and 

the National Science Foundation (1818187). 

PM and JAG were funded by National Science 

Foundation grant 1720625. JPS and JAG were 

funded by National Institutes of Health grants 

NIGMS GM111243 and GM122424. 

 

Multiparametric imaging to enable 
rigorous tumor forecasting 
David A. Hormuth II, Angela M. Jarrett, 

Ernesto A. B. F. Lima, J.Tinsley Oden, George 

Biros, Thomas E. Yankeelov 

Oden Institute for Computational Engineering 

and Sciences, The University of Texas at 

Austin, Austin, TX 78712, USA 

Status 

While mathematical modelling of tumor 

growth dynamics has a long history, current 

approaches are limited in their practical 

applicability. There exist three main reasons 

for this. First, tumor dynamics are extremely 

complicated because of the underlying 

physical and biological processes, as well as 

the variability across individuals. Second, we 

cannot easily conduct relevant experiments; 

we can, for obvious reasons, only observe. 
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Third, the data we do observe is limited; we 

typically have few measurement points via 

anatomical imaging or biopsy.  Despite those 

formidable challenges, there is hope. Several 

imaging methods exist that can provide 

quantitative information noninvasively, in 

three dimensions, and at multiple time points.  

In particular, magnetic resonance imaging 

techniques can quantitatively characterize 

vascular properties, cellularity, pH, and pO2 

[21]. Furthermore, positron emission 

tomography can quantitatively characterize 

metabolism, proliferation, hypoxia, and 

various cell surface receptors [22].  These 

measurements can be made throughout 

therapy; thus, imaging allows models to be 

constrained with patient specific data rather 

than tabulations from the literature or animal 

studies.  

In recent years, there have been 

increasingly successful examples of 

integrating patient-specific information with 

mechanism-based mathematical models 

designed to predict the spatio-temporal 

development of cancer.  Successful efforts 

matching model predictions with clinical 

observations have been realized in cancers of 

the breast (Figure 1, [23]), kidney [24], and 

brain [25].  

 Current and Future Challenges 

If a mathematical model could faithfully 

predict the spatiotemporal evolution of an 

individual’s tumor, then patient-specific 

hypotheses could be tested in silico, thereby 

allowing the optimizing of intervention for the 

individual patient using the specific 

characteristics of their own unique situation.  

Unfortunately, this vision is quite 

disconnected from the current state-of-the-

art, and remains a grand challenge in 

mathematical oncology. Currently, the 

response of solid tumor to therapy is 

monitored by changes in tumor size as 

measured by physical exam or anatomically-

based, imaging; unfortunately, these methods 

cannot determine response as anatomical 

changes are often temporally downstream of 

underlying physiological, cellular, or molecular 

changes. Early and accurate predictions would 

enable replacing an ineffective treatment with 

an alternative regimen, thereby potentially 

improving outcomes and curtailing 

unnecessary toxicities. The development of 

mechanism-based, predictive mathematical 

models that could address this fundamental 

shortcoming in cancer care would represent, 

without question, an enormous improvement 

in the human condition. The major challenges 

to achieving this goal can be summarized by 

the following three questions: 

1. Among the enormous number of models 

covering a huge range of physical and 

biological events, which models are the “best” 

for predicting quantities of interest? 

2. How is the uncertainty in the predicted 

quantities of interest quantified and how can 

the model predictions significantly improve 

patient care? 

3. How can one access data to inform 

computational models and, at the same time, 

cope with experimental noise and errors in 

the systems used to collect and process data?   

 

 

Figure 1. A breast cancer patient was scanned by
magnetic resonance imaging at four points during
neoadjuvant therapy (NAT). The first two scans (left set
of images) are used to calibrate model parameters for
predicting response observed at the third time point. The
last two scans (right set) are used to update parameters
for predicting response observed at the time of surgery.
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Advances Needed to Meet the Challenges 

The importance of accurately predicting 

eventual patient response is difficult to 

overstate. The field of numerical weather 

prediction provides an excellent example of 

how practical, predictive oncology can be 

achieved.  Weather prediction employs 

satellites to provide a diagnosis of the state of 

the atmosphere, which is then evolved 

forward by meteorological models to provide 

a prognosis (i.e., a “forecast”) of the 

atmosphere’s future state. Similarly, imaging 

provides a diagnosis of the state of a cancer, 

which can then be evolved forward by 

mathematical tumor models to provide a 

prognosis of the tumor’s future development 

[26]. With this analogy in mind, we discuss the 

advances that must be made to address the 

three questions of the previous section.  

It is imperative that the field constructs 

mathematical models based on the 

established principles of physics and cancer 

[27]. While phenomenological models can 

provide practical advances for predictive 

oncology (e.g., the linear quadratic model of 

radiobiology [28]), they are fundamentally 

limited in their ability to describe the 

underlying biology and, therefore, the precise 

effects of any therapeutic intervention. 

Unfortunately, this has proved to be a terribly 

difficult undertaking as we do not yet have 

the F = ma of cancer.  In lieu of this 

fundamental relation, we have advocated for 

developing families of models (reminiscent of 

the approach used in weather modelling), 

each with its own set of biological and 

physical assumptions [26, 29]. These models 

are then calibrated with rationally selected, 

patient-specific data, before being subjected 

to a Bayesian methodology that both selects 

the optimal model and then validates its 

ability to accurately predict the 

spatiotemporal development of an individual 

patient’s tumor.   

The sentiment that we are “swimming in 

data” is often expressed, but it is a 

tremendous oversimplification. While it is true 

that there are volumes of clinical data 

available, it is not of the kind that is readily 

integrated into mechanism-based models. We 

may be swimming in data, but we are in the 

wrong pool. Advances in biomedical imaging 

are now providing us with the appropriate 

tools to quantitatively characterize cellular, 

molecular, and physiological processes that 

can constrain the next generation of 

predictive models.  

 

Concluding Remarks 

It must be stressed that building data-

informed, mechanism-based mathematical 

models of cancer is a fundamentally different 

approach than relying only on “big data" [30].  

This is not to dispute the fact that statistical 

inference is of critical importance; but rather, 

by its very nature it is based on statistical 

properties of large populations in which 

conditions that prevail in specific individuals 

are hard to detect.  That is, the “big data-

only” approach cannot account for subtle 

changes in the individual patient—indeed, the 

very characteristics that make us individuals—

over an extended time. It is critical to unite 

such population-based statistical data with 

patient-specific measurements and with 

patient-specific mathematical models that can 

predict patient-specific changes associated 

with cancer initiation, progression, and 

response to therapy. This transformation is 

inevitable. 
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Status 

Cancer screening aims to detect neoplastic 

changes early for curative intervention. 

Current programmes, however, suffer from 

both overdiagnosis of benign lesions and 

underdiagnosis of dangerous lesions missed 

by screening [31]. Consequently, 

improvement in screening success is an 

important health policy research area, and 

one primed for quantitative assessment. In 

this Roadmap article we argue that 

mathematical modeling of tumor evolution 

will underpin radical improvement in the 

effectiveness of screening and surveillance. 

 For clarity within a varied literature, 

the term cancer screening refers to initial 

testing for the presence of a specified 

neoplastic change of interest in the body (e.g., 

detection of premalignant or malignant 

lesions). Subsequent tests that are offered 

after an initial screening diagnosis are defined 

as surveillance screens. A biomarker is a 

measurable, objective indication of a 

biological state (e.g., aneuploidy or tumor 

size) associated with relevant preclinical 

disease states potentially before symptoms 

develop.  

The length of time between the early 

detection of a preclinical state and the future 

clinical detection is called lead time, which 

depends on the nature of the biomarker 

measured. If the age at completion of lead 

time surpasses patient lifetime, this patient 

will be considered an overdiagnosed case for 

that cancer. Lastly, risk stratification refers to 

prognostic subgrouping offered to patient 

groups based on screen outcome.  

Currently, screening design uses data 

from epidemiological studies but does not 

typically consider tumor evolution, which 

ultimately determines disease development 

timescales. From a biological perspective, 

early detection of biomarkers that alert us to 

cellular changes along the path to cancer (e.g., 

premalignant metaplasia detected in biopsy 

sample histology, or circulating tumor DNA 

present in liquid biopsies) is the clinical 

manifestation of field cancerization, wherein 

groups of cells have acquired some but not all 

of the phenotypes necessary for clinical 

malignancy [32]. If we determine the pattern 

and pace at which normal cells become 

cancerized in their microenvironments, we 

can utilize multiscale data within 

mathematical models of carcinogenesis to 

evaluate and predict the efficacy of screening 

strategies for early detection in silico (Fig 1).    

The impact of this research will be to 

develop novel methodology capable of 1) 

utilizing screen data to assay the carcinogenic 

process in vivo, and 2) robustly assessing and 

refining screening practices using mechanistic 

forecasting to improve early detection and 

personalize clinical recommendations.  
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Current and Future Challenges 

Current screening prevents cancer deaths but 

there are many areas for improvement. Below 

we discuss a few main challenges faced. 

1. Defining success and introducing bias 

To measure the efficacy of screening, 

investigators may perform randomized 

control trials (RCT) to compute relative risks of 

endpoints such as cancer incidence and 

mortality between screened and unscreened 

populations [31]. Although intended to reduce 

biases, these studies are not designed to 

predict long-term trade-offs in costs vs. 

benefits between alternative 

screening/lifelong surveillance regimens, 

which instead require decision modeling [33-

39]. The choice of metric for quantifying early 

detection-associated costs (e.g., decreased 

patient quality of life or burden to the 

healthcare system per overdiagnosed case) vs. 

benefits (e.g., life-years gained or cancer 

precursor eradication per screen) will vary 

cost-effectiveness results.  

2. Choosing an appropriate computational 

model  

Model selection for the established 

outcome must capture the essential 

features of disease progression from birth 

to death. These might include 

epidemiological features such as patient 

smoking history [33] and sampling modality 

such as tissue [34] or blood [35] biopsies. 

Importantly, the relationship between 

biomarker level and time (Fbiomarker, Fig 1) is 

often sensitive to clinically unobservable 

events, such as metastasis initiation [36] 

and false positive diagnoses [37], 

potentially confounding reports from 

medical exams and contributing to 

inaccuracy of mathematical formulation. 

3. Handling stratification and heterogeneity 

Based on biomarkers measured from screens, 

patients are stratified into ‘low’ and ‘high’ risk 

groups. Prognostic cut-offs between groups 

are ultimately arbitrary and can be subject to 

medical discretion. Two common issues with 

this practice are that studies rarely consider 

time-dependent implications (e.g., a high-risk 

mutated cell may not survive long enough to 

initiate tumorigenesis) and most rely on a 

small subset of risk factors measured at a 

single time point rather than a holistic view of 

diverse patient background (e.g., family 

history of cancer, lifestyle, immune system’s 

innate ability to eliminate mutated cells, 

adverse mutations). Moreover, the challenge 

is to accurately characterize the unique 

evolutionary trajectories of individuals (Fig 

1A), while still recommending useful 

screening programs that capture average 

population behavior (Fig 1B). 

4. Testing and performing model validation  

New technologies for early detection are 

rapidly developing, but it remains costly to 

obtain large, longitudinal cohort follow-up 

data to robustly assess outcomes and validate 

Figure 1.  A) Evolutionary trajectories of slow versus fast carcinogenesis 

correspond to longer versus shorter lead times for potential clinical 

intervention, respectively. B) Screening programme design aims to 

maximise positive biomarker yield in an average at-risk population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – We allow at most two figures that 

are roughly the size of this box. 
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screening recommendations in those with an 

adverse biomarker state; such clinical 

evidence will be required before altering the 

existing screening regimens.  

 

Advances in Mathematics, Technology, or 

Data to Meet Challenges 

1. Collecting population data for research use 

National health institutes are increasing 

support of early detection studies obtained 

from prospective cohort and large-scale 

population screening, which will better inform 

parameters used in modeling such as disease 

regression rates and more subjective 

measures like quality-adjusted life-years used 

in economic evaluations. 

2. Mathematical developments 

Mathematical modeling (stochastic processes, 

evolutionary theory, dynamical systems, 

differential equations) is a framework that can 

help us to rigorously answer the questions of 

‘when’ to screen individuals for cancer 

indications, and ‘who’ will benefit most from 

particular surveillance regimes and clinical 

intervention.  There is a clear need for novel 

methods to combine models with classical 

biostatistics commonly used in cancer risk 

stratification studies for clinical translation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Three current methodologies for assessing 

cancer screening with modeling are shown in 

Fig 2. These include Markov chains for natural 

history of disease transition [33,37,38], 

biologically-based models that can 

incorporate evolutionary dynamics like clonal 

expansions and biomarker shedding in diverse 

lesions [33-36,39], and biological event timing 

models that infer critical genetic events 

during carcinogenesis [40]. Moreover, 

biologically-based models could inform the 

transition probabilities of the Markov 

approach. The aim of all of these models is to 

quantify long latency periods of 

premalignancy on a patient’s forecasted 

evolutionary trajectory. These periods provide 

a window for therapeutic intervention when 

detected during effectively-timed screens.  

3. Modern technologies for sensitive and 

specific early detection biomarkers  

Rapid advancements in multi-omic and optical 

imaging technologies allows for the diagnoses 

of precancerous and early cancer lesions at 

higher resolution and at decreasing cost to 

the healthcare system. This will provide 

researchers with better understanding of 

patient-specific disease evolution, and 

ultimately result in personalized prevention 

efforts becoming a clinical reality. Taking a 

holistic view and studying disease evolution at 

adequate power will require huge amounts of 

well-annotated patient data, but with 

digitization of medical records and large 

population cohorts currently undergoing 

follow-up, we envisage this may be feasible 

within the next 30 years. 

 

 

Figure 2.  Three models of carcinogenesis to evaluate 

screening. (A) Natural history models may also explicitly 

include misdiagnoses into transition rates. (B) Biological 

models can incorporate growth rates initiated by tumor 

suppressor gene inactivation (e.g., APC in colorectal 

adenomas [9]). (C) Inferred biological event models can 

include alternative pathways such as known germline 

mutations (e.g., VHL in patients with von Hippel-Lindau 

disease [10]). 

 

 

 

Page 15 of 46 AUTHOR SUBMITTED MANUSCRIPT - PB-100995.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Phys. Biol. ## (2019) ######  Roadmap 

4. Performing virtual trials in silico for rigorous 

model selection and testing 

 Well-calibrated mathematical models provide 

a cost-effective, ethical means for simulating 

virtual cohorts of patient outcomes to judge 

the effectiveness of a screening/surveillance 

regime both across a population and in 

individuals. Bayesian approaches and deep 

learning of large clinical datasets will also 

enhance statistical inference of unobserved 

events that drive carcinogenesis timing; such 

modeling will be necessary in future early 

detection research as it is not technically 

feasible to measure many aspects of 

tumorigenesis (such as single progenitor cell 

initiation) in the patient cohort itself. 

Moreover, this dynamic, computational 

approach is a straightforward method to 

continuously test and recommend 

modifications to screening/surveillance 

guidelines (e.g., to reflect subsequent 

technological advances in endoscopic optical 

imaging), as opposed to the current situation 

wherein such guidelines are updated on 

average once per decade.  

 

Concluding Remarks 

There is exciting potential for mathematical 

modeling in addressing the challenges of 

cancer early detection, alongside 

developments in biomarker discovery and 

validation. Modeling cancer screening will 

allow researchers to examine the underlying 

cause of the vast inter- and intra-patient 

heterogeneity we currently observe clinically 

during disease progression in a robust and 

unbiased way. It will be possible to create 

explicit formulations for the dynamics of 

biomarker changes in the body and to 

formulate quantitative functions for screening 

efficiency in order to optimize cancer 

screening and surveillance scheduling.  

In reality, all cancers form from a 

series of evolutionary changes that may be 

detectable (and potentially preventable) if we 

anticipate and seek such changes during 

screening, and track them during surveillance 

to direct clinical action. In our increasingly 

integrated world, patients, doctors, policy-

makers, and mathematical modelers will be 

required to engage in interdisciplinary science 

efforts to best answer questions about how to 

beat cancer early.  
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Cancer dynamics 
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Status 

The development and progression of cancer is 

driven in part by evolutionary processes 

within the underlying tissue cell populations. 

Cells that are subject to homeostatic 

regulation in healthy tissue acquire mutations 

that can alter the properties of the affected 

cell.  Many such mutations can lead to a 

selective disadvantage while others do not 

change the fitness of the cell or confer a 

selective advantage. Accumulation of one or 

more such driver (advantageous) mutations 

can allow the cells to escape homeostatic 

regulation and to proliferate out of control. 

These clonally expanding cells can in turn 

accumulate further mutations that result in 

increases in heterogeneity in the cell 

population and in further progression of the 

tumor. Such evolutionary processes are not 

only crucial for the disease development, but 

can also contribute to resistance against 
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cancer therapies. It is therefore crucial to gain 

understanding of both the evolutionary 

principles according to which tumors 

progress, and the mechanisms by which 

treatment resistance evolves. 

 

Mathematical models form an integral part in 

the analysis of evolutionary dynamics in 

general, and the same applies to evolutionary 

dynamics in the context of tumors [41, 42]. 

Mathematical and computational work has 

contributed insights both into aspects of 

tumor initiation and progression, and into the 

principles of resistance evolution [43]. 

Important measures that have been 

investigated include the probability that 

mutants resistant against a given treatment 

regime exist in the tumor cell population at 

the time when treatment is started; the 

expected number of mutants that are present 

at the time when treatment is started; the 

probability that mutants with certain 

characteristics become fixed in healthy tissue 

or an emerging tumor; the time it takes for 

mutants to rise towards a certain threshold 

level, etc.  In the context of specific tumors, it 

has been possible to measure some of the 

main parameters underlying such models for 

individual patients. One example is chronic 

lymphocytic leukemia [44]. Division and death 

rates have been measured by administering 

deuterated water to patients, radiological 

imaging has been used to estimate the total 

tissue tumor burden, and model fitting to 

clinical data has been used to estimate kinetic 

parameters underlying treatment responses. 

With the knowledge of such patient-specific 

parameters, the mathematical modeling 

approaches can in principle be used to make 

individualized predictions about treatment 

outcomes, such as the time to resistance-

induced relapse against targeted therapies 

[45]. They can further be used to explore 

alternative treatment options with the aim to 

prolong the duration of tumor control.  

Current and Future Challenges 

Much of the work described so far has been 

performed under the assumption that there is 

no spatial structure in the cell population, i.e. 

that cells mix well with each other. This might 

be a reasonable approximation for some 

leukemias, but is an unrealistic assumption for 

solid tumors, which are characterized by 

complex spatial structures. A variety of spatial 

computational models of tumors have been 

developed to study different questions, e.g. 

[46], notably mechanistic models of tumor 

growth and vascularization have been 

successful. Many aspects of the evolutionary 

dynamics of mutant populations in spatial 

settings, however, remain poorly understood. 

Interestingly, analyses of spatial evolutionary 

processes performed so far indicate that the 

dynamics can be significantly affected by 

spatial structures, often in complex ways. An 

example is the process of fitness valley 

crossing, where an advantageous phenotype 

requires the accumulation of two (or more) 

separate mutations, each of which is 

individually deleterious or neutral. Such 

evolutionary pathways have been 

documented to occur in the context of many 

cancers. An example is the inactivation of 

tumor suppressor genes, such as the APC 

gene in colorectal cancer, where both copies 

of the gene have to lose function for the cell 

to become advantageous.  It turns out that 

the evolutionary timing of fitness valley 

crossing depends on the exact assumptions on 

the spatial dynamics [47] (Figure 1). 
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In the spatial Moran process model that 

assumes constant cell populations, spatial 

interactions were found to accelerate the rate 

of fitness valley crossing. By contrast, in 

contact processes that do not assume 

constant cell populations, the rate of fitness 

valley crossing could be accelerated or 

delayed, and there could even be an optimal 

degree of mixing that maximizes the rate of 

evolution.  

 

Studies of single mutant dynamics in spatially 

structured cell populations have also shown 

that basic mutant dynamics in space are 

different compared to well-mixed scenarios 

[48]. The fate of mutants can depend on the 

timing and the spatial location of mutant 

emergence. Mutants that are generated 

relatively early and at the surface of an 

expanding spatial cluster of cells can grow to 

relatively large numbers (also referred to as 

“jackpot” mutations). On the other hand, 

mutants can become surrounded and encased 

by wild-type cells, which limits their growth 

and introduces and element of competition 

between mutant and wild-type cells, even 

though the tumor mass is characterized by 

unbounded growth. A better understanding of 

how evolutionary processes contribute to 

cancer development in such settings is crucial 

for improving therapies. It is especially 

important is to gain understanding of how 

mutants clones defined by different 

susceptibilities to specific therapies develop in 

such spatial scenarios, both in the presence 

and in the absence of treatment. 

 

Advances in Mathematics, Technology, or 

Data to Meet Challenges 

As more information is obtained about the 

spatial evolutionary dynamics of tumors, both 

experimentally and theoretically, spatial 

computational models will increasingly form 

the basis for simulating disease progression 

and therapy outcome for specific scenarios 

and individual patients. In contrast to 

investigating basic principles of evolutionary 

dynamics, however, these applied questions 

will require the simulation of tumor growth 

and evolution at realistically large population 

sizes. Because this brings with it significant 

computational costs, the simulation of cell 

populations that reach sizes between 1010 and 

1013 cells becomes unfeasible. The problem 

lies in the fact that while the overall tumor 

population size is very large, mutant cell 

populations exist initially at very small 

numbers, which requires stochastic 

simulations. The time step in stochastic 

simulation algorithms decreases as the overall 

population becomes large, thus rendering 

such computer simulations impractically slow. 

One way in which this problem has been dealt 

with is to assume smaller cell populations and 

higher mutation rates, hypothesizing that the 

dynamics scale in realistic ways. It is, however, 

currently unclear whether this holds true.  

Figure 1: Schematic illustrating the different effects spatial 

restriction can have on the waiting time until a fitness valley is 

crossed, in the Moran Process and the contact process. 

Nearest neighbor interactions represent the strictest degrees of 

spatial restriction, while mass action corresponds to perfect 

mixing of cells. 
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Therefore, to be able to simulate and predict 

tumor development and treatments at 

realistically large population sizes and at 

realistically small mutation rates, novel 

computational methodologies are required.  

To this end, a modeling approach has been 

proposed which assumes that the tumor 

consists of discrete microlesions; cells can 

migrate from microlesions to establish new 

ones, which can all grow over time, and new 

driver mutations can be generated [49]. From 

this model, the average behavior can be 

obtained analytically, which allows simulation 

of tumor dynamics and evolution at large 

sizes. In order to capture the stochastic 

dynamics of various mutant types, however, 

methodologies need to be developed that 

allow the stochastic description of small 

mutant clones in a spatial setting in realistic 

time frames. Deterministic partial differential 

equation approximations of such spatial, 

stochastic processes generally do not yield 

accurate time series. In the context of mixed 

populations (where stochastic dynamics are 

simulated e.g. with Gillespie’s method), novel 

computational approaches have been 

developed (e.g. the Next Reaction Method 

and Tau-Leaping methods), which try to 

address these difficulties. There is also an 

important push in the development of hybrid 

stochastic-deterministic approaches, where 

small populations are handled stochastically, 

while larger populations are described 

deterministically.  Such approaches have been 

typically employed in the field of physical 

chemistry, but have not significantly 

penetrated the studies of population 

dynamics and evolution, presumably because 

they can rely on theoretical concepts (e.g. 

Langevin’s equation), which are not very 

common in these fields. At the same time, 

such approaches would be very useful for the 

field of mathematical oncology, as 

demonstrated by a recent study [50]. 

Application of such methodology to spatial 

dynamics, however, is a complicated 

extension, the development of which will be 

as challenging as it is important. The ability to 

simulate spatial tumor evolution at realistic 

population sizes and mutation rates will be 

central to the development of clinically 

applicable computational models of tumor 

evolution, which can be used for the 

personalization of therapy regimes.  

 

Concluding Remarks 

The importance of spatial genetic 

heterogeneity in tumors has penetrated 

clinical and experimental cancer research. In 

various cancers, data indicate that a tumor 

mass can consist of regions that are 

genetically distinct and that contain different 

mutants that can influence the susceptibility 

of these cell clones / spatial regions to 

therapies. The emerging biological details 

about evolutionary patterns in spatially 

structured tumors will allow appropriate 

computational models to make more accurate 

and clinically relevant predictions regarding 

disease course and treatment outcome, and 

the availability of efficient computational 

methodologies will be of central importance 

in this respect.    

 
A single-cell topological view of 
cancer heterogeneity and evolution 
Luis Aparicio*, Mykola Bordyuh* and 
Raul Rabadan. Department of Systems 
Biology, Columbia University 
*These authors contributed equally to this work. 

 

Status 

A tumour is a dynamic disease of the cell that, 

through alterations in its genome and 

epigenome, leads to its uncontrolled 

proliferation.  Tumours are found to vary 

dramatically across patients (inter-tumour 

heterogeneity) and across cells within a 

tumour (intra-tumour heterogeneity). 

Heterogeneity has been found to be a major 
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factor in cell adaptation driving spread and 

response to therapy [1].  

 

With the advent of high throughput 

sequencing [2], there has been a dramatic 

development in the characterization of inter-

tumour diversity. Large scale efforts, like The 

Cancer Genome Atlas or the International 

Cancer Genome Consortium, have portraited 

the molecular make up of thousands of 

tumours generating diverse large-scale 

biological datasets. The need to extract useful 

biological and clinical knowledge from these 

efforts have highlighted the necessity for new 

mathematical and computational methods to 

analyse and integrate them.  

 

The past few years have witnessed the further 

development of a variety of techniques 

enabling single-cell molecular measurements, 

including sequencing the DNA of single cells, 

or measuring their mRNA, methylation, 

chromatin state or protein levels [3, 4]. Single-

cell RNA sequencing constitutes a powerful 

technology to address the problem of intra-

tumor heterogeneity, enabling the 

quantification of transcriptome landscapes at 

single-cell resolution, and providing a tool to 

observe the dynamics of tumor evolution.   

However, single-cell sequencing data comes 

with some unique analytical challenges. These 

challenges can be appreciated in dynamic 

biological phenomena like cell differentiation 

or tumor evolution, continuous processes 

where traditional clustering methods may not 

be suitable. While clustering tries to split data 

into seemingly distinct sets, the analysis of 

dynamic processes needs methods that are 

able to capture the continuous relation 

between cellular states. Topology is a branch 

of mathematics that studies continuous 

transformations of geometrical objects. 

Topological data analysis (TDA) adapts 

techniques of topology to extract information 

from the geometric and topological data 

structure. This makes TDA amenable to deal 

with continuous data structures and 

therefore, to analyze single-cell data of 

dynamic biological processes, including 

cancers.  

 

 

 
Current and Future Challenges 

Ambitious large-scale single-cell projects aim 

to provide atlases of millions of cells pushing 

the analysis into the paradigmatic “Big-Data”, 

high-dimensional scenario. The variety of 

single-cell platforms and associated unique 

technological challenges bring an additional 

layer of complexity into the analysis. 

Associated technological problems vary across 

platforms and include drop-out effects, big 

sparsity of the data (on the order of 90% of 

the inputs) and noisy biological or 

technological variability in gene expression 

(typically, around 99% of the variability is 

associated with the noise). On the other hand, 

the discovery of rare subpopulations and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A) Simulation of a longitudinal single-cell analysis with datasets at different 

timepoints. Different colours represent different cell types or states. In the down side, 

a TDA representation. B) Comparison of TDA and traditional algorithms for 

dimensional reduction, as Multidimensional Scaling (MDS), Principal component 

analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). 

.   
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transitional cell states, which may amount 

only to a dozen per experiment, present 

unique computational challenges. Here, we 

would like to emphasize two mathematical 

properties of the underlying processes, that 

are useful when analyzing single-cell data [5]:  

The continuity, associated with cell 

differentiation and the locality property, 

important in identification of different 

branches of cell differentiation and small 

subpopulations. 

 

In Figure 1, we highlight these two important 

attributes and principles. In Figure 1A, we 

show the schematics of cell differentiation at 

different timepoints. Traditional clustering 

techniques only provide limited information 

about well-defined cell states, failing to 

explore continuous nature of cell 

differentiation processes. Topological 

representation of the processes, depicted in 

Figure 1 A (bottom), captures both continuous 

structure of the process and well-defined 

states of cells, associated with clusters. In 

Figure 1B, we illustrate the locality property, 

important in preserving differences in cell 

populations, that otherwise are disregarded in 

lower dimensions. If locality is not preserved, 

close cell types in high-dimensional spaces, 

but biologically distinct can be artifactually 

misrepresented as close (even identical) 

points in the reduced space. As an example 

(see Figure 1B), we took a 3D “Trefoil” curve, 

where every point is distinct in the original 

space. Low-dimensional representations, as 

MDS, PCA and t-SNE algorithm among many 

others, tend to create artifacts, by breaking 

the continuity or failing to separate distinct 

points. Topological representation respects 

both continuity and locality of every point. 

 

 

 

 

Advances in Mathematics, Technology, or 

Data to Meet Challenges 

In the past decade, TDA has emerged as a new 

discipline at the interface between machine 

learning and algebraic topology. The goal of 

TDA is to extract and represent information 

about the shape of data. One can think of 

single-cell data as points (cells) in a high-

dimensional space, where the dimensions 

correspond to the number of features 

(typically genes). Most constructions of TDA 

consist of replacing the original space by a 

mathematical object called simplicial complex, 

that captures topological features. Simplicial 

complexes can be seen as generalizations of 

networks (see Figure 1A and Figure 2).  

 

One of these properties is the skeleton of the 

space or Reeb space which informs us about 

the number of connected components in the 

space or how many holes of different 

dimensions exist. Mapper [6] is an algorithm 

based on TDA which constructs simplicial 

complexes as approximations to Reeb spaces. 

The result, when applied to single-cell data, is 

a network where nodes represent sets of cells 

with similar global transcriptional profiles, and 

edges connect nodes that have at least one 

cell in common. In Figure 2, we show an 

example of a topological representation for 

single-cell RNA sequencing of glioblastoma 

corresponding to a patient sequenced in [7].  

In this case, TDA is not only able to 

disentangle different tumor and stromal cell 

populations (Figure 2A), but also to capture 

intra-tumor heterogeneity. Figures 2C and E 

show a different distribution of astrocytes and 

oligodendrocytes within the tumor 

population. Interestingly, from panels B and D 

one can extract a certain correlation between 

the neural progenitor signature and the more 

proliferative cells and also more astrocyte-like 

markers. 
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Concluding Remarks 

Single-cell technologies are a powerful tool to 

study fundamental aspects of cancer biology 

at an unprecedented resolution. This is 

generating an increasing explosion of 

molecular data and as a consequence, the 

necessity of new mathematical methods to 

analyse it. On the other hand, the intrinsic 

features of single-cell datasets constitute a 

challenge for traditional methods of analysis 

based on combinatorics and clustering. TDA is 

a modern mathematical set of tools which has 

a potential to overcome these difficulties. 

Remarkably, algorithms based on TDA 

preserve locality and are able to capture the 

continuous nature of the biological 

phenomena that are analysed at a single-cell 

level [8, 9, 10]. This is crucial to understand 

better tumour progression and evolution. 

Future work applying TDA techniques may 

shed light on key questions in cancer studies 

like the structure and information contained 

in the tumour heterogeneity.   
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Metabolism in Cancer Progression 
Stacey D. Finley 
Department of Biomedical Engineering, 
University of Southern California, Los Angeles, 
CA 90089, USA 
 

Status 

Altered metabolism is a hallmark of cancer 

that enables cancer cells to meet the high 

energetic burden required to support their 

increased proliferation. Such metabolic 

reprogramming mediates cancer progression, 

influences treatment efficacy, and contributes 

to drug resistance. Thus, it is imperative to 

better understand tumor metabolism, 

including metabolic networks in cancer cells 

specifically, and in other cells that comprise 

the tumor microenvironment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – We allow at most two figures that are 

roughly the size of this box. 

Figure 2. A) A topological representation of a glioblastoma RNAseq single-

cell dataset shows diverse stromal/tumour populations. The expression of 

specific genes shows similarity with known cell populations:  B) 

representation of MKI67 expression, C) oligodendrocyte genes expression, 

D) neural progenitor expression, and E) astrocyte genes expression. 
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Systems biology approaches, including 

computational modeling, are needed to 

obtain a global understanding of the 

interconnected metabolites, enzymes, and 

regulatory mechanisms that characterize 

cellular metabolism. Systems biology methods 

allow controlled exploration of the roles of 

multiple cell types, molecular species, and 

biochemical reactions in cellular metabolism. 

Such approaches focus on how individual 

components of biological systems contribute 

to system function and behavior, facilitate a 

deeper understanding of complex biological 

processes, and provide opportunities to 

develop new hypotheses and interventions.  

There is a substantial and productive 

history of applying computational modeling to 

study cancer, from initiation through 

metastasis [61]. This work demonstrates that 

computational models, refined by 

experimental results can reveal effective 

treatment strategies and provide unexpected 

predictive insights. In fact, systems biology 

modeling complements pre-clinical and 

clinical studies of tumor metabolism. 

Specifically, systems biology models of cancer 

metabolism [62] provide quantitative insight 

into the dynamics of metabolic pathways, are 

useful in investigating the metabolic 

mechanisms driving the cellular phenotype, 

and have helped identify potential 

therapeutic strategies. Thus, systems biology 

approaches provide new insights into 

metabolism and can lead to novel therapeutic 

strategies. When constructed and validated 

using experimental measurements, systems 

biology models can be used to perform in 

silico experiments to predict the effects of 

perturbing the metabolic network. In this way, 

the models are a valuable alternative to wet 

experiments that can be expensive and time-

consuming.  

 

 

 

Current and Future Challenges 

Many published metabolic modeling 

techniques have focused on constraint-based 

approaches in which certain physical, 

chemical, or biological constraints are applied 

to predict the metabolic phenotypes. These 

are time-invariant stoichiometric models that 

predict reaction fluxes, which remain difficult 

to measure experimentally at the systems-

level. Genome-scale metabolic models have 

been constructed to explore the 

interconnected metabolic pathways 

documented to occur in an organism, 

including cancer-specific models [63]. Such 

models provide insight into how particular 

oncogenes influence metabolism, and they 

help identify specific drug targets and 

biomarkers. However, constraint-based 

models are static and fail to capture the 

kinetic aspects in the system or time-varying 

heterogeneities that arise due to 

environmental fluctuations. Additionally, 

ongoing work is aimed at integrating high-

throughput omics data into constraint-based 

models for a more comprehensive view of the 

metabolic landscape. Overall, constraint-

based models are widely used, and they 

contribute to our understanding of the role of 

metabolism in cancer progression. 

Kinetic modeling is an alternative to 

constraint-based modeling. When considering 

processes that are inherently transient, such 

as the effects of reprogramming of cancer 

metabolism, kinetic modeling is required to 

understand the dynamic relationships 

between metabolic fluxes, metabolite 

concentrations, and microenvironmental 

conditions. Therefore, models that represent 

the metabolic pathways using a system of 

nonlinear ordinary differential equations are 

useful. These kinetic models provide a 

mechanistic description of the transient 

dynamics of the system and have been used 

to identify key enzymes associated with tumor 
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growth and malignancy and predicted the 

effects of targeting those enzymes [64].  

  Though highly valuable, kinetic 

modeling also has some drawbacks. One 

limitation is that these models require many 

kinetic parameters in order to accurately 

characterize the reaction rates. This can be 

overcome by fitting the model to quantitative 

experimental data and estimating the 

parameter values needed to best fit the data. 

Another limitation is that while these models 

predict the dynamics of intracellular 

processes, they rarely account for 

downstream effects that occur at the cellular 

and tissue level.  

Indeed, multi-scale modeling is a 

challenge impeding the successful application 

of systems biology approaches to address 

clinically relevant questions related to cancer 

metabolism. There are two aspects to this 

challenge. The first is a need for robust 

computational tools to link mechanistically 

detailed, dynamic models of intracellular 

metabolism to tumor growth. Second, there is 

a need for multi-scale models that link a 

detailed metabolic network model to cell 

proliferation/apoptosis and account for the 

heterogeneous, multi-cellular tumor 

microenvironment. It is well established that 

the internal dynamics of metabolism directly 

influence cancer progression. In addition 

tumor-stromal interactions play an important 

role in drug resistance. However, there is a 

lack of spatiotemporal models that address 

these critical aspects of cancer metabolism. 

 

Advances in Science and Technology to Meet 

Challenges 

The key to advancing systems biology models 

of cancer metabolism is to take advantage of 

existing computational tools for performing 

multi-cellular simulations and link them with 

detailed models of intracellular metabolism 

with cell- and tissue-level dynamics. There are 

many computational models of cancer cell 

growth and progression, but few simulate 

how the dynamics of intracellular metabolism 

drives tumor growth. Our recent work links a 

detailed kinetic model of intracellular 

metabolism to population-level cancer cell 

proliferation [64] but does not simulate the 

dynamics of individual cells. Ghadiri and 

coworkers integrate a constraint-based model 

with an agent-based model of tumor [65]; 

however, this model does not evaluate the 

metabolic fluxes within each cell as time 

progresses.  

Some computational models of cancer 

predict metabolic interactions between tumor 

cells. In one example, Robertson-Tessi et al. 

incorporate a simplified metabolic model with 

angiogenesis and tumor growth and predict 

treatment outcome [66]. They developed a 

hybrid continuum/agent-based model in 

which glucose and oxygen are metabolized 

inside of the cell and directly influence cell 

growth. However, these models rarely 

account for the interactions and 

dependencies between cancer cells and other 

cells in the tumor microenvironment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – We allow at most two figures that 

are roughly the size of this box. 

Figure 1.  Schematic of relevant systems investigated when 

modelling cancer metabolism. 
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Moreover, these models lump together 

several metabolic reactions and thus cannot 

predict how targeting specific metabolic 

enzymes influences cell growth. 

Overall, there is a clear gap in the 

application of multi-cellular modeling 

combined with mechanistically detailed 

models, particularly in the context of cancer 

metabolism. Some tools exist that enable 

computationally intensive simulations of 

multi-cellular environments; however, future 

work is needed to combine these tools with 

computational models of metabolism reaction 

networks. We highlight two particular tools: 

CompuCell3D and PhysiCell. 

• CompuCell3D employs lattice-based 

Glazier-Graner-Hogeweg (GGH) stochastic 

modeling of generalized cells to simulate 

tissue-scale behavior [67]. The generalized 

cell’s behavior (such as proliferation, an 

increase in volume, migration, and cell-cell 

adhesion) is driven by its effective energy. 

The probability that a behavior is 

performed depends on how that behavior 

changes the cell’s effective energy (i.e., 

whether the potential behavior increase or 

decrease the energy). Behaviors that lower 

the cell’s effective energy are preferred. 

CompuCell3D has been applied in many 

instances, including incorporating 

intracellular signaling dynamics that 

influence the cells’ behavior [68]. 

• PhysiCell implements off-lattice cell agents 

to model multicellular systems within a 

biochemical microenvironment [69]. Cell 

agents interact via direct physical contact 

or by exchanging diffusible biochemical 

signals. This tool has been applied to 

model up to 106 cells in tissue volumes of 

~10 mm3. In addition, PhysiCell makes it 

possible to link intracellular networks with 

cell behavior. For example, a Boolean 

model of cell signaling has been embedded 

within each cell to simulate the effects of 

breast cancer treatment [70]. 

 

Concluding Remarks 

With multi-scale, multi-cellular models in 

hand, it would be possible to predict the 

effects of molecularly targeted metabolism-

based therapies on cancer cells, neighboring 

cells in the tumor, and overall growth of the 

tumor tissue. Such multi-scale models that 

include detailed metabolic reactions in 

combination with cell-cell interactions can be 

used to identify novel cancer treatment 

strategies, serving as a framework to 

hypothesize optimal drug combinations and 

treatment protocols. We can draw upon work 

that successfully integrates models of 

intracellular signaling models with the cell-

level response. And in the future, multi-scale 

models that incorporate both signaling and 

metabolism networks can even be combined. 

In conclusion, detailed modeling of cellular 

metabolism is a clinically relevant application 

of systems biology modeling that has the 

potential to significantly impact cancer 

treatment. 
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Status 

Radiation therapy (RT) is the single most 

commonly used cancer treatment. More than 

50% of patients receive radiation at some 

point in their cancer care, either as curative 

monotherapy, in combination with surgery, 

chemotherapy, or immunotherapy, or as 

palliative therapy. Current RT practice is based 

on maximum tolerated dose (MTD) concepts 

independent of patient-specific biology. 

Treatment protocols have been derived from 

average outcomes of long-term empirical 

practices or large clinical trials, and continue 

because they have produced reasonable 

outcomes.  Despite a long history of medical 

physics and physical concepts centered 

around radiation dose delivery technology 

and safety, few inroads have been made to 

synergize quantitative approaches with 

radiation biology and radiation oncology 

methodologies to optimize RT and treatment 

personalization. Integrating mathematical 

modelling with radiation oncology may have 

an immediate impact for a large number of 

patients, and help revolutionize how we 

conceive of and clinically prescribe 

radiotherapy in the precision medicine era.  

 

Current and Future Challenges 

RT is the most successful treatment in cancer 

care that can be given with the intent to cure, 

as palliative therapy, or potentially with the 

intent to convert the tumor into an in situ 

vaccine [71]. Whilst a wealth of radiation 

biology data has been, and continues to be 

collected, few biological concepts have 

impacted clinical radiation oncology relative 

to physical conformality of dose. Historically, 

dose-escalation trials have focused on 

increasing log cell kill with acceptable 

toxicities to provide as much loco-regional 

control as possible. In current RT practice, the 

treatment protocol parameters (total dose 

and dose fractionation) are prescribed a priori 

based on tumor type, disease stage, nodal 

status, and metastatic burden [72]. Whilst 

cancer is reminiscent of a complex dynamic 

adaptive system that may be best understood 

by perturbing it, to date no concerted efforts 

have focused on collecting and evaluating 

longitudinal tumor states to personalize RT, 

and on identifying markers for treatment 

adaptation. To fully embrace the clinical 

potential of RT for the patient population as a 

whole – and individual patients in particular – 

we need to (i) determine the optimal total 

dose to control an individual patient’s tumors, 

(ii) identify optimal dose fractionation, (iii) 

explore the synergy of radiation with the 

patient’s immune system as well as with (iv) 

surgery, biological agents or 

chemotherapeutics. To prospectively 

determine individual treatment protocols, we 

must be positioned to reliably predict patient-

specific treatment responses.  

Advances in Science and Technology to Meet 

Challenges 

Quantitative approaches have shown great 

promise in retrospective analyses of radiation 

outcomes [74], correlation of pre-treatment 

tumor growth dynamics with radiation 

sensitivity [75], and optimization of dose 

fractionation in pre-clinical models [76]. To 

fully harness the potential benefits of 

integrated mathematical oncology, a close 

dialog between both mathematical and 

radiation oncology needs to be fostered [72]. 

With few high-resolution measurements on 

the cellular and sub-cellular level, hope lies in 

the anticipated collection of longitudinal data 

to inform differential equation and equation 

models to help simulate tumor growth and RT 

response dynamics.  

In a preclinical model of glioblastoma an 

integrated, iterative approach of experimental 

data informing a mathematical model, the 

model predicting optimal radiation schedules, 

and subsequent experimental validation 

yielded novel radiation fractionation protocols 

that significantly improve survival in mice 
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[76]. Due to the nature of the differential 

equation model, glioma stem cell division 

mechanisms were identified as contributing to 

improved survival, which will warrant further 

evaluation.  Challenges for translating 

preclinical models into the clinic include the 

scalability from a total of 10 Gy radiation dose 

in one week for a mouse to the patient who 

receives routinely 50-60 Gy over many weeks, 

as well as the logistics of scheduling irregular 

hyperfractionated protocols vis-à-vis the 

increasing trend for stereotactic radiation.  

Deriving an optimal total dose for individual 

patients was recently achieved by combining 

a molecular index of radiosensitivity (RSI), 

derived from gene expression analysis from 

pre-treatment biopsy tissue, with a 

mathematical model to derive a genomically 

adjusted radiation dose (GARD) [77]. To 

personalize dose fractionation, mathematical 

modeling of pre-treatment tumor growth 

between the diagnostic scan and radiation CT 

simulation has identified a proliferation 

saturation index (PSI, Figure 1) [78,79]. Based 

on PSI, patients can be non-randomly 

stratified into standard daily fractionation, 

hypofractionation, or twice-daily 

hyperfractionation protocols to achieve 

optimal tumor volume reduction. The 

estimation of GARD and PSI from, 

respectively, one or two patient-specific data 

points neglects the opportunity for multiple 

mathematical models to comparably simulate 

the data but potentially predict different dose 

and dose fractionations. Prospective clinical 

trials are necessary to fully evaluate the 

predictive power of mathematical model 

biomarkers. 

 
Figure 1. Pre-treatment tumor growth dynamics 
can be derived from volume measurements at 
diagnosis and treatment planning and used to 
calculate patient-specific PSI to predict RT 
responses. 

 

The timeliest and arguably most challenging 

research question for radiation oncology is 

the optimal dose and dose fractionation to 

induce robust antitumor immunity, and how 

to optimally sequence immunotherapeutics to 

harness RT-induced immune responses. Few 

radiation protocols have been evaluated 

specifically for immune activation, and even 

fewer protocols have been studied with 

limited immunotherapy agents in vivo.  

Evaluating all possible treatment 

combinations at different timing and at 

different radiation and immunotherapy doses 

is experimentally and clinically impossible. 

Mathematical modeling of tumor-immune 

interactions trained to simulate available 

experimental and clinical studies and 

validated on independent data sets may 

provide a powerful tool for in silico trials of 

untested treatment combinations [80]. 

Numerical simulations, optimization theory, 

and high throughput machine learning 

approaches are poised to help identify 

promising synergistic protocols to maximize 

RT-induced antitumor immunity for local and 

systemic tumor control. Model-predicted 

therapies would still need to be prospectively 

validated and, even if unsuccessful, the newly 

derived data will help to iteratively improve 

the model to inform the next generation of 

clinical trials.  
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Concluding Remarks 

RT is part of the therapy of more than half of 

all cancer patients, yet little research is 

directed to personalize radiation in the 

precision medicine era. Improving radiation 

treatment outcomes by a small margin will 

help more patients than the small target 

groups for novel clinical agents. We foresee a 

strong opportunity to integrate mathematical 

modeling with radiobiology and radiation 

oncology to address the immediate challenges 

for personalized RT. With a long history of 

successful physical models in radiation 

oncology, integration of mathematical 

modeling may be straight forward with a 

potentially large payoff.  
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Status 

Despite major advances in cancer therapies, 
most metastatic cancers remain fatal because 
tumor cells have a remarkable capacity to 
evolve drug resistance, both through genetic 
and non-genetic mechanisms. A common 
maxim in cancer treatment is to “hit hard and 
fast” through dose-dense strategies that 
administer the highest possible drug dose in 
the shortest possible time period. The 
maximum tolerated dose (MTD) principle has 
been the standard-of-care for cancer 
treatment for several decades. In fact all 

cancer drugs must go through a Phase I trial in 
which the MTD is established. The MTD 
strategy, however, only rarely cures patients 
with common disseminated cancers. An 
evolutionary flaw in this MTD strategy is the 
assumption that resistant populations are not 
present prior to therapy. It is now clear that 
resistant cancer cells are almost invariably 
present in the diverse cancer cell populations 
prior to treatment. This accounts for the 
consistent failure of MTD treatments to cure 
metastatic cancers but the consequences are 
actually worse. MTD therapy, is designed to 
kill as many cancer cells as possible, although 
intuitively appealing, actually accelerates the 
emergence of resistant populations due to a 
well-recognized Darwinian phenomenon 
termed “competitive release.” As illustrated in 
Figure 1, when high doses of drug are applied 
continuously, competitive release allows rapid 
emergence of resistant populations because 
of the combination of intense selection 
pressure and elimination of all potential 
“sensitive” competitors. An alternative 
evolution-based strategy delivers the 
minimum effective dose (MED) that 
deliberately maintains a persistent drug-
sensitive population. Treatment is then 
discontinued. Although the cancer population 
regrows, there is no selection for resistance so 
that it remains equally sensitive (Figure 1). 
Through repeated treatment cycles, the 
tumor remains under control for extended 
periods of time. In mathematical models and 
early clinical trials, we have found the length 
of each cycle is highly patient-specific and can 
range from 4 months to 1.5 years, but very 
much depends on the specific cancer under 
consideration. 
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We have termed this approach “adaptive 
therapy” and the eventual goal is to 
continuously adjust drugs, doses, and 
treatment schedules to prolong tumor control 
[81,82].  
 Furthermore, adaptive therapy is only 
one example of a larger class of evolutionary-
enlightened therapeutic approaches. 
Critically, as complex systems that span 
multiple spatial and temporal scales, these 
therapeutic perturbations of cancers often 
elicit non-linear dynamics so that outcomes 
can be predicted only using rigorously-
defined, biologically-parameterized, and 
clinically-driven mathematical models.  The 
Mathematical Oncology field must develop 
models that predict treatment responses in 
specific patients to enable the next generation 
of precision cancer medicine [83].  
 

Current and Future Challenges 

Optimal treatment strategies, based on 

observed molecular targets, have been a 

focus of “precision oncology” for some time. 

However, this approach has ignored a key 

piece of clinical reality – tumours are 

heterogeneous and evolve under the 

selection pressure of treatment. Therefore, 

even highly targeted and initially successful 

treatments almost inevitably fail as the cancer 

cells evolve adaptive strategies.  A number of 

mathematical techniques have been 

developed to model treatment outcomes. 

Evolutionary game theoretic approaches focus 

on the interactions between distinct 

subpopulations under different selection 

pressures in a frequency dependent manner 

[83,86-88]. Ordinary Differential Equation 

models can capture population dynamics but 

often at the cost of over simplifying the 

interactions. More complex approaches, that 

explicitly include space [84,85] or bridge 

multiple scales, have also been developed. 

However, a significant challenge with all of 

these approaches is how to calibrate them for 

a specific patient since some of the 

parameters are abstract e.g. fitness benefit or 

cost.  Further, even for minimal models some 

parameters may be impossible to measure in 

a patient.  

Assuming a model can be calibrated 

to a given patient, there is still a great deal of 

uncertainty regarding a specific fit since the 

model is gross simplification of reality. One 

approach to tackle this uncertainty is to 

develop multiple distinct models of the same 

tumour and generate an ensemble or 

consensus treatment plan, similar to 

hurricane prediction. Another is to 

deliberately consider all possible model 

parameter fits for a given patient as a cohort 

of patients that closely mimic the dynamics of 

the real patient. The successful in silico 

treatment strategies for the cohort then 

predict optimal therapy in the real patient. 

This “Phase i trial” approach [89] allows us to 

both run an exhaustive array of all possible 

treatment options on the cohort but also 

allows for the cohort to be further refined as 

additional response data is obtained 

throughout the course of treatment. Phase i 

trials can also serve to bridge the divide 

between homogenous preclinical models and 

heterogeneous clinical reality as well as 

allowing for optimal strategies to be 

developed and tested before a drug ever 

reaches a patient. 

This temporally changing treatment 

paradigm is a fundamental departure from 

the traditional fixed, one-size-fits-all strategy, 

and needs to be driven by a constant dialogue 

between model prediction and patient 

response. However, measuring and quantify 

patient tumour burden as well as 

intratumoural evolution during therapy using 

clinically-available patient data remains a 

major challenge.   

Figure 1.  Conventional high dose therapy (top) maximally selects for 

resistant phenotypes (pink). Adaptive therapy (bottom) maintains a 

small population of cells that are sensitive to treatment. While the 

resistant cells survive, the cost of resistance renders them less fit in 

the absence of therapy. Thus, sensitive cells return when therapy is 

removed, suppressing growth of the resistant population. 
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Advances in Mathematics, Technology, or 

Data to Meet Challenges 

There is a problem with big data in cancer.  Its 

spatial scale is entirely molecular, it averages 

the properties of a large and heterogeneous 

population of cancer cells, and it is both an 

invasive and destructive procedure such that 

it is often only obtained at a single time point. 

While genome scale data can direct the choice 

of specific cancer drugs and potentially 

classify patients into different categories, it is 

mostly utilized in a correlative manner. If we 

hope to build mechanistic predictive 

mathematical models, most of “big data” in 

cancer is the wrong data. It is not longitudinal, 

not spatial, only from one scale, averaged and 

homogeneous, not correlated or co-

registered, and not analyzed within an 

appropriate micro-environmental context. 

There is an urgent need to gather the right 

data that will allow us to better define the 

cancer system and connect the scales of 

cancer, bridging genotype to phenotype, cell 

to tissue,  organ to organism and individual to 

population. Because of the complex and 

dynamic nature of cancer it will not be 

sufficient to simply interpolate between data 

over these diverse spatial and temporal 

scales, rather we need to functionally 

integrate them through mathematical and 

computational models.  

For a cancer patient, the reality of 

monitoring disease burden over time with 

sufficient frequency and resolution is 

currently infeasible. New technologies need 

to be developed that can readily monitor 

tumor burden in non-invasive and cost-

effective ways that will directly facilitate the 

model prediction - treatment response loop 

of evolutionary therapy.  The right data will 

depend on the potential treatments available, 

the specific cancer under consideration, and 

the constrained reality of clinical practice. 

Serum markers are currently our best 

candidates. However, not all cancers have a 

good surrogate for burden (e.g. Prostate 

Specific Antigen). Circulating DNA and 

circulating tumor cells are emerging areas of 

intense investigation and hold significant 

promise but these markers focus on 

molecular scale changes. 

Thus, an additional challenge is linking 

mechanistic mathematical models to the 

genomic as well as the phenotypic scale. 

However, connecting the wealth of 

quantitative genomic information from a 

patient with functional cellular phenotypes 

remains an open question.  Some progress is 

being made using machine learning 

approaches and mathematical models are 

emerging of cancer evolution at the genomic 

scale [90]. 

Concluding Remarks 

There are currently 52 drugs approved for 

treatment of metastatic prostate cancer. Yet, 

every man who develops metastatic prostate 

cancer this year will not survive his disease. 

Throughout the past century, cancer therapy 

has focused entirely on the continuous 

development of new and more effective 

drugs. However, this enormous investment in 

time and resources has yet to significantly 

reduce the mortality rate of most common, 

adult metastatic cancers. Clearly, the drive to 

develop new and more effective cancer 

treatments is necessary. However, it is 

possible that the major impediment to 

improved outcomes in many cancers is not 

the absence of effective drugs but the 

absence of effective strategies. Thus, we view 

a key role for Mathematical Oncology is the 

development of patient calibrated 

mathematical models that integrate 

evolutionary first principles into cancer 

therapies to improve outcomes. 
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Status  

Somatic evolution is now recognized as a 

central force in the initiation, progression, 

treatment, and management of cancer. This 

has opened a new front in the proverbial war 

on cancer: focusing on the ecology and 

evolutionary biology of cancer. On this new 

front, we are starting to deploy new kinds of 

mathematical machinery: fitness landscapes 

and evolutionary games. 

A fitness landscape is a mathematical 

space where each point is a possible genotype 

or phenotype; two points are adjacent if they 

differ in a mutation or epimutation at a single 

locus; and each point has an associated fitness 

value. We often visualise evolutionary 

dynamics as ‘climbing up the hill’ of fitness 

values -- although in high dimensional spaces 

it might be better to replace the mountain 

metaphor by a maze metaphor [91].  

A central feature of fitness landscapes 

is the amount and kind of interactions 

between loci – such interaction is called 

epistasis. Synthetic lethality is a particularly 

important kind of epistasis for cancer cells.  If 

there are mutations at two loci which each 

change the fitness in one direction when they 

occur on their own, but in the opposite 

direction when they both occur together -- 

either bad + bad = good, or good + good = bad 

-- then the landscape is said to have reciprocal 

sign epistasis. It has been shown that any 

fitness landscape with more than one local 

peak must have reciprocal sign epistasis. 

Fitness landscapes conceptualize 

fitness as a single scalar value – a number. But 

a scalar can only express cell-autonomous 

effects, where fitness is inherent to the 

properties of a single cell. But cancer displays 

important non-cell-autonomous effects that 

allow fitness to depend on a cell's micro-

environmental context, including frequency of 

other cell types [92,93]. To accommodate this, 

evolutionary game theory (EGT) views these 

cell types as strategies, and models fitness as 

a function, which depends on the abundance 

of strategies in the population. On the 

surface, the games perspective is more 

expressive, since scalars can be represented 

as constant functions.  

But as always we pay for greater 

expressiveness by a loss of analysis 

techniques. For example, when dealing with 

fitness landscapes, we can often consider the 

strong-selection weak-mutation limit, which 

allows us to replace a population by a single 

point in the landscape. In the case of 

evolutionary games, such an approximation is 

unreasonable since it would eliminate the 

very ecological interactions that EGT aims to 

study. This means that the strategy space that 

can be analysed in an evolutionary game is 

usually much smaller than the 

genotype/phenotype space considered in a 

fitness landscape. Typical EGT studies 

consider just a handful of strategies (most 

often just two [92,94,95]), while fitness 

landscapes start at dozens of genotypes and 

go up to tens of thousands (or even hyper-

astronomical numbers of genotypes in 

theoretical work [91]). However, there is 

Page 31 of 46 AUTHOR SUBMITTED MANUSCRIPT - PB-100995.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Phys. Biol. ## (2019) ######  Roadmap 

ongoing work on adaptive landscapes that 

aims to combine the strengths of fitness 

landscapes and game theory. 

Game theory models have so far had 

more direct impact in oncology than fitness 

landscape models. The standard approach has 

been to develop a game theory model from 

the bottom up, starting from a reasonable 

reductive grounding and adding micro-

dynamic details. This is in keeping with the 

reductionist tactics used on the old cell and 

molecular biology front. For example, Basanta 

et al. [94] studied motility in cancer by 

defining two intuitive strategies: Go vs Grow. 

The first model included no spatial aspects; 

later work built on this by adding minimal 

spatial effects and considering the 

heterogeneity of spatial structure in a tumour 

[95]. This progression to more complicated 

and detailed models is a common pattern 

among EGT models in oncology. The other 

common aspect is that the games rely on 

biological or clinical intuition; the exact game 

parameters are seldom measured. This EGT 

perspective has helped oncologists to express 

a number of interesting theoretical 

consequences of non-cell autonomous 

processes, but has only recently started to be 

translated into direct experimental work. 

 

Current and Future Challenges  

Compared to EGT, fitness landscapes have not 

been as extensively used beyond mental 

models in oncology. But they have been 

central to work in understanding evolution of 

E. coli and yeast. The most notable example 

might be Lenski’s long-term evolution 

experiment with E. coli that has been 

propagating 12 initially identical populations 

for over 70,000 generations since 24 February 

1988. Another example is the study of the 

evolution of drug resistance in microbes [96], 

which has direct parallels to evolution of 

resistance in cancer.  

The key difficulty in developing fitness 

landscape models for oncology is that cancer 

cells are more complex, and oncological 

experimental systems are less well-controlled, 

than their microbial counterparts. In 

particular, micro-dynamical foundations of 

somatic evolution, reprogramming of human 

cells, and in vitro mutation operators are less 

well understood. The tactic from the old front 

of the molecular and cell biology of cancer 

would be to study and classify these micro-

dynamics in more and more detail. On the 

new front of somatic evolution we have a 

more promising tactic – abstraction. 

For a computer scientist, abstraction 

is a way to hide the complexity of a computer 

system. It is a way to make programs that can 

be used and re-used without having to re-

write all the code for each new computer. In 

this sense an algorithm is an abstraction of 

the actual sequence of bit flips that carry out 

the physical process that is computation. To 

turn it around: the physical process carried 

out by your computer is then an 

implementation of some abstract algorithm. 

Abstraction and implementation are in some 

sense dual to each other. 

Using this kind of abstraction, the 

tools of theoretical computer science can be 

introduced into oncology to reason rigorously 

about our models without knowing all the 

details of the implementation. For example, 

using computational complexity Kaznatcheev 

[91] conclude that there are ‘hard’ fitness 

landscapes where no evolutionary dynamic 

can find local fitness optima in polynomial 

time. This is an abstraction over the micro-

dynamical basis of evolution. If such fitness 

landscapes occur in tumours, then -- no 

matter how complicated the (re)programming 

of the cell or how strange and biased the 

mutation operator -- the cancer cells will not 

reach a local fitness peak and thus will always 

provide a moving target for therapy. It 

becomes an empirical problem to find out if 
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such landscapes occur in cancer. And it 

becomes a theoretical problem to discover 

other abstract properties of fitness landscapes 

that are robust under any implementation of 

the evolutionary micro-dynamic. 

Abstract objects or processes are 

multiply-realizable by a number of concrete 

objects or processes. The concrete objects 

might differ from each other in various ways, 

but if the implementations are ‘correct’ then 

the ways in which they differ are irrelevant to 

the abstraction. The abstraction is less 

detailed than the implementation, but 

captures essential features precisely.  

It might seem like connecting more 

closely to experiment must always make a 

model less abstract. But this is not always the 

case: the act of measurement itself can be a 

way to abstract. This is achieved with 

phenomenological or effective (instead of 

reductive) theories, and is easiest to illustrate 

in a game theory model. For example, 

Kaznatcheev et al. [93] developed a game 

assay based on the frequency and growth rate 

of types (as opposed to the more standard 

view of fitness of tokens or specific 

individuals). The focus on abstract types lets 

us absorb all the details of spatial structure, 

interaction length-scales, reproductive 

strategies, etc. into the measurement of the 

type fitness [93,97]. It is nature that figures 

out the particular computation that 

transforms token fitness into type fitness (see 

figure 1 for 3 examples) and we do not need 

to know it once we are working at the level of 

the abstract effective game: the abstract 

measurement is enough to derive the 

predictions of the model. A downside, of 

course, is that we cannot actually describe the 

specific way token fitness is translated into 

type fitness in our system. But future work 

can push the abstraction down, so that more 

details of the implementation – such as the 

effects of spatial structure – can be extracted 

[97]. This approach has already led to both 

new theoretical frameworks and new 

experimental techniques for analysing 

evolutionary games in microscopic cancer 

systems [93,97], but more focus on effective 

theories is needed – especially for fitness 

landscapes. 

 

 
Advances in Mathematics, Technology, or 

Data to Meet Challenges 

Although games can be viewed as a 

generalization of fitness landscapes, the game 

assay can only be used for a small strategy 

space. The size of a fitness landscape, 

however, is exponential in the number of loci, 

so it quickly becomes impossible to explicitly 

measure and record the fitness of every single 

possible genotype (or strategy). This barrier 

cannot be overcome by better technology or 

experiments. Instead, we need to focus on 

fitness landscape models with compact 

representations that are learnable from a 

polynomial number of samples. These 

compact representations are akin to rules for 

genotype-phenotype maps (where the 

relevant phenotype is fitness): they specify a 

rule for computing the fitness value from the 

genotype (or at least the relative order of 

fitness), instead of explicitly storing a fitness 

value for each genotype. 

To find compact representations it is 

tempting to turn to existing representations 

like oncogenetic trees or cancer progression 

Figure 1.  The same effective game [97] implemented 

by three different population structures and reductive 

games; from left to right: inviscid population, random 3-

regular graph, experimental in vitro non-small-cell lung 

cancer [93]. 
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models (CBN & CARPI, in particular), but these 

models cannot express the reciprocal sign 

epistasis that makes for interesting fitness 

landscapes [98]. Instead, we need models that 

can represent gene-interaction networks with 

low-order epistasis (a classic example would 

be spin glasses) [91,99]. These gene-

interaction networks can express reciprocal 

sign epistasis. Most importantly, such 

networks can be inferred from polynomially-

sized local fitness landscapes: from fitness 

values just a couple of mutations away from a 

wildtype, instead of measuring every possible 

combination of mutations. Such local 

landscapes have been measured in yeast 

[100], similar measurement techniques need 

to be developed for cancer systems. 

 

Concluding Remarks 

On this new front in the war on cancer that 

was opened by somatic evolution, we not only 

need new mathematical machinery, like 

fitness landscapes and evolutionary games, 

but also new tactics, like abstraction. To 

handle complex systems like cancer where we 

do not know the detailed evolutionary micro-

dynamics we need abstract models that 

extend the tools and techniques developed in 

microbiology and ecology to handle multiple-

realizability. The lesson from computer 

science is that rigorous abstraction provides 

great theoretical power.  And experimentally, 

we need to recognize that abstract is not the 

opposite of empirical.  Abstract models can 

serve as phenomenological (or ‘effective’) 

theories that use carefully defined 

measurements to account for multiple-

realizability from unknown micro-dynamic 

details. Developing this approach will allow us 

to better use the mathematical machinery of 

fitness landscapes and evolutionary games for 

understanding and treating cancer. 
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Status 

Predicting, detecting, and preventing 

drug resistance is an enduring challenge in 

clinical oncology. The initial development of 

targeted therapies provided hope that 

targeting the unique molecular drivers of a 

tumour would allow for more precise 

treatment with fewer clinical side effects. 

However, in many cases, after a transient 

killing of tumour cells, drug resistance leads to 

therapeutic failure. Indeed, cancer is an 

intrinsically evolutionary process in which cell 

populations comprising the tumour adapt and 

evolve in response to the selective pressures 

placed upon them, particularly anti-cancer 

therapies [101]. Cancer treatment is subject 

to the same dilemma of drug resistance that 

has complicated the treatment of infections 

with antibiotics [102]. In both cancer and 

infectious diseases, drugs apply a selective 

pressure that yields higher frequencies of 

phenotypes better-suited to survive in their 
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environment. Even the most advanced 

therapies are ultimately at the mercy of the 

Darwinian principles of evolution. 

When it comes to discerning the 

separated time scales of this evolution of drug 

resistance, we have found a singularly focused 

strategy to be insufficient. As we strive for our 

work to tangibly affect clinical care, the fields 

of population genetics, evolutionary and 

adaptive dynamics, and statistical physics may 

offer models and tools that provide an 

improved understanding of the temporal 

dynamics of resistance evolution and the 

necessary timescales of potential 

interventions (Figure 1). Two specific 

examples from the emerging field of 

evolutionary therapy have demonstrated how 

the marriage of disparate theoretical and 

experimental tools have brought us closer 

toward the goal of evolutionarily informed 

therapy. 

 

 
One body of work utilizes 

evolutionary game theory (EGT) to deliver 

insights into the qualitative relationships 

between the “players” in the tumour micro-

environment. Another complimentary 

strategy models cancer evolutionary dynamics 

on fitness landscapes and is more amenable 

to genomic sequencing data and addressing 

tumour heterogeneity. 

While we only discuss two models 

here with several unanswered questions 

standing in the way of their full potential, we 

believe they represent research strategies 

that are ripe for the interdisciplinary scientific 

groups and institutes of today and beyond. 

 

Current and Future Challenges 

Evolutionary game dynamics have 

been found to describe diverse phenomena in 

cancer ranging from IGF-II production in 

pancreatic tumours to tumour-stroma 

interactions in prostate cancer [103, 104]. 

While these models may yield insights into 

the qualitative relationships between the 

players in the tumour micro-environment, it is 

unclear if the evolutionary game modelled in 

different cancers is applicable to other 

cancers, or even every patient with a given 

cancer. Furthermore, the payoff matrix used 

to describe the games played in most models 

of evolutionary games is not empirically 

derived, but rather inferred from clinical 

intuition. It seems that a means of measuring 

these micro-dynamic interactions among 

tumour cells in any given tumour is necessary.  

An additional drawback of the EGT 

formalism is the difficulty in using it to 

characterize the vast heterogeneity and 

mutational activity that are critical 

components of the evolution of drug 

resistance. Current biological methodologies 

may only allow for the study of interactions 

between a few cell types. Studying fitness 

landscapes may address this issue of 

accounting for tumour heterogeneity. Fitness 

landscapes are a genotype-phenotype map, in 

which each allele is assigned a corresponding 

fitness and set of neighbouring alleles. 

Suggested first by Sewall Wright, in the 

canonical model of fitness landscapes, each 

allele can be represented as a string of ones 

and zeros corresponding to mutated and wild-

type alleles, respectively. The entire landscape 

can be represented as a network of these bit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Correspondence of research strategies to the process of 

tumour evolution: Tumour heterogeneity is driven by clonal populations 

traversing evolutionary trajectories, the interactions between them, and 

the diversification that results. The milieu of molecular mechanisms that 

can be observed at the time of biopsy potentially confers finite drug 

sensitivity phenotypes. 
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strings with a hypercubic topology. Each node 

has its own fitness, and evolution proceeds as 

a biased random walk through the winding 

maze of genotype space, as it tends toward 

the most fit genotypes available to it [105].  

Any environmental condition (i.e. 

cancer therapies) can apply a selective 

pressure to a population (i.e. a tumour) that 

specifies a corresponding fitness function over 

the domain of genotype space (Figure 2D,E). 

For fitness landscapes to be clinically useful 

there are challenges to be overcome. These 

include, but are not limited to: measurement, 

definition, and inference of fitness landscapes 

in clinically-relevant contexts and 

determination of appropriate time-scales of 

possible interventions. 

 

Advances in Mathematics, Technology, or 

Data to Meet Challenges 

We have recently suggested one 

method to experimentally parametrize EGT 

matrices: the evolutionary game assay. We 

observed in our cultures of alectinib resistant 

and sensitive lung cancer cells a linear 

frequency dependence of resistant cell 

growth rate on the proportion of sensitive 

cells, allowing us to represent the interactions 

in the four conditions studied as a two-

strategy matrix game and infer the games 

played [93]. We showed that in our 

experimental system of drug resistant and 

sensitive cells, in the presence of alectinib and 

stromal cells, a qualitatively different game is 

being played (Figure 2A,B). Our evolutionary 

game assay is designed specifically to capture 

the “effective” game being played. Along with 

work aimed at characterizing how spatial 

information implies information about 

tumour-environment interactions, our assay 

to empirically measure games may be used to 

design clinical trials in any cancer type [106, 

107].  

To address our game theory assay’s 

inadequacy at accounting for tumour genetic 

heterogeneity, we turned to fitness 

landscapes. Our theoretical work has revealed 

an interesting feature of an evolving 

population subjected to sequential drugs: 

evolution through these sequential drug 

landscapes is irreversible. Given complete 

information of each fitness landscape, this 

feature allows for what we call “steering” 

using drug sequences, that is, using drugs to 

purposely push the cancer cell population to 

states of sensitivity from which resistance is 

less likely to be reached [96]. This steering of 

evolutionary dynamics reveals yet another 

strategy for evolutionary therapy. We propose 

that with the advent of computational 

methods to infer fitness landscapes on 

temporal and genomic scales, one could 

design patient-specific steering drug regimens 

to minimize drug resistance. We have 

performed further high throughput evolution 

experiments that suggest its feasibility [108].  

 

Addressing the previously described 

challenges of utilizing fitness landscapes to 

optimize treatment sequence regimens may 

require exploiting the close analogy between 

evolutionary fitness landscapes and energy 

landscapes in other contexts. Techniques 

from statistical physics that allow for the 

inference of properties of energy landscapes 

through experimental probes or protocols 

that vary the stochastic dynamics of these 

landscapes over time, can potentially be 

adapted to the evolutionary context.  

 

Concluding Remarks 

Our EGT assay and evolutionary steering 

method provide examples of how 

understanding the evolutionary dynamics of 

cancer through both theoretical and 

molecular biological tools can lead to more 

effective treatments for patients. In the 

future, this can lead to treatment sequence 

regimens optimized to steer a tumor away 

from resistance and treatments that alter the 
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tumor microenvironment to modulate the 

evolutionary game being ‘played’ and 

decrease the resulting proportion of resistant 

cells. As both frameworks highlighted here 

have their advantages and drawbacks, it is 

only by exploring them in concert and 

considering how they may complement each 

other that we can apply them most 

effectively. Fitness landscapes’ failure to 

address the tumour micro-environment, for 

instance, motivations exploration of EGT, 

which is well suited to examine such 

interactions. To look forward we must look 

backward, extending and  

 

blending these readily available tools. The 

application of these well-established theories, 

methodologies, and drugs, re-imagined and 

reconsidered in novel ways is a promising 

path forward to overcome therapeutic 

resistance in cancer. 
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