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Abstract 

Past vegetation and climatic conditions are known to influence current biodiversity patterns. 

However, whether their legacy effects affect the provision of multiple ecosystem functions, i.e. 

multifunctionality, remains largely unknown. Here we analyzed soil nutrient stocks and their 

transformation rates in 236 drylands from six continents to evaluate the associations between 

current levels of multifunctionality and legacy effects of last glacial maximum (LGM) desert 

biome distribution and climate. We found that past desert distribution and temperature legacy, 

defined as increasing temperature from LGM, were negatively correlated with contemporary 

multifunctionality even after accounting for predictors such as current climate, soil texture, 

plant species richness and site topography. Ecosystems that have been deserts since the LGM 

had up to 30% lower contemporary multifunctionality compared with those that were 

non-deserts during the LGM. In addition, ecosystems that experienced higher warming rates 

since the LGM had lower contemporary multifunctionality than those suffering lower warming 

rates, with a ~9% reduction per extra ºC. Past desert distribution and temperature legacies had 

direct negative effects, while temperature legacy also had indirect (via soil sand content) 

negative effects on multifunctionality. Our results indicate that past biome and climatic 
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conditions have left a strong “functionality debt” in global drylands. They also suggest that 

ongoing warming and expansion of desert areas may leave a strong fingerprint in the future 

functioning of dryland ecosystems worldwide that needs to be considered when establishing 

management actions aiming to combat land degradation and desertification. 

 

1. INTRODUCTION 

Ecosystem attributes and functions, such as biodiversity and nutrient cycling, are not only 

driven by current environmental conditions, but also by those they have experienced in the 

past. The climate existing thousands of years ago has left a detectable fingerprint in the current 

distribution of plant and microbial communities (Blonder et al., 2018; Delgado-Baquerizo, 

Bissett, et al., 2017; Delgado-Baquerizo et al., 2018; Pärtel et al., 2017; Weigelt, Steinbauer, 

Cabral, & Kreft, 2016). Similarly, changes in land use that occurred centuries ago have been 

found to affect current soil carbon and nitrogen contents and cycling (Delgado-Baquerizo, 

Eldridge, et al., 2017; Dupouey, Dambrine, Laffite, & Moares, 2002). Despite the growing 

evidence of the impacts of past legacies on the contemporary structure and functioning of 

terrestrial ecosystems, we lack empirical studies aiming to quantify the legacy effects of past 

climate and biome distribution on the current provision of multiple ecosystem functions 

(multifunctionality) related to nutrient stocks and their transformation rates. Quantifying these 

legacy effects is important not only to better understand the factors driving current variation in 

multifunctionality, but also to help foresee potential limitations in the provision of ecosystem 

services in the future derived from current rates of land degradation and climate change. 

Legacy effects of past conditions on multifunctionality can be caused by long-term gains 

and losses of energy and nutrients accumulated over millennia (Delgado-Baquerizo, Eldridge, 

et al., 2017; Svenning, Eiserhardt, Normand, Ordonez, & Sandel, 2015). Furthermore, past 
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climate or vegetation have been found to affect current patterns of soil texture and plant traits 

globally (Blonder et al., 2018; Prentice et al., 1992). Soil texture and plant traits are known to 

influence ecosystem functions (Blonder et al., 2018; Prentice et al., 1992). For example, loamy 

soils can carry over moisture from the wet season into the dry season for plant production more 

effectively than sandy soils (Prentice et al., 1992). Therefore, the legacy of past conditions on 

multifunctionality can also be indirectly mediated by changes in variables including soil 

texture (Prentice et al., 1992), plant functional traits (Blonder et al., 2018) and microbial 

communities (Delgado-Baquerizo, Bissett, et al., 2017). Differentiating between these direct 

and indirect effects is of crucial importance to better quantify which part of legacy effects can 

be managed for (i.e., those mediated by biodiversity) from those that cannot be buffered (i.e., 

the direct effect of past biome and climate conditions). 

Global drylands, including hyper-arid, arid, semi-arid and dry-subhumid ecosystems, have 

been projected to experience higher warming rates with ongoing climate change than humid 

areas (Huang, Yu, Dai, Wei, & Kang, 2017). Increases in aridity due to ongoing global 

warming will increase the global extent of drylands, which already cover ~45% of the 

terrestrial surface (Prăvălie, 2016), by 11-23% by the end of this century (Huang, Yu, Guan, 

Wang, & Guo, 2016). Such aridification will threaten the livelihoods of people living in these 

areas, particularly in the developing world, and will exacerbate the risk of land degradation and 

desertification, which are already negatively affecting 250 million people (Reynolds et al., 

2007).  

Given the inherently slow dynamics of soil nutrient buildup and plant productivity in 

drylands compared to other ecosystems (Fischer & Turner, 1978; Huang et al., 2017), we 

would expect strong negative legacy effects of past biome and climate conditions on current 

multifunctionality levels, i.e. a “functionality debt”. The desert biome is characterized by low 

vegetation cover, and thus high soil erosion rates and low nutrient contents (Borrelli et al., 
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2017; Olson et al., 2001; Ray & Adams, 2001). Therefore, ecosystems under a desert biome 

thousands of years ago should have lower multifunctionality than ecosystems under a more 

mesic biome in the same period, regardless of their current climate and biome. However, the 

impact of these legacy effects on dryland multifunctionality, as well as whether these effects 

are biodiversity- and soil texture-dependent, remains to be evaluated. Moreover, the relative 

importance of functionality debts vs. current climate and biome as drivers of contemporary 

multifunctionality is largely unknown.  

To address these gaps in our knowledge, we coupled data from a field survey of 236 

drylands from six continents (Figure 1) to existing databases on the historical distribution of 

past biomes and climates (Fick & Hijmans, 2017; Olson et al., 2001; Ray & Adams, 2001) to 

evaluate the legacy effects of desert distribution and climate during the last glacial maximum 

(LGM, about 22000 years ago) on current multifunctionality levels. Weigelt et al. (2016) 

suggested that glacial conditions have been more common than interglacial conditions during 

recent evolutionary time. The distribution of biomes during the LGM is representative of the 

dominant environmental conditions (including climate) during this period (Pärtel et al., 2017). 

Therefore, the LGM biome distribution is likely to have a strong legacy effect on current 

multifunctionality levels. We hypothesized that areas that have been under the desert biome 

during LGM should have a reduced contemporary multifunctionality compared to current 

deserts that were not so during the LGM (i.e. they exhibit a functionality debt). Furthermore, 

Maestre et al. (2012) found that multifunctionality was reduced with increasing temperature in 

global drylands. Therefore, we also hypothesized that current drylands that have suffered 

higher increases in temperature since the LGM will have lower multifunctionality when 

compared to those that have undergone lower warming rates.  
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2. MATERIALS AND METHODS 

2.1 Study sites 

We used data from a global field survey conducted in 236 dryland ecosystems from 19 

countries (Figure 1, see also Table S1 in Supporting Information and Data S1). Our field 

survey was limited by funding, accessibility to locations and geopolitical and safety 

circumstances. Because of these, a truly global random sampling covering all dryland locations 

worldwide was not possible. Nevertheless, our sampling aimed to cover a large range of the 

environmental conditions and soil/vegetation types found in dryland ecosystems worldwide. 

The 236 studied ecosystems cover a mean annual temperature (MAT) ranging from −1.8 to 

28.2 ºC, and a mean annual precipitation (MAP) ranging from 66 to 1219 mm. They also cover 

over 25 categories of soil types from the FAO classification, including all main types present in 

drylands (Maestre et al., 2012). The vegetation types surveyed include grasslands, shrublands 

and savannas, and plant species richness varies from 1 to 52 species per 900 m
2
.  

 

2.2 Field survey  

We carried out data collection between February 2006 and December 2013 using a 

standardized sampling protocol. At each site, we surveyed vegetation using four 30-m-long 

transects located parallel and separated 10 m among them (see Maestre et al., 2012 for details). 

At each transect, we established 20 quadrats of 1.5 m × 1.5 m and used the total number of 

perennial species found within the 80 quadrats surveyed as our estimation of species richness. 

We measured slope angle in situ with a clinometer. We sampled soils during the dry season in 

most of the sites using a stratified random procedure. At each plot, we randomly placed five 50 

cm × 50 cm quadrats under the canopy of the dominant perennial species and in open areas 
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devoid of perennial vegetation. We collected a composite sample consisting of five 145 cm
3
 

soil cores (0 - 7.5 cm depth) from each quadrat, which were bulked and homogenized in the 

field. When more than one dominant plant species was present, we also collected samples 

under the canopies of five randomly selected individuals of the co-dominant species. Thus, the 

number of soil samples varied between 10 and 15 per site. Back in the laboratory, we sieved 

soil samples using a 2 mm mesh and air-dried them for one month. To facilitate the comparison 

of results across sites, we shipped the dried soil samples from all sites to Spain (Rey Juan 

Carlos University) for laboratory analyses.  

 

2.3 Quantifying multifunctionality 

To quantify multifunctionality, we selected 12 plant and soil variables that act as surrogates of 

carbon (C), nitrogen (N) and phosphorus (P) cycling and storage (functions hereafter). 

Functions related to the C cycle included plant productivity, soil organic C, pentoses and 

hexoses. Those from N and P cycles included soil nitrate, dissolved organic N, proteins, 

potential N transformation rate, and enzymatic activity of phosphatase, available inorganic P, 

total P and inorganic P. These variables are considered to be critical measures of ecosystem 

functioning in drylands (see Whitford, 2002 for a review). We included as many functions as 

possible while at the same time weighting equally for the three nutrient cycles. The functions 

selected include “true” ecosystem functions (sensu Reiss, Bridle, Montoya, & Woodward, 

2009), such as potential N transformation rate, plant productivity and the activity of 

phosphathase, and nutrient stocks such as soil organic C and total P, which are indicators of 

nutrient cycling rates over the long term (Manning et al., 2018). 
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We assessed multifunctionality following the averaging approach of Maestre et al. (2012). 

We averaged the Z scores of the 12 functions to obtain ecosystem multifunctionality. This 

index is statistically robust (Maestre et al., 2012) and provides a holistic and easily 

interpretable measure to assess changes in multifunctionality, as the higher the values for the 

different ecosystem functions we measured, the higher the multifunctionality (Figure S1). We 

acknowledge that using an a priori standardized average may not allow to discriminate when 

all functions are performing at similar levels from situations when one function could be 

strongly outperforming the others (Byrnes et al., 2014). However, all individual functions in 

our dataset positively correlated with multifunctionality, except for soil inorganic P (r = −0.01, 

Figure S1). Moreover, we found only two negative correlations between the functions that 

were of some magnitude (r = −0.34 and −0.35), suggesting that there are not strong trade-offs 

between our surrogates of ecosystem functioning (Table S2). None of the correlations across 

all 12 functions was higher than 0.6, suggesting that our dataset did not contain high 

redundancy among the functions studied (Table S2). Multifunctionality calculated from the 12 

functions correlated well with that calculated from a dataset of 16 functions (r = 0.88, Figure 

S2), thus it did not vary much when including other functions available, such as soil total 

nitrogen, amino acids, aromatic compounds or potential nitrogen depolymerisation. 

 

We measured soil functions in the laboratory as described in Methods S1 in the Supporting 

Information. We also measured soil pH with a pH-meter in a 1:2.5 (mass:volume, soil:water) 

suspension, and soil sand content according to Kettler et al. (2001). For all soil variables and 

functions, we estimated site-level values as the mean values measured in vegetated and open 

areas, weighted by their respective cover at each site (Maestre et al., 2012). We used the 

normalized difference vegetation index (NDVI) as a surrogate for plant productivity because it 

acts as a proxy of photosynthetic activity and large-scale vegetation distribution (Pettorelli et 
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al., 2005), and it shows good performance vs. other vegetation indices when used in dryland 

ecosystems such as those we studied (Gaitán et al., 2013). We retrieved NDVI data from the 

250 m resolution moderate resolution imaging spectroradiometer (MODIS) aboard NASA's 

Terra satellites (http://daac.ornl.gov/index.shtml). We used the annual integral of NDVI 

(iNDVI, Ponce Campos et al., 2013) averaged for the period 2000 to 2013 as a proxy of plant 

productivity at our sites. These iNDVI values correlated well with the average NDVI of the 

images before, during and after each soil and vegetation survey (Pearson's r = 0.76, Figure S3). 

We used the longer term iNDVI as these values are less influenced by short term variations in 

precipitation and temperature.  

 

2.4 Assessing biome and climatic legacies 

We obtained mean annual temperature and precipitation values for each site for both current 

(1970-2000) and last glacial maximum (LGM; about 22000 years ago) conditions from 

Worldclim (Fick & Hijmans, 2017). We used the 2.5-minute resolution bioclimatic data for 

both periods, as 2.5-minute is the highest resolution available for LGM data. We defined 

climate legacy from LGM as the difference between current and LGM climate values for 

temperature and precipitation. Temperature and precipitation legacies range from 2.7 ºC to 

10.7 ºC (mean = 4.8 ºC, standard deviation = 1.6) and from −300 mm to +600 mm (mean = −14 

mm, standard deviation = 114) across sites, respectively. 

 

 We used the biome maps of Olson et al. (2001) and Ray & Adams (2001) to define current 

and LGM distributions of desert biomes, respectively (Figure 1), which included both tropical 

(≤ 10% vegetation cover) and temperate (≤ 20% vegetation cover) deserts. The LGM biome 
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map was mainly based on plant fossil data, proxy data sources such as animal and sediment 

information and palaeoclimatic data (Ray & Adams, 2001). The current biome map is based on 

the widely recognized global maps of floristic or zoogeographic provinces, global maps of 

broad vegetation types, consultations from regional experts, and current climatic data (Olson et 

al., 2001).  

The current and LGM biome maps include 15 and 24 biomes, respectively. Therefore, we 

regrouped LGM biomes to match the current classifications according to Pärtel et al. (2017). 

The desert biome had a larger distribution during LGM than nowadays (Figure 1). Spatially, 

the distribution of the desert biome largely overlaps with that of arid and hyper-arid regions of 

the world (Figure 1). However, vegetation distributions were impacted not only by climate 

(Thomas & Nigam, 2018) but also by changes in sea level, large vertebrate migrations, fire 

disturbance regimes or geological activity (Olson et al., 2001; Ray & Adams, 2001; Sarnthein, 

1978). Therefore, the desert biome is not synonymous with arid and hyper-arid climates 

(Figure 1). 

We defined desert legacy as a binary variable depending on whether it was a desert (105 

sites) or not (131 sites) during the LGM. Similarly, current desert distribution is a binary 

variable depending on whether a given site is currently a desert (63 sites) or not (173 sites). We 

included the two binomial variables in the statistical analyses described below. The desert 

biomes were delineated based on thresholds of both climate and key ecosystem properties such 

as vegetation cover (Olson et al., 2001; Ray & Adams, 2001). When key ecosystem properties 

such as vegetation cover are pushed over given thresholds, ecosystem regime shifts are likely 

to occur (here from non-desert to desert, D’Odorico, Bhattachan, Davis, Ravi, & Runyan, 

2013) and its biodiversity and functions may be greatly altered (Hastings & Wysham, 2010; 

Pardini, Bueno, Gardner, Prado, & Metzger, 2010). Therefore, the binary variable of desert and 

non-desert should be a complement to the continuous climatic variables being studied here. 
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2.5 Statistical analyses 

We fitted a generalized least squares (gls) model using multifunctionality as our response 

variable and desert and climate legacies, current desert and climate, soil pH and sand content, 

plant species richness, and site elevation and slope as predictors. This approach allows to 

incorporate in the model a spatial correlation structure to account for the autocorrelation found 

within our 236 study sites. We evaluated gls models with different spatial correlation structures 

using the Akaike information criteria (AIC), and found that an exponential spatial correlation 

structure best described the autocorrelation within the sites surveyed. The gls does not 

automatically select predictive variables. Therefore, we first included all the potential predictor 

variables, and then simplified the fitted model using a stepwise variable selection by manually 

removing at each step the predictor with less explanatory power (Table 1). Finally, we selected 

the best model with the lowest AIC (Burnham & Anderson, 2003; Shipley, 2009). The 

semivariogram of the residuals of the final model used suggested that our approach effectively 

removed spatial autocorrelation (Figure S4). These analyses were carried out with the R 

package “nlme” version n 3.1-137 (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2012).  

We then used variation partitioning (Legendre, 2008) based on linear regression to identify 

the unique portion of variation in multifunctionality explained by four groups of predictors: (1) 

LGM desert legacy, (2) temperature and precipitation legacies, (3) current temperature, 

precipitation and desert distribution, and (4) other drivers (location, soil, plant, and site 

elevation and slope). The variation partitioning approach followed uses partial regression to 

partition the variance in multifunctionality with respect to the four groups of predictors. Some 

proportions were attributed to a particular group of predictors (unique variation) and some 

were shared among all predictors (shared variation). We used adjusted coefficients of 

determination (R
2
) in the variation partitioning to account for the different number of 

predictors included in each of the four categories. In some cases, the adjusted R
2 

can be 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

negative, which means that the predictors explained less variation than expected by chance 

(Legendre, 2008); we set them to zero. We used permutation tests for redundancy analysis 

ordination, as described in Oksanen et al. (2018), to test the significance of unique variation 

explained by each group; the significance of the shared variation was not testable. We 

conducted variation partitioning analyses using the R package “Vegan” version 2.4-5 

(Oksanen et al., 2018). 

We used confirmatory path analysis (CPA) to further investigate the direct and indirect 

(via plant species richness and soil properties) effects of current and LGM climates and desert 

distributions on the multifunctionality of the 236 drylands studied. CPA allows the analysis of 

multiple variables that can present complex dependencies among them, which enabled us to 

partition the direct and indirect effects of different predictors (Shipley, 2009). We developed an 

a priori CPA model (Figure S5) that included all the relationships based on previous 

knowledge of the potential relationships between our variables (Delgado-Baquerizo, Bissett, et 

al., 2017; Soliveres et al., 2014). We included in the CPA generalized least squares (gls) fitting 

of multifunctionality, plant/soil variables and their predictor variables (Figure S5). We then 

simplified the CPA by removing non-significant paths and selected the best model as that 

having the lowest AIC. The final CPA included a gls fitting using multifunctionality as 

response variable and the desert and temperature legacies, current temperature, soil sand 

content, and elevation as predictors, and a second gls fitting using soil sand content as response 

variable and the temperature legacy, current temperature and precipitation, and as predictors. 

Since we included the spatial correlation structure within all gls included in the model, CPA 

also effectively removed the potential autocorrelation among our sites (Figure S6). We 

conducted CPA using the R package “piecewiseSEM” version 2.0.2 (Lefcheck, 2016).  
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We checked the normality of all variables before and after log- and square-root 

transformations using the Shapiro-Wilk test as implemented in R, version 3.5.1 (Team, 2018). 

We then selected the transformation that allowed a best fit to a normal distribution for each 

variable. To address the quadratic relationships observed between multifunctionality and both 

soil pH and site elevation (Figure S7), we included x and x
2
 terms in all statistical analyses, 

where x is either pH or elevation. We selected the quadratic model over the linear one if the Δ 

of differences in AIC between these two models, i.e. AIC linear −AIC quadratic, was larger 

than two (Burnham & Anderson, 2003).  

As recommended (Byrnes et al., 2014; Manning et al., 2018), and to help interpreting our 

results, we also repeated CPA analyses for all 12 measured functions separately to test whether 

the effects of climate and biome legacies were consistent on the overall multifunctionality and 

individual functions (Table 2). Moreover, we conducted CPA for rate- and stock-based 

multifunctionality, respectively, to test whether the legacy effects were consistent between 

nutrient stocks and their transformation rates.  

Plant functional diversity is a major driver of dryland multifunctionality (Gross et al., 

2017) that is also likely to be affected by past climate and biome distribution (Blonder et al., 

2018). Hence, we also retrieved trait data for two key traits, plant height and specific leaf area, 

from the TRY database (Kattge et al., 2011) as described in Gross et al. (2017). A total of 123 

of the 236 sites surveyed had trait information available (Gross et al., 2017). We also 

conducted a CPA using these 123 sites to control for potential indirect effects of past 

conditions on current multifunctionality driven by functional traits. Including trait predictors 

did not essentially affect our results (Figure S8). However, among the 123 sites with trait 

information only fifteen are desert biome currently. Such small sample sizes decreased our 

confidence when testing the hypothesis of functionality debt caused by desert legacies. 

Therefore, we only present the results using all 236 sites in the main text. We also controlled 
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for regional differences in other potential confounding factors such as human influence (i.e., 

population pressure and land use; Last of the Wild Data, 2005), by using the residuals after 

fitting multifunctionality vs. human influence index (Figure S9). 

 

3. RESULTS 

We found a significant negative association between desert legacy and current ecosystem 

multifunctionality. The mean multifunctionality was 30% (±6%) lower in drylands that were 

deserts during LGM than those were not (Table 1). Temperature legacy was also negatively 

and significantly associated with multifunctionality; this variable was reduced by ~ 9% per 

degree warming (Table 1). In other words, regardless of their past biome distribution, locations 

with the largest increases in temperature over the last 22K years had the lowest 

multifunctionality. Similarly, current temperature was also negatively and significantly 

associated with multifunctionality, albeit the rate of decrease (~ 2% lower per degree warming) 

was much lower than that observed with temperature legacy (Table 1). Soil sand content was 

negatively related to multifunctionality (Table 1).  

Both desert and climate legacies explained unique and significant proportions of variation 

in multifunctionality (13% in total, Figure 2). Interestingly, current climates and desert 

distribution explained a small (< 3%), albeit statistically significant (P < 0.01), unique 

proportion of variation. Additional environmental predictors including soil, geographical, and 

plant variables explained the highest unique proportion of variation in multifunctionality (~ 

33%). The shared variation among all predictors was around 2% (Figure 2). 
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Our confirmatory path analysis explained ~43% of the variation in multifunctionality 

(Figure 3a). It confirmed the strong negative associations between contemporary 

multifunctionality and past desert distribution and temperatures, even after considering major 

drivers of dryland multifunctionality such as current climate, soil properties, site topography, 

plant species richness, functional diversity and human influence (Figures 3 and S8-9). These 

negative associations were driven by the effects found both on nutrient stocks, such as soil 

organic carbon, and their transformation rates, such as plant productivity (Table 2), indicating 

that both were equally sensitive to legacy effects. The negative effects of desert and 

temperature legacies were also consistent for 60% of the individual functions (vs. only 13% 

positive effects, Table 2), and when including more functions in our analyses (16 instead of 12 

functions, Figure S10). We found that LGM desert and temperature legacies had strong 

negative direct effects on multifunctionality, which were about 250% stronger than those found 

for current climate and desert distribution (Figure 3a). Temperature legacies also had indirect 

(via positive effect on soil sand content) negative effects on multifunctionality (Figure 3a). 

Desert and climate legacies had a ~ 10% larger standardized total effect (i.e. sum of indirect 

and direct effects) on multifunctionality than current desert and climate (Figure 3b). 

Current temperature had both direct and indirect (via soil sand content) negative effects on 

multifunctionality (Figure 3a). It also had negative effects on about 70% of the individual 

functions (Table 2). Current precipitation positively and indirectly influenced 

multifunctionality through the effects on soil sand content, albeit its effects were only about 

25% of the respective effect size of desert and temperature legacies (Figure 3b). Soil sand 

content negatively impacted multifunctionality (Figure 3a); it also had negative effects on 

seven individual functions (vs. only one positive effect, Table 2). Biodiversity had no 

significant effects on overall multifunctionality, although it significantly and positively 

impacted soil organic C, soil hexoses and soil enzymatic activity of phosphatase (Table 2). 
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However, when multifunctionality was calculated based on a different set of functions (16 

stocks and rates, Figure S10), we found a positive effect of species richness on 

multifunctionality.  

 

4. DISCUSSION 

Our work provides empirical evidence of a long-term functionality debt in global drylands 

promoted by legacy effects of past temperature and desert biome distribution. These results add 

to the increasing evidence that past conditions largely influence current ecosystem structure 

and functioning (Delgado-Baquerizo, Eldridge, et al., 2017; Monger et al., 2015; Ogle et al., 

2015; Pärtel et al., 2017), and provide novel insights about the potential impacts of the climatic 

changes occurring today for future ecosystem functioning. Importantly, here we found that the 

negative association between legacy effects and multifunctionality was not only related to 

stocks but also to nutrient transformation rates, which are fundamental components of 

ecosystem functioning. Moreover, past legacies had always larger effects on multifunctionality 

than those of current biomes and climate, which cautions about the potential underestimation 

of the functional consequences of current warming rates, as the total effects may take some 

time to manifest. Climatic legacy effects were mainly driven by increases in temperature rather 

than by changes in rainfall, suggesting that ongoing global warming may have a more 

detrimental effect on the future of dryland multifunctionality than forecasted changes in 

rainfall patterns.  

There are several mechanisms explaining the legacy effects of past biome and climate on 

both stock- and rate-based functions. First, past climate is known to have an effect on soil 

texture (our results, Prentice et al., 1992) and also on current microbial diversity and plant 

functional traits patterns (Blonder et al., 2018; Delgado-Baquerizo, Bissett, et al., 2017), which 
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are important factors influencing nutrient flux rates and primary productivity in drylands 

(Delgado-Baquerizo et al., 2016; Gross et al., 2017). Second, past climate and biome 

distribution may drive biotic inputs on soils for millennia, something likely to have a 

substantial influence on current nutrient stocks. This has been previously observed for soil C 

(Delgado-Baquerizo, Eldridge, et al., 2017) and we found similar results for both N and P 

stocks. Third, nutrient stocks and their transformation rates are interdependent. The rates of 

nutrient fluxes are affected not only by current environmental factors such as climate and 

vegetation type, but also the size of nutrient stocks (Shen, Jenerette, Hui, & Scott, 2016). For 

example, many ecosystems in drylands are N limited, and thus their rate of primary 

productivity are influenced by soil N stocks (Harpole, Potts, & Suding, 2007). Nitrogen 

transformation rate is positively affected by the size of microbial biomass (Chen et al., 2017), 

which is generally C limited (Conant et al., 2011); therefore, N transformation rate is likely to 

be positively affected by soil C and N stocks, as already observed in our database 

(Delgado-Baquerizo et al., 2013). Therefore, changes in nutrient stocks caused by past climate 

and biome conditions are likely to affect current nutrient transformation rates (see Table 2). In 

addition to the potential mechanisms behind the legacy effects of past climate, desert biomes 

are characterized by low vegetation cover and productivity, high soil erosion rates, extremely 

slow rates of soil formation, reduced nutrient turnover and slow recovery after disturbances 

(Borrelli et al., 2017; Chandler, Day, Madsen, & Belnap, 2019; Webb, 2002). These 

characteristics might contribute to the negative legacy effects from past desert distribution 

observed in our study. It has been estimated that the recovery of ecosystem functioning after 

anthropogenic disturbances may take from centuries to millenia in drylands (Belnap & Warren, 

2002; Lovich & Bainbridge, 1999). Although these examples show legacy effects from 

relatively shorter timescales compared to that found in our study, they illustrate the inherent 
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slow dynamics in ecosystem functioning typically observed in drylands, and may suggest 

similar slow recovery after natural disturbances such as climate variation and biome migration.  

Our findings indicate that a reversal from desert to more mesic biomes may still be 

impacted by a functionality debt from its past condition. Recovering a disturbed ecosystem 

might take from centuries to thousands of years, and an interim recovery debt (the reduction of 

ecosystem functions occurring during ecosystem recovery after disturbance) will accumulate 

even if complete recovery is reached (Moreno-Mateos et al., 2017). A recent meta-analysis has 

shown that ecosystems recovering from anthropogenic disturbances such as agricultural 

transformation and mining had over 35% lower C and N stocks compared with “undisturbed” 

reference areas (Moreno-Mateos et al., 2017). Our results show a “functionality debt” (~30% 

decline in multifunctionality) of previous environmental conditions associated to desertified 

drylands, i.e. high aridity and low vegetation cover. Although they are based on past climate 

and biome distribution, and thus may not necessarily extrapolate into the future, they suggest 

that the rate of land restoration should consider this functionality debt and exceed that of land 

degradation by a similar amount to achieve zero net land degradation aimed by international 

initiatives such as the UNCCD (UNCCD, 2012).  

Warming reduces soil moisture, and thus inhibits microbial activity, nutrient cycling, plant 

growth and vegetation cover in drylands (Foley, Costa, Delire, Ramankutty, & Snyder, 2003; 

Huang et al., 2017; Yin, Roderick, Leech, Sun, & Huang, 2014). Reduction in vegetation cover 

also increases soil erosion (Casermeiro et al., 2004; Wei et al., 2007), affecting soil texture and 

thus promoting soil-mediated temperature legacy effects. Therefore, sites experiencing higher 

warming rates from LGM to current climate have lower multifunctionality than those suffering 

lower warming rates (Figure 3). Huang et al. (2017; 2016) predicted deleterious effects of 

ongoing global warming on the world´s drylands, including long-lasting droughts and reduced 

crop yields and carbon sequestration in the future. In a similar direction, our results provide 
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empirical evidence that a warming from past to today is negatively associated with multiple 

functions in dryland ecosystems worldwide.  

Together, our study provides novel evidence that past desert and temperature legacies have 

detectable imprints on the current multifunctionality of global drylands. They highlight the 

importance of looking not only at current but past conditions to fully understand current 

multifunctionality patterns in these ecosystems. Our results also suggest that ongoing climate 

change, which will increase the expansion of desert areas, might substantially compromise the 

multifunctionality of global drylands in the future, and that the rate of land restoration should 

exceed that of land degradation by around one third if we aim to maintain the ecosystem 

functions that underpin the provision of key services for the 38% of human population in a 

warmer, and more arid, world.  
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Table 1 Coefficients of the generalized least squares model fitted to assess the effect of 

different predictor variables on ecosystem multifunctionality. This model included a spatial 

correlation structure to account for the autocorrelation present within the 236 sites surveyed. 

We also removed the predictors with low power and the final model had the lowest Akaike 

information criteria (see Methods section for details). The predictor variables with significant 

explanatory power (P < 0.05) included desert legacy, mean annual temperature (MAT) legacy, 

current MAT, soil sand content, and site elevation (Elevation
2
, square of elevation). 

Predictor  

variables 

Coefficients 

(mean ± standard error) 

P-value 

Intercept 1.591±0.170 <0.001 

Desert legacy −0.295±0.061 <0.001 

MAT legacy −0.085±0.017 <0.001 

Current MAT −0.021±0.006 <0.001 

Soil sand content −0.011±0.001 <0.001 

Elevation
2 

0.001±0.000 0.009 
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Table 2 The total standardized effects (direct + indirect) of desert legacy, climate legacy, and current desert and climate on 12 individual ecosystem 

functions, based on the significant path coefficients (P < 0.05) of confirmatory path analyses. SOC, soil organic carbon; PEN, soil pentoses; 

iNDVI, annual integral of normalized difference vegetation index; HEX, soil hexoses; NIT, soil nitrate; DON, soil dissolved organic nitrogen; 

PRO, soil proteins; NTR, soil potential nitrogen transformation rate; AVP, soil available inorganic phosphorus; FOS, soil enzymatic activity of 

phosphatase; TP, soil total phosphorus; IOP, soil inorganic phosphorus; MAT, mean annual temperature; MAP, annual precipitation; Species, plant 

species richness; Sand, soil sand content; and site elevation (Elevation
2
, square of elevation). 

 

SOC iNDVI PEN HEX NIT DON PRO NTR AVP FOS TP IOP 

Desert legacy −0.21 −0.19 0 −0.33 0 0 0 0 0 −0.12 −0.19 0 

MAT legacy −0.19 −0. 13 −0.37 −0.27 −0.12 0.43 −0.35 −0.1 0.12 −0.28 −0.39 0.08 

MAP legacy −0.01 −0.14 −0.33 0 0.35 0 0 0 0.2 −0.13 0.22 0.14 

Current desert 0 0 0 0 0 0 0 0 0.19 −0.14 0 0 

Current MAT − 0.62 0 −0.61 −0.18 −0.27 0.32 0 −0.36 −0.33 −0.64 −0.75 0.07 

Current MAP 0.27 0.58 0 0.53 −0.03 0.07 −0.37 0.11 −0.34 0.46 0.14 −0.32 
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Species 0.16 0 0 0.1 0 0 0 0 0 0.09 0 0 

Sand −0.47 0 0 −0.16 −0.32 −0.16 0 −0.24 0 −0.34 −0.3 0.21 

pH 0.31 0 0 0.2 0 0 0.24 0 0 0.28 0 0 

pH
2 

−0.34 0 0 −0.22 0 0 0 0 0 −0.31 0 0 

Elevation
 

−0.09 0.48 −0.52 −0.05 −0.14 0.44 0.68 0 0 0 0 0 

Elevation
2 

0.23 −0.74 0 −0.08 −0.16 −0.07 −0.67 −0.32 0 −0.55 −0.14 0.1 
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Figure captions 

 

Figure 1 Geographic locations of the 236 dryland sites surveyed and distribution of global 

desert biomes and drylands. The desert biomes under the Last Glacial Maximum (a) and 

current environmental conditions (b) were obtained from Ray & Adams (2001) and Olson et al. 

(2001), respectively. The current extent of drylands, as defined by the aridity index (AI, the 

ratio of precipitation to potential evapotranspiration), is shown in panel (c) (source: Trabucco 

& Zomer, 2009). Drylands include arid and hyper-arid (AI < 0.2), semi-arid (0.2 ≤ AI < 0.5) 

and dry sub-humid (0.5 ≤ AI < 0.65) regions.  

Figure 2 The unique and shared proportions of variations in multifunctionality explained by 

different predictors. We used variation partitioning analysis to calculate the proportions of 

variations. Significance levels are as follows: *** P < 0.001, ** P < 0.01. The significance of 

the shared variation could not be statistically tested. The unexplained residual variance was 

0.49. 

Figure 3 Confirmatory path analysis (CPA) accounting for the direct and indirect effects of 

environmental predictors on multifunctionality. (a) The significant path coefficients, 

describing the strength and sign of the relationships among the variables, are shown adjacent to 

the arrows (significance levels as follows: *** P < 0.001, ** P < 0.01, *P < 0.05). Paths of site 

elevation and slope were not included for simplicity, since the main objective of this study was 

to evaluate the legacy effects of climate and biome. MAT: mean annual temperature; MAP: 

annual precipitation; Soil sand: soil sand content. The CPA conducted had a Fisher's C = 5.57, 

four degrees of freedom and a P-value = 0.23, suggesting that it had a good fit to our data 

(Grace, 2006). (b) Standardized total (direct + indirect) effects of desert and climate legacies, 

and of current desert and climate on multifunctionality, based on CPA.  
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