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Abstract 
PALB2 (Partner and Localizer of BRCA2) was first 

identified as a BRCA2-interacting protein. 

Subsequently, PALB2 has been recognized as a cog 

in the cellular machinery for DNA repair by 

homologous recombination (HR). PALB2 also 

mediates S and G2 DNA damage checkpoints, and 

has an apparent function in protecting 

transcriptionally active genes from genotoxic stress. 

PALB2 also interacts with, is localized by, and 

functions downstream of BRCA1. Further, PALB2 

interacts with other essential effectors of HR, 

including RAD51 and RAD51C, as well as BRCA2. 

Consistent with its function in HR and its interaction 

with key HR proteins, PALB2-deficient cells are 

hypersensitive to ionizing radiation and DNA 

interstrand crosslinking agents such as mitomycin C 

and cisplatin. Mechanistically, PALB2 is required 

for HR by mediating the recruitment of BRCA2 and 

the RAD51 recombinase to sites of DNA damage. 

Similar to bi-allelic loss-of-function mutations of 

BRCA1, BRCA2, RAD51 and RAD51C, bi-allelic 

mutations in PALB2 cause Fanconi anemia (FA), a 

rare childhood disorder which is associated with 

progressive bone marrow failure, congenital 

anomalies, and a predisposition to leukemia and 

solid tumors. Due to their close functional 

relationship, bi-allelic mutations of PALB2 and 

BRCA2 cause particularly severe forms of FA, 

called FANCN and FANCD1, both characterized by 

severe congenital abnormalities and very early onset 

of various cancers. This includes acute leukemias, 

Wilms tumor, medulloblastoma and 

neuroblastomas. Also, heterozygous germ-line 

mutations of PALB2, like mutations in several other 

essential HR genes listed above, yield an increased 

susceptibility to breast and pancreatic cancer. 
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Identity 

Other names  

FANCN, FLJ21816, LOC79728, PNCA3 

HGNC (Hugo) 

PALB2 

Location 

16p12.2 

Local order 

As outlined by NCBI (Gene), coding genes most 

proximal to PALB2 on 16p12.2, in the centromeric 

to telomeric direction, are ERN2 (endoplasmic 

reticulum to nucleus signalling 2), PLK1 (polo-like 

kinase 1), DCTN5 (dynactin subunit 5), PALB2, 

NDUFAB1 (NADH:ubiquinone oxidoreductase 

subunit AB1), UBFD1  (ubiquitin family domain 
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containing 1), and EARS2 (glutamyl-tRNA 

synthetase 2). 

DNA/RNA 
The PALB2 protein was identified as a BRCA2-

interacting protein using mass spectrometry. This 

was found to correspond to gene locus 79728 

(LOC79728), which encodes putative protein 

FLJ21816 (Xia et al., 2006). In the same study, the 

first cDNA clone for human PALB2 was generated 

using RT-PCR. The human transcript includes 13 

exons arranged as diagrammed below: 

 
Exon structure of the human PALB2 gene.  Exons are delineated by a vertical black line. The coding 

sequences are shown in grey, while non-coding sequences in exons 1 and 13 are shown in white. (Above) The 

encoded protein is shown in blue with key domains and/or motifs that mediate interactions shown in black.  CC, 

coiled-coil; ChAM, chromatin association motif; LDEETGE, extended EDGE motif

. 

Description 

The human PALB2 gene (13 exons) spans 38.14 kb. 

Transcription 

Absent confirmed splice variants, the full-length 

transcript of PALB2 is 4,003 bp. 

Protein 
PALB2 has a large number of interactions with other 

DNA damage response proteins that function in 

DNA repair by homologous recombination, as 

illustrated below and reviewed elsewhere (Park et 

al., 2014b). This includes interactions with BRCA1, 

BRCA2, RAD51, RAD51C and XRCC3. In this 

way, PALB2 functions in a large network of HR 

proteins and seems to have a key role in coordinating 

their function (Park et al., 2014b). In particular, 

direct binding to BRCA1 mediates PALB2 

recruitment to DNA damage foci (Zhang et al., 

2009a; Zhang et al., 2009b). Notably, KEAP1-

dependent ubiquitination of the PALB2 coiled-coil 

domain suppresses HR in G1 by inhibiting the 

interaction of PALB2 with BRCA1 (Orthwein et al., 

2015). Importantly, direct interactions of the N- and 

C-termini of PALB2 with BRCA1 and BRCA2, 

respectively, physically links these tumor suppressor 

proteins (Sy et al., 2009b; Zhang et al., 2009a; Zhang 

et al., 2009b).  

 

PALB2 also directly interacts with MORF4L1 

(MRG15); this interaction appears to be  

 

independent of the interaction of MRG15 with the 

TIP60 histone methyltransferase complex 

(Hayakawa et al., 2010; Sy et al., 2009a). 

Additionally, PALB2 interacts with KEAP1, a 

sensor of oxidative stress (Ma et al., 2012).  

 

PALB2 is essential for embryonic development; 

homozygous knockout of PALB2 in mice disrupts 

the normal differentiation of mesoderm and results 

in embryonic lethality by E9.5 (Bowman-Colin et 

al., 2013; Rantakari et al., 2010). 

Description 

PALB2 contains a coiled-coil domain at its N-

terminus from amino acids (a.a.) 9-44, which 

mediates interaction with BRCA1 (Sy et al., 2009b; 

Zhang et al., 2009a; Zhang et al., 2009b). A nearby  

 

sequence present at a.a. 88-94 in human PALB2 is 

responsible for interaction with KEAP1 (Ma et al., 

2012). PALB2 contains a Chromatin Association 

Motif (ChAM) from a.a. 395-446 and a FXLP mofif 

from a.a. 612-615, which binds to MRG15, thereby 

promoting the interaction of PALB2 with chromatin 

(Bleuyard et al., 2012; Hayakawa et al., 2010; Xie et 

al., 2012). The C-terminal WD40 domain of PALB2, 

from a.a. 867-1186, directly binds BRCA2 (Oliver et 

al., 2009), RAD51 (Buisson et al., 2010), RAD51C 

and XRCC3 (Park et al., 2014a), POLE (pol η) 

(Buisson et al., 2014) and RNF168 (Luijsterburg et 

al., 2017). Within the WD40 domain, there is a 

hidden nuclear protein export signal from a.a. 928-

945 (Pauty et al., 2017). 

 
Key domains in the PALB2 protein and interactions they mediate.  Functional domains (or motifs) are 

shown in black and are identified above the diagram; the amino acids that each domain spans is noted in 

parentheses. Known interactions which are mediated by the particular domain or motif are shown beneath the 

diagram. 

Expression 

According to The Human Protein Atlas (online), 

PALB2 is ubiquitously expressed to varying degrees 

across different tissues including the brain, bone 

marrow, spleen, lung, liver, pancreas, stomach, 

kidney, testis, ovary and skin. 
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Localisation 

PALB2 localises to nuclei in both chromatin and the 

nucleoplasm during interphase (Xia et al., 2006). In 

untreated populations of human cancer cells, the 

majority of cells display a dispersed non-nucleolar 

signal while a subset of cells also display DNA 

damage foci. Treatment with agents that induce 

DNA damage and/or replication stress increases the 

assembly of nuclear DNA damage foci. The 

assembly of PALB2 nuclear foci requires interaction 

of the protein with BRCA1 (Zhang et al., 2009a; 

Zhang et al., 2009b). Additionally, the recruitment of 

PALB2 into foci is also promoted by MDC1, RNF8, 

UIMC1 (RAP80) and ABRAXAS1 (Abraxas), all of 

which are involved in the recruitment of BRCA1 

(Zhang et al., 2012), and by RNF168 (Luijsterburg 

et al., 2017). MRG15, PALB2 phosphorylated at S59 

and hypophosphorylated at S64, the APRIN 

cohesion factor and phosphorylated RPA2 also 

promote the recruitment of PALB2 to sites of DNA 

damage (Brough et al., 2012; Buisson et al., 2017; 

Hayakawa et al., 2010; Murphy et al., 2014). 

Function 

PALB2 acts as a typical cancer suppressor gene. 

Mono-allelic loss-of-function germline mutations 

are associated with an increased risk of developing 

breast cancer (Antoniou et al., 2014; Erkko et al., 

2007; Rahman et al., 2007) and pancreatic cancer 

(Jones et al., 2009). Bi-allelic mutations in PALB2 

(FANCN) cause a severe form of Fanconi anemia, 

subtype FA-N, with early onset of acute myeloid 

leukemia, medulloblastoma, neuroblastoma and 

often Wilms' tumor, leading to early death in the first 

decade of life (Reid et al., 2007).  

 

PALB2 is believed to act as a tumor suppressor 

protein by mediating DNA repair and thereby 

suppressing genome instability (Park et al., 2014b). 

Importantly, PALB2/FANCN-deficient cells have 

largely reduced levels of wild-type BRCA2 protein 

(Xia et al., 2007; Xia et al., 2006), reflective of a role 

for PALB2 in stabilizing the BRCA2 protein. 

Therefore, the phenotypes of these cells, as well as 

the clinical phenotypes of FA-N patients, are very 

similar to those of cells from patients with a BRCA2/ 

FANCD1 deficiency.  

 

As demonstrated by employing reporter constructs 

integrated into human cells, PALB2 has an important 

role in mediating the repair of DNA double-strand 

breaks (DSBs) by homologous recombination (HR) 

(Xia et al., 2006). While not specifically tested for 

PALB2, its partner BRCA2 has an additional role in 

mediating HR in response to DNA interstrand 

crosslinks (ICLs); ICLs are specifically repaired by 

FA proteins (Nakanishi et al., 2011). Consistent with 

a requirement for PALB2 in DNA repair by HR, and 

due to largely reduced BRCA2 protein levels, 

PALB2-deficient cells are hypersensitive to DNA 

interstrand crosslinking agents such as mitomycin C 

(MMC) and cisplatin (Xia et al., 2007; Xia et al., 

2006), and to ionizing radiation (IR) (Park et al., 

2014a). As further support for a role in DNA repair, 

PALB2-deficient cells are also hypersensitive to 

poly-ADP ribose polymerase (PARP) inhibitors 

(Buisson et al., 2010) and to aldehydes (Ghosh et al., 

2014).  

 

As a mediator of HR, PALB2 recruits BRCA2 and 

the RAD51 recombinase to sites of DNA damage 

(Xia et al., 2006). Additionally, PALB2 stabilizes 

BRCA2 present in chromatin (Xia et al., 2006). 

Biochemical experiments demonstrate that PALB2 

also directly binds DNA and promotes strand 

invasion necessary to initiate HR (Buisson et al., 

2010; Dray et al., 2010). In this process, PALB2 

decreases inhibition of D-loop formation mediated 

by RPA and enhances HR by stabilizing RAD51 

filaments. Also, PALB2 interacts with pol η, thereby 

promoting DNA synthesis at D-loops (Buisson et al., 

2014).  

 

PALB2 has additional roles in other facets of the 

DNA damage response, beyond its role in mediating 

HR. Among these, PALB2 promotes maintenance of 

G2 checkpoint arrest in response to DNA damage 

(Menzel et al., 2011). PALB2 is also required for 

chromosome stability. PALB2-deficient cells 

display increased breaks and radials in response to 

DNA damage (Bowman-Colin et al., 2013). Further, 

PALB2 has a role in protecting the cell from 

replication stress. Carriers of PALB2 mutations 

display increased firing of dormant replication 

origins (Nikkila et al., 2013) and mice with a single 

amino acid knock-in of in Brca2, p.Gly25Arg, which 

is deficient for binding to PALB2, display decreased 

fork stability in response to hydroxyurea (Hartford et 

al., 2016). Homozygosity of these Brca2 knock-in 

mice, and also hemizygosity in combination with 

Palb2 and Trp53 heterozygosity, results in defects in 

body size, fertility, meiosis and genome stability, 

and also increases tumor susceptibility (Hartford et 

al., 2016). Further, via its chromodomain, MRG15 

targets PALB2 to actively transcribed genes and 

protects them from DNA damage induced by 

camptothecin (Bleuyard et al., 2017). 

Homology 

Based on HomoloGene (NCBI), the following are 

homologs of the human PALB2 gene 

(NP_078951.2, 1186 a.a.):  

Chimpanzee (Pan troglodytes) XP_510877.2, 1186 

a.a.  

Rhesus monkey (Macaca mulatta) 

XP_001095569.2, 1135 a.a.  

Dog (Canis lupus familiaris) XP_850671.2, 1195 

a.a.  

Mouse (Mus musculus) NP_001074707.1, 1104 a.a.  

Rat (Rattus norvegicus) NP_001178532.1, 1110 a.a.  

Chicken (Gallus gallus) XP_004945321.1, 1341 a.a. 
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Mutations 

Germ-line frameshift, splice site and nonsense 

mutations that result in truncation of at least part of 

the C-terminal WD40 domain of PALB2, which 

binds BRCA2, are linked to Fanconi anemia (Reid et 

al., 2007; Xia et al., 2007), as well as breast cancer 

and pancreatic cancer (Erkko et al., 2007; Jones et 

al., 2009; Rahman et al., 2007; Tischkowitz et al., 

2007). Consistent with the role of PALB2 as an 

interaction partner in a large DNA repair network, 

these mutations disrupt the binding of PALB2 with 

BRCA2 and other partners, thereby diminishing 

DNA repair by HR.  

 

Germ-line, as well as acquired missense mutations, 

have also been reported in breast cancer patients 

(Casadei et al., 2011). At the time of writing, 2023 

distinct variations were listed in Clinvar 

(https://www.ncbi.nlm.nih.gov/clinvar/?term=palb2

%5Bgene%5D) for PALB2, with 244 frameshift, 

110 nonsense, 43 splice site, 14 near gene/UTR, and 

966 missense alterations listed. Notably, the clinical 

significance, as well as the functional significance, 

of most of these amino acid exchanges is unknown. 

These are therefore termed variants of uncertain 

significance (VUS). However, we have 

demonstrated by functional tests in reconstituted 

PALB2-deficient FA cells that the p.L939W and 

p.L1143P variants in the WD40 domain of PALB2 

decrease the efficiency of HR and confer partial 

resistance to IR, when compared to cells 

reconstituted with wild-type PALB2 (Park et al., 

2014a). More recently, it has been demonstrated that 

the c.104T>C (p.L35P) missense mutant in the N-

terminus of PALB2 segregates with malignancies in 

a family with a strong history of breast cancer (Foo 

et al., 2017). The p.L35P mutant protein completely 

abrogates the interaction of PALB2 with BRCA1 

and therefore shows no protein activity in HR assays 

or in assays of cellular resistance to platinum and 

PARP inhibitors. The findings with p.L35P 

demonstrate that missense mutations in PALB2 can 

be pathogenic. Considering the large number of 

PALB2 VUS, and given the importance of PALB2 

functionality for determining prognosis and 

treatment stratification in patients, significant efforts 

should be undertaken to systematically determine the 

functional consequences of such variants on defined 

cellular functions. Determination of the effects of 

PALB2 VUS on cellular sensitivity to PARP 

inhibitors, cisplatin and related drugs, and irradiation 

is particularly important, since PALB2 promotes 

cellular resistance to each of these therapeutic 

agents. 

Epigenetics 

Hypermethylation of CpG islands in the PALB2 

promoter has been observed in a subset of cases of 

inherited and sporadic breast cancer, and in ovarian 

cancer (Potapova et al., 2008). 

Implicated in 

Germ-line bi-allelic and heterozygous loss-of-

mutations in PALB2 are associated with different 

clinical disorders and outcomes. Bi-allelic 

inactivating mutations of PALB2 result in Fanconi 

anemia subtype N (FA-N, gene: FANCN), while 

heterozygous inheritance of a deleterious PALB2 

mutation increases the lifetime risk of developing 

breast and pancreatic cancer. Loss of heterozygosity 

has not been consistently detected in tumors that 

develop in carriers of heterozygous PALB2 

mutations (Hartley et al., 2014). How much germ-

line mutations of PALB2 increase the risk of 

developing other malignancies, such as ovarian or 

lung cancers, remains to be determined (Phuah et al., 

2013). 

Fanconi Anemia (FA) 

Just seven months after the identification and 

characterization of PALB2 as a novel BRCA2 

binding protein (Xia et al., 2006), two independent 

groups identified a total of eight FA patients with 

biallelic mutations in PALB2: [(Xia et al., 2007): 

n=1, (Reid et al., 2007): n=7]. These patients 

exhibited a severe FA phenotype with pronounced 

congenital abnormalities and a high incidence of 

malignancies before age seven that was similar to the 

phenotype described for BRCA2-deficient FANCD1 

patients (Alter et al., 2007; Hirsch et al., 2004; 

Wagner et al., 2004). Notably, these eight children 

developed 12 distinct malignancies (5X 

medulloblastoma, 3X Wilms tumors, 2X acute 

myeloid leukemia, 1X neuroblastoma and 1X 

hemangioendothelioma) before five years of age. 

One German patient experienced three different 

malignancies at 12 months of age, and there were 

cases of breast and pancreatic cancers present in the 

families (Reid et al., 2007). PALB2 was the 12th 

identified FA gene, defining the FA-N 

complementation group.  

 

At present, 22 FA or FA-like genes have been 

identified (Nepal et al., 2017). Except for the X-

linked FANCB and the autosomal dominant RAD51 

(FANCR), FA genes are autosomal recessive tumor 

suppressor genes. Based on the central activation 

step in the FA pathway, the monoubiquitination of 

the FANCD2/ FANCI protein dimer, one can 

distinguish the so-called early (or upstream) FA 

genes, FANC -A, -B, -C, -E, -F, -G, -L, -M, UBE2T 

(FANC-T) with no ubiquitination of FANCD2/I 

when mutated (Mamrak et al., 2017; Nepal et al., 

2017). In contrast, late/downstream FA genes are not 

required for monoubiquitination of FANCD2 and 

FANCI. These late genes include BRCA2 

(FANCD1), BRIP1 (FANCJ), 

FANCN/PALB2,/RAD51C (FANCO), RAD51 

(FANCR), BRCA1 (FANCS), XRCC2 (FANCU), 

MAD2L2 (FANCV/polTheta) and RFWD3 

(FANCW). Most FA patients have bi-allelic 
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mutations in the upstream FA genes, especially 

FANCA, FANCC and FANCG, and show the 

characteristic clinical features of FA. These clinical 

features include progressive bone marrow failure 

around 7.6 years of age, various congenital 

anomalies, and a predisposition to acute myeloid 

leukemia and an assortment of solid tumors that 

occur in the second and third decade of life (Kutler 

et al., 2003). Congenital anomalies observed in FA 

patients can include microcephaly, short stature, skin 

pigmentation defects, hypogonadism, and radial ray 

anomalies. A significant number of FA patients also 

experience endocrine abnormalities (Rose et al., 

2012).  

 

In contrast to other FA complementation groups, FA 

patients that harbour biallelic mutations in 

PALB2/FANCN or its partner BRCA2/FANCD1 

show clinically indistinguishable phenotypes of 

severe FA characterized by a very early onset and 

high penetrance of cancers before age seven (Reid et 

al., 2007). More than 90% of patients succumb to 

their malignancies before ten years of age. Notably, 

the spectrum of cancers found in FA patients from 

the FANCN/PALB2 and FANCD1/BRCA2 

complementation groups is different than for other 

FA complementation groups, including frequent 

occurrences of medulloblastoma, Wilms tumor, 

neuroblastoma and hepatoblastomas (Alter et al., 

2007; Tischkowitz and Xia, 2010). Bone marrow 

failure is usually not observed in FA-N patients 

(Reid et al., 2007).  

 

On a cellular level, FA including the FA-N/PALB2 

complementation group is a chromosome instability 

syndrome. Notably, FA patients are hypersensitive 

to agents which induce DNA interstrand crosslinks 

(ICLs). Specifically, cells from FA patients display 

a characteristic spontaneous and ICL-induced 

chromosome instability; this phenotype is typically 

utilized to diagnose FA (Auerbach, 2009). Recently, 

without functional testing, next generation 

sequencing based strategies have also been 

employed to diagnose FA in patients and at the same 

time identify the defective gene (De Rocco et al., 

2014). Additionally, cells from FA patients display 

accumulation in G2-M of the cell cycle in response 

to ICLs (Bogliolo and Surralles, 2015). Other 

cellular functions affected in cells with defects in the 

FA pathway include sensitivity to aldehydes and 

oxygen, excessive cytokine production, and defects 

in the spindle assembly checkpoint, autophagy, 

cellular reprograming, unwinding of quadruplex and 

triplex DNA and microsatellite instability (Bogliolo 

and Surralles, 2015). Correction of the cellular 

phenotypes by expression of the appropriate FA 

gene can be utilized to determine the FA 

complementation group (Chandra et al., 2005; 

Hanenberg et al., 2002; Virts et al., 2015). For 

patients with a deficiency for FANCA, stem cell 

gene therapy might become a new treatment option 

(Hanenberg et al., 2017). 

Breast Cancer 

Back-to-back with the identification of PALB2 as 

the 12th FA gene, Rahman et al. reported the 

identification of 10 out of 923 individuals (1.1%) 

from familial breast cancer pedigrees with mono-

allelic loss-of-function germ-line mutations in 

PALB2 (Rahman et al., 2007). A lower frequency of 

PALB2 germ-line mutation (0.5 to 1%) was found in 

patients with or without a positive family history 

(Erkko et al., 2007; Foulkes et al., 2007). Further, 

founder mutations were detected in Finland (Erkko 

et al., 2007) and Canada (Foulkes et al., 2007).  

 

The largest study to date included 311 women and 

51 men from 154 families with loss-of-function 

germ-line PALB2 mutations, of whom 229 women 

and 7 men developed breast cancer. Biostatistical 

analyses revealed that the risk of developing breast 

cancer for PALB2 mutation carriers was increased 

by a factor of 9.07 (95% CI, 5.72 to 14.39) when 

compared to the breast cancer incidence in the 

general population (Antoniou et al., 2014). The 

cumulative risk of female heterozygous PALB2 

germ-line mutation carriers to develop breast cancer 

by the age of 70 was as high as 35%. Thus, along 

with BRCA1 and BRCA2, PALB2 is among the 

genes that confer the highest breast cancer risk when 

mutated. In a recent German study of 5589 breast 

cancer patients without mutations in BRCA1/2, loss-

of-function mutations in PALB2 accounted for 

1.15% of cases and were also significantly 

associated with bilateral breast cancer occurrence 

(Hauke et al., 2018). Only 8 out of 40 patents with 

PALB2 germ-line mutations belonged to the triple 

negative breast cancer subtype (Hauke et al., 2018).  

 

Breast cancer causing mutations of PALB2 include 

established nonsense, frameshift and splice site 

mutations, which all are thought to compromise the 

role of PALB2 in cellular responses to DNA 

damage. However, it is noteworthy that almost 50% 

of the PALB2 sequence alterations listed in ClinVar 

are missense variations of unknown clinical and 

functional significance. Importantly, loss of function 

of PALB2 is synthetically lethal with radiation, 

PARP inhibitors, and cisplatin and related 

compounds. While tumors, which are driven by 

mutations in PALB2, typically have loss of function 

of PALB2, normal tissues retain a functional copy of 

this gene. As such, radiation and/or PARP inhibitors 

or platinum compounds may be particularly effective 

against tumor cells with bi-allelic PALB2 mutations.  

 

Interestingly, the relative risk for ovarian cancer was 

only increased non-significantly to 2.31 for PALB2 

mutation carriers (Antoniou et al., 2014). This is 

surprising, as the PALB2 protein physically interacts 

with the products of other ovarian cancer 
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susceptibility genes, specifically BRCA1, BRCA2 

and RAD51C (Park et al., 2014b). 

Pancreatic Cancer 

While BRCA2, which encodes a partner of the 

PALB2 protein, is the most frequently mutated gene 

in hereditary pancreatic cancer (Shindo et al., 2017; 

Zhen et al., 2015), mutation of PALB2 is also an 

important cause of this disease (Jones et al., 2009). 

To date, truncating loss-of-function germ-line 

mutations in PALB2 have been associated with the 

development of pancreatic cancer. In some pedigrees 

of families with inherited pancreatic cancer, breast 

and other cancers have also been observed (Blanco 

et al., 2013; Zhen et al., 2015). 
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