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Abstract 

Review on PIP5K1A, with data on DNA, on the 

protein encoded, and where the gene is implicated. 
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Description 

The cDNAs encoding the phosphatidylinositol 4-

phosphate 5-kinases (PIP5K) were isolated from the 

human brain using peptide sequences from the 

erythroid 68-kDa type I PIP5KI (Loijens 1996). A 

human fetal brain cDNA library was screened 

leading to isolation of full-length type IA, PIP5K1A 

cDNAs (Loijens 1996). PIP5K1A is located in the 

chromosomal region 1q21.3 (Xie 2000), the product 

of which is predominantly responsible for the 

synthesis of PtdIns-4,5-P2 (PIP2), a substrate used 

by PI3K to produce PtdIns-3,4,5-P3 (PIP3) (Shaw 

2006). PIP5K1A gene was localized to chromosome 

1q22-q24 by fluorescence in situ hybridization 

(FISH) (Xie 2000). 

Transcription 

The 549-amino acid protein has a conserved kinase 

homology domain similar to the rest of the PIP5K 

family members. Northern blot analysis showed a 

wide distribution of a PIP5K1A 4.2-kb transcript 

mostly expressed in skeletal muscle. In addition, 

high levels of PIP5K1A were also seen in heart, 

placenta, kidney, and pancreas while low levels of 

expression were observed in brain, liver, and lung 

(Loijens 1996). Deletion-mutant analysis was used 

to determine an approximately 380-amino acid 

minimal core sequence of mouse PIP5K1A that was 

sufficient for phosphatidylinositol 4-phosphate 

kinase activity. 

Protein 

Figure 1. Schematic representation of human PIP5K1A isoform with the conserved kinase core domain (adopted 

from Porciello 2016). 
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Description 

PIP5K1A is a 61-kDa protein migrating at about 68 

kDa in SDS-PAGE (Fruman 1998). The protein 

shows 83% and 35% amino acid identity with 

PIP5K1B and PIP4K2A (PIP5K2A), respectively,  

 

within the conserved kinase homology domain 

(Loijens 1996). Overall, the PIP5K1A and PIP5K1B 

proteins are 64% identical and Northern analysis 

shows the two to have a wide tissue distributions, but 

greatly differing expression levels. Recombinant, 

bacterially expressed PIP5KA was observed to have 

PIP5K activity and to be immunoreactive with 

erythroid PIP5KI antibodies (Loijens 1996). 

Furthermore, the authors isolated additional 

PIP5K1A cDNAs which they suggested represent 

splicing isoforms. Overexpression of mouse 

PIP5K1A in COS-7 cells stimulates an increase in 

short actin fibers and a decrease in actin stress fibers 

(Ishihara 1998). 

PIP5K1A mediate the phosphorylation of 

phosphatidylinositol 4-phosphate on the D5 position 

of the inositol ring, thus inducing the production of 

phosphatidylinositol 4,5-biphosphate (PIP2) (van 

den Bout 2009). In both humans and mice, all PIP5K 

isoforms show variation in their sequence by 

alternative splicing (Ishihara 1998). Three PIP5K1α, 

four β, and one γ splice variants were identified in 

humans and eight PIP5K1α, two β, and three γ splice 

variants are present in mice. (Ishihara 1998). 

All PIP5K isoforms α, β, and γ, and splice variants 

have a highly conserved kinase core domain that 

consists of 330-380 amino acids (Fig. 1), and a sub-

domain called the activation loop, that regulates their 

activity and subcellular localization (Tuosto 2015). 

The variables N- and C-termini of PIP5K isoforms 

are also involved in the regulation of lipid kinase 

activity and in targeting PIP5Ks to specific cellular 

compartments (Kwiatkowska 2010). The C-terminal 

residues (440-562) of PIP5K1A regulate its 

localization at nuclear speckles (Mellman 2008). 

The 83 C-terminal amino acids of PIP5K1β are 

essential for its polarization at the uropod (Lacalle 

2007), whereas the N-terminus controls PIP5K1β 

targeting to the plasma membrane and its 

dimerization with other PIP5K isoforms (Lacalle 

2015). (Ishihara 1998). 

The crystal structure of the catalytic domain of 

zebrafish PIP5K1A has been reported at 3.3Å 

resolution and the molecule forms a side-to-side 

dimer (Hu 2015). Mutagenesis study of PIP5K1A 

indicated two adjacent interfaces for the 

dimerization and interaction with the DIX domain of 

the Wnt signalling molecule dishevelled. Much as 

the interfaces were located distally to the 

catalytic/substrate-binding site, binding to these 

interfaces either through dimerization or the 

interaction with DIX stimulated PIP5K1 catalytic 

activity. DIX binding additionally enhanced PIP5K1 

substrate binding (Hu 2015). (Ishihara 1998). 

All the three PIP5K isoforms are expressed by 

primary T cells (Sun 2011) and they are triggered by 

phosphatidic acid (PA), which is generated by 

phospholipase D (PLD), through the hydrolysis of 

phosphatidylcholine (Jenkins 1994, Moritz 1992). 

PIP5K1α cooperates with PIP5Kβ and VAV1 in 

promoting actin polymerization and CD28 signaling 

functions in human T lymphocytes (Porciello 2016). 

PIP5K1A localises to the plasma membrane and the 

Golgi complex, and has also been observed at sites 

of membrane ruffling induced by the Rho GTPase 

RAC1 (van den Bout 2009). PIP5K1A in particular 

is recruited to the plasma membrane in response to 

several receptors to provide the substrate PIP2 for 

PLCγ leading to IP3 formation and Ca2+ 

mobilization (Saito 2003, Wang 2008 and Xie 2009). 

Both PIP5K1α and PIP5Kγ are known to interact and 

colocalize with phospholipase D 2 (PLD2) at the 

membrane to stimulate cell adhesion (Divecha 2000, 

Powner 2005). Some studies have also shown 

pronounced association of PIP5K1A with nuclear 

speckles (Chakrabarti 2013) where it may regulate 

pre-mRNA processing and mRNA export (Barlow 

2010). 

Function 

Treatment of primary cultured astrocytes with 

gangliosides significantly enhanced PIP5K1α 

mRNA and protein expression levels (Sang 2010). 

MicroRNA-based PIP5K1α knockdown strongly 

reduced ganglioside-induced transcription of 

proinflammatory cytokines. In addition, PIP5K1α 

knockdown suppressed phosphorylation and nuclear 

translocation of NF-kB (Sang 2010). 

PIPK-mediated mechanisms regulate microtubule 

dynamics in neuronal development (Noda 2012). 

Using immunoprecipitation with an antibody 

specific to KIF2A, PIPKα was identified as a 

candidate membrane protein that regulates the 

activity of KIF2A. Yeast two-hybrid and 

biochemical assays showed direct binding between 

KIF2A and PIPKα. Furthermore, the microtubule 

(MT)- depolymerizing activity of KIF2A was 

enhanced in the presence of PIPKα in vitro and in 

vivo. 

Implicated in 

Prostate cancer 

Some studies have shown that overexpression of 

PIP5K1α in non-malignant PNT1A cells induces the 

invasive capacity of these cells.  An increased 

expression of major factors that drive cancer cell 

proliferation and invasion such as VEGF, 

phosphorylated PTK2 (FAK), TWIST1, and MMP9, 

was observed in these cells due to PIP5K1α 

overexpression. PIP5K1α overexpression in these 

cells led to an increased AKT activity and an 

increased survival, as well as invasive malignant 

phenotype. The siRNA-mediated knockdown of 

PIP5K1α in these cells resulted into a reduced AKT 
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activity and an inhibition in tumor growth. PIP5K1α, 

PIP2 and PIP3 are important lipids for membrane 

structure and actin polymerization, thus increased 

levels of these lipids may lead to malignant 

transformation and progression of cancer cells into a 

more invasive phenotype (Semenas 2014). 
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