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Abstract 

Hepatocyte nuclear factor 4 alpha (HNF4A) also 

known as NR2A1 (Nuclear Receptor Subfamily 2, 

group A, member 1) is a member of the nuclear 

receptor (NR) superfamily of ligand-dependent 

transcription factors. The encoded protein controls 

the expression of several genes, especially those that 

play distinct roles in development,  

differentiation, embryogenesis and organogenesis. 

Keywords: HNF4A 

Identity 

HGNC (Hugo): HNF4A 

Location 

The human HNF4A gene is located on 20q12-q13.1 

Figure 1 HNF4A transcripts.  HNF4A contains two distinct promoters (P1 and P2) that drive expression of 9 known isoforms 
(α1 to α9) of the gene. Transcription through the P1 promoter allows transcription starting from exon 1 (B) coding for the N-

terminal domain of HNF4A, designated as AF-1. Transcription through the P2 promoter allows the inclusion of exon 1 (A) but the 
exclusion of the exon 1 (B). Although alternative splicing of exon 1 (B) modifies only A/B domain of the P1 isoforms, F domains 
of both isoforms are modified by alternative splicing of the last exons. DBD: DNA binding domain; LBD: Ligand binding domain; 

AF-1: Activating function-1; AF-2: Activating function-2 (Modified from Babeu and Boudreau, 2014). 
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Figure 2 HNF4A domains.  AF-1: activation function; DBD: DNA binding function; LBD: ligand binding function; F domain: 

repressor function that inhibits access of coactivators to NCOA5 (AF-2) which function in homodimerization and activation. H: 
hinge region. 

 

DNA/RNA 

Description 

The human HNF4A gene spans ~77 kb. 

Transcription 

The HNF4A gene is composed of thirteen exons and 

contains two promoters, P1 and P2, which can drive 

the expression of many splice variants (HNF4A1-

HNF4A9) that differ in the variable A/B and F 

domains (Harries et al., 2008). The variants derived 

from the P1 and P2 promoters are referred to as 

HNF4A1-HNF4A6 and HNF4A7-HNF4A9, 

respectively (Erdmann et al., 2007). 

The different promoters are used in different tissues 

and at different times during development, and the 

encoded protein controls the expression of several 

genes. Multiple isoforms are proposed to exist in 

mammals and are thought to have different 

physiological roles in development and 

differentiation (Walesky and Apte, 2015). 

Protein 

Description 

Domain structure and DNA binding 
HNF4A consists of six structural domains named A-

F that are responsible for specific functions: an N-

terminal activation domain (AF-1, also referred to as 

A/B domain); a zinc finger domain that serves as the 

DNA-binding domain (DBD; C domain) which is 

highly conserved among NRs; a putative ligand 

binding domain (LBD; E domain); and a C-terminal 

domain which functions in homodimerization and 

activation (AF-2), and a repressor region (F domain) 

that inhibits access of coactivators to AF-2, and 

possibly to other regions (Walesky and Apte, 2015). 

The DBD consists of two zinc fingers, and 12 alpha 

helices that create a hydrophobic pocket for ligand 

binding (Duda et al., 2004) (Figure 2). 

HNF4A binds DNA regulatory elements as a 

homodimer. E domain (Ligand Binding Domain-

LBD) appears to be critical for homodimerization 

and to play a role in preventing heterodimerization 

with other NRs such as RXR or RAR (Bogan et al., 

2000). HNF4A binds DNA response elements 

consisting of direct repeats. It can also bind several 

different co-activators (such as GRIP1, NCOA1, 

NCOA2, NCOA3, (SRC1, 2 and 3), CREBBP 

(CBP/P300), PPARGC1A (PGC1)) (MartÍnez-

Jiménez et al., 2006). 

Expression 

Multiple HNF4A isoforms exist in humans and are 

suggested to have different physiological roles in 

development and transcriptional regulation of target 

genes (Figure 1). HNF4A1 and 2 isoforms from the 

P1 promoter are expressed in the liver (hepatocytes), 

kidneys, small intestine and colon. HNF4A3 and 4 

are expressed in human liver. P2 promoter-driven 

HNF4A7 and 8 are expressed in the fetal liver and 

adult pancreas (β-cells) and to a lesser extent in the 

adult liver (bile ducts), small intestine, colon and 

stomach. HNF4A isoforms from both the P1 and P2 

promoter were also reported to be expressed in the 

epididymis (Tanaka et al., 2006). However, not 

much is known about the developmental and 

physiological relevance of the HNF4A isoforms 

(Boyd et al., 2009). 

In addition to several different isoforms produced 

from the HNF4A gene by different promoter usage 

and alternative splicing, the 3'UTR of the gene was 

also reported to control HNF4A expression (Wirsing 

et al., 2011). 

Localisation 

Localized primarily in the nucleus. 

Function 

HNF4A can exist in an unliganded form, or may bind 

to linoleic acid (LA), an essential fatty acid (Yuan et 

al., 2009). Although it is not yet clear whether ligand 

binding affects the function of HNF4A, the HNF4A 

transcriptional activity is regulated at several 

different levels. Most prominent among the post-

translational modifications of HNF4A is 

phosphorylation which occurs mainly at serine and 

to a lesser extent at threonine residues (Jiang et al., 

1997). Between the kinases, PRKACA (protein 

kinase A, PKA) dependent phosphorylation of 

HNF4A was reported to inhibit recruitment to target 

genes (You et al., 2002). On the other hand, 

activation of MAP kinase pathway was shown to 

down-regulate HNF4A transcription (Reddy et al., 

1999). AMP-activated protein kinase was also 

implicated in the regulation of HNF4A activity by 

inhibiting dimer formation and decreasing protein 

stability (Hong et al., 2003). p38 kinase-mediated 

Ser158 phosphorylation was also shown to increase 

DNA binding and transactivation potential of 
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HNF4A (Guo et al., 2006), and Ser78 

phosphorylation of HNF4A by PRKCB (protein 

kinase C, PKC) was shown to down-regulate 

HNF4A protein level via the proteasome pathway 

(Sun et al., 2007). 

Acetylation was also implicated in the regulation of 

HNF4A function (Soutoglou et al., 2000; Yokoyama 

et al., 2011). Soutoglou et al. showed that CREB-

binding protein (CBP) acetylates HNF4A on lysine 

residues within the nuclear localization sequence, 

and increase nuclear retention and target gene 

activation by HNF4A (Soutoglou et al., 2000). 

Methylation and SUMOylation are the other post-

translational mechanisms that regulate HNF4A 

activity. Methylation of the DNA-binding domain of 

HNF4A by PRMT1 (Protein Arginine 

Methyltransferase 1), whose methylation activity on 

HIST4H4 (histone H4 )strongly correlates with the 

induction of HNF4A target genes in differentiating 

enterocytes, increased transcriptional activity of 

HNF4A (Barrero and Malik, 2006). SUMOylation is 

the other mechanism that regulates HNF4A protein 

stability and potentially DNA binding activity (Zhou 

et al., 2012). 

As a transcription factor, HNF4A was first identified 

to be bound to DNA sites required for the 

transcription of two liver-specific genes: TTR 

(transthyretin) and APO3 (apolipoprotein CIII) 

(Sladek et al., 1990). An increasing number of 

studies implicate a vital role of HNF4A in the 

development of the liver, intestine and pancreas, 

differentiation and homeostasis (Figure 3). 

Liver 
HNF4A has been shown to be required for 

hepatocyte differentiation and development of the 

liver. The expression of HNF4A mRNA in post-

implantation mouse embryos was found in the 

primary endoderm starting at day 4.5. From day 8.5, 

HNF4A mRNA was detected in embryonic tissues in 

the liver diverticulum and the hindgut. At later times, 

HNF4A transcripts were found in the mesonephric 

tubules, pancreas, stomach, intestine, and in the 

metanephric tubules of the developing kidney 

(Duncan et al., 1994). Additionally, conditional 

genetic removal of HNF4A in the liver resulted in 

disorganization of morphological and functional 

differentiation in the hepatic epithelium (Parviz et 

al., 2003). In hepatocyte-specific knock-out model, 

lack of HNF4A expression in the liver caused 

impaired lipid metabolism and gluconeogenesis 

(Hayhurst et al., 2001), indicating that HNF4A 

controls genes involved in hepatic lipid and glucose 

metabolism, hereby influencing the hepatocyte 

metabolome (Parviz et al., 2003). On the other hand, 

homozygous loss of HNF4A gene resulted in 

embryonic lethality (Chen et al., 1994.). 

HNF4A was also found to be related to epithelial cell 

adhesion and junction formation in the fetal liver 

(Battle et al., 2006). Re-expression of HNF4A was 

shown to induce cells to reform junctions and 

express hepatocyte marker genes in a 

dedifferentiated hepatoma cell line (Späth and 

Weiss, 1997; Späth and Weiss, 1998). More 

recently, HNF4A was implicated in the 

differentiation of hepatic stellate cells into 

hepatocyte-like cells (Liu et al., 2015). Furthermore, 

in non-hepatic cells, ectopic over expression of 

HNF4A in fibroblasts induced mesenchymal to 

epithelial transition (EMT), indicating that HNF4A 

is a dominant regulator of the morphogenetic 

parameters that form the epithelial phenotype 

(Parviz et al., 2003.). 

More recently, Yang et al. showed that during EMT, 

there is a negative feedback loop between Wnt-β-

catenin signaling and HNF4A, both in vivo and in 

vitro. Restoring HNF4A expression was suggested 

as a method to inhibit invasion in hepatocellular 

carcinoma by preventing EMT (Yang et al., 2013). 

Intestine 
HNF4A plays essential roles in the intestine, 

particularly in epithelial cell function, differentiation 

and normal colon physiology (Chellappa et al., 

2012). 

To directly address the role of HNF4A in 

development of the colon, an epithelial-specific 

knockout model of HNF4A was created in mice by 

using the Cre-loxP system. Examination of the 

embryos revealed that HNF4A ablation disrupts 

development of normal crypt topology in fetal 

colons, and reduced goblet cell maturation (Garrison 

et al., 2006). In adult small intestine, HNF4A was 

shown to play a critical role in the homeostasis of 

intestinal epithelium, in the epithelial cell 

architecture, and in the barrier function of the 

intestine. Loss of intestinal HNF4A affected the 

Wnt/β-catenin signaling pathway, and destabilized 

adherens and tight junctions (Cattin et al., 2009). 

Recently, Vuong et al. suggested that HNF4A 

isoforms play distinct roles in colon cancer, which 

could be caused by differential interactions with the 

Wnt/β-catenin/TCF4 and AP-1 pathways (Vuong et 

al., 2015). 

Importance of HNF4A in the formation of tight 

epithelial barrier to exert a selective barrier function 

in relation to apical-to-basal transport was also 

shown in a coculture system (Lussier et al., 2008). 

Besides nutrient metabolism (Black, 2007) and 

protection against pathogens (Laukoetter et al., 

2006), another function of the epithelial barrier is the 

control of appropriate ion selectivity. Loss of this 

function can lead to deregulation of colonic 

inflammatory homeostasis and inflammatory bowel 

disease (IBD) (Darsigny et al., 2009). 
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Differentiation program in the colon  

Figure 3 HNF4A can regulate different cell functions.  HNF4A is an important regulator with a strong impact on endodermal 
development, organ differentiation and metabolism (Boyd et al., 2009). 

 

HNF4A appears to play a protective role against 

IBD, an important risk factor for colorectal cancer. 

In patients with IBD, HNF4A expression was 

significantly decreased. Accordingly, intestine 

specific HNF4A-null mice exhibited increased 

susceptibility to dextran sulfate sodium (DSS) 

induced IBD with increased intestinal permeability, 

suggesting that HNF4A was required to protect the 

epithelium during experimental colitis (Ahn et al., 

2008). 

HNF4A was also addressed as a crucial transcription 

factor in the differentiation of intestinal cells.  

Intestine specific knockout of HNF4A in the adult 

mouse enhanced proliferation in crypts, and 

increased number of mucus secreting cells (Cattin et 

al., 2009).  

HNF4A was also shown to be involved in the 

regulation of genes involved in the enterocyte 

differentiation and in lipid metabolism (Béaslas et 

al., 2008; Stegmann et al. 2006; Cattin et al., 2009).  

To address the role of HNF4A in differentiation 

dependent transcription in human colonic epithelial 

cells, Boyd et al. performed a genome-wide 

identification of promoters that are occupied by 

HNF4A in vivo.  

The analysis revealed that HNF4A was mostly 

associated with the promoter regions involved in 

transport and metabolism.  

HNF4A was found to regulate differentiation 

dependent transcription by regulating the expression 

of HNF1A and CDX2, transcription factors 

necessary for the expression of many intestinal genes 

important in the development and differentiation 

program in the colon (Boyd et al., 2009). 

 

Pancreas 

HNF4A activity is essential for β-cell function 

through the regulation of several genes, including 

those involved in metabolism-secretion coupling, 

such as glucose transporter-2, L-pyruvate kinase, 

aldolase B, 2-oxoglutarate dehydrogenase E1 

subunit, mitochondrial uncoupling protein-2 (Wang 

et al., 2000) and the potassium channel subunit 

Kir6.2 (Gupta et al., 2005), as well as the INS 

(insulin gene) (Wang et al, 2000; Bartoov-Shifman 

et al., 2002). In pancreatic β-cells, HNF4A maintains 

glucose homeostasis (Marcil et al., 2015; Wang et 

al., 2000). Gene expression analysis in type 2 

diabetes (T2D) patients compared to normal 

glucose-tolerant controls revealed that HNF4A 

mRNA level decreased in pancreatic β-cells of T2D 

patients (Gunton et al., 2005). Moreover, HNF4A 

mutations were implicated in Mature-Onset Diabetes 

of the Young 1 (MODYI), a dominantly inherited 

atypical subgroup of T2D characterized by 

decreased glucose stimulated insulin secretion in 

pancreatic β-cells (Yamagata et al., 1996). More 

recently, it was suggested lack of HNF4A function 

disrupts Ca2+ signaling and insulin release in β-cells 

of patients with MODYI through altered 

endoplasmic reticulum (ER) Ca2+ homeostasis 

(Moore et al., 2016). 

Homology 

HNF4A is highly conserved across species, with 

100% amino acid conservation in the DNA binding 

domain of all mammalian HNF4A. HNF4A has been 

found in every animal organism examined thus far, 

including sponge and coral, and has been postulated 

to be the ancestor of the entire NR family (Bolotin et 

al., 2011) (Table 1 and Figure 4). 
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Table 1 Pairwise alignment of HNF4A gene and protein sequences  (in distance from human). HNF4A is highly conserved 
evolutionarily. 

 

 

Figure 4 HNF4A proteins and their conserved domain architectures. HNF4A is a member of the nuclear receptor (NR) 
family of transcription factors that use conserved DNA binding domains (DBDs) and ligand binding domains (LBDs). 

 

Mutations 

HNF4A is at the center of a complex transcriptional 

regulatory network and is implicated to several 

human diseases including diabetes (Mohlke and 

Boehnke, 2005), MODY1 (Ryffel, 2001), 

hemophilia (Reijnen et al., 1992) and hepatitis B 

viral infections (He et al., 2012).  The HNF4A locus 

has been associated with high-density lipoprotein 

cholesterol (HDL-C) (Teslovich et al., 2010) and 

metabolic dyslipidemia (Suviolahti et al., 2006).  

Finally, since it regulates several Phase I/II and other 

genes in the liver, HNF4A is suggested to play a role 

in drug metabolism (Hwang-Verslues and Sladek, 

2010). In addition, polymorphisms (Hwang-

Verslues and Sladek, 2010; Ruchat et al., 2009; 

Marcil et al., 2015) and mutations (Ryffel, 2001) in 

the human HNF4A gene are associated with altered 

expression and transcriptional activity. 
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Germinal 

Diabetes mellitus, noninsulin-dependent 

(NIDDM):  
In early disease onset, three mutations affecting 

HNF4A function were identified (D126Y; D126H; 

R154Q) (Aguilar-Salinas et al., 2001). In late onset, 

missense mutations were identified in the LBD 

(R323H) (Price et al., 2000) and the F domain 

(V393I); the latter resulted in a reduced 

transactivational activity (Hani et. al., 1998). V255M 

mutation has also been shown to reduce 

transactivation, albeit modestly (Mohlke and 

Boehnke, 2005).  

Thirteen single nucleotide polymorphisms (SNPs) in 

the P2 promoter, three of which were identified in 

Pima Indians, have also been associated with T2D 

(Muller et al. 2005). A 7 bp deletion in the Sp1 site 

of the P1 promoter was identified in type II diabetic 

nephropathic Caucasian patients (Price et al., 2000). 

Factor VII deficiency:  
Homozygous mutation for a T to G transversion at 

nucleotide -61 position in the factor VII promoter 

was shown to disrupt HNF4A binding and result in a 

significant reduction in factor VII promoter activity 

(Arbini et al., 1997). 

Maturity-onset diabetes of the young, type 1 

(MODY1):  
Mutations in the HNF4A coding region and 

promoter were shown to be directly implicated in 

MODY1 in several different human populations 

(Ryffel, 2001).  

Two deletion mutations (F75fsdelT and 

K99fsdelAA) generate truncated proteins lacking 

part of the zinc finger domain essential for DNA 

binding. An in-frame insertion mutation, V328ins, 

located in the LBD, was suggested to alter the highly 

conserved structural organization of the protein. 

R154X and Q268X nonsense mutants retain the 

DNA binding domain but lack a substantial portion 

of the potential ligand binding part (Ryffel, 2001). 

R127W and E276Q missense mutations were 

reported to result in a significant loss of HNF4A 

activity (Lausen et al., 2000). The HNF4A mutations 

G115S (Oxombre et al., 2004.); R127W (Furuta et 

al., 1997); R244Q (Hara et al., 2002.); R324H (Price 

et al., 2000.); IVS5-2delA (Barrio et al., 2002) have 

also been associated with MODY1. Of note, -146T-

>C in the P2 promoter region was reported to be 

associated with MODY1 by affecting PDX1 (IPF-1) 

binding to DNA (Thomas et al., 2001).  

Familial Hyperinsulinism due to HNF4A 

deficiency (FHI-HNF4A):  
Familial hyperinsulinism due to HNF4A deficiency 

is a form of diazoxide-sensitive diffuse 

hyperinsulinism (DHI), characterized by 

macrosomia, transient or persistent 

hyperinsulinemic hypoglycemia (HH), 

responsiveness to the diazoxide and a propensity to 

develop MODY1 (Glaser, 2013). The transmission 

is autosomal dominant with variable penetrance 

(Pearson et al., 2007; Kapoor et al., 2008). 

Implicated in 

Gastric adenocarcinoma 

HNF4A expression was seen in primary gastric 

adenocarcinomas and in metastases of gastric 

carcinoma to the breast, but was absent in primary 

breast carcinomas, and in metastases of breast 

carcinomas to the stomach (van der Post t al., 2014). 
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