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RÉSUMÉ.— Caractérisation des bactéries cadmium-résistantes isolées de sols pollués en Algérie et 

évaluation de l’élimination du cadmium en utilisant des cellules libres ou immobilisées.— La pollution des sols 

par les métaux lourds est un problème particulièrement préoccupant du fait de leur toxicité et de leur non 
biodégradabilité. Dans ces environnements, les bactéries développent divers mécanismes de résistance qui leurs 

confèrent la capacité à accumuler ces métaux. Dans cette étude, vingt-trois bactéries cadmium-résistantes ont été 

isolées de trois sols algériens et ont été caractérisées. Deux isolats (YL-SS8, YL-SS3), hautement résistants au 
cadmium, ont été sélectionnés et identifiés par séquençage du gène de l’ARNr 16S, puis testés pour leur capacité à 

capturer les ions cadmium. Les résultats ont révélé que les bactéries caractérisées appartenaient à neuf familles et 

dix genres, tandis que les deux souches les plus résistantes sélectionnées, ont été identifiées comme Bacillus 
infantis et Pseudomonas fluorescens. Les concentrations minimales inhibitrices ou CMI oscillaient entre 500 

μg.mL-1 et 1100 μg.mL-1. Les souches YL-SS8 etYL-SS3 ont montré les CMI les plus importantes, de l’ordre de 

1100 μg.mL-1 et 900 μg.mL-1 respectivement. Les cellules libres vivantes de B. infantis ont prélevé environ 90 
μg.mL-1 de cadmium, alors que celles de P. fluorescens ont capturé 81 μg.mL-1 après 24 heures de contact. Dans le 

même temps, les cellules immobilisées ont accumulé des concentrations en cadmium légèrement plus importantes 

avec des valeurs respectives de 93 μg.mL- 1 et 85 μg.mL-1. En raison de leur forte résistance et de leur importante 
capacité d’accumulation du cadmium, les deux isolats bactériens pourraient être exploités pour l’assainissement 
biotechnologique du cadmium dans les sols contaminés par les métaux lourds. 

SUMMARY.— Soil pollution by heavy metals is one of the most important problems around the world. 

Microorganisms in these environments develop various mechanisms of resistance and become able to accumulate 

these metals. In this study, twenty-three cadmium-resistant bacteria were isolated from three soils and 
characterized. Two of them (YL-SS8, YL-SS3), highly cadmium-resistant, were selected and identified by the 

sequencing of the 16S rRNA gene, then tested for their ability to remove cadmium ions. The results revealed that 

the characterized bacteria belonged to nine families and ten genera, while the most resistant are authentically 
identified as Bacillus infantis and Pseudomonas fluorescens. The MIC of bacteria ranged from 500 µg.mL-1 to 

1100 μg.mL-1, Bacillus infantis and Pseudomonas fluorescens showed MIC of the order of 1100 μg.mL-1 and 900 

μg.mL-1respectively. The free living cells of B. infantis accumulated about 90 μg.mL-1 of cadmium, whereas those 
of P. fluorescens 81 μg.mL-1 after 24 hours of contact. During the same time, the immobilized cells accumulated 

quantities slightly better with respective values of 93 μg.mL-1and 85 μg.mL-1. Due to their strong resistance and 

high cadmium removal capacity, the two bacterial isolates could be exploited for biotechnological remediation of 
cadmium and other heavy metals from contaminated soils. 

___________________________________________________ 

Soil pollution by heavy metals is a serious environmental and social problem, on account of 

the dangers that can cause these elements, not only for human health but also for biodiversity and 

structure of soil organisms and microbial populations (Tran & Popova, 2013). Some of heavy 

metals are essential and required by the organisms as micro-nutrients, while others have no 

biological role and are detrimental even at very low concentration (Bruins et al., 2000). One of the 

most dangerous heavy metals encountered in soil is cadmium. These metal ions enter agricultural 

soils with others from pesticides, industrial effluents, phosphate fertilizers and atmospheric 

deposition, which finally lead to transport to the food chain (Jain et al., 2007). Cadmium has a 
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higher tendency to accumulate in the tissues of plants and affects their growth (Lux et al., 2010). 

This metal affects many physiological processes such as membrane functions by changing the 

fatty acid composition of the lipids, nitrogen metabolism, oxidative stress through increased 

proteolysis and lipid peroxidation (Chaffei et al., 2003; Djebali et al., 2005). In human, it affects 

cell proliferation and differentiation, chromosomal aberrations, modification of transcription 

factors, skin cancer, prostatic proliferative lesions, pulmonary adenocarcinomas, peripheral 

neuropathy and peripheral arterial disease (Gunaseelan & Ruban, 2011; Chakravarthi et al., 2012). 

Because of its higher solubility in water, and highest toxicity, the pollutant gains more significance 

(Katoch & Singh, 2014). 

The pollution of the ecosystem by heavy metals is quite special because although these trace 

elements are mobilized by various organisms, they cannot be degraded into less toxic products and 

persist indefinitely in the environment, posing a major problem in ecology but also for public 

health. Their toxicity and persistence in the environment require the development of different 

methods to reduce the number of contaminated sites. If physico-chemical methods such as 

excavation and storage or stabilization and containment are used in soil decontamination, most of 

them tend to be very expensive and many countries encounter difficulties in its implementation 

(Guzman et al., 2016). 

In recent years, an important attention has been paid to the problems of soil contamination by 

heavy metals (Changli et al., 2010; Salam, 2013; Zhou & Guo, 2015; Liu et al., 2015; Singh & 

Prasad, 2015) with interest in a remediation strategy depending on microorganisms and plants: it is 

bioremediation. Bioremediation is a branch of biotechnology which uses natural biological 

mechanisms to address environmental problems; it is being explored as an effective and 

technological solution to the problem of heavy metal pollution (Basha & Rajaganesh, 2014). 

Bioremediation has been regarded as an environment-friendly, inexpensive and efficient means of 

environmental restoration (Hrynkiewicz & Baum, 2014) and, in some cases, has been successfully 

applied in remediating contaminated sites in the developed world (Owolabi & Hekeu, 2015). 

A vast array of biological materials, especially bacteria, algae, yeasts and fungi have received 

increasing attention for heavy metal removal (Wang & Chen, 2008). Heavy metal-resistant 

bacteria have been demonstrated to exhibit high metal ion removal capacity. Biosorption, 

bioaccumulation, biotransformation, and biomineralization are the techniques employed by 

microorganisms for their continued existence in metal polluted environment. These strategies have 

been exploited for remediation procedures (Gadd, 2000; Lin & Lin, 2005). Heavy metal removal 

can be carried out by living organisms or dead biological materials. Large scale feasibility 

applications of biosorptive processes have shown that dead biomass is more applicable than the 

bioaccumulation approach, which involves the use of living organisms and thus requires nutrient 

supply and a complicated bioreactor system. Also, the toxicity of pollutants, as well as other 

unfavourable environmental conditions, can contribute to the inability to maintain a healthy 

microbial population. However, many characteristic attributes of living microorganisms have not 

been exploited in large scale applications (Park et al., 2010). 

The choice organism must develop resistance towards metal ions as it comes into contact with 

the heavy metal pollutant to achieve the goal of remediation. The organism of choice may be 

native to the polluted environment or isolated from another environment and brought to the 

contaminated site (Sharma et al., 2000). Micro-organisms can also act indirectly as they support 

the growth of phytoaccumulator plants thus they help in the remediation of heavy metals (Yan-De 

et al., 2007; Zhuang et al., 2007; Heshmatpure & Rad, 2012). 

However, studies demonstrate that living systems may be inconsistent in heavy metal removal 

if used as free suspended biomass. Free suspended biomass can promote higher contact with the 

contaminants during the removal process; often, however, it is not practical as a clean-up method. 

To obtain a more reliable and reproducible system, bacteria should be immobilized on a solid 

matrix (Vijayaraghavan & Yun, 2008; Wang & Chen, 2009), some materials employed for this 
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were clay (Quintelas et al., 2009) or synthetic polymers such as alginates and pectates (Pires et al., 

2011). 

The principal aim of the present work was to isolate and characterize cadmium-resistant 

bacteria from some polluted soils in Algeria, to determine the minimum inhibitory concentration 

of cadmium and eventually to study the ability of two highly resistant isolates to remove cadmium 

ions, free or immobilized. 

MATERIALS AND METHODS 

STUDY AREAS AND COLLECTION OF SOIL SAMPLES 

Soil samples were taken from three areas located in the east of Algiers (Algeria). The first is a cultivated soil (Dellys), 

the second from an industrial zone (Setif) and the third from deposit metal tools next to the railway (Bab-Ezzouar). The 
samples were collected in sterilized and non-sterilized flasks during the month of February 2014 to a depth of four 

centimetres from the surface. The samples for microbiological analyses were placed in a cooler (4°C), while those for 

physic-chemical analyses were transported at ambient temperature.  

PHYSICO-CHEMICAL PROPERTIES OF SOIL SAMPLES  

The soil samples were dispersed to be dried and then passed through a two millimetres sieve before measuring the 

various parameters. The pH of each soil was measured according to the AFNOR standard NFX31-10 using a pHmeter 
electrode in a solution of soil diluted to 1/5 in water. Available nitrogen (N) content in soils was measured by an alkali N-

proliferation method, whereas organic material was determined by the K2CrO72H2SO4 oxidation method of "Anne" 

described in the standard NF X31-109. 
The determination of heavy metal concentration tested (cadmium, lead, zinc, chrome, copper and nickel) was carried 

out using Atomic Absorption Spectrometry (AAS) with flame and graphite furnace AA 800 Perkin Elmer. It is based on the 

detection of very low levels of concentration (of the order of ppb), of numerous mineral elements by using different 
radiation sources for each mineral element to be measured, compared to solutions the concentrations of which are known, 

from the element to be assayed. This step comes after mineralization of soil samples undergoes acid digestion using a pure 

HCl mixture and Supra Pure-concentrated HNO3 (3:1 v/v; Sigma-Aldrich) with the addition of 3 drops of H2O2. Then 
heating is carried out on a heating plate at 300°C until complete digestion (USEPA, 1996). Soil samples after 

mineralization, are transferred to volumetric flasks and diluted to desired concentrations. A range of calibration solutions of 

the sought-after metal makes it possible to plot a calibration curve while respecting its linearity domain. The concentration 
of metals in the soil samples can be calculated. 

Soils texture was determined by the hygrometry method, whereas the electrical conductance was by conductivity 

meter (HI 2316, HANNA Instruments) (Roane & Kellogg, 1995). 

ISOLATION AND IDENTIFICATION OF CADMIUM-RESISTANT BACTERIA  

From each sample, 5 g of soil were suspended in 45 mL of nutrient broth [Grams per litre: 5 g peptic digest of animal 

tissue; 5 g sodium chloride; 1.5 g beef extract; 1.5 g yeast extract (HiMedia laboratories)], then flasks were incubated at 
30°C for 48 hours with shaking at 90 rpm. Thereafter, ten-fold serial dilutions of the cultures were prepared. An aliquot (1 

mL) of the diluted samples was spread in mass of sterile nutrient agar plates amended with 50 μg.mL-1of cadmium chloride 

(CdCl2,2H2O; Biochem, Chemopharma). After an incubation period (48 h at 30°C), isolated and distinct colonies were sub-
cultured on the same media for purification. The purified isolates were identified on the basis of cells morphology, Gram-

stain, catalase, oxidase, nitrate reductase enzymes and some biochemical characteristics following Bergey’s Manual of 

Determinative Bacteriology (Holt et al., 1994). Commercial biochemical identification systems Api 20E, Api 20NE and 
Api 50CH used, are provided by Biomerieux. 

The most resistant isolates were identified by sequencing of the 16S rRNA gene by GATC laboratories (GATC – 

biotech laboratories, Germany). 

DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION (MIC) 

MIC of the cadmium-resistant isolates was determined by gradually increasing the concentration of cadmium 100 

µg.mL-1 each time on nutrient-agar plate until the strains failed to grow on plates even after five days of incubation at 30°C. 

Cadmium solution used was prepared by dissolving cadmium chloride (CdCl2, 2H2O) in ultrapure water (MILLI-Q plus, 
USA), then sterilized. The MIC was designated as the lowest concentration that inhibited growth of colonies on the 

medium (Nies, 1999). The range of concentrations tested was from 100 to 1300 µg.mL-1 
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CADMIUM REMOVAL BY LIVING BACTERIAL FREE CELLS 

Two isolates (YL-SS3 strain and YL-SS8 strain), highly cadmium-resistant were selected and used in this study. 

Foremost, the evolution of growth was measured in the presence of cadmium ions at pH 7.2. Thereafter, the cadmium 
removal capacity of living free cells was evaluated by measuring concentrations of cadmium in the medium (residual 

cadmium) as a function of contact time (incubation time). So, the isolates were cultivated in 100 ml of nutrient broth with 

100 μg.mL-1 of metal at final concentration. The inoculated flasks were incubated in shaking conditions (100 rpm) at 30°C 
for 72 h (Sujitha & Jayanthi, 2014; Benmalek & Fardeau, 2016). Two controls were prepared simultaneously with the 

experiment cultures for each isolate. The first one was prepared without cadmium to measure bacterial growth and the 

second without bacterial biomass to determine the artefacts that might arise due to the metal sorption on the glass surface of 
the culture container. The growth was determined by measuring the optical density at 600 nm. However, the residual 

concentration of cadmium was evaluated after centrifugation of 10 mL of each bacterial culture at 4000 rpm for 30 minutes 

and analysis of the supernatant from each sample using AAS. The values so obtained by AAS analysis represent the 
residual concentration of cadmium in the medium. 

The cadmium concentration in the supernatant was determined with a Perkin-Elmer 2380 atomic absorption 

spectrometer at 228.8 nm with a cadmium lamp. 

CADMIUM REMOVAL BY IMMOBILIZED BACTERIAL CELLS 

The bacterial cells of the isolates YL-SS3 and YL-SS8 were immobilized as beads of alginate according to the 

procedure of Leung et al. (2000). So, 2 % sodium alginate solution (Biochem, Chemopharma) is prepared in distilled water 

and sterilized (Tao et al., 2009). Thereafter, 100 mL of the solution prepared were cooled to room temperature, then 10 mL 
of the bacterial cultures were added (10 % v/v). The sodium alginate with cell culture was stirred by shaking to get 

homogenized mixtures. In a separate beaker, 100 ml of 0.1 M sterilized calcium chloride solution (Riedel-de-Haen) was 

taken. The sodium alginate containing cell culture suspension was extruded dropwise through a syringe and allowed to fall 
in the beaker containing sterilized calcium chloride solution. The beads of sodium alginate gel formed were left in the 

flasks overnight for hardening. Afterwards, beads were washed with sterile distilled water and introduced into flasks 

containing 100 mL of nutrient broth with 100 μg.mL-1 of cadmium and incubated with shaking (100 rpm) at 30°C for 72 
hours. Controls containing only nutrient broth and beads were prepared in the same experimental conditions. Then, 5 mL of 

samples were taken at different times, centrifuged at 4000 rpm for 30 minutes and withdrawn for cadmium analysis in the 
supernatant using AAS. 

RESULTS 

As shown in Table I, the amount of heavy metals varies according to the soil studied. Thus, 

the concentration of zinc was important in all samples with values ranging from 55.26 mg.kg-1 to 

124 mg.kg-1. However, the content of cadmium was low relative to AFNOR norms values 

(2 mg.kg-1). The highest amount of zinc was obtained in the industrial zone (124 mg.kg-1), while 

that of nickel (49.89 mg.kg-1) was in soil taken from Bab-Ezzouar. Furthermore, the soil pH was 

slightly higher with values of the order of 7.83 (cultivated soil), 7.49 (industrial zone) and 7.74 

(deposit metal tools). The organic matter content of samples ranged between 5.12 % and 5.38 %. 

Though, the amount of nitrogen fluctuates between 0.01 and 0.11 mg.kg-1, while the conductivity 

ranged from 0.12 to 0.35 dS.m-1. Results of the soil structure showed that the clay and coarse sand 

were the dominant elements. 
 

TABLE I 

The basic physicochemical properties and heavy metal concentrations in the soil samples 
 

Parameters studied Cultivated Soil (Dellys) Industrial zone (Setif) Deposit metal tools (Bab-Ezzouar) 

Cadmium (mg.kg-1) 1.024 1.612 0.854 

Chrome (mg.kg-1) 60.61 58.49 52,44 

Zinc (mg.kg-1) 70.01 124.00 55.26 

Copper (mg.kg-1) 26.99 24.83 27.65 

Lead (mg.kg-1) 24.13 21.98 12.85 

Nickel (mg.kg-1) 30.14 20.46 49.89 

pH 7.83 7.49 7.74 

Organic matter (%) 5.31 5.12 5.38 

Conductivity (dS.m-1) 0.12 0.35 0.20 

Nitrogen (N) (mg.kg-1) 0.11 0.056 0.01 

Clay (Cl%) 23 10 20 

Silts (S%) 14 12 10 

Coarse silt (CS%) 8 4 6 

Coarse sand  (Cs%) 37 21 28 
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IDENTIFICATION AND MIC DETERMINATION OF THE CADMIUM-RESISTANT BACTERIA 

A total of twenty-three cadmium-resistant bacteria were isolated with ten strains from 

cultivated soil, nine others from the deposit metal tools and only four from industrial zone. 

According to the results of the biochemical identification, these bacteria belonged to nine families 

and ten genera: Chromobacterium, Burkholderia, Pseudomonas, Photobacterium, Aeromonas, 

Sphingomonas, Staphylococcus, Delftia, Serratia and Bacillus as shown in Table II. The most 

resistant bacteria YL-SS3 strain and YL-SS8 strain were selected, 16S rRNA gene sequencing and 

phylogeny analysis revealed that the strain YL-SS3 was authentically identified as Pseudomonas 

fluorescens with maximum sequence similarity of 99 % and the strain YL-SS8 was identified as 

Bacillus infantis with 98% maximum sequence similarity. Length of sequenced gene was 1492 

bases pairs for either YL-SS3 or YL-SS8 strain. 
 

TABLE II 

Cadmium-resistant bacteria identified using API system and MIC values 
 

Cadmium-resistant bacteria Origin of isolates Similarity rate (%) MIC (µgmL-1) 

Burkholderia cepacia Dellys 99 800 

Pseudomonas fluorescens Dellys 95 700 

Pseudomonas fluorescens (YL-SS3 Dellys 99 900 

Staphylococcus sp Dellys 100 500 

Delftia acidovoran Dellys 98 600 

Pseudomonas fluorescens Dellys 90 700 

Pseudomonas aeruginosa Dellys 100 800 

Burkholderia cepacia Dellys 98 800 

Bacillus infantis (YL-SS8) Dellys 99 1100 

Pseudomonas fluorescens Dellys 90 800 

Pseudomonas fluorescens Bab-Ezzouar 90 800 

Photobacterium damselae Bab-Ezzouar 90 800 

Aeromonas hydrophila G1 Bab-Ezzouar 95 500 

Burkholderia cepacia Bab-Ezzouar 98 800 

Serratia macerans Bab-Ezzouar 98 800 

Burkholderia cepacia Bab-Ezzouar 90 700 

Sphingomona paucimobilis Bab-Ezzouar 95 700 

Pseudomonas aeruginosa Bab-Ezzouar 96 700 

Aeromonas hydrophila Bab-Ezzouar 90 800 

Chromobacterium violacerum Setif 95 600 

Aeromonas hydrophila G1 Setif 90 700 

Sphingomonas paucimobilis Setif 98 600 

Aeromonas hydrophila G2 Setif 92 600 

 

 

Neighbour-joining tree was constructed using both the sequences YL-SS3 (Fig. 1) and YL-SS8 

(Fig. 2), and representative sequences from databases. 
 

 

Figure 1.— Neighbour-joining phylogenetic tree based on 1492 bp of 16S rRNA gene sequences of isolate YL-SS3 

depicting the phylogenetic relationships of YL-SS3 and its closest relatives in the genera Pseudomonas. Staphylococcus 
aureus strain ACC 14458 was taken as the out-group organism and the scale bar corresponds to the expected number of 

changes per nucleotide position. 
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Figure 2.— Neighbour-joining phylogenetic tree based on 1492 bp of 16S rRNA gene sequences of isolate YL-SS8 

depicting the phylogenetic relationships of YL-SS8 and its closest relatives in the genera Bacillus. Aeromonas hydrophila 

strain ACC 7966 was taken as the out-group organism and the scale bar corresponds to the expected number of changes per 
nucleotide position. 

 

Cadmium resistance studies showed that the MIC were in interval of 500-1100 μg.mL-1 for 

the isolates of Dellys, 600-700 μg.mL-1 for the isolates of Setif and 500-800 μg.mL-1 for the 

isolates of Bab-Ezzouar. Overall, the majority of isolates reached a MIC of 800 μg.mL-1 (8 

isolates) and 700 μg mL-1 (7 isolates). The maximum resistance to Cd was observed in YL-SS8 

strain with MIC 1100µg.mL-1 and next to it, the resistant bacteria YL-SS3 was reported as the 

most resistant with MIC 900µg.mL-1. 

EFFECT OF CADMIUM ON BACTERIAL GROWTH OF THE STRAINS YL-SS8 AND YL-SS3 

To study the effect of cadmium on growth of YL-SS3 strain and YL-SS8 strain, the cells were 

cultivated in the metal stress. For both strains, the concentration of 100 µgm.L-1 inhibited cell 

proliferation compared to untreated controls, as shown in Fig. 3. 
 
 

 
 

Figure 3.— Growth curves of free living cells of YL-SS3 or YL-SS8 strains in the presence and absence of cadmium. In 
treated samples cadmium was added at the beginning of experimentation with final concentration of 100 µgmL-1. 
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The growth of the strain YL-SS8 (Bacillus infantis) was low, between the beginning of 

experimentation until 48 hours of incubation. But after this period, strain YL-SS8 cells were able 

to adapt and resume growth, translated by an increase in optical density. 

However, growth of YL-SS3 strain (P. fluorescens) stressed evolved positively as a function 

of incubation time, but at lower level than the control (Fig. 3). 

CADMIUM REMOVAL BY LIVING FREE CELLS 

As shown in Figure 4, YL-SS8 strain (B. infantis) captured considerable concentrations of 

cadmium than the strain YL-SS3 (P. fluorescens). The cadmium removal level was 90 μg.mL-1 

after 24 hours of incubation, and then decreased to 83 μg.mL-1 after 48 hours. During this same 

period, YL-SS3 strain (P.fluorescens) removed quantities of the order of 81 μg.mL-1 then 56 

μg.mL-1. 
 
 

 
 

Figure 4.— Cadmium removal by living cells of YL-SS3 and YL-SS8 strains free, or immobilized in alginate beads. 

Cadmium was added at the beginning of experimentation at final concentration of 100 µgmL-1. 
 

CADMIUM REMOVAL BY LIVING IMMOBILIZED CELLS 

The immobilized cells showed better uptake capacity than free cells (Fig. 4). On the first and 

second day, the removed amounts were 93 μg.mL-1 , 88 μg.mL-1 for YL-SS8 strain (B. infantis) and 

85 μg.mL-1 ,76 μg.mL-1 for YL-SS3 strain (P. fluorescens). According to these results, B. infantis 

immobilized cells captured higher amounts of cadmium ions. 

DISCUSSION 

In this study we adopted the AFNOR regulatory standards as a reference for assessing the 

pollution of soil samples. There is a lack in Africa in terms of regulating the maximum allowable 

levels of potentially toxic metals in soils. 

It was observed that the determined quantities of heavy metals were lower than standards 

compared to AFNOR norms, except for nickel that displays an important value in the soil from 

Bab-Ezzouar. According to Baize (2000), most clayey and iron-rich soils approach or exceed the 

value of 50 mg Ni per kg. However, the zinc content of the three soils could be related to that the 
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soils samples are the support of many industrial (Setif soil), agricultural (Dellys soil) and urban 

activities (Bab-Ezzouar soil). The development of these activities leads to a marked increase in the 

contents of metallic trace elements (MTE) since the high use of zinc in industry and organic 

fertilizers (Allam, 2012). The cadmium concentrations determined in the three soils are all lower 

than the AFNOR standards (2 mg.kg-1). However, these soils are not free from contamination 

because these levels greatly exceed the natural concentrations of cadmium in the upper soil 

horizons which are between 0.2 and 0.4 mg.kg-1 (Bourrelier & Berthelin, 1998; Alloway, 1990), 

showing the share of anthropological contamination resulting from human activities. 

However, bacteria isolated from these soils were highly resistant to Cd. Previous results of 

several laboratory and field experiments concerning the long term heavy metal effects, showed an 

increased bacterial community tolerance to metals present in soil, with the tolerance increase being 

correlated with the pollution level (Diaz-Ravina et al, 1994; Diaz-Ravina & Baath, 1996a; 

Pennanen et al, 1996; Baath et al, 1998).The soil isolates identified belonged to the genera 

Bacillus, Pseudomonas, Burkholderia, Staphylococcus, Chromobacterium, Photobacterium, 

Aeromonas, Sphingomonas, Delftia and Serratia. These bacterial genera are often encountered in 

contaminated areas (Ajaz et al., 2010; Elsilk et al., 2014). 91 % of isolates are gram-negative. It is 

widely accepted in the scientific literature that gram-negative bacteria are very common at 

contaminated sites (Khafilzadeh et al., 2013), indicating that gram-negative bacteria have an outer 

membrane and a negative surface charge of lipopolysaccharides (LPS). However, resistance to Cd 

has been reported for both gram-positive and gram-negative bacteria (Foster, 1983). In agreement 

with our results gram-positive bacteria like firmicutes were found to tolerate high concentration of 

heavy metals (Gupta, 2012). All the isolates have a MIC above 500 µg.mL-1. The MIC high value 

translates the great adaptability of these bacterial genera to hostile environments, which is related 

to their varied energy metabolisms and a wide range of biochemical and molecular processes. 

Certain bacteria like Pseudomonas are able to produce siderophores which are commonly used for 

Fe transportation and have the capability to chelate heavy metals such as Cd2+, and may be 

responsible for maintaining metal homeostasis (Złoch et al., 2016). 

Besides, metallothionein (MT), a thiol-containing, cysteine-rich protein, induced by heavy 

metals and used to transport and reduce toxic metals, is of great help in the sequestration of metal 

ions. Thiol groups of cysteine residues in metallothionein can bind Cd2+ to form metal-thiolate 

complexes, thus rendering Cd unavailable to exert toxicity (Khan et al., 2015). 

Microbes still have other detoxification methods such as glutathione (GSH) system (Wang & 

Wang, 2010; Barmo et al., 2011; Won et al., 2011; Cirillo et al., 2012). 

When cells of strain YL-SS3 and strain YL-SS8 were cultivated in presence of 100 µg.mL-1 

of cadmium, results showed that the metal has an inhibitory effect on growth of both strains YL-

SS3 and strain YL-SS8. Furthermore, growth was not completely inhibited at this concentration. It 

should be noted that a concentration of 10 mM of cadmium was lethal for E. coli (Ferianc, 1998), 

which shows the large capacity of these isolates to adapt to hostile conditions of growth, such as 

metallic stress and develop various resistance mechanisms towards heavy metals. It is very 

important to mention that cadmium causes oxidative damage to microorganisms, leading to a 

decrease of cell activity, a reduction of growth rate and cell density, an inhibition of cell 

proliferation and therefore a decrease of the bacterial number due to the death of some bacteria 

(Sihamim and Rehman, 2012). 

Although the Cd2+ concentration used in this work was much higher than those generally 

observed in contaminated environments (Wagner, 1993), the inhibition of cell proliferation in 

presence of cadmium could be linked to an inhibited DNA replication (Mitra et al., 1975; Nystrom 

& Kjelleberg, 1987) which makes the DNA more susceptible to nucleolytic attack, resulting in 

single-strand DNA breaks. Therefore, cadmium causes serious damage during the growth of 

bacteria present in polluted environments (Fahmy, 2013). Strain YL-SS8, growth was low at the 

beginning of incubation, but after 48 hours of contact with the metal ions, bacterial cells became 
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able to adapt and resume growth. This period appears to involve repair of cadmium-mediated 

cellular damage and adjustment of the cell physiology to limit the distribution of toxic ions in the 

cell. Wiatrovska (2015) reported that Cd was more toxic to Bacillus sp than Pb. 

YL-SS3 strain growth, was not stopped by Cd; the cells were able to maintain their growth at 

a low rate and then restart. Gram-negative bacteria like (Pseudomonas) are well reported to play a 

significant role in detoxification of various heavy metals like cadmium (Halder & Basu, 2016); 

this genus has widely been studied for its well-adapted metal resistance properties (Deb et al., 

2013). 

However, the negative effect of cadmium on bacterial growth did not prevent the capture of 

cadmium ions, since YL-SS3 strain and YL-SS8 strain were capable of taking up the metal ions. 

Large amounts of cadmium ions were removed by living free cells of the two species. The results 

showed that the maximum of cadmium uptake occurred during the first period of incubation 

(24 h). This period corresponds to low cell biomass level, resulting from the toxic effect of 

cadmium on the cells of the two strains; cells would probably involve passive mechanisms, as 

bacteria during this period need to save energy to ensure their adaptation and then their 

proliferation. Interactions between bacterial cells and metals are governed by passive or active 

mechanisms (Chang, 1997; Haferburg & Kothe, 2007). The passive mechanisms of uptake are 

independent of the metabolism and therefore the physiological state of the cells (living or dead), 

they are fast and reversible. They take place at the cell / solution interface and involve mechanisms 

such as ion exchange, surface complexation onto the cell wall and other outer layers (Fomina & 

Gadd, 2014) or precipitation. These processes are grouped in the term of Biosorption. 

An analysis of the cell wall components, which vary among the different microorganisms, 

helps in assessing metal uptake by different microorganisms. The peptidoglycan layer in gram-

positive bacteria, which contains alanine, glutamic acid, meso-di-aminopimelic acid, polymer of 

glycerol and teichoic acid, and that of the gram-negative bacteria, which contains enzymes, 

glycoproteins, lipopolysaccharides, lipoproteins, and phospholipids, are the active sites involved in 

metal binding processes (Lesmana et al., 2009; Gupta et al., 2015). Changli et al. (2010) reported 

that Pseudomonas fluorescens biomass includes different functional groups and these functional 

groups are able to react with metal ions in aqueous solution. 

When bacterial growth increased (48-72 h), cadmium remediation could be attributed to 

active mechanisms. Active mechanisms depend on the metabolism of the cells and are therefore 

specific to each bacterial strain. They are slower and generally inducible such as efflux pumps. 

Removal cadmium capacity decreased when incubation time increased, showing that the contact 

time between bacterial cells and cadmium ions and also the age of the cells could be considered as 

an important factor affecting metal uptake. 

The lack of remediation could be also explained by metal exclusion or by detoxification 

mechanisms similar to those described for antibiotic resistance, which represent the main defence 

of bacteria in the presence of external toxicants (Saier, 2003; Pana, 2012). 

Two well-studied genetic mechanisms of metal resistance in bacteria include heavy metal 

efflux systems (Nies & Silver, 1995) and the presence of metal binding proteins (Robinson et al., 

1990). Many operons of efflux system are known. In the gram-positive bacteria, the plasmid-

encoded Cd efflux system, called the CadA resistance system, utilizes the CadA protein, which is a 

P-type ATPase (Tsai & Linet, 1993). An analysis of the cadmium tolerance genes of B. cereus S5, 

identified ATPase genes that were associated with cadmium tolerance and involved in the ATP 

pumping mechanism (Huiqing et al, 2016). However, Cd resistance in gram-negative organisms is 

due to a multi-protein chemiosmotic antiport system (Silver, 1996). Our results showed that during 

this period (48-72 h), growth of the two strains improved, proving that the medium became less 

toxic to bacterial cells than at the beginning of incubation. A decrease in the toxicity of copper at a 

longer feast famine period was attributed to the presence of higher amounts of extracellular 

polymeric substances (EPS) (Song, 2016). EPS play a defensive action that prevents microbial cell 
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from toxic heavy metal ions. Its net anionic makeup allows the biopolymer to effectively sequester 

positively charged heavy metal ions (Gupta & Batul, 2017). Enhanced production of EPS was 

induced by the so-called stressful culture conditions (Arudhanti & Paul, 2008). Pseudomonas 

stutzeri produced large quantities of EPS under cadmium stress (Debarati & Basu, 2016). 

Gram-negative and gram-positive bacteria are able to accumulate the metal ions inside the 

cell, in the cytoplasm and/or the periplasm, and outside on the outer membrane (Voloudakis et al., 

1993). 

The immobilized cells of strain YL-SS3 and YL-SS8 strain showed high cadmium uptake 

capacity. Several researches demonstrated a better remediation of heavy metals by the 

immobilized organisms as compared to free cells. Numerous authors (Tsekova & Ilieva, 2001; 

Wuana & Okieimen, 2010; Sujitha & Jayanthi, 2014; Wasi et al., 2011) have reported better 

efficiency bioremediation potential of immobilized P. fluorescens SM1 strain compared to free 

cells. This could be directly linked to the advantage of this process, based on the immobilized 

biomass which leads to the improvement of the stability of microbial cells, thus allowing a 

continuous operation of the process and avoiding the need to separate the biomass from the 

medium. Cellular immobilization leads to the confinement or localization of the viable microbial 

cells to a certain defined region of the space, so as to limit their free migration and increase their 

contact surface with the metal and consequently their capacity for biosorption. Immobilized 

microorganism technology offers a multitude of advantages, such as high biomass, high metabolic 

activity and strong resistance to toxic chemicals (Cai et al., 2011; Liu et al., 2012). In other hands, 

numerous reports verify that attachment of bacterial cells to solid surfaces stimulates the 

exopolysaccharides production without altering the specific growth rate (Vandevivere & 

Kirchman, 1993). 

A combination of bacterial EPS immobilized in calcium alginate resulted in maximum 

cadmium and cobalt ion sequestration from aqueous solutions (Ozdemir et al., 2005). Microbial 

cells in communities display a variety of metabolic differences as compared to their free-living 

counterparts. The majority of changes observed in immobilized cells result from protection 

provided by the supports ( Zur et al., 2016). 

CONCLUSION 

The present study showed that contaminated areas offer good ecological niches for cadmium 

resistant bacteria. In terms of bioremediation, immobilized cells removed more cadmium than free 

cells in both YL-SS3 and YL-SS8. Better remediation of cadmium requires both bacterial strains 

cadmium-resistant but also a technique that better values their performance. In our study, 

immobilization in alginate beads proved better than the cells in suspension. However, knowledge 

about the main physiological responses occurring in immobilized cells may contribute to 

improving the efficiency of immobilization techniques. 

ACKNOWLEDGEMENTS 

We are thankful to the Scientific Police Laboratory of Algiers. We also like to thank Microbiology Laboratory Staff of 
the FSB/USTHB, Algiers-Algeria. Special thanks are due to Pr Christian Erard for his precious collaboration and to two 

anonymous referees for their constructive comments on a first version of this paper. 

REFERENCES 

AJAZ, H.M., ARASUC, R.T., NARAYANAN, V.K.R. & ZAHIR, H.M.I.(2010).— Bioremediation of heavy metal contaminated 

soil by the Exigobacterium and accumulation of Cd, Ni, Zn and Cu from soil environment. Int. J. Biol. Technol., 

1: 94-101 



265 
 

ALLAM, Z.(2012).— Développement d’un micro-capteur pour le suivi des contaminants dans l’eau. Thèse de Magister, 

Université de Tlemcen, Algérie. 
ALLOWAY, B.J. (1990).— “Cadmium”. Pp 100-121 In: B.J. Alloway (ed.). Heavy metals in soils. Blackie & Son, Glasgow. 

ARUNDATHI, P.A.L. & PAU, A.K. (2008).— Microbial extracellular polymeric substances: central elements in heavy metal 

bioremediation. Indian. J. Microbiol., 48: 49-64. 

BAATH, E., DIAZ-RAVINA, M., FROSTEGÅRD, Å. & CAMPBELL, C. (1998).— Effect of metal-rich sludge amendments in the 

soil microbial community. Appl. Envir. Microbiol., 64: 238-245. 

BAIZE, D. (2000).— Teneurs totales en métaux lourds dans les sols français. Résultats généraux du programme ASPITET. 
Courr. Envir. INRA, 39: 39-54. 

BARMO, C., CLACCI, C., FABRI, R., OLIVIERI, S., BLANCHI, N., GALLO, G. & CANEST, L. (2011).— Pleotropic effects of 

hexavalent chromium in Mytillus galloprovincialis digestive gland. Chemosphere, 83: 1087-1095. 
BASHA, S.A. & RAJAGANESH, K. (2014).— Microbial bioremediation of heavy metals from textile industry dye effluents 

using isolated bacterial strains. Int. J. Curr. Microbiol. Appl. Sci, 3: 785-794. 

BENMALEK, Y. & FARDEAU, M.L. (2016).— Isolation and characterization of metal-resistant bacterial strain from 

wastewater and evaluation of its capacity in metal-ions removal using living and dry bacterial cells. Int. J. Envir. 
Sci. Technol., 13: 2153-2162. 

BOURRELIER, P.H. & BERTHELIN, J. (1998).— Contamination des sols par les éléments traces : les risques et leur gestion. 

Ed. Lavoisier, Paris. 

BRUINS, M.R., KAPIL, S. & OEHME, F.W. (2000).— Microbial resistance to metals in the environment. Ecotoxicol. Envir. 
Safety, 45: 198-207. 

BUENO, B.Y.M., TOREM, M.L., DE CARVALLO, R.J., PINO, G.A.H., DE MESQUITA, L.M.S. (2011).— Fundamental aspects 

of biosorption of lead(II) ions onto a Rhodococcus opacus strain for environmental applications. Miner. Eng., 24: 
1619-1624. 

CAI, T., CHEN, L., REN, Q., CAI, S. & ZHANG, J. (2011).— The biodegradation pathway of triethylamine and its 

biodegradation by immobilized Arthrobacter protophormiae cells. J. Hazard Mater.,186: 59-66. 
CHA, S. & COOKSEY, D.A. (1991).— Copper resistance in Pseudomonas syringae mediated by periplasmic and outer 

membrane proteins. P.N.A.S., U.S.A, 88: 8915-8919.  

CHAFFEI, C., GOUIA, H. & GHORBEL, M.H. (2003).— Nitrogen metabolism of tomato under cadmium stress conditions. J. 
Plant Nutr., 26: 1617-1634. 

CHAKRAVARTHI, V.P., PRADEEP, J.A.K. & BHASKAR, M. (2012).— Cadmium toxicity: A health hazard and serious 

environmental problem - An overview. Int. J. Pharm. Biol. Sci., 2: 235-246. 
CHANG, J. (1997).— Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res., 

31: 1651-1658. 

CHANGLI, Y., ZHIPENG, L., FAZHI, G., & ERLI, Z. (2010).— Biosoption of cadmium onto Pseudomonas fluorescens: 
Application of isotherm and kinetic models. Adv. Mater. Res., 171-172: 49-52. 

CIRILLO, T., COCCHIERI, R.A., FASANO, E., LUCIANO, A., TAFURI, S., FERRANTE, M., CARPENE, E., ANDREANI, G. & ISANI, 

G. (2012).— Cadmium accumulation and antioxydant responses in Sparus aurata exposed to waterborne 
cadmium. Arch. Envir. Contam. Toxicol., 62: 118-126. 

CLINICAL AND LABORATORY STANDARDS INSTITUTE (2015).— Performance standards for antimicrobial susceptibility 

testing. Twenty-fifth Informational Supplement. CLSI document M100-S25. Vol 35 No. 3. Wayne, PA : 
Pennsylvania 19087 USA. 

CONGEEVARAM, S., DHANARANI, S., PARK, J., DEXILIN, M. & THAMARAISELVI, K. (2007).—Biosorption of chromium and 

nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard Mater., 146: 270-277. 
DEB, S., AHMED, S.F. & BASU, M. (2013).— Metal accumulation in cell wall: A possible mechanism of cadmium 

resistance by Pseudomonas stutzeri. Bull. Envir. Contam. Toxicol.,90: 323-328. 

DIAZ-RAVINA, M. & BAATH, E. (1996a).— Development of tolerance of soil bacterial communities exposed to 
experimentally increased metal levels. Appl. Envir. Microbiol., 62: 2970-2977. 

DIAZ-RAVINA, M. & BAATH, E. (1996b).— Influence of different temperatures on metal tolerance measurements and 

growth response of bacterial communities from unpolluted and polluted soils. Biol. Fertil. Soils., 21: 233-238. 
DIAZ-RAVINA, M., BAATH, E. & FROSTEGARD, A. (1994).— Multiple tolerance of soil bacterial communities and its 

measurement by a thymidine incorporation technique. Appl. Envir. Microbiol., 60: 2238-2247. 

DJEBALI, W., ZARROUK, M., BROUQUISSE, R., KAHOUI, S.E., LIMAM, F., GHORBEL, M.H. & CHAIBI, W. (2005).— 

Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast 

membranes. Plant Biol., 7: 358-368. 

ELSILK, S.E., EL-SHANSHOURI, A.R. & ATEYA, P.S. (2014).— Accumulation of some heavy metals by metal resistant 

virulent Bacillus anthracis PS2010 isolated from Egypt. Afr. J. Microbiol. Res., 8: 1266-1276. 
FERIANC, P., FAREWELLA, A. & NYSTROM, T. (1998).— The cadmium stress stimulon of Escherichia coli K12. 

Microbiology, 144: 1045-1050. 

FOMINA, M. & GADD, G.M. ( 2014).— Biosorption: Current perspectives on concept, definition and application. Bioresour. 
Technol., 160: 3-14. 

GADD, G.M.(2000).— Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. 

Opin. Biotechnol., 11: 271-279. 



266 
 

GAD-EL-RAB, S.M.F., SHOREIT, A.A.F. & FUKUMORI, Y. (2006).— Effect of cadmium stress on growth, morphology and 

protein expression in Rhodobacter capsulans B10. Biotechnol. Biochem., 70: 2394-2402. 

GUNASEELAN, C. & RUBAN, P. (2011).— Heavy metal resistance Bacterium isolated from Krishna­Godavari basin, Bay of 

Bengal. Int. J. Envir. Sci., 1: 1856-1864. 

GUPTA, K., CHATTERJEE, C. & GUPTA, B. (2012).— Isolation and characterization of heavy metal tolerant Gram-positive 
bacteria with bioremedial properties from municipal waste soil of Kestopur canal (Kolkata) west Bengal, India. 

Biologia., 67: 827-836. 

GUPTA, P. & DIWAN, B. (2017).— Bacterial exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, 
mechanism and remediation strategies. Biotechnol. Rep., 13: 58-71. 

GUPTA, V.K., NAYAK, A., GARWAL, S. (2015).— Bioadsorbents for remediation of heavy metals: Current status and their 

future prospects. Envir. Eng. Res., 20: 1-18. 
GUTNICK, D.L. & BACH, H. (2000).— Engineering bacterial biopolymers for the biosorption of heavy metals; new products 

and novel formulation. Appl. Microb. Biotechnol., 54: 451-460. 

GUZMAN, M.L.C., ARCEGA, K.S.G., CABIGAO, J.-M.N.R. & SIA SU, G.L. (2016).— Isolation and identification of heavy 

metal-tolerant bacteria from an industrial site as a possible source for bioremediation of cadmium, lead and 
nickel. Adv. Envir. Biol., 10: 10-15. 

HAFERBURG, G. & KOTHE, E. (2007)).— Microbes and metals: interactions in the environment. J. Basic Microbiol., 47: 

453-467. 
HALDER, D. & BASU, M. (2016).— Role of Pseudomonas stutzeri MTCC101 in cadmium bioremediation. Int. J. Curr. 

Microbiol .Appl. Sci.,5:139-148. 

HESHMAPTURE, N. & RAD, M.Y. (2012).— The effect of PGPR (Plant-Growth Promoting Rhizobacteria) on 
phytoremediation of cadmium by canola (Brassica napus L.) cultivars of Hyola 401. Annals. Biol. Res., 3: 5624-

5630. 

HOLT, J.G., KREIG, P.H.A., SNEATH, J.T., STALEY, T. & WILLIAMS, S.T. (1994).— Bergey’s manual of determinative 
bacteriology. 9th edition. Lippincott V. Williams and Wilkins, Baltimore, USA. 

HUANG, W. & LIU, Z. (2013).— Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant producing bacteria: 
Isotherm kinetic characteristic and mechanism studies. Colloids Surf. B.,105: 113-119. 

HUIQING, W., QINGPING, W., GUOJIE, W., QIHUI, G. & LINTING, W. (2016).— Cd-Resistant strains of B. cereus S5 with 

endurance capacity and their capacities for cadmium removal from cadmium-polluted water. PLOS one., 
https://doi.org/10.1371/journal.pone.0151479. 

KATOCH, K.A & SINGH, K.J. (2014).— Role of calcium in antagonizing cadmium induced heavy metal toxicity in 

Mungbean seedlings. Indian J. Plant Sci., 3 (3): 1-6. 
KHAFILZADEH, F., MOGHTADERY, Y. & JAHROONI, A.R. (2013).— Isolation and identification of cadmium-resistant 

bacteria in Soltan Abad river sediments and determination of tolerance of bacteria through MIC and MBC. Eur. 

J. Exper. Biol., 3: 268-273. 
KHAN, Z., NISAR, M.A., HUSSAIN, S.Z., ARSHAD, M.N. & REHMAN, A. (2015).— Cadmium resistance mechanism in 

Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl. Microb. Biotechnol., 99: 

10745-10757. 
KRISHNA, M.P., RINOY VARGHESE, R., ARUN ,V., BABU, A.V. & HATHA, A.A.M. (2012).— Bioaccumulation of Cadmium 

by Pseudomonas sp. isolated from metal polluted industrial region. Envir. Res. Engin. Manage., 3 (61): 58-64. 

LAU, T.C., WU, X.A., CHUA, H., QIAN, P.Y. & WONG, P.K. (2005).— Effect of exopolysaccharides on the adsorption of 

metal ions by Pseudomonas sp. CU-1.Water Sci. Technol., 52: 63-68 
LESMANA, S.O., FEBRIANA, N., SOETAREDJO, F.E., SUNARSO, J. & ISMADJI, S. (2009).— Studies on potential applications 

of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J., 44: 19-41. 

LEUNG, W.C., WONG, M.F.& LEUNG, C.K. (2000).— Removal and recovery of heavy metals by bacteria isolated from 
activated sludge treating industrial effluents and municipal wastewater. Water Sci. Technol., 41 (12): 233-240. 

LIN, C.C. & LIN, H.L. (2005).— Remediation of soil contaminated with the heavy metal (Cd2+). J. Hazard. Mater., 122: 7-

15. 
LIU, H., GUO, L, LIAO, S. & WANG, G. (2012).— Reutilization of immobilized fungus Rhizopus sp. LG04 to reduce toxic 

chromate. J. Appl. Microbiol., 112: 651-659. 

LUO, S.L., XIAO, X., XI, Q., WAN, Y., CHEN, L., ZENG, G.M., LIU, C.B., GUO, H.J. & CHEN, J.L. (2011).— Enhancement of 
cadmium bioremediation by endophytic bacterium Bacillus sp. L14, industrially used metabolic inhibitors (DCC 

or DNP). J. Hazard Mater., 190: 1079. 

MITRA, R.S. & BERNSTEIN, I.A. (1977).— Nature of the repair process associated with the recovery of Escherichia coli after 

exposure to Cd 2+. Biochem. Biophys. Res. Com.,74: 1450-1455. 

MITRA, R.S., GRAY, R.H., CHIN, B. & BERNSTEIN, I.A.(1975).— Molecular mechanisms of accommodation in Escherichia 
coli to toxic levels of Cd2+. J. Bacteriol., 121: 1180-1188. 

MO, B.B. & LIAN, B. (2011).— Hg (II) adsorption by Bacillus mucilaginous: mechanism and equilibrium parameters. 

World J. Microbiol. Biotechnol., 27:1063-1070 
NIES, D.H. (1999).— Microbial heavy metal resistance. Appl. Microb. Biotechnol.,51: 730-750. 

NIES, D.H. & SILVER, S. (1995).— Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol., 14: 186-

199. 

https://doi.org/10.1371/journal.pone.0151479
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nies%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=10422221


267 
 

NYSTROM,  T. & KJELLEBERG,  S.(1987).— The effect of cadmium on starved heterotrophic bacteria isolated from 

marine waters. Microbiol. Ecol., 45: 143-153. 
OWOLABI, J.B. & HEKEU, M.M. (2015).— Isolation and characterization of zinc resistant bacteria from a coil coating 

industrial wastewater treatment plant. Int. J. Envir. Sci., 5: 1030-1042. 

PAL, N.M., GUPTA, P. & GADRE, R. (2007).— Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen 
assimilation in greening maize leaf segments: Role of 2-oxoglutarate. Indian J. Exp. Biol., 45: 385-389. 

PANA, M. (2012).— Antibiotic resistant bacteria: a continuous challenge in the new millennium. InTech. 

PANWICHIAN, S., KANTACHOTE, D., WITTAYAWEERASAK, B. & MALLAVARAPU, M. (2010).— Factors affecting 

immobilization of heavy metals by purple non sulfur bacteria isolated from contaminated shrimp ponds. World J. 
Microbiol., 26: 2199-2210. 

PARK, D., YUNY, S. & PARK, J.M. (2010).— The past, present, and future trends of biosorption. Biotechnol. Bioproc. Eng., 

15: 86-102. 
PENNANEN, T., FROSTEGÅRD, Å., FRITZE, H. & BAATH, E. (1996).— Phospholipid fatty acid composition and heavy metal 

tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forest. 

Appl.Envir. Microbiol., 62: 420-428. 

PIRES, C., MARQUES, A.P.G.C., GUERREIRO, A., MARGAN, N. & CASTRO, P.M.L. (2011).— Removal of heavy metals using 
different polymer matrixes as support for bacterial immobilization. J. Hazard Mater., 191: 277-286. 

PRASENJIT, B. & SUMATHI, S. (2005).— Uptake of chromium by Aspergillus foetidus. J. Mater Cycl. Waste J.., 7 (2): 88-

92. 

QUINTELAS, C., ROCHA, Z., SILVA, B., FONSECA, B., FIGUEIREDO, H. & TAVARES, T. (2009).— Removal of Cd(II), Cr(VI), 

Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng.J.,149: 319-324. 

ROANE, T.M. & KELLOGG, S.T. (1995).— Characterization of bacterial communities in heavy metal contaminated soils. 

Can. J. Microbiol., 42: 593-603. 
ROBINSON, N.J., GUPTA, A., FORDHAM-SKELTON, A.P., CROY, R.R.D., WHITTON, B.A. & HUCKLE, J.W. (1990).— 

Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated. 
Proc. R. Soc. Lond. B., 242: 241-247. 

SAIER, M.H.J. (2003).— Tracing pathways of transport protein evolution. Mol. Microbiol., 48: 1145-1156. 

SALEM, I.B., SGHAIER, H., TRIFI, H., HENI, S., KHWALDIA, K., SAIDI, M. & LANDOULSI, A. (2012).— Isolation and 

characterization of a novel Micrococcus strain for bioremediation of strontium in radioactive residues. Afr. J. 
Microbiol., 64: 51-58. 

SARANRAJ, P. & STELLA, D. (2012).— Bioremediation of sugar mill effluent by immobilized bacterial consortium. J. Pure 

Appl. Microbiol., 2 (4): 43-48. 
SHARMA, P.K., BALKWILL, D.L., FRENKEL, A. & VAIRAVAMURTHY, M.A. (2000).— A new Klebsiella planticola strain 

(Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl. Envir. 

Microbiol., 66: 3083-3087. 

SHENG, G.P., YU, H.Q. & YUE, Z.B. (2005).— Production of extracellular polymeric substances from Rhodopseudomonas 
acidophila in presence of toxic substances. Appl. Microb. Biotechnol., 69: 216-222. 

SCHUT, S., ZAUMER, S., HAMPEL, G., KONIG, H. & CLAUS, H. (2011).— Biosorption of copper by wine-relevant  

Lactobacilli. Int. J. Food Microb.,145: 126-131. 

SIHAMIM, S & RAHMAN, A. (2012).— Cadmium resistance and accumulation potential of Klebsiella pneumoniae strain 

CBL-1 isolated from industrial wastewater. Pak. J. Zool., 44: 203-208. 

SILVER, S. (1996).— Bacterial resistances to toxic metal ions - a review. Gene, 179: 9-19. 
SILVEIRA MARTINS, S.C., MARTINS, C.M., GUEDES FIÚZA, L.M.C. & TÉDDE SANTAELLA, S. (2013).— Immobilization of 

microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. Afr. J. Biotechnol., 12 

(28): 4412-4418. 

SINGH, A. & PRASAD, S.M. (2015).— Remediation of heavy metal contaminated ecosystem: an overview on technology 
advancement. Int. J. Environ. Sci. Technol., 12: 353-366. 

SONG, J.S., MAENG, M., LEE, K., PIL PACK, S. & LEE, J.W. (2016).—The role of extracellular polymeric substances in 

reducing copper inhibition to nitrification in activated sludge. Biotechnol. Bioproc. Engin., 21: 683-688. 

SUJITHA, D. & JAYANTHI, M. (2014).— Efficiency of immobilized microbial combination for the bioremediation of tannery 

effluents in Vellore District, Tamil Nadu, India. Int. J. Adv. Res. Biol. Sci., 1 (8): 113-120. 

SYED, Z.A., MOHD, R., NORLI, I. & JAPARENG, L. (2014).— Isolation, identification and characterization of cadmium 
resistant Pseudomonas sp. M3 from industrial waste water. J. Waste Manage. Article ID 160398, 6 pages. 

http://dx.doi.org/10.1155/2014/160398. 

TAO, X.Q., LU, G.N., LIU, J.P., LI, T. & YANG, L.N. (2009).— Rapid degradation of phenanthrene by using Sphingomonas 
sp. GY2B immobilized in calcium alginate gel beads. Int. J. Envir. Res. Public Health, 6: 2470-2480. 

TSAI, K.J. & LINET, A.L. (1993).— Formation of a phosphorylated enzyme intermediate by the cadA Cd2+-ATPase. Arch 

Biochem. Biophys., 305: 267-270. 
TSEKOVA, K. & ILIEVA, S. (2001).— Copper removal from aqueous solution using Aspergillus niger mycelia in free and 

polyurethane-bound form. Appl. Microb. Biotechnol., 55: 636-637. 

https://www.researchgate.net/profile/Saranraj_P/publication/259495628_BIOREMEDIATION_OF_SUGAR_MILL_EFFLUENT_BY_IMMOBILIZED_BACTERIAL_CONSORTIUM/links/0deec52c460acd8669000000.pdf


268 
 

TRAN, T.A. & POPOVA, L.P. (2013).— Functions and toxicity of cadmium in plants: recent advances and future prospects. 

Turk. J. Bot., 37: 1-13. 
USEPA (1996).— Digestion of soils samples according to the method 3050 B. US Environmental Protection Agency. 

VANDEVIVERE, P. & KIRCHMAN; D.L. (1993).— Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl. 

Envir. Microbiol., 10: 3280-3286. 
VOLOUDAKIS, A.E., BENDER, C.L. & COOKSEY, D.A. (1993).— Similarity between copper resistance genes from 

Xanthomonas campestris and Pseudomonas syringae. Appl. Envir. Microbiol, 59: 1627-1634. 

VIJAVARAGHAVAN, K. & YUN, Y.S. (2008).— Bacterial biosorbents and biosorption. Biotechnol. Adv., 26: 266-291. 

WAGNER, G. (1993).— Accumulation of cadmium in crop plants and its consequences to human health. Adv .Agron., 51: 
173-212. 

WANG, J. & CHEN, C. (2009).— Biosorbent for heavy metals removal and their future. Biotechnol. Adv., 27: 195-226. 

WANG, M. & WANG, G. (2010).— Oxidative damage effects in the copepode Tigriopus japonicus Mori experimentally 
exposed to nickel. Ecotoxicol.,19: 273-284. 

WASI, S., TABREZ, S. & AHMAD, M. (2011).— Suitability of immobilized Pseudomonas fluorescens SM1 strain for 

remediation of phenols, heavy metals and pesticides from water. Water, Air and Soil Pollution, 220: 89-99. 

WHITE, P.A., MCIVER, C.J. & RAWLINSON, W.D. (2001).— Integrons and genes cassettes in Enterobacteriaceae. 
Antimicrob. Agents Chemother., 45: 2658-2661 

WIATROVSKA, K., KOMISAREK, J. & DLUZEWSKI, P. (2015).— Effects of heavy metals on the activity of dehydrogenases, 

phosphatases and ureases in naturally and artificially contaminated soils. J. Elem., 20: 743-756. 

WON, E.J., KIM, R.O., RHEE, J.S., PARK, G.S. & LEE, J.S. (2011).— Response of glutathione S-Transferase(GST) genes to 

cadmium exposure in the marine pollution indicator worm Perinereisnuntia. Comp. Biochem. Physiol. C: 

Toxicol, Pharmacol., 154: 82-92. 
WUANA, R.A. & OKIEIMEN, F.E. (2010).— Heavy metals in contaminated soils. A review of sources, chemistry, risks and 

best available strategies for remediation. ISRN Ecology, Vol. 2011, Article ID402647, 20 pages, 

doi:10542/2011/40264. 
YAN-DE, J., ZHEN-LI, H.E. & XIAO-E, Y. (2007).— Role of soil rhizobacteria in phytoremediation of heavy metal 

contaminated soils. J. Zhejiang Univ. Sci. B., 8:192–207. 

ZAKI, S. & FARAG, S. (2010).— Isolation and molecular characterisation of some copper biosorped strains. Int. J. Envir. 
Sci. Technol., 7: 553-560. 

ZHOU, H. & GUO, X.Y. (2015).— Soil heavy metal pollution evaluation around mine area with traditional and ecological 

assessment methods. J. Geosci. Envir. Protect., 3: 28-33. 
ZHUANG, X., CHEN, J., SHIM, H. & BAI, Z. (2007).— New advances in plant growth-promoting rhizobacteria for 

bioremediation. Envir. Int., 33: 406-413. 

ZLOCH, M., THLEM, D., GADZALA-KOPLUCH, R. & HRYNKIEWICZ, K. (2016).— Synthesis of siderophores by plant 

associated metallotolerant bacteria under exposure to Cd2+. Chemosphere, 156: 312-325. 

ZUR, J., WOJCIESZYNSKA, D. & GUZIK, U. (2016).— Metabolic responses of Bacterial cells to immobilization. Molecules, 

21, 958. Doi: 10.3390/molecules21070958As. 

 


