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Abstract 
Review on SYK, with data on DNA, on the protein 

encoded, and where the gene is implicated. 

Identity 

Other names: P72-Syk 

HGNC (Hugo): SYK 

Location: 9q22.2 

DNA/RNA 

Description 

The spleen tyrosine kinase (SYK) gene encodes a 

member of the family of non-receptor type Tyr 

protein kinases (http://www.genecards.org/cgi-

bin/carddisp.pl?gene=SYK). The cDNA clone 

encoding porcine SYK was identified by Taniguchi 

et al (Taniguchi 1991; Yamada 1993), and thereafter 

the SYK cDNA for mouse and human, respectively, 

was cloned (Hutchcroft 1991; Hutchcroft 1992; 

Müller 1994; Ku 1994). Initially, a smaller porcine 

SYK protein product was purified and was found to 

be proteolytically cleaved from  

the mature SYK protein (Kobayashi 1990). The 

PTK72 was at the same time found to be identical 

with the cloned SYK (LePrince 1993; Law 1994). 

Transcription 

The transcript encodes 635 amino acids with a mass 

of 72,066 Da. Two isoforms have been described, 

isoform long (L) and isoform short (S) 

(http://www.uniprot.org/uniprot/P43405): Isoform 1 

(full-length); Isoform 2 (283-305 missing) 

Protein 

Description 

SYK is a 72 kDa non-receptor type protein tyrosine 

kinase (PTK) that contains two SRC homology 2 

(SH2) domains, interdomains A and B, and a C-

terminal kinase domain (Fig. 2). SYK was initially 

shown to be expressed in lymphocytes and 

associated with the IgM and IgD receptor complexes 

in B cells (Taniguchi 1991; Hutchcroft 1992). The 

requirement for Src-PTKs associated with the B cell 

receptor (BCR) for phosphorylation of SYK was 

investigated early, and was shown to enhance the 

activity of SYK (Kurosaki 1994). 

Figure 1. Mapping of SYK gene on chromosome 9q22.2 (from GeneCards Syk gene). 
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Figure 2. Schematic structure of spleen tyrosine kinase (SYK) protein (adopted from Pamuk et al 2010). The protein includes two 
tandem SH2 domains and a tyrosine kinase domain. Between the two SH2 domains is interdomain A while interdomain B is 
located between the tyrosine kinase domain and C-terminal domain. ITAM, immunoreceptor tyrosine-based activation motif; 

SH2, Src homology 2. 
 

The PTK ZAP70 was cloned in T lymphocytes and 

shown to be homologous to SYK (Chan 1992). An 

alternatively spliced form of SYK also exists, 

missing 23 amino acids from interdomain A (Sada 

2001). The topology of the N-terminal part of SYK 

is similar to its counterpart ZAP70 as revealed by the 

crystal structure (Narula 1995; Hatada 1995). In 

1998, Fütterer et al presented the crystal structure of 

the tandem SH2 domain of SYK complexed with a 

dually phosphorylated ITAM peptide (Fütterer 

1998). The tandem SH2 domains selectively bind to 

diphosphorylated immunoreceptor tyrosine based 

activating motifs (ITAM) of the cytoplasmic region 

of the BCR (Sada 2001). The crystal structure of a 

full-length version of ZAP70 has given a greater 

understanding of the activation process for both 

SYK and Zap-70 (Deindl 2007). 

Atwell et al determined the structure of the 

unphosphorylated form of the SYK kinase catalytic 

domain (SYK-KD) in order to understand the 

molecular mechanism responsible for its enzymatic 

activity (Atwell 2004). The SYK kinase domain has 

a subdomain structure composed of a largely β-sheet 

N-terminal lobe, a largely α–helical C-terminal lobe, 

with the active site being sandwiched between the 

two lobes. The N-terminal lobe consists of a five-

stranded β -sheet plus a single α –helix. The larger 

C-terminal lobe is predominantly α –helical with 

three short β -strands: one at the hinge region and 

two between the activation loop and the main body 

of the C-lobe. From the structure of the SYK kinase 

domain it was deduced that the SYK catalytic 

activity does not require activation loop 

phosphorylation. 

SYK have multiple sites of phosphorylation which 

both regulate activity and serve as docking motifs for 

other proteins (Sada 2001). Phosphorylation sites 

include Tyr-348 and Tyr-352 within the SH2-linker 

region (Brdicka 2005), Tyr-525 and Tyr-526 within 

the activation loop of the kinase domain (Zhang 

2000), Tyr-630 in the C terminus of SYK, and others 

(Kulathu 2008; Tsang 2008; and reviewed by Sada 

2001). In B cells, the phosphorylation of two 

tyrosines within the ITAM leads to the physical 

recruitment of SYK to the site of the clustered 

receptor in an interaction mediated by its tandem pair 

of SH2 domains (reviewed in Geahlen 2009). 

Shortly following BCR engagement, SYK that has 

been recruited to the receptor becomes 

phosphorylated on multiple tyrosines through both 

autophosphorylation and phosphorylation by Lyn. 

Expression 
SYK expression in hematopoietic cells has been 

extensively determined by studying SYK as an 

effector of BCR signalling. Turner and co-workers 

found that after BCR activation, SYK-dependent 

signaling pathways regulate the clonal expansion, 

differentiation, or apoptosis of B cells (Turner 2000). 

Most of the cells of the hematopoietic system 

express SYK, but the PTK is also expressed at lower 

levels in some epithelial cells, fibroblasts, 

hepatocytes, vascular smooth muscle cells, 

endothelial cells and neuronal cells where it 

mediates various responses including adipogenesis, 

cell division, tumor suppression, ERK activation and 

neuronal differentiation (Turner 2000; Yanagi 2001; 

Zhou 2006; Tohyama 2009; Geahlen 2009; Mócsai 

2010; Krisenko 2015). 

In hepatocytes, after the use of the SYK-selective 

inhibitor piceatannol, it was indicated that SYK is 

necessary for mitogen activated protein kinase 

(MAPK) activation by G-protein coupled receptors 

in this cell type (Tsuchida 2000). Additionally, SYK 

expression has also been observed in normal human 

breast tissue, benign lesions and low-tumourigenic 

breast cancer cell lines (Coopman 2000). 

Localisation 
SYK is an intracellular PTK, known to function at 

the plasma membrane, where the receptors to which 

it is recruited are located (Zhou 2006). In lymphoid 

and epithelial cells, SYK has been found to reside in 

both the nucleus and cytoplasm (Ma 2001; Wang 

2003; Wang 2004). The expression and localization 

of SYK in the nucleus of breast cancer cells have 

been correlated with the repression of invasive tumor 

growth (Wang 2003). 

Function 
The SYK protein is known to have an important role 

in adaptive immune receptor signalling with recent 

reports indicating its mediation of other diverse 

biological functions, including cellular adhesion, 

innate immune recognition, osteoclast maturation, 

platelet activation and vascular development 

(Mócsai 2010). The protein is also involved in 
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coupling activated immunoreceptors to downstream 

signaling events that mediate diverse cellular 

responses, including proliferation, differentiation, 

and phagocytosis. 

SYK plays a critical role in the transition of pro-B 

cells into pre-B cells (Turner 1995). SYK is greatly 

involved in signal transduction initiated by the 

classic immunoreceptors, including BCRs, Fc 

receptors, and the activating natural killer receptors 

(Tohyama 2009; Berton 2005; Crowley 1997). SYK 

is associated mainly with ITAM dependent pathways 

and affects early development and activation of 

various cells including B cells, mast cell 

degranulation, neutrophil and macrophage 

phagocytosis, as well as platelet activation (Zhou 

2006; Tohyama 2009; Mócsai 2010). SYK-mediated 

phosphorylation of various adaptor proteins leads to 

the activation of downstream pathways that execute 

phagocytosis. SYK is important in complement-

mediated phagocytosis resulting from the binding of 

C3bi-coated particles to complement receptor 3 

(Tohyama 2009; Tohyama 2006). SYK is known to 

play a major role in the development of signal 

transduction events initiated after high-affinity IgE 

receptor (FCER1A) aggregation (Wong 2004; 

Matsubara 2006), mast cell activation, 

degranulation, and cytokine production (Matsubara 

2006; Masuda 2008). It is anticipated that SYK 

activation coupled with platelet activation and 

aggregation may assist in lymphatic vessel 

development and their separation from blood vessels 

(Mócsai 2010, Turner 1995). SYK is claimed to have 

a role in osteoclast differentiation and osteoclast 

function (Tohyama 2009, Mócsai 2010). SYK has 

been found to have a major role in pre T-cell receptor 

(TCR) signalling. This is known to occur during the 

transition from the double negative 3 (DN3) to the 

DN4 stage of early thymocyte development 

(Palacios 2007). In vivo studies have shown that 

SYK is required for firm leukocyte adhesion to 

inflamed endothelium (Frommhold 2007) and 

development of vasculopathy reaction (Hirahashi 

2006). The innate immune system uses pattern 

recognition receptors (PRRs) to detect pathogen-

associated molecular patterns (PAMPs) and activate 

immune responses. SYK has been found to be a key 

component of these pathways and increased 

evidence points to the involvement of SYK-coupled 

PRRs in innate recognition of bacteria, with 

CLEC7A, CLEC6A and CLEC4E all implicated in 

sensing of mycobacterial PAMPs (Geijtenbeek 

2009). SYK is presumably also involved in 

signalling PRR-mediated recognition of certain 

viruses. 

The role of ZAP70 in B cells have been investigated, 

but is poorly understood possibly due to the 

functional redundancy between SYK and ZAP70 

(Fallah-Arani 2008). Toyabe et al displayed the 

ability of a T cell subpopulation to express high 

levels of SYK and partially compensate for loss of 

T-cell functions in patients with deficiency of 

ZAP70 (Toyabe 2001). 

Homology 

Both ZAP-70 and SYK are dependent upon a Src-

family protein tyrosine kinase for association with 

the phosphorylated zeta-chain. Thus, the differential 

expression of these kinases suggests the possibility 

of different roles for ZAP70 and SYK in TCR 

signaling and thymic development (Palacios 2007). 

Activation of PTKs is an important mechanism in the 

transduction of signals from multi-subunit 

immunoreceptors, including the B and T cell 

receptors for antigen and the widely distributed 

receptors for the Fc portion of immunoglobulins 

(Paolini 2001). ZAP70 is expressed in T cells, 

natural killer cells and thymocytes, whereas SYK is 

present in all hematopoietic cells. Both ZAP70 and 

SYK are reported to be activated after TCR 

stimulation.  

Nonetheless, ZAP70 activation is known to require 

presence of Lck or another associated Src family 

PTK, while SYK is independent of Lck to undergo 

phosphorylation (Chan 1994, Couture 1994, 

Kolanus 1993). Regardless of its presence in all 

thymocyte subsets, SYK expression is 

downregulated three- to fourfold in peripheral T 

cells and, contrary to ZAP70, SYK expression is 12- 

to 15-fold higher in peripheral B cells compared to 

peripheral T cells (Chan 1994). 

Another study showed functional homology in 

antigen receptor signaling by demonstrating that 

expression of ZAP70 in SYK-B cells reconstitutes 

BCR function (Kong 1995). Another feature that 

distinguish ZAP70 from SYK is its greater 

dependency on Src kinases for activation and its 

ability to phosphorylate and promote the auto-

activation of the downstream MAPK p38 (reviewed 

in Au-Yeung 2009). 

Mutations 

The development of B cells proceeds through a well-

characterized set of stages defined by the extent of 

antigen receptor rearrangement and the expression of 

particular cell surface markers. When mice deficient 

for recombination-activating gene 1 (RAG1) were 

reconstituted with fetal liver from SYK-deficient 

embryos, the pool of pre-B cells formed was 

reduced. This suggests that SYK is required for the 

proper signalling from the pre-BCR to generate or 

maintain the pool of pre-B cells. Indeed, it has been 

shown that SYK is an essential transducer of BCR 

signals required for the transition of immature into 

recirculating B cells (Turner 2000). Moreover, SYK-

deficient mice die due to embryonic and perinatal 

death (Turner 1995; Cheng 1995). 
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Epigenetics 

SYK can also be inactivated by epigenetic 

modifications (i.e. hypermethylation) 

Implicated in 

t(5;9)(q33;q22) 

Disease 

found in Peripheral T-cell lymphoma (Streubel et al. 

2006). 

Hybrid/Mutated gene 

N-terminal ITK (bp 1-577) fused in frame with C-

terminal SYK cDNA 

t(9;12)(q22;p12) 

Disease 

found in a case of myelodysplastic syndrome (Kuno 

et al. 2001). 

Oncogenesis 

ETV6-SYK is constituvely tyrosine phosphorylated 

Breast cancer 

SYK mRNA and protein expression in a panel of 

well-characterized breast cancer cell lines, normal 

mammary gland tissue, and a normal breast 

epithelial cell line has been investigated by 

Coopman et al (Coopman 2000). They readily 

detected SYK expression in normal mammary tissue 

and epithelium, as well as in non-invasive breast 

carcinoma cell lines. SYK expression was however 

observed to be reduced or absent in the invasive 

breast tumor cell lines. Hypermethylation of the 

SYK locus during breast cancer progression was 

found to cause a loss of SYK protein expression in 

highly invasive and metastatic human mammary 

carcinomas (Coopman 2000,Yuan 2001). Moreover, 

Wang et al have shown that full-length SYK can 

enter the nucleus and thereby suppress invasion 

(Wang 2003). The sequences confined to a region of 

the SYK molecule near the junction of the linker B 

and catalytic domain were determined to be 

responsible for its distribution between the nucleus 

and cytoplasm (Zhou 2006). It was further 

demonstrated that the distribution of SYK between 

the nucleus and cytoplasm was regulated by signals 

sent downstream from the activated BCR and require 

the receptor-mediated activation of protein kinase C 

(PKC) and the induction of new protein synthesis. 

Colon carcinoma 

Expression of the SYK gene in human colon 

carcinoma cells is known to be suppressed in a p53-

dependent manner, an indication that loss of p53 

function during tumorigenesis can lead to  

deregulation of SYK activity (Okamura 1999). As 

reviewed recently by Krisenko et al,the levels of 

SYK mRNA in many cancerous tissues, including 

colon, are higher than in normal corresponding tissue 

(Krisenko 2015). 

Gastric cancer 

An inverse correlation between nuclear SYK and 

lymph node metastasis was observed in gastric 

cancer patients (Wang 2004). 

Ovarian cancer 

Ovarian tumors of low malignant grade have low 

levels of SYK compared to aggressive grades, which 

have the highest levels (Prinos 2011). Interestingly, 

when SYK expression was silenced, anchorage-

independent growth was inhibited, and apoptosis 

was induced in SYK-expressing ovarian cancer 

cells. 

Lung cancer 

Primary tumors of small cell lung cancer (SCLC) 

was examined and found to express higher levels of 

SYK compared to normal alveolar epithelium 

(reviewed by Krisenko 2015). 

Chronic lymphocytic leukemia (CLL) 

Both SYK and ZAP70 are present in CLL in B cells 

and may compete in facilitating BCR signaling 

(reviewed in Au-Yeung 2009). CLL fall into two 

classes, an indolent milder form and an aggressive 

form that is particularly dependent on SYK activity 

for survival (Buchner 2009). 

Diffuse large B-cell lymphoma 
(DLBCL) 

DLBCL can exhibit tonic or chronic signaling from 

the BCR that results in constitutive phosphorylation 

of SYK on activation loop tyrosines (Chen 2008). In 

a study from 2011 by Cheng et al, 44% of DLBCL 

samples showed elevated levels of phosphorylated 

SYK (Cheng 2011). 

Follicular lymphoma (FL) 

Constitutive activation of SYK has been reported in 

FL, were primary cells are hyperresponsive to BCR 

engagement as compared to nonmalignant B cells 

(Leseux 2006; Irish 2006). 

Mantle cell lymphoma (MCL) 

Constitutive activation of SYK has been reported in 

MCL as well, with a frequent overexpression of 

SYK due to gene amplification in both cell lines and 

primary tumors (Rinaldi 2006). 

Marginal zone lymphoma  (MZL) 

Ruiz-Ballesteros reported upregulation of SYK in 

splenic MZL, potentially due to downregulation of 

microRNAs predicted to modulate SYK gene 

transcription (Ruiz-Ballesteros 2005). 
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B cell acute lymphocytic leukemia (B-
ALL) 

B-ALL cells are derived from pro-B cells that lack 

pre-BCR or BCR complexes, but still these cells 

have elevated levels of constitutively active 

phosphorylated SYK (Perova 2014). 

Rheumatoid arthritis (RA) 

It is likely that SYK is widely expressed in a range 

of haemopoietic cell lineages in RA synovium. 

Inhibition of Syk suppresses both inflammation and 

bone erosion in animal models of RA (Singh Najjar 

2014). Indeed, Syk has been shown to be necessary 

for emerging pathology in several animal models of 

arthritis. 
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