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Résumé

La méthode de modélisation du transport par intégration partielle (PITM) qui permet de traiter conti-

nûment les régions RANS et LES sans frontière de raccordement brutale a été développée récemment

pour simuler les écoulements turbulents hors équilibre spectral sur des maillages relativement lâches.

Cette méthode repose sur des intégrations partielles du spectre de densité d’énergie dont la partition

correspond au filtrage spectral. Celle-ci a été appliquée à une grande variété d’écoulements turbulents

présentant des complexités physiques et s’est révélée prometteuse tant d’un point de vue physique que

pratique. Après une présentation des principes du PITM et ses fondements dans l’espace spectral, nous

aborderons différents types d’écoulements pour évaluer ses performances.

Abstract

The partially integrated transport modeling (PITM) method allowing seamless coupling between RANS

and LES regions has been developed recently to perform numerical simulations of turbulent flows out

of spectral equilibrium on relatively coarse grids. This method relies on partial integration over a split

spectrum of the turbulent energy density, in which the given partitioning stands for spectral filtering.

This method has been applied to perform a large variety of turbulent flows with specific physical com-

plexities and proved to be a promising approach both from a physical and a practical point of view.

After presenting the principle of the PITM method and its basic foundation in spectral space, we will

investigate several types of flows in order to highlight its potentials.

Keywords : Turbulence modeling, PITM simulation, Out of spectral equili-
brium flows.

1 Introduction

Different but complementary methods have been developed in the past fifty years for the simulation

of turbulent flows [1, 2]. The direct numerical simulation (DNS) is obviously the best tool for simula-

ting turbulent flows but is out of reach to this day even if considering supercomputers and the recent

advances made in technology. Large eddy simulation (LES) has been a very useful method but still

remains also extremely costly in term of computer resources at large Reynolds numbers due to the fact
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that Kolmogorov scale cubed decreases rapidly according to the R
−9/4
t power law of the turbulence

Reynolds number . On the other hand, the Reynolds Averaged Navier-Stokes (RANS) method has been

often used for predicting turbulent flows encountered in engineering applications with relatively low

computational costs [3, 4, 5] but this one works well only for quasi-steady flows in the mean and fails

to capture the large scale turbulent eddies. For these reasons, hybrid RANS/LES methods have been

developed in the past decade to simulate engineering or industrial flows on coarse grids with accep-

table computer resources. One can mention the main schools of modeling such as the so-called very

large eddy simulation (VLES) [6], the detached eddy simulation (DES) [7, 8], the partially integrated

transport modeling (PITM) method [9, 10, 11], the partially averaged Navier-Stokes (PANS) method

[12, 13], the scale adaptive approach [14, 15]. Among these different methods, the PITM method gains

a major interest because it bridges the RANS and LES methodologies with seamless coupling and thus

avoids the overwhelming problems caused by the so-called gray zone that are usually posed by zonal

hybrid RANS/LES methods. The PITM method based on the spectral theory background is identified

as a continuous hybrid method that allows to perform numerical simulations of turbulent flows on re-

latively coarse grids when the cutoff wave number can be located before the inertial zone, as far as the

grid-size is however sufficiently fine to describe correctly the mean flow, then satisfactorily results can

be obtained [9, 10, 11, 16, 17, 18, 19]. As a result of interest, the PITM method reverts to DNS in the

limiting condition where the grid-size in physical space ∆ goes to the Kolmogorov length-scale ηK

and conversely goes to RANS behavior when ∆ becomes very large [10, 25, 11]. Note that PITM is a

method of approach and not a mere model, because it can be used to convert almost any existing RANS

model to its corresponding subfilter scale model counterpart : a second life for RANS methodology !

In particular, Schiestel and Dejoan [9] have derived two-equation subfilter scale (SFS) energy models

whereas Chaouat and Schiestel [10] have developed subfilter scale stress transport models based on

second-moment closure (SMC) on these bases. In this present work, after recalling the principles of the

PITM method and its natural foundation in spectral space, we will investigate several types of typical

flows that highlight the potentials of this PITM method. We will focus attention on turbulent flows that

deserve interest in physics of turbulence from a fundamental point of view as well as engineering flows

encountered in industry that are still posing major challenges in computational fluid dynamics.

2 The PITM method

2.1 Filtering process

In PITM like in LES, any turbulent variable φ is decomposed into a large scale (resolved part) φ̄ and

a subfilter-scale fluctuating part φ> (modeled part) such that φ = φ̄ + φ>. The filtered variable φ̄ is

defined by the filtering operation as the convolution with a filter G in physical space

φ = G ∗ φ (1)

that leads to the computation of a variable convolution integral

φ̄(x, t) =

∫

R3

G [x− ξ,∆(x, t)]φ(ξ, t)dξ (2)

The instantaneous fluctuation φ′ appearing in RANS methodology contains in fact both the large scale

fluctuating part φ< and the small scale fluctuating part φ> such that φ′ = φ< + φ>. So that the ins-
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tantaneous variable φ can then be rewritten like the sum of a mean statistical part 〈φ〉, a large scale

fluctuating part φ< and a small scale fluctuating part φ> as follows φ = 〈φ〉+ φ< + φ>.

2.2 Basic equations in the spectral space

The PITM method finds its natural foundation in spectral space [23]. The theory starts with the dyna-

mic equation of the two-point fluctuating velocity correlations in their extensions to nonhomogeneous

turbulence. By using Fourier transform and performing averaging on spherical shells on the dynamic

equation, one can formally derive the evolution equation of the spectral velocity correlation tensor in

one-dimensional spectral space that reads [20, 21, 22]

∂ϕij(X , κ)

∂t
+ 〈uk〉 (X)

∂ϕij(X , κ)

∂Xk
= Pij(X , κ) + Tij(X, κ)

+Ψij(X, κ) + Jij(X, κ)− Eij(X, κ) (3)

where in this equation, the function ϕij denotes the spherical mean of the Fourier transform of the

two-point velocity correlation tensor, Pij represents the production term, Tij is the total transfer term,

Ψij is the redistribution term, Jij embodies all the diffusion like terms, and Eij denotes the stress dis-

sipation rate, X is the position midway between the two points and κ is the wave number. Exiled in

one-dimensional spectral space, the turbulence quantities become only functions of the scalar wave

number rather than the full wave vector. Incidentally, these spectral equations have also early been the

basis for developing one-dimensional non-isotropic spectral models by the French school of turbulence

[21, 23]. A full integration over the wave number space of equation (3) allows to recover formally and

exactly the usual one-point statistical Reynolds stress model equations. But a partial integration over

spectral slices, with a defined spectral partitioning, yields partial integrated transport equations that can

be used either as the main ingredient of statistical multiple-scale models [22], or as the definition of

subfilter scale turbulence used in both LES and PITM modeling [9, 10]. The PITM equations are for-

mally obtained from integration of equation (3) in the wave number ranges [0, κc], [κc, κd] and [κd,∞[,

where κc is the cutoff wave number linked to the filter size ∆ by κc = π/∆, and κd is the dissipative

wave number located at the far end of the inertial range of the spectrum assuming that the energy per-

taining to higher wave numbers is negligible [10, 11]. Then one has to identify the significant physical

processes that are relevant in each spectral zone so defined. It is worthwhile to mention here that the

spherical averaging operated in equation (3) implies some loss of directional information because the

wave number replaces the wave vector in the parameters. One way to account for directional informa-

tion is to introduce structure tensors as defined by Kassinos and Reynolds [36] that allow to distinguish

dimensionality and componentality of the turbulence energy, using the terminology of these authors.

The mathematical definition of the structure tensors is given in Ref. [36]. A third tensor named circu-

licity related to the rotational is also introduced and it is remarkable that these three tensors sum up

as the turbulence kinetic energy. The work of Cambon at al. [39] developed in spectral space leads to

the same type of decomposition that allows to distinguish polarization anisotropy (recalling componen-

tality) from directional anisotropy (recalling dimensionality). More recently, a new non-linear spectral

model has been developed in this line of thought by Mons et al. [37] dedicated to homogeneous aniso-

tropic strained turbulence. A detailed account of anisotropies is thus obtained at the price of increased

complexities of the model (at least 11 transport equations).
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2.3 Subfilter scale eddy viscosity models

Consequently and as a result of turbulence modeling, the filtered transport equation of the subfilter scale

energy reads
Dksfs
Dt

= Psfs − ǫsfs + Jsfs (4)

where D/Dt denotes the material derivative defined by D/Dt = ∂/∂t+ ūk∂/∂xk , and Psfs, ǫsfs and

Jsfs denote the production, dissipation-rate and diffusion terms, respectively. The production term Psfs

due to the interaction between the subfilter stress and the filtered velocity gradients is given by

Psfs = −(τij)sfs
∂ūj
∂xi

(5)

The turbulent stresses (τij)sfs are supposed proportional to the deformation of the filtered flow field

corresponding to the Boussinesq assumption

(τij)sfs = −2νsfsS̄ij +
2

3
ksfsδij (6)

where Sij denotes the strain deformation, the eddy viscosity is calculated from

νsfs = cµ
k2sfs
ǫsfs

(7)

where cµ is a constant coefficient. The diffusion term Jsfs in equation (4) is modeled by a gradient law

hypothesis

(Jk)sfs =
∂

∂xj

[(

ν +
νsfs
σk

)

∂ksfs
∂xj

]

(8)

where σk is a constant coefficient. The filtered transport equation of the subfilter dissipation rate reads

Dǫsfs
Dt

= csfsǫ1
ǫsfs
ksfs

Psfs − csfsǫ2
ǫ2sfs
ksfs

+ (Jǫ)sfs (9)

The diffusion term (Jǫ)sfs is also modeled using a gradient law hypothesis

(Jǫ)sfs =
∂

∂xj

[(

ν +
νsfs
σǫ

)

∂ǫsfs
∂xj

]

(10)

where σǫ is a constant coefficient. It can be shown [9, 10] that in equation (9), the coefficients in the

source and sink terms can be related to their RANS counterparts by

csfsǫ1 = cǫ1 , cǫsfs2 = cǫ1 +
〈ksfs〉

k
(cǫ2 − cǫ1) (11)

The ratio 〈ksfs〉 /k appearing in equation (11) can be calibrated as a function of the location of the

cutoff wave number. To do that, we consider the universal spectrum [25]

E(κ) =
2

3
β(κLe)

α−1Lek

[1 + β(κLe)α]
γ+1

(12)
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where α and β are numerical constants verifying αγ = 2/3 and β = (3CK/2)−γ in order to comply

with the Kolmogorov law. The symbol CK denotes the Kolmogorov constant and in practice α = 3.

Using equation (12), it is a simple matter to compute the ratio 〈ksfs〉 /k, leading to the expression of

the coefficient cǫsfs2 as

cǫsfs2 = cǫ1 +
cǫ2 − cǫ1
[1 + βηαc ]

γ (13)

where the parameter η = κLe is interpreted as a dimensionless wavenumber normalized with the tur-

bulence macroscale Le = k3/2/ǫ. The function in equation (13) acting in the subfilter-scale model

equation allows to sensitize the model to the grid-size ∆ or in a more general way, to the filter width

that is allowed to be larger than the grid-size itself [24]. The coefficient cǫsfs2 can be considered as a

dynamical parameter which draws the spectral distribution towards the prescribed equilibrium distribu-

tion. In other words, this term acts like a relaxation towards the Kolmogorov equilibrium spectrum.

2.4 Subfilter scale stress models

The filtered transport equation of the subfilter scale stress reads

D(τij)sfs
Dt

= (Pij)sfs + (Πij)sfs − (ǫij)sfs + (Jij)sfs (14)

where the terms appearing in the right-hand side of this equation are identified as the subfilter produc-

tion, redistribution, diffusion and dissipation, respectively. If the frame of reference is rotating at angular

velocity Ω, then the production term (Pij)sfs embodies two contributions (P 1
ij)sfs and (P 2

ij)sfs. The

first term accounts for the interaction between the subfilter stresses and the filtered velocity gradients

and takes on the usual exact expression

(P 1
ij)sfs = −(τik)sfs

∂ūj
∂xk

− (τjk)sfs
∂ūi
∂xk

(15)

The second term (P 2
ij)sfs is generated by the rotation involving the Coriolis forces

(P 2
ij)sfs = −2Ωp

(

ǫjpk(τki)sfs + ǫipk(τkj)sfs

)

(16)

The redistribution term (Πij)sfs appearing in equation (14) is modeled assuming that the interaction

mechanisms of the subgrid scales with the resolved scales of the turbulence are of the same nature than

the interaction mechanisms involving all the fluctuating scales with the main flow [25]. Taking into

account this argument, the redistribution term (Πij)sfs is also decomposed into a slow part (Π1
ij)sfs

that characterizes the return to isotropy due to the action of subgrid turbulence on itself

(Π1
ij)sfs = −c1sfs

ǫsfs
ksfs

(

(τij)sfs −
1

3
(τmm)sfsδij

)

(17)

and a rapid part, (Π2
ij)sfs that describes the action of the filtered velocity gradients

(Π2
ij)sfs = −c2

(

(P 1
ij)sfs +

1

2
(P 2

ij)sfs −
1

3
(P 1

mm)sfs δij

)

(18)

where c1sfs plays the same role as the Rotta coefficient c1 but is no longer a true constant whe-

reas c2 is the same coefficient used in RANS modeling. In practice, the function c1sfs is modeled as
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c1sfs = c1α(η) where α is an empirical increasing function of the parameter η to strengthen the return

to isotropy for large wave numbers. The diffusion terms (Jij)sfs is modeled assuming a well-known

gradient law

(Jij)sfs =
∂

∂xm

(

ν
∂(τij)sfs
∂xm

+ cs
ksfs
ǫsfs

(τml)sfs
∂(τij)sfs

∂xl

)

(19)

where cs is a numerical constant. The subfilter tensorial transfer rate (ǫij)sfs approximated by 2/3ǫsfsδij

at high Reynolds number is computed from its transport equation (9) and the diffusion term (Jǫ)sfs is

then modeled by a usual tensorial gradient law

(Jǫ)sfs =
∂

∂xj

(

ν
∂ǫsfs
∂xj

+ cǫ
ksfs
ǫsfs

(τjm)sfs
∂ǫsfs
∂xm

)

(20)

where cǫ is a numerical constant. Note that all the subfilter models described in these two latter sections

have their RANS companion counterpart easily recovered when the spectral cutoff filter is put to zero.

These subfilter models can also be extended to low turbulence Reynolds numbers as explained in Refs.

[9, 17].

3 Illustrations to several typical turbulent flows

3.1 Decay of a turbulent flow out of spectral equilibrium

In a first example, we investigate the decay of isotropic turbulence with a perturbed spectrum departing

from the standard Kolmogorov equilibrium distribution, as shown in figure 1 using the subfilter eddy

viscosity turbulence model. Comparatively to the non perturbed spectrum (α), two perturbed spectra

are obtained by adding a bump of energy in the large scales (β) or by a defect of energy (γ). One can

see that the decay curves associated with the two perturbed spectra (β) and (γ) are both identical at the

beginning of decay but afterwards they depart from the medial curve corresponding to the non-perturbed

case. As a result of interest, one can observe that a peak in large scale energy (resp. a defect in large scale

energy) implies a decrease (resp. an increase) of the decay rate of turbulence. These results are found
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FIGURE 1 – Homogeneous decay of out of spectral equilibrium turbulence [25].

k/k0 = (〈ksfs〉+ 〈kles〉)/k0 ; κc = 2 cm−1 ; (α) — ;(β) ... ; (γ) - - -. PITM (803).
.

to be in qualitative agreement the eddy damped quasi-normal Markovian (EDQM) spectral models
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predictions obtained by Cambon [38]. These evolution can be easily explained if one considers firstly

that the curves can only depart from each other after the cascade time delay required for the perturbed

area to reach the dissipation zone of the three-dimensional spectrum. Then, the curves deviate from

each other because the small scale energy decreases more rapidly than the large scale energy before

cascading into smaller scales by non-linear interactions [25, 27]. This type of analysis involving large

scales and small scales behaviors has been pointed out by Lee and Reynolds [26] in their numerical

simulations of homogeneous turbulence from irrotational strains. Obviously, this spectral effect due to

off equilibrium spectra cannot be reproduced using standard single scale statistical turbulence models

because no spectral effect is accounted for. However models with spectral splitting including multiscale

and PITM can be successful.

3.2 Mixing of turbulent flow fields of differing scales

The mixing of turbulent flows occurs in a wide variety of industrial applications or environmental si-

tuations. Generally, the mixing involves two different fields having their own levels of turbulent energy

and turbulence length-scale. This situation gives rise to non-standard spectral distribution that can de-

FIGURE 2 – Experimental setup of the shearless mixing layer [29] involving the mixing of turbulent

fields of differing turbulence energies and scales.

part from the usual Kolmogorov distribution. The laboratory experiment of Veeravalli and Warhaft [29]

investigates the typical case of a shearless mixing layer in a channel sketched in Figure 2. The spatial

development of the mixing layer has been studied using the PITM approach with subfilter turbulent

energy transport. Two synthetic turbulence fields are generated at the entrance of the channel with dif-

ferent spectral energy distributions : one loaded with large scales in the upper current and the other

loaded with smaller or medium scales in the lower current (see fig. 2). The experimental setup was built

using parallel bars playing the role of the generating grid, thus introducing some anisotropy at the inlet

turbulence. The turbulence in the absence of shear also presents some weird behaviors, in particular the

turbulent diffusion is enhanced. The numerical simulation produced the tendency to an increased diffu-

sion in the absence of shear. This behavior has been observed in the experiment and is also in agreement

with the work of Shao et al. [35] who studied the temporal mixing layer using advanced statistical spec-

tral closures. An account of inlet anisotropy was however necessary to get energy profiles closer to the
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FIGURE 3 – Mixing of turbulent Flows [18]. Effect of ansisotropy of the inlet turbulence on the total

turbulent energy at x1 = 106 cm versus the channel height z/δ. anisotropic field, — ; isotropic field, -

- - . △, experiment [29]. PITM (80× 72× 62).

experimental ones (Fig. 3, note that in this figure the profiles are normalized using the maximum and the

minimum values of energy). The flow is also characterized by a strong intermittent penetration of the

fluid layer due to the occurrence of big eddies coming from the large scale side of the shearless mixing

layer. This passage of very big eddies seems to be the reason why the turbulence energy profiles exhibit

some bumps (overshoots) in the high energy side of the profiles (Fig. 3). So, the PITM method showed

interesting potential for dealing with the mixing of turbulent fields having different characteristics and

may be promising to tackle practical problems implying the interaction of different merging flows.

3.3 Turbulent flow subjected to spanwise rotation

Numerous applications in turbomachinery industry are concerned with flows in system rotation. These

flows involve complex physical behaviors because the Coriolis forces act both directly on the mean flow

and on the turbulence field. As emphasized, the Coriolis forces associated with rotation appreciably af-

fect the mean motion and the turbulent fluctuations. In the present case, we consider a flow between
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Ω

FIGURE 4 – Sketch of fully-developed turbulent channel flow in a rotating frame.

infinite parallel plates as shown by Figure 4 subjected to a spanwise rotation that is a good approxima-

tion to study internal flows within turbine blades. As the rotation rate increases, the mean flow becomes

more and more asymmetric with respect to the channel centerline and the turbulence activity dramati-

cally decreases compared to the non-rotating case, the decrease being more pronounced in the cyclonic

region than in the anticyclonic wall region. The rotation is known to stabilizes the cyclonic region of
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FIGURE 5 – Rotating channel flow at Re = 14000 and Ro = 1.50 [30]. Isosurfaces of vorticity modulus

ω = 3um/δ = 12. 105. Colored according to the pressure contours. Anticyclonic wall region : down ;

Cyclonic wall region : up. PITM (24 × 48× 64).

the channel flow whereas it destabilizes the anticyclonic region [31]. We have analyzed rotating flows

for Reynolds number Re = Ubδ/ν = 14000 and rotations numbers Ro = Ωδ/Ub = 0.17 and 1.50 that

correspond to a moderate and high rotation rate, respectively. The simulations have been performed on

coarse, medium and refined grids of a channel with aspect ratio 3δ× 2δ× δ, but only the result associa-

ted with the coarse grid 24 × 48 × 64 is here discussed for sake of conciseness of presentation. Figure

5 shows the isosurfaces of the instantaneous vorticity modulus at the high rotation rate Ro = 1.50. A

first glimpse of sight reveals that the PITM simulation provides some dynamical elements of the flow

in wall turbulence region although being performed on a coarse grid. One can see that a strong turbu-

lence activity brought to light by the presence of very large-scale longitudinal roll cells is visible in the

anticyclonic wall region. This outcome is confirmed by highly resolved LES [32]. The resolution of

these structures is however relatively rough because of the coarse grid resolution. Figure 6 displays the

mean dimensionless velocity profiles normalized by the bulk velocity 〈u1〉 /Ub as well as the turbulent

shear stresses (τ13)sfs/U
2
b , (τ13)les/U

2
b , τ13/U

2
b profiles versus the global coordinates for the rotation

numbers Ro = 01.7 and 1.5. As a result, the mean velocity presents an asymmetric character which is

more and more pronounced as the rotation rate is increased. It is observed also that the velocity goes to

the laminar Poiseuille solution in the cyclonic wall region at the Rotation number Ro = 1.5. Overall,

the mean velocity profiles agree very well with the reference data [32], even if the PITM simulation is

performed on a very coarse grid. The total turbulent shear stress computed as the sum of the subfilter

and resolved stresses also agree relatively well with the reference data for each rotation rate [32]. At the

rotation rate R0 = 1.5, the shear stress goes to zero in the cyclonic region confirming that the vanishing

of turbulence activity.
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FIG. 6 – Rotating channel flow at Re = 14000 (a) Ro = 0.17 ; (b) Ro = 1.50 [30]. Mean streamwise

velocity 〈u1〉 /Ub and turbulent shear stress τ13/U
2
b in global coordinate. 〈u1〉 /Ub, ◦. (τ13)sfs/U

2
b , ▽ ;

(τ13)les/U
2
b , △ ; τ13/U

2
b , ◦. Highly resolved LES [32], — . PITM (24 × 48× 64).

3.4 Turbulent flow over periodic hills at high Reynolds number

The last turbulent flow that is considered here is the channel flow over periodic hills at the high Reynolds

number Re = Ubh/ν = 37000 based on the hill height h and the bulk velocity Ub about the hill crest

[17, 33]. This one constitutes an challenging case because of the turbulence mechanisms associated

with separation, recirculation, reattachment, acceleration and wall vicinity effects that are very difficult

to reproduce by numerical simulations. The PITM simulation is performed on grid of medium resolution

160 × 60 × 100 accounting for approximately 1 million grid points. Figure 7 shows the streamlines plot

generated in two dimensions obtained by averaging the PITM velocities both in the homogeneous planes

in the spanwise direction and in time. The flow separation that is clearly visible is caused by the adverse

pressure gradient resulting from the strong streamwise curvature of the lower wall. We will see in the

following by investigating the velocity profile that the recirculation zone is well recovered according to

the experiment [33]. Figure 8 showing the Q isosurfaces [34] of the flow reveals the presence of very

large longitudinal roll cells that develop in the entire channel. Due to the flow recirculation, a strong

turbulence activity is visible near the lower wall and particularly concentrated in the leeward region

of the second hill. Obviously, RANS or even URANS models cannot reproduce these instantaneous

roll cell structures because of their inherent long-time averaging process. Figure 9 exhibits the mean

streamwise velocity 〈u1〉 /Ub as well as the turbulent shear stress τ13/U
2
b at two cross stations x1/h =
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FIGURE 7 – Flow over periodic hills at Re = 37000 [17]. Streamlines of the average flowfield. PITM

(160 × 60× 100).

FIGURE 8 – Flow over periodic hills at Re = 37000 [17]. Vortical activity illustrated by the Q isosur-

faces, Q = 4105s−2. PITM (160 × 60 × 100).

2 and 6 obtained from the PITM simulation and RSM computation, including also the experimental

profiles [33]. The selected positions encompass the regions in the middle of the recirculation zone close

to the leeward hill face x1/h ≈ 2, prior to the reattachment x1/h = 4 and the flow recovery x1/h = 6.

At the position x1/h = 2, the velocity near the wall is negative showing that the boundary layer is

detached (except for the RANS-RSM calculation). The maximum reverse flow occurs in this region.

But at the position x1/h = 6, the boundary layer is again attached. The PITM subfilter scale stress

model returns mean velocity profiles that exhibit a very good agreement with the reference data, but on

the other hand, the RANS computation exhibits inaccurate results. The total shear stresses τij includes

the subfilter and resolved parts of energy. One can see that the PITM shear stress profiles present a

quantitative good agreement with the reference data even if some slight differences are visible. As for

the mean velocity, the RSM stresses highly deviate from the reference data in the two positions of the

channel. A thorough investigation of this flow has been conducted recently [17] and has confirmed that

the PITM simulation reproduces this complex flow in good agreement with the experiment [33].
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FIG. 9 – Flow over periodic hills at Re = 37000 [17]. Mean streamwise velocity 〈u1〉 /Ub and turbu-

lent shear stress τ13/U
2
b at different locations (x1/h = 2 and 6). PITM (160 × 60 × 100) — ; RSM

computation —(80 × 30 × 100). Experiment ◦ [33].

4 A new exploration : The turbulent flow in a small axisymmetric

contraction

Turbulent flow subjected to an axisymmetric contraction in the streamwise direction is encountered in

many engineering applications, in the field of wind tunnels, turbomachinery, water turbines, but also in

industrial processes. The effect of contraction on the mean flow is mainly to accelerate the flow while

reducing the turbulence activity. But there are distortion effects on the turbulence field. Thus, the turbu-

lent normal stress in the longitudinal direction decreases more rapidly than the two transverse stresses

leading to changes in the turbulence anisotropy. In the present case, we consider grid turbulence flowing

into a wind tunnel with a small axisymmetric contraction C = 1.25 studied in the experiment of Uberoi

and Wallis [28] and sketched in Figure 10. This flow presents a complex phenomenon in physics of

fluid turbulence. The anisotropy ratio of the turbulent stresses τ11/τ22 generated by the grid is initially

close to 1.4 and it then returns to unity through the contraction. But surprisingly, this ratio gradually

increases again to its pre-contraction value in the uniform section downstream the contraction. This

phenomenon of “return to anisotropy ” constitutes a paradox which is difficult to interpret in physics of

turbulence. The objective is then to investigate this complex flow by means of numerical simulations

using the subfilter-scale stress model. Note that single-scale RANS models are unable to reproduce this
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“return to anisotropy ”, contrarily to multiple-scale RANS models [22]. This simulation is very difficult

to perform because of the inlet conditions. In particular, the flow details around the fine grid is extre-

mely costly in term of computational resources, both for the number of grid-points and computer time.

In the present case, the alternative solution is to create an anisotropic pseudo-random turbulence field

characterized by its anisotropy ratio τ22 = τ33 ≈ τ11/1.4 by means of an analytical spectral method

to produce synthetic inlet conditions. As a result of the simulation performed on relatively coarse grids

accounting for 2 ×106 grid-points [19], Figure 11 shows the evolution of the dimensionless bulk ve-

locity U∗

b (x1) = Ub(x1)/Ub(0) and the anisotropy ratio τ11/τ22 obtained using the PITM simulation

and using single-scale RSM computation. First at all, one can see that the bulk velocity passing from

unity upstream the contraction to 1.25 downstream the contraction agrees perfectly well with the ex-

perimental data. As expected, the anisotropy ratio τ11/τ22 initially close to 1.4 in the entrance of the

channel gradually decreases to unity in the contraction zone suggesting that the turbulence goes to an

apparent isotropic state. But as a result of simulation, it is found that this ratio increases again in the

straight section downstream the contraction according to the experiment. To understand the origin of

this reappearance of anisotropy, Uberoi and Wallis have advanced some qualitative arguments based

on the turbulence scales relaxation. A plausible explanation is that the turbulence state just after the

contraction is just an appearance in which the anisotropy of the small scales exactly compensates the

anisotropy of the large scales. After the contraction, the small scales do relax rapidly, while the large

scale anisotropy is more permanent and thus relaxes only slowly. The overall anisotropy can then reap-

pear in the downstream straight section of the channel. Schiestel [27] has performed an LES simulation

of decaying turbulence in a cubic box with an initial energy spectrum perturbed by introduction of

anisotropy in Fourier modes. Physically, this simulation corresponds to the evolution of the flow from

an initial state of turbulence that is similar to the one of the wind tunnel of Uberoi and Wallis [28]

just downstream the contraction zone with a compensation between small and large scales anisotropies

such that τ11/τ22 = 1. As a result shown in Figure 3 of Ref. [27], Schiestel also observed an increase

of anisotropy downstream, highlighting the scale relaxation effect described above. In the present case,

this analysis is confirmed point to point by the data obtained from the PITM simulation as indicated in

Table 1 showing a compensating effect between the small scales and the large scales.

FIGURE 10 – View of axisymmetric contraction.

The new non-linear spectral model by Mons et al. [37] considers, among others, the application to

homogeneous turbulence subjected to axisymmetric expansion or contraction. They suggest that the

difference in the relaxation rates between directional anisotropy and polarization anisotropy included
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FIGURE 11 – Flow in a small axisymmetric contraction at Re = 4.47×105 [19]. Evolution of the dimen-

sionless bulk velocity U∗

b (x1), and the ratio τ11/τ22 on the centerline of the channel in the streamwise

direction. Bulk velocity U∗

b (x1) : �, experiment [28] ; —, PITM. Energy ratio τ11/τ22 : •, experiment

[28] ; —, PITM ; – - –, Single scale RSM model. PITM (200 × 100 × 100).

x1/D1 (τ11)sfs (τ22)sfs (τ11)les (τ22)les τ11 τ22
0 0.204 0.146 0.246 0.178 0.451 0.324

1 0.0456 0.0457 0.0368 0.0246 0.082 0.070

1.5 0.0299 0.0338 0.0252 0.0206 0.0551 0.0542

4. 0.0128 0.0129 0.0074 0.0057 0.0202 0.0187

τii = (τii)sfs + (τii)les

TABLE 1 – Flow in a small axisymmetric contraction. Turbulent stresses (m2/s2) at different locations

in the centerline of the channel.

in their model, allows to interpret the apparent delay in the evolution of total anisotropy in these cases.

Kassinos and Reynolds [36] have also analyzed this behavior and suggested that the cause may be

related to the relaxation rate of the circulicity tensor which appears to be much smaller than for the

dimensionality tensor. Circulicity seems like insensitive to strain rate. The explanation advanced in the

present paper like in Schiestel [27] and based on cancelation between small scale anisotropy and large

scale anisotropy in the energetic sense shows that directional properties are not absolutely necessary

to explain this seemingly anomalous behavior. Further insights would be necessary to get a more de-

tailed analysis, but it is not impossible that both explanations are indeed effective ? Note however, that

in the present calculation the resolved eddies being part of the large eddy simulation they do include

directional effects, but of course this is not the case in the subfilter model.

5 Concluding remarks and perspectives

We have recalled the basic principles of the partially integrated transport modeling method which has

been especially developed for the simulation of turbulent flows on coarse grids. The method allows a

huge reduction of the computational resource in comparison with the one required for highly resolved

simulation. Indeed, considering that advanced closures have been used to model the subfilter range,

then, large filter widths can be used without prejudice. This method has been applied to the simulation

of a large variety of turbulent flows ranging from laboratory flows to engineering flows. In particular,
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the PITM method has fairly well reproduced turbulent flows out of spectral equilibrium both in the

energetic sense and spectral anisotropy sense, such as the flow accounting for a perturbed spectrum of

energy, the mixing of turbulent flows including different levels of turbulence energy and different scales,

the flow subjected to a spanwise rotation leading to cyclonic and anticyclonic wall regions, and also,

the flow over periodic hills with detachment and reattachment of the boundary layer. More recently,

the new exploration of the flow in a small axisymmetric contraction involving an apparently anomalous

isotropy state of turbulence and the “return to anisotropy ”, has been performed and a discussion of

possible physical explanations of the anisotropy behavior has been advanced. Because of its potentials,

more generally speaking, the PITM method is more and more used in the field of turbulence modeling

for simulating complex flows from a practical point of view by users involved in CFD. Moreover, its

rational formalism developed in the spectral space allowing to bridge the RANS and LES methodologies

from a theoretical point of view opens the route to new perspectives in term of turbulence modeling.
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