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Abstract

In the transmission systems of vehicles, unforced vibrations can be observed during the sliding phase of
clutch engagement. These vibrations are due to frictional forces and may generate noise. Several studies
have shown that the stability of such friction systems is highly sensitive to parameters (e.g. friction
law, damping) which lead to signicant dispersion. Therefore, uncertain parameters must be considered
in the stability analysis of a clutch system. In several studies of the literature, the usual generalized
polynomial chaos (PC) expansion has been used to study the stability of a clutch system using non-
intrusive techniques. However, non-intrusive techniques require a number of model evaluations (i.e.
the computational cost) which can become prohibitive when the studied system has a large number
of uncertain parameters. To remedy this problem, in this work, we use the sparse polynomial chaos
expansion which has been recently developed in reliability domain. The method is compared to the
reference Monte Carlo method and with the usual PC expansion in the context of the stability analysis
of a clutch system. The results show that the use of the sparse PC allows a remarkable reduction of the
computational cost by ensuring a high accuracy compared with the usual PC expansion.

Keywords: Stability; Vibration; Clutch; Friction system ; Sparse polynomial
chaos; Regression methods

1 Introduction
Dry friction systems can develop dynamic instabilities related to the friction. In particular, in vehicles
with manual transmission systems, these instabilities can be the cause of unwanted vibrations during the
sliding phase of the clutch engagement. Several studies have been focused on the mechanisms responsi-
ble for these friction-induced vibrations [1]. The numerous mechanisms explaining the friction-induced
vibration phenomenon are classified into two main families which are related to the tribological aspects
of friction systems and to the geometrical and structural properties. The first family explains the insta-
bilities by the variation of the friction coefficient with respect to the relative speed or by a higher static
friction coefficient than the dynamic one. The stick-slip is a well-known phenomenon in this context
[2]. The second family attributes the appearance of instabilities to the sprag-slip mechanism and more
generally to the mode-coupling phenomenon. In this case, self-excited oscillations may occur even with
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a constant friction coefficient. Because of the speed range of the measured vibrations, high frequency
of the self-excited phenomenon in clutch system cannot be related to stick-slip. Consequently, mode
coupling instabilities due to the intrinsic structure of the system are more likely to be responsible for
this phenomenon [3]. It is therefore necessary to compute the system eigenvalues which are complex
functions because of the friction [4]. The analysis of the real parts sign of the eigenvalues allow to con-
clude about the stability of the system while the imaginary parts give the frequency of the corresponding
mode.

It is known that the dynamic behavior of clutch systems is highly sensitive to design parameters, in
particular to the friction coefficient and damping [1, 5]. In addition, the design process can lead to
the dispersion of system parameters. Therefore, it is necessary to take into account uncertainties in
the system parameters to ensure the robustness of the analysis of friction systems as clutch system and
consequently the robustness of the design of this class of systems. The classic Monte Carlo approach
which was used to reach this aim requires prohibitive computational cost.

As an alternative, the generalized Polynomial Chaos (gPC) and Multi-Element generalized Polynomial
Chaos (ME-gPC) has been used in the past to take into account the uncertainties of the friction coeffi-
cient in the study of the dynamic behaviour of friction systems. With gPC [6, 7], when the number of
uncertain parameters and the order of gPC increase, the number of simulation needed to estimate the PC
coefficients becomes extremely large leading to a prohibitive computational cost. To solve this problem,
the ME-gPC may be used. In particular, the ME-gPC had been applicated by Trinh et al. [8] for the
stability analysis of a clutch system, the conclusion is that the use of the ME-gPC allows a reduction of
the computation cost. However, the method is effective with a small number of uncertain parameters (up
to 5) but for a higher number of uncertain parameters the computation cost become prohibitive again.
To remedy this problem, one considers sparse Polynomial Chaos (sparse PC) expansion. This method is
filled out by an iterative procedure allowing to build iteratively a sparse PC expansion while mastering
the approximation error [9]. Sparse PC is very efficient for reducing computational cost in reliability
analysis of static mechanical structures. This justifies the present work in which sparse PC strategies are
used in the context stability analysis of a clutch system model.

The main aim of this study is to investigate the capacity of the sparse PC with Isotropic hyperbolic index
sets to study the stability of a clutch systemwith an increasing number of uncertain parameters compared
with the full PC expansion. The main task is to find a harmony between high accuracy and reasonable
computational cost.

The paper is organized as follows. In section 2, the stability analysis of dynamical systems with the
indirect Lyapounov method is recalled. The Polynomial Chaos theory is briefly presented in section 3
including the description of the gPC, ME-gPC and sparse PC. The section 4 presents the dynamical
model of the clutch system under consideration in this study. Finally, the section 5 is dedicated to the
comparison of the three polynomial chaos expansions for the stability analysis of the clutch system and
to comment on the results.

2 Stability analysis of dynamic systemwith the indirect Lyapounov
approach

Let us consider the motion equation of a nonlinear dynamic system
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ẋ = f(x, u), (1)

where x is the state vector of the system, f is a nonlinear function of x, and u is the uncertain parameter
vector.

The Hartman-Grobman theorem (e.g., Wiggins [10], Chap. 3) states that in the vicinity of a hyperbolic
equilibrium point1, a nonlinear system has the same qualitative stability as does the corresponding lin-
ear system. Let the origin x0 be an equilibrium point for the system (1). The Jacobian matrix of the
system (1) is given by [10]

H(u) =
∂f(x, u)

∂x


x=x0

. (2)

According to the Lyapunov’s indirectmethod, the stability ofx0 is analyzed by evaluating the eigenvalues
λi(i = 1, ..., n) of the matrix H:

1. The origin x0 is asymptotically stable if Re(λi < 0), ∀i ∈ (1, ..., n).

2. The origin x0 is unstable if Re(λi > 0), ∃i ∈ (1, ..., n).

3 Generalized polynomial chaos and sparse polynomial chaos ex-
pansions

3.1 Generalized polynomial chaos expansion
The generalized polynomial chaos (gPC) has been proposed by Xiu and Karniakakis [11] as a general-
ization of the originalWiener-Chaos expansion. The gPC establishes a separation between the stochastic
components of a random function and its deterministic components. From the Wiener theory and the
generalizes Cameron-Martin theorem, any second order random process X(ξ) can be expanded in a
convergent (in the mean square sense) polynomial function series as

X(ξ) ≈
∑
α∈Nr

x̄αφα(ξ), (3)

where φα(ξ) are orthogonal polynomial functions, ξ(ξ1, ..., ξr) is a vector of r independent random
variables. The continuous distributions of random variables correspond to the families of orthogonal
polynomials (see e.g. Table 1) [11]. Finally, x̄α are the polynomial chaos coefficients. In the following,
X(ξ) will be called the quantity of interest.

The subscript α is a multi-index, α = {α1, ..., αr} in Nr. The length of a multi-index α is defined by

|α| = ‖α‖1 =

r∑
i=1

αi. (4)

The corresponding index set is
1If the eigenvalues of the Jacobian matrix of the nonlinear system evaluated at the fixed point have non zero real parts the

fixed point is hyperbolic.
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Table 1: Correspondence between the families of orthogonal polynomials and random variable
Random variable ξ The polynomial family φα(ξ) Support
Gaussian
Gamma
Beta
Uniform

Hermite
Laguerre
Jacobi
Legendre

(-∞,∞)
[0,∞)
[-1,1]
[-1,1]

Ar,p =
{
α ∈ Nr : ‖α‖1 ≤ p

}
, (5)

with p the degree of the PC expansion.

The number of terms Np in the gPC expansion, is shown to be dependent on the higher degree p of the
polynomials φα(ξ) and on the stochastic dimension r, i.e. the number of uncertain parameters [11]

Np = card(Ar,p) =
(p+ r)!

p!r!
. (6)

In the regression approach, the coefficients are determined through the minimization of the following
least square criterion [12]

ε2reg =

Q∑
q=1

[
X
(
ξ(q)
)
−
∑

α∈Ar,p

x̄αφα

(
ξ(q)
)]2

, (7)

where ξ(q) =
(
ξ
(q)
1 , ..., ξ

(q)
r

)
, with q = 1, ..., Q, is the Numerical Experimental Design (NED) and

X
(
ξ(q)
)
is the corresponding model evaluations vector. The NED ξ(q) with q = 1, ..., Q may be built

using Latin Hypercube Samples method (LHS) [13].

The coefficients are computed as follows

x̄ =
(
φT (ξ(q))φ(ξ(q))

)−1
φT (ξ(q))X(ξ(q)), (8)

with φ(ξ(q)) the matrix defined by

φ(ξ(q)) =


φ0(ξ

(1)) . . . φNp−1(ξ
(1))

... . . . ...
φ0(ξ

(Q)) . . . φNp−1(ξ
(Q))

 . (9)

3.2 Multi-element generalized polynomial chaos expansion
Let ξ̄(ξ̄1, ..., ξ̄r) denote a ramdom input vector where ξ̄i is independent uniform random variable within
the orthogonal interval [−1, 1]r. Next, the space of the random input is decompose intom non-intersecting
elements [14]. A local variables in each element ζk(ζk1 , ..., ζkr ) are mapped to a new independent random
uniform variables ξ̄k(ξ̄k1 , ..., ξ̄kr ) in [−1, 1]r

ζki = (bki + aki )/2 + ξ̄ki (bki − aki )/2 i = 1, ..., r; k = 1, ...,m (10)

where aki , bki are the lower and upper bounds of the local variables ζki .
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Then gPC can be used locally of the kth element, the second random process corresponding to the kth

element is given by

Xk(ξ̄k) ≈
∑
α∈Nr

x̄kαφα(ξ̄k). (11)

3.3 Sparse polynomial chaos expansion
3.3.1 Isotropic hyperbolic index sets

One defines a hyperbolic truncation fromm−norms, 0 < m < 1 [9]

Ar,pm =
{
α ∈ Nr : ‖α‖m ≤ p

}
, (12)

where

‖α‖m =

( r∑
i=1

αmi

)1/m

. (13)

Whatever the choice of the value ofm-norms, the sequence of nested setsAr,pm (p ∈ N) always converge
to the sets Nr. Therefore, one defines the isotropic hyperbolic polynomial chaos expansions with the
index sets Ar,pm

XAr,p
m

(ξ) =
∑

α∈Ar,p
m

x̄αφα(ξ). (14)

3.3.2 Error estimates of the polynomial chaos approximations

The strategy consists here in performing an incremental search of the significant terms. For that, it is
necessary to define the error estimates of polynomial chaos approximations.

Empirical error. Consider a NED ξ(q) =
(
ξ
(q)
1 , ..., ξ

(q)
r

)
, with q = 1, ..., Q, and X

(
ξ(q)
)
is the

corresponding model evaluation. X̂A(ξ) is computed by CP approximation

X̂A(ξ) ≈
∑
α∈A

x̄αφα(ξ) (15)

where index set A is a finite non empty subset of Nr.

The generalization error is defined by mean of the squared difference between X(ξ
(q)
i ) and X̂A(ξ

(q)
i )

Err = E
[
X(ξ

(q)
i − X̂A(ξ

(q)
i ))2

]
. (16)

In practice, the generalization error may be estimated by the empirical error defined by
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Erremp =
1

Q

Q∑
q=1

[(
X(ξ(q))− X̂A(ξ(q))

)2]
. (17)

Of common use is the related coefficient of determination R2 which reads

R2 = 1− Erremp

V̂[X]
, (18)

where V̂[X] is the variance of X
(
ξ(q)
)

V̂[X] =
1

Q− 1

Q∑
q=1

(
X(ξ(q))− X̄

)2
, X̄ =

1

Q

Q∑
q=1

X(ξ(q)). (19)

The empirical error underestimates the generalization error because of the overfitting phenomenon. To
avoid this phenomenon, the leave-one-out error, which is a predicted residual sum of squares, is defined
below [9].

Leave-one-out error. Let X̂(−i)
A

(
ξ(q)
)
be the chaos polynomial expansion that has been built from the

NED
(
ξ(1), ..., ξ(Q)

)
\ξ(i), i.e. when removing the i-th observation ξ(i) from the training set

(
ξ(1), ..., ξ(Q)

)
.

The predicted residual is defined as the difference between the model evaluation at ξ(i) and its prediction
based on X̂(−i)

A
(
ξ(q)
)
[9]

∆(i) = X(ξ(q))− X̂(−i)
A (ξ(q)). (20)

The leave-one-out error so-called the prectited residual sum of squares is defined by

ErrLOO =
1

Q

Q∑
i=1

(
∆(i)

)2
. (21)

It is possible to calculate analytically each predicted residual as follows [9]

∆(i) =
X(ξ(q))− X̂A(ξ(q))

1− hi
, (22)

here hi is the i-th diagonal term of the matrix φ(ξ(q))(φT (ξ(q))φ(ξ(q)))−1φT (ξ(q)). Therefore the leave-
one-out error was given by

ErrLOO =
1

Q

Q∑
i=1

(
X(ξ

(q)
i )− X̂A(ξ

(q)
i )

1− hi

)2

. (23)

The equivalent determination coefficient of R2 is denoted by S2

S2 = 1− ErrLOO

V̂[X]
. (24)
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The coefficients R2 and S2 which are presented in this section are used in an algorithm in the following
section to choose an optimal sparse polynomial chaos expansion.

3.3.3 Algorithm applied with the sparse PC expansion

An iterative procedure is presented to build the sparse PC approximation. The objective is to find the
best PC coefficients [9].

The algorithm is summarized in 5 basic steps:

Step 1

• Select a numerical experiment design (ξ(q)), e.g. a random design based on Latin Hypercube
Sampling [13]. The model evaluations at the design points are gathered in vector X(ξ

(q)
i ).

• Select the values of the algorithm parameters, i.e. the target accuracy S2
target, the maximal PC

degree pmax,m−norms of truncation strategy and the cut-off values ε1, ε2.

Step 2

• Initialize the algorithm: p = 0: the truncation index set A0 = {0} with {0} is the null element
of Nr.

Step 3: Training step - Enrichment of the pc basis (valid for any degree p ∈ [1, ..., pmax])

⇒ Forward step (Addition step):

– Gather the candidate terms in a set Cr,pm =
{
α ∈ Nr : p− 1 ≤ ‖α‖m ≤ p

}
, add each candi-

date term to setAr,p−1m one-by-one and compute the CP expansion coefficients by regression
using Eq. 8 and the associated determination coefficient R2 in each case.

– Retain eventually those candidate terms that lead to a significant increase in the coefficient
R2, i.e. which significantly decrease the empirical error Erremp, and discard the other
candidate terms. Let Ar,p+m be the final truncation set at this stage.

⇒ Backward step (Elimination step):

– Remove in turn each term in Ar,p+m of degree strictly less than p. In each case, compute the
PC expansion coefficients and the associated determination coefficient R2.

– Eventually discard from Ar,p+m those terms that lead to an insignificant decrease in R2, i.e.
a negligible increase of the empirical error Erremp. Let Ar,pm be the final truncation set.

Step 4

• Verify the conditioning of the regression information matrix. If it is poor, i.e. the size of the NED
(ξ(q)) is smaller than 2card(Apm) with isotropic index sets, a enrichment of the numerical exper-
iment design is done. In this case, the truncation set A is reset to {0} and the basis enrichment
procedure is restarted using nested Latin Hypercube designs [15].
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Step 5: Test step

• Stop if either the leave-one-out error S2 is less than the target S2
target or the order of the PC basis

is equal to pmax.

The algorithm applied with the isotropic index sets for building up a sparse polynomial chaos expansion
is presented in figure 1.

Figure 1: The algorithm applied with the Isotropic hyperbolic index sets for building up a sparse poly-
nomial chaos expansion

4 Analytical model of the clutch system
The lumped parameter model of figure 2 that used in this study was defined by P. Wickramarachi [3]
considering in addition the internal damping of the clutch disk and the pressure plate. This model with
6 degrees of freedom has been chosen because it is sufficient and efficient to study the instabilities
generated by mode couplings and has been validated by experimental results. In this model, the contact
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Figure 2: Analytical model of the clutch system

between the flywheel and the friction surface of the clutch system is defined at the points A’, B’, C’and
D’ by the stiffness of the cushion springs kp which were divided into four stiffness kA, kB , kC and
kD. Moreover, in order to consider the nonlinear characteristic of the clutch disk, the stiffnesses kA,
kB which depict the first two nodal-diameter bending modes respectively multiplied and divided γ1.
Similarly, the stiffnesses kC , kD can be made by respectively multiplied and divided γ2 (see Eq 30) [3].
The normal spring forcesNA′ ,NB′ ,NC′ ,ND′ and the corresponding friction forces FA′ , FB′ , FC′ , FD′

at the points A’, B’, C’and D’ are given by Eq. (31) and Eq. (32).

The dampings cA, cB , cC and cD which represent the internal damping of the clutch disk are respectively
placed in the same positions as the springs kA, kB , kC and kD. The points A, B, C, D are the projected
points of contact on the average surface of the pressure plate. The pressure plate which was modeled as
four masses,Mp/4 connected by the bending stiffness and damping (kf , cf ). Points E, F, G, H are fixed
points of the flywheel. The six degrees of freedom of the pressure plate are the internal rotations θx, θy
around the fixed axes x, y and the translational movements ZA, ZB , ZC , ZD of points A, B, C, D which
describe rigid-body rotations (wobbling modes) along the axis z.

The motion equation of the lumped parameter model of the clutch system is

M · Ü + C · U̇ +K · U = 0 (25)

with

U =
[
θx θy ZA ZB ZC ZD

]
T , (26)

M = diag
([

Ix Iy
Mp

4
Mp

4
Mp

4
Mp

4

])
, (27)
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K =



r2 (kA + kB + 4kf ) −µlr (kC + kD) r (kA + 2kf ) −r (kB + 2kf ) µlkC −µlkD
−µlr (kA + kB) r2 (kC + kD + 4kf ) −µlkA µlkB r (kC + 2kf ) −r (kD + 2kf )

r(kA + 2kf ) 0 kA + 2kf 0 −kf −kf
−r(kB + 2kf ) 0 0 kB + 2kf −kf −kf

0 r(kC + 2kf ) −kf −kf kC + 2kf 0

0 −r(kD + 2kf ) −kf −kf 0 kD + 2kf


,

(28)

C =



r2 (cA + cB + 4cf ) −µlr (cC + cD) r (cA + 2cf ) −r (cB + 2cf ) µlcC −µlcD
−µlr (cA + cB) r2 (cC + cD + 4cf ) −µlcA µlcB r (cC + 2cf ) −r (cD + 2cf )

r(cA + 2cf ) 0 cA + 2cf 0 −cf −cf
−r(cB + 2cf ) 0 0 cB + 2cf −cf −cf

0 r(cC + 2cf ) −cf −cf cC + 2cf 0

0 −r(cD + 2cf ) −cf −cf 0 cD + 2cf


,

(29)

kA = γ1kp/4; kB = kp/(4γ1);

kC = γ2kp/4; kD = kp/(4γ2), (30)

NA′ = kA(ZA − rθy)
NB′ = kB(ZB + rθy) (31)

NC′ = kC(ZC + rθx)

ND′ = kD(ZD − rθx),

FA′ = µNA′

FB′ = µNB′ (32)

FC′ = µNC′

FD′ = µND′ ,

where r = (r1 + r2)/2 with r1 and r2 are the minimum and maximum sliding radi, µ is the friction
coefficient which is assumed constant because of the the high slip speed (<700 rev/min) and l is the
thickness of the pressure plate. The nominal values of the parameters are: kp = 16MN/m; kf = 7MN/m;
γ1 = 0.9; γ2 = 0.8; r1 = 75 mm; r2 = 120 mm; l = 12.5 mm; cA = cB = cC = cD = 4Nm−1s−1;
cf = 0.1Nm−1s−1 [3].

5 Application and results
The objective of this section is to study the stability of a clutch system with uncertain parameters. These
studies are done in the lumped parameter presented in section 4. There are eight parameters which can
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be uncertain: µ, kp, kf , γ1, γ2, r1, r2 and l. The uncertain parameters are considered as independent
random and uniform in the intervals [0.95*Vn, 1.05*Vn] with Vn the corresponding nominal values; µ
is independent random and uniform in the interval [0, 0.5]. The nominal values of the parameters have
been given in section 4.

5.1 Reference study: Monte Carlo on the initial model
In this section, the stability of the clutch system is investigated using theMonte Carlo on the initial model
(MCIM). 10,000 eigenvalues λi(i = 1, ..., n) of the Jacobian matrix (Eq. (2)) of the clutch system are
calculated directly from a set of 10,000 independent random samples.

In the eigenvalues of the clutch system, there are four non-zeros eigenvalues (modes 1, 2, 3 and 4 with the
complex conjugates). Modes 3 et 4 are always decoupled and stable and the coalescence phenomenon
can occur between the modes 1 and 2. Therefore, the stability of the clutch system only depends on these
two modes.

Figure 3 shows the real and imaginary parts of mode 1 (blue) and mode 2 (red) and highlights the coa-
lescence phenomenon of eigenvalues described hereafter. From µ = 0, the imaginary parts (frequencies)
of these two modes are separated and tend to come closer when the coefficient of friction increases. As
for the real parts, they are both negative, i.e. the system is stable. Then, the imaginary parts of the two
modes overlap, it is the so-called mode coalescence phenomenon. Beyond this point, imaginary parts
are almost equal. From the Hopf bifurcation point, if µ increases, the real part of one mode is positive
and the system becomes therefore unstable.

Figure 3: (a) Real part and (b) imaginary parts of the eigenvalues λ1 and λ2 for the modes 1 and 2

5.2 Sparse PC method for the stability analysis of a clutch system
In this section, the distribution of the eigenvalues of the clutch system is rebuild by coupling the MC
method with the polynomial chaos expansion methods presented in section 3.

Table 2 presents the comparison between the results obtainedwith gPC,ME-gPC, Sparse PC andMCIM.
The results using gPC and MC-gPC were computed by Trinh et al. [8]. The results show that gPC can
be used in the stability analysis of the clutch system with a small number of uncertain parameters r (up
to 5). With a high value of r, the number of Direct Computations (DC) of the initial system needed to
determine the PC coefficients became too high and the relative errors of the proportion stability between



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

gPC andMCIM are higher than 20% from r = 6. Te use of the ME-gPC is effective for r ≤ 7. However,
with r = 5 → 7, the numbers of DC of the complete system are rather high (> 3000), that means the
computational costs are expensive. With r = 8, the number of DC to determine the coefficients of the
PC expansion exceed the limited number (10,000) for both methods.

With Sparse PC, authors compute five sets of NED to analyze the influence of the choice of the NED
on the Sparse PC method. A target accuracy S2

target = 0.999 and a maximal PC degree pmax = 15 are
used. In table 2, the results of each of the five NED are not all depicted, only the minimal and maximal
values are shown in square brackets. The results show that the use of this method reduce remarkably
the number of DC compare with gPC and ME-gPC, specially for r ≥ 5. Moreover, the method ensures
a high accuracy compared with gPC. The relative errors of the proportion of stability using Sparse PC
are lower than 5% for r = 3→ 5 than 7% for r = 6→ 8

For r = 8, gPC and ME-gPC are not effective because the number of DC exceeds the limited num-
ber whereas the number of DC using Sparse PC lower than 3000. It means a saving of 70% of the
computational cost with a high accuracy (< 7%).

Figure 4 shows the eigenvalue real parts of modes 1 and 2 using MCIM (blue) and using Sparse PC
(red) (for r = 3, 4, 5, 6, 7, 8). The results computed with Sparse PC are close to the results obtained
via MCIM. The Hopf bifurcation points with Sparse and MCIM are also close. Therefore, Sparse PC
ensures a high accuracy of the results.

6 Conclusion
The computational cost of gPC and ME-gPC in studying the stability analysis of a clutch system can
become prohibitive with a large number of uncertain parameters (r ≥ 5). While using Sparse PC with
Isotropic hyperbolic index sets allows a remarkable reduction of the computational cost by ensuring a
high accuracy compared with these common PC expansion. With number of uncertain parameters r
= 8, gPC and ME-gPC were not feasible because of the limited number of DC. Whereas using Sparse
PC isotropic hyperbolic index sets reduce even more than 70% of the computational cost with a high
accuracy (the relative errors of the proportion stability are lower than 7% with Sparse PC anisotropic
hyperbolic index sets.

In conclusion, Sparse polynomial chaos is efficient for high number of uncertain parameters (r = 3→ 8

in this study). It reduces remarkably the computational cost by ensuring a high accuracy compared with
the common polynomial chaos expansion.
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Table 2: Comparison of the results between gPC, ME-pPC, Sparse PC and MCIM

Number of
uncertain
parameters

(r)

Title Order
(p)

Number of
DC of

complete
system

Relative
mean error
between
sparse PC

/gPC/ME-gPC
and MCIM (%)

Relative
variance error

between
sparse PC

/gPC/ME-gPC
and MCIM (%)

Relative
error of the
proportion
stability
between
sparse PC

gPC/ME-gPC
and MCIM (%)

-
Direct

Computation
(DC)

- 10000 - - -

1 gPC 6 7 0.074 0.35 6.45

2
gPC 6 49 0.074 0.35 0.18

ME-gPC 2 126 0.05 0.21 0.18
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