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Abstract :

Cavitation and micro-spall appear when a weakly compressible liquid is suddenly submitted to large
negative pressures resulting in volume growth. After the initial phases of uniform expansion and pore
opening, a longer-lasting phase of pore growth and competition appears, which is especially difficult to
investigate either experimentally or numerically [1]. Thus this study is among the first of its kind. We
present here Direct Numerical Simulations (DNS) of this latter phase for idealized conditions relevant
to micro-spall: incompressible inviscid fluid, vanishing vapor pressure in cavities, ballistic uni-axial
expansion, perturbed Face-Centered-Cubic arrangement of pores. Under these assumptions, the system
is characterized by a single dimensionless Weber number based on the number of pores per unit volume.
Volume transfer between pores occurs at low enough Weber numbers; this phenomenon, known as
“pore competition” is important as it is drives the temporal evolution of the statistical distribution of
pore sizes. Small pores shrink and eventually disappear as their volume is transferred to large pores.
Pore statistics and pressure evolution profiles can then be obtained for future modelling purposes. The
simulations were performed using the Volume of Fluid method [10] with the mixed-Youngs-central
scheme for normal vector computation and interface segment reconstruction, Lagrangian explicit or
“CIAM” advection, an original adapted first order extrapolation method in the neighborhood of the
free surface, and a ghost fluid method for the pressure boundary condition on the free surface. The
pressure used in the boundary condition is computed using Laplace’s law, which in turn involves surface
tension and curvature. Curvature is computed using the height-function method. The method was tested
comparing numerical solutions to solutions of the Rayleigh-Plesset equation for oscillating bubbles. An
adapted procedure is used to manage the collapsing cavities. A cavity tagging and Lagrangian tracking
algorithm is used to retrieve statistics of cavity sizes. Results indicate that both the uniform growth in
the initial expansion phase, as the later “competition” regime can be captured.

Keywords: micro spall, cavity, Volume of Fluid (VOF), Free Surface, pore
competition

1 Introduction
Cavitation and micro-spall appear when a weakly compressible (or expansible) liquid is suddenly sub-
mitted to large negative pressures resulting in volume growth. After the initial phases of uniform ex-
pansion and pore opening, a longer-lasting phase of pore growth and competition appears, which is
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especially difficult to investigate either experimentally or numerically [1]. Thus this study is among the
first of its kind. We present here Direct Numerical Simulations (DNS) of this latter phase for idealized
con- ditions relevant to micro-spall: incompressible inviscid fluid, vanishing vapor pressure in cavi-
ties, ballistic uniaxial expansion, perturbed Face-Centered-Cubic arrangement of pores. Under these
assumptions, the system is characterized by a single dimensionless group, the Weber number based
on the number of pores per unit volume. Volume transfer between pores occurs at low enough Weber
numbers, a phenomenon designated as “pore competion”. The pore competition effect is important as it
is the main phenomenon driving the evolution in time of the statistical distribution of pore sizes. Small
pores shrink and eventually dis- appear as their volume is transferred to large pores. Pore statistics and
pressure evolution profiles can then be obtained for future modelling purposes.

2 Uni-axial expansion
We investigate a fluid system called “ballistic expansion” in which the mass-weighted average of the
velocity field behaves as

u(x, t) = x/t (1)

in Eulerian coordinates. A uni-axial variant is

u(x, t) = x/t (2)

In both cases the Lagrangian velocity is constant Ua(t) = U0 and the Lagrangian particle position is
U0t. This solution is a solution of the Euler equation with no pressure term, i.e.

∂tu + (u · ∇)u = −1

ρ
∇p (3)

with p =Constant. The divergence of the velocity field is:

∇ · u = d/t (4)

where d is the dimensonality of the expansion: we assume d = 1 below. This solution may also be
called an expansion wave.

Consider now the simulation domain (−L0/2, L0/2)3 and simulation time starting at t = t1. Moreover
t = 0 is the initial time of the expansion. We will define t0 > 0 as the time at which the pores would
have zero radius, i.e. cavitation nuclei [3] appear. Further, we assume that the pores are initialized with
non-zero radii (which is necessary due to limitations in computational code) i.e. simulations are started
at t1 > t0.

We describe below a model by which one can relate t0 and t1. . In the L3
0 domain, the volume of

gas is Vg(t) and the volume of liquid is Vl(t). Obviously Vg + Vl = L3
0 and the average density is

ρ = ρlVlL
−3
0 . Making use of the relation for the Lagrangian derivative of ρ:

d ln ρ

dt
= −∇ · u (5)

we find ln ρ = −d ln t . Since at t0 the volume of the cavities is zero, we have ρ = ρl and

ρ = ρl
t0
t
. (6)
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Then Vl = L3
0t0/t and

Vg = L3
0(1− t0/t). (7)

The number density of pores is also an Eulerian field N(x, t). Barring coalescence of pores/bubbles
this number is just transported as the density and thus

d lnN

dt
= −∇ · u (8)

which leads to
N = N0

t0
t
. (9)

and the volume per bubble is

Vb = Vg/N =
L3
0

N0

(
t

t0
− 1

)
(10)

Thus assuming all the bubbles have the same radius Rb(t)

Rb(t) = L0

(
3

4πN0

)1/3 ( t

t0
− 1

)1/3

(11)

The distance `d between bubbles grows like

`d =
L0

N
1/3
0

(
t

t0

)d/3

(12)

Equations (11) and (12) can be rephrased in a form binding bubble radii with inter-bubble distances:

`d(t)

Rb(t)
= 3

√
1− t0

t
. (13)

3 Weber number
In general, the dimensionless Weber number We is defined as ratio EK/ES where EK is the kinetic
energy of bubble expansion or collapse and ES is the surface energy. Seeing as we have ES = 4πσR2

b

and EK ∼ (4π/3)ρṘ2
bR

3
b , the ratio takes the form:

We ∼ ρṘ2
bRb

3σ
, (14)

which we can also express in terms of “pure” time dependency, i.e. with t as the only independent
variable, using formulae (11) and (12). For this, we first define the initial Weber number We 0 as

We 0 =
3ρ

8πσnt20
. (15)

(In above t0 is the aforementioned moment at which bubbles have zero radius). For uni-axial expansion,
we can then define:

We (t) =
t0
(

3

√
1− t0

t − 1
)

t− t0
(16)
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thus suggesting that the Weber number should decay with time as t−2 at large t. Due to the decrease,
we expect to observe changing regimes: from convection dominated (quenched competition, which we
term “isolation”) to free pore competition.

With this simple model the initial conditions are

Rb(t1) = L0

[
3

4πN0

(
t1
t0
− 1

)]1/3
(17)

for the initial pore radii at the moment t1 when the simulation is initialized.

In computational practice, it is desirable for Rb(t1) to be small, to offer a large range of scales. Ideal
relation would be:

∆x� Rb(t1)� `d � L0. (18)

where ∆x is the grid size. The leftmost and rightmost inequalities of (18) are however slightly relaxed
for the results presented in this paper due to grid resolutions used, as will be detailed below.

4 Computational Methods
Parallel Robust Interface Simulator (PaRIS) is an in-home CFD code developed at Institute ∂’Alembert.
A well known projection scheme [10] is used to solve momentum conservation equations. Starting with
the definition of the temporary velocity field u∗:

u∗ − un

∆t
= −un · ∇hu

n, (19)

which can be found easily as the only unknown in above formula. Symbol ∇h stands for the discrete
differential operator. This is a projection step since velocity is projected onto a space with zero pressure
field.

Subsequently, the pressure field at the end of the time-step pn+1 is found using u∗ from (19), original
Euler equation (3) and the discrete version of the impressibility condition (4):

∇h ·
[

∆t

ρn
∇hp

n+1
]

= ∇h · u∗ +∇h ·
(

∆t

ρn
σκnδs

)
, (20)

where superscript n+ 1 stands for the value at the end of n-th time-step. In most computational codes,
and no different in Parisimulator, numerical solution of the above equation (discrete Poisson equation)
is the part of the solution to which most computational cost is associated: up to 90 percent. Once (20)
is solved with pn+1 found, both it and u∗ are used to find the divergence-free velocity at the end of the
time-step:

un+1 = u∗ − ∆t

ρn

(
∇hp

n+1 + σκnδs
)

(21)

thus ending the procedure. As mentioned, normal vectors n and curvatures κ in above equations1 are
1The same applies for the approximation of Dirac delta δs.
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found from the color/fraction function c, whose advection equation follows in discrete form:

cn+1 − cn
∆t

+∇h · (cun) = 0. (22)

Above equation cannot be solved directly, as c is a sharp jump function: the jump would be diffused
by numerical errors [12]. Therefore, in most applications (22) is solved using specially crafted geomet-
rical reconstruction/advection schemes such as CIAM [6] or PLIC [2]. Normal vectors and curvature
are calculated using Height Functions technique [4, 9] which has multiple provisions for the cases of
insufficient grid resolutions or specific interface configuration.

To implement the boundary conditions on the interface, Free Surface method has been implemented in
Parisimulator [7]. The flow withing the pores is not solved for (except up to two interior cell layers as
explained below), which amounts to representing their contents as vacuum. With that assumption the
flow is in fact a single phase flow, surface tension is accounted for on the pore surfaces.

1. Pressure field is extrapolated onto the interface which is necessary for (20). The boundary value
of the gradient is computed as

p∗ = pb − σκ,

where pb is constant pore pressure, and σκ is Laplace pressure, thereby assuring that surface
tension effect is accounted for. The p∗ value is used for ∇h operators for cells neighbouring the
interface;

2. The velocity field is extrapolated within the pores; these values are necessary for higher-order
gradient operators for cells neighbouring the interface. Extrapolation is based on liquid velocity,
which is extended to two grid-cell layers (or ’levels’) within pore/bubble interior by geometrical
fitting and least-squares minimization;

3. Finally, the extrapolated velocities in level 1 and 2 cells are corrected to ensure the new field is
divergence free.

5 Simulation Setup
To simulate the idealized micro-spall phenomenoa in a way specified in Section 2 we have set up the
simultions in a following way. Cubical computational domain is used, containing a given number of
pre-seeded bubbles in a FCC (Face-Centered Cubic) lattice. The domain is expanded in x direction as
assumed in Section 2. More specifically, the proper temporal evolution of the velocity field described
by (1) is ensured by:

• Initializing the x-velocity component to u = x with proper translation and scaling, so that for
t = t1 we have u(0, t1) = −un, u(L/2, t1) = 0 and u(L, t1) = un where un is the outflow
velocity;

• initializing the outflow boundary condition for the velocity field u = (u, v, w) in such manner,
that

un = 1/t1 (23)

where t1 > 0. For subsequent moments of simulated time t (23) is held so that |un(t)| = 1/t at
all times;
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Table 1: Parameter table for two example simulations of the uni-axial expansion, as explained in the
text.

label ρ σ t1 t0 var (r) We (t1) Ma (t1)

I 1000 0.1 8 · 10−2 7.797 · 10−2 50% 512.83 15
C 444 1 2.1 2.092 50% 3.3 · 10−2 0.12

• For v and w components, defining initial values to zero.

Periodic boundary conditions are imposed on YZ walls. For the condition to be compatible with the
bubble cluster geometry, it is re-shaped by adjusting the bubble-free buffer surrounding it. Cubic do-
main of size L = 1 is assumed with initially 355 bubbles. We describe simulation results concerning
the uni-axial expansion using example simulations whose parameters are given in Table 1.

Example simulations have been performed using 2563 grid points. For the first simulation (“I”), value
of Weber number 16 at t1 is 512.83. The bubble lattice is configured as specified above, with liq-
uid characteristics found in Table 1. In the Table, “I” and “C” are labels designating the “Isolation”
and “Competition” regimes; We and Ma are dimensionless Weber and Mach numbers, ρ and σ are re-
spectively liquid density and surface tension applied at the pore surfaces, while var(r) stands for the a
variation in pore radii applied to the initial condition.

Due to the applied spatial resolution, certain restrictions on the initial bubble radii Rb(t1) are imposed,
as the bubbles must be resolved (i.e. properly represented by the interface tracking methods) at t1.

Note that by (17) we have:

Rb(t) = L0

(
3

4πN0

)1/3 ( t

t0
− 1

)1/3

(24)

Which applies as well to t1. Having the size of domain L0 and initial pore numberN0 fixed, and impos-
ing additional restriction Rb > 3∆x (to make sure the initially small pores are properly represented by
the VOF method) we choose t1 = 0.08 for the presented simulation. This amounts to Rbt1/∆x ≈ 3.44

which, is considered resolved[10] in that proper values of curvature can be computed for bubbles of that
radius2. Due to the above dependence between simulation initial time t1 and bubble radii, any decrease
of t0, and t1/t0 would reduce Rb, which in turn would imply an increased grid resolution.

6 Results

6.1 Isolation regime
Figure 1a presents cluster geometry at t′ = t1 + 1.929 · 10−2. Uniform expansion of the bubbles/pores
is clearly visible with pore layers closest to the walls along the x axis visibly elongated due to the fact
that convection is strongest there. At t ≥ t1 + 1.92 · 10−2 one observes bubble radii of order of `d.
Nearly all pores are ellipsoidal in shape, and have expanded beyond the region of the simulated volume,
including periodic yz walls. Moreover, the outer layer of pores has now completely disappeared (been
convected out) from the simulation, as only remnant interfacial cells are visible.

The pore volume fraction using (7) with a value of t1 = 0.08 should be 3.59 · 10−3, however is slightly
lower in simulation, due to the initial variance in pore radius (Table 1) introducing additional volume.

2Not accounting for about 5 percent variance in Rb in init.
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Figure 1: (a) Simulation of the flow characterized by We = 512. (“isolation” regime) at t = t1 + 1.92 ·
10−2. (b) Simulation of the pore lattice at We = 3.3 · 10−2 (“competition” regime) for t = t1 + 0.237.
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Proper scaling has thus been used for the analytic formula to make up for that. Another source of a
difference between (7) and simulatied pore volue is that thepores leave the computational domain as
they are expanded (which in the “I” simulation takes place at t+ t1 > 0.05).

6.2 Competition regime
We continue the description of the results with the second simulation (“C”) which, as seen in Table 1
is characterized by much lower Weber number. As a result of this, the evolution of the pore lattice is
no more dominated by expansion and the pores are not isolated, and the elongated shapes of the pores
visible in Figure 1a give way to a “pore competition” phenomenon. As visible in Figure 1b, number
of pores has either shrunk or is at the verge of imploding, their volume being overtaken by a group of
large pores. Distribution of radii in the latter group is rather isotropic with all pores roughy spherical
and spheroidal forms absent. Figure 1b contains also back-dropped planes coloured using the pressure
field, which for t = 2.4 has near-zero values. This is due to the fact that positive pressure field is
associated with expanding liquid, while for low Weber number negative Laplace pressures (capillary
force) dominate the pressure distribution.

Figure 2: Pores volumes history for We = 512 (brown), and We = 0.03 (blue) flows.

The implosion events are visible also in Figure 2 which displays individual pore volume histories for
the larger (brown lines) and smaller (blue lines) Weber numbers. To the accuracy allowed by post-
processing software, each line displays volume of an individual pore, with about 300 pores tracked for
each simulation. Time is normalized by capillary timescale

τR =

(
ρR3

σ

)1/2

(25)

which results (due to parameters presented in Table 1) in factor of 5 between two simulations presented
in Figure 2, accounted for in the Figure. Unlike the high-We regime, in which expansion is rapid
and nearly uniform, the low-We regime exhibits higher variance in pore volumes, with a number of
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implosion events visible towards the end of recorded time. This proves that the presented numerical
method is capable of capturing the transition between the two regimes, provided the simulation covers
a sufficient temporal range.
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