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Abstract : 

The flow inside a lid-driven square cavity has been imposed a wide controversy during these last 

decades. Several studies found to exist in the literature included this case, which is widely used for 

benchmarking in computational fluid dynamic due to the simplicity of geometry. Some classes of 

studies have investigated the existence of steady flow in the driven cavity, they found a steady 2D 

numérical solution until 35000 value of Reynolds number. However, other classes of studies have 

stated that the flow in driven cavity submitted to a hydrodynamic instability and they illustrated a 

continuation méthode to locate the point at which a Hopf bifurcation occurs leading to a transition 

from a steady flow to unsteady. In the shade of these studies and with this uncertainty that surrounded 

this subject we wanted to get more clarification especially for steady flow solutions. The present study 

represents a numerical computation for steady flow inside a lid-driven square cavity, the governing 

equation is solved using a finite volume method based on second order scheme of accuracy. Steady 

solutions are obtained for Reynolds numbers ascending from 100 to 50000, using a resolution of 1024 

x1024 grid point. A good agreement with the  previous results in the literature, the work was done in 

this paper including proprieties of flow in the center of primary and secondary vortices, velocity 

components and numérical values for stream function and vorticity which assure a good example for 

benchmarking purposes. 
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1 Introduction 
The classical problem of the lid-driven cavity has been an interesting subject for many decades in the 

domain of computational fluid dynamics, and with a progress of the numerical methods applied this 

problem has been studied extensively by numerous authors through several studies. In order to prove 

the effectiveness of the numerical methods and get more accurate results. 

     Multiple works have been reported in the literature which can be divided into two main sections of 

studies. Works that are included in the first section represent steady solutions at various Reynolds 

numbers ranging from low numbers and even at very high Reynolds numbers. In order to investigate 

the possibility of computation of steady state flow in the lid -driven cavity at these limits, starting first 

with the numerical and analytical work of Burggraf [1]. Botella et Peyret [2] have investigated the 

effectiveness of Chebyshev collocation method for highly-accurate solutions at Re=1000 as well as 

Carlos Henrique Marchi et al [3] based on the finite volume method to get high accurate steady results 

for Re ≤ 1000. Moreover, Vanka[4] have presented steady solution does not exceed Re=5000 using a 
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method that solves the Navier-Stocks equations in primitive variables based on a coupled block-

implicit multigrid procedure. Recently, AbdelMigid et al [5] have solved the governing equation by 

GPU accelerated code in which the Finite Volume Method (FVM) in primitive variable formulation 

was used, they have investigated steady solutions of flow for Re ≤ 5000.  

Bruneau et Jourou [6] have illustrated the efficiency of the multigrid method by solving the Navier-

Stocks equations in primitive variable, based on the coupled scheme with a simplified (FMG-FAS) 

algorithm and a cell by cell relaxation procedure which is very stable, steady solutions was computed 

up to Re=5000 in which solutions for Re=7500 become unstable. Hou et Zou [7] have demonstrated 

the capabilities and the efficiency of the lattice Boltzmann method in which steady solutions have 

computed for Re ≤ 7500. Zhang [8] relied on the fourth-order compact discretization formule which 

used in conjunction with multigrid techniques to simulate the flow in steady state for solutions up to 

Re=7500. the well-known, Ghia et al [9] have used the coupled strongly implicit multigrid (CSI-MG) 

to study its effectiveness and succeed to get steady solutions for Re ≤ 10000.Schreiber et Keller [10] 

have obtained a steady viscous incompressible flow for Re ≤ 10000 by the efficient and the reliable 

numerical techniques based on a combination of a linear system solver, an adaptive newton -like 

method for nonlinear system and a continuation procedure for following a branch of solutions over a 

range of Reynolds numbers. Gupta et Kalita [11] have tested the biconjugate gradient method to obtain 

steady numerical solutions for Re ≤ 10000, they found a high accuracy with results available in the 

literature. Barragy et Carey [12] based on the p-type finite element scheme, steady solutions was 

provided up to Re=12500 while Erturk et al [13] are example of steady solutions for Re ≤ 21000 using 

a very efficient finite difference (fourth-order compact formulation) and a very fine grid mesh with a 

maximum absolute residuals that were less than 10
-10

, They stated that a fine grid mesh is necessary in 

order to obtain a steady solutions and allowed to resolve the vortices appear in the corners. followed 

by the work of Erturk [14] which basically discusses in details the flow in driven cavity physically, 

mathematically and numerically, a very fine grid mesh was used in order to get steady solutions results 

for Re ≤ 20000. A discussion of the exhaustive use and implementation of stabilization finite element 

methods was presented by Hachem et al [15] for the resolution of 3D time-dependent incompressible 

flow. in the same way, 2D incompressible flow in driven-cavity was computed until Re=20000. 

however, solutions for Re=33000 and Re=50000 were unstable. A compact fourth-order-accurate 

central difference scheme was used to discretize the stream function -vorticity formulation illustrated 

by Wahba [16] and succeed to get steady and stable solutions even Re=35000.Additionally, the 

adoption of the line implicit time marching scheme is to enhance numerical stability and to allow the 

control of the convergence rates. 

     On the other hand, in the second section of studies, authors have been shown that flow inside a lid-

driven cavity is not steady at hight Reynolds numbers, and they stated that there exist a Hopf 

bifurcation due to a hydrodynamical instability in which a transition from steady state to unsteady 

state happened, various results were reported and disagree in where the first Hopf bifurcation occurs. 

Peng et al [17] carried out a direct numerical simulation method basically about the transition process 

from laminar to chaotic flow, they have located the first Hopf bifurcation under Re=7500. Auteri et al 

[18] have presented a numerical investigation by applying a second-order spectral projection method 

and solving the unsteady  Navier-Stokes equations in primitive variables, their results show that the 

first Hopf bifurcation is in the interval  8017.6 ≤ Re ≤ 8018.8. 

Fortin et al [19], Sahin et Owens [20], Abouhamza et Pierre [21] and Gervais et al [22] gave it close to 

Re=8000. Notably, their studies focused on the hydrodynamical stability analysis. Bruneau and 

Saad[23] relied on a finite differences discretization where a multigrid solver combined with 

relaxation procedure with a cell by cell. furthermore, in to achieve more stability a new third order 

scheme is constructed for the convective term, they have obtained the first Hopf bifurcation at 

Re=8000, however, a mainly periodic solution was described at Re=10000. It is obvious that the Hopf 
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bifurcation in the range of 7500 ≤ Re ≤ 10000 from the content of the above studies, even though there 

exist other work in the literature reported that it may be found even close to Re=30000. 

     From the previously mentioned studies and another present in the literature, it turns out that the 

steady solution flow in the lid-driven cavity was carried out for highest Reynolds number equal to 

Re=35000. Although there are other results for higher Reynolds numbers except that are not steady. 

for that reason, the present study aimed to investigate the possibility of computation of steady two 

dimentional incompressible flow in square lid driven cavity even on a very high Reynolds numbers, 

ranging for a wide fields starting from 100 up to 50000, and to verify the effectiveness of the Finit 

Volume Method (FVM) based on the second order scheme of accuracy where a very fine grid of 

1024×1024 was used.Table 1 summarizes the main features for references reported in the literature for 

the highest Reynolds numbers with stable solutions. 

 

2  Mathematical model and numerical  method 

2 1 Mathematical model 

Fundamentally the mathematical model considered based on the conservation equation laws 

(N.S.equations). Equations of conservation of mass and momentum (1) to (3) will be simplify 

considering a two-dimensional, laminar, incompressible, Newtonian fluid flow on steady state in 

square lid driven cavity as folow: 
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Where p represent the pressure, u and v  are  velocity components on x and y coordinate,  respectively, 

μ is the dynamic viscosity, ρ  expresses the fluid density. 
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Re 

 

100-10000 

1-10000 

100-5000 

100-15000 

100-7500 

1E-04-10000 

100-1000 

100-7500 

100-10000 

1000-21000 

100-1000 

1000-20000 

20000 

1000-35000 

100-5000 

 

 

 

 

Method 

 

FDM 

FDM 

FDM 

FDM 

LB 

FEM 

Cheb 

FDM 

FDM 

FDM 

FVM 

FDM 

cG-FEM 

FDM 

FVM 
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BGKmodel 

 -  

 ,  ,  

 -  

 -  

 -  

 ,  ,  

 -  

 ,  ,  

 -  

 ,  ,  

 

 

 

 

 

Grid 

 

129 129-256 256 

121 121 -180 180 

41 41 - 321 321 

64 64-256 256 

256 256 

257 257 

160 

17 17-129 129 

41 41-161 161 

601 601 

2 2-1024 1024 

257 257-1025 1025 

180 180 

127 127-501 501 

601 601-1301 1301 

Table1:  Method's applied  Reynolds number  and grid formulation for classical problem. FDM: finite 

difference method, FVM : finite volume method, FEM : finite element method, LB: lattice boltzmann 

method, Cheb : Chebyshev collocation,cG: continuous Galerkin. 
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     The Reynolds number is defined as : 

     
   

 
                                                                 (4) 

Where   is the  velocity vector,   signifies the length (physical size of the cavity). 

 

     The formulations that relate the stream -function  to velocity components can be written as follow: 

 = 
  

  
       ,  =  - 

  

  
                                                           (5) 

Where   represents the stream function. 

         
Figure 1  Boundary conditions for clasical problem.                   Figure 2  Control volume in 2D. 

 

2 2  Numerical method 

Method applied 

In order to to solve the mathematical model described by conservation equations (1) to (3), We rely on 

the finit volume method (FVM)  based on a second order scheme. Briefly, the method  uses the 

integral form of the conservation equations as a starting  point. The domain of calculation is 

subdivided into a finite number of contiguous control volumes (CV)  in which the conservation 

equations are applied to each control volume (CV), see Ferziger et Peric[24]. The variable values at 

the centroid of each control volume(CV) will be calculated. Additionally, in order to convert the 

general  differential equation into a system of algebraic equation for each  control volume (CV) an 

approximation method is used for each surface and volume integral. 

 

      

Figure  3 Comparison of u-velocity  on 

the vertical centerline at (x=0.5) and v- 

velocity on the horizontal centerline at 

(y=0.5): full lines  represent  Re=100 for 

present study, Δ represent Ghia et al [9] 

result at Re=100, dashed lines represent 

Re=1000 for present study, + represent 

Ghia et al [9] result at Re=1000. 
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2 3 Relaxation Scheme 

Solving the flow in a coupled manner ,by meaning that the momentum equations (2,3) and the 

continuity equation (1) were solving together, allow the use of an implicit relaxation where a under-

relaxation  factor is used in correlation with the flow courant number (CFL) enables the control of 

stability and the convergence behavior. 
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Carlos Henrique Marchi et al [3] 
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Hou et Zou [7] 

Ghupta et Kalita [11] 

Carlos Henrique Marchi et al [3] 
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Present 

 

Ghia et al [9] 

Vanka [4] 

Schreiber et Keller [10] 

Hou et Zou [7] 

Bruneau et Jourou [6] 

Zhang [8] 

Ghupta et Kalita [11] 
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Botella et Peyret [2] 

Ercan Erturk [14] 

AbdelMigid et al [5] 

Present 

 

Ghia et al [9] 

Zhang [8] 

Ghupta et Kalita [11] 

AbdelMigid et al [5]                                           

Present 

 

  

 

  Primary Vortex 

    x                 y 

0.6172      0.7344 

0.6188      0.7375 

0.6167      0.7417  

0.6196      0.7373  

0.6172      0.7344 

0.6172      0.7343 

0.6125      0.7375    

0.6162      0.7373    

0.6156      0.7371 

0.6157      0.7373                                                                                                                                                                                                   

 

0.5547      0.6055   

0.5563      0.6000  

0.5571      0.6071   

0.5608      0.6078    

0.5563      0.6000 

0.5537      0.6054   

0.5541      0.6057                  

0.5541      0.6055   

 

0.5313      0.5625  

0.5438      0.5625  

0.5286      0.5643 

0.5333      0.5647 

0.5313      0.5586   

0.5313      0.5625   

0.5250      0.5625 

0.5312      0.5654  

0.5308      0.5652   

0.5313      0.5654  

0.5308      0.5657 

0.5308      0.5653   

 

0.5165      0.5469 

0.5157      0.5390 

0.5188      0.5438 

0.5175      0.5408                       

0.5178      0.5404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

 

 

 

Right secondary vortex 

      x                 y 

    0.9453     0.0625 

    0.9375     0.0563 

    0.9417     0.0500 

    0.9451     0.0627 

    0.9453     0.0625 

         -              - 

    0.9375     0.0625 

      -              - 

   0.9418     0.0616                       

   0.9424     0.0618      

 

    0.8906     0.1205 

    0.8875     0.1188  

    0.8857     0.1143 

    0.8902     0.1255  

    0.8875     0.1188  

         -              - 

    0.8852     0.1215 

    0.8853     0.1224  

 

    0.8594      0.1094  

    0.8625      0.1063   

    0.8643      0.1071  

    0.8667      0.1137  

    0.8711      0.1094  

         -               - 

    0.8625      0.1063 

         -               -    

    0.8711      0.1094 

    0.8643      0.1123 

    0.8636      0.1115                        

    0.8640      0.1117   

 

    0.8125      0.0859  

         -               - 

    0.8125      0.0875 

    0.8236      0.0849                     



 

 

 

Left secondary vortex 

     x                   y     

  0.0313       0.0391    

  0.0375       0.0313  

  0.0333       0.0250  

  0.0392       0.0353 

  0.0313       0.0391 

       -                -     

  0.0375       0.0375 

       -                - 

  0.0333       0.0349 

  0.0345       0.0344 

 

   0.0508        0.0469 

   0.0500        0.0500 

   0.0500        0.0429 

   0.0549        0.0510 

   0.0500        0.0500   

         -                  - 

   0.0516        0.0466 

   0.0512       0.0471    

 

   0.0859        0.0781  

   0.0750        0.0813 

   0.0857        0.0714 

   0.0902        0.0784 

   0.0859        0.0820 

         -                 - 

   0.0750        0.0813 

         -                 - 

   0.0859        0.0820 

   0.0830        0.0781 

   0.0832        0.0782 

   0.0832        0.0780  

 

   0.0859        0.1094 

         -                  - 

   0.0813        0.1188 

   0.08153      0.1198 

   0.0811        0.1199         

 

 
     Additionally, the coupled approach offers some advantages over the non-coupled or segregated 

approach represented in a robust and efficient phase implementation. because of the use of a high 

Table  2 Comparison with previous results  the location of primary and secondary vortices 

for diferent Reynolds numbers. 
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Reynolds numbers for a steady state in this study, a main problem of instability is posed, due to high-

frequency errors which affect the results and here it illustrates the effectiveness of the relaxation 

scheme , the flow courant number (CFL) is ranging from CFL=20 for high Reynolds numbers up to 

CFL=200 for low Reynolds numbers. Otherwise, the under-relaxation factor ( ) is ranged from 

 =0.35 for high Reynolds numbers to  =1 for lower Reynolds numbers, a large number of flow 

courant numbers leads to fast convergence, whereas a low number leads to a slower convergence and 

an enhancement on the stability of the convergence behavior. 
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Ercan Erturk [14] 

Wahba [16] 
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Primary vortex 

                                                              

-0.103423           3.16646 

 0.1034                     - 

-0.10330            -3.18200 

 0.1030               3.1348 

 0.103511             3.168745 

-0.103                      - 

-0.103516           3.156202 

-0.1035204        -3.16698 

 

 

-0. 117929           2.04968                              

-0.11603             -2.02600                                 

 0.1189366          2.067753                    

-0.118888            2.067052                    

-0.11894             -2.0677                                   

-0.118866            2.066581 

-0.118929           -2.0676       

          

 

-0.118966             1.86016                                                

 0.0920                       -   

-0.121942            -1.936291                         

-0.1222                -1.9403                                     

-0.122069            -1.938057 

-0.122185            -1.940286  

 

 

-0.119731             1.88082                                 

-0.10284              -1.62200                        

-0.122                          -                 

-0.121781            -1.909677  

-0.122                  -1.9171    

-0.122323            -1.91861   

 

 

-0.121342            -1.895353                          

-0.1218                -1.9052                                         

-0.1221                -1.9090  

 

-0.120865           -1.884630                                 

-0.1213               -1.8974                                

-0.12202             -1.903689                                                                                                                                                                                                   

 

 

     

Right  Secondary vortex 

                                                                    

  1.25374E-05             -3.30749E-02   

 -1.14E-06                           -               

  1.320E-05               2.550E-02                  

 -1.22E-05                        - 

         -                               - 

  1.45E-05                         - 

  1.3E-05                   -3.5775E-02    

  1.274E-05                3.524367E-02            

 

 

  1.75102E-03          -1.15465                        

  1.700E-03               0.9990                          

  -1.72717E-03         -1.109789                     

  1.7287E-03             1.111550                        

          -                            -  

  1.732E-03              -1.113969 

  1.73030E-03           1.107643                                     

 

 

  3.08358E-03           -2.66354                                

 -5.49E-03                         - 

  3.0677E-03              2.720926                      

         -                              - 

  3.078E-03               -2.750446                

  3.07433E-03            2.751347                         

 

 

  3.41831E-03          -4.0531                         

  2.96E-03                  3.031                                        

  3.22E-03                         - 

  3.1846E-03              3.751749                      

        -                              - 

  3.1888E-03             3.781775   

 

  2.9991E-03             4.938041 

        -                              - 

  2.9993E-03             4.9992  

 

  2.8038E-03             6.080160                     

         -                            - 

  2.79857E-03          6.216516                                                                                            

 

 

 

     

left secondary vortex 

                                                          

 1.74877E-06        -1.55509E-02 

-1.94E-06                         -                    

 2.05E-06               7.9800E-02   

-1.72E-06                       - 

         -                            - 

 1.83E-06                        -  

1.80683E-06      - 1.340214E-02 

 1.81E-06              1.50452E-02 

 

 

 2.31129E-04         -0.36175     

 2.1700E-04            0.30200     

  -2.33453E-04         -0.3522861    

 2.3314E-04             0.350476 

          -                         - 

 2.33412E-04         -0.3409262 

 2.33412E-04          0.351918 

 

 

  1.36119E-03            -1.53055 

 -1.67E-03                     - 

  1.3729E-03            1.510725 

         -                          - 

  1.375483E-03      -1.494181 

  1.374882E-03       1.518596 

 

   

  1.51829E-03        -2.08560         

         -                         - 

  1.50E-03                     - 

  1.6118E-03           2.145982 

         -                         - 

  1.6149E-03          2.149298 

  

  1.6730E-03           2.507351 

       -                          - 

  1.6753E-03           2.5256 

 

 

  1.6298E-03           2.932753  

          -                        -           

1.63011 E-03      2.957627 

Table  3    Comparison  of stream function and vorticity  value for primary and secondary vortices for 

different Reynolds numbers with previous results.  

 

 

 



23
ème

 Congrès Français de Mécanique                              Lille, 28 Août au 1
er

 Septembre 2017 

 

3  Results and discussions  

Flow is driven by the top lid of the cavity  with  different velocity values  while the three remaining 

walls are in stationary state as shown in Fig 1. in order to access results on an extended field of 

Reynolds numbers, values of density ρ and dynamic viscosity μ  has been regularized in a way that 

facilitates the computation  for all Reynolds numbers. while the convergence criteria adopted in this 

paper was based on a maximum residual of RES= 10
-9

  for both momentum and continuity equations 

as a measure of confirmation the convergence to the steady state with  very accurate solutions. for all 

the results presented below, a very fine uniform grid mesh with a resolution of 1024×1024 as  Erturk 

[9] was used. 

     Fig 2 describes a control volume in Two dimensions (2D) with cell faces E , S, W, N. in which are 

approximated by the midpoint rule in terms of the nodal P (control volume center), Ferziger et 

Peric[24]. 

     for the sake of verifying the accuracy of the numerical code represents herein a wide validation of 

numerical solutions has been done by comparing with previous results which are considered a 

reference in driven cavity subject. At first, Fig 3 presents u,v velocity profiles through the vertical and 

the horizontal centerline respectively for both Re=100,1000  Reynolds numbers comparing with 

results of Ghia et al [9] computed for 129×129 grid mesh, a good correlation between the two results. 

Additionally Table 2 includes the location of primary and the two first secondary vortices at the 

bottom of the cavity for 100 ≤ Re ≤ 3200 in comparison with large numbers of studies reported above 

[2,3,4,5,6,7,8,9,10,11]. While values of stream function and vorticity for 100 ≤ Re ≤ 20000 tabulated 

in Table 3 show a very good accuracy especially with [2,5,7,9,14,16], where the significant difference 

value of stream function from these reference varies less than 0.85% from the present work for 

Re=1000 in the primary vortex and 0.98% for the other two remaining secondary vortices.as well as, 

 

            Re=10000 

 
            Re=20000 

 
            Re=30000 
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           Re=35000 

 
           Re=40000 

 
           Re=45000 

  
            Re=50000 

 

 
Figure  4  left graphs: u-velocity profiles along the vertical centerline  at x=0.5,right graphs:v-velocity 

profiles along the horizontal centerline at y=0.5. 

the vorticity for a maximum difference of 0.87% for the primary vortex and 4.07% for the two 

secondary vortices, knowing that it was observed a significant numerical approach of the current work 

with the recently done by AbdelMigid et al [5] It should be noted that it is difficult to reach steady 

solutions at high Reynolds numbers, Erturk  [14] declared that when we increase the grid points to a 

very fine resolution allows obtaining steady solutions .furthermore, studies which have been reported 

that the flow in lid-driven cavity subjected to a Hopf bifurcation leading to the appearance of periodic 

numerical solution because of the coarse grid mesh , also if a sufficiently fine grid mesh used these 

results would achieve stable solutions even at very high Reynolds numbers. Depending on that, the 

effectiveness of the present numerical code and the coupling between the momentum equations (2,3) 

and the continuity equation (1) supported to a very fine grid mesh used in the present study have 
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Re=100                             Re=1000                         Re=10000                       Re=20000                        

 
Re=30000                         Re=35000                       Re=40000                         Re=41000 

                                                        
  Re=42000                      Re=43000                        Re=45000                         Re=50000 

Figure  5  Stream function contours obtained at various Reynolds numbers. 

 

to be verified through  in-depth comparison represents in Fig 4 which shows a comparison of the 

horizontal velocities (u) along the vertical centerline (x=0.5) and the vertical velocities (v) along the 

horizontal centerline at (y=0.5) for Reynolds numbers in the range of  10000 ≤ Re ≤ 50000 with 

multiple references. For Re=10000, solution data are compared with the results of Ghia et al [9] for 

256×256 grid mesh and with Erturk [14] for 1024×1024 grid mesh while solution data for Re=20000 

are compared only with Erturk [14]. also, for both Re=30000 and Re=35000, the comparison was 

carried out with numerical results of Wahba [16] for 501×501. otherwise the two profiles (u,v) for 

Re=40000, Re=45000 represent the current study,  these results mentioned above revealed a great 

concurrence except for Re=50000 the unstable solution data of Hachem et al [15] for 180×180 are 

inconsistent with present results which confirming the effect of grid mesh on the stability of the 

numerical solutions. 

     Fig 5 shows the configuration of flow pattern in the cavity represented by stream function contours 

in steady state at various Reynolds numbers ranged for 100 ≤ Re ≤ 50000. It is observed that the 

typical behavior of the flow configuration known by many authors in the literature agrees very well 

with that in this study for Re reached 41000. In addition to the primary vortex involved in the center of 

the domain a significant growth of the secondary vortices increases exponentially with increasing in 

the Reynolds numbers and affect the location centers of these vortices, the appearance of the third 

secondary vortices are very clear on the corners of the cavity. 
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Re=100                            Re=1000                            Re=10000                       Re=20000                  

 
Re=30000                        Re=35000                          Re=40000                       Re=41000   

                                                                                                                                               
Re=42000                          Re=43000                        Re=45000                        Re=50000 

 

Figure 6  Vorticity contours obtained at various Reynolds numbers. 

      

On the other hand, when Renolds number exceeds the threshold of 41000 especially within limits 

Re=41710, a very significant change in the flow pattern was observed at the bottom right of the 

domain of the cavity as an unexpected behavior represents by the appearance of five secondary 

vortices in different sizes while the first two counter-rotating secondary vortices consisting of one 

small vortex with small size neighboring by another with a large size which is also surrounded by 

three adjacent second secondary vortices have the same sense of rotation as the primary vortex, in 

which for the remaining two corners of the cavity( bottom left) and (top left), the flow pattern keeps 

up the same structure with a slightly change on the location of these secondary vortices. 

     Fig 6 presents the vorticity contours obtained at various Reynolds numbers. The regions indicated 

by concentration designate the high vorticity values localized there. Moreover, as shown in Tables 4-5, 

as Re increases as the strength of the secondary vortices increases with a slight drop in strength of the 

primary vortex which remains relatively constant. 

     Tables 4-5, show the properties of the flow for primary and secondary vortices for 100 ≤ Re ≤ 

40000, including values of stream function, vorticity, and location of the vortex, the names of the 

vortices are abbreviated as follow: PV, BR, BL, TL express either primary vortex, bottom right, 

bottom left, top left respectively whereas the numbers indicate the hierarchy of these secondary 

vortices 1, 2, and 3 expresses either first, second, and third respectively. 
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100 

 

 

-0.1035204 

-3.16698 

(0.6157, 0.7373) 

 

 

1.274E-05 

3.524367E-02 

(0.9424, 0.0618) 

 

- 

- 

- 

 

 

- 

- 

- 

 

 

 

 

1000 

 

 

-0.118929 

-2.0676 

(0.5308, 0.5653) 

 

 

1.73030E-03 

1.107643 

(0.8640, 0,1117) 

 

-5.2E-8 

-7.911979E-03 

(0.9926, 0.0074) 

 

 

- 

- 

- 

 

 

 

 

 

10000 

 

 

-0.122323 

-1.91861 

(0.5118, 05300) 

 

 

3.1888E-03 

3.781775 

(0.7748, 0.0594) 

 

-1.40964E-04 

-0.297161 

(0.9349, 0.0679) 

 

 

- 

- 

- 

 

 

Re 

 

20000 

 

 

-0.12202 

-1.903689 

(0.5093, 0.5269 ) 

 

 

2.79857E-03 

6.216516                                                                                           

(0.7213, 0.0431) 

 

-4.63858E-04 

-0.563582 

(0.9302, 0.1053) 

 

 

2.385E-08 

4.71657E-03 

(0.9939, 0.0070) 

 

 

 

 

 

30000 

 

 

-0.121787 

-1.89846 

(0.5081, 0.5257) 

 

 

2.96556E-03 

8.482063 

(0.6856, 0.0340) 

 

-6.68679E-04 

-0.65354 

(0.9319, 0.1218) 

 

 

4.36866-07 

1.99580E-02 

(0.9862, 0.0162) 

 

 

 

 

35000 

 

 

-0.121612 

-1.895308 

(0.5078, 0.5249) 

 

 

 2.34589E-03 

9.54100 

(0.6722, 0.0311) 

 

-7.493584E-04 

-0.663195 

(0.9303, 0.1229) 

 

 

1.55514E-06 

0.03898 

(0.9815, 0.0214) 

 

 

 

 

40000 

 

 

-0.121554 

-1.895056 

(0.5073, 0.5247) 

 

 

2.23583E-03 

10.52671 

(0.6607, 0.0287) 

 

-8.2407E-04 

-0.67165 

(0.9278, 0.1224) 

 

 

3.79972E-06 

0.064623 

(0.9773, 0.0253) 

      The configuration of flow pattern in the  cavity when the Reynolds numbers exceed the threshold 

Re=41710 are shown in Fig 8, the vortices' abbreviations names  maintain the same as mentioned 

above except a simple addition of a tiny letter in order to signify the order of appearance of the 

secondary vortices in the bottom right of the cavity. While, the properties of the flow are tabulated in 

Table 6 for primary and secondary vortices for both Re=45000, Re=50000. 

     Tables 6-7 show the numerical values corresponding to u and v velocity passing through the 

vertical centerline and the horizontal centerline for 100 ≤ Re ≤ 50000. 

 
 

 

 

 

 

 

 

    

 

 

 

    

 

 

 

    

 

 

 

    

 

 

 

 

    

 

 

 

 

 

 

 

 

  

  

      

 

  

  

      

 

  

  

      

 

  

  

      

 
  

  

      

 

 

 

 

100 

 

 

      1.81E-06 

   1.50452E-02 

(0.0345, 0.0344) 

 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

 

 

 

 

1000 

 

 

2.33412E-04 

0.351918 

(0.0832, 0.0780) 

 

 

-8E-09 

-2.739669 

(0.0048, 0.0048) 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

 

 

 

 

10000 

 

 

1.6149E-03 

2.149298 

(0.0589, 0.1618) 

 

 

-1.1205E-06 

-3.17418E-02 

(0.0170, 0.0203) 

 

- 

- 

- 

 

2.631351E-03 

2.311531 

(0.0704, 0.9112) 

 

- 

- 

- 

 

 

 

Re 

 

20000 

 

 

1.630111E-03 

2.957627 

(0.0480, 0.1830) 

 

 

-8.38227E-05 

-0.252762 

(0.0590, 0.0544) 

 

2.15069E-09 

1.7053507E-03 

(0.0034, 0.0031) 

 

3.76156E-03 

2.51234 

(0.0805, 0.9117) 

 

-7.336075E-05 

-0.975955 

(0.0247, 0.8192) 

 

 

 

 

 

30000 

 

 

1.50016E-03 

3.905502 

(0.0401, 0.2016) 

 

 

-1.806998E-04 

-0.368702 

(0.0737, 0.0595) 

 

7.96666E-09 

3.13831E-03 

(0.0044, 0.0041) 

 

4.39063E-03 

2.63238 

(0.0848, 0.9128) 

 

-1.807805E-04 

-1.35001 

(0.0310, 0.8119) 

 

 

 

 

 

35000 

 

 

1.44003E-03 

4.364118 

(0.037, 0.2093) 

 

 

-2.094140E-04 

-0.407321 

(0.0790, 0.0579) 

 

1.359714E-08 

3.92891E-03 

(0.0049, 0.0049) 

 

4.63383E-03 

2.68339 

(0.0863, 0.9129) 

 

-2.19032E-04 

-1.43439 

(0.0313, 0.8093) 

 

 

 

 

 

40000 

 

 

1.37819E-03 

4.81725 

(0.0345, 0.2162) 

 

 

-2.33661E-04 

-0.443164 

(0.0851, 0.0558) 

 

1.1925E-08 

4.10412E-03 

(0.0054, 0.0053) 

 

4.841882E-03 

2.721027 

(0.0875, 0.9131) 

 

-2.49953E-04 

-1.540045 

(0.0309, 0.8073) 

 

Table   4  Properties of primary and  Bottom right secondary. 

vortices. 

 

Table  5  Proprerties of  Bottom  left  and  Top left secondary  vortices.    
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Figure  8  Flow configuration for Re   41710. 
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                        Re 

45000 

-0.121548 

-1.894415 

(0.5073, 0.5245) 

 

3.006625E-03 

8.3370 

(0.6943, 0.0369) 

 

 

4.458081E-03 

1.756255 

(0.8866, 0.1071) 

 

-3.284708E-04 

-2.47146 

(0.7971, 0.0252) 

 

 

-8.58804E-05 

-6.26041E-01 

(0.9704, 0.2440) 

 

-3.4603E-05 

-0.628747 

(0.9794, 0.0254) 

 

 

 

50000 

-0.121470 

-1.893674 

(0.5070, 0.5241) 

 

2.91424E-03 

8.97085 

(0.6855, 0.0351) 

 

 

4.78432E-03 

1.822144 

(0.8817, 0.1031) 

 

-3.21092E-04 

-2.77719 

(0.7802, 0.0230) 

 

 

-9.80703E-05 

-0.63670 

(0.9691, 0.2465) 

 

-6.593614E-05 

-0.941995 

(0.9781, 0.0325) 

  

 

 

 

BL1 

 

 

 

BL2 

 

 

 

BL3 

 

 

 

TL1a 

 

 

 

TL1b 

 

 

 

TL2 

 

 

 

 

 

  

     

         

 

  

  

      

 

  

  

      

 

  

  

      

 

  

  

      

 

  

  

      

 

 

       

 

                     Re 

45000 

1.342516E-03 

5.364649 

(0.0321, 0.2251) 

 

-2.660884E-04 

-0.476916 

(0.0914, 0.0547) 

 

3.177777E-08 

5.679480E-03 

(0.0071, 0.0064) 

 

5.004871E-03 

2.758090 

(0.0884, 0.9133) 

 

7.302959E-4 

3.613825 

(0.0509, 0.7702) 

 

-2.734150E-04 

-1.654226 

(0.0299, 0.8077) 

 

 

 

50000 

1.293551E-03 

5.812606 

(0.0302, 0.2304) 

 

-2.90259E-04 

-0.497776 

(0.0947, 0.0537) 

 

5.664E-08 

7.89659E-03 

(0.0088, 0.0078) 

 

5.16770E-03 

2.79116 

(0.0892, 0.9136) 

 

8.10963E-04 

3.348625 

(0.0460, 0.7655) 

 

-2.97105E-04 

-1.790126 

(0.0292, 0.8086) 

 

 

 

4  conclusion 
  Numerical study of two-dimensional (2D) incompressible steady flow in the lid-driven square cavity 

for 100≤Re≤50000, was carried out in the present paper. The finite volume method (FVM) and the 

COUPLED algorithm to treat pressure-velocity coupling with a very fine grid mesh used herein show 

great efficiency in terms of stabillity,  robustness and  accurracy for steady solutions at high Reynolds 

numbers. An eccentric behavior has been shown in flow structure for Re>41000, in the bottom right 

BR2c 

 
BR2a 

 

BR1b 

 
BL3 

 

BL2 

 

BL1 

 
BR1a 

 

BR2b 

 

TL1a 

 

PV 

 

TL2 

 

Table  6   Properties of primary and  secondary vortices.  
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y 
 

 

0.0000 
0.0100 

0.0200 

0.0301 
0.0401 

0.0501 

0.0601 
0.0701 

0.0802 

0.0902 
0.1002 

0.1723 

0.2004 
0.2826 

0.3006 

0.4509 
0.5010 

0.6012 

0.8016 
0.8517 

0.9018 

0.9319 
0.9419 

0.9519 

0.9619 
0.9720 

0.9820 

0.9920 
1.0000 

 

 

100 

 
0.00000 

-0.00745 

-0.01458 
-0.02142 

-0.02801 

-0.03437 
-0.04054 

-0.04652 

-0.05236 
-0.05806 

-0.06366 

-0.10197 
-0.11647 

-0.1583 

-0.16708 

-0.21391 

-0.20891 

-0.15324 
0.11805 

0.23686 

0.41615 
0.5657 

0.62298 

0.68361 
0.74709 

0.81275 

0.8797 
0.94689 

1.00000 

 

 

 

1000 

 

0.00000 
-0.0398 

-0.07606 

-0.10923 
-0.13984 

-0.16852 

-0.1959 
-0.22241 

-0.24824 

-0.27328 
-0.29717 

-0.38853 

-0.37566 
-0.27889 

-0.25847 

-0.11035 
-0.06107 

0.04028 

0.27423 
0.33732 

0.3857 

0.41332 
0.43283 

0.46693 

0.52411 
0.61213 

0.73321 

0.87899 
1.00000 

 

 

10000 

 

0.00000 
-0.19054 

-0.2969 

-0.37849 
-0.43474 

-0.45754 

-0.45342 
-0.43695 

-0.41976 

-0.4062 
-0.39572 

-0.32989 

-0.30408 
-0.22854 

-0.21195 

-0.07311 
-0.02629 

0.06962 

0.28497 
0.34858 

0.4188 

0.46603 
0.4817 

0.49454 

0.50077 
0.49632 

0.49759 

0.65569 
1.00000 

 

 

 

20000 

 

  0.00000 
-0.24281 

-0.36718 

-0.44549 
-0.46222 

-0.44539 

-0.42693 
-0.41519 

-0.40655 

-0.3981 
-0.38929 

-0.32469 

-0.29941 
-0.22473 

-0.20825 

-0.06999 
-0.02331 

0.07225 

0.28516 
0.34753 

0.41637 

0.4617 
0.47799 

0.49498 

0.51034 
0.51679 

0.50369 

0.56525  
1.00000 

 

 

 

Re 

30000 

 

  0.00000 
-0.26713 

-0.40465 

-0.46098 
-0.45021 

-0.43026 

-0.41942 
-0.41159 

-0.40338 

-0.39479 
-0.38614 

-0.32291 

-0.29782 
-0.22341 

-0.20696 

-0.06879 
-0.02212 

  0.07336 

  0.28509 
  0.34678 

  0.41481 

  0.45962 
  0.47537 

  0.49193 

  0.50932 
  0.52268 

  0.51638 

  0.52571 
  1.00000 

 

 

 

35000 

 

  0.00000 
-0.27522 

-0.41646 

-0.46108 
-0.44367 

-0.42652 

-0.41791 
-0.41029 

-0.40202 

-0.39355 
-0.38504 

-0.32224 

-0.2972 
-0.22288 

-0.20644 

-0.06836 
-0.02172 

  0.07366 

  0.28484 
  0.34625 

  0.41396 

  0.4586 
  0.47426 

  0.49056 

  0.50799 
  0.5233 

  0.52066 

  0.51514 
  1.00000 

 

 

 

40000 

 

  0.00000 
-0.28192 

-0.42542 

-0.45932 
-0.43849 

-0.42444 

-0.41702 
-0.40939 

-0.40119 

-0.39287 
-0.38449 

-0.32201 

-0.29701 
-0.22269 

-0.20625 

-0.0681 
-0.02143 

  0.07398  

  0.28488 
  0.34608 

  0.41351 

  0.458 
  0.47361 

  0.48974 

  0.50699 
  0.52356 

  0.52425 

  0.50852 
  1.00000 

 

 

45000 

 

  0.00000 
-0.30442 

-0.44052 

-0.45755 
-0.43467 

-0.42338 

-0.41601 
-0.40793 

-0.39958 

-0.39123 
-0.38285 

-0.32075 

-0.29592 
-0.222 

-0.20562 

-0.06776 
-0.02113 

  0.07424 

  0.28497 
  0.34605 

  0.41333 

  0.45773 
  0.47332 

  0.48936 

  0.50641 
  0.52375 

  0.52743 

  0.50499 
  1.00000 

 

 

50000 

 

 0.00000 
-0.31143 

-0.44558 

-0.45382 
-0.43169 

-0.42236 

-0.41508 
-0.40701 

-0.3988 

-0.39057 
-0.38227 

-0.32044 

-0.29565 
-0.22179 

-0.20542 

-0.06758 
-0.02095 

  0.07442 

  0.28491 
  0.34583 

  0.41291 

  0.45719 
  0.47276 

  0.48874 

  0.50558 
  0.52334 

  0.52957 

  0.50277 
  1.00000 

  

x 

 

 

0.0000 

0.0100 
0.0200 

0.0301 

0.0401 
0.0501 

0.0601 

0.0701 
0.0802 

0.0902 

0.1002 
0.1723 

0.2004 

0.2826 
0.3006 

0.4509 

0.5010 
0.6012 

0.8016 

0.8517 
0.9018 

0.9319 
0.9419 

0.9519 

0.9619 
0.9720 

0.9820 

0.9920 
1.0000 

 

 

100 

 
0.00000 
0.01832 

0.0354 

0.05128 
0.06598 

0.07954 

0.092 
0.10341 

0.11381 

0.12324 
0.13177 

0.17039 

0.17678 
0.17567 

0.17209 

0.09901 
0.0566 

-0.05409 

-0.25318 
-0.23957 

-0.18391 

-0.13372 
-0.11505 

-0.09572 

-0.07593 
-0.05588 

-0.03576 

-0.01577 
1.00000 

 

 

1000 
 

0.00000 

0.07103 
0.13081 

0.17984 

0.21919 
0.25044 

0.27546 

0.29595 
0.31322 

0.32813 

0.34107 
0.37467 

0.35886 

0.26728 
0.24541 

0.07856 

0.02471 
-0.08433 

-0.31593 

-0.40725 
-0.52312 

-0.48226 
-0.43153 

-0.36411 

-0.28513 
-0.2015 

-0.12049 

-0.04837 
1.00000 

 

 

 

  10000 
 

  0.00000 

  0.21325 
  0.33013 

  0.39323 

  0.43595 
  0.45918 

  0.46448 

  0.45756 
  0.44484 

  0.43088 

  0.41772 
  0.3376 

  0.30795 

  0.22355 
  0.20537 

  0.05672 

  0.0077 
-0.0912 

-0.30308 

-0.36132 
-0.42245 

-0.45492 
-0.46948 

-0.50245 

-0.55857 
-0.57383 

-0.42766 

-0.15418 
  0.00000 

 

 

  20000 
 

  0.00000 

  0.27495 
  0.39103 

  0.45218 

  0.476 
  0.47234 

  0.45812 

  0.4436 
  0.43101 

  0.41944 

  0.40813 
  0.33014 

  0.30111 

  0.21825 
  0.20036 

  0.05374 

  0.00533 
-0.09225 

-0.30015 

-0.35687 
-0.41586 

-0.45221 
-0.46251 

-0.47112 

-0.49362 
-0.5603 

-0.53668 

-0.20533 
  0.00000 

 

Re 

30000 
 

  0.00000 

  0.3114 
  0.42578 

  0.47633 

  0.48015 
  0.46553 

  0.45082 

  0.4385 
  0.42691 

  0.41544 

  0.40412 
  0.32688 

  0.29811 

  0.21588 
  0.19811 

  0.05228 

  0.0041 
-0.09291 

-0.29892 

-0.35484 
-0.41275 

-0.44839 
-0.4602 

-0.46989 

-0.47802 
-0.52092 

-0.5713 

-0.23808 
  0.00000 

 

 

 

35000 
 

  0.00000 

  0.32462 
  0.438112 

  0.4818 

  0.47847 
  0.46252 

  0.44883 

  0.43694 
  0.42533 

  0.41386 

  0.40258 
  0.32562 

  0.29693 

  0.21493 
  0.19721 

  0.05172 

  0.00366 
-0.09309 

-0.29834 

-0.35397 
-0.41148 

-0.44671 
-0.4586 

-0.46917 

-0.47619 
-0.50712 

-0.57543 

-0.25025 
  0.00000 

 

 

40000 
 

  0.00000 

  0.33603 
  0.44851 

  0.48509 

  0.47651 
  0.46054 

  0.44768 

  0.43592 
  0.42429 

  0.41284 

  0.4016 
  0.32486 

  0.29623 

  0.21437 
  0.19666 

  0.05131 

  0.00329 
-0.09336 

-0.29813 

-0.35353 
-0.41072 

-0.4456 
-0.4574 

-0.46852 

-0.47575 
-0.49742 

-0.57543 

-0.26051 
  0.00000 

 

 

45000 
 

  0.00000 

  0.34572 
  0.45668 

  0.48634 

  0.47418 
  0.45878 

  0.44647 

  0.43475 
  0.42314 

  0.41176 

  0.40059 
  0.32424 

  0.29573 

  0.21412 
  0.19645 

  0.05126 

  0.00325 
-0.0934 

-0.29807 

-0.35338 
-0.4104 

-0.4451 
-0.4568 

-0.46824 

-0.47623 
-0.49109 

-0.57334 

-0.2724 
  0.00000 

 

 

50000 
 

  0.00000 

  0.35432 
  0.4637 

  0.48685 

  0.47232 
  0.45768 

  0.44566 

  0.4339 
  0.42231 

  0.41097 

  0.39983 
  0.32363 

  0.29517 

  0.21365 
  0.19601 

  0.05093 

  0.00296 
-0.0936 

-0.29788 

-0.35301 
-0.40978 

-0.44426 
-0.45582 

-0.46735 

-0.47608 
-0.4866 

-0.56929 

-0.27938 
  0.00000 

Table  7  Values for u-velocity  through the vertical centerline of the cavity. 

Table  8   Values for v-velocity through the vertical centerline of the cavity. 
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of the cavity. Properties of flow were tabulated for a wide field and a good agreement are found in the 

literature, and new numerical results for 35000<Re≤50000 was displayed. Values of velocity profiles 

are provided For benchmarking purposes. Finally, although that the present study interested in the 

steady form of Navier-Stokes to reach steady solutions, it is recommended to further investigations in 

an unsteady form based on turbulence models for the sake of comparison. 

 

Nomenclature 
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