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Abstract: 
 

We report results of our study for an explosive behavior of nonlinear ultrasound occurring when 

acoustic nonlinearity is efficiently modulated by another physical process. In the considered example, 

a Lamb wave propagates in an antiferromagnetic plate in the presence of a harmonically oscillating 

magnetic field and a shear resonance. In this situation, the magnetic pumping induces a backward 

phase conjugate Lamb wave. Thus the system supports three phonons: two of the Lamb waves and one 

of the shear resonant mode. We write out the equations of motions for the considered exemplar 

system, solve them numerically and then illustrate the explosive dynamics with a number of examples. 

It is shown that the explosive scenario can occur with a very low signal level i.e. Lamb waves 

amplitudes comparable to the spontaneous noise in the system. From the practical point, we propose 

an extremely effective channel for converting magnetic energy into mechanical energy. The 

considered nonlinearity modulation mechanism is possible to extend onto systems of different physical 

nature and to apply in acousto-electronics, electro- and hydrodynamics and in microsystems 

designing. 
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1 Introduction 
 

Instabilities in dynamic systems are accompanied by giant amplitude growth. There are at least two 

confirmed types of behavior characterized by theoretically infinite amplitudes: exponential and 

explosive. The exponential instability appears when a linear parameter such as stiffness in oscillators 
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or sound velocity in acoustics is efficiently modulated by another physical process. This effect is 

usually called parametric amplification and is typical for a wide range of situations ranging from the 

classical pendulum with a variable string length to stimulated processes in laser physics [1], light 

scattering [2,3], acoustics [4], etc. 

Our interest here is to another type of growing instabilities having the explosive behavior. In this case, 

an external process modulates not the linear parameter but the quadratic nonlinear coefficient. The 

difference between the "usual" parametric instability having the exponential character and the 

explosive effect of nonlinearity modulation can be understood using the Hamiltonian formalism. The 

classical Hamiltonian contains terms with two amplitudes in the former case and with three amplitudes 

in the latter case. Application of the appropriate resonance conditions produces terms containing a 

combination of two or three complex conjugate amplitudes, respectively. In a quantum counterpart of 

such an interaction between two or three phonons, two or three creation operators appear. The 

presence of the third creation operator explains an additional contribution to the amplification process 

and results in an explosive amplitude growth when theoretically infinite values are obtained at a finite 

moment of time, as it is for the mathematical singularity. 

In our example described below, the third phonon represents a kind of additional feedback in the 

system that considerably alters its behavior. Its contribution mathematically resembles the Feshbach 

resonance [5,6] supporting the bound molecular states in the quantum system of ultracold atoms and is 

therefore referred to as the Feshbach resonance. 

 

2 Theoretical model 
 

Our objective here mathematically describe a system in which the three-phonon interaction occurs that 

results in the appearance of the explosive instability. We will show that such a process takes place in 

an antiferromagnetic plate in which a Lamb wave propagates in the presence of pumping by means of 

an alternative magnetic field. In addition, a shear standing wave is to be generated. In this situation, 

another Lamb wave with the opposite propagation direction is spontaneously excited. The three 

phonons necessary for the explosive instability generation are coming from the two Lamb waves and 

from the shear resonance mode. The magnetic pumping action modulates the quadratic nonlinear 

parameter and actually provides energy for the explosive amplitude growth. 

As a model medium we choose an antiferromagnetic crystal with the magnetic anisotropy of the "easy 

plane" type belonging to symmetry group 
6

3dD  (e.g. α-Fe2O3 or FeBO3). The crystal has a shape of a 

plate cut in the basal plane normal to the crystallographic axis C3 || z (see Fig. 1). We suppose that the 

plate is placed in a constant magnetic field H


 parallel to y-axis and in a transversal RF magnetic field 

 ph t


 parallel to the binary axis U2 || x (see Fig. 1). The instability effect is produced by the 

interaction of the fundamental shear mode with the in-plane displacements parallel to the binary axis x 

and two asymmetric Lamb waves with polarization normal to the plane and with the wave vectors ±k 

parallel and antiparallel to the x-axis.  

It is possible to show [7] that the potential energy density in the material has the form: 

 2 3

442 ( )xz p p xzF C u h t u  , (1) 

where ρ is density of the crystal, C44 is the shear elastic modulus and Ψp is the amplitude of interaction 

caused by modulation of the nonlinear elastic parameter  555C H


: 
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An explicit expression for Ψp applicable to the antiferromagnetic with the easy type magnetic 

anisotropy of 
6

3dD  symmetry in transversal alternative magnetic field is derived in [8]. In the particular 

case when the only nonzero strain component is Uxz, Ψp equals to 
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Figure 1: System’s geometry. Wave displacements 
ku


 and 
ku


 for the Lamb waves with wave vectors 

k


 and k


 are shown as well as wave displacement U


 for the shear mode. Magnetic fields H


 and 

 ph t


 are also plotted. 

In Eqs. (3)-(4), ε=2B14/C44 is the spontaneous magnetostrictive strain, B14 is a magnetoelastic constant, 

HE, HD and Hms are exchange, Dzyaloshinsky and magnetoelastic effective fields, respectively, ωs0 is 

the frequency of antiferromagnetic resonance, γ is the magneto-mechanical ratio, ζ is the 

magnetoelastic coupling coefficient. The details of this derivation can be found in [7]. 

In Eq. (1), the pumping magnetic field that modulates the quadratic nonlinearity coefficient is chosen 

as 

 
0( ) . .pi t

ph t h e c c


  , (5) 

where p is pumping frequency, h0 is the magnetic field amplitude. 

In order to show that the explosive instability appears in such a system, it is sufficient to assume that 

the displacement field has the following structure: 

 
*( )cosi t i t

xu De D e z
l

    
   

 
, (6) 

   sinki tikx ikx

zu Ae Be e z
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 
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Here the contribution ux corresponds to the shear resonance mode with the frequency  and amplitude 

D, while uz-component describes the Lamb waves with the correspondent wave number k and 

frequency k. The Lamb waves have approximately vertical displacement since they are considered in 

the short-wave approximation in order to make use of the fact that wave interactions enhance when the 

wavelength decreases. Amplitude A of the forward wave is coming from the excitation signal while 

the backward wave of the amplitude B is not deliberately excited but appears spontaneously as it will 

be demonstrated. In Eqs. (6)-(7), l is the plate thickness. 

The equations of motion corresponding to the potential energy density Eq.(1) have the form: 

 

2 2 2 2

442 2 2

3
( )

2

x x x z
p p xz

u u u u
C h t u

t z z z x


    
    

     
, (8) 
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C h t u
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

      
       

        
. (9) 

Equations for amplitudes are obtained from Esq. (8)-(9) in the following way. First, Eq (8) is 

multiplied by  cos /z l , Eq. (9) is multiplied by  sin /z l , and both equations are integrated 

over the plate thickness i.e. for 0 z l  . Then two resulting equations are obtained, into which the 

explicit forms Eq. (6)-(7) have to be substituted. Since amplitudes A, B, and D evolve slowly in 

comparison to fast terms with frequencies k, p, and , their double derivatives can be neglected. 

Finally, only resonant terms with 

 2 0p k   . (10) 

should be retained. The eventual result for the slowly varying amplitudes is presented in the form of 

the following equations: 
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   , (13) 

where damping factors 1 and 2 have been additionally introduced. Here v is the group velocity of the 

Lamb waves. 

Here it is appropriate to mention that an attempt to build up the classical Hamiltonian corresponding to 

Eqs. (11)-(13) will produce a term containing  * * *

0 . .pi t
h e d d a b c c


  , where a, b, and d are the 

canonical variables corresponding to amplitudes A, B, and D, respectively. The combination 
* * *d a b  

has the quantum counterpart in the form of production of three phonon creation operators. This fact 

indirectly explains the explosive growth effect. 

 

3 Numerical example of the explosive instability 
 

For the numerical analysis, it is convenient to rewrite Eqs. (11)-(13) in the following form: 
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Here time t is measured in microseconds, x and L are normalized on the group velocity v, new 

amplitudes A and B are obtained by adding a factor k/ε, amplitude D is multiplied by lε/2 (ε is the 

spontaneous magnetostrictive strain introduced above), detuning from resonance 

0
2p p k       is neglected, the interaction amplitude Φ is defined as 

 
0

2
p

g

k
h

v




   , (17) 

and a new parameter  / 8 k   is introduced. Further, variable D present in Eqs. (14)-(17) is 

an additional component of the total shear mode amplitude D+D0, where parameter D0 corresponds to 

a continuous excitation of the resonance mode by an external alternative force. Basically, in 

experiments such force is created by an additional alternative magnetic field applied at the 

eigenfrequency of the mode [7,9]. 

Equations (14)-(16) are to be completed by the boundary and initial conditions: 

  00 0
, 0

x t
A A t A

 
  , (18) 

 
0

0, 0
x L t

B B
 
  , (19) 

 
00t

D D

 , (20) 

where A0(t) is the amplitude of an incident wave at the entrance x=0 of the active zone. 

Equations (14) and (15) describe the parametric phase conjugation of travelling waves through the 

presence of complex conjugate amplitudes in the right-hand sides. These conjugate amplitudes 

contribute into Eqs. (14) and (15) together with the shear excitation D and variable  corresponding to 

the pumping magnetic field (see Eq. (17)). At the same time, Eq. (16) introduces a feedback effect into 

the system, when the signal (travelling Lamb waves) impacts the pumping (shear resonance). In the 

absence of the feedback effect, the amplitudes of Lamb waves would exponentially increase [10,11] 

once the threshold of parametric instability is reached. As we will show here, the addition of feedback 

in Eq. (16) considerably modifies the behaviour of the system. Due to the feedback, the exponential 

amplification scenario is followed by the explosive instability. 

Accepting the following typical values of physical parameters of the problem: k/(2)=20 MHz, 

/(2)=1 MHz, acoustical quality factor of 10
3
, v=10

5
 m/s, L= 4 cm, H=0.5 kOe, h0=40 Oe, and 

magnetic parameters for the antiferromagnetic crystal taken from [7,12], we obtain the normalized 

parameters 1=6·10
-2

 (s)
-1

, 2=3·10
-3

 (s)
-1

, L=10 s, =10 (s)
-1

, =6.25·10
-2

 (s)
-1

 in Eqs. (14)-

(16). In Fig. 2 below, t, x, and L are measured in microseconds. 

In the boundary condition Eq. (18), an explicit form for A0(t) should be set. In fact, in the situation of 

the giant amplification considered here the exact shape of the "starter" signal is not essential. We 

choose a Gaussian pulse of duration w=0.5 s centered at t0=2 s. Two remaining parameters, A0 and 

D0, determining the boundary conditions Eqs. (18)-(20) are already normalized on the spontaneous 
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. Therefore A0=10
-2

 taken here as an example corresponds to a low strain 

of about 10
-7

. The shear mode amplitude D0 plays the pole of a pumping; a chosen value D0=5·10
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actually means that the considered pumping amplitude is quite low (about 5·10
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) and can be increased 

at least by a factor of 10
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. The normalized amplitudes can reach values of order of 10

2
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); at higher strains the crystal fails. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Time dependencies for the amplitudes A≈B at the centre of the plate i.e. at x=L/2 showing 

explosive (black curves) and exponential (gray curves) instabilities. The former case occurs in the 

presence of the Feshbach resonance i.e. when the additional resonant shear mode pumping is applied 

while the latter situation corresponds to the classical parametric interaction (no additional shear action, 

magnetic pumping only). The vertical axis is shown in the logarithmic scale. Sets (a)-(c) illustrate the 

process at different values of parameters 1, D0, and A0, respectively. The baseline curves (thick lines) 

are the same in all the three sets. 

 

Figure 2 demonstrates the existence of the explosive instability at a given set of parameters (thick 

black line in each set (a)-(c)). At the beginning of the amplification process i.e. for 10 s<t<20 s in 

our example, the amplitudes A and B grow exponentially similarly to the case of the classical 

parametric interaction 
p k k     (thick gray line), when shear resonant feedback is absent i.e. D 

is kept constant, D=D0, instead of considering the time-dependent evolution of D according to Eq. 

(16). The shear pumping (Feshbach-type resonance) starts playing its role at t≈22.5 s when a 

singularity develops almost instantly. The Lamb wave amplitudes immediately reach values of 10
2
-10

3
 

in our example shown in Fig. 2 and then infinitely grow. It was also found that at large amplitudes 

A≈B. 

The three sets (a)-(c) in Fig. 2 illustrate the explosive instability dependencies on the system's 

parameters. In the considered example the "explosion" always occurs, but its time depends on 1 (set 

a), D0 (set b), and A0 (set c). If no acoustic attenuation 1 in the system is present, the explosion 

appears 2 s earlier than in the baseline case (thick lines) but the general behaviour remains 

unchanged. Doubling the initial shear pumping amplitude D0 (set b) results in a considerable 

enhancement of the "explosive" properties; the instability appearance time becomes twice shorter. 

Finally (set c), the initial Lamb wave amplitude lowered in 10 times delays the explosion development 

but, again, does not alter the behaviour of the system. 

Generally, Fig. 2 illustrates the efficiency of the Feshbach-type resonance for enhancing the 

instability. Indeed, when the singularity has developed, the amplification coefficient increase due to 

the nonlinear feedback is theoretically infinite and, in practice, is limited by the ultimate strength of 

the material or high-order nonlinear effects such as pumping exhaustion, nonlinear frequency shift etc. 

Those effects are not considered here. 
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4 Conclusions 
 

The analysis and numerical examples we present are related to systems with two-and three-phonon 

interactions. Two-phonon processes described here correspond to the classical parametric interaction 

of the kind 
p k k    , where the pumping wave of frequency p exponentially amplifies signals 

at frequencies k and -k. In the considered case, Lamb waves of frequencies k and -k propagate in a 

plate made of antiferromagnetic material in which a transverse alternative magnetic field of frequency 

p is applied. The situation changes considerably if an additional pumping channel is introduced in the 

form of a shear resonant mode of frequency . The corresponding three-phonon process 

p k k      generates instabilities of much more "powerful" (explosive) type when time 

dependencies of signal amplitudes behave as a mathematical singularity. This offers an opportunity to 

convert the magnetic energy into mechanical energy in an extremely efficient manner. 

An antiferromagnetic crystal excited in a way described here is only an example of a situation in 

which the derived explosive instability equations are applicable and the three-phonon interaction takes 

place. The considered nonlinearity modulation mechanism is possible to extend on systems of 

different physical nature and to apply in acousto-electronics, electro- and hydrodynamics and in 

microsystems designing. 
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