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Abstract 

Review on EP300, with data on DNA/RNA, on the 

protein encoded and where the gene is implicated. 

Identity 

Other names: P300, KAT3B 

HGNC (Hugo): EP300 

Location: 22q13.2 

DNA/RNA 

Description 

p300 was first discovered on the basis of its 

interaction with the adenoviral protein E1A and 

EP300 locus was subsequently mapped to the long 

arm of chromosome 22, spanning about 88 kb 

(Whyte et al., 1989; Eckner et al., 1994). 

Transcription 

EP300 has only one splice variant derived from the 

splicing of its 31 exons with an mRNA of 9585 bp 

which includes 1219 and 1121 bp of 5'UTR and 

3'UTR, respectively. 

Pseudogene 

No pseudogenes are known. 

Protein 

Description 

p300 is a large size protein of about 264 kDa 

belonging to the KAT3 (lysine or K-

acetyltransferase) family (Valor et al., 2013). 

p300 shares a modular organization consisting in 

several conserved domains including a central 

chromatin association and modification region 

which includes the bromodomain/PHD finger 

module and the KAT11 domain (Rack et al., 2014) 

which is flanked by four transactivation domains 

(TADs): i) the CH1 that encompasses the TAZ1 

domain, ii) the KIX domain, iii) another CH3 

containing the TAZ2 domain and a ZZ domain, and 

iv) the IBiD (Bedford et al., 2012; Wang et al.,

2013). 

Schematic representation of EP300 gene. Black boxes represent exons and gray ones 5' and 3' UTRs. Thin black lines 
represent introns. (Modified from Zimmerman et al., 2007). 
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Schematic structure of p300 protein including its functional and structural domains and their localization. NLS (nuclear 
localization signal), CH1 (cysteine/histidine-rich region 1, also known as transcriptional-adaptor zinc-finger domain 1 or TAZ1), 
KIX (kinase inducible domain of CREB interacting domain), BROMO (bromodomain), PHD (plant homeodomain finger), KAT11 
(lysine acetyltransferase domain), ZZ (ZZ-type zinc finger domain), TAZ2 (transcriptional-adaptor zinc-finger domain 2; ZZ and 

TAZ2 together are sometimes referred to as CH3 or cysteine/histidine-rich region 3), and IBiD (IRF3-binding domain). Aminoacid 
positions are from UniGene NP_001420.2. 

 

The Bromodomain mediates p300 binding to 

acetylated histones, nucleosomes and transcriptional 

factors and could therefore play a role in tethering 

p300 to specific chromosomal sites (Kalkhoven et 

al., 2004; Rack et al., 2014) moreover, the associated 

PHD finger is an integral part of the enzymatic core 

of the protein influencing its ability to recognize and 

acetylate both itself as well as histones and non-

histone substrates (Kalkhoven et al., 2004; Wang et 

al., 2013; Rack et al., 2014). The KAT11 catalytic 

domain can acetylate p300 itself and a variety of 

histonic and non-histonic proteins and the CH rich 

regions are able to bind zinc and are involved in 

protein-protein interaction (Valor et al., 2013; Wang 

et al., 2013). 

p300 has also multiple specific interaction domains 

for different transcriptional factors such as the KIX 

domain that mediates CREB-p300 interaction and 

CREB phosphorylation at serine 133 residue but also 

for the Retinoic Acid Receptor-related orphan 

receptor A (RORA) and for ALX1 at the N-term end 

of the protein and for Interferons at C-term end. 

Expression 
p300 is ubiquitously expressed in human tissues 

(Kalkhoven et al., 2004; Valor et al., 2013). p300 is 

highly evolutionary conserved and present in many 

multicellular organisms including flies, worms and 

plants but not in lower eukaryotes such as yeasts 

(Kalkhoven et al., 2004). 

Localisation 
p300 is a nuclear protein which resides in a specific 

nuclear structure called nuclear body (Chan and La 

Thangue, 2001). 

Function 

p300 is a transcriptional coactivator with intrinsic 

lysine acetyltransferase activity able to regulate 

transcription and gene expression in different ways. 

1) Acetylation of histones tails: p300 can enable 

transcription through the catalytic activity of its 

KAT domain which is able to acetylate promoter 

nucleosomal histones resulting in chromatin 

remodelling and relaxation and in increased 

accessibility of the DNA to other essential regulators 

(Kalhoven et al., 2004; Wang et al., 2013).  

Thanks to its ability in modifying chromatin 

structure by histone acetylation, p300 can be defined 

as "writer" of the epigenetic code (Berdasco et al., 

2013). 

2) Acetylation of other target proteins: p300 can also 

acetylate other kinds of proteins, such as 

transcriptional factors, modulating their activity 

positively or negatively, or coactivators. 

Acetylation of non-histone substrates can result in 

either positive or negative effects on transcription by 

affecting protein-protein interactions (activator of 

thyroid and retinoid receptors ACTR), protein-DNA 

interactions (the high mobility group protein 

HMGI), nuclear retention (the hepatocyte nuclear 

factor HNF4) or protein half-life (E2F). 

For example some acetylated p300 targets regulate 

the expression of histone methyltransferase leading 

to chromatin condensation and gene silencing. 

3) RNA Polymerase II stabilization: p300 functions 

as a "bridge" linking the DNA-bound transcription 

factors (activators) to the basal transcription 

machinery through direct interaction with TFIID, 

including TATA-binding protein (TBP) and 13 TBP-

associated factors (TAFs) and TFIIB promoting the 

pre-initiation complex (PIC) assembly (Wang et al., 

2013). 

p300 has also some more indirect chromatin-related 

roles: 

4) DNA replication and repair: p300 interacts with 

various replication and repair proteins, including 

proliferating cell nuclear antigen (PCNA), the Recq4 

helicase, Flap endonuclease 1 (Fen1), DNA 

polymerase b and thymine DNA glycosylase, with 

the latter three also serving as acetylation substrates. 
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Comparison of p300 and CBP amino acidic sequences. The blue regions indicate the areas of highest homology with the 
percentage of amino acid identity specified in between. Position of the corresponding domains are taken from UniGene 

(NP_001420.2 for EP300 and NP_004371.2 for CREBBP). (Modified from Chan and La Thangue, 2001). 

 

5) Cell cycle regulation: p300 associates with the 

complex formed between cyclin E and cyclin-

dependent kinase 2 (cdk2) regulating proper 

progression of the cell cycle. 

6) p53 activity regulation: p300 is involved in p53 

degradation, which depends on the murine double 

minute 2 protein (MDM2). Degradation and 

ubiquitination of p53 is dependent on MDM2, and a 

ternary complex between these two proteins and 

p300 regulates the turnover of p53 itself in cycling 

cells. Furthermore, the CH-1 region of p300 displays 

polyubiquitin ligase activity towards p53, and could 

therefore play a key role in controlling p53 levels. 

7) Nuclear import: p300 can acetylate two proteins 

involved in regulating nuclear import, the importin-

α1 isoform Rch1 and importin-α7, and could 

therefore play a role in this process. 

Because of its ability of interacting with more than 

400 partner proteins, p300 can be considered a "hub" 

(Bedford et al., 2014). Its interactome includes pro-

proliferative proteins and oncoproteins: c-Myc, c-

Myb, CREB, c-Jun and c-Fos; transforming viral 

proteins: E1A, and E6; as well as tumor suppressors 

and pro-apoptotic proteins: Forkhead box class O 

(FoxO) transcription factors FoxO1, FoxO3a, and 

FoxO4, signal transducers and activators of 

transcription (STAT) 1 and STAT 2, Hypoxia-

inducible factor 1α (HIF-1α), breast cancer 1 

(BRCA1), SMA/MAD homology (Smad) proteins, 

the Runt-related transcription factor (RUNX), E2 

Transcription Factor (E2F), and E-proteins (Wang et 

al., 2013). 

Homology 

p300 is highly homologous to the cyclic AMP 

response element-binding (CREB) binding protein 

(CBP) with 63% identity and 75% similarity at 

amino-acid level (Narayanan et al., 2004; Wang et 

al., 20113). CREBBP/CBP locus was mapped on 

16p13.3, a region of extensive homology to the one 

on chromosome 22 where EP300/p300 resides (Chan 

and La Thangue, 2001; Gervasini, 2010). 

Mutations 

Germinal 

Rubinstein-Taybi Syndrome (RSTS; OMIM 

#180849, #613684). 

Somatic 

Cancers derived from almost all tissues and organs, 

such as those of hematopoietic and lymphoid organs, 

cancers of eye, skin, bones, thyroid, salivary and 

adrenal glands, central nervous system (CNS) 

including meninges, and nervous system (NS) 

including automatic ganglia, esophagus, upper 

aerodigestive tract, lung and pleura, stomach, liver, 

pancreas, biliary tract, large and small intestine, 

kidney, urinary tract and breast, endometrium, 

cervix, ovary and prostate. 

Epigenetics 

The identification of mutations in epigenetic genes, 

classified as writers, readers and erasers based on 

their function (Berdasco and Esteller, 2013), 

represents a link between the cancer epigenome and 

genetic alterations acting as "driver" or "passenger" 

mutations in cancer development.  

Actually, many genetic alterations in cancer 

epigenetic regulators cause cancer-associated 

phenotype via epigenetic dysfunction (Roy et al., 

2014). 

Implicated in 

Rubinstein-taybi syndrome (RSTS; 
OMIM #180849, #613684) 

Note 

Germinal mutations leading to loss of 

function/haploinsufficiency. 

Disease 

Rubinstein-Taybi syndrome is a rare (1:125000 live 

birth) autosomal dominant neurodevelopmental 

disorder.  
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EP300 germline mutations in Rubinstein-Taybi patients (2014 update). A) Point mutations, B) intragenic deletions and C) 
schematic of the gene with type and localization of all 26 mutations reported so far. (Modified from Negri et al., 2014). 

 

 

It is characterized by postnatal growth retardation, 

intellectual disability (ID), skeletal anomalies (broad 

and/or duplicated distal phalanges of thumbs and 

halluces are a landmark sign) and distinctive facial 

dysmorphisms including down-slanting palpebral 

fissures, broad nasal bridge, beaked nose and 

micrognathia (Hennekam, 2006). 

Prognosis 

All EP300-mutated RSTS patients described in 

literature are alive (Roelfsema et al., 2005; Bartholdi 

et al., 2007; Zimmermann et al., 2007; Foley et al., 

2009; Bartsh et al., 2010; Tsai et al., 2011; Negri et 

al., 2014). 

Hybrid/Mutated gene 

The identification of EP300 as the second RSTS 

causative gene in 2005 (Roelfsema et al., 2005) 

disclosed the heterogeneous nature of the syndrome. 

EP300 heterozygous point mutations and intragenic 

deletions have been detected in about 8% of RSTS 

CREBBP-negative cases (Negri et al., 2014). 

Fourteen patients are clinically and genetically 

described (Roelfsema et al., 2005; Bartholdi et al., 

2007; Zimmermann et al., 2007; Foley et al., 2009; 

Bartsh et al., 2010; Tsai et al., 2011; Negri et al., 

2014), while 12 additional alterations are reported in 

the LOVD database . 

Oncogenesis 

RSTS patients (estimated incidence 5%) have an 

increased predisposition to malignancies like 

leukemia, neuroblastoma, meningioma and 

pilomatrixoma, developed either in the first years of 

life or in mid-adulthood (30-40 years) (Siraganin et 

al., 1989; van de Kar, 2014). Glaucomas and keloids 

are reported too; in particular, EP300-mutated RSTS 

patients show a slight increase in developing skin 

anomalies such as keloids (Van Genderen et al., 

2000; van de Kar, 2014; Negri et al., 2014). 

Various cancers 

Note 

All data are taken from COSMIC database 

(Catalogue of Somatic Mutations In Cancer) 

(Release v70 August 2014). 

http://cancer.sanger.ac.uk/cosmic/search?q=EP300
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EP300 somatic point mutations load. A) Pie chart of the main kinds of point mutations and relative numbers, B) bar chart of 
the distribution of the mutations within the gene domains and C) recurrent mutations and localization. Data are reworked from 

COSMIC database. 
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Disease 

EP300 point mutations, copy number variations 

(CNVs) but also gene expression profile alterations 

have been detected in almost all human cancers 

independently of the embryonic origin. Out of 

>14.000 tumor samples tested, those derived from 

hematopoietic and lymphoid organs, lung, central 

nervous system (CNS), breast, intestine and ovary 

show the highest prevalence of EP300 mutations. 

Hybrid/Mutated gene 

The majority of EP300 point mutations detected in 

tumoral samples are heterozygous (Aumann et al., 

2014). 

With about ~400 unique somatic alterations 

reported, point mutations appear to be the most 

represented kind of EP300,mutations: in particular, 

missense mutations account for >60% of all 

mutations, followed by synonymous (~13%) and 

nonsense (~11%) mutations. In detail, transitions 

justify about 70% of all substitutions. Out of frame 

insertion/deletions (ins/del) represent together 38% 

and in frame ins/del about 4%. 

Mutations are widespread across the gene with a 

great concentration in the large KAT11 domain, 

which clusters about 26% of all alterations. Few 

recurrent mutations are reported: the most frequently 

mutated amino acid residue is the aspartic acid at 

position 1339 in the KAT11 domain which is 

replaced by either asparagine (eight samples) or 

tyrosine (four samples). 

CNVs are described too. In particular, losses are 

reported in 31 samples including breast, 

endometrium, ovary, large intestine and lung cancer, 

while gains seem to be rarer being described in 11 

samples including breast, hematopoietic and 

lymphoid, and lung cancer. 

Alterations in EP300 gene expression are recorded 

too: in particular over expression was described in 

94 samples, while under expression in 104 samples, 

both in cancers derived from breast, endometrium, 

ovary, CNV, haematopoietic and lymphoid organs, 

kidney, large intestine and lung. 

Oncogenesis 

The oncogenic mechanism by which EP300 

mutations act is not yet clear, but as the most 

frequently mutated region is the lysine 

acetyltransferase domain, which catalyzes 

acetylation of histones and other essential proteins, 

aberrant acetyltransferase activity may be a key 

feature. In vitro studies demonstrated reduced 

H3K18 acetylation, as well as decreased ability to 

acetylate p53 and BCL6, in p300- mutated cells 

(Peifer et al., 2012). Because of p300 multiple 

functions and diverse interactions, many intertwisted 

mechanisms could play a role in the different 

mutations' effects. 

t(11;22)(q23;q13) resulting in MLL1-
EP300 fusion gene 

Note 

Somatic mutations. 

Disease 

Therapy-related leukemias and myeloid neoplasms. 

Cytogenetics 

Ida et al., described the first patient presenting the 

karyotype 48,XY,+8,+8,(11;22)(q23;q13); the same 

group (Ohnishi et al.) described a second patient 

with 46,XX,t(1;22;11)(q44;q13;q23), 

t(10;17)(q22,q21), while a third patient, with 

46;XY,t(11;22)(q23;q13)[15]/47,idem,+8[2], was 

reported by Duhoux et al. 

Hybrid/Mutated gene 

Rearrangements of the mixed lineage leukemia 

(MLL1 or KMT2A; gene ID: 4297) locus are 

frequently encountered in acute leukemias and at 

least 104 different chromosomal rearrangements 

involving MLL1 itself with more than 64 

translocation partner genes have been described 

(Meyer et al., 2009) while rearrangements of EP300 

gene locus seem to be rare events. 

Only three cases of MLL1-EP300 fusion genes have 

been described, all in therapy-related leukemia 

patients following chemoterapy with topoisomerase 

II inhibitors. The first patient was initially diagnosed 

as having non-Hodgkin lymphoma and, after 

conventional chemotherapy, he developed 

secondary AML which was cytogenetically 

characterized as t(11;22)(q23;q13) producing a 

chimeric MLL1-EP300 gene in which the exon 9 of 

MLL1 was juxtaposed to EP300 exon 15 (Ida et al., 

1997). The second case is a girl who developed AML 

after chemotherapy for neuroblastoma. She 

presented a complex karyotype 

46,XX,t(1;22;11)(q44;q13;q23),t(10;17)(q22,q21) 

with the fusion of MLL1 exon 8 to EP300 exon 15 

and also a less expressed clone in which exon 7 of 

MLL1 is fused with exon 15 of EP300, which was 

considered to be generated by alternative splicing 

(Ohnishi et al., 2008). The third patient presented 

AML with myelodysplasia-related changes evolving 

after chemotherapy in acute myelomonocytic 

leukaemia (AMML). Leukemic cells were 

cytologically characterised as 

46;XY,t(11;22)(q23;q13)[15]/47,idem,+8[2] 

including the fusion of exon 10, or exon 11 resulting 

from alternative splicing, of MLL1 with exon 13 of 

EP300 (Duhoux et al., 2011). 

All chimeric proteins retain almost the same part of 

both MLL1, including the AT-hook, the DNA 

methyltransferase and the transcriptional repression 

domains and p300, i.e. the bromodomain, the 

catalytic KAT and TADs 
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t(11;22)(q23;q13) leads to fusion of MLL1 gene to EP300. A) Schematic representation of MLL1, p300 and the predicted 
MLL1-p300 fusion proteins of all reported cases (Ida et al., 1997; Ohnishi et al. 2008; Duhoux et al., 2011). B) Nucleotide 

sequences of the hybrid junctions of the chimeric MLL1-EP300 genes and relative references. Breakpoints are indicated by 
arrows; AT: AT hooks, NLS: nuclear localization signals, CxxC: motif recognizing unmethylated CpG dinucleotides, PHD: plant 
homeodomain fingers, TAD: transactivation domain, SET: histone methyltransferase active sites; CH: cystidine/histidine-rich; 

KIX: kinase inhibitory domain, Bromo: bromodomain, KAT: Lysine acetyltransferase domain. (Modified from Duhoux et al., 2011). 
 

Oncogenesis 

The fusion of MLL1 with the lysine-

acetyltransferase p300 supposedly leads to 

hyperacetylation of chromatin which contributes to 

increase the transcriptional output conferring a 

significant oncogenic advantage to the cells. 

Furthermore, nuclear factors, such as p300, have 

transcriptional activity and their function might be 

deregulated by the fusion with MLL1 (Ohnishi et al., 

2008; Duhoux et al., 2011). 

The translocation t(11;22)(q23;q13) involving 

MLL1-EP300 is characteristic of therapy related 

leukemias where it is likely driven by topoisomerase 

II inhibitors, rather than of de novo leukaemias. 

t(8;22)(p11;q13) resulting in MOZ-
EP300 fusion gene 

Note 

Somatic mutations. 

Disease 

de novo, progression or therapy-related AML. 

 

 

Cytogenetics 

The t(8;22)(p11;q13) is a rare translocation found in 

acute myeloid leukaemia (AML) described in only 

three patients (Lai et al., 1992; Soenen et al., 1996; 

Chaffanet et al., 2000; Kitabayashi et al., 2000; 

Tasaka et al., 2002). The first patient was diagnosed 

as having a de novo AML with karyotype 47, 

XY,+8,t(8;22)(p11;q13), while the second patient 

suffered from a chronic myelomonocytic leukaemia 

(CMML) which evolved in AML with the abnormal 

karyotype: 

46,XY,t(8;22)(p11;q13)/idem,+der(8)t(8;22)(p11;q

13)del(17)(p11) (Lai et al., 1992; Soenen et al., 

1996; Chaffanet et al., 2000). The third case is a man 

with primary macroglobulinemia who developed a 

secondary AML during chemotherapy, with the 

karyotype: 47, XY, 

t(8;22)(p11.2;q13.1),+der(8)t(8;22)(22qter→22q13.

1::8p11.2→8q13::8q22→8qter),add(19)(p13.3) 

(Kitabayashi et al., 2001; Tasaka et al., 2002). 

Hybrid/Mutated gene 

Monocytic leukemia zinc finger gene (MOZ, Gene  
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Schematic representation of the p300, MOZ, MOZ-p300 and p300-MOZ proteins. A) p300, MOZ, p300-MOZ and MOZ-p300 
diagram of the first case and B) p300, MOZ, p300-MOZ and MOZ-p300 diagram of the third one. Red arrows indicate the 

breakpoints of the translocations and nucleotide sequences of WT and hybrid junctions are reported. The functional domains of 
MOZ and p300 as well as those of fusion proteins are indicated above and beneath the diagrams. NID: nuclear receptor 
interaction domain, CH1-3: cysteine/histidine-rich domain, CID: CREB-interaction domain, B: bromodomain, KAT: lysine 

acetyltransferase domain, Q: glutamine-rich region, PH: PHD class zinc finger, MYST: MOZ, YB1, SAS, TIP homology domain, 
S: serine-rich region, PQ: proline/glutamine region, M: methionine-rich region. (Modified from Kitabayashi et al., 2001). 

 

 

ID: 7994) codifies for a Myst (MOZ, Ybf2 (Sas3), 

Sas2, Tip60)-type lysine acetyltransferase (KAT) 

also named KAT6A (lysine acetyltransferase 6A). 

The gene underlies chromosomal translocation with 

different partners, generating fusion genes, such as 

MOZ-TIF2, MOZ-CBP and MOZ-EP300 in acute 

myeloid leukemia (AML). All MOZ fusion partner 

genes are involved in histone modification and 

transcriptional regulation (Katsumoto et al., 2008). 

To date, only three cases of t(8;22)(p11;q13) 

involving MOZ and EP300 have been reported and 

investigated at DNA and RNA levels in two of them 

(Lai et al., 1992; Soenen et al., 1996; Chaffanet et 

al., 2000; Kitabayashi et al., 2001; Tasaka et al., 

2002). 

In Chaffanet et al., and in Kitabayashi et al., MOZ-

EP300 fusion genes result from the hybrid junction 

between exon 16 and exon 15 of MOZ with exons 2 

and 3 of EP300, respectively. 

In both cases, the MOZ breakpoints are located in or 

around its acidic domain resulting in the retention of 

its N-terminal region and the replacement of the C-

terminal end with the p300 fusion partner. The N-

terminal region of MOZ contains a H15 (histone 

H1/H5) domain related to nuclear localization, a 

PHD (plant homeobox-like domain) zinc finger 

involved in binding to methylated histones, a basic 

domain and a Myst-type KAT domain. The KAT 

domain contains C2HC zinc finger and helix-turn-

helix motifs that bind to nucleosomes and DNA. 

Because of the early truncation of EP300 , almost all 

its functional domains are conserved, including the 

KAT, the bromodomain and the CH1-3, resulting in 

a fusion protein with both MOZ and p300 KAT 

domains. 

In the reciprocal fusion genes, EP300-MOZ, exon 1 

or 2 of EP300 are juxtaposed to exons 17 and 16 of 

MOZ, respectively. In both cases, the N-terminal 

region including only the nuclear receptor 

interaction domain (NID) of p300 and the C-terminal 

of MOZ encompassing its serine, proline-

glutammine and methionine-rich regions are 

conserved (Chaffanet et al., 2000; Kitabayashi et al., 

2001). 

Oncogenesis 

The conservation of MOZ and p300 KAT catalytic 

domains in the hybrid proteins MOZ-p300 may 

result in abnormal acetylation of histonic and non 

histonic proteins with a consequent alteration in gene 

expression regulation, leading to leukaemogenesis; 
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furthermore, MOZ-p300 fusion proteins retain the 

domains required for the interaction with AML1 thus 

affecting AML1-dependent transcription whose 

deregulation may be implicated in leukaemogenesis 

too (Kitabayashi et al., 2001). 
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