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Abstract 
Review on RHOA, with data on DNA/RNA, on the 

protein encoded and where the gene is implicated. 

Keywords 

RhoA, Small Rho GTPase 

Identity 
Other names: ARH12, ARHA, H12, RHO12, 

RHOH12 

HGNC (Hugo): RHOA 

Location: 3p21.31 

Local order 

From the plasmatic membrane and cytoplasm. 

DNA/RNA 

Description 

The RhoA gene can be found on chromosome 3 at 

location: 49371585-49424530.  

This gene includes 5 exons. 

Transcription 

This gene has 6 transcripts (splice variants): 2031 bp 

(variant a); 961 bp (variant b); 889 bp (variant c); 

633 bp (variant d); 539 bp (variant e); 388 bp (variant 

f). 

Protein 

Description 

The RhoA protein encodes five alternative isoforms: 

variant a (193 amino acids), variant b (187 amino 

acids), variant c (90 amino acids), variant d (129 

amino acids) and variant e (86 amino acids). 

- RhoA structure: 
The available functional and structural data show 

that RHO-GTP-binding proteins are made-up of an 

effector domain, four separate guanosine phosphate 

binding regions that span the length of the core 

structure, a hypervariable region and a CAAX box 

motif (C: Cys; A: aliphatic residue; X: any residue). 

The effector domain (residues 26-45) changes 

conformation between the GTP bound and GDP 

bound states. All RHO proteins have conserved 

residues at Gly14, Thr19, Phe30 and Gln93 which 

are involved in binding, stabilization or regulation of 

GTP hydrolysis. The N-terminus region also 

contains switch 1 (residues 27-40) and switch 2 

(residues 59-78) regions which change conformation 

between GTP- and GDP-bound states and may 

facilitate changes in effector region required for 

binding to downstream targets. RhoA protein is 

target for several bacterial toxins, which modify key 

conserved amino acids involved in their regulation.  
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Schematic representation of the domains of RhoA. The available functional and structural data show that RHO-GTP-binding 
proteins are made-up of an effector domain, four separate guanosine phosphate binding regions that span the length of the core 

structure, a hypervariable region and a CAAX box motif (Lartey and López Bernal, 2009). 

 

These include Clostridium botulinum exoenzyme C3 

transferase, which modifies Asn41, and Toxin B, 

which acts on Thr37. The hypervariable region 

made-up of residues 173-189 is the region of most 

diversity between individual RHO family members. 

It may contain sites for palmitoylation and a 

polybasic region which can determine membrane 

association. The C-terminus of RhoA is essential for 

correct localization of the protein. RhoA is post-

translationally modified by prenylation of a 

conserved C-terminal cysteine followed by 

methylation and proteolytic removal of the last three 

amino acids. The prenyl group (geranylgeranyl) 

anchors the GTPase into membranes and this 

modification is essential for its stability, cell growth, 

transformation, and cytoskeletal organization. 

- RhoA activity regulation: 
Rho GTPases can be activated by intrinsic or 

extrinsic cues, setting off a signaling cascade 

(Etienne-Manneville and Hall, 2002). Rho GTPases 

behave as molecular switches that fluctuate between 

inactive and active states, two conformations that 

depend on the binding of either GDP or GTP to the 

GTPases, respectively (Bustelo et al., 2007). Two 

types of regulatory proteins control this cycling: 

guanine nucleotide-exchange factors (GEFs), which 

activate Rho GTPases by catalyzing the exchange of 

GDP for GTP (Rossman et al., 2005), and GTPase-

activating proteins (GAPs), which inactivate the 

GTPases by enhancing intrinsic GTP hydrolysis 

activity (Bos et al., 2007). There are over 80 GEFs 

and 70 GAPs for Rho GTPases, whose activity is 

tightly regulated and can be highly specific. RhoA 

can be sequestered in the cytoplasm by guanine 

nucleotide-dissociation inhibitors (GDIs), which 

bind prenylated GDP-bound Rho proteins (Garcia-

Mata et al., 2011), allowing translocation of Rho 

GTPases between membranes and cytosol. 

 

- RhoA effectors binding: 

To date, at least 21 proteins have been identified 

which directly interact with RhoA (ROCK1, 

ROCK2, PRKcA, PKN1, PKN2, RTKN1, RTKN2, 

RHPN1, RHPN2, KTN1, CIT, DIAPH1, KCNA2, 

ITRP1, PLD, MYBPH, PIP5K, FAK, BORG, MBS, 

GDIA).  

Some of these have been shown to contribute to 

specific responses downstream of RhoA. Similarly 

to GEFs and GAPs, effectors bind to Rho both 

through the Switch 1 and 2 regions, but the amino 

acids involved in interaction with each target differ. 

Expression 
RhoA protein is expressed in all tissues tested. RhoA 

expression in normal human tissues, embryonic 

tissues and stem cells. 

Localisation 

RhoA localizes predominantly in the plasmatic 

membrane and cytoplasm.  

Also, it localizes to cell-cell contacts and cell 

projections. 

Function 

RhoA is a protein involved in multiple cellular 

processes. 

- Role in actin organization:  
RhoA protein plays a central role in regulating cell 

shape, polarity and locomotion through their effects 

on actin polymerization, actomyosin contractility, 

cell adhesion, and microtubule dynamics. RhoA is 

believed to act primarily at the rear of migrating cells 

to promote detachment. 

RhoA directly stimulates actin polymerization 

through activiation of diaphanous-related formins 

(DRFs, also known as Dia proteins).  

These stimulate addition of actin monomers to the 

fast-growing end of actin filaments. DRFs act 

together with ROCKs to mediate Rho-induced stress 

fiber formation.  
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RhoA activity regulation. Rho GTPase activity is controlled by guanine nucleotide exchange factor (GEF), GTPase-activating 
protein (GAP) and guanine nucleotide dissociation inhibitor (GDI). GEF activates Rho GTPases by facilitating the release of GDP 
and the binding of GTP. GAP inactivates Rho GTPases by promoting hydrolysis of the bound GTP molecules, resulting in their 
quick change from the GTP-bound form to the GDP-bound form. GDI binds to C-terminal prenyl groups on some Rho proteins, 
maintaining them in the inactive state. Active Rho GTPases act on their downstream effector proteins, stimulating a variety of 

cellular processes (Chi et al., 2013). 

 

ROCK-mediated phosphorylation of LIMK and 

consequent inhibition of cofilin also contributes to 

the increase in actin filaments in response to Rho. 

In addition, ROCKs induce actomyosin-based 

contractility and phosphorylate several proteins 

involved in regulating myosins and other actin-

binding proteins.  

Actomyosin contractility is important in migrating 

cells for detachment of the rear. Microtubules are 

essential for determining cell polarity as well as for 

vesicular locomotion and intracellular transport.  

The concerted action of ROCK and Dia is essential 

for the regulation of cell polarity and organization of 

microtubules. ROCK phosphorylates TAU and 

MAP2, proteins that regulate microtubule stability. 

RhoA plays a key role in regulating the integrity of 

cell-extracellular matrix and cell-cell adhesions, the 

latter including both adherens junctions and tight 

junctions.  

Loss of cell-cell junctions is required form the 

migration of epithelial cells and may be regulated 

reciprocally by ROCKs and DRFs. Also, RhoA is 

localized to developing axons and growth cones, and 

this localization is mediated by an axonal targeting 

element located in the RhoA 3' untranslated region 

(UTR). Local RhoA translations regulate the 

neuronal cytoskeleton and identify a new mechanism 

for the regulation of RhoA signaling (Wu et al., 

2005). On the other hand, increasing expression of 

the transcription repressor, GCF2, can silence RhoA 

expression, leading to actin cytoskeleton 

disorganization (Shen et al., 2012). 

- Role in cell migration: 
The inhibition of RhoA signaling by blocking the 

interaction with its downstream effectors Rho-

associated kinase (ROCK) and mDia is required for 

both vaccinia morphogenesis and virus-induced cell 

motility (Valderrama et al., 2006). 

- Role in cell protrusion: 

RhoA activates focal adhesion kinase (FAK) 

signaling. RhoA has a role in the initial events of 

protrusion, whereas Rac1 and Cdc42 activate 

pathways implicated in reinforcement and 

stabilization of newly expanded protrusions 

(Machacek et al., 2009). 

- Role in exocytosis: 
RhoA is involved in Ca2+-dependent exocytosis at 

least partly through the reorganization of actin 

filaments (Komuro et al., 1996). This type of 

exocytosis is regulated by G12/G13 alpha through a 

Rho/Rho-associated kinase-dependent pathway 

(Yamaguchi et al., 2000). 

- Role in endocytosis: 
RhoA helps direct endocytosis in a variety of cell 

types (Lamaze et al., 1996; Khandelwal et al., 2010; 

Yu et al., 2010). RhoA is essential for clathrin- and 

caveolar- independent endocytosis (Sabharanjak et 

al., 2002). Treatment with the PI3K inhibitor 

(LY294002) or the FAK inhibitor (PF573228) 

suppresses compensatory endocytosis by inhibiting 

the activation of RhoA and then reducing the 

recruitment of ROCK (Khandelwal et al., 2010). 

- Role in cytokinesis: 
Cytokinesis requires actomyosin-based contraction. 

Inhibition of ROCK or citron kinase causes defects 

in cytokinesis resulting in multinucleate cells. 

Diaphanous-related formins (DRFs) are also 

implicated in this process, the DRF mDia1 localizes 

to the cleavage furrow during cytokinesis. DRFs 

could contribute to cytokinesis by stimulating local 

actin polymerization and/or by coordinating 

microtubules with actin filaments at the site of the 

contractile ring. RhoA signaling is controlled by the 

central spindle, a set of microtubule bundles that 

forms between the separating chromosomes. Thus, 

inactivation of Rac by centralspindlin functions in 

parallel with RhoA activation to drive contractile 
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ring constriction during cytokinesis (Canman et al., 

2008). 

- Role in cell cycle regulation: 
RhoA plays a pivotal role in G1 cell cycle 

progression, primarily through regulation of both 

cyclin D1 expression, and the levels of the cyclin-

dependent kinase inhibitors p21 and p27. Multiple 

pathways seem to link Rho proteins to the control of 

cyclin D1 levels. Many of these involve the 

activation of protein kinases, leading to the 

subsequent modulation of transcription factor 

activity. RhoA suppresses p21 levels in multiple 

normal and transformed cell lines. This effect 

appears to occur through a transcriptional 

mechanism but is independent of p53, a major 

transcriptional regulator of p21. RhoA plays an 

important role in determining the levels of p27 

through a pathway involving its effector, the Rho-

associated kinases. RhoA facilitates entry into S 

phase by degradation of the cyclin-dependent kinase 

inhibitor p27kip1 (Hirai et al., 1997). 

- Role in development: 
RhoA protein is required for processes involving cell 

migration in development including: neurite 

outgrowth, dorsal closure, bone formation, and 

myogenesis. Rho-loss of function is embryonically 

lethal in mouse development by E7. This is 

attributed to failure in gastrulation and an inability of 

cells to migrate. 

- Role in transcriptional control:  
The relationship between many of the cellular 

functions mediated by RhoA with transcriptional 

regulation has been described. RhoA modulates the 

activity of SRF, NF-kappaB, c/EBPb, Stat3, Stat5, 

FHL-2, PAX6, GATA-4, E2F, estrogen receptor 

alpha, estrogen receptor beta, CREB, and 

transcription factors that depend on the JNK and p38 

MAP kinase pathways. Substrates to these kinases 

include c-Jun, ELK, PEA3, ATF2, MEF2A, Max 

and CHOP/GADD153. 

- Role in cell proliferation: 
RhoA plays cell type-specific roles in the regulation 

of cell proliferation. RhoA plays critical roles in both 

early and late stages of B-cell development (Zhang 

et al., 2012). 

Mutations 

Note 

48 mutations have been described in the RhoA gene, 

according to the Catalogue of Somatic Mutations in 

Cancer (COSMIC) database.  

De novo mutations have been described in patients 

with Burkitt lymphoma: R5Q and I23R (Richter et 

al., 2012; Rohde et al., 2014); peripheral T-cell 

lymphoma: G17V, affecting the GTP-binding 

domain (Manso et al., 2014; Palomero et al., 2014; 

Sakata-Yanagimoto et al., 2014; Yoo et al., 2014); 

head and neck carcinoma: E40Q and Y42I, affecting 

the effector domain (Lawrence et al., 2014); diffuse-

type gastric carcinoma: R5Q, Y42I and G17V 

(Kakiuchi et al., 2014). 

Implicated in 

Breast carcinoma 

Oncogenesis 

RhoA protein levels were significantly increased in 

breast cancer compared with the corresponding 

normal tissue. Of particular note, protein levels of 

RhoA were barely detectable in normal mammary 

tissue, but were highly expressed in all breast tumors 

tested. Interestingly, RhoA protein levels correlated 

with increasing breast tumor grade. Moreover, 

decreased metastasis-free survival was predicted by 

RhoA and ROCK1 co-overexpression in breast cell 

lines and cancer tissues (Gilkes et al., 2014). On the 

other hand, blocking RhoA activity with the RhoA 

pathway specific inhibitor H-1152, or a RhoA 

specific siRNA, resulted in inhibition of invasive 

behavior in a triple-negative breast cancer cell line 

(Fagan-Solis et al., 2013). 

Ovarian carcinoma 

Oncogenesis 

Expression of RhoA is significantly increased in 

advanced ovarian carcinomas and also in the 

peritoneal disseminated lesions (Horiuchi et al., 

2008). The expression of the protein is further 

upregulated in tumors of stages III/IV when 

compared to those of stages I/II. Analysis of matched 

pairs of primary and metastatic lesions showed that 

expression of both RhoA mRNA was significantly 

higher in metastatic lesions of peritoneal 

dissemination than in the respective primary tumors. 

Testicular cancer 

Oncogenesis 

RhoA is involved in testicular germinal epithelial 

carcinogenesis and progression in testicular germ 

cell tumors (GCT) (Kamai et al., 2001). Protein 

expression of RhoA and its two major downstream 

effectors ROCK1 and ROCK2, was significantly 

higher in tumor tissue than in nontumor tissue from 

57 patients with GCT. The expression was greater in 

tumors of higher stages than lower stages, thus RhoA 

correlates with tumor stage and aggressiveness. 

Pelvic/ureteric cancer 

Oncogenesis 

Both mRNA and protein level of RhoA are elevated 

in pelvic/ureteric cancer with an increase in lymph 

node metastasis. The expression levels of RhoA 

were related to poorly differentiated grade and 

muscle invasion and associated with a shorter 

disease-free and overall survival. These findings 

suggest that RhoA is involved in the invasion and 

metastasis of upper urinary tract cancer, indicating 
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that RhoA may be a useful prognostic factor in this 

disease. 

Bladder cancer 

Oncogenesis 

A similar deregulation of RhoA is observed in 

bladder cancer.  

In this sense, RhoA and ROCK protein levels are 

elevated in tumors, again with higher expression in 

less differentiated tumors and metastatic lymph 

nodes compared to normal bladder.  

Interestingly, the levels of expression of RhoA and 

ROCK correlated positively with one another 

suggesting that the GTPase and its effector synergize 

to promote tumor progression. 

Lung tumors 

Oncogenesis 

Of the two major forms of lung cancer, small cell 

lung carcinoma (SCLC) and non-small cell lung 

carcinoma (NSCLC), the former has a greater 

metastatic potential.  

The expression and activation of RhoA is greater in 

SCLC than NSCLC cell lines. It has been observed 

that RhoA repress the expression of nitric oxide 

synthase-2 (NOS-2) in a lung cancer-derived cell 

line. Since NOS-2 activity is related to reduced 

proliferation, RhoA could be eliminating this 

antiproliferative signal in lung carcinogenesis. In 

addition, inhibition of RhoA by C3 exoenzyme or 

through ADP-ribosylation leads to an increase in 

cadherin-based adhesion and loss of motility of 

SCLC. RhoA overexpression and delta-catenin 

positive expression are consistently found in 

NSCLC, but not in normal lung tissue (Zhang et al., 

2014). 

Oesophageal squamous cell 
carcinoma (ESCC) 

Oncogenesis 

RhoA and RhoC proteins promote both cell 

proliferation and cell invasion of human ESCC cell 

lines in vitro and in vivo (Faried et al., 2006). There 

were significant correlations among RhoA 

overexpression and tumor-node-metastasis (TNM) 

clinical classification, lymphatic invasion, and 

blood-vessel invasion. The five-year survival rates 

for ESCC patients with RhoA overexpression were 

significantly lower than those in patients with RhoA 

under-expression. The expression of RhoA protein 

appeared to be correlated with tumour progression of 

ESCC. Patients with RhoA overexpression tended to 

have poor prognosis compared with patients with 

RhoA under-expression. 

Gastric cancer 

Oncogenesis 

RhoA was found frequently overexpressed in gastric 

cancer tissues compared with normal tissues, 

suggesting that RhoA may play a critical role in the 

carcinogenesis of this type of cancer. The 

interference of RhoA expression and/or activity 

could significantly inhibit the proliferation and 

tumorigenicity of gastric cancer cells and enhance 

the chemosensitivity to therapeutic agents such as 

Adriamycin and 5-fluorouracil. Inhibition of 

RhoA/ROCK signaling pathway promotes the 

apoptosis of gastric cancer cells (Xu et al., 2012). 

Recently, recurrent gain-of-function mutations of 

RhoA have been described in diffuse-type gastric 

carcinoma (Kakiuchi et al., 2014). 

Hepatocellular carcinoma (HCC) 

Oncogenesis 

Invasiveness of HCC is facilitated by the Rho/Rho-

kinase pathway and likely to be relevant to tumor 

progression. The Rho/Rho-kinase may be useful as a 

prognostic indicator and in the development of novel 

therapeutic strategies. The high expression of RhoA 

protein in HCC plays an important role in 

intrahepatic recurrence of patients who underwent a 

hepatectomy for HCC, and RhoA is a useful marker 

for predicting early recurrence in an early-stage 

HCC (Fukui et al., 2006). Overexpression of RhoA 

is associated with poor prognosis in HCC (Li et al., 

2006; Hu et al., 2013). 

Pancreatic tumor 

Oncogenesis 

Although overexpression of RhoA has not been 

detected in any pancreatic tumor tissue to date, it 

might nevertheless also be involved in pancreatic 

tumors. The progression of pancreatic tumors is 

partially controlled by the balance between Tiam1-

Rac1 and RhoA (Guo et al., 2013). Use of two 3-

hydroxy 3methylgultaryl coenzyme A (HMG-CoA) 

reductase inhibitors, fluvastatin and lovastatin 

inhibit human pancreatic cancer cell invasion and 

metastasis in a Rho-dependent manner. These 

inhibitors prevent the synthesis of cholesterol 

precursors necessary for proper membrane 

translocation of Rho protein. Also, BART plays a 

role in inhibiting cell invasion by regulating the 

activity of RhoA in pancreatic cancer cells (Taniuchi 

et al., 2011). 

Colorectal cancer 

Oncogenesis 

A high proportion of colon cancers overexpress 

RhoA and several aspects of colon tumor biology 

have been related to Rho GTPases.  

 

 

Leptin receptor and leptin-induced migration of 

colonic epithelial cancer cells is dependent on RhoA, 

since inhibition of the activity of the GTPase through 

introduction of dominant negative mutants 
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completely abolishes the invasive capacity of the 

tumor cells.  

On the other hand, GCF2 plays an important role in 

colorectal cancer metastasis by regulating RhoA-

induced cell adhesion, migration, and invasion 

(Ariake et al., 2012). 

Head and neck squamous cell 
carcinoma 

Oncogenesis 

RhoA, Rac2, and other proteins involved in initiating 

cell motility are promising clinical molecular 

markers for head and neck squamous cell cancer 

(Abraham et al., 2001). Mutations have affecting the 

effector domain (ED) have been described: these 

include five E40Q mutations and a single Y42I 

mutation, which alter the seventh and ninth amino 

acids, respectively, of the ED (Lawrence et al., 

2014). 

Peripheral T-cell lymphoma (PTCL) 

Oncogenesis 

New studies identify recurrent dominant-negative 

mutation of the RhoA GTPase gene in these 

lymphomas.  

In T-cell lines, expression of the G17V mutant 

reduced the formation of stress fibers in fibroblast, 

increased cell proliferation and cell migration. It has 

an important role in the pathogenesis of 

angioimmunoblastic t-cell lymphoma (AITL) and 

other subtypes of PTCL (Manso et al., 2014; 

Palomero et al., 2014; Sakata-Yanagimoto et al., 

2014; Yoo et al., 2014). 

Acute promyelocytic leukaemia (APL) 

Oncogenesis 

RhoA modulates functional and physical interaction 

between ROCK1 and Erk1/Erk2 in selenite-induced 

apoptosis of human leukaemia cells (Li et al., 2013). 

Pediatric Burkitt lymphoma 

Oncogenesis 

The mutation R5Q is detection in patients with 

pediatric Burkitt lymphoma. RhoA mutant induced 

inactivate the RhoA protein. Thus, deregulation of 

RhoA by mutation is a recurrent event in Burkitt 

lymphomagenesis in children (Rohde et al., 2014). 

Chronic myeloid leukemia (CML) 

Oncogenesis 

Higher expression of RhoA in CML could be 

responsible for increased proliferation of 

polymorphonuclear leukocytes (PMNL) cells (Molli 

et al., 2012). 

Prostate cancer 

Oncogenesis 

LPA stimulates RhoA and increased PC-3 prostate 

cancer cell invasion activity through an NF-kappaB-

dependent pathway (Hwang et al., 2006). Inhibition 

of RhoA activity induced senescence-like arrest in a 

human prostate carcinoma cell line (Park et al., 

2007). 

Osteosarcoma 

Oncogenesis 

Lipophilic statins induced membrane RhoA 

relocalization to the cytosol and inhibited RhoA 

activity, which resulted in decreased phospho-

p42/p44- mitogen-activated protein kinases 

(MAPKs) and Bcl-2 levels. Constitutively active 

RhoA rescued phospho-p42/p44-MAPKs and Bcl-2 

and abolished statin-induced apoptosis (Fromigué et 

al., 2006). 

Glioblastoma 

Oncogenesis 

Decreased RhoA activity occurred in correlation 

with increased glioma cell migration (Fortin Ensign 

et al., 2013). 

Cervical cancer 

Oncogenesis 

Overexpression of RhoA promotes the proliferation 

and migration of cervical cancer cells (Liu et al., 

2014). 

Squamous cell carcinoma of tongue 
(TSCC) 

Oncogenesis 

RhoA plays a significant role in TSCC progression 

by regulating cell migration and invasion through 

Wnt/β-catenin signaling pathway and cell 

proliferation through cell cycle regulation, 

respectively (Yan et al., 2014). 

Neurological disorders 

Oncogenesis 

RhoA protein was lower in the Alzheimer's disease 

(AD) brain hippocampus, reflecting loss of the 

membrane bound. Altered subcellular targeting of 

RhoA is related to neurodegeneration (Huesa et al., 

2010). In addition, an upregulation of RhoA 

immunoreactivity occurs in the brains of patients 

with intractable epilepsy (Yuan et al., 2010). Also, 

the Down syndrome critical region protein TTC3 

inhibits neuronal differentiation via RhoA and 

Citron kinase (Berto et al., 2007). 

Diabetic nephropathy 

Oncogenesis 

High glucose activates RhoA/Rho-kinase in 

mesangial cells (MC), leading to downstream AP-1 

activation and fibronectin induction. Inhibition of 

this pathway in vivo prevents the pathologic changes 

of diabetic nephropathy, supporting a potential role 

for inhibitors of RhoA/Rho in the treatment of 

diabetic renal disease (Peng et al., 2008). 
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Pregnancy 

Oncogenesis 

In the early stage pregnancy, up-regulation of RhoA 

induced by low oxygen conditions may play an 

important role in regulation of HIF-1α expression in 

trophoblast cells (Hayashi et al., 2005). 

Pulmonary hypertension (PH) 

Oncogenesis 

RhoA and Rho kinase activities are increased in PH 

(Guilluy et al., 2009). Inhibition of this pathway is 

involved in the beneficial effect of sildenafil on PH 

(Guilluy et al., 2005). 

Hypertension 

Oncogenesis 

RhoA signaling through Arhgef1 is central to the 

development of angiotensin II-dependent 

hypertension and identify Arhgef1 as a potential 

target for the treatment of hypertension (Guilluy et 

al., 2010). 

To be noted 

Note 

miR that target RHOA: RHOA is target of different 

microRNAs, according to the bioinformatic 

algorithms microRNA (microRNA.org). 
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