
Gene Section 
Review 

Atlas Genet Cytogenet Oncol Haematol. 2015; 19(6) 390 

Atlas of Genetics and Cytogenetics 
in Oncology and Haematology 

INIST-CNRS OPEN ACCESS JOURNAL 

RANBP2 (RAN binding protein 2) 
Erica Di Cesare, Patrizia Lavia 

Institute of Biology, Molecular Medicine and NanoBiotechnology (IBMN), National Research 

Council (CNR), c/o La Sapienza University, via degli Apuli 4, 00185 Rome, Italy (ED, PL) 

Published in Atlas Database: August 2014 

Online updated version : http://AtlasGeneticsOncology.org/Genes/RANBP2ID483.html 

Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/62145/08-2014-RANBP2ID483.pdf 
DOI: 10.4267/2042/62145

This article is an update of : 
Di Cesare E, Lavia P. RANBP2 (RAN binding protein 2). Atlas Genet Cytogenet Oncol Haematol 2015;19(6) 
Huret JL, Senon S. RANBP2 (RAN binding protein). Atlas Genet Cytogenet Oncol Haematol 2003;7(4) 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. 
© 2015 Atlas of Genetics and Cytogenetics in Oncology and Haematology 

Abstract 

Review on RANBP2, with data on DNA/RNA, on 

the protein encoded and where the gene is 

implicated. 

Identity 

Other names: ADANE, ANE1, NUP358 

HGNC (Hugo): RANBP2 

Location: 2q12.3 

Note 

The human RANBP2 gene lies within a 

recombination "hot spot" genomic region on Chr 

2q11-q13 (Krebber et al., 1997) as part of a gene 

"cluster" that contains the partially duplicated gene 

RANBP2L1, containing the RANBP2 5' gene 

portion (Nothwang et al., 1998). 

DNA/RNA 

Note 

RANBP2 is an essential gene and RANBP2-null 

mice display early embryonic lethality (Aslanukov et 

al., 2006; Dawlaty et al., 2008). A single RANBP2 

hypomorphic allele is, however, sufficient for 

viability. 

Description 

The human RANBP2 gene comprises 31 exons and 

gives rise to one major mRNA encoding the 

RANBP2 protein, with at least 8 less represented 

alternative splicing variants (AceView; NCBI; 

GeneCards). 

Transcription 

RANBP2 mRNA transcription is widespread in 

many though not all tissues (Fauser et al., 2001). In 

the mouse genome, the Ranbp2 promoter region lies 

in a CpG island, typical of "housekeeping" gene 

promoters and potentially subjected to epigenetic 

regulation. In silico analysis of the human RANBP2 

gene promoter has identified potential binding sites 

for cell cycle- and cell proliferation-dependent 

transcription factors, some validated in chromatin 

immunoprecipitation (ChIP) assays (e.g., c-Fos, AP1 

and others) (GeneCards).  

Binding sites for tissue-specific factors are also 

present, and RANBP2 mRNA transcript and protein 

product are highly expressed in certain tissues and 

cell types, e.g. neuronal cells (Fauser et al., 2001).  

Serial analysis of gene expression (SAGE) depicted 

aberrant up-regulation of RANBP2 in certain 

cancers, e.g. multiple myeloma (Felix et al., 2009). 

Protein 

Note 

Biological overview: The RAN-binding protein 2 

(RANBP2) or Nucleoporin 358 (NUP358, 

nucleoporin of 358 kDa) is the largest component of 

nuclear pore complexes (NPCs). The latter are 

highly complex structures composed of several 

orderly assembled proteins, called nucleoporins 

(NUPs), that represent gateways across the nuclear  
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envelope (NE) for the exchange of macromolecules 

between the nucleus and the cytoplasm. This 

exchange is critical to many essential processes, e.g., 

DNA replication, DNA repair, DNA damage 

response, establishment of functional chromatin 

domains, replication checkpoint, transcriptional and 

epigenetic regulation of genes and genome function, 

mitotic entry.  

The RANBP2 nucleoporin is specific of higher 

eukaryotes and has a multimodular structure (Wu et 

al., 1995; Yokoyama et al., 1995; Wilken et al., 

1995).  

It is unique among NUPs in that it is endowed with 

E3-type ligase activity for SUMO (small ubiquitin-

related modifier) peptides (Pichler et al., 2002). This 

will be discussed in more depth below.  

RANBP2 operates in two major groups of cellular 

processes:  

- NPC- and NE-dependent processes ensuring 

nuclear functions in interphase (e.g., nuclear 

positioning, recruitment of motor proteins at the NE, 

centrosome anchoring to the NE, import and export 

of macromolecules in and out of the nucleus, 

including transcription and regulatory factors 

governing genome function); and  

- cell division events (NE breakdown, centrosome 

migration, assembly of the mitotic apparatus, 

chromosome segregation).  

In many of these processes, RANBP2 stimulates the 

conjugation of SUMO peptides (SUMO-1 to -4) to 

various target proteins at specific intracellular sites: 

the nuclear rim in interphase, and microtubules 

(MTs) as well as kinetochores (KTs) in mitosis. 

SUMO conjugation is emerging as a protein post-

translational modification that modulates the 

localization and interactions of several proteins 

(reviewed by Lomelí and Vázquez, 2011; Flotho and 

Melchior, 2013).  

The protein-modifying and transport-regulating 

activities of RANBP2 target specific substrates in 

many tissues and cell types. As a result, RANBP2 

acts as a cell context-dependent pleiotropic protein 

in a variety of physiological and pathological 

processes, including tumor suppression, 

neuroprotection and familial necrotic 

encephalopathy. 

Description 

The human RANBP2 protein is composed of 3224 

aminoacidic residues, with a molecular weight of 

358 KDa, hence its name (Wu et al., 1995; 

Yokoyama et al., 1995). The alternative name 

RANBP2 derives from the presence of four RAN-

binding domains (RBD), through which it binds the 

GTPase RAN. RANBP2 contains several more 

structural domains:  

- An N-terminal leucine-rich region anchors 

RANBP2 to the NPC. This region is also implicated  

in binding interphase microtubules (MTs) and 

regulating their dynamics (Joseph and Dasso, 2008).  

The structure of this region reveals an alpha-helical 

domain harboring three central tetratricopeptide 

repeats (TPRs) capable to bind single-stranded RNA 

in solution and thought to contribute to messenger 

ribonucleoprotein (mRNP) remodeling at the 

cytoplasmic face of the NPC (Kassube et al., 2012). 

- Four RAN binding domains (RBD1-4) 

(Yokoyama et al., 1995), 46-60% identical to the 

prototype RAN-binding domain (Pfam) in the first 

cloned RAN-binding partner, RANBP1 (Bressan et 

al., 1991; Coutavas et al., 1993).  

The RBDs act as coactivators of GTP hydrolysis on 

RAN with a dual purpose: a) to assist nuclear protein 

import, by preventing the accumulation of RANGTP 

at the NPC cytoplasmic side and avoid that 

RANGTP prematurely dissociates import complexes 

while traversing the NPC to reach the nucleus 

(Yaseen and Blobel, 1999a); b) to facilitate the 

export of nuclear cargos by assisting the dissociation 

of RANGTP from exportin-cargo complexes 

(Bernad et al., 2004). 

- Eight zinc-finger motifs (Cys2-Cys2 type) in the 

central portion of RANBP2; they provide a binding 

platform for exportin-1/CRM1 (Singh et al., 1999) 

and help CRM1 recycling into the nucleus (Bernad 

et al., 2004). These motifs can also interact with 

RanGDP (Yaseen and Blobel, 1999a). 

- Phenylalanine-glycine (FG) and FxFG repeats 

(the nucleoporin "signature" motif; x is any 

aminoacid) present on the fibril-like structures 

projecting from the NPC into the cytoplasm.  

These repeats provide multiple binding sites for 

nuclear transport receptors (karyopherin beta/ 

importin beta and exportin-1/CRM1. The interaction 

of FG-rich fibrils with transport vectors facilitates 

their passage across the NPC.  

- A domain endowed with SUMO E3 ligase 

activity, the first enzymatic activity identified for 

RANBP2 (Pichler et al., 2002), residing between 

RBDs 3 and 4, that regulates sumoylation of target 

proteins (more detail below).  

- A C-terminal domain with peptidyl-prolyl 

isomerase activity, the second enzymatic activity 

ascribed to RANBP2 (Lin et al., 2013). 

- A cyclophilin A-like domain, harbouring an active 

site cavity that facilitates the binding to the HIV-1 

capsid proteins during viral infection (Lin et al., 

2013). 

Thus far, the SUMO E3 ligase domain, two RBDs, 

the N-terminal TPR domain and the C-terminal 

domain have been crystallized and structurally 

characterized (Vetter et al., 1999; Reverter and 

Lima, 2005; Geyer et al., 2005; Kassube et al., 2012; 

Lin et al., 2013). 

The SUMO E3 ligase activity of RANBP2 and the 

RANBP2/RANGAP1*SUMO1/Ubc9 (RRSU) 

complex 

http://pfam.xfam.org/family/PF00638
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In addition to binding RAN, RANBP2 stably 

associates with the RAN GTPase-activating protein 

1 (RANGAP1) (Mahajan et al., 1997; Saitoh et al., 

1997; Matunis et al., 1998; Swaminathan et al., 

2004) throughout the cell cycle.  

The interaction requires SUMO-1 conjugation to 

RANGAP1 (Matunis et al., 1996; Mahajan et al., 

1997) and the presence of the SUMO ubiquitin-like-

conjugating Ubc9 enzyme (Zhang et al., 2002; Zhu 

et al., 2006), an E2 enzyme that transfers SUMO 

peptides to SUMO chains, analogous to enzymes 

acting in the ubiquitination cascade.  

RANBP2 is possibly the most abundant SUMO E3 

ligase in the cell, and as such has a prominent role in 

SUMO modification of proteins. Most RANBP2-

dependent functions are likely mediated by its 

activity in SUMO conjugation of target proteins.  

The RANBP2 SUMO E3 ligase domain lacks 

homology to other known SUMO or ubiquitin E3 

ligases (Pichler et al., 2004). It is characterized by 

two 50 aminoacid-long internal repeats, IR1 and IR2 

(43% identical), separated by a 20 aminoacid-long 

linker. Both IR1 and IR2 can bind to Ubc9 and 

catalyze sumoylation of substrates in vitro, though 

IR2 has lower affinity for Ubc9 than IR1 (Pichler et 

al., 2004; Tatham et al., 2005). 

RANBP2 is quantitatively engaged in complexes 

with sumoylated RANGAP1 and Ubc9. This binding 

requires RANBP2's IR1 and the SUMO-interaction 

motif SIM1, as well as Ubc9. Once IR1 and SIM1 

are occupied by RanGAP1*SUMO1 and Ubc9, the 

E3 ligase activity depends on IR2 (Werner et al., 

2012).  

In that sense, the entire RANBP2/RANGAP1-

SUMO complex (called RRSU complex) is viewed 

as a multisubunit SUMO ligase.  

Indeed, RRSU effectively sumoylates the 

physiological substrate Borealin in vitro (Klein et al., 

2009), whereas free RANBP2 does not (Werner et 

al., 2012).  

After NPC disassembly at NEB, RANBP2 remains 

associated with RANGAP1-SUMO1 and Ubc9 

(Swaminathan et al., 2004); RRSU associates with 

the mitotic spindle and a fraction is recruited to KTs 

after MTs attach to them (Joseph et al., 2002; Joseph 

et al., 2004). 

Localisation 

Intracellular localization: In interphase cells, 

RANBP2 localizes at the cytoplasmic face of the 

NPCs (Wu et al., 1995; Yokoyama et al., 1995; 

Wilken et al., 1995; Walther et al., 2002): RANBP2-

containing filaments are anchored to the NPC via 

interaction with a complex of nucleoporins 

containing Nup214 and Nup88 (Bernad et al., 2004) 

and project into the cytoplasm.  

Joseph et al. (2002 and 2004) first reported that, at 

the onset of mitosis, when the NE breaks down and 

NPCs disassemble, RANBP2 localizes to the 

microtubules (MTs) of the forming mitotic spindle, 

with an accumulation at poles; a fraction is recruited 

to chromosomal KTs when the latter become 

attached to MTs (Figure 2, bottom row). This 

localization underlies RANBP2's mitotic functions 

(see below). In early telophase RANBP2 is recruited 

back around chromatin of the reforming nuclei as the 

NE and NPCs reorganize. 

Function 

RANBP2 in interphase nucleocytoplasmic 

transport 
As anticipated above, RANBP2 localization at 

cytoplasmic fibrils emanating from the NPC 

underlies its function in nucleocytoplasmic 

transport. 

- Nuclear protein import  
RANBP2 serves as a docking site for import 

complexes (the latter are of two main types: either 

composed of importin vectors interacting with 

proteins marked by a nuclear localization signal, 

NLS, or composed of transportin bound to 

ribonucleoproteins marked by the so-called M9 

signal sequence, originally described in hnRNPs).  

The docking of import complex at RANBP2 

cytoplasmic fibrils of the NPC aids the earliest step 

in nuclear import (Melchior et al., 1995; Delphin et 

al., 1997; Mahajan et al., 1997; Yaseen and Blobel, 

1999b). RANBP2 itself does not directly participate 

in import, but facilitates it. In RANBP2-depleted 

HeLa cells, in vivo nuclear import by either Importin 

alpha/beta (Hutten et al., 2008) or transportin 

(Hutten et al., 2009) still occurs, but at substantially 

reduced rates. 

In a screening for nuclear proteins that accumulate in 

the cytoplasm upon RANBP2 depletion, Wälde and 

coworkers (2012) have also identified direct 

RANBP2 interactors: they found that an N-terminal 

fragment of RANBP2, harboring the NPC-binding 

domain, three FG motifs and RBD1, was sufficient 

to promote protein import, while neither the 

interaction with RANGAP1 nor the SUMO E3 ligase 

activity were required (Wälde et al., 2012). This is 

consistent with functional mapping data from 

Hamada and coworkers (2011) using various 

RANBP2-derived regions to complement RANBP2 

knockout MEF cells, in which the RANBP2 N-

terminal fragment restored import to RANBP2-null 

cells; the authors demonstrated a crucial role of this 

domain in aiding the recycling of RAN and importin 

beta complexes for nuclear import (Hamada et al., 

2011). 

In summary, RANBP2 aids nuclear import by at 

least two mechanisms: i) by "capturing" transport 

receptors through the FG-repeats, it conveys them 

towards the NPC and reduces the effective 

concentration of import receptors required for 

efficient transport, while ii) by interacting with 

selected cargos in a receptor-independent manner, 
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through the RANBP2 N-ter domain, it increases the 

overall efficiency of nuclear import.  

Interestingly, RANBP2 is also implicated in the 

nuclear delivery and integration of certain human 

viruses, including Herpes simplex (Copeland et al., 

2009) and immunodeficiency virus-1 (HIV-1) 

(Zhang et al., 2010; Ocwieja et al., 2011; Schaller et 

al., 2011). 

- Nuclear export 
RANBP2 also plays roles in mRNA export. 

Poly(A)+ mRNA accumulates in nuclei of 

RANBP2-null MEFs (Hamada et al., 2011), 

although the intracellular distribution of poly(A)+ 

mRNA is not affected in RANBP2 hypomorphic 

mice-derived MEF cells (Dawlaty et al., 2008): thus, 

mRNA export requires RANBP2, but can proceed, 

albeit being impaired, in the presence of significantly 

decreased abundance. These data suggest that 

RANBP2 facilitates the export pathway, yet is not an 

indispensable component.  

Overall, RANBP2 affects the rate of nucleo-

cytoplasmic transport of many proteins, including 

transcriptional and epigenetic factors. The latter are 

often mislocalized in tumor cells and in other cellular 

contexts in which RANBP2 expression is altered, 

with a global impact on genome functions. An 

emerging concept is that tumor cells exploit specific 

properties of NUPs to deregulate gene transcription, 

chromatin boundaries and essential transport-

dependent regulatory circuits (Xu and Powers, 2009; 

Köhler and Hurt, 2010). 

Structural functions at the nuclear rim and NPCs 
RANBP2 has structural roles at the NE besides 

nuclear transport proper. The development of in situ 

SUMOylation assays has revealed that both the 

nuclear rim and PML nuclear bodies are major sites 

of SUMOylation; RANBP2 inactivation abolished 

SUMOylation processes along the nuclear rim and 

reduced the number of PML bodies, while not 

affecting the nuclear lamina (Saitoh et al., 2006). The 

loss of nuclear PML bodies has been observed in 

tumorigenesis, particularly in colon cancer. Satow et 

al. (2012) reported that β-catenin overexpression 

disrupts PML bodies in colon cancer cell lines and 

inhibits RANBP2-dependent SUMOylation of 

specific PML-associated proteins. The data suggest 

that RANBP2 is required for SUMOylation of 

proteins associated with the formation of particular 

subnuclear structures, the loss of which impinges on 

nuclear functions in cancer cells.  

RANBP2 also recruits motor proteins at the NE to 

regulate NE breakdown at the onset of mitosis. 

Through its zinc finger domain, RANBP2 binds the 

COPI coatomer complex, which coats the Golgi 

vesicles and contributes to membrane remodelling at 

the Golgi; the RANBP2-derived zinc finger domain 

alone dominantly interferes with COPI recruitment 

to the nuclear rim and inhibits NE breakdown 

(Prunuske et al., 2006). Interestingly, RANBP2 acts 

cooperatively with Nup153, the most nuclear of the 

NUPs, which contains a distinct zinc finger domain, 

in coordinating NE breakdown.  

RANBP2 also binds to BICD2 (homologous to 

Drosophila Bicaudal D), an adaptor between motor 

proteins and their cargo, and recruits BICD2 to 

NPCs in the G2 phase of the cell cycle (Splinter et 

al., 2010). BICD2 in turn regulates dynein-dynactin 

motor complexes at NPCs, and thus centrosome 

tethering to the NE prior to mitotic entry. BIC2 is 

also required for the antagonistic activity of kinesin-

1, which pushes centrosomes apart. The balance 

between dynein and kinesin-1 opposite activities 

governs centrosomal positioning, and hence sites 

where centrosomes will nucleate the spindle MTs to 

form asters and later spindle poles; RANBP2 

recruitment of BICD2 to the NPCs just before NE 

breakdown represents a most upstream step in this 

cascade of events.  

A specialized version of this process takes place in 

radial glial progenitors (RGPs), from which neurons, 

glia, and brain adult stem cells originate. RGP nuclei 

migrate basally during G1, then apically during G2 

via dynein, and eventually divide at the ventricular 

surface. Hu et al. (2013) discovered that apical 

nuclear migration requires dynein recruitment at 

NPCs by two cooperating G2-specific mechanisms: 

the "RanBP2-BicD2" pathway acts first, and 

"Nup133-CENP-F" operates sequentially. This work 

identifies spatially regulated mechanisms, implying 

that only restricted regions of neurogenic tissues are 

permissive for mitosis: in this context, RANBP2 is 

essential for dynein control of apical nuclear 

migration, nuclear membrane remodelling and 

centrosome dynamics prior to mitosis.  

Cell differentiation-associated functions 
The NPC is not a static transport gate and undergoes 

dynamic remodelling during differentiation. In 

myogenic differentiation, myoblasts fuse to form 

syncithial myotubes. By atomic force microscopy, 

NPCs have been found to undergo structural 

differences during C2C12 myogenic cell 

differentiation from myoblasts to myotubes, parallel 

to an increased amount of RanBP2 at NPCs (Asally 

et al., 2011). siRNA-mediated depletion of RanBP2 

in myoblasts suppresses differentiation to myotubes. 

Thus, RanBP2 is required for NPC remodelling in 

myogenesis, suggesting that a re-adaptation of 

transport mechanisms, and of the gateways through 

which these take place, is required as myotubes fuse 

and many nuclei become immersed in a common 

cytoplasm. 

RANBP2 can carry out more specialized functions 

in a tissue-specific manner. RANBP2 is highly 

abundantly expressed in the vertebrate retina. Its 

cyclophilin domain (which led Ferreira et al., (1996) 

to classify RANBP2 as Type-II cyclophilin), and the 

RB4 domain, interacts with opsin, a retinal 

transmembrane protein; the RBD4 and cyclophilin 
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domains are therefore proposed to act as a functional 

"supradomain" with a chaperone function for opsin 

in the retina. Along with this chaperone function, 

RANBP2 associates through its cyclophilin-like 

domain with subunits of the 19S regulatory complex 

of the 26S proteasome in the neuroretina (Ferreira et 

al., 1998), and thus contributes to control the 

stability of proteins that it "chaperones" in the retina.  

Related to RANBP2 transport functions but 

independent from them, Cai et al., (2001) identified 

a novel domain between RBD2 and RBD3 capable 

of direct association with two MT-based kinesin 

motors, KIF5B and KIF5C, in neuronal cells. 

Preventing the interaction of the RANBP2 kinesin-

binding domain (KBD) with KIF5B / KIF5C in 

neuronal cells caused perinuclear clustering of 

mitochondria, deficits in mitochondrial membrane 

potential and cell shrinkage (Cho et al., 2007): thus 

RANBP2 modulates kinesin-dependent 

mitochondria transport and function. The RBD2, 

KBD and RBD3 domains of RANBP2 are proposed 

to constitute a tripartite domain (R2KR3), 

modulating mitochondrial transport via kinesin 

subtypes in subsets of neuroretinal cells (Patil et al., 

2013).Aslanukov et al. (2006) discovered yet 

another association of RANBP2, via its leucine-rich 

domain, with Cox11, a mitochondrial 

metallochaperone, and HKI (hexokinase type I), 

defined as the "pacemaker" of glycolysis. Cox11 

inhibits HKI activity, but RANBP2 suppresses this 

inhibition. Consequently, RANBP2 

haploinsufficient mice show markedly decreased 

HKI and ATP levels in the central nervous system, 

with deficits in growth rates and glucose catabolism 

(Aslanukov et al., 2006). These mice also show 

absent or severely reduced cell death response to 

light-induced oxidative stress in the retina (Cho et 

al., 2010). RANBP2 cell type-conditional mice 

models, selectively lacking RANBP2 either in rod or 

in cone photoreceptors (Cho et al., 2013), showed 

that RANBP2 ablation in cone photoreceptors 

promoted their non-apoptotic death, while rod 

photoreceptors underwent cone-dependent non-

autonomous apoptosis. Thus, RANBP2 modulates 

cell type-specific and distinct pathways of cell death 

- a key feature of neurodegenerative diseases.  

Mitosis 

- Mitotic spindle organization 
Chromosome segregation at mitosis is crucial to the 

maintenance of genomic stability, a process often 

disrupted in cancer. A role of RANBP2 in 

chromosome segregation was first suggested by the 

finding that RANBP2 accumulates at the mitotic 

spindle in prometaphase, and in part at KTs upon MT 

attachment (Joseph et al., 2002; see figure 2); at these 

sites RANBP2 remains associated in complex with 

RANGAP1-SUMO1, suggesting that some of its 

functions entail RANGTP hydrolysis at specific 

mitotic sites.  

In RNAi-based studies in human cells, RANBP2 

down-regulation caused multipolar spindles, with 

supernumerary poles lacking centrioles (hence 

suggestive of MT dysfunction) as well as defects in 

chromosome congression and segregation (Salina et 

al., 2003; Joseph et al., 2004; Klein et al., 2009; 

Hashizume et al., 2013). Consistent findings in 

Caenorhabditis elegans embryos (Askjaer et al., 

2002) suggest that mitotic functions of RANBP2 are 

conserved across species in which this protein is 

present.  

- Mitotic microtubule-kinetochore interactions 
Further studies showed that RANBP2 depletion 

resulted in aberrant KT morphology, associated with 

mis-localization of RANGAP1 and other KT 

proteins, e.g. Mad1, Mad2, Zw10, Mis12, CENP-A, 

CENP-E, CENP-F and dynein; RANBP2 depletion 

also caused lengthened prometaphase duration and 

chromosome misalignment at metaphase, but the 

simultaneous depletion of RANBP2 and either Mad1 

(Salina et al., 2003) or Mad2 (Joseph et al., 2004), 

two major spindle assembly checkpoint (SAC) 

regulators, restored normal prometaphase duration; 

these findings suggest that RANBP2 depletion-

dependent abnormalities activate the SAC. 

Interestingly, RANBP2 depletion yields unstable 

KT-MT interactions, suggesting that the 

concentration of RSSU complex at MT-attached 

KTs contributes to the functional connections 

between the spindle and chromosomes prior to 

chromosome segregation (Joseph et al., 2004). In 

conditions under which RSSU targeting to KTs was 

prevented, discrete attachments between MTs and 

KTs were not maintained, yielding high rates of 

chromosome mis-segregation (Salina et al., 2003; 

Joseph et al., 2004; Arnaoutov et al., 2005). Indeed, 

RANBP2 hypomorphic mice develop severe 

aneuploidy (Dawlaty et al., 2008). 

RSSU targeting to KTs is highly regulated in human 

cells and requires i) MT attachment to KTs, and ii) 

proteins that stabilize MT interaction with KTs, e.g. 

Hec1/Ndc80 and Nuf2 (Joseph et al., 2004). 

There is therefore a functional cross-talk between 

proteins that regulate MT/KT interactions, and 

RSSU recruitment to KTs, which in turn reinforces 

these interactions. Interestingly, CRM1 is required 

for the RSSU complex recruitment to KTs 

(Arnaoutov et al., 2005) while importin beta 

overexpression inhibits it (Roscioli et al., 2012).  

However, neither endogenous RANBP2, nor GFP-

tagged RANBP2 constructs, localize to KTs in 

MEFs (Hamada et al., 2011). Some cell cycle 

checkpoints are not yet fully proficient in embryonic 

cell cycles and some of their regulatory mechanisms 

may diverge from those operating in somatic cells.  

It is worth noting that cells subjected to extended 

RANBP2 RNAi for longer times eventually escape 

the mitotic arrest with defective MT/KT 

connections, originating multinucleated cells and/or 
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citokynesis defects (intracellular bridges) followed 

by cell death (Salina et al., 2003; Joseph et al., 2004). 

In terms of cancer prognosis, these data suggest that 

a very narrow threshold, probably modulated by the 

genetic background of the cells, defines whether 

defective RANBP2 expression is pro-tumorigenic 

(by inducing genetic instability in cells that remain 

viable) or anti-tumorigenic (by preventing normal 

cell division altogether and inducing the death of the 

severely aberrant cell products).  

Regulation of the SUMO conjugation pathway in 

mitosis 
MEFs with reduced RANBP2 levels are viable and 

display no overt nuclear transport abnormalities 

compared to wild-type, yet develop severe 

aneuploidy associated with chromosome segregation 

defects, including anaphase bridges (Dawlaty et al., 

2008). Chromatin bridges in anaphase are typical of 

cells in which DNA decatenation is impaired by 

mutation or inhibition of topoisomerase II alpha 

(Topo IIa) (Bhat et al., 1996).  

Studies in S. cerevisiae (Takahashi et al., 2006), 

Xenopus egg extracts (Azuma et al., 2003) and 

human cells have shown that Topo IIa is subjected to 

sumoylation (Azuma et al., 2003; Azuma et al., 

2005; Mao et al., 2000). Indeed, Dawlaty and 

coworkers observed that i) RANBP2 hypomorphic 

MEFs fail to accumulate Topo IIa at inner 

centromeres in mitosis, and ii) RANBP2 SUMO E3 

ligase activity is required for Topo IIa SUMO 

conjugation and inner centromere targeting, to 

enable decatenation of sister centromeres prior to 

anaphase onset (Dawlaty et al., 2008). 

RANBP2 also associates with the chromosomal 

passenger complex (CPC) during mitosis and 

stimulates sumoylation of Borealin (Klein et al., 

2009); this, however, affects neither CPC assembly 

nor its localization; RANBP2-dependent Borealin 

SUMOylation might be required for CPC interaction 

with an as yet unidentified protein(s) at centromeres 

(Klein et al., 2009).  

RANBP2 in cell viability 
As remarked, RANBP2 inactivation causes early 

embryonic lethality (Aslanukov et al., 2006; 

Dawlaty et al., 2008). Hamada and coworkers (2011) 

studied mitotic cell viability using a Cre-mediated 

RANBP2 conditional knockout approach. The 

incidence of chromosome missegregation was 100% 

for RANBP2-null MEFs, yet these cells did not die 

during faulty mitosis and rarely died during the next 

12 hours after mitotic exit, suggesting that the 

mitotic errors caused RANBP2 knock-out are not the 

primary cause of cell death (Hamada et al., 2011). 

Rescue experiments, expressing various RANBP2 

portions in a RANBP2-null background, revealed 

that a short N-terminal fragment corrected transport 

defects and restored cell viability, suggesting 

prominent NPC dysfunction, rather than mitotic 

failure, as the cause of cell death (Hamada et al., 

2011). By contrast, RANBP2 siRNA-silenced HeLa 

cells underwent prolonged metaphase followed by 

mitotic catastrophe in live cell imaging (Hashizume 

et al., 2013); the use of a fluorescently-tagged import 

reporter demonstrated that, under these conditions, 

RANBP2-depletion-induced mitotic death is not a 

side effect of failed nuclear import. The discrepancy 

between these models remains to be explained. 

Homology 

RANBP2 is conserved among metazoa but absent in 

Saccharomyces cerevisiae. 

Mutations 
Note 

An autosomal dominant mutation of RANBP2 

(1880C-->T, yielding the Thr585Met missense 

mutation in the leucine-rich domain required for 

binding to both the NPC and to MTs) has been 

identified in the familial predisposition to acute 

necrotizing encephalopathy (ANE), arising in 

otherwise healthy children after common viral 

infections, such as influenza (Neilson et al., 2009; 

Loh and Appleton, 2010). 

Fusions of the RANBP2 gene with the gene 

encoding anaplastic lymphoma kinase (ALK) are 

associated with inflammatory myofibroblastic 

tumors (see below).  

RANBP2 mutants (i.e. point mutations or deletion 

mutants) have been engineered in several 

laboratories to study the role of different domains in 

various cellular processes. 

Implicated in 
Various cancers 

Note 

RANBP2 is implicated in many cancer types. It is 

difficult to draw a single unifying mechanism, yet 

two recurrent features are worth noting:  

a) the SUMO ligase and SUMO-stabilizing activity 

of RANBP2 targets many mitotic factors, as 

explained above, which can contribute to genetic 

instability and tumorigenesis when dysregulated 

(e.g., RANGAP1 and hence the functional state of 

RAN at KTs, Topo II, Borealin). Mouse models 

created by crossing RANBP2 hypomorphic 

(RANBP2H) and null (RANBP2-) alleles, 

displaying gradual degrees of RANBP2 

insufficiency, are prone to carcinogen-induced and 

spontaneous tumors: the incidence of skin tumors 

dramatically increased in mice with reduced 

compared to wild-type RANBP2 expression and 

lung adenocarcinomas developed in virtually all 

insufficient mice (Dawlaty et al., 2008).  

b) generally, a striking link exists between some 

NUPs, their propensity to undergo translocation and 

fusion with other gene partners and neoplastic 

diseases (reviewed in Köhler and Hurt, 2010). 
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RANBP2 shares this tendency with some other 

NUPs: residing in a chromosomal recombination 

"hot spot", is involved in several instances of 

translocation; signalling molecules involved in the 

resulting fusion protein become aberrantly 

concentrated at the NE, with tumorigenic 

consequences (see below). 

Inflammatory myofibroblastic tumors 

Note 

RANBP2 is implicated in a subset of inflammatory 

myofibroblastic tumors (IMT), rare soft tissue 

tumors involving mesenchymal cell types, with a 

prominent inflammatory component. IMTs rarely 

metastasize, yet often recur rapidly with fatal 

outcomes in some cases. Some 50% of IMTs harbor 

rearrangements of the ALK gene (encoding the 

anaplastic lymphoma kinase ALK), located at 2p23, 

with diverse partners, and overexpress the ALK 

protein, mostly in the cytoplasm. In several IMT 

cases, ALK is fused to RANBP2 and acquires a 

perinuclear localization. These cases generally have 

a more aggressive clinical course, suggesting that the 

RANBP2-dependent ALK perinuclear localization 

may be prognostic of malignant behavior.  

The first two IMT cases with a RANBP2-ALK 

fusion were described by Ma et al. (2003). By 

sequence analysis, the N-terminal 867 residues of 

RANBP2 were fused to the cytoplasmic segment of 

ALK, originating an 1430-amino acid chimeric 

protein. In both cases, the RANBP2-ALK fusion was 

present in myofibroblasts and was nuclear 

membrane-associated, attributable to the presence of 

the NPC-binding domain of RANBP2 in the fusion. 

Patel et al. (2007) reported on an IMT in a young boy 

(karyotype 

45,XY,der(2)inv(2)(p23q12)del(2)(p11.1p11.2),-

22) with an ALK-RANBP2 fusion, identified by 

FISH and confirmed by cloning and sequencing of 

the breakpoints.  

Chen and Lee (2008) described a hepatic IMT with 

a RANBP2-ALK rearrangement. PCR product 

sequencing revealed the presence of exon 18 from 

RANBP2 and exon 20 from ALK. Tumor cells 

showed a round cell phenotype with nuclear 

membrane accumulation of ALK protein. Mariño-

Enríquez et al. (2011) characterized 11 cases of intra-

abdominal IMT with epithelioid morphology. Nine 

showed perinuclear ALK staining, three of which 

harbored a RANBP2-ALK fusion. These patients 

experienced rapid recurrence. The authors suggest 

that the epithelioid variant of IMT with nuclear 

membrane or perinuclear ALK represents an 

aggressive form of sarcoma, with rapid recurrences 

and frequently fatal. Li et al. (2013) reported two 

more cases of IMT with RANBP2-ALK fusions, 

with epithelioid and rounded tumor cell morphology, 

from the pelvic and peritoneal cavities respectively, 

both associated with quick recurrence and poor 

prognosis. In 2014 the first case of a large tumor 

appearing in the pleural cavity was described (Kozu 

et al., 2014) in a patient with  

massive pleural effusion. The tumor showed the 

presence of a RANBP2-ALK fusion, rounded cells 

with an epithelioid shape, and a prominent 

inflammatory infiltrate, which led the authors to 

diagnose an epithelioid inflammatory 

myofibroblastic sarcoma (EIMS) and recognize it as 

an IMT variant.  

An EIMS case arising in the pelvic cavity was also 

described by Kimbara et al. (2014) as an aggressive 

variant of IMT.  

The tumor cells displayed epithelioid morphology 

and ALK staining on the nuclear membrane, 

associated with RANBP2-ALK fusion identified by 

RT-PCR.  

The patient experienced rapid local recurrence after 

surgery. The tumor was resistant to doxorubicin, but 

underwent shrinkage after treatment with the ALK 

inhibitor crizotinib. 

Multiple myeloma 

Note 

Felix et al. (2009) generated SAGE libraries from 

normal and neoplastic plasma cells to identify 

differentially expressed genes in multiple myeloma 

(MM). They identified 46 upregulated genes in the 

MM library and validated them by qRT-PCR. 

RANBP2 belongs to a group of upregulated genes in 

>50% of tested MM cases and in meta-analyses 

(ONCOMINE database) of MM compared to normal 

plasma cells. The authors proposed that RANBP2 

might be a potential therapeutic target in myeloma. 

Acute myelomonocytic leukemia 

Note 

Maesako et al. (2014) identified a RANBP2-ALK 

fusion mRNA transcript in a case of myeloid 

leukemia, associated with the chromosomal 

inversion inv(2)(p23q13), and resulting in nuclear 

membrane association of ALK. Another 

rearrangement involving RANBP2 and ALK was 

reported by Lim et al. (2014) in an acute 

myelomonocytic leukemia (AML) in a 31-year-old 

woman with a karyotype of 45,XX,inv(2)(p23q21),-

7[20], associated with a RANBP2-ALK fusion 

transcript and strong staining of the fusion protein 

around the nuclear membrane in leukemic cells. The 

patient had an unfavorable clinical course. 

Colorectal cancer 

Note 

Gylfe et al. (2013) highlighted another type of 

recombination tumorigenic events involving 

RANBP2.  

Because microsatellite instability occurs in some 

15% of all colorectal cancers, the authors sequenced 

the exomes of 25 colorectal tumors and respective 
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healthy colon tissue. They confirmed potential 

mutation hot spots in 15 genes, among which 

RANBP2; these were validated in tumors with 

microsatellite instability and showed that RANBP2 

also contains hot spot mutations in the validation set. 

Proposed tumor-promoting 
mechanisms of RANBP2 via SUMO-
conjugation and stimulation of 
tumorigenic signaling 

Note 

The data discussed above indicate some major routes 

through which RANBP2 can contribute to cancer 

onset and progression: increasing their genetic 

instability during mitosis and impairing global 

nuclear functions in interphase. An increasing 

implication of SUMO conjugation in the function of 

proteins relevant to cancer is emerging, particularly 

in DNA damage and repair.  

Among the growing instances of RANBP2-

dependent protein SUMOylation, some proteins 

have established roles in tumorigenic signaling 

pathways.  

Miyauchi et al. (2012) demonstrated a role of 

RANBP2 in SUMOylation and localization of 

MDM2, a major regulator of p53 stability, 

suggesting therefore a possible indirect implication 

of RANBP2 in p53 functions.  

Packham et al. (2014) showed that RANBP2 is 

implicated in the pro-tumorigenic activity of the 

insulin-like growth factor-1 receptor (IGF-1R), an 

activator of the PI3K/Akt pathway with key roles in 

tumorigenesis.  

The biological activity of IGF-1R depends on its 

nuclear translocation, which in turn depends on 

SUMOylation. Packham et al. (2014) characterized 

spatially regulated interactions of IGF-1R, first with 

dynactin, which transports IGF-1R to NPCs, and 

therein with importin-β and RANBP2. RANBP2 

interacts with and stabilizes sumoylated IGF-1R, 

enabling its nuclear accumulation and hence the 

activation of tumorigenic pathways that depend on 

it. Interestingly, RANBP2 levels are abnormally 

elevated in transgenic mouse models of prostate 

cancer constitutively expressing a PI3K catalytic 

subunit (PIK3CA), and treating the animals with a 

PI3K inhibitor decreases RANBP2 protein 

abundance (Renner et al., 2007).  

These data converge to suggest functional cross-

talks between RANBP2 and tumorigenic pathways. 
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